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ABSTRACT: Characterizing post-translational modifications (PTM) of proteins is of key relevance for the understanding of many 
biological processes, as these covalent modifications strongly influence or even determine protein function. Among the different 
analytical techniques available, mass spectrometry is attracting growing attention because recent instrumental and computational 
improvements have led to a massive rise of the number of PTM sites that can be identified and quantified. However, multiple PTM 
occurring at adjacent amino-acid residues can lead to complex and dense chemical patterns that are a challenge to characterize. By 
means of X-ray synchrotron radiation coupled to mass spectrometry, and through the test-case of the glycopeptide antibiotic 
vancomycin, we show that such a pattern has a unique and robust signature in terms of photon energy and molecular environment. 
This highlights the potential of this technique in proteomics and its value as a tool to understand the biological roles of PTM.

INTRODUCTION
Post-translational modifications (PTM) of proteins are 

essential in biology, since they tailor protein activity by 
cleavage and/or creation of covalent bonds. The removed 
and/or added chemical groups can be quite diverse: the most 
common PTM are phosphorylation, acetylation and 
glycosylation. They involve the attachment of a phosphoryl, 
an acetyl or a carbohydrate group, respectively, to an amino-
acid side chain. Other important PTM lead to removal of a 
peptide from the protein N- or C-terminal side, for instance in 
collagen. Hydroxylation of prolines and lysines is another 
PTM, which for instance stabilizes the collagen triple-helix 
structure responsible for the specific mechanical properties of 
connective tissues such as skin, cartilage, nails and bones. 
PTM can also result from oxidative stress, aromatic and 
sulfur-containing amino-acids being especially prone to cross-
linking or oxidation.1 For instance, these processes are crucial 
for the synthesis of glycopeptide antibiotics such as 
vancomycin. The latter is a last-resort drug against Gram-
positive bacteria, blocking the renewal of their cell-wall by 
acting as a ligand for a precursor of the main cell-wall 
component. Vancomycin is naturally formed by bacteria but 
has also been synthesized.2 Once the seven-residue peptidic 
chain has been created, several PTM have to occur in the five 
tyrosine side-chains. They involve the addition of OH groups, 
cross-linking, the addition of chlorine atoms to two of these 
side-chains, and glycosylation of the central one (see Fig. 1). 

The numerous and dense cross-linkages in the resultant 
peptide create a rigid binding pocket allowing for 
stereospecific recognition of the receptor via noncovalent 
binding. Identifying such a complex modification is extremely 
challenging, even for state-of-the-art methods such as capillary 
electrophoresis or mass spectrometry (MS) techniques.3 The 
latter have proven to be very powerful for deciphering the site 
and identity of PTM in proteins such as histones, which 
undergo a particularly large number of PTM.4 Generally, two 
approaches can be followed: top-down or bottom-up. In the 
first, gas-phase intact proteins are cleaved into fragments 
whose mass-over-charge (m/z) ratio allows identifying PTM. 
In the second, proteins undergo enzymatic digestion that 
produces peptides, which are identified thanks to MS and 
fragmentation techniques. Protein and peptide fragmentation is 
often performed by collision-induced dissociation (CID) using 
a rare gas or N2, and when coupled to tandem MS, CID has 
allowed identifying disulfide bridges in conotoxins.5 However, 
electron-capture or transfer dissociation are better suited for 
assigning labile PTM such as O-linked glycosylation or 
phosphorylation of serines or threonines.3 A combination of 
electron-transfer dissociation and CID has been applied for 
studying cyclotides containing numerous cysteine knots.6 
VUV photoionization has recently been proposed for the 
identification of multiple PTM in histones.7,8 In 2019, 
photodissociation using a UV laser revealed mass spectral 
signatures of dityrosine cross-linking in peptide dimers.9
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Figure 1. Chemical structure of vancomycin (C66H75Cl2N9O24, 
average mass 1449.3 amu). The standard nomenclature is used for 
the peptide backbone as well as for oligosaccharide 
fragmentation, and hence for the main fragments observed after 
photoabsorption. Arrows indicate on which side of the cleaved 
bond the charge is located. The groups #1 and 2 containing phenyl 
rings are encircled.

