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Abstract

3D shape registration is an important task in computer graphics and

computer vision. It has been widely used in the area of film industry, 3D

animation, video games and AR/VR assets creation. Manually creating

the 3D model of a character from scratch is tedious and time-consuming,

and it can only be completed by professional trained artists. With the de-

velopment of 3D geometry acquisition technology, it becomes easier and

cheaper to capture high-resolution and highly detailed 3D geometries.

However, the scanned data are often incomplete or noisy and therefore

cannot be employed directly. To deal with the above two problems, one

typical and efficient solution is to deform an existing high-quality model

(template) to fit the scanned data (target). Shape registration as an

essential technique to do so has been arousing intensive attention.

In last decades, various shape registration approaches have been pro-

posed for accurate template fitting. However, there are still some re-

maining challenges. It is well known that the template can be largely

different with the target in respect of size and pose. With the large

(usually non-isometric) deformation between them, the shear distortion

can easily occur, which may lead to poor results, such as degenerated

triangles, fold-overs. Before deforming the template towards the target,

reliable correspondences between them should be found first. Incorrect

correspondences give the wrong deformation guidance, which can also

easily produce fold-overs. As mentioned before, the target always comes

with noise. This is the part we want to filter out and try not to fit the

template on it. Hence, non-isometric shape registration robust to noise

is highly desirable in the scene of geometry modelling from the scanned
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data.

In this PhD research, we address existing challenges in shape registra-

tion, including how to prevent the deformation distortion, how to reduce

the foldover occurrence and how to deal with the noise in the target.

Novel methods including consistent as-similar-as-possible surface defor-

mation and robust Huber-L1 surface registration are proposed, which

are validated through experimental comparison with state-of-the-arts.

The deformation technique plays an important role in shape regis-

tration. In this research, a consistent as-similar-as-possible (CASAP)

surface deformation approach is proposed. Starting from investigating

the continuous deformation energy, we analyse the existing term to make

the discrete energy converge to the continuous one, whose property we

called as energy consistency. Based on the deformation method, a novel

CASAP non-isometric surface registration method is proposed. The pro-

posed registration method well preserves the angles of triangles in the

template surface so that least distortion is introduced during the surface

deformation and thus reduce the risk of fold-over and self-intersection.

To reduce the noise influence, a Huber-L1 based non-isometric surface

registration is proposed, where a Huber-L1 regularized model constrained

on the transformation variation and position difference. The proposed

method is robust to noise and produces piecewise smooth results while

still preserving fine details on the target.

We evaluate and validate our methods through extensive experiments,

whose results have demonstrated that the proposed methods in this thesis

are more accurate and robust to noise in comparison of the state-of-the-

arts and enable us to produce high quality models with little efforts.
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Chapter 1

Introduction

1.1 Background

Shape registration is a fundamental problem in computer graphics and

computer vision, in which the aim is to find a transformation that best

aligns two input shapes. It is an essential algorithm to a wide range of

applications, such as, 3D shape reconstruction, statistical shape analysis

and shape retrieval. For example, the traditional way of character mod-

elling is inefficient as it usually requires plenty of artist efforts to create a

high-fidelity and usable 3D model. Even though the appearance of depth

sensors make capturing objects much easier, these data are usually noisy,

incomplete and not ready-to-use. To fill this gap, shape registration is

introduced to transform an existing high quality model so that it well

aligns with the scanned shape.

To guide the transformation in the shape registration, we need to find

a deformation mapping that transforms the template shape to the tar-

get. The typical classes of deformation mapping and their corresponding

geometrical properties are listed in Table 1.1. According to the type of

deformation mapping [Floater & Hormann 2005], shape registration is

generally categorized into two groups: rigid registration and non-rigid

registration. The rigid registration aims to find a rigid-body trans-

formation between two shapes, and thus, it cannot handle deformable

(non-rigid) shapes. Non-rigid registration is then categorized into iso-
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metric and non-isometric. Isometric registration aims at finding a set of

local rigid transformations but lacks local scalability due to its length-

preserving property. Non-isometric registration can be further categrated

into: equiareal, smooth and similar. Specifically, equiareal registration

has scale-preserving property, so is unable to address size difference be-

tween the template and the target. In contrast, smooth registration

based on smoothness regularization is able to handle size difference.

However, it allows piecewise stretching transformation, which can result

in shear distortion. Similar registration fits the deformation gradient into

a similarity matrix, which is an isotropic scale factor s times a rotation

matrix R, which is not only able to handle size difference but also pre-

vents local stretch and shear distortion. Thus, it has been widely used in

works [Yamazaki et al. 2013; Yoshiyasu et al. 2014; Papazov & Burschka

2011] to align shapes with different sizes and detail. However, the en-

ergies they adopt to constrain the local deformation similarity are not

consistent, which tends to produce fold-overs and self-intersection dur-

ing transformation. Here, consistent indicates that the discrete energy

should converge to the continuous case as the discretization refined.

Deformation mapping df Property
Rigid I shape-preserving

Non-rigid

Isometric R length-preserving

Non-isometric
Equiareal det(df)=1 scale-preserving
Smooth min ‖df‖2 smooth deformation
Similar sR angle-preserving

Table 1.1: Typical classes of deformation mapping. df is the deformation
gradient, s is a scalar, I is an identity matrix, R is a rotation matrix.

The process of shape registration can be approximately summarized

in three steps: firstly, roughly aligning the global positions, scales, orien-

tations between shapes; secondly, searching the correspondences between

shapes; finally, register the template to the target according to the cor-

respondences. Finding the correspondences is an essential step for shape

registration. According to the survey [Tam et al. 2013], there are some

constraints, including features, saliency, envelope of motion, search con-

straints can be used to assist in finding correspondences for non-rigid

registration. The template and the target can be largely different in

2



size. Since isometric registration is unable to deal with shapes with

large size difference, we mainly focus our research on the non-isometric

case. In the scope of non-isometric registration, not all the constraints

listed above can be applied. Some constraints are suitable for the iso-

metric case but not for the non-isometric. For example, feature and

signature constraints can be well defined under isometric circumstance.

There are some isometry-invariant features, such as Heat Kernel Signa-

ture (HKS) [Sun et al. 2009] and Wave Kernel Signature (WKS)[Aubry

et al. 2011], which can be employed to seek for the correspondences as

they are invariant under isometric deformation. However, due to the

large variations in the pose, size and local details of the shapes for non-

isometric case, it is difficult to define such a signature that are invariant

to non-isometric transformation. it makes the correspondence searching

become a challenging problem for non-isometric registration.

The scanned data usually contain noise, how to exclude the noise and

recover the original shape of the target is one goal of shape registra-

tion. For the accuracy and robustness of registration, the transforma-

tion variation and position difference constraints are usually formulated

as a regularization term and a data term, respectively, to measure the

smoothness of the neighbouring transformation and the closeness of reg-

istration shapes, respectively. Most works [Amberg et al. 2007; Li et al.

2008; Jiang et al. 2017] use the classic squared L2-norm on both terms

(L2-L2). However, the regulation term in L2-norm tends to penalize large

transformation variation. It is not suitable for articulated models where

large deformation variations exist at their joints. To solve this problem,

Yang et al. [2015] propose a sparse non-rigid registration method with

L1 norm applied on the regularization term (L1-L2) to allow large trans-

formation discontinuity. The data term in L2-norm strives to distribute

errors evenly, thus fitting the result even on the noisy parts. To tackle

this issue, Li et al. [2018] propose a dual sparsity registration approach

with L1-norm applied on both regularization term and data term (L1-

L1). However, their methods are only limited to isometric registration

and the L1-L1 model tends to produce piecewise constant artefacts as

shown in [Werlberger et al. 2009]. Whereas in the real-life application,

3



the template and the target can be largely different in shape and size,

which means their deformation mapping is non-isometric. Therefore, to

devise robust constraints against noise for non-isometric shape registra-

tion is highly expected.

1.2 Main challenges

The main challenges for non-isometric 3D shape registration can be sum-

marized as follows:

• Template quality preservation Shapes in non-isometric regis-

tration can be largely different in respect of size, pose and de-

tails. During the registration, the template may undergo large

deformation, which makes it susceptible to shear distortion, self-

intersection and fold-overs. Obtaining a high-quality, clean and

usable shape for application is very challenging.

• Semantic correspondence Semantic correspondence is crucial

for 3D shape registration. For example, during face registration,

features around eyes, mouths and noses should match each other.

It is very challenging to find semantic correspondences in the case

of non-isometric registration, since these features are prone to be

variant under non-isometric deformation.

• Registration robustness The scanned target often contains noise

and is usually incomplete. It is very challenge to obtain a high-

quality result under these circumstances. The noise can easily af-

fect the correspondence searching and the incomplete parts give

no correspondence for the template. Without enough correct cor-

respondences, it is difficult to register the template to the target

with the shape quality preserved.

• Less user effort The registration technique should not rely on a

great amount of user input to specify many feature points manually.

Otherwise, it would be inefficient and prone to errors for users to

operate.
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1.3 Research aims

The aim of this research is to tackle these key technique challenges in non-

isometric 3D shape registration. The major tasks range from deformation

regularization, correspondence searching, shape de-noising and comple-

tion, 3D shape registration. This research will propose non-isometric

registration methods for fitting a high-quality template shape to a noisy

or incomplete target with only little user effort. Techniques devised in

this thesis could be applied in 3D character modelling, 3D facial regis-

tration and human pose estimation, which would benefit for applications

such as film industry, digital games, 3D computer animation and VR/AR

interaction.

1.4 Research Objectives

In order to achieve the aim, following objectives need to be accomplished:

• Literature Review: review and investigate current research on

3D geometric deformation, correspondence searching, de-noising

in image and shape processing, 3D shape registration. Identify the

limitation of current approaches in non-isometric situations.

• Non-isometric 3D Geometric Deformation: design a novel

non-isometric 3D shape deformation technique that is able to han-

dle large deformation with shape quality well preserved.

• Correspondence Searching: design an effective method to find

reliable correspondences between non-isometric shapes which should

be robust enough against noisy and incomplete target.

• Robustness: design robust constraints to constrain the shape de-

formation so that the template quality will be well maintained even

given a noisy target.

• Little User Effort: with little user effort only, our methods could

accomplish the non-isometric registration automatically.

• Non-isometric 3D Shape Registration: equipped with the
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above approaches, design a robust non-isometric registration method

with little user effort, which is robust against shear distortion,

large deformation and noise so that the template quality is well-

preserved.

1.5 Contributions

There are several major contributions towards different tasks in this PhD

research:

• We propose a novel shape deformation method, called consistent

as-similar-as-possible (CASAP) deformation. It fits local trans-

formation into scale and rotation, which is not only able to handle

large deformation, but also reduces the shear distortion. Moreover,

contrast to as-similar-as-possible (ASAP) deformation method, the

energy in our deformation technique is consistent, which means the

discrete energy can be converged to the continuous case as the dis-

critization refined.

• With CASAP energy as deformation regularization, we further pro-

pose a non-isometric surface registration approach. It not only

produces more accurate fitting results with little user input, but

also preserves angles of triangle meshes and allows local scales to

change. Furthermore, a coarse-to-fine strategy is proposed to fur-

ther improve the robustness and efficiency of our approach.

• Taking local geometrical feature descriptors into account, we pro-

pose a new matching energy to find more reasonable correspondent

pairs between template and target models.

• We propose a Huber-L1 based non-isometric registration method

regularized on transformation variation and position difference.

The Huber-L1 model is solved by the alternating direction method

of multipliers (ADMM) with each energy term being represented in

matrix form. The proposed model is robust to noise and produces

piecewise smooth results with the target’s fine details being well

preserved.
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1.6 Structure of the following chapters

The following part of this thesis contains 7 more chapters:

• Chapter 2 Literature review on the related research topics, includ-

ing 3D geometric deformation, correspondence searching, shape de-

noising and 3D shape registration.

• Chapter 3 Presents a novel deformation method, which is not

only capable of addressing shapes with large difference in size but

also ascertain a consistent energy to reduce the chance of fold-over

and self-intersection.

• Chapter 4 Presents a novel non-isometric surface registration

method, which is not only able to handle large deformation but

also reduces the occurrence of fold-over and shear distortion dur-

ing transformation.

• Chapter 5 Presents a Huber-L1 based non-isometric surface reg-

istration, which is robust to noise and produces piecewise smooth

results.

• Chapter 6 Conclusion and future plan.
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Chapter 2

Literature Review

The registration process usually consists of three steps: aligning the tem-

plate with the target globally; finding correspondence between shapes;

deforming the template towards the target via deformation technique.

This chapter will review the key technologies for shape registration in-

cluding 3D geometric deformation, 3D shape correspondence and 3D

shape registration. In addition, as the target usually comes along with

noise, we will also review the robust registration methods aiming to tackle

the noise issue.

2.1 3D geometric deformation

Geometric deformation is a fundamental and deeply researched topic in

the field of computational geometry. It has important applications in a

lot of areas, for example computer animation, film industry, video game

and manufacturing. A multitude of works have been published aiming

at this issue. According to the survey [Botsch & Sorkine 2008], based on

whether the deformation problem can be formulated as a linear system,

the deformation methods can be generally divided into two categories:

• Linear deformation;

• Nonlinear deformation.
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2.1.1 Basic concept

Before diving into the review, we first introduce some basic concepts and

notations of deformation referred to in this research. As we all know,

the objects existing in nature is in the form of continuity. However, in

computer they have to be represented discretely as computers can only

address discrete signals. In computer, the shapes (both surfaces and

volumes) are usually discretized into discrete units. We name these dis-

crete units as discrete cells. In general, the surface can be discretized

into triangles or quadrilaterals, while the basic 3D discrete cells for vol-

ume are the tetrahedron, quadrilateral pyramid, triangular prism and

hexahedron. In this research, we mainly focus on triangulation surfaces.

Although shapes represented in computer are in discrete forms, the de-

formation energy should converge to the continuous case as the discritiza-

tion is refined, which we name as consistent property. By consistent, we

mean for different discrtizations of the same shape, their energies should

be consistent when the same deformation is applied. This is particulary

useful in the case of a poor triangulation that has large variation in the

size of the triangles.

For triangulation mesh, the global deformation can be decomposed

into each triangle or each vertex. Moreover, these triangles or these ver-

tices are not independent from each other, they are connected by neigh-

boring edge sets. There are three kinds of discrete cell for triangulation

mesh: triangle, spokes, spokes-and-rims (Figure 2.1).

(a) (b) (c)

Figure 2.1: Different cells for triangulation mesh: (a) triangle; (b) spokes;
(c) spokes-and-rims;
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2.1.2 Linear deformation

Linear means we use a linear system of equations to solve a global

quadratic variational minimization problem. The advantage of linear

deformation methods are three-folds: efficient, solving a linear system of

equation is quite efficient, especially when the associated linear system

is sparse; robust, the solved quadratic energy has a unique global mini-

mum; smooth, the global energy minimization guarantees smooth and C1

continuous surface deformations compared the non-linear deformation.

According to the target the deformation applied onto, the linear defor-

mation methods can be categorized into linear surface based deformation

and linear space deformation.

Linear surface-based deformation

The linear surface-based deformation roughly falls into three categories:

shell-based deformation, multi-scale deformation and differential coordi-

nates based deformation.

