

ENHANCING ENGINE OIL PERFORMANCE USING NANOPARTICLES **AND BIO-LUBRICANTS AS ADDITIVES**

Sunil Jayantha^a, Dr James Bowen^b and Dr Suela Kellici^a

^a London Centre for Energy Engineering, School of Engineering, London South Bank University, London, SE1 OAA, UK. ^b Faculty of Science, Technology, Engineering, and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.

THE PROBLEM

London

Environmental pollution and depletion of fossil fuel reserves by internal combustion (IC) engines¹⁻³.

PROPOSED SOLUTION

Optimize lubrication to reduce friction, wear. Improve fuel consumption with reduced exhaust emissions.

METHODOLOGY

Formulation of a novel lubricant using nanoparticles and bio-lubricants as additives. 3 segments of experiments:

- Nanoparticle synthesis and characterization •
- Blending lubricants
- Performance tests ••••
- 3 groups of sample blends:
 - Mineral oil with nanoparticles
 - Mineral oil with coconut oil
 - Coconut oil with nanoparticles, all in various concentrations.

Figure 3: TEM and SAED (inset) images for a) n-Figure 4: SEM images for wear scars of test specimens after second phase LRT tests, subscripts 1 and 2 for cylinder liner and Al_2O_3 , b) n-TiO_2, c) graphene and d) n-TiO_2/r-GO piston ring segments respectively; a) blank (without test), b) sample 1 (reference oil), c) sample 9, d) sample 16 and e) sample 24

SUMMARY

ACKNOWLEDGMENT

- The research findings revealed that, the blending of coconut oil and graphene (sample 24) showed the highest performance in reducing friction and wear under simulated IC engine condition.
- Agglomeration of nanoparticles within base stocks, poor cold flow (high Pour Point) and poor oxidative stability (Total Base Number, TBN) of coconut oil are substandard; thus an optimization of these characteristics is currently underway.

The authors acknowledge the technical support and the experimental facilities at both LSBU and OU. Further, the support is extended by the collaboration of DUCOM Instruments and BMS, College of Engineering, both in Bangalore (India) for LRT tests.

REFERENCES

- 1. Ali M. K. A., Xianjun, H., (2015). Improving the tribological behavior of internal combustion engines via the addition of nanoparticles to engine oils. Nanotechnology Reviews. vol. 4 (4), pp 347–358.
- 2. Jia B., et al., (2018), A study and comparison of frictional losses in free-piston and crankshaft engines. Journal of Applied Thermal Engineering, vol. 140, pp 217-224.
- 3. Syahir, A. Z., et al, (2017). A review on bio-based lubricants and their application. Journal of Cleaner Production, vol. 168, pp 997-1016.