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Achievable Rate and Capacity Analysis for Ambient
Backscatter Communications

Jing Qian, Yongxu Zhu, Chen He, Feifei Gao, and Shi Jin

Abstract—In this paper, we analyze the achievable rate for
ambient backscatter communications under three different chan-
nels: the binary input and binary output (BIBO) channel, the
binary input and signal output (BISO) channel, and the binary
input and energy output (BIEO) channel. Instead of assuming
Gaussian input distribution, the proposed study matches the
practical ambient backscatter scenarios, where the input of the
tag can only be binary. We derive the closed-form capacity
expression as well as the capacity-achieving input distribution
for the BIBO channel. To show the influence of the signal-to-
noise ratio (SNR) on the capacity, a closed-form tight ceiling
is also derived when SNR turns relatively large. For BISO and
BIEO channel, we obtain the closed-form mutual information,
while the semi-closed-form capacity value can be obtained via one
dimensional searching. Simulations are provided to corroborate
the theoretical studies. Interestingly, simulations show that: (i) the
detection threshold maximizing the capacity of BIBO channel
is the same as the one from the maximum likelihood signal
detection; (ii) the maximal of the mutual information of all
channels is achieved almost by a uniform input distribution; (iii)
the mutual information of the BIEO channel is larger than that of
the BIBO channel, but is smaller than that of the BISO channel.

Index Terms—Ambient backscatter, capacity, mutual informa-
tion, capacity-achieving input distribution.

I. INTRODUCTION

THE Internet of Things (IoT) that could connect millions
or even billions of physical objects (including typical

ones such as computers and smartphones) to the Internet has
drawn increasing attentions from both academia and industry
recently [1]. However, as more and more things are being
connected to IoT, how to power the huge number of devices
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without expensively using batteries has posed a significant
challenge [2]. To enable ubiquitous communications between
low-power devices, an innovative passive communication tech-
nique, called ambient backscatter, was presented in [3], [4].
Specifically, an information device utilizes ubiquitous radio
frequency signals from ambient sources, such as TV broad-
casting, cellular and Wi-Fi transmissions, as both the energy
source and information carriers. This approach provides a
promising solution for communications between batteryless
devices and demonstrates its potentials in IoT.

Ambient backscatter communications make use of environ-
mental wireless signals to harvest energy and transmit infor-
mation, which gets rid of the battery and avoids heavy manual
maintenance. The basic principles of ambient backscatter can
be described as follows:

• The ambient source continuously offers service to its own
legacy receivers, whose signalling can also be received by
both the tag and the reader;

• The tag transmits binary symbols, bit 1 or bit 0, by
backscattering or not backscattering the received ambient
signals [5], respectively;

• The reader receives the signal from the ambient source
and the backscattered signals from the tag, and can
decode bits 1 and 0 with specific signal processing
technologies.

Following [3], many signal detection techniques for ambient
backscatter communications were designed. For example, the
differential energy detection and joint energy detection were
proposed in [6]–[8], respectively, where the transmitter em-
ploys the low rated differential on-off signaling. The authors of
[9] considered the frequency selective channel and developed
an ambient backscatter system over the orthogonal frequency
division multiplexing (OFDM) modulated carriers. An inter-
esting cooperative strategy was established in [10], where
the receiver can decode the information not only from the
transmitter but also from the ambient source. In addition, am-
bient backscatter is also applied into radio frequency powered
cognitive radio networks to improve the performance of the
secondary systems [11]. Moreover, authors of [12] designed
a Manchester code based ambient backscattering strategy in
order to remove the necessity of estimating the decision thresh-
old, and to enable immediate symbol-by-symbol detection.

Compared with the active radio protocols such as Bluetooth,
ZigBee, and Wi-Fi, the operating data rate of the ambien-
t backscatter system was relatively limited. Some methods
were designed to enhance the data rates through the use of
multi-antenna processing [4], where up to 1 Mbps can be
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achieved at the cost of receiver size and complexity. In term
of achievable date rate analysis, the existing works assume
Gaussian input and directly apply the Shannon theorem [13]
to evaluate typical information-theoretic figures of merit for
both the ambient source and backscatter systems. However,
such assumption is far from the practical binary signalling in
the ambient backscatter system.

In this paper, we consider three different types of channels
for ambient backscatter communications and analyze their
corresponding achievable rate as well as the capacity. Firstly,
we study the binary input and binary output (BIBO) channel
from an information-theoretic point of view1, where the input
of the channel is the on-off keying state at the tag. The
output of the channel is obtained from an energy detector
[15] at the reader, where the received continuous signals are
converted into discrete binary symbols. Similar to [16], [17],
we here treat the energy detector as a part of the channel
during the capacity analysis, and then compute the capacity-
achieving input distribution of the BIBO channel. To show
the influence of signal-to-noise ratio (SNR) on the capacity,
we also derive the closed-form tight capacity ceiling when
the SNR of the source goes relatively large. Secondly, we
consider the binary input and signal output (BISO) channel,
where the output of the channel is exactly the continuous
signal received at the reader. Since the energy of the received
signal is the key information-bearing statistics [18] during the
detection, we, lastly, treat the energy computator as a contin-
uous communication channel and look into the binary input
and energy output (BIEO) channel, where the output of the
channel is the energy of the continuous signals received at the
reader. We derive the closed-form expressions of the mutual
information of the BISO and BIEO channels, respectively, and
obtain the impact of the partition number for the Riemann
Integral on their mutual information. Semi-closed-form values
of the capacities can then be obtained from one dimensional
searching. Interestingly, simulations show that (i) for the BIBO
channel, the threshold maximizing the capacity is the same as
the one obtained from the maximum likelihood (ML) detector;
(ii) for all three types of channels, the maximum values of
the mutual information are almost achieved by a uniform
distribution for the input; (iii) the mutual information of BIEO
channel is larger than that of the BIBO channel, but is smaller
than that of the BISO channel.