Shell-based deformation method minimizes the elastic energy subject

to user-defined boundary constraints. The elastic energy measures how

much the object has been deformed from its initial configuration, which

is the main requirement for physically based surface deformations. For

two-manifold surfaces, the elastic energy considers local stretching and

bending within the object. Terzopoulos et al. [1987]; Celniker & Gos-

sard [1991] propose physically-based deformation methods minimizing

stretching and bending under deformation constrains, which corresponds

to thin-shell models of non-planar rest states. Deformation based on a

discretization of variational bending energy minimization is mathemati-

cally understood and yields smooth and tangent-continuous deformations

[Guskov et al. 1999; Kobbelt et al. 1998; Botsch & Kobbelt 2004; Bickel

et al. 2008]. However, for these approaches all computations and lin-

earizations are performed with respect to a fixed reference mesh, large

deformations might lead to shape distortions and detail loss.

To preserve surface details, the above methods require a multi-scale

decomposition, which splits a surface into a smooth base surface (low fre-
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quencies) and displacement vectors (high frequencies). Multiresolution

deformation changes the smooth base surface and adding the details

back onto it then yields the desired multi-scale deformation [Kobbelt

et al. 1999]. In particular, Kobbelt et al. [1998] introduce a mesh defor-

mation technique by solving a constrained minimization of the thin-plate

energy at a desirable coarse resolution. The user specifies deformation

constraints through a handle polygon. Original mesh details are added

back to the resulting smooth mesh to produce a final solution. This tech-

nique only gives the user limited control over the mesh shape through

sparse constraints on the handle polygon. The rest of the mesh geome-

try is uniquely determined by the minimization. Displacement volumes

[Botsch & Kobbelt 2003] encode the high frequencies by prism elements

enclosed between the original and the base surface, which avoids detail

distortion, but comes at the considerably higher cost of a non-linear

detail reconstruction. Although both representations (displacement vec-

tors/volumes) can be combined with any underlying deformation tech-

nique, the required multiscale decomposition can become quite difficult

for geometrically or topologically complex models.

To avoid the multi-scale decomposition, other methods modify dif-

ferential surface properties instead of its spatial coordinates, and then

solve a linear Poisson system for a deformed surface with the desired

differential coordinates [Lipman et al. 2004; Sorkine et al. 2004; Yu et al.

2004; Zayer et al. 2005; Lipman et al. 2005]. The methods of Yu et al.

[2004]; Zayer et al. [2005] first manipulate the original surface gradients

and then deformed the surface to match the target gradient field in the

least-squares sense. As a consequence, these methods work well for rota-

tions, but are insensitive to translations: Adding a translation to a given

deformation does not change its gradient, and thus has no influence on

the resulting surface gradients. But since even pure translations induce

local rotations of tangent planes, these methods are counter-intuitive for

modifications containing large translations. In contrast, the shape edit-

ing approach of Sorkine et al. [2004] aims to preserve the differential

coordinates or Laplacian coordinates. It implicitly solves for local rota-

tions of vertex neighborhoods, but due to linearizations their method has
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problems with large rotations, as shown in their follow-up paper [Lip-

man et al. 2005]. In that paper, Lipman et al. minimize bending by

preserving relative per-vertex orientations. They solve a linear system

for per-vertex orientations, and reconstruct vertex positions. Since the

first system does not consider position constraints, their technique also

neglects the connection between translations and rotations, it exhibits

the same translation-insensitivity as gradient-based methods.

Linear space deformation

The need for low-dimensional control of deformation fields was identified

early in computer graphics. Among the first approaches was Free-Form

Deformation [Sederberg & Parry 1986], which relied on regular lattices to

specify spatial deformations. It parameterizes a space deformation with

a 3D lattice and provides an efficient way to apply coarse deformations to

complex shapes. However, achieving a fine-scale deformation may require

a detailed, hand-designed control lattice [Coquillart 1990; MacCracken

& Joy 1996] and a large amount of user manipulation. Although more

intuitive control can be provided through direct manipulation [Hsu et al.

1992], the user is still restricted by the the expressibility of the FFD algo-

rithm. With their Wires concept, Singh & Fiume [1998] present a flexible

and effective space deformation algorithm motivated by armatures used

in traditional sculpting. A collection of space curves tracks deformable

features of an object, providing a coarse approximation to the shape and

a means to deform it. Singh & Kokkevis [2000] generalize this concept to

a polygon-based deformer. Botsch & Kobbelt [2005] use triharmonic ra-

dial basis functions for real-time freeform shape editing. An incremental

least-squares method is introduced to approximately solve the involved

linear systems in a robust and efficient manner.

Cage-based deformation methods were an important step forward,

because control polytopes offer much better adaptability to the input

shapes. The underlying theme of many cage-based methods is to gener-

alize barycentric coordinates from simplices to general polytopes. Mean

value coordinates (MVC) for closes polyhedrons [Ju et al. 2005] offer

many desirable properties and can be calculated using closed-form ex-
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pressions, but are not fully shape-aware. This shortcoming has been ad-

dressed by harmonic coordinates [Joshi et al. 2007]. Lipman et al. [2007]

introduce positive mean value coordinates (PMVC). Unlike the MVC, the

modified coordinates are unconditionally positive, and require only a lo-

cal computation. The methods mentioned above are affine-invariant and

not shape-preserving. Lipman et al. [2008] introduce Green coordinates

for closed polyhedral cages. It is not only dependent on vertex-based ba-

sis, but also on the cage faces, which leads to space deformations with a

shape-preserving property. While many new intriguing coordinates and

their underlying mathematical properties have been studied in recent

years [Hormann & Sukumar 2008; Weber et al. 2011; Li & Hu 2013], the

problem common to all cage-based method remains: the design of con-

trol cages requires experience with polygonal modeling: the cage should

be close to the shape and have enough density to represent the shape.

2.1.3 Nonlinear deformation

The surface deformation problem is inherently non-linear, it requires de-

ducing local rotations of the surface based on position displacements.

Therefore, a linear method can only provide an approximate result, or

a compromise must be made in terms of the problem setup, e.g., requir-

ing more complex interactive input from the user, for example adding

more user handle constraints or increasing the cage density. The inherent

limitations of linear methods motivated us to investigate non-linear de-

formation techniques. Nonlinear deformation can also be classified into

nonlinear surface-based deformation and nonlinear space deformation.

Nonlinear surface-based deformation

Pyramid coordinates [Kraevoy & Sheffer 2004, 2005] can be considered

as the nonlinear versions of Laplacian coordinates, leading to differential

coordinates invariant under rigid motions, which can be used for defor-

mation as well as for morphing. Huang et al. [2006] employ a nonlinear

version of the volumetric graph Laplacian, which also features nonlinear

volume preservation constraints. In order to increase the performance

and efficiency of the optimization, they use a subspace approach: the
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original mesh is embedded in a coarse control cage, and the optimization

is performed on the cage vertices while considering the constraints from

the original mesh vertices in a least-squares manner. An alternative ap-

proach to subspace methods is the handle-aware isoline technique of [Au

et al. 2007]. In a preprocessing step one constructs a set of iso-lines of the

geodesic distance from either the fixed regions or the handle regions. For

each of these iso-lines, a local transformation for a Laplacian-based de-

formation is found by a nonlinear optimization. The number of required

iso-lines is relatively small, which guarantees an efficient numerical op-

timization and thereby allows for interactive editing. Shi et al. [2007]

combine Laplacian-based deformation with skeleton-based inverse kine-

matics, which allows for easy and intuitive character posing, featuring

control of lengths, rigidity and joint limits, but it in turn requires a com-

plex cascading optimization for the involved nonlinear energy minimiza-

tion. Botsch et al. [2006] propose a nonlinear version of the shell-based

minimization of bending and stretching energies. The surface is modeled

as a thin layer of triangular prisms, which are coupled by a nonlinear

elastic energy. During deformation the prisms are kept rigid, which al-

lows for a robust geometric optimization. A hierarchical optimization is

used to increases the computational efficiency.

Sorkine & Alexa [2007] propose a surface deformation based on the as-

rigid-as-possible (ARAP) energy. The ARAP energy measures the local

deviation of the differential of a mapping between two shapes from rigid-

ity. The neighboring edge sets adopted in this work are spokes, which

requires a positive weighting scheme to guarantee the correct minimiza-

tion of the energy. Chao et al. [2010] take into account all the opposite

edges in the triangles incident to a vertex, the neighboring edge sets in

their work are spokes and rims, which guarantee correct minimization of

the energy even if the weights are negative. However, the discretization

of [Chao et al. 2010] is only consistent for volumetric case with tetra-

hedron cells in 3D or parameterization with triangle edge sets in 2D, it

is not consistent for the surface case using spokes and rims edge sets in

3D. In order to come up with a consistent discretization for surface in

3D, Levi & Gotsman [2015] introduce a new ARAP-type energy, named
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SR-ARAP (ARAP with smooth rotations), they add a bending term in

the ARAP energy to enable the discretization consistent, which achieves

results with quality that competes with the volume deformation.

Nonlinear space deformation

Sumner et al. [2007] compute detail-preserving space deformations by

formulating an energy functional that explicitly penalizes deviation from

local rigidity by optimizing the local deformation gradients to be rota-

tions. In addition to static geometries, their method can also be applied

to hand-crafted animations and precomputed simulations. Botsch et al.

[2007] extend the PriMo framework [Botsch et al. 2006] to deformations

of solid objects. The input model is voxelized in an adaptive manner, and

the resulting hexahedral cells are kept rigid under deformations to ensure

numerical robustness. The deformation is governed by a nonlinear elas-

tic energy coupling neighboring rigid cells. Another class of approaches

uses divergence-free vector fields (the divergence of the vector fields is

zero) to deform shapes [Angelidis et al. 2006; von Funck et al. 2006].

The advantage of those techniques is that by construction they yield

volume-preserving and intersection-free deformations. As a drawback,

it is harder to construct vector fields that exactly satisfy user-defined

deformation constraints.

Müller et al. [2005] present meshless deformations based on shape

matching. Instead of using the vertex connection information, they di-

vide the set of vertices into clusters. Afterwards, affine transformations

can be applied on each cluster. Based on this work, Rivers & James

[2007] introduce fast lattice shape matching for real-time deformation.

Since the original method can be very slow for stiff models - per-vertex

costs scale cubically with region width - they exploit the inherent sum-

mation redundancy of shape matching and provide large-region matching

at constant per-vertex cost. With this approach, large lattices can be

simulated in linear time complexity.

Jacobson [2013] introduces the harmonic, biharmonic, triharmoic equa-

tions w.r.t. surface displacement fields correspond to minimizers of the
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Dirichlet, Laplacian, Laplacian gradient energies. They offer a detail

derivation to obtain a linear system to solve this second-order elliptic

partial differential equation. Weber et al. [2007] use harmonic functions

that are provably monotonic and bounded but have only C0 smooth-

ness near constrained boundary. Bounded biharmonic weights are pro-

posed in Jacobson et al. [2011] to minimize the Laplacian energy subject

to bound constraints. They spread the influences of the controls in a

shape-aware and localized manner, even for objects with complex and

concave boundaries. Jacobson et al. [2010] use mixed finite elements

to provide a discretization for biharmonic and triharmonic equations on

meshes. They factorize the original equations into low-order equations

by introducing additional variables, and introduce lumping mass matri-

ces to eliminate unneeded variables. Their minimizers exhibit increasing

orders of continuity but lose the maximum principle and show oscilla-

tions. Jacobson et al. [2012] propose smooth shape-aware functions with

controlled extrema. They provide a framework for minimizing quadratic

energies on manifolds while constraining the solution to obey the maxi-

mum principle in the solved region.

Other methods

In this subsection, we review the data-driven and learning based deforma-

tion methods. Gao et al. [2016] propose a new rotation-invariant defor-

mation representation and a novel reconstruction algorithm to accurately

reconstruct the positions and local rotations simultaneously. Based on

this, they further propose a data-driven mesh deformation approach by

exploiting knowledge in the example models. Gao et al. [2019] propose

a sparse data-driven deformation method that automatically selects a

smaller number of deformation modes to compactly describe the desired

deformation and solve the overfitting problem. Kurenkov et al. [2018]

introduce free-form deformation as a differentiable layer to enable 3D

data manipulation in their network. however, this network outputs a set

of points rather than a deformed mesh. Wang et al. [2019] propose an

end-to-end network architecture for mesh deformation. Given a source

mesh and a target model, their model can generate plausible deformed
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meshes by inferring pervertex displacements while keeping the source

mesh connectivity fixed.

2.1.4 3D geometric deformation summary

3D geometric deformation is a crucial part of shape registration as it

serves as a regularization to attract the template onto the target. This

section investigates the state of the art linear and nonlinear deformation

techniques, and compares them in terms of handling large deformation

and consistency. The linear methods can only approximate the local

rotations, which are commonly seen in surface deformation. Nonlinear

approaches are able to accurately determine local rotations. However,

some of them do not allow local scales, which are required in addressing

large local deformation. Although some methods allow local scale but

they are not consistent, which is prone to fold-over and self-intersection,

especially in the case of poor triangulation. In this research, a novel

deformation algorithm will be proposed to address large difference in size,

as well as to guarantee the energy consistent to minimize the occurrence

of fold-over and self-intersect.

2.2 3D shape correspondence

Establishing a meaningful shape correspondence is a fundamental task

in applications such as object recognition, statistical shape modeling,

shape morphing and deformation transfer. In this section, we will give

an overview of the correspondence research from three point of views:

similarity-based correspondence, rigid alignment and non-rigid align-

ment.

2.2.1 Similarity-based correspondence

One of the most fundamental ways of computing correspondence is to

estimate the similarity between pairs of shape elements or feature points

collected from the shapes and derive a correspondence from those esti-

mates, which is sometimes called the feature matching approach. The
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elements are commonly characterized by shape descriptors. There are

plenty of shape descriptors that can be computed for each shape prim-

itive and used in conjunction with correspondence algorithms for 2D

surfaces or 3D point sets (Table 2.1). Note that the surface descriptor

listed here are not scale-invariant, which means they may change with

the variation of shape’s scale.

Descriptor Type of dataset
Shape context [Belongie et al. 2001] Point sets
Spin images [Johnson 1997] Oriented points
Multi-scale features [Pauly et al. 2003] Oriented points
Curvature maps [Gatzke et al. 2005] Surfaces
Integral invariants [Manay et al. 2006] Surfaces
Spherical harmonics and wavelets [Laga et al. 2006] Surfaces
Salient geometric features [Gal & Cohen-Or 2006] Surfaces
Part-aware metric [Liu et al. 2009] Surfaces
Heat Kernel Signature [Bronstein & Kokkinos 2010] Surfaces

Table 2.1: Shape descriptors can be used for shape correspondence.

A correspondence is obtained by selecting assignments between pairs

of elements while optimizing an objective function composed of two

terms. The first term seeks to maximize the similarity between the

descriptors of corresponding elements, while the second term seeks to

minimize the distortion that would be introduced in the shapes if they

were deformed to align their corresponding elements. However, the sec-

ond term can be estimated without explicitly aligning the shapes. Ideally,

satisfying these objectives should translate into a solution that is geomet-

rically or semantically meaningful. Such a solution is typically obtained

with a standard optimization method (e.g., quadratic programming).

Feature matching can be applied in any context where it is possible

to compute a set of descriptors for the elements. Example applications

include registration of 3D scans [Castellani et al. 2008] and deforming

surfaces [Anguelov et al. 2005b], or skeleton matching [Biasotti et al.

2006]. Moreover, this approach is not restricted to its own domain and

can be combined with alignment-based approaches to provide a proper

initialization to these methods [Rusinkiewicz & Levoy 2001], or to restrict

the size of the solution space [Gelfand et al. 2005; Kin-Chung Au et al.

18



2010; Chang & Zwicker 2008; Aiger et al. 2008].