In this article, we report the proof-of-principle that soft X-
ray photoionization, as a biomolecular fragmentation 
technique, gives robust mass spectral signatures of particularly 
complex and dense PTM. Using vancomycin as a model 
heavily-modified peptide, we prove that all PTM, not only 
labile ones, can be identified with mass spectrometry. Our 
work extends the potential of mass spectrometry techniques in 
the growing field of PTM identification and quantitation in 
proteins.

EXPERIMENTAL
Vancomycin hydrochloride and Ac2

LKDADA have been 
purchased from Sigma-Aldrich as powders of over 80 % 
purity, and used without further purification. Solutions have 
been prepared in 50:50 (volume ratio) water/methanol at 50 
μM concentration with 1 % of formic acid to protonate the 
molecules.

A home built tandem mass spectrometer, described in detail 
elsewhere,10 has been used to record mass spectra of the ionic 
photo-products from the interaction between molecular 
systems and synchrotron radiation. Briefly, protonated 
molecular systems are produced with an electrospray ion 
source and transported into the vacuum chamber through a 
heated capillary. The molecular ion beam is then focused into 
an ion funnel and guided into an octopole before being mass-
over-charge selected with a quadrupole mass-filter (QMF) and 
subsequently accumulated in a 3D radiofrequency ion Paul 
trap. Trapping is facilitated by collisions with a helium buffer 
gas injected into the ion trap during the filling process. 
Molecular ions have been irradiated by X-ray photons at the 

U49-2 PGM-1 beamline of the BESSY II synchrotron 
(Helmholtz-Zentrum Berlin). Photon beam exposure of the 
trap content, typically during 300 to 1000 ms, is controlled 
with a mechanical shutter in order to guarantee that more than 
90 % of the product cations result from the absorption of a 
single photon. To do so, the irradiation time is tuned to induce 
a depletion of the precursor ion below 10 %. Since the 
absorption of multiple photons is a sequential process at these 
fluxes (1012-13s-1), the absorption events are independent, thus a 
probability  for absorbing one photon gives the probability  𝑝 𝑝2

for two photons. Neglecting the absorption of more than two 
photons, we obtain  and thus . Precursor 𝑝2 +𝑝 < 0.1 𝑝 < 0.09
ions and cationic fragments are then extracted from the trap, 
analyzed by a time-of-flight reflectron mass spectrometer, and 
detected by microchannel plates. Mass spectra of the non-
irradiated trap content (beam-off) and irradiated residual gas 
are recorded as well, the latter allowing to spot background 
peaks due to photoionization of residual gas molecules. Then, 
the beam-on mass spectrum is subtracted from the beam-off 
one, and the resulting spectrum shows the precursor ion 
depletion with a negative intensity. Assuming that absorption 
of one photon leads to ionization and/or fragmentation of the 
precursor ion, this depletion (area under the peak) is 
proportional to the total photo-absorption yield. All relative 
yields have been obtained by calculating the area under each 
peak, normalizing by the precursor ion depletion, by the total 
yield of all cationic species formed by photoabsorption, and by 
detection efficiency.11

RESULTS AND DISCUSSION
The soft X-ray photoabsorption spectra of doubly-

protonated vancomycin [V+2H]2+ are shown in Fig. 2. In the 
spectrum at 100 eV, we mainly observe the same species as 
we have previously observed after photoabsorption in the 
VUV range.11 The peak at m/z 483.8 corresponds to non-
dissociative ionization (NDI) of the precursor ion, a minor 
process compared to fragmentation following ionization. The 
yields of the complementary  and  fragments are 𝑌2 +

0 𝐵 +
0

significantly higher (see Fig. 2). Both are due to cleavage of 
the glycosidic bond (linking the carbohydrate group to the rest 
of the molecule) after ionization. X-ray photoionization thus 
allows identifying the mass of the carbohydrate involved in 
glycosylation. The most intense peaks are assigned to the  𝑎 +