The underlying differences between the developed rate
analysis for ambient backscatter communications and that for
conventional active system lie in the following two aspects:
1) The information signal is carried on an unknown ambi-
ent signal, which formulate a completely different analysis
approach. Moreover, the unknown ambient radio also acts as
an interference and the enhance the difficulty of the analysis;
2) Gaussian input distribution is normally used in an active
system because it could provide a better approximation for
high order constellations. However, Gaussian input distribution
would not be a suitable one for the low-power binary ambient
backscatter, and hence the developed rate analysis would be
much different and difficult than that for the active system.

1Some of our preliminary results were published in [14].
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Fig. 1. System model for ambient backscatter communications.

The rest of this paper is organized as follows. Section
II briefly reviews the system model and the corresponding
detection method. Section III derives the mutual information
of the BIBO channel, as well as the capacity and the capacity-
achieving input distribution. The mutual information of the
BISO channel and the BIEO channel are derived in Section
IV and Section V, respectively. Simulations are then provided
to corroborate the proposed studies in Section VI. Finally,
Section VII concludes the paper.

Notations: Vectors are boldfaced letters: ∥y∥ denotes the
Euclidean norm of vector y. Scalars are lowercase letters: |h|,
ℜ{h} and ℑ{h} denotes the modulus, real part and imaginary
part of complex number h, respectively. Random variables
(RVs) are uppercase letters: the statistic expectation and s-
tatistic variance of RV X are denoted as E{X} and D{X},
respectively; {Xk} denotes a sequence of RVs. N (µ, σ2) and
CN (µ, σ2) represent the Gaussian distribution and complex
Gaussian distribution with mean µ and variance σ2, respective-
ly; in particular, a complex Gaussian RV X ∼ CN (0, σ2) with
independent and identically distributed zero-mean Gaussian
real and imaginary components is circularly symmetric, i.e.,
ℜ{X},ℑ{X} ∼ N (0, σ2/2).

II. PROBLEM FORMULATION

A. System Model

Consider a typical ambient backscatter communication sys-
tem that consists of an ambient source, a batteryless tag and
a reader, as illustrated in Fig.1. Denote hst, hsr and htr as
the channel coefficients between the source and the reader,
between the source and the tag, and between the tag and the
reader, respectively.

When the ambient source serves its own legacy receivers,
tag could also receive signals as

x[n] = hsts[n], (1)

where s[n] is the unknown signal from the ambient source
and is generally assumed to be circularly symmetric complex
Gaussian distribution, i.e., s[n] ∼ CN (0, Ps).

Part of the ambient signal x[n] will be harvested to support
the circuit of the tag, while the others will be backscattered
or non-backscattered to realize the “1”, “0” transmission.
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Normally the IoT tag transmits data at a much lower rate than
the legacy signal, and we can assume tag’s symbol remains
unchanged for N (an even number without loss of generality)
consecutive s[n]’s. Denote the binary transmitter symbols of
the tag as d ∈ {0, 1}. Then the signal backscattered by the tag
is

xb[n] = αdx[n], n = 1, · · · , N, (2)

where α is a coefficient representing the scattering efficiency
and antenna gain. Since the tag circuit consists only of passive
components and takes few signal processing operations, its
thermal noise is usually negligible [19].

As the reader obtains the superposition of the signal from
the ambient source and the modulated signal backscattered
from the tag, the received signal y[n] is expressed as

y[n] = (hsr + αhsthtrd)s[n] + w[n], (3)

where w[n] is the zero-mean additive white Gaussian noise
with noise power Nw, i.e., w[n] ∼ CN (0, Nw). We then
formulate a received vector corresponding to the tag’s symbol
d as y = [y[1], · · · , y[N ]]T .

B. Maximum Likelihood Detection

Let us now describe how the reader decodes the tag’s
information d. Denote h0 = hsr and h1 = hsr + αhsthtr.
There is

y[n] =

{
h0s[n] + w[n] ∼ CN (0, σ2

0), d = 0,

h1s[n] + w[n] ∼ CN (0, σ2
1), d = 1,

(4)

with variances

σ2
0 , |h0|2Ps +Nw, σ2

1 , |h1|2Ps +Nw. (5)

Denote Hi as the hypothesis that d = i is transmitted by the
tag. For the optimal ML detection [15], the likelihood ratio is

Λ(y) =
p (y|H0)

p (y|H1)
=

σ2N
1

σ2N
0

exp

(
σ2
0 − σ2

1

σ2
0σ

2
1

z

)
, (6)

where z =
∑N

n=1 |y[n]|2 is the received signal energy. Then
the ML detection can be simplified to

Λ(y)
H0

≷
H1

1 ⇔


z
H0

≷
H1

TML, σ2
0 > σ2

1 ,

z
H0

≶
H1

TML, σ2
0 < σ2

1 ,
(7)

which is exactly the energy detection and

TML =
Nσ2

0σ
2
1

σ2
0 − σ2

1

ln
σ2
0

σ2
1

(8)

is the optimal detection threshold.