2.2.2 Rigid alignment

Rigid alignment is to find a global geometric transformation that aligns

the shapes. One example application is the rigid alignment of geometry

scans used for shape acquisition. The goal here is to capture a real-world

static 3D shape and obtain its digital representation. However, it may

not be possible to capture the entire object in a single scanning pass

due to self-occlusions and physical constraints of the scanner, so it might

become necessary to acquire multiple scans and optimally align them to

reconstruct the full object [Turk & Levoy 1994; Rusinkiewicz & Levoy

2001; Gelfand et al. 2005; Aiger et al. 2008]. The key characteristic of

the rigid alignment problem is that the objects do not change from one

scanning pass to another. Thus, it is assumed that each scan can be

transformed with a single rigid transformation in order to align it per-

fectly with the other scans. Rigid transformations comprise translations

and rotations, and one of their important characteristics is that they

reside in a low-dimensional space.

Scan alignment is just one example of many applications that rely

on the assumption of rigidity in the datasets. If the input shapes are

given as sets of 3D points, the problem of rigid alignment can be posed

as: for each point set, find the rigid transformation that maximizes the

number of points in the set that align to points in the other sets. This

goal is usually dependent on a threshold that indicates when two points

are close enough and can be considered as matching to each other [Irani

& Raghavan 1999]. Since finding the best aligning transformation might

be a complex task, the feature matching approach can be brought in to

aid in the search for the optimal alignment.

2.2.3 Non-rigid alignment

Sometimes it might be necessary to lift the assumption that each scan

can be perfectly aligned with a rigid transformation, e.g., when large

amounts of noise are present in the scans. More significant examples
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of datasets that cannot be perfectly aligned with a rigid transformation

include the correspondence of articulated shapes [Elad & Kimmel 2003;

Anguelov et al. 2005b; Jain et al. 2007; Chang & Zwicker 2008; Huang

et al. 2008], where certain parts of the shapes can be bended indepen-

dently, the correspondence of anatomical shapes (e.g, organs) [Audette

et al. 2000], which can deform in an elastic manner and introduce stretch-

ing to localized portions of the shape, and finally the correspondence

between shapes with different geometries but that represent a same class

of objects or which have parts that are semantically related [Allen et al.

2003; Zhang et al. 2008]. In the latter case, the alignment problem can

be concluded as establishing a correspondence between shapes that can

differ in both local stretching and bending.

To this end, it becomes necessary to add more degrees of freedom

(DOF) to how the shapes can be brought into correspondence. This can

be achieved by generalizing two aspects of the problem. First, non-rigid

(possibly non-linear) transformations can be taken into consideration,

e.g., thin-plate splines [Chui & Rangarajan 2003]. Secondly, these trans-

formations can be applied separately to local portions of the shape. For

example, the transformation applied to a shape can be represented as a

set of displacement vectors ( one per shape vertex) [Pauly et al. 2005].

Then, finding the best transformation amounts to computing the dis-

placements that bring each vertex in correspondence with the target

shape. The distinction to the rigid case is that the DOF of geometric

transformations being considered is now inherently high-dimensional.

Tevs et al. [2009] present a global deformable matching approach

based on a novel RANSAC-like randomized sampling algorithm. They

draw the potential correspondences from a probability density function.

Isometric consistency is formulated as a likelihood to adjust the poste-

rior probability such that more reliable correspondences are determined

in the next iteration. Tevs et al. [2011] propose a shape matching al-

gorithm based on the novel concept of entropy-based planned random

sampling. The algorithm automatically adapts to the input character-

istics and chooses an optimized sampling strategy for any given object.

Ovsjanikov et al. [2012] propose a novel representation maps between
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isometric shapes to find correspondences between generic functions de-

fined on the shapes. Pokrass et al. [2013] extended this approach to pose

the problem of finding intrinsic correspondence between near-isometric

deformable shapes as a problem of sparse modeling. Kovnatsky et al.

[2013] proposed constructing common approximate eigenbases for multi-

ple shapes using approximate joint diagonalization algorithms. In such

bases the correspondence is represented by an approximately diagonal

matrix, which allows to solve the linear system of equations for diag-

onal elements only. Kovnatsky et al. [2015] model the correspondence

between the spaces of functions on two manifolds as a matrix and pose

the functional correspondence problem as matrix completion with man-

ifold geometric structure. These methods only work well among quasi-

isometric shapes. Huang et al. [2017] present a view-based convolutional

network that produces local, point-based shape descriptors. Their net-

work is trained such that geometrically and semantically similar points

across different 3D shapes are embedded close to each other in descrip-

tor space. Wang et al. [2020] propose a novel framework for computing

descriptors for characterizing points on three-dimensional surfaces. In

their work, two types of shape descriptors are computed. First, the non-

learned descriptor WEDS is computed using graph wavelets to decom-

pose the Dirichlet energy on a surface. Second, WEDS can be refined

by multiscale GCN to yield a learned descriptor. Wang et al. [2018]

present a novel deep learning framework that derives discriminative lo-

cal descriptors for 3D surface shapes. These learning based methods are

powerful, however, a lot of manual annotation is required and it only

works well on the similar models which the network has trained on.

2.2.4 3D shape correspondence summary

In the process of shape registration, finding correspondence is the priori

step before deforming the template, it determines the goal positions of

the deformed template. This section reviews the methods solving rigid

and non-rigid correspondence problems. Rigid alignment is only effective

with static shapes. For deformable shapes, similarity-based correspon-

dence methods work well between isometric shapes, as the descriptors it
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adopted can be isometrically invariant such as Heat Kernel Signature.

However, there is no such shape descriptor which is invariant to large

non-isometric deformation. Non-rigid alignment assumes the template

can be transformed onto the target in a specified type of deformation,

however, the space of solution to large deformation itself is quite high di-

mensional and hard to find. In this research, we design a novel matching

energy to choose correspondence between non-isometric shapes, the cor-

respondences are first chose based on local geometric feature descriptors

and then extended to local optimal candidates.

2.3 3D shape registration

3D registration is an active research topic in computer graphics and com-

puter vision. Given a template and a target, the goal of 3D registration

is to find a mapping between them in order to optimally transform the

template onto the target. Shape registration methods can fall roughly

into 3 classes: rigid, isometric, non-isometric.

2.3.1 Rigid registration

The purpose of rigid registration is to find a global rigid transformation

that aligns two shapes. It is quite similar to rigid alignment in last

subsection, just has a different final goal. The most classic algorithms

for rigid registration are Iterative Close Point (ICP) Besl & McKay [1992]

and its variants Rusinkiewicz & Levoy [2001]. ICP alternates between

searching correspondences by choosing closest points on the target w.r.t.

the points on the template and computing a rigid transformation to

response the correspondences. The results closely depend on the initial

position and orientation of the shapes, large distance between them tends

to produce unstable correspondence and ICP is susceptible to converge

to local minimum. Aiming to solve this problem, Gelfand et al. [2005]

initially approximate the optimal transformation via feature matches,

this approximation can be fed into ICP to improve the convergence.

Another shortage of ICP is that it is sensitive to noise and outliers which

often appear in 3D scans. To tackle this issue, Bouaziz et al. [2013] put
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forward a new variant of ICP algorithm with sparsity-inducing norms,

successfully eliminating the affect of the noise and outlier and obtaining

superior results.

2.3.2 Isometric registration

Isometric registration is to solve a local rigid transformation for each

vertex on the template in order to align the template onto the target. Li

et al. [2008] propose an isometric registration algorithm for partial scans

of deforming shapes within a single non-linear optimization. The rigid

energy term they adopted penalizes the deviation of each local transfor-

mation from a pure rigid motion, which is only composed of rigid and

orientation transformation. Huang et al. [2008] regard isometric registra-

tion as an optimization problem. To solve this problem, they alternate

between correspondence searching and deformation calculation. Under

the assumption of local rigid deformation, robust correspondences are

obtained via a pruning mechanism based upon consistency in geodesic

distance. Chang & Zwicker [2008] convert the isometric registration

problem into a discrete labeling problem. They first sample the motion

explicitly, which provides a priori set of possible rigid transformation be-

tween articulate parts of shapes, and then find an optimal assignment of

transformation to each part of shapes. Tevs et al. [2009] propose a global

isometric matching approach based on a novel RANSAC-like randomized

sampling algorithm. This method is robust to topological noise and is

able to output matching alternatives by sampling the space of plausi-

ble solutions. Maron et al. [2016] approximate the global minimum of

the procrustes matching problem with convex relaxation for non-rigid

isometric and near-isometric shape matching problem. The advantage

of isometric registration is that they can be achieved automatically, but

they are incapable of handling models with different sizes.

2.3.3 Non-isometric registration

Non-isometric registration is a wide range of topics including all kinds

of registration that are not isometric. Here we only focus on techniques
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related to our work: similar registration, affine registration and smooth

registration.

Similar registration

Similar registration is to preserve the local similarity of shapes, it remains

the angle of intersection of every pair of the intersecting arcs unchanged

during deformation process. Sorkine et al. [2004] offer a linear approx-

imation of similarity matrix to make deformed Laplacian coordinates

consistent. However, this method only works well under small rota-

tions as the approximation removes the quadratic term. Thus it cannot

handle large rotation. Yamazaki et al. [2013] extend ARAP energy to

as-similar-as-possible (ASAP) energy with spokes edge sets. The work in

[Papazov & Burschka 2011] is a variation of shape matching [Müller et al.

2005] called similarity shape matching. Although these techniques uti-

lize similar mapping to enable them to address size difference and shear

distortion, they do not consider the smoothness regularization, which

results in they are incapable of handling large changes in pose or shape.

Yoshiyasu et al. [2014] incorporate smooth regularization into the total

energy, however, it is an unweighted energy, which does not take into

account the impact of the length of edges. Moreover, the edge sets they

adopt are spokes, which leads to an inconsistent energy.

Affine registration

Affine registration allows an affine transformation for each template ver-

tex, which will have a larger solution space due to more freedom the

affine matrix has. Amberg et al. [2007] employ a locally affine regulari-

sation to each vertex and smooth the difference in the transformation of

neighbouring vertices. The method is robust to incomplete data and is

able to handle a wide range of initial conditions. Yang et al. [2015] pro-

pose a sparse non-rigid registration method with an l1-norm regularized

model for transformation estimation, they allow an affine transforma-

tion for each point in the template to cover a wide range of non-rigid

deformations. Affine registration is able to handle shapes in different

size, but the affine matrix with more DOF may also introduce shear and
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distortion, which easily lead to fold-over and intersection.

Smooth registration

Smooth registration is based on harmonic mapping and its varieties or

other smoothness regularization. By smooth we mean the adjacent el-

ement should have similar deformation behavior. Weise et al. [2009]

provide a complete integrated system for live facial puppetry which not

only is able to track high-resolution facial expression in real time but also

can transfer the expression to another face. They minimize a membrane

energy on the displacement vectors to smooth the deformation on the

template. Yeh et al. [2011] present a novel approach for template-based

3D model fitting , they approximate the input geometry with a linearized

biharmonic surface, and then use iterative Laplacian editing and a lo-

cal surface flattening mechanism to avoid foldovers. There are some

works [Allen et al. 2003; Amberg et al. 2007] based on other smooth-

ness regularization whose purpose are to make the deformation between

neighbours as smooth as possible, this idea is similar to the bending term

added in Levi & Gotsman [2015]. Similar to affine registration, smooth

registration still has the same advantage and problem. In addition, it

requires many landmarks from user input to obtain a good initial shape.

2.3.4 3D shape registration Summary

In summary, 3D shape registration with large size and detail difference

is a challenging problem mainly because of the requirement of large de-

formation which is susceptive to fold-over and intersection. This sec-

tion investigates all kinds of registration methods and their capabilities.

Rigid registration is only suitable for static models. Isometric registra-

tion can work with deformable objects but only limit to isometric shapes

or near isometric shapes. Affine and smooth registration are able to

handle models with different sizes, but they are too weak against shear

distortion. Although similar registration can overcome these disadvan-

tages, the energy itself is not consistent, which easily leads to fold-over

and self-intersection when the triangulation mesh is poor. In this re-

search, a novel registration technique will be present to solve large shape

25



variation as well as minimize the chance of fold-over occurrence.

2.4 Robust registration

The registration robustness can be achieved by applying different norms

on constraints [Yang et al. 2015; Li et al. 2018]. Before introducing the

robust registration methods, we first explain the related norms and their

properties.

2.4.1 Norm definition

In this research, we mainly focus on three different norms: L2-norm,

L1-norm and Huber-norm. The graphs of function of single variable in

different norms is depicted in Figure 2.2. The L2-norm is calculated as

the square root of the sum of the squared variable values. Generally, a

squared L2-norm is applied on constraint energy to simplify the calcula-

tion. Without special instruction, we refer the L2-norm as the squared

L2-norm in this research. The L1-norm is calculated as the sum of the ab-

solute values of each variable. Huber-norm is defined between L2-norm

and L1-norm. It behaves like an L2-norm below a certain threshold ε

and like an L1-norm above. To explain the properties of these norms,

without loss of generality, we restrict the optimization problem in 2D

domain. The goal of optimization is to find the optimal solution under

constraints of two variables in a specific norm. The curve of 2D con-

strains in different norms can be found in Figure 2.3. For L2-norm, the

optimal solution to
√

(x2 + y2) = c, c >= 0 can be evenly location on

the circle curve. The cost energy is evenly distributed in every dimen-

sion. The L2-norm has a property of smoothness as it tries to minimize

the energy in every dimension equally. For L1-norm, the optimal solu-

tion to |x| + |y| = c, c >= 0 can only be location at the corner points

of the square. The L1-norm has a property of sparsity as the cost en-

ergy is mainly concentrated in few specific dimension. As its definition,

the Huber-norm has L2-norm like property below threshold ε and has

L1-norm like property above.
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Figure 2.2: The graphs of function of single variable in different norms. The
horizontal axis represents independent variable while the vertical axis repre-
sents dependent variable.
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(a) (b) (c)

Figure 2.3: 2D constraints in different norms: (a) L2-norm; (b) L1-norm;
(c) Huber-norm;

2.4.2 robust registration methods

For the accuracy and robustness of registration, the transformation vari-

ation and position difference constraints are usually formulated as a

smoothness term and a data term respectively to measure the smooth-

ness of the neighbouring transformation and the closeness of registration

shapes, respectively. Most works [Amberg et al. 2007; Li et al. 2008;

Jiang et al. 2017] use the classic squared L2-norm on both constraints

(L2-L2). However, the smoothness term in L2-norm tends to penalize

large transformation variation. It is not suitable for articulated mod-

els where large deformation variations exist at their joints. This could

also be seen in image processing where discontinuities are allowed to

highlight the sharp edges in image denoising [Chambolle & Pock 2011].

The classic model in image denoising is ROF model Rudin et al. [1992],

where the total variation term is an L1-norm based regularization and

the data term is in squared L2-norm (L1-L2). Based on ROF model,

Yang et al. [2015] propose a sparse non-rigid registration method with

an L1-norm regularized on the smoothness term. However, ROF tends

to produce over-regularized results as the L2-norm strives to distribute

errors evenly, thus fitting the result evenly on the noisy parts. To tackle

this issue, L1-L1 model [Zach et al. 2007] is proposed to efficiently remove

the outliers while preserving fine details (Figure 2.4). Based on L1-L1

model, Li et al. [2018] propose a dual sparsities registration approach on

both position and transformation sparsity, allowing the positional error

to concentrate on small regions. However, as pointed out in [Werlberger
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et al. 2009], L1-L1 model tends to produce piecewise constant results as

shown in Figure 2.5.