1
and  fragments of the pseudo-peptidic backbone (see Fig. 𝑐 +

1
1). Note that the peak corresponding to the latter (at m/z 144) 
can also be attributed to , formed by cleavage of the 𝐵 +

1
glycosidic bond within the carbohydrate moiety. The relative 
yield of NDI and large fragments is smaller than in the case of 
photons in the 14-30 eV range,11 which can be explained by a 
rise of the vibrational energy transferred by the photon to the 
molecular system with photon energy, as it has previously 
been shown in the soft X-ray range.12 With increasing photon 
energy, a more striking difference develops in the mass 
spectra. Whereas VUV photoabsorption solely leads to 
fragmentation into peaks at m/z 100, 118, 127, 144, 149, a 
multitude of additional peaks with m/z < 300 are induced by 
soft X-ray photoabsorption (see Fig. 2). In the following, we 
will show that these peaks can be assigned to internal 
fragments whose formation requires at least two bond 
cleavages (see below). The total relative yield of these internal 
fragments increases with photon energy up to 300 eV, and is 
compensated by the fall of non-dissociative ionization and all 
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other fragments, with the exception of  (see Fig. 2). From 𝑎 +
1

100 to 300 eV, the relative cross section for inner-valence 
orbital photoabsorption increases, and thus so does the average 
electronic excitation. After internal conversion to the 
electronic ground state and vibrational energy redistribution, 
this leads to more fragmentation as photon energy rises. This 
is consistent with the mechanism we proposed in our previous 
studies on protonated biologically-relevant molecules.12–14

Figure 2. Top: mass spectra of [V+2H]2+ after single 
photoabsorption between 100 and 531.5 eV. The position of the 
precursor ion (m/z 725.6) is represented by a purple line, the peak 
being negative (see the experimental section for details). The 
usual nomenclature is used for the peptide backbone as well as for 
oligosaccharide fragmentation and hence for the main fragments 
observed after photoabsorption (cf. Fig. 1). Internal fragments 
formed by at least two bond cleavages are indicated. Bottom: 
relative yield of the species formed after single photoabsorption as 
a function of photon energy, normalized by the detector efficiency 
and the total yield of photoinduced cations. NDI stands for non-
dissociative ionization.

 A deeper analysis can be achieved by zooming in the m/z 
158 - 278 region of the [V+2H]2+ spectra, as can be seen in 
Fig. 3. Interestingly, none of these fragment ions have been 
observed after collision-induced dissociation (CID) at low 
energy (on the order of 10 eV),15 where ionization does not 
occur. Similar groups of peaks do appear in the mass spectrum 