C. Information Theory Background

To match the practical ambient backscattering scenario, we
mainly focus on the binary input case [20], where the tag input
is denoted as D whose possible values are d = 0 or d = 1.
Clearly, the Shannon’s capacity formula with Gaussian input
should not be applied for (3) to derive the capacity for ambient
backscatter system.

Case 1: If the channel output is a binary discrete random
variable, denoted as D̂ whose possible values are d̂ = 0 or
d̂ = 1, then the channel is defined as the BIBO channel. The
input probability distribution of the channel is denoted as p =
[P (d = 0), P (d = 1)]. Given the input d = i, the conditional
probability of having the output d̂ = j is P (d̂ = j|d = i).
For the BIBO channel with input D and output D̂, the mutual
information can be expressed as

I(D; D̂) =
∑
i=0,1

P (d = i)I(d = i; D̂) (9)

where I(d = i; D̂) is the average mutual information between
the input di and the output D̂, and is given by2

I(d = i; D̂)

=
1∑

j=0

P (d̂=j|d= i) log
P (d̂=j|d= i)

1∑
k=0

P (d=k)P (d̂=j|d=k)

. (10)

Case 2: If the channel output is a continuous random
variable, denoted as Y whose value ranges from −∞ to +∞,
then the channel is defined as the binary input and continuous
output channel. Given the input d = i, the conditional
probability function of having output y is f(y|d = i). For the
binary discrete input D and continuous output Y , the mutual
information can be expressed as [21]

I(D;Y ) =
∑
i=0,1

P (d = i)I(d = i;Y ), (11)

where

I(d= i;Y ) =

∫ ∞

−∞
f(y|d= i) log

f(y|d= i)
1∑

k=0

P (d=k)f(y|d=k)

dy.

(12)

III. BINARY INPUT AND BINARY OUTPUT CHANNEL

From Section II.B we know that the optimal detection is
to pass the received signal to an energy detector and then
yield the binary output “0” and “1”. Considering together the
binary input, we could then imagine the whole transmission
from the binary input to binary output as a BIBO channel, as
shown in Fig. 2, where the energy detector with an uncertain
threshold Th (not necessarily TML) can be treated as a part of
the ambient backscatter channel [17].

Let us denote the input alphabet and the output alphabet as
D = {0, 1} and D̂ = {0, 1}, respectively. Define the binary
input distribution as P (d = 0) = p, P (d = 1) = 1 − p and
denote p = [p, 1 − p]. Meanwhile, define the binary output

2Throughout the paper, log x stands for log base 2 of x.
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Fig. 2. The BIBO channel: the binary input D is subject to the ambient
source signal S and the addictive noise N , and the received signal energy is
quantized with threshold Th to yield the binary output D̂.

distribution as P (d̂ = 0) = q, P (d̂ = 1) = 1 − q and denote
q = [q, 1 − q]. The transition probability matrix P of the
system is

P =

(
P0|0 P1|0
P0|1 P1|1

)
=

(
P0|0 1− P0|0
P0|1 1− P0|1

)
, (13)

where Pj|i denotes the conditional probability of getting the
output j given the input i.

Due to symmetry, we only study the case where σ2
0 > σ2

1

while that of σ2
0 < σ2

1 can be similarly obtained. In this case,
there is

P0|i = Pr(z > Th|Hi) =

∫ ∞

Th

f(z|Hi)dz, (14)

where f(z|Hi) is the probability density function (PDF) of z
under hypothesis Hi. Since z is a central chi-square random
variable with 2N degrees of freedom (DOF), f(z|Hi) can be
computed as

f(z|Hi) =
zN−1e

− z

σ2
i

Γ(N)σ2N
i

. (15)

Thus, P0|i is obtained by substituting f(z|Hi) into (14) as

P0|i =
Γ
(
N, Th

σ2
i

)
Γ(N)

. (16)

where Γ(N, x) denotes the upper incomplete Gamma function

Γ(N, x) =

∫ ∞

x

tN−1e−tdt. (17)

A. Mutual Information

It can be readily obtained from the law of total probability
that

q = pP0|0 + (1− p)P0|1. (18)

Let h(p) be the binary entropy function:

h(p) , −p log p− (1− p) log(1− p). (19)

Then the mutual information between input D and output D̂
can be written as

I(D; D̂) = H(D̂)−H(D̂|D)

= h(q)− [ph(P0|0) + (1− p)h(P0|1)]. (20)

B. Capacity-achieving Input Distribution

We see that the mutual information (20) is the function only
of p, and we then define I(D; D̂) = I(p). According to the
definition, the channel capacity is

C = max
p

I(p). (21)

Lemma 1. The necessary and sufficient condition on the input
distribution p∗ = [p∗, 1− p∗] to achieve capacity is [22]:

If there exists some scalar E > 0 such that

I(d = 0; D̂)|p=p∗ = I(d = 1; D̂)|p=p∗ = E, (22)

where I(d = i; D̂) is the mutual information for input d = i
averaged over the output, then the value of E is exactly the
channel capacity.

Theorem 1. For the BIBO channel of ambient backscatter,
the capacity-achieving input distribution is

p∗ =
q∗ − P0|1

P0|0 − P0|1
, (23)

where
q∗ =

1

1 + 2d(P0|0,P0|1)
(24)

is the corresponding output distribution and d(P0|0, P0|1) ,
h(P0|0)−h(P0|1)

P0|0−P0|1
.