(a) (b)

(c) (d)

Figure 2.4: Image denoising in the case of impulse noise. (a) shows the
500× 375 input image and (b) is a noisy version which has been corrupted by
25% salt and pepper noise. (c) is result of the ROF model. (d) is the result of
the L1-L1 model. Note that the L1-L1 model is able to remove the noise while
still preserving some small details.

2.4.3 Robust registration summary

In the summary, 3D shape registration which is robust against noise is

highly desirable because the noise is commonly seen in the target. This

section investigates all kinds of norms and their properties. L2-norm

based methods strive to minimize the energy in every dimension. They

are easily affected by outliers. Taking advantage of the sparsity property

of L1-norm, L1-L1 model based methods are proposed to exclude the

outlier influence while still preserving the fine details. However, these

methods tend to produce piecewise constant artifacts. In this research,

we will propose a novel model, which is not only robust to noise but also
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(a) (b)

Figure 2.5: Comparing (a) the staircasing afflicted L1-L1 model and (b) the
Huber-L1 model on the Dimetrodon dataset.

produce piecewise smooth results while still preserving fine details.
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Chapter 3

Consistent

As-Similar-As-Possible

Surface Deformation

3D geometric deformation plays a key role in computer graphics and

computer vision, which has been widely used in industries like computer

animation, video games and film production. Large deformation is a

challenging problem as it tends to produce shear distortion, which may

lead to poor quality results during deformation, such as fold-overs and

self-intersections. Moreover, for non-isometric deformation, geometric

scalable is an essential property as the size of the shape may change

in non-isometric deformation. This will make the problem even more

complicate since it involves more unknown variable to solve.

In the last two decades, there have been plenty of methods proposed

on shape deformation aiming to tackle these challenges. However, these

approaches either are unable to handle large deformation or suffer from

fold-overs or self-intersections. In this chapter, we will propose a novel

deformation algorithm, called consistent as-similar-as-possible surface

deformation (CASAP), which is not only capable of addressing shapes

with large difference in size but also ascertain a consistent energy to re-

duce the chance of fold-over and self-intersection. The experiments have

shown that our new surface deformation scheme competes with the qual-
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ity of the volumetric ASAP deformation, which is regarded as a ground

truth of the consistent ASAP deformation method.

3.1 Notations

Before stepping into the problem, we first introduce some basic concepts

and notations of deformation which will be used in this research. We

denote by S a triangle mesh. The piecewise linear geometric embedding

of S is defined by the vertex positions p ∈ R3. Assume S is being

deformed into S ′ that has the same connectivity and a different geometric

embedding p′. The discrete cell corresponding to vertex i is denoted by

Ci and its deformed version C ′i. Ei is the corresponding edge sets in the

cell Ci.

3.2 Related methods

In this section, we will introduce three related deformation methods: as-

rigid-as-possible (ARAP), smooth rotation enhanced as-rigid-as-possible

(SR-ASAP), as-similar-as-possible (ASAP). We will compare our method

with these three methods in the experiments.

3.2.1 ARAP

Sorkine & Alexa [2007] propose an as-rigid-as-possible energy to measure

the local rigidity variation, in which the neighboring edge sets adopted

are spokes. Given two meshes S and S ′ consisting of vertices p and

p′ respectively, the discrete ARAP energy between these two meshes is

defined as:

EARAP (S,S ′) =
∑
i

∑
j∈Ni

wij‖(p′j − p′i)−Ri(pj − pi)‖2, (3.1)

where Ni is the one-ring neighbour of vertex i, wij are weighting coef-

ficients, Ri ∈ RO(3) are optimal local rotation matrices. In the shape

deformation setup, deforming a mesh S involves fixing handle points and

solving for the rest of the p′ by minimizing (3.1). The goal of minimiz-
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ing the ARAP energy is to find a mesh S ′ that is transformed from the

source mesh S in a locally rigid way. More specifically, the differential

of deformation mapping for a local cell should be optimally a rotation

matrix.

3.2.2 SR-ARAP

Although ARAP shape deformation gained popularity, the energy is not

consistent as it lacks a term measuring bending energy. Suppose we have

a mesh consisting of two triangles, no matter how much we bend these

two triangles, the ARAP energy will not be changed (Figure 3.1).

Figure 3.1: The weakness of ARAP method: the ARAP method will not
measure the bending energy. Bending the triangles on the surface will not
affect the ARAP energy.

To overcome this weakness, Levi & Gotsman [2015] introduce a new

ARAP-type energy, named SR-ARAP (ARAP with smooth rotation).

The new energy used for surface deformation is consistent and can pro-

duce results that compete with the volumetric deformation methods.

SR-ARAP adds a smoothing term to the ARAP surface energy to pe-

nalize the smooth difference. The SR-ARAP energy is defined as:

ESR−ARAP (S,S ′) =
∑
i

∑
(j,k)∈Ei

wjk‖(p′j − p′k)−Ri(pj − pk)‖2

+ αA
∑

El∈N (Ei)

wil‖Ri −Rl‖2F , (3.2)

where N (Ei) are the neighboring cells of Ei; α is a weighting coefficient;

A is the area of the whole mesh surface, which is used to make the energy

scale invariant (scaling the edges by s, would scale the first term by s2,

which is the scale of A in the second term); wil is scalar weight; ‖ · ‖F
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denotes the Frobenius norm. The second term is the bending energy,

which penalizes the rigidity difference between a cell and its neighboring

cells. In this way, they have made up the missing bending energy in

ARAP to form a consistent one.

3.2.3 ASAP

Although SR-ARAP energy overcomes weaknesses in the ARAP surface

deformation, which achieves the consistent discretization for the surfaces,

it is still not capable of handling non-isometric deformation since it aims

to preserve the local rigidity of each cell. To solve this problem, Yamazaki

et al. [2013] propose an as-similar-as-possible deformation method. They

add an isometric scale factor si to the deformation gradient of each local

spokes cell , which allows local scalability on each discrete cell and thus

is able to handle deformation with different sizes. The ASAP energy is

defined as:

EASAP (S,S ′) =
∑
i

∑
(j,k)∈Ei

wjk‖(p′j − p′k)−siRi(pj − pk)‖2, (3.3)

However, similar to ARAP energy, ASAP energy is also not consistent,

which results in susceptive to fold-overs and self-intersections (Figure

3.4).

3.3 Our method

In order to tackle the problems mentioned above, we propose a novel sur-

face deformation energy, called consistent as-similar-as-possible (CASAP)

energy, by introducing local scale to the deformation gradient in the pre-

vious SR-ARAP energy. It has advantages of SR-ARAP and ARAP,

which is not only able to handle deformation with different sizes, but

also reduce the occurrence of fold-over and self-intersection.
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3.3.1 Consistent as-similar-as-possible surface de-

formation

Assuming we are deforming a mesh S into S ′ in an as similar as possible

way, unlike [Sorkine & Alexa 2007; Yamazaki et al. 2013; Yoshiyasu et al.

2014] regarding spokes as the cell, the cell chosen in our method is spokes

and rims (denoted as Ei) in order to arrive at an analysable energy. By

analyzable, we mean the discrete energy can be analysed and compared

with the continuous energy. In the case of spokes and rims, the discrete

energy can be calculated as the continuous energy integrated over the

entire 1-ring of triangles of a given vertex [Chao et al. 2010]. If the

deformation Ci → C ′i is similar, then there exists a scale factor si > 0

and a rotation matrix Ri such that

p′j − p′k = siRi(pj − pk),∀(j, k) ∈ Ei, (3.4)

where Ei consists of the set of edges incident to vertex i (the spokes)

and the set of edges in the loop (the rims) of vertex i in the surface

mesh S. When the deformation is not similar, we can still find the best

approximating scale factor si and rotation Ri by minimizing a weighted

cost function

E(Ci, C
′
i) =

∑
(j,k)∈Ei

wjk‖(p′j − p′k)− siRi(pj − pk)‖2, (3.5)

where wjk are edge weighting coefficients. We chose the cotangent weights

for wjk in order to achieve a consistent discretization of the membrane

like energy [Pinkall & Polthier 1993].

In order to measure the similarity of a deformation of the whole mesh,

we sum up over the deviations from similarity per cell which yields fol-

lowing ASAP energy functional:

Ea(p
′) =

∑
i

E(Ci, C ′i) (3.6)

=
∑
i

∑
(j,k)∈Ei

wjk‖(p′j − p′k)− siRi(pj − pk)‖2.
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According to [Botsch & Sorkine 2007], the main requirement for physically-

based surface deformations is an elastic energy that is able to measure

how much the object has been deformed from its initial configuration,

which means it can measure both stretching deformation and bending

deformation. However, the ASAP energy we obtained so far is not elastic

yet. In fact, the ASAP energy only measures the stretching deformation

but not the bending deformation. Inspired by [Levi & Gotsman 2015] we

incorporate the smooth regularization into (3.6) to make up the bending

measurement leading us to an elastic ASAP energy:

Ed(p
′) = Ea(p

′) + Eb(p
′)

=
∑
i

(
∑

(j,k)∈Ei

wjk‖(p′j − p′k)− siRi(pj − pk)‖2

+ αA
∑

El∈N (Ei)

wil‖Ri −Rl‖2F ), (3.7)

where N (Ei) are the neighboring cells of Ei; si is the scale factor of cell

i; α is a weighting coefficient; A is the area of the whole mesh surface,

which is used to make the energy scale invariant; wil are scalar weights;

‖ · ‖F denotes the Frobenius norm. We still choose cotangent weights for

wil for constructing consistent bending energy. The second term Eb we

add is the bending energy [Levi & Gotsman 2015], which penalizes the

rotation difference between a cell and its neighboring cells. In this way,

we have made up the missing bending measurement in ASAP energy to

form an consistent elastic energy (Figure 3.2).

3.3.2 As-similar-as-possible volumetric deformation

If we integrate the as-similar-as-possible energy over the tetrahedron

in a 3D shape, we can easily obtain a consistent as-similar-as-possible

discrete energy [Chao et al. 2010]. We propose an as-similar-as-possible

volumetric deformation method (VASAP) in order to provide the pseudo

ground truth for the SR-ASAP surface deformation method.

The VASAP energy is very similar to the ASAP energy, the only
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Figure 3.2: CASAP deformation on the same object with different discretiza-
tion results in very similar qualitative behaviors.

difference is that the local cell Ei in VASAP is a tetrahedra not spokes:

EV ASAP (S,S ′) =
∑
i

∑
(j,k)∈Ei

wjk‖(p′j − p′k)−siRi(pj − pk)‖2. (3.8)

In order to use the VASAP, we need to tetrahedralize the mesh first.

We resort to TetGen [Si 2015] to do that. TetGen is a program to gener-

ate tetrahedral meshes of any 3D polyhedral domains. TetGen generates

exact constrained Delaunay tetrahedralizations, boundary conforming

Delaunay meshes, and Voronoi partitions. It has many options, parts of

which can be seen in Table 3.1. We use ”-pqY” options in our program

to preserve the original input surface mesh. We first edit our polygon in

the modeling software like MAYA (Figure 3.3a) and then TetGen is uti-

lized to tetrahedralize the polygon. Finally, the generated tetrahedron

mesh can be viewed in TetView (Figure 3.3b, 3.3c).

3.4 Optimization

In this section, we introduce the optimization algorithm to minimize the

CASAP energy in (3.7). Note that except the vertex positions pi are un-

known, si and Ri in (3.7) are also unknown for each vertex. We employ
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(a)

(b) (c)

Figure 3.3: The original polygon and its tetrahedralized mesh (a) The
original polygon edited in MAYA; (b,c) The generated tetrahedron viewed in
TetView.

the alternating optimization scheme following [Sorkine & Alexa 2007;

Yamazaki et al. 2013; Levi & Gotsman 2015] to solve them respectively.

Each iteration consists of a local step followed by a global step. In local
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Options Descriptions
-p Tetrahedralizes a piecewise linear complex (PLC).
-Y Preserves the input surface mesh (does not modify it).
-r Reconstructs a previously generated mesh.
-q Refines mesh (to improve mesh quality).
-R Mesh coarsening (to reduce the mesh elements).
-A Assigns attributes to tetrahedra in different regions.
-V Verbose: Detailed information, more terminal output.
-h Help: A brief instruction for using TetGen.

Table 3.1: TetGen partial options and their descriptions.

step, we optimize si and Ri with p′i fixed. By contrast, p′i are optimized

with si and Ri fixed in global step.

Local step In this step, p′i are fixed, and then we solve Ri, si in

sequence to construct consistent ASAP energy (3.7). For convenience,

let us denote the edge ejk := pj − pk and e′jk := p′j − p′k. Then we can

change the formula (3.7) for cell i as

∑
(j,k)∈Ei

wjk‖e′jk−siRiejk‖2+αA
∑

El∈N (Ei)

wil‖Ri−Rl‖2F . (3.9)

First the optimal rotation Ri is optimized. Extending the equation

(3.9) and dropping the terms that do not contain Ri, we left

argmin
Ri

Tr(−Ri(2
∑

(j,k)∈Ei

siejke
′
jk
T +2αA

∑
El∈N (Ei)

wilR
T
l ))

= argmax
Ri

Tr(RiSi), (3.10)

where Tr is the trace of a matrix, Si is defined as

Si = 2
∑

(j,k)∈Ei

siejke
′
jk
T + 2αA

∑
El∈N (Ei)

wilR
T
l .

The optimal rotation Ri is derived from the singular value decomposition

of Si = UiΣiV
T
i :

Ri = ViU
T
i . (3.11)
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The determinate of a rotation matrix should be one, if det(Ri) < 0 then

we change the sign of the column of Ui corresponding to the smallest

singular.

Then the scale factor si is computed. Since the second term in (3.9) is

independent with si, we only extend the first term and divide extended

terms by si

argmin
si,Ri

Tr(
∑

(j,k)∈Ei

wjk(
1

si
‖e′jk‖2−2Riejke

′
jk
T

+si‖ejk‖2)). (3.12)

Taking derivative of (3.12) w.r.t. si and letting the derivative to be zero

yields

si =


∑

(j,k)∈Ei

wjk‖e′jk‖2∑
(j,k)∈Ei

wjk‖ejk‖2


1
2

(3.13)

Global step In this step, vertex positions p′i are optimized from

si,Ri obtained by the local step.

Taking partial derivative of (3.7) w.r.t. the position p′i (note that the

second term has nothing to do with p′i), we arrive at

∂E(p′)

∂p′i
=2

∑
j∈N (i)

(wij(3(p′i − p′j)− (siRi+sjRj+smRm)(pi−pj))

+wji(3(p′i−p′j)− (siRi+sjRj+snRn)(pi−pj))), (3.14)

where N (i) is one-ring neighbors of vertex p′i; sm, sn and Rm,Rn are the

scaler factors and rotation matrices of the vertices pm,pn which are the

opposite vertices of the edge eij. Setting partial derivative of (3.14) to

zero gives the following sparse linear system of equations:

40



∑
j∈N (i)

(wij+wji)(p
′
i − p′j) =

1

3

∑
j∈N (i)

(wij(siRi+sjRj+smRm)

+wji(siRi+sjRj+snRn))(pi−pj). (3.15)

Notice that the linear combination on the left-hand side is the discrete

Laplace-Beltrami operator applied to p′. Now the system of equations

can be reduced as

Lp′ = d, (3.16)

where L represents the discrete Laplace-Beltrami operator, which only

depends on the initial mesh, thus it can be pre-factored for efficiency; d

is given by the right-hand side of (3.15).

Up to now, the optimization of CASAP energy can be summarised

as Algorithm 3.1. Note that the order of the steps in the loop does not

matter and have no effect on the results or convergence rate.