of singly-protonated vancomycin reported after CID at 4 keV 
kinetic energy on argon, but are not mentioned and their exact 
mass is not possible to obtain from the figure.16 Since these 
high-energy collisions induce ionization, like X-rays, this 
seems to be consistent with these peaks coming from 
fragments being formed after ionization. In Fig. 3, one can 
notice that for soft X-ray photoabsorption, groups of peaks of 
similar intensity appear: they are separated by one mass unit, 
indicating singly-charged fragments. All precursor ions 
containing isotopes were present in the trap after m/z selection 
by the QMF (see the experimental section), but even 
considering the maximum number of carbon and chlorine 
atoms possible (22 carbons or 16 carbons and 2 chlorines) for 
the fragment corresponding to the peak of highest mass (270 
amu), the natural abundance of 13C and 37Cl cannot explain 
these patterns. Thus, they are probably due to extensive H 
scrambling, which has also been found to occur in 
photoionized 3-aminophenol,17 an aromatic molecule 
containing one phenyl ring with one OH group. Indeed, these 
groups of peaks are typical of mass spectra of neutral H-rich 
molecules containing aromatic rings, e.g. ionized by electron 
impact,18 ion impact at keV or MeV energy,19–22 or by 
absorption of X-ray photons.23,24 A good example is ionization 
of lorazepam, a molecule containing two aromatic rings 
substituted by one chlorine atom as in vancomycin: groups of 
peaks separated by 1 mass unit are also observed in the same 
mass range.18 Ionization of small carbohydrates (such as that 
of vancomycin) also yields such groups of peaks, but in a 
much lower mass range, typically below 100 amu.25–29 
Therefore, we have calculated the mass of potential fragments 
originating from the groups containing aromatic rings in 
vancomycin. The results are shown in Scheme 1, where 
structures of fragments accounting for all groups of peaks seen 
in the mass spectra are proposed. In Fig. 3, we include vertical 
bars at the m/z of these singly-charged fragments with the 
maximum number of H atoms (leaving the bond orders 
unchanged), and without any H atom left. These bars mark off 
each group of peaks. To confirm that the natural abundance of 
13C and 37Cl isotopes does not account for the observed peaks, 
we also show the simulated isotopic pattern of each fragment 
in Fig. S1 (see the Supporting Information). It demonstrates 
that extensive H atom scrambling occurs for these fragments. 
Interestingly, their formation can be explained by only three 
pathways, two of them involving the central group containing 
the three phenyl rings (noted 1 in Fig. 1) and accounting for 
most of the groups of peaks. The remaining groups are 
assigned to fragments formed by a third pathway, starting with 
separation of the biphenol group bound to the C-terminus of 
the pseudo-peptidic backbone (noted 2 in Fig. 1). In addition, 
each aromatic ring can be identified separately. Thus, these 
groups of peaks assigned to internal fragments can be 
considered as a mass spectral signature of the complex PTM 
pattern of vancomycin. Internal fragments are not often 
exploited in MS of biopolymers, because of the intricate data 
analysis required. Here, the latter is made easier by the 
following features: the peaks fall at integer m/z values, are 
easily separated even with a modest resolving power, and are 
structured in distinct groups of peaks separated by 1 amu. 
Another important point is the influence of photon energy on 
this mass spectral signature: it can be deduced from Fig. 3. 
Despite the large energy range (100-531.5 eV) covering C, N 
and O K-edges, the relative intensity of these peaks varies 
only very slightly, the overall shape of the groups of peaks 
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remaining remarkably stable. This is very important if they are 
used as mass spectral signature for identifying PTM. Consider 
also that we have shown in the previous paragraph that the 
total yield of these fragments increases with photon energy 
from 100 to 300 eV because of the increase in vibrational 
energy transferred to vancomycin after ionization. Therefore, 
this behavior might be traced to a high potential energy barrier 
for creating the largest fragments shown in Scheme 1, due to 
the need to cleave several bonds, and lower barriers separating 
the subsequent smaller fragments.

Figure 3. Zoom into the region of the mass spectra of [V+2H]2+ 
(see Fig. 2) where the internal fragments appear. Each of them is 
indicated by a letter above the corresponding group of peaks. 
Vertical bars correspond to the m/z of each singly-charged 
fragment shown in Scheme 1 with the maximum number of H 
atoms (leaving the bond orders unchanged), and without any H 
atom left. The structure of these fragments is given in Scheme 1.

Scheme 1. Proposed structure corresponding to the 
internal fragments of [V+2H]2+ (see Fig. 3). The bond 

cleavages responsible for their formation are highlighted.

The next question is to know whether the mass spectral 
signature of the PTM pattern of vancomycin is sensitive to a 
non-covalently bound molecular environment. To tackle this 
question, we have studied the vancomycin dimer as well as 

complexes between vancomycin and Ac2
LKDADA (K is lysine 

and A alanine), a peptidic model of its receptor, abbreviated R 
in the following. The chemical structure of the receptor can be 
found in Fig. S2. In all cases, absorption of one X-ray photon 
in the 100-531.5 eV range leads to ionization and 
fragmentation of the precursor molecular system. For instance, 
Fig