Proof: The mutual information for input d = i averaged
over output can be expressed as

I(d = i; D̂) =
∑
j=0,1

Pj|i log
Pj|i∑

k=0,1

P (d = k)Pj|k

= P0|k log
P0|k

q
+ (1− P0|k) log

1− P0|k

1− q

= −h(P0|k) + P0|k log
1− q

q
− log(1− q), (25)

where h′(q) = log 1−q
q is obtained from the derivative of h(q).

From Lemma 1, we know the capacity-achieving output
distribution q∗ = [q∗, 1 − q∗] can be obtained from I(d =
0; D̂) = I(d = 1; D̂) as (24). Moreover, the capacity-
achieving input distribution p∗ can be computed from (18)
as (23).

Therefore, for the BIBO channel of ambient backscatter, the
closed-form capacity is given by

CBIBO = −h(P0|0) + P0|0h
′(q∗)− log(1− q∗). (26)

C. Optimal Threshold for Capacity

Similar to [23], the capacity of BIBO channel is a function
of the threshold Th. In this subsection, we will derive the
optimal Th that maximizes (26).

We can obtain from (26) that

CBIBO(Th) ,− h(P0|0) + (P0|0 − 1)d(P0|0, P0|1)

+ log
(
1 + 2d(P0|0,P0|1)

)
. (27)
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Then the optimal threshold can be obtained from the following
optimization problem

T ∗
h = argmax CBIBO(Th). (28)

The derivative of (27) is computed as follows

∂CBIBO(Th)

∂Th
=
[
d(P0|0, P0|1)− h′(P0|0)

] ∂P0|0

∂Th
+[

P0|0 −
1

1 + 2d(P0|0,P0|1)

]
∂d(P0|0, P0|1)

∂Th
, (29)

where
∂d(P0|0, P0|1)

∂Th
=

1

P0|0−P0|1

[
h′(P0|0)

∂P0|0

∂Th
− h′(P0|1)

∂P0|1

∂Th

−d(P0|0, P0|1)

(
∂P0|0

∂Th
−

∂P0|1

∂Th

)]
. (30)

From (16) and (17), we have

∂P0|i

∂Th
=

TN−1e
−Th

σ2
i

Γ(N)σ2N
i

. (31)

The optimal threshold should be achieved when
∂CBIBO(Th)

∂Th
= 0 holds whose closed-form expression is,

unfortunately, hard to obtain. Nevertheless, since CBIBO(Th)
is a function of one single variable, we could simply apply a
one-dimensional searching in ∂CBIBO(Th)

∂Th
= 0 to obtain the

optimal threshold at certain SNR value. Interestingly, it will
be shown in the later simulation that T ∗

h is almost the same
as TML for various channel realizations.

D. Capacity Ceiling

It has been shown in [15] that the symbol detection in
ambient backscatter communications will meet an error floor
when SNR goes to infinity. Correspondingly, the capacity
is also expected to meet an upper bound when SNR goes
to infinity, referred to as the capacity ceiling. Since we do
not have a closed form T ∗

h , we here adopt the alternative
threshold TML to illustrate the effect of the capacity ceiling.
Nevertheless, it will be shown in the later simulations that
TML almost provide the same capacity value as T ∗

h .
For ambient backscatter communications, N is generally

large and thus the following approximation holds [24]

Γ (N,x)

Γ(N)
≈ Q

(
x√
N

−
√
N

)
. (32)

With TML and (32), P0|i can be approximated by

P0|i ≈ Q

(√
N

[
|hī|2 + 1/γ

|h0|2 − |h1|2
ln

(
|h0|2 + 1/γ

|h1|2 + 1/γ

)
− 1

])
, Q

(√
N

[
gi(γ)

|h0|2 − |h1|2
− 1

])
, (33)

where ī = 1 ⊕ i, γ = Ps/Nw denotes SNR of the ambient
source, and gi(γ) is defined as the corresponding item.

From the fact that

Q(x) =

∫ +∞

x

1√
2π

exp

(
−1

2
t2
)
dt, (34)

the derivative of P0|i with respective to γ is computed as

∂P0|i

∂γ
=

−
√
Nexp

(
−

N
(

gi(γ)

|h0|2−|h1|2
−1

)2

2

)
√
2π(|h0|2 − |h1|2)

∂gi(γ)

∂γ
. (35)

For σ2
0 > σ2

1 , i.e., |h0|2 > |h1|2, there is

∂gi(γ)

∂γ
=

1

γ2

[
|h0|2−|h1|2

|hi|2 + 1
γ

−ln

(
1 +

|h0|2−|h1|2

|h1|2 + 1
γ

)]
. (36)

Since

∂g0(γ)

∂γ
=

1

γ2

[
1−

|h1|2 + 1
γ

|h0|2 + 1
γ

+ ln

(
|h1|2 + 1

γ

|h0|2 + 1
γ

)]
, (37)

and x−1 > lnx for x > 0, we obtain ∂g0(γ)
∂γ < 0; Meanwhile,

since x > ln(1 + x) for x > 0, we have ∂g1(γ)
∂γ > 0. Thus,

P0|0 and P0|1 are increasing and decreasing functions of γ,
respectively. Moreover, it can be checked that when γ turns
to infinity, P0|0 and P0|1 will respectively meet a ceiling and
a floor at

P ce
0|0 , Q

(√
N

[
|h1|2

|h0|2 − |h1|2
ln

(
|h0|2

|h1|2

)
− 1

])
, (38)

P fl
0|1 , Q

(√
N

[
|h0|2

|h0|2 − |h1|2
ln

(
|h0|2

|h1|2

)
− 1

])
. (39)