Algorithm 3.1 Consistent ASAP Energy Optimization

1: while not converged do
2: Compute Ri by solving equations (3.11).
3: Compute si by solving equations (3.13).
4: Compute p′ and update surface S ′ by solving equation (3.16).
5: end while

3.5 Experiments

We first compare our consistent as-similar-as-possible (CASAP) defor-

mation approach with other three deformation methods: ARAP [Sorkine

& Alexa 2007], SR-ARAP [Levi & Gotsman 2015] and ASAP [Yamazaki

et al. 2013]) in Figure 3.4. The iteration step and timing spent by meth-

ods are shown in Table 3.2. The result of ARAP is not satisfactory

because its energy is not consistent. It lacks bending energy measure-

ment, which makes surfaces bending freely without energy changed. This

flaw can be obviously seen from bump in the plane example. SR-ARAP
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overcomes the weakness of ARAP, offering a consistent energy. However,

it does not allow local scalability. On the contrary, ASAP and CASAP

are able to handle local scalability, which can be easily seen from Figure

3.5. ASAP allows piecewise scale but its energy is still not consistent.

It has the same weakness as the ARAP, which may lead to undesirable

results such as fold-over and self-intersection. CASAP combines the ben-

efits of ASAP with the advantages of the SR-ARAP approach such that

it can not only handle local scale but also guarantee the deformation

smoothness. Moreover, in terms of isometric deformation, it produce

competitive results as good as SR-ARAP, which can be observed from

the bar twisting example.

cylinder bar plane armadillo
steps time steps time steps time steps time

ARAP 1656 173.98 3775 351.04 301 19.08 1602 72.10
SR-ARAP 2364 289.99 5412 551.57 158 10.14 2086 98.23

ASAP 2966 429.42 1921 237.91 1087 62.02 1328 73.99
CASAP 1932 251.42 6887 928.52 237 13.91 3321 183.46

Table 3.2: Iteration steps and timings (in seconds) in different deformation
methods.

We then compare CASAP, ASAP with the ground truth method

VASAP in Figure 3.6 and evaluate the distance error to VASAP in Fig-

ure 3.7. Since CASAP makes up the bending measurement, it becomes

consistent just like VASAP. On the contrary, ASAP can only measure the

stretching deformation not the bending deformation, which may produce

poor results, like the self-intersections shown in the bar twisting example.

From this experiment, we could see our method produces closer results

to VASAP, and has less errors compared with ASAP.
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Figure 3.4: Different deformation approaches comparison. Columns show
different object transformations, while rows represent different deformation
methods. The grey points are fixed and the yellow ones indicate control points.

43



Figure 3.5: The demonstration of scalability of ASAP and CASAP: Colder
color means more shrinkage, while hotter color presents more expansion. The
color bar indicates the value of the scale factor in each local cell.

Figure 3.6: Comparing ASAP and CASAP with the ground truth method
(VASAP): Rows show different object transformations, while columns repre-
sent different deformation methods..
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Figure 3.7: The distance error of ASAP and CASAP to the ground truth
method VASAP: Colder color means less error, while hotter color presents
larger error. The color bar indicates the value of the distance error to VASAP.

(a)
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(b)

(c)

Figure 3.8: Applying ASAP and CASAP on the same shape but with different
discretization: (a) cylinder; (b) bar; (c) plane.

46



To demonstrate the benefits of the consistent energy, we deform the

same shapes but with different discretization and then evaluate the dis-

tance between them in Figure 3.8. From this experiment we could see

that even though the discretization is different the CASAP deformed

results are very close, this is benefited from our consistent energy.

3.6 Conclusion

We proposed a novel consistent as-similar-as-possible surface deforma-

tion method, which not only allows local scale to each discrete cell but

also achieves the consistent discretization for surfaces. The important

features of our approach are (1) robustness, resulting from the minimiza-

tion procedure that is guaranteed to not increase energy in each step; (2)

simplicity, as each iteration of the minimization solves a linear system;

(3) efficiency, because the laplace system matrix is constant through-

out the iterations and can be pre-factored just for once. We fitted the

mapping differential into a similarity matrix, which is an isotropic scale

factor times a rotation matrix. The scale factor is able to handle size

difference while the rotation matrix part prevents local stretch and dis-

tortion. Meanwhile, the added rotation smoothing term compensates

the bending energy which makes CASAP energy consistent, reducing

the risk of fold-over and self-intersect occurrence. Our technique fills

the missing gaps between SR-ARAP and ASAP. It combines the ben-

efits of SR-ARAP and the advantage of ASAP, producing a consistent

discretization and allowing local scalability to handle large deformation

consistently without compromising the efficiency.
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Chapter 4

Consistent

As-Similar-As-Possible

Non-isometric Surface

Registration

Non-isometric surface registration, aiming to align two surfaces with dif-

ferent sizes and details, has been widely used in computer animation

industry. Various existing non-isometric surface registration approaches

have been proposed for accurate template fitting, nevertheless, two chal-

lenges remain. One is how to avoid the mesh distortion and fold-over of

surfaces during transformation. The other is how to reduce the amount of

landmarks that have to be specified manually. To tackle these challenges

simultaneously, based on the deformation technique in the last chapter,

we propose a consistent as-similar-as-possible (CASAP) surface regis-

tration approach. With a novel defined energy, it not only achieves the

consistent discretization for the surfaces to produce accurate result, but

also requires a small number of landmarks for correspondence with little

user effort only. Besides, CASAP is constrained as-similar-as-possible

so that angles of triangle meshes are preserved and local scales are al-

lowed to change. Extensive experimental results have demonstrated the

effectiveness of CASAP in comparison to the state-of-the-art approaches.
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4.1 CASAP energy

In the following we denote by S a triangle mesh, whose topology is de-

termined by n vertices and m triangles. Assuming we are deforming a

mesh S into S ′ with the same connectivity as similar as possible, the

piecewise linear geometric embedding of S is defined by the vertex posi-

tions pi ∈ R3, which is deformed into a different geometric embedding

p′i.

Due to the advantages of CASAP deformation method introduced in

the last chapter, we would like to deform the surface in a consistent as-

similar-as-possible way as well. The CASAP energy is defined in equation

(3.7). The importance of CASAP energy can be seen in Figure 4.1.

Figure 4.1: Mid-scale fitting results with and without CASAP energy.

4.2 Correspondence searching

Given a template surface S and a target one T , the goal of surface

registration is to deform the surface S into S ′ so that S ′ can be suffi-

ciently close to surface T with quality preserved. In each iterative step,

before deforming the template surface S ′, we need to find the correspon-

dence between S ′ and T . Many works [Yamazaki et al. 2013; Yoshiyasu

et al. 2014; Gilles et al. 2010] regard the closest points as goal positions,

however, correspondences chosen by these approaches are not quite ap-

propriate as they only consider distances between the closest points of

template and target surface. Inspired by [Papazov & Burschka 2011] we

concern feature descriptors and smooth factor additionally. The novelty
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is when we search the correspondence, instead of minimizing the feature

distance between the template and the target directly, we minimize the

difference between the feature distance and its 1-ring neighbor average.

Starting from the closest points on the target, we then flood over their

neighbours to find out the smallest matching energy points until con-

verge. During the registration, the feature descriptor can be changed,

however, starting from the closest point limits the searching range. The

feature descriptor is only utilized to find the best similar within the re-

stricted range. With the advance of iteration, the feature descriptor on

the template will become similar to the target’s as the template surface

closing to the target. The matching energy Em between points of the

template and the target is defined as

Em(pi,qj) = ‖df (pi,qj)− df (pi,qj)‖2, (4.1)

where pi is vertex i on template surface and qj is vertex j on tar-

get surface; the feature descriptors distance is defined as df (pi,qj) =

f(pi) − f(qj), where f(v) is the feature vector for vertex v, we con-

catenate all feature descriptors into a single feature vector; the mean

value distance df (pi,qj) = 1
|N (j)|+1

∑
k∈N (j)∪j df (pi,qk), where N (j) is

the 1-ring neighbours of vertex j on the target surface.

There is a great number of feature descriptors that characterize the

geometric properties of the point or of its neighbourhood, often in a

multi-scale way, for example, various notions of curvature (Gaussian,

mean) [Meyer et al. 2003], diffusion-based descriptors, such as the Heat

or Wave Kernel Signatures [Sun et al. 2009; Aubry et al. 2011], or more

classical descriptors such as spin images or shape contexts [Johnson &

Hebert 1999; Belongie et al. 2002]. In our experiment we concatenate ver-

tex position, vertex normal, multi-scale mean curvatures [Panozzo et al.

2010], Wave Kernel Signatures [Aubry et al. 2011] and Scale-invariant

Heat Kernel Signatures [Bronstein & Kokkinos 2010] to form a feature

vector.

In order to prevent unnecessary matchings, we filter out the pairs

if the distance between them exceeds D or if the angle between their
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normals exceeds a threshold Θ. Thus the algorithm of finding corre-

spondence qidx(i) on the target surface for each point on the template

can be summarized as Algorithm 4.1, where idx(i) is the index of the

target point that is matched with template vertex i. After given the cor-

Algorithm 4.1 Find correspondence for template vertex pi

1: Find the closest point qj on the target
2: if the distance between pi and qj exceeds D or the angle between

their normals exceeds Θ then
3: return NULL
4: end if
5: k = j
6: do
7: j = k
8: Find k ∈ N (j) ∪ j which minimizes Em
9: while k 6= j
10: idx(i) = k
11: return qidx(i)

respondence of template vertices, the template surface can be attracted

towards the target according to the matching pairs. However, in order

to avoid extreme distortion in tangential space, rather than attracting

the template points to their correspondences directly, we attract them

to the projections of their correspondences on their normals denoted by

Proj(qidx(i)) (Figure 4.2). Now the correspondence constraint energy

can be expressed as

Ec(p
′) = ‖Ccp

′ − Proj(Dcq)‖2F , (4.2)

where p′,q are the vertex positions on surface S ′, T respectively, and

Cc,Dc are the sparse matrices that define the filtered matching corre-

spondences between S ′ and T . Assuming the m-th correspondence is pi

on S ′ and qidx(i) on T , then

Cc(m,n) =

1, if n= i

0, if n 6= i
,Dc(m,n) =

1, if n=idx(i)

0, if n 6=idx(i)
.
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Figure 4.2: qj is the closest vertex on the target to pi; qidx(i) is the cor-
respondent vertex found by minimizing the matching energy; n is the normal
vector of pi; Proj(qidx(i)) is the projection of qidx(i) onto normal vector n.

4.3 CASAP surface registration

Based on the above two constraints, we propose our novel consistent as-

similar-as-possible surface registration method. Let p,p′,q denote the

vertex positions on surface S,S ′, T respectively, we define the total cost

function as

E(p′) = wdEd(p
′) + wcEc(p

′) + wfEf (p
′), (4.3)

where Ed constrains deformation ASAP consistently, Ec penalizes dis-

tances between the points of template and their correspondences on the

target, and Ef penalizes distances between the feature points of template

and target surface. The weights before these energy terms adjust the in-

fluence they account for in total energy. As Ed, Ec have been introduced

before, here we only introduce the feature point constraint energy Ef .

4.3.1 Feature Point Constraints

For the fitting of the template’s pose and size to the target, several feature

correspondences are required to established. Feature point constrains are
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designed to drag feature points on the template towards corresponding

target ones. This constraint energy can be represented as

Ef (p
′) = ‖Cfp

′ −Dfq‖2F , (4.4)

where Cf ,Df are the sparse matrices that define the feature point pairs

between S ′ and T .

4.3.2 Optimization

In this subsection, we introduce the optimization algorithm to mini-

mize the total energy in (4.3). There are two loops in the optimization:

the outer loop searches for the correspondent vertices to construct Ec,

the inner loop optimizes the deformed vertex positions by minimizing

E(p′). Once the inner loop is converged, weights are adjusted and a

new outer iteration starts again. Note that in the inner loop except the

vertex positions pi are unknown, si and Ri in (3.7) are also unknown

for each vertex. We employ the alternating optimization scheme follow-

ing [Sorkine & Alexa 2007; Yamazaki et al. 2013; Levi & Gotsman 2015]

to solve them respectively. Each inner iteration consists of a local step

followed by a global step. In local step, we optimize si and Ri with p′i

fixed. By contrast, p′i are optimized with si and Ri fixed in global step.

The local step and the global step are similar to the optimization of

CASAP deformation method in the last chapter except the total energy

optimization. Taking derivative of the total energy (4.3) w.r.t. p′ gives

us a linear system:

ATAp′ = ATb, (4.5)

where

A =


wdL

wcCc

wfCf

 ,b =


wdd

wcProj(Dcq)

wfDfq

 .

Up to now, the routine of consistent ASAP surface registration can

be summarised as Algorithm 4.2.
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Algorithm 4.2 Consistent ASAP Surface registration

1: Specify the feature points.
2: while not converged do
3: Adjust weights in (4.5) and construct Ec
4: while not converged do
5: Compute Ri by solving equations (3.11).
6: Compute si by solving equations (3.13).
7: Compute p′ and update surface S ′ by solving equation (4.5).
8: end while
9: end while

4.3.3 Fitting steps

In this subsection, we discuss the details of fitting the template. To

improve the efficiency and robustness of registration, we take a coarse-

to-fine fitting strategy [Yoshiyasu et al. 2014]. Instead of fitting overall

template surface from the beginning, a coarse mesh is extracted from

the original template mesh and then fitted to several feature points to

roughly adjust the overall size of the template. In this way, approximated

goal positions are obtained which is a better initial guess of fine fitting

leading to fast converge and it also reduces the fold-over occurrence.

Afterwards, a dense mesh is rebuilt from the deformed coarse mesh and

fine fitting step is performed to produce the final result. The whole

registration overview can be found in Figure 4.3.

Specifically, there are four fitting steps through the whole registration

process: initialization, coarse fitting, mid-scale fitting and fine fitting:

Initialization In this step, a coarse mesh is extracted from the

template first. We employ the farthest point sampling approach [Moen-

ning & Dodgson 2003] to sample certain number of vertices to represent

the shape of objects approximately (Figures 4.3a, 4.4). Note that all of

the sampled vertices are the subset of the original vertex set. Then the

geodesic remeshing technique [Peyré & Cohen 2006] is used to generate

the coarse mesh from the sampled points (Figure 4.3b).

Coarse Fitting We utilize the similarity constraints Ed and feature
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Figure 4.4: The farthest point sampling approach is applied to sample certain
amount of vertices on the surface. The colder color means smaller geodesic
distance to sampled vertex set, while the hotter color means larger distance.
The first sampled point can be appointed or chosen randomly.

point constraints Ef to fit the coarse mesh to several feature points on

the target so that the size and pose of the template are roughly adjusted

to the target (Figure 4.3e). Note that this step will change the scale

of the template to roughly align with the target, so no global scaling is

required to match the size of the template to the target. The energy

function is expressed as:

E(p′) = wdEd(p
′) + wfEf (p

′), (4.6)

Mid-scale Fitting After fitting the template roughly to the target

using feature points, the coarse mesh is deformed gradually toward the

target. Apart from the two constraints adopted in the first step, cor-

respondence constraints are also applied to achieve template attraction

(Figure 4.3f).

Fine Fitting In this stage, a dense mesh is first reconstructed from

the deformed coarse mesh by embedded deformation [Sumner et al. 2007]

(Figure 4.3g). The extracted coarse mesh is considered as deformation

graph laid under the the dense mesh. From formulas (3.13) and (3.11), we

associate an affine transformation with each vertex in the coarse graph.
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The deformed positions of vertices in the dense mesh can be calculated

from the transformations of the deformation graph. We use the same

approach as [Yoshiyasu et al. 2014] to rebuild the dense mesh. Again, all

the constraints are performed to fit the dense mesh to the target (Figure

4.3h).

4.3.4 Weights and parameters

In the initialization step, we regard the feature point constraints as

boundary condition to induce deformation. In next two steps, we set

D = 0.02rbox and Θ = 90◦, where rbox is the bounding box diagonal. As

for the weights in the linear system (4.5), we use wd = 1000, wc = 5,

wf = 105 in the coarse fitting stage and divide wd by 1.1 after every iter-

ation until it less than 1. In the fine fitting, we take the same procedure

with wf = 1. During the iteration all the parameters are fixed except

wd.

4.3.5 Experiments and results

Generic models We apply CASAP registration technique to register

from one human head with holes to a face scanning from another human

(Figure 4.5); from a human body to a gorilla (Figures 4.5, 4.3); from

a pig to a horse (Figure 4.6). Each pair has large difference on size or

details. CASAP not only is able to handle size difference as shown in

whole-body registration example in Figure 4.3, but also can capture geo-

metrical details such as the human expression (Figure 4.5) and preserve

the connectivity of the template well, thus reducing the risk of producing

fold-over (Figures 4.5, 4.6).

We then compare our registration technique to other state-of-the-art

algorithms: as-conformal-as-possible surface registration (ACAP) [Yoshiyasu

et al. 2014], similarity-invariant shape registration (ASAP) [Yamazaki

et al. 2013], the embedded deformation technique (ED) [Sumner et al.

2007], the shape matching based registration technique that minimizes

the as-similar-as-possible energy (SM-ASAP) [Papazov & Burschka 2011],
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Figure 4.5: Consistent as-similar-as-possible (CASAP) non-isometric regis-
tration. Given a small number of feature correspondences (seven for the head
registration and nine for the whole-body registration) only, CASAP not only is
capable of fitting the template towards the target with different size (revealed in
the whole-body registration example), but also captures the details well (shown
in the face registration example) and preserves the structure of the template
(seen from the colored wireframe shading mode).

the Laplacian surface editing technique (LSE) [Sorkine et al. 2004] and

the registration technique that utilizes the point-based deformation smooth-

ness regularization (PDS) [Amberg et al. 2007] in Figure 4.6. All these

methods have the same input of feature points except ASAP and SM-

ASAP, which do not require specifying feature points but are only able to

handle surfaces with close initial alignment and similar poses. ASAP and

ACAP are basically equivalent. The only difference is they have differ-

ent formula leading to different optimization technique. ACAP employs

nonlinear conformal stiffness and regularization terms in registration pro-

cess, which produces the closest results to CASAP. However, since the

regularization energy it adopts is not consistent, fold-overs still occur

around the left wrist of gorilla and the neck of horse. ED is an isometric

counterpart of ACAP. As it cannot adjust local scale, ED may produce

poor initial shape estimation, which makes parts of surface converge to

inaccurate places as shown at the right leg of gorilla. LSE cannot handle
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large deformation as it use a linear approximation of similar transfor-

mation. PDS is based on smoothness regularization, but it is too weak

to against shear distortions. Only CASAP exhibits no fold-over and al-

most no distortion in the examples, which produce quite pleasant visual

results.

From the perspective of quantitative evaluation, following the same

criterion as in [Yoshiyasu et al. 2014], we measure 1) distance error,

which is the average distance from the vertices of the deformed template

to the corresponding points of the target relative to the bounding box

diagonal, 2) angle error, which is the average angle deviation from the

template, 3) bending error, which is the average deviation in dihedral

angles from the template, 4) intersection error, which is the number of

self-intersecting faces. These statistics can be found in Figure 4.7. All

the errors of CASAP are the smallest among all the techniques except

the bending error in horse example, which is because of the LSE’s dis-

ability of handling large rotations. The number of self-intersecting faces

is zero, which reveals the ability of CASAP to reduce the change of fold-

over and shear distortion appearance.

The number of iteration steps and timings are shown in Table 4.1.

The time required for a single inner iteration of CASAP is minimum.

Although it requires more iteration steps than ACAP to converge, the

total registration time it spends is less than ACAP.

Number of feature points required Previous method [Yeh et al.

2011] requires specifying 20-70 feature points (34 for registration from

camel to horse, 21 for registration from old man head to Venus head),

whereas our technique requires less than 20 points: 7 for the face regis-

tration (Figure 4.5), 9 for the whole-body registration(Figure 4.5, 4.3),

15 for registration from pig to horse (Figure 4.6). Theoretically, the more

feature points specified, the better result is. However, in our experience,

only a small amount of feature points are required as long as the coarse
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template can roughly aligned with the target. That is because CASAP

provides a good initial shape approximation, and the consistent energy

preserves the template structure and angles well.

Limitation Although our consistent ASAP deformation tech-

nique and the coarse-to-fine strategy can efficiently reduce the chance

of fold-over, it cannot solve this issue entirely, especially for model with

large curvature. An easy solution is to add more feature points around

the fold-overs and adjust the position of them to achieve better result.

Other methods such as fold-over removing technique [Yeh et al. 2011] or

bounded distortion mapping [Lipman 2012] can also be utilized to solve

this issue.

Another limitation is that we can not achieve automatic registration

with no user input. Therefore, the quality of the feature points specified

by users will directly influence the registration result.

4.4 Summary

In this chapter, we have presented a novel surface registration approach

(CASAP) that constrains deformations locally as similar as possible.

With the proposed consistent regularization energy, CASAP not only

results in consistent discretization for surface but also reduces the oc-

currence of fold-over and shear distortion. Experiments have shown that

CASAP produced more accurate fitting results and preserved angles bet-

ter than previous methods.
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Chapter 5

Huber-L1 Based

Non-isometric Surface

Registration

Although the CASAP surface registration methods can produce more

accurate results than the state-of-the-arts, it assumes the target is clean

and has no noise, which is hard to achieve, especially for the commodity

depth sensors like Microsoft Kinect and ASUS XTion. Therefore, a sur-

face registration which is robust against noise is highly desirable. In this

chapter, we propose a Huber-L1 based non-isometric surface registration

and solve it by the alternating direction method of multipliers. With

a Huber-L1 regularized model constrained on the transformation varia-

tion and position difference, our method is robust to noise and produces

piecewise smooth results while still preserving fine details on the target.

The introduced as-similar-as-possible energy is able to handle different

size of shapes with little stretching distortion. Extensive experimental

results have demonstrated that our method is more accurate and robust

to noise in comparison with the state-of-the-arts.
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5.1 Surface Registration

We adopt a coarse-to-fine fitting strategy to implement the whole regis-

tration process in three steps: coarse fitting, mid-scale fitting and fine

fitting. For each step, different energy terms are used and combined,

which will be introduced at their first appearance. The comparison re-

sults with and without some energy terms will be illustrated to stress

the significance of these energies.

5.1.1 Notations

Suppose the template mesh is composed of n vertices P , {p1, · · · ,pn},
where pi , [xi, yi, zi]

> is a 3D vertex position in Euclidean coordinate.

In coarse fitting step, n is the vertex number of coarse template mesh.

The vertices of the target are denoted as Q={q1,· · ·,qm}. For non-rigid

registration, a 3 × 4 affine transformation matrix Ai , [Xi, ti] is asso-

ciated with each vertex pi of the template, where Xi is a 3 × 3 linear

transformation matrix and ti is a 3× 1 translation vector. For simplifi-

cation, we concatenate pi,qi,Xi, ti into a n× 3 matrix P , [p1 · · ·pn]>,

a m × 3 matrix Q , [q1 · · ·qm]>, a 3n × 3 matrix X , [X1 · · ·Xn]>

and a n × 3 matrix T , [t1 · · · tn]> respectively. Similarly, the vertices

on the template dual mesh P∗ are denoted by P∗ , [p∗1 · · ·p∗n∗ ]>, where

n∗ is the number of the vertices on the template dual mesh, which is

also equal to the number of triangle faces on the template primal mesh.

Again, a translation vector will be assigned to each dual vertex, all of

which can be concatenated as T∗ , [t∗1 · · · t∗n∗ ]>.

5.1.2 Coarse fitting

Instead of fitting the fine template surface from the beginning, a coarse

mesh extracted from the origin template mesh is used to fit for efficiency,

as the coarse mesh involves less unknown parameters. We employ the

farthest point sampling approach [Moenning & Dodgson 2003] to sample

certain number of vertices to approximately represent the shape of the

template (Figure 5.1a). Note that all the sampled vertices are the sub-

set of the original vertex set. The geodesic remeshing technique [Peyré
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& Cohen 2006] is then applied to generate the coarse mesh out of the

samples vertices (Figure 5.1b). Afterwards, the feature points between

the coarse template mesh and the target are specified by users (Figure

5.1d). The coarse template is then fitted to the specified feature points

to approximate the overall size of the target (Figure 5.1e). The total

energy in coarse fitting step is composed of four energies: Ef penalizes

the distances between the feature points of template and target surface;

EASAP constrains deformation ASAP; Er penalizes the transformation

variation; El penalizes the edge lengths difference locally:

Ecoarse(X,T) = wfEf + wASAPEASAP + wrEr + wlEl. (5.1)

Each energy term will be introduced as follows, and wf , wASAP, wr and

wl are the weights which represent the influence of each energy term.

Feature point constraint

To pull feature points on the template towards their correspondence on

the target, we define the feature point constraint energy as:

Ef(T) =
1

2

∑
i∈F

‖pi + ti − qidx(i)‖2F ,

where F is the template index set of the feature points, pi is the po-

sition of i-th feature point on the template, idx(i) is the index of the

corresponding feature point on the target. To fit this energy (and other

energies subsequently) into ADMM [Boyd et al. 2011] for optimization,

we need to rewrite the energy (and other energies subsequently intro-

duced) in matrix form. We define two sparse matrices Cf , Df which

select the feature point pairs between the template and the target. As-

suming the r-th feature point pair is pi on the template and qidx(i) on

the target, then

Cf(r, s) =

1, if s= i

0, if s 6= i
, Df(r, t) =

1, if t=idx(i)

0, if t 6=idx(i)
.
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Therefore, we can rewrite Ef as

Ef(T) =
1

2
‖Cf(P + T)−DfQ‖2F , (5.2)

ASAP energy

The transformation from the template to the target can involve large

deformation. To prevent shear distortion (Figure 5.2), we constrain the

deformation matrix Xi to an orthogonal rotation matrix Ri. As we

deal with non-isometric registration, the size between the template and

the target can be different. Therefore, a scalar si is added to make the

deformation scalable [Yamazaki et al. 2013]. The ASAP energy is defined

as

EASAP(X) =
1

2

n∑
i=1

‖Xi − siRi‖2F ,

s.t. R>i Ri = I3, det(Ri) > 0,

where ‖·‖F denotes the Forbenius norm, I3 is a 3×3 identity matrix and

det(·) is the determinant of a matrix. To write the energy in matrix form,

we concatenate si,Ri into a n × 1 vector s = [s1 · · · sn]> and a 3n × 3

matrix R , [R1 · · ·Rn]>. The ASAP energy can then be expressed as:

EASAP(X) =
1

2
‖X− (diag(s)⊗ I3)R‖2F ,

s.t. R>i Ri = I3, det(Ri) > 0,
(5.3)

where diag(·) returns the block-wise diagonal matrix of each row vector

in the input matrix, and ⊗ denotes the operator of Kronecker product.

Regularization

We assign an affine transformation to each vertex. These transformations

are not independent with each other, and the nearby transformations

should have overlapping influence. Therefore, the computed transfor-

mations should be consistent with respect to one another. In practice,

articulated animals only have large transformation deviation at joints,
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Figure 5.2: Coarse fitting results with and without ASAP energy. Without
ASAP energy, the model can easily get shear distortion.

so the transformation on the parts between joints should be piecewise

smooth with only small deviations. To produce a piecewise smooth result

(Figure 5.3), we apply a Huber-norm regularized model constrained on

the transformation variation. This metric behaves like an L2-norm be-

low a certain threshold ε and like an L1-norm above. The regularization

energy is defined as:

Er(X,T) =
∑
~eij∈~E

‖Xi(pj − pi) + pi + ti − (pj + tj)‖ε,

where ~eij is a directional edge from vertex i to vertex j, ~E is the half-edge

set of the template mesh. Note that an edge has two opposite directional

half-edges. ‖ · ‖ε is the Huber-norm defined as:

‖x‖ε =


‖x‖22
2ε
, if ‖x‖1 ≤ ε

‖x‖1 − ε
2
, otherwise

,

ε > 0 is a threshold, ‖ · ‖1, ‖ · ‖2 are the L1, L2 norm respectively. In

order to express the regularization energy with respective to X and T,

we introduce a selection matrix J ∈ {1}|~E|×n and a directional differential

matrix ~K ∈ {−1, 1}|~E|×n. Specifically, each row of J and ~K corresponds

to a half-edge in ~E and each column of them corresponds to a vertex in

P . Without loss of generality, we assume the r-th rows in J and ~K are

associated with the half-edge ~eij. Each row in J denoted by J(r, ·) only

has one non-zero entry, whose column corresponds to the start vertex pi

69



of the half edge ~eij, i.e. J(r, i) = 1. Each row in ~K denoted by ~K(r, ·)
contains two non-zero entries. The entry linked to the reference vertex

pi is set at -1, while the one linked to the neighbouring vertex pj is set

at 1, i.e. ~K(r, i) = −1, ~K(r, j) = 1. Then the regularization term can

be rewritten as:

Er(X,T) = ‖diag(~KP)(J⊗ I3)X− ~KP− ~KT)‖ε. (5.4)

Figure 5.3: Fitting results with and without regularization energy. The
method with regularization energy is more robust against outliers and produces
piece-wise smoother result.

Laplacian energy

To improve the mesh quality, we apply the uniform Laplacian operator on

the vertex position, enforcing each vertex to strive to lie in the centroid

of its one-ring neighbours and thus the edge lengths strive to be locally

equalized (Figure 5.4). The Laplacian energy is defined as follows:

El(T) =
1

2
‖L(P + T)‖2F , (5.5)

where L is the uniform Laplacian matrix corresponding to the mesh

connectivity:

L(i, j) =


− 1
di
, if vertices i and j are neighbors,

1, if i = j,

0, otherwise,
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where di is the valence of vertex i.

Figure 5.4: Coarse fitting results with and without Laplacian energy. Com-
pared to the method without Laplacian energy, the variation in the areas of
triangle in the method with Laplacian energy is small, specially obvious on the
left elbow.

5.1.3 Mid-scale fitting

This fitting step deforms the coarse mesh as close as possible to the

target. Apart from those constraints adopted in the previous step, the

data constraint is also applied to attract the coarse mesh towards the

target gradually (Figure 5.1f). The energy in this step is denoted by:

Emid(X,T) = Ecoarse(X,T) + wdEd. (5.6)

Data constraint

To pull the template towards the target, we need to determine the reli-

able correspondences between the template and the target.

For each vertex pi on the template, we project it onto the target along

its normal direction. The projection ci is regarded as a reliable corre-

spondence only if:

• ci is inside a triangle of the target.

• The distance between ci and pi is under a threshold α.

• The angle between the normals at ci and pi is under a threshold

Θ.
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We apply L1 norm on the position difference to allow a small fraction of

regions with large positional error, which is more robust against outliers

and fits to the target’s details better. The data term is defined as:

Ed(T) =
∑
i∈C

‖pi + ti − ci‖1,

where C is the template index set of the correspondence. In order to

express the data term in regard to T, we stack all ci into a matrix C.