Substituting (38) and (39) into (26), we know the channel
capacity will reach a ceiling at

Cce
BIBO , −h(P ce

0|0) + P ce
0|0h

′(q̄)− log(1− q̄), (40)

when γ becomes large, where

q̄ =
1

1 + 2

h(Pce
0|0)−h(P fl

0|1)
Pce
0|0−P fl

0|1

. (41)

E. Binary Symmetric Channel

It is also of interest to see when would the BIBO channel
become a binary symmetric channel (BSC), i.e., the errors are
symmetric P0|1 = P1|0, by setting a proper detection threshold
Th. Let us first write the energy detection rule of BSC as

z
H0

≷
H1

TBSC, σ2
0 > σ2

1 ,

z
H0

≶
H1

TBSC, σ2
0 < σ2

1 .
(42)

For a relatively large N , z can be well approximated by
Gaussian distribution as

f(z|Hi) =
1√

2πNσ4
i

exp

[
−
(
z −Nσ2

i

)2
2Nσ4

i

]
. (43)

For case σ2
0 > σ2

1 , P0|1 and P1|0 can be expressed as

P0|1 =

∫ ∞

TBSC

f(z|H1)dz = Q

(
TBSC −Nσ2

1√
Nσ2

1

)
,

P1|0 =

∫ TBSC

−∞
f(z|H0)dz = 1−Q

(
TBSC −Nσ2

0√
Nσ2

0

)
. (44)
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Fig. 3. Illustration of BISO channel

It can be easily computed from P0|1 = P1|0 that

TBSC =
2Nσ2

0σ
2
1

σ2
0 + σ2

1

(45)

is the threshold to get the BSC. Similarly, for case σ2
0 < σ2

1 ,
the threshold to get the BSC is also calculated as (45). Hence,
the BSC has the capacity

CBSC = 1− h(P0|1), (46)

which is a specific expression of the general one (26) when
P0|1 = P1|0.

IV. BINARY INPUT AND SIGNAL OUTPUT CHANNEL

From the information theoretical viewpoint, signal process-
ing such as detecting with a threshold at the receiver would
artificially cause information loss. Hence, another interest of
research is to find out how much the information can be
transmit from the tag to the receiver without any artificial loss.
Hence, in this section we consider continuous signal received
at the reader as the channel output, i.e., BISO channel, as
depicted in Fig. 3.

The BISO channel is consisted of the discrete input D =
{d = 0, d = 1}, the continuous output Y and a set of PDFs
f(y|d = i) describing the relationship between D and Y .

Based on the assumption that s[n] ∼ CN (0, Ps), the signal
received at the reader, Y , follows the circularly symmetric
complex Gaussian distribution for given input d = i. Denote
Y ∼ CN (0, σ2

i ). Let YR = ℜ{Y } and YI = ℑ{Y }. It can be
readily found that YR and YI are independent from each other,
and they both follow the Gaussian distribution, i.e., YR, YI ∼
N (0,

σ2
i

2 ). Thus we have

f(yR|d = i) =
1√
πσ2

i

e
− y2

R
σ2
i , (47)

and

I(D;Y ) = I(D;YR) + I(D;YI) = 2I(D;YR). (48)

According to (11), the mutual information between D and

YR can be computed as

I(D;YR) , I0 + I1 =
1∑

i=0

P (d= i)

∫ ∞

−∞
f(yR|d= i) log

f(yR|d= i)
1∑

k=0

P (d=k)f(yR|d=k)

dyR,

(49)

where I0 and I1 correspond to the parts of i = 0 and i = 1,
respectively.

Substituting (47) into I0, we obtain that

I0=−p log p− 2p√
πσ2

0

∫ ∞

0

e
− y2

R
σ2
0 log

(
1+αe−βy2

R

)
dyR, (50)

where α = 1−p
p

√
σ2
0

σ2
1

and β =
σ2
0−σ2

1

σ2
0σ

2
1

.
The following lemma is provided below before we further

compute I0:

Lemma 2. For any a, b, c > 0, there is∫ ∞

0

e−ay2

log
(
1 + ce−by2

)
dy =

K− a
b

2
√
b

K∑
k=1

(
k− 1

2

)a
b −1(

ln
K

k− 1
2

)− 1
2

log

(
1+

c(k− 1
2 )

K

)
. (51)

Proof: Let r = y2. Then we have dy = 1
2
√
r
dr and∫ ∞

0

e−ay2

log
(
1 + ce−by2

)
dy =

∫ ∞

0

e−ar

2
√
r
log
(
1 + ce−br

)
dr.

(52)

Let t = e−br, i.e., r = − ln t
b , e−ar = t

a
b and dr = − 1

btdt.
Then we have∫ ∞

0

e−ar

2
√
r
log
(
1 + ce−br

)
dr =

1

2
√
b

∫ 1

0

t
a
b −1

(
ln

1

t

)− 1
2

log (1 + ct) dt, 1

2
√
b

∫ 1

0

f(t)dt. (53)

A partition of an interval [0, 1] is a finite sequence of
numbers of the form 0 = x0 < x1 < x2 < · · · < xn = 1,
while each [xi, xi+1] is called a subinterval of the partition.
The mesh or norm of a partition is defined to be the length of
the longest subinterval, that is, max(xi+1−xi), i ∈ [0, n−1].
A tagged partition P (x, t) of the interval [0, 1] is a partition
together with a finite sequence of numbers t0, · · · , tn−1, where
ti subject to the conditions that ti ∈ [xi, xi+1]. In other words,
it is a partition together with a distinguished point of every
subinterval. The mesh of a tagged partition is the same as that
of an ordinary partition.