Similar to Cf , we define a sparse matrix Cd to indicate the corresponding

vertices on the template. Therefore, we can rewrite the data term as:

Ed(T) = ‖Cd(P + T)−C)‖1. (5.7)

5.1.4 Fine fitting

In this step, the dense mesh is first reconstructed from the mid-scale fit-

ting result via embedded deformation method [Sumner et al. 2007] (Fig-

ure 5.1g). To avoid foldovers and improve the mesh quality, inspired by

[Yeh et al. 2011], the dual-domain relaxation strategy is applied. We al-

ternatively perform the relaxation algorithm between the primal domain

and the dual domain. The reconstructed primal mesh is first transformed

into its corresponding dual mesh, then the relaxation algorithm is ap-

plied on the dual domain (Figure 5.1h). The energy in the dual domain

is defined as:

Edual(T
∗) = wrEr(T

∗) + wdEd(T∗) + wlEl(T
∗). (5.8)

After that, the relaxation algorithm is applied in the primary domain

(Figure 5.1i), whose energy can be expressed as:

Eprimal(T) = wcEc(T) + wlEl(T), (5.9)

where Ec is the consistent energy transforming the template from the

dual domain to the primary domain.
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Consistency constraint

It is well-known that one dual mesh corresponds to a primal mesh and

their vertices should be consistent: the i-th dual vertex should be equal

to the centroid vertex of the i-th triangle of the primal mesh, and two

dual vertices corresponding to the adjacent triangles are connected by

an edge. (Figure 5.5). The consistency energy is defined as:

Ec(T) =
1

2

n∗∑
i=1

‖1

3
(pi1 + ti1 + pi2 + ti2 + pi3 + ti3)− p∗i ‖2,

where {i1, i2, i3} are the indices of the primal verices participating in the

i-th triangle of the primal mesh. Again, in matrix form, we could rewrite

this energy as:

Ec(T) =
1

2
‖Cc(P + T)−P∗‖2F , (5.10)

where Cc is a n∗ × n matrix:

Cc(i, j) =

1
3
, if j ∈ {i1, i2, i3},

0, otherwise,

Figure 5.5: The Stanford bunny’s primary mesh and its corresponding dual
mesh.

If the resolution of the template mesh is insufficient to fit the target

tightly, a uniform or adaptive subdivision approach can be employed.
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Here, we adopt 1-to-4 uniform subdivision method [Lee et al. 2000] to

subdivide the template (Figure 5.1j), then the dual-domain relaxation

algorithm is performed on the subdivided template mesh again.

5.2 Point cloud registration

The point cloud registration is almost the same as the surface registration

except the data constraint. There is no triangle faces in the point cloud

of the target, so the template vertices cannot be directly projected on

the target to produce their correspondences. Instead, for each vertex pi

in the template, we first find its closest point qj in the target. Similar to

Section 4.2, we filter out the pairs if the distance between them exceeds

α or if the angle between their normals exceeds a threshold Θ. Then,

qj is projected on the pi’s normal vector to yield the correspondence

denoted by Proj(qj).

In this research, we use Microsoft Kinect v2 to obtain the target point

cloud. The Kinect v2 has two cameras (one color camera, one infrared

camera) and an infrared illuminator (Figure 5.6). It is based on the

time-of-flight (ToF) principle and can offer 512× 424 depth images and

1920×1080 color images. The color image and the depth image captured

by Kinect v2 can be found in Figure 5.7. Each pixel u = (x, y) in

the depth image D can be reprojected as a 3D vertex in the camera’s

coordinated space:

v(u) = K−1[x, y,D(u)]T . (5.11)

Corresponding normal vectors for each vertex are computed by using

neighboring reprojected points:

n(u) = normalize((v(x+1, y)−v(x, y))×(v(x, y+1)−v(x, y))). (5.12)

Then the corresponding color C(u) in the color image C will be assigned

to each vertex v(u) to generate the final colored point cloud ( Figure

5.8).
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Figure 5.6: Kinect v2 and its components, including a color camera, an
infrared camera and an infrared illuminator.

(a) (b)

Figure 5.7: (a) A 512 × 424 color image and (b) a 512 × 424 depth image
captured by the Kinect v2.

The feature points can be either specified by users manually or de-

tected by the deep learning technique. We resort to the OpenPose [Cao

et al. 2018] to detect 2D COCO pose format feature points in the color

image. The COCO pose format consists of 18 feature points of the hu-

man body including nose, eyes and other joints, whose location can be

seen in Figure 5.9. As the detected feature points by Openpose is in 2D,

we need to reproject them back into 3D for 3D shape registration. With

the 2D feature points coordinates, the 3D feature points can be com-
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Figure 5.8: The colored point cloud shown in MeshLab, which is generated
from the color image and the depth image in Figure 5.7. Note that the depth
truncation is applied on the depth image to extract the person only.

Figure 5.9: The location of 18 feature points in the COCO pose format.
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puted by equation (5.11) (Figure 5.10). On the template model, we can

specify the 3D feature points in advance according to the COCO pose

format. In this way, the feature point correspondences can be established

automatically in the future (Figure 5.11).

(a)

(b)

Figure 5.10: (a) 2D feature points detected by OpenPose (b) 3D feature
points reprojected from the 2D feature point coordinates.

With the data constraint and the feature point constraint, the algo-

rithm of surface registration can be easily transplanted to the point cloud

registration. The registration result can be found in Figure 5.12.
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Figure 5.11: The feature point correspondences between the template and the
target point cloud.

(a) (b)

Figure 5.12: (a) the point cloud registration result (b) the registration result
and the target point cloud.

5.3 Optimization

The optimization process for each fitting step is very similar. The mid-

scale step is taken as an example to explain the optimization process as

it includes all kinds of norm appeared in the algorithm. Expanding each

78



term in (5.6) gives us:

Emid(X,T)=
wf

2
‖Cf(P+T)−DfQ‖2F

+
wASAP

2

n∑
i=1

‖Xi−siRi‖2F

+ wr‖diag(~KP)(J⊗ I3)X− ~KP− ~KT‖ε (5.13)

+
wl

2
‖L(P + T)‖2F + wd‖Cd(P + T)−C‖1,

s.t. R>i Ri = I3, det(Ri) > 0,

To solve the non-differential Huber-norm and L1-norm, we introduce

two auxiliary variables F, G to change the minimization of (5.13) into

the following form:

min
X,T,F,G

wf

2
‖Cf(P + T)−DfQ‖2F+

wASAP

2

n∑
i=1

‖Xi − siRi‖2F

+ wr‖F‖ε +
wl

2
‖L(P + T)‖2F + wd‖G‖1, (5.14)

s.t. R>i Ri = I3, det(Ri) > 0,

F = HX− ~KP− ~KT,G = Cd(P + T)−C,

where H = diag(~KP)(J⊗ I3) is introduced for conciseness.

To solve the constrained minimization (5.14), we transform the origi-

nal problem to iterative minimization of its augmented Lagrangian form:

L(X,T,F,G, {Ri}, {si},Y, ρ) =
wf

2
‖Cf(P + T)−Dfq‖2F

+
wASAP

2

n∑
i=1

‖Xi−siRi‖2F+wr(‖F‖ε+〈Y1,HX−~KP−~KT−F〉F

+
ρ1
2
‖HX−~KP−~KT−F‖2F )+

wl

2
‖L(P + T)‖2F + wd(‖G‖1

+〈Y2,Cd(P+T)−C−G〉F +
ρ2
2
‖Cd(P + T)−C−G‖2F ),

s.t. R>i Ri = I3, det(Ri) > 0, (5.15)

where ρ1 and ρ2 are positve constants, Y1 and Y2 are Lagrangian mul-

tipliers and 〈·, ·〉F is the Forbenius inner product. We solve this problem
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by using the ADMM algorithm. The k-th iteration can be summarized

as follows:

F(k)= arg minFwr(‖F‖ε+〈Y(k−1)
1 ,HX(k−1)−~KP−~KT(k−1)

−F〉F + ρ1
2
‖HX(k−1)−~KP−~KT(k−1)−F‖2F ),

G(k) =arg minGwd(‖G‖1 + 〈Y(k−1)
2 ,Cd(P + T(k−1))

−C−G〉F + ρ2
2
‖Cd(P + T(k−1))−C−G‖2F ),

R
(k)
i =arg minRi

wASAP

2
‖X(k−1)

i − s(k−1)i Ri‖2F
s.t. R>i Ri = I3, det(Ri) > 0,

s
(k)
i = arg minsi

wASAP

2
‖X(k−1)

i − siR(k−1)
i ‖2F ,

X(k) =arg minX
wASAP

2
‖X−(diag(s(k−1))⊗I3)R

(k−1)‖2F
+wr(〈Y(k−1)

1 ,HX− ~KP− ~KT(k−1)−F(k)〉F

+ρ1
2
‖HX−~KP−~KT(k−1)−F(k)‖2F ),

T(k) =arg minT
wf

2
‖Cf(P + T)−DfQ‖2F

+wr(〈Y(k−1)
1 ,HX(k)− ~KP− ~KT−F(k)〉F

+ρ1
2
‖HX(k)−~KP−~KT−F(k)‖2F )+wl

2
‖L(P+T)‖2F

+wd(〈Y(k−1)
2 ,Cd(P + T)−C−G(k)〉F

+ρ2
2
‖Cd(P + T)−C−G(k)‖2F )

Y
(k)
1 =Y

(k−1)
1 + ρ1(HX(k)−~KP−~KT(k)− F(k)),

Y
(k)
2 =Y

(k−1)
2 + ρ2(Cd(P + T(k))−C−G(k)).

(5.16)

The F-subproblem has the following closed solution:

F(k) =
ερ1

ερ1+1
(HX(k−1)−~KP−~KT(k−1) +

Y
(k−1)
1

ρ1
)

+
1

ερ1+1
S ερ1+1

ρ1

(HX(k−1)−~KP−~KT(k−1) +
Y

(k−1)
1

ρ1
), (5.17)

where S is the soft thresholding operator acting on each element of the
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given matrix:

Sκ(a) =


a− κ, if a > κ

0, if |a| ≤ κ

a+ κ, if a < −κ

.

The G-subproblem can be solved as:

G(k) =S 1
ρ2

(Cd(P + T(k−1))−C +
Y

(k−1)
2

ρ2
), (5.18)

Following the work of [Sorkine & Alexa 2007], we solve the Ri-subpro-

blem by using singular value decomposition of Xi:

UiΣiV
T
i = svd(Xi),R

(k)
i = ViU

T
i (5.19)

If det(Ri) < 0, we change the sign of the column of Ui corresponding to

the smallest singular value.

Dividing the si-subproblem by si and setting its derivative to zero

yields:

s
(k)
i =

〈X(k−1)
i ,X

(k−1)
i 〉F

〈R(k)
i ,R

(k)
i 〉F

=
〈X(k−1)

i ,X
(k−1)
i 〉F

3
(5.20)

In order to solve the X-subproblem, we first zero its derivative and

then write the equation in its equally stacked form:

AxX
(k) = Bx, (5.21)

where

Ax =

(
sqrt(wASAP)I

sqrt(wr)H

)
,

Bx =

(
sqrt(wASAP)(diag(s(k))⊗ I3)R

(k)

sqrt(wr)(F
(k) − Y(k−1)

ρ1
+ ~KP + ~KT(k−1))

)
,

sqrt(·) is the square root function.
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Similarly, T can be obtained by solving the following equation:

AtT
(k) = Bt, (5.22)

where

At =


sqrt(wf)Cf

sqrt(wr)~K

sqrt(wd)Cd

sqrt(wl)L

 ,

Bt =


sqrt(wf)(DfQ−CfP)

sqrt(wr)(HX(k) − ~KP− F(k) + Y(k−1)

ρ1
)

sqrt(wd)(G(k) − Y
(k−1)
2

ρ2
+ C−CdP)

sqrt(wl)(−L ∗P)

 .

Now we could summerize the optimization in mid-scale fitting step

in Algorithm 5.1. The optimization consists of two loops: the outer

loop adjusts the weights and searches the correspondences to construct

Ed, while the inner loop optimizes the translation T for each template

vertex. Once the inner loop converges, T will be used to update the

template vertex position, and then a new outer iteration starts again.

In this algorithm, l and k represent the indices of the outer and inner

iteration, respectively. The optimization problems in coarse fitting and

fine fitting steps can be solved in the same way.

5.4 Experiments

We evaluate the performances of the proposed approach by comparing

with state-of-the-art algorithms on clean datasets, noisy datasets and

real scans, respectively. The number of feature points, vertices and faces

of models used in each example is shown in Table 5.1. The only effort

required by users is to specify feature points. All the algorithms are

implemented in MATLAB, and all the statistics are measured on an
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Algorithm 5.1 Mid-scale fitting step

1: while not converged do
2: Adjust weights in (5.13) and construct Ed

3: while not converged do
4: Compute F(k) by solving equations (5.17).
5: Compute G(k) by solving equations (5.18).

6: Compute R
(k)
i by solving equations (5.19).

7: Compute s
(k)
i by solving equations (5.20).

8: Compute X(k) by solving equations (5.21).
9: Compute T(k) by solving equations (5.22).

10: Y
(k)
1 =Y

(k−1)
1 + ρ1(HX(k)−~KP−~KT(k)− F(k)).

11: Y
(k)
2 =Y

(k−1)
2 +ρ2(Cd(P+T(k))−C−G(k)).

12: end while
13: Update the template by P(l) = P(l−1) + T(l−1).
14: end while

Intel Xeon E5 3.4 GHz 64-bit workstation with 16GB of RAM.

Name #FP
Template Target

#V #F #V #F

bouncing 9 12500 24996 10002 20000
camel 24 6608 13200 9469 18934
crane 11 12500 24996 10002 20000
dog 0 25290 50528 25290 50528

gorilla 0 25438 50868 25438 50868
head 10 1669 3298 281581 562554

Table 5.1: The number of feature points (#FP), vertices (#V), faces (#F)
of the template and the target models in the examples.

5.4.1 Parameters and weights

In the data constraints, we set Θ = 90◦, α = 0.05rbox, where rbox is the

length of the target bounding box diagonal. In the regularization term,

ε = 0.1 is used, ρ = 1 for the optimization. As for the weights, we use

wASAP = 1, wr = 10, wf = 1000, wl = 10 for the whole coarse fitting

step to highlight the feature point constraints. In the mid-scale step,

wd is initialized to 0.1 then increased by 0.1 for each outer iteration. wl

is initialized to 100 then decreased by 10 for each outer iteration until

reaching 1. We gradually increase wd and reduce wl so that the good

quality of the template mesh can be maintained during the registration to
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avoid the foldover occurrence. The other weights are the same as those in

the coarse fitting step. In the fine fitting step, we set wd = 0.1, wr = 0.1

for (5.8); wc = 1000 for (5.9); wl is initialized to 100 then decreased by

10 for each outer iteration until reaching 1 through the whole fine fitting

step; wd is increased by 0.1 for each outer iteration as the same reason

in the mid-scale step. For different models, parameters could be slightly

different, but the general idea behind it is the same: in coarse fitting, the

feature point constraint is dominant to roughly adjust the template pose

and size to match the feature points. While in mid-scale and fine-scale

fitting, the weights on data constraint gradually increase to attract the

template towards the target from slow to fast.