The Riemann sum of f(t) with respect to the tagged
partition x0, · · · , xn together with t0, · · · , tn−1 is given by
[25]

n∑
i=0

f(ti)(xi+1 − xi), (54)

where each term in the sum is the product of the value of the
function at a given point and the length of an interval. It is
known that the Riemann integral is the limit of the Riemann
sums of a function as the partitions get finer.
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One popular restriction is the use of regular subdivisions of
an interval. For example, the K-th regular subdivision of [0, 1]
consists of the intervals as follows[

0,
1

K

]
,

[
1

K
,
2

K

]
, · · · ,

[
K − 1

K
, 1

]
, (55)

which divides [0, 1] into K subintervals with the k-th interval
being [k−1

K , k
K ], and picks out the midpoint of each interval as

the tagged partitions, i.e., tk =
k− 1

2

K . Since the Riemann sum
can be made as close as desired to the Riemann integral by
making the partition fine enough, K should be set relatively
large.

Based on the above discussion, the integral in (53) can be
computed as

1

2
√
b

∫ 1

0

f(t)dt =
1

2
√
b

K∑
k=1

1

K
f(tk) =

1

2K
√
b

K∑
k=1

(
k− 1

2

K

)a
b −1(

ln
K

k− 1
2

)− 1
2

log

(
1 +

c(k− 1
2 )

K

)
.

(56)

Thus Lemma 2 is proved.
According to Lemma 2, we can obtain the closed-form of

I0 as follows
I0 = −p log p− pI00, (57)

where I00 is given by (58).
Similarly, the closed-form expression of I1 can be derived

as follows

I1 =
2(1− p)√

πσ2
1

∫ ∞

0

e
− y2

R
σ2
1

log e
− y2

R
σ2
1√

σ2
1

− log
pe

− y2
R

σ2
0√

σ2
0

− log
(
1 + αe−βy2

R

)]
dyR

= (1− p) log

(
1

p

√
σ2
0

σ2
1

)
− (1− p)(σ2

0 − σ2
1)

2σ2
0 ln 2

− (1− p)I11,

(59)

where I11 is given by (60).
Combine (48), (50) and (59), we can obtain the following

theorem:

Theorem 2. For the BISO channel of ambient backscatter, the
mutual information between the input D and the output Y is

I(D;Y ) =− 2pI00 − 2(1− p)I11 − 2p log p −

2(1− p) log

(
p

√
σ2
1

σ2
0

)
− (1− p)(σ2

0 − σ2
1)

σ2
0 ln 2

. (61)

Moreover, the capacity of the BISO channel can be ex-
pressed as

CBISO = max
p

I(D;Y ). (62)

Although it is difficult to derive the closed-form expression
of the capacity of the BISO channel, we can simply apply
a one-dimensional searching for the maximum I(D;Y ) since
CBISO is a function of one single variable p. We will obtain
the capacity and the corresponding optimal input distribution
via numerical simulation.

Fig. 4. Illustration of BIEO channel

V. BINARY INPUT AND ENERGY OUTPUT CHANNEL

For theoretical interest, let us take the energy of the received
signal at the reader as the continuous channel output, where the
energy computator is treated as a part of the ambient backscat-
ter channel. Since the output “energy” is an intermediate stage
of the originally received signal and the binary bits after the
threshold detection, one would expect that the information
loss still exists compared to the BISO channel but is small
compared to BIBO channel. Such a channel is named as the
BIEO channel, as shown in Fig. 4.

Seen from Fig. 4, D, Y and Z constitute a Markov chain,
i.e., D → Y → Z [26], and they meet the relationship [27]:

p(d, z|y) = p(d|y)p(z|y). (63)

Thus, the mutual information among them satisfy the follow-
ing equation

I(D;Z|Y ) = H(DZ|Y )−H(D|Y )−H(Z|Y ) = 0. (64)

Moreover, with the equality I(D;Y Z) = I(D;Y ) +
I(D;Z|Y ) = I(D;Z) + I(D;Y |Z), we have I(D;Y ) =
I(D;Z) + I(D;Y |Z). Because of the non-negativity of the
mutual information, there is I(D;Y ) ≥ I(D;Z), which means
that I(D;Z) should be the lower bound of I(D;Y ).

In this section, we focus on the situation of N = 1 for
simplicity. It is known that the PDF of z for N = 1 can be
expressed as

f(z|d = i) =
1

σ2
i

e
− z

σ2
i . (65)

From (11), the mutual information of D and Z can be
computed as

I(D;Z) , J0 + J1 =
1∑

i=0

P (d= i)

∫ ∞

0

f(z|d= i) log
f(z|d= i)

1∑
k=0

P (d=k)f(z|d=k)

dz, (66)

where J0 and J1 correspond to the parts of i = 0 and i = 1
in I(D;Z), respectively.