5.4.2 Results on clean data

Our method is compared with state-of-the-art non-isometric registration

methods (Figure 5.13): consistent as-similar-as-possible surface registra-

tion (CASAP) [Jiang et al. 2017], as-conformal-as-possible surface regis-

tration (ACAP) [Yoshiyasu et al. 2014], the shape matching based reg-

istration method that minimizes the as-similar-as-possible energy (SM-

ASAP) [Papazov & Burschka 2011] and the registration method that

utilizes the point-based deformation smoothness regularization (PDS)

[Amberg et al. 2007]. To evaluate the registration accuracy quantita-

tively, we follow the criterion used in [Jiang et al. 2017; Li et al. 2018]

and measure (1) distance error, which is the average distance from the

vertices of the deformed template to the corresponding points on the

target relative to the target bounding box diagonal, (2) intersection er-

ror, which is the number of self-intersecting faces, (3) Hausdorff error,

the largest distance between two shapes with respective to the target

bounding box diagonal. The statistics data can be found in Table 5.2.

It is obvious that our method Huber-L1 produces least errors without

any foldover generated. Although CASAP and ACAP can fit the tem-

plate close to the target, as shown at the left ankle of the bouncing

model, they still suffer from the foldover issue when the deformation is

dramatic. SM-ASAP does not require feature points, but it is only able

to handle surfaces with close initial alignment and similar poses. PDS
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allows for affine transformation for each vertex, which makes it too weak

against shear distortions as shown at both arms of the bouncing model.

Table 5.3 shows the iteration steps and time taken by each method. The

total time cost in SM-ASAP and PDS are relatively small, however, their

results are undesirable with large errors and many foldovers. The total

time used in the rest three methods are almost on the same level, but

our method gets the best result with no foldover occured.

Huber-L1 CASAP ACAP SM-ASAP PDS

bouncing
D 2.1556e-05 4.3619e-05 4.9460e-05 0.0010 1.8525e-04
I 0 242 494 909 5639
H 0.0113 0.0273 0.0784 0.7279 0.1619

camel
D 7.1209e-05 1.8185e-04 1.8074e-04 9.8233e-04 2.9304e-04
I 0 0 76 85 3884
H 0.0172 0.0704 0.0710 0.3222 0.1238

Table 5.2: Quantitative evaluation in the bouncing and camel examples. D,
I and H indicate distance error [%], intersection error and Hausdorff error
[%] respectively.

Huber-L1 CASAP ACAP SM-ASAP PDS

bouncing

#O 24 54 73 9 500
#I 2064 3477 577 37 1608

Inner 0.068 0.034 0.277 0.252 0.035
Total 140.199 118.044 159.687 9.346 56.281

camel

#O 24 54 73 9 500
#I 2037 3352 562 34 1582

Inner 0.065 0.032 0.272 0.261 0.034
Total 132.405 107.264 152.864 8.874 54.328

Table 5.3: Iteration steps and time (in seconds) in the bouncing and camel
example. #O, #I indicate the number of outer iteration steps and total inner
iteration steps respectively. “Inner” indicates the average time required for
each inner iteration step. “Total” represents the total fitting time.

5.4.3 Results on noisy data

In this subsection, we set up two different experiments to demonstrate the

robustness of our method. In both experiments, the targets are polluted

with noise along the normal direction of each vertex by multiplying the

standard deviation of the average length of the edges in the target.

Firstly, we compare our method with the start-of-the-arts on the noisy
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data in Figure 5.14. The quantitative evaluation is shown in Table 5.4.

Affected by the noise, CASAP and ACAP get poor initial shape esti-

mation and regard some noise as correspondence, which makes parts of

template fitted to noise as shown at the right waist of CASAP and the

left arm of ACAP. SM-ASAP and PDS still produce poor results as on

the clean data. Thanks to the dual relaxation and Huber-L1 regular-

ization, our method is robust against noise and achieves more accurate

results than other methods without any foldover generated.

Figure 5.14: Comparison of non-isometric surface registration approaches
on noisy data. The self-intersection faces on the template are colored in red.

87



Huber-L1 CASAP ACAP SM-ASAP PDS

crane
D 4.7397e-05 5.2738e-05 5.6536e-05 9.4177e-04 1.6583e-04
I 0 143 453 8965 5862
H 0.0227 0.0729 0.0469 0.5691 0.1258

Table 5.4: Quantitative evaluation in the crane example.

Secondly, instead of comparing with a particular method (e.g. CASAP),

we compare our Huber-L1 with different norms applied on the regular-

ization term and data term, including L1-L1, L1-L2 and L2-L2, as shown

in Figure 5.15. The other terms are fixed and the whold pipeline is iden-

tical. To ensure fair comparison, the correspondences among different

approaches are the same and have been given as priors. As the L2-norm

is easily affected by the outliers, L1-L2 and L2-L2 produce larger errors

than Huber-L1 and L1-L1, especially at the places with large deformation

(seen at the shoulder and butt of the gorilla in SNR and L2-L2). Due to

the L1-norm’s tendency on favoring sparse solution, the effect caused by

the regularizer leads to piecewise constant solutions (shown at the tail

of the dog in L1-L1). This effect can be reduced significantly by using

a quadratic penalization for small gradient magnitudes while sticking

to linear penalization for larger magnitudes to maintain the discontinu-

ity properties known from total variation, which is the Huber-norm we

adopted here. The quantitative evaluation is shown in Table 5.5. As

the benchmark models also involve fold-overs, we ignore the intersection

error in the table. With Huber-L1 regularization scheme, Huber-L1 is

not only robust against noise but also produces piecewise smooth results

with least errors.

Huber-L1 L1-L1 L1-L2 L2-L2

dog
D 1.0441e-06 5.2783e-06 1.0682e-05 1.5101e-05
H 1.6409 2.9771 3.9666 2.6419

gorilla
D 2.3474e-06 2.8365e-06 1.6977e-05 2.3565e-05
H 4.1795 4.5067 5.5522 5.1793

Table 5.5: Quantitative evaluation in the dog and gorilla examples.
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5.4.4 Results on real scans

Finally, the Huber-L1 method is compared with the state-of-the-art ap-

proaches on real scan in Figure 5.16. The quantitative evaluation is

shown in Table 5.6. In terms of distance error and Hausdorff error,

CASAP and ACAP have competitive results with our method. How-

ever, they still produce foldovers at the canthus and nostril, and espe-

cially generate poor results around the noisy boundary and the missing

parts of the target (seen from the side view). Compared to CASAP and

ACAP, SM-ASAP and PDS produce less foldovers, however, they have

larger distance errors and Hausdorff errors so that their results even look

dissimilar to the target intuitively. On the contrary, Huber-L1 produces

least errors with no foldover generated, which demonstrates our method

is more robust to a noisy and incomplete target.

Huber-L1 CASAP ACAP SM-ASAP PDS

head
D 3.6954e-06 4.0682e-04 3.1503e-04 0.0016 0.0048
I 0 1287 2345 103 185
H 3.1624 3.2413 3.2244 3.2463 3.2516

Table 5.6: Quantitative evaluation in the head example.

5.5 Summary

In this chapter, we have proposed a novel non-isometric surface registra-

tion approach based on the Huber-L1 model. The Huber-norm regular-

izes on transformation variation, which is robust to noise and produces

piecewise smooth result. The position difference is regularized in L1-

norm, which preserves the fine details on the target while smoothing the

noise. The ASAP energy allows us to handle shapes in different sizes.

To improve the efficiency and robustness of registration, a coarse-to-fine

strategy is adopted. The Laplacian energy relaxes the template on the

primal and dual domain, reducing self-intersection and foldover occur-

rence and improving the mesh quality. The experiments on various data

have shown our method is more robust and accurate than other state-

of-the-art approaches.

90



F
ig
u
re

5
.1
6
:

C
o
m

pa
ri

so
n

o
f

n
o
n

-i
so

m
et

ri
c

su
rf

a
ce

re
gi

st
ra

ti
o
n

a
p
p
ro

a
ch

es
o
n

re
a
l

sc
a
n

.

91



Chapter 6

Conclusion and Future works

6.1 Conclusions

This thesis proposed non-isometric 3D shape registration methods aim-

ing at solving the main challenges in Section 1.2, i.e. template quality

preservation, semantic correspondence, registration robustness and less

user effort. Chapter 2 gave an overview of existing works in registration

related areas, including 3D geometric deformation, 3D shape correspon-

dence, 3D shape registration and registration robustness. It discussed

the current research progress and then analyzed the main challenges

remained in these works, which provided guideline for our following re-

search.

In Chapter 3, a novel consistent as-similar-as-possible deformation

method is proposed. we analyzed the pros and cons of ARAP, SR-ARAP

and ASAP deformation methods. The ARAP method is not scalable, nor

its energy is consistent. The SR-ARAP method makes up the bending

energy achieving a consistent energy, while it is still not able to handle lo-

cal scalability. The ASAP method allows local scalability but its energy

is not consistent. We combined the benefits of SR-ARAP and the advan-

tages of ASAP, came up with a CASAP deformation method, which not

only allows local scale to each discrete cell but also achieves the consistent

discretization for surfaces without compromising the efficiency. We then

compared ASAP and CASAP with the ground truth consistent method
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(VASAP), the experiments have shown that our method produced closer

results to the ground truth. Finally, we deformed the same shapes but

with different discretization and evaluated the distance between them.

Compared with ASAP, our consistent method produced less errors and

resulted in very similar qualitative behaviors on different discretization.

In Chapter 4, based on the CASAP deformation method proposed in

Chapter 3, a novel non-isometric surface registration method (CASAP)

has been presented. The registration includes three different constraints:

CASAP deformation constraint, correspondence constraint and feature

point constraint. The CASAP deformation constraint enables us to de-

form the template in a consistent as-similar-as-possible way. In Section

4.2, we not only considered the vertices’ positions but also their feature

descriptors such as multi-scale mean curvatures, WHS, HKS to choose

more accurate correspondences than works only choose the closest ver-

tices as correspondences. Compared to the correspondence constraint,

the feature points give us more semantically accurate correspondences,

which are employed to adjust the overall size and pose of the template. In

Subsection 4.3.3, a coarse-to-fine registration scheme has been proposed

to further improve the registration efficiency and accuracy. The exper-

iments have shown that CASAP registration method produced more

accurate fitting results and required less user efforts compared to the

state-of-the-arts.

In chapter 5, we have proposed a novel non-isometric surface registra-

tion approach based on the Huber-L1 model. The Huber-norm regular-

izes on transformation variation, which is robust to noise and produces

piecewise smooth result. The position difference is regularized in L1-

norm, which preserves the fine details on the target while smoothing the

noise. The ASAP energy allows us to handle shapes in different sizes.

To improve the efficiency and robustness of registration, a coarse-to-fine

strategy is adopted. The Laplacian energy relaxes the template on the

primal and dual domain, reducing self-intersection and fold-over occur-

rence and improving the mesh quality. The experiments on various data

have shown our method is more robust and accurate than other state-

of-the-art approaches.
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6.2 Future works

6.2.1 No fold-over guarantee

Although the CASAP and Huber-L1 registration methods produced more

accurate results than the state-of-the-arts, they cannot guarantee to

avoid the fold-overs and self-intersections completely, especially for parts

with large curvature. It is a common issue in surface registration meth-

ods since the inverted elements in 3D surface cannot be measured and

thus be detected. To solve this problem, a tetrahedron template model

will be used so that the inverted elements can be detected and then

prevented in advance to avoid fold-overs locally.

In surface modeling and physics-based animation, a common way to

avoid inversion elements is to design penalizing inversion constraints [Irv-

ing et al. 2004; Chao et al. 2010; Stomakhin et al. 2012; Setaluri et al.

2014; Civit-Flores & Suśın 2014]. There are some specialized material

models such as Neo-hookean elasticity [Bonet & Wood 1997] contain en-

ergies that increase to infinity as the area/volume of a deformed element

degenerates to zero. Unfortunately, the numeric solutions to these en-

ergies are extremely complicate and may bring the classical Newton’s

method to a halt [Schüller et al. 2013]. In the context of inverse elastic

shape design Chen et al. [2014] discusses how to deal with these numeri-

cal complexities. Schüller et al. [2013] propose Locally Injective Mapping

(LIM), they apply a custom barrier function which results in real-time

feedback to the user. Jin et al. [2014] improved LIM subsequently by

online remeshing. LIM guarantees that no inverse elements will pro-

duce as long as the initial input configuration is inversion-free. Poranne

& Lipman [2014] present an interactive inversion-free deformation ap-

proach with provable guarantees, however, their method is only limited

to 2D deformations. Based on projections onto approximate tangent

planes, Kovalsky et al. [2015] provide an efficient algorithm to calculate

bounded distortion mappings.

Since locally injective mapping guarantees that there is no inversion

element as long as the initial input configuration is inversion-free, fol-
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lowing the work of [Schüller et al. 2013; Liu et al. 2016], we will add a

barrier function into the total energy to penalize the inverted elements

so that no fold-over occurrence can be guaranteed, which is a critical

property for registration robustness.

6.2.2 Dynamic registration

In this research, the registration instances are static and separated. Only

one template and one target (no matter in the form of surface or point

cloud) are used in one registration. However, if the target is continuously

captured by a scanning system, the information in each frame is limited

and the neighboring frames should share some common information of

the target.

There are many existing methods which reconstruct a deforming model

dynamically. Liao et al. [2009] develop a novel approach to reconstruct

complete 3D surface deformation over time by a single camera. The

deformable surface patches are stitched together by mesh deformation

in a global manner, and merged into a complete model by a volumet-

ric method. Dou et al. [2015]present a system which merges a sequence

of images from a single range sensor into a unified 3D model, without

requiring an initial template. Xu et al. [2015]introduce a template-less

4D reconstruction method that incrementally fuses highly-incomplete 3D

observations of a deforming object, and generates a complete, temporally

coherent shape representation of the object. Yu et al. [2018] propose a

new real-time system that combines volumetric dynamic reconstruction

with data-driven template fitting to simultaneously reconstruct detailed

geometry, non-rigid motion and the inner human body shape from a

single depth camera.

In the future, based on the existing methods, a novel dynamic regis-

tration method will be proposed, which is not only able to register the

template in single frame but also fuse every frame’s registration results

into a global and unified model. Equipped with joints detection tech-

nique, it will be easy to extract the dynamic skeleton for the model.

Dynamic models with skeleton will bring out a lot of conscience for ani-
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mation industry.

6.2.3 Registration with highly detailed facial ex-

pression

In Section 5.2, the template has been successfully registered to the point

cloud target captured by the Kinect depth camera. However, restricted

to the depth map resolution, the detailed facial expression cannot be well

presented by the coarse point cloud. Therefore, it is a big challenge to

make the registration results look like the original target.

Cao et al. [2015] present the first method capable of capturing facial

performances in real-time at high fidelity, including medium scale de-

tails such as wrinkles. Richardson et al. [2017] propose an end-to-end

approach for detailed face reconstruction from a single image. Bogo et al.

[2015] accurately estimate the 3D geometry and appearance of the hu-

man body from a monocular RGB-D sequence of a user moving freely

in front of the sensor. They develop a new parametric 3D body model,

call Delta, which is based on SCAPE dataset [Anguelov et al. 2005a].

Hesse et al. [2019] present a method for learning a statistical 3D Skinned

Multi-Infant Linear body model (SMIL) from incomplete, low-quality

RGB-D sequences of freely moving infants.

In the future, instead of using the depth map to infer the facial ex-

pression, we will resort to deep learning technique to track the facial

performance just from the RGB images and then reconstruct the 3D

facial model in a form of linear combination of blendshapes. Finally,

the high detailed facial model will be fused back into the whole body

registration result. This will give people a more realistic experience.
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