Substituting (65) into part of i = 0 in I(D;Z), we have

J0 =
p

σ2
0

∫ ∞

0

e
− z

σ2
0

[
− log p− log

(
1 +

(1− p)σ2
0

pσ2
1

e−βz

)]
dz

=−p log p− p

σ0
2

∫ ∞

0

e
− z

σ2
0 log

(
1 +

(1−p)σ2
0

pσ2
1

e−βz

)
dz. (67)
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I00 =

√
σ2
1

π(σ2
0 − σ2

1)
K

−σ2
1

σ2
0−σ2

1

K∑
k=1

(
k − 1

2

) 2σ2
1−σ2

0
σ2
0−σ2

1

(
ln

K

k− 1
2

)− 1
2

log

(
1 +

(1−p)
(
k− 1

2

)
pK

√
σ2
0

σ2
1

)
. (58)

I11 =

√
σ2
0

π(σ2
0 − σ2

1)
K

−σ2
0

σ2
0−σ2

1

K∑
k=1

(
k − 1

2

) σ2
1

σ2
0−σ2

1

(
ln

K

k− 1
2

)− 1
2

log

1 + (1−p)
(
k− 1

2

)√σ2
0

σ2
1

pK

 . (60)

Before further deriving the closed-form expression of (71),
we provide the following lemma:

Lemma 3. For any a, b, c > 0, there is∫ ∞

0

e−az log
(
1 + ce−bz

)
dz

=
1

bK
a
b

K∑
k=1

(
k − 1

2

) a
b −1

log

(
1 +

c(k − 1
2 )

K

)
. (68)

Proof: Letting t = e−bz , we have e−az = t
a
b and dz =

−1
bt dt, and it can be derived that∫ ∞

0

e−az log
(
1 + ce−bz

)
dz =

1

b

∫ 1

0

t
a
b −1 log(1 + ct)dt

, 1

b

∫ 1

0

g(t)dt. (69)

Similarly, we employ the K-th regular subdivision of [0, 1]
which divides [0, 1] into K subintervals with the k-th interval
being [k−1

K , k
K ], and pick out the midpoint of each interval as

the tagged partitions, i.e., tk =
k− 1

2

K .
Thus the Riemann Integral of (69) can be computed as

1

b

∫ 1

0

g(t)dt =
1

b

K∑
k=1

1

K
g(tk)

=
1

b

K∑
k=1

1

K

(
k − 1

2

K

) a
b −1

log

(
1 +

c(k − 1
2 )

K

)
. (70)

Lemma 3 is thus proved.
Based on Lemma 3, the closed-form expression of (71) can

be expressed as

J0 = −p log p− pJ00, (71)

where J00 is given by (72).
Similarly, the part of i = 1 in I(D;Z) can be derived as

follows

J1 = (1− p)

∫ ∞

0

e
− z

σ2
1

σ1
2

[
log

e
− z

σ2
1

σ2
1

− log
pe

− z

σ2
0

σ2
0

− log

(
1 +

(1− p)σ2
0

pσ2
1

e−βz

)]
dz

= (1−p) log

(
σ2
0

pσ2
1

)
− (1−p)(σ2

0 − σ2
1)

σ2
0 ln 2

− (1−p)J11. (73)

where J11 is given by (74).
Combining (71) and (73), we can obtain the following

theorem:

Theorem 3. For the BIEO channel of ambient backscatter,
the mutual information between the input D and the output Z
is

I(D;Z) =− pJ00 − (1− p)J11 − p log p

− (1− p) log

(
pσ2

1

σ2
0

)
− (1− p)(σ2

0 − σ2
1)

σ2
0 ln 2

. (75)

Furthermore, the capacity of the BIEO channel can be
expressed as

CBIEO = max
p

I(D;Z). (76)

Similarly, the closed-form expression of the capacity of the
BIEO channel is hard to derive. However, since CBIEO is a
function of one single variable p, we can simply employ a one-
dimensional search for the maximum I(D;Z). We will display
the capacity and the corresponding optimal input distribution
via numerical simulation.

VI. NUMERICAL RESULTS

In this section, we resort to numerical simulation to evaluate
the proposed studies. Compared with the distance between
the source and the tag/reader, the distance between the tag
and the reader is normally much shorter. We think that there
might be a dominant line of sight between the tag and the
reader, and Rician fading [28] may be more applicable for the
channel between. Therefore, we generate the channels hsr, hst

to follow CN (0, 1) and make htr follow the normalized Rician
distribution with the shape parameter K = 10 and the scale
parameter Ω = 1.

In the first example, we present the one-dimensional search-
ing of ∂CBIBO(Th)

∂Th
= 0 to numerically locate the optimal

threshold T ∗
h that maximizes CBIBO(Th), and compare it with

the ML detection threshold TML in Fig. 5. The BSC threshold
TBSC is also displayed for comparison. To facilitate demon-
stration, we take some different specific channel realizations
while fix N = 50. As expected, it is seen that the optimal
threshold T ∗

h is an increasing function of SNR, since the gaps
between σ2

0 and σ2
1 increases with SNR. Moreover, T ∗

h is
almost the same as TML, which allows us to use the closed-
form TML for many other analytical or numerical studies. In
addition, it is found that although the detection with TBSC, i.e.,
equal detection error probability, cannot realize the optimal
capacity, TBSC is very close to T ∗

h .
Fig. 6 shows the capacity of the BIBO channel (26) versus

SNR for one specific realization of channel hsr = 0.26 −
1.40i, hst = −0.22 + 0.51i, and htr = 0.89 + 0.19i, and the
capacity ceiling (40) is also displayed for comparison. We set
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J00 =
σ2
1K

−σ2
1

σ2
0−σ2

1

σ2
0 − σ2

1

K∑
k=1

(
k − 1

2

) 2σ2
1−σ2

0
σ2
0−σ2

1
log

(
1 +

(1− p)σ2
0

(
k − 1

2

)
pσ2

1K

)
. (72)

J11 =
σ2
0K

−σ2
0

σ2
0−σ2

1

σ2
0 − σ2

1

K∑
k=1

(
k − 1

2

) σ2
1

σ2
0−σ2

1
log

(
1 +

(1− p)σ2
0

(
k − 1

2

)
pσ2

1K

)
. (74)
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Fig. 5. Detection thresholds versus SNR for the BIBO channel of ambient
backscatter under specific channel realization.
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Fig. 6. Capacity of the BIBO channel versus SNR under a specific channel
realization, where hsr = 0.26 − 1.40i, hst = −0.22 + 0.51i, and htr =
0.89 + 0.19i, and the detection threshold is set as TML.

the detection threshold as TML and take N = 10, 50, and
100, respectively. It can be found that larger SNR leads to a
higher capacity. However, when SNR becomes relatively large
(say above 15 dB), the capacity will arrive at a ceiling which
is consistent with the derived one (40). Interestingly, though
our analysis is based on large N , it is seen that the capacity
ceiling is also very accurate well when N is small.
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Fig. 7. Mutual information between the binary input D and the binary output
D̂ versus input distribution p for various channel realizations.

We next show the mutual information between the binary
input D and binary output D̂ versus the input distribution p for
various specific channel realizations in Fig. 7, where SNR =
10 dB, N = 50, and the detection threshold is set as TML. The
numerical maximum value of each mutual information curve is
marked by a triangle, and the derived capacity-achieving input-
distribution p∗ (23) of each curve is marked by a dotted line.
We see that the derived capacity-achieving input distributions
matches the numerical results very well. It is also interesting
to find that, for any channel value, the channel capacity is
achieved almost by a uniform distribution on the input, i.e.,
p = 0.5. This is not unexpected since the optimal ML detection
normally sets the optimal threshold in the middle of σ2

0 and
σ2
1 , i.e., the binary symmetrical channel, and hence, the inputs

distribution should also be symmetric.
As we have shown in [7], [15], the relative channel differ-

ence (RCD) given by

RCD =
||h0|2 − |h1|2|
|h0|2 + |h1|2

=
||hsr|2 − |hsr + αhsthtr|2|
|hsr|2 + |hsr + αhsthtr|2

(77)

makes a big difference in the detection performance. Thus, for
random channel realization, we add a constraint that RCD ≥
0.1 to avoid some poor channel conditions.

The mutual information between the binary input D and the
signal output Y versus the input distribution p under random
channel realization with RCD ≥ 0.1 is depicted in Fig. 8,
where SNR = 10 dB and N = 1. Meanwhile, the partition
number of the Riemann Integral, K, is set as 1000, 2000,
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Fig. 8. Mutual information between the binary input D and the signal
output Y versus input distribution under random channel realization with
RCD ≥ 0.1.
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Fig. 9. Mutual information between the binary input D and the energy
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10000 and 20000 for comparison. The numerical maximum
value of each mutual information curve is marked by a spot.
It can be found that when the partition number K is small,
the derived mutual information (61) tends to distort at small
input distribution. The larger the K is, the input distribution
corresponding to the maximum mutual information will get
closer to the uniform input distribution. However, the tendency
will quickly descend as K increases.

We also demonstrate the mutual information between the
binary input D and the energy output Z versus the input
distribution p under random channel realization with RCD
≥ 0.1 in Fig. 9, where N = 1. Specifically, SNR is set
to be 0 dB, 5 dB and 10 dB, and the partition number
of the Riemann Integral K is set as 10, 20 and 1000 for
comparison. The numerical maximum value of each mutual
information curve is marked by a spot. It is shown that the
larger the K is, the input distribution corresponding to the
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Fig. 10. Mutual information versus SNR for the three types of channel with
RCD ≥ 0.2.

maximum mutual information will get closer to the uniform
input distribution. However, when SNR is relatively large, the
increase of K has little difference on the value of mutual
information. Besides, compared with the BISO channel, the
derived mutual information of the BIEO channel when K is
small.

Lastly, we compare the mutual information between the
binary input D̂ and the binary output D̂, the signal output
Y , and the energy output Z, respectively, versus the SNR
under random channel realization with RCD ≥ 0.2 in Fig. 10,
where N = 1, K = 10000, and the binary input distribution
is uniform. It is seen that I(D;Y ) ≥ I(D;Z) ≥ I(D; D̂),
which can be verified since D,Y, Z, D̂ form a Markov chain
Y → Z → D̂.3 In addition, the larger the SNR is, the larger
the mutual information will be. The mutual information of the
three kinds of channels will approach a ceiling level when the
SNR grows to a certain value, say 20 dB.

VII. CONCLUSION

In this paper, we investigate three kinds of channels,
i.e., the BIBO, BISO and BIEO channels, for the ambient
backscatter system from information theoretic viewpoint. For
the BIBO channel, we derived the closed-form expressions of
the mutual information, the capacity, the capacity-achieving
input distribution, and a tight capacity ceiling when SNR
turns relatively large. For the BISO and BIEO channels, we
computed the closed-form mutual information between their
inputs and outputs, respectively, while their semi-closed-form
capacity values can be obtained from one dimensional search-
ing. Simulation results show that the threshold maximizing the
BIBO capacity is almost the same as that of the ML detector.
Moreover, the mutual information of the BIEO channel is the
lower bound of that of the BIBO channel, but is the upper
bound of that the BISO channel. In addition, the capacity of
all three different channels are achieved almost by the uniform
input distribution.

3Intuitively, signal processing can cause information loss.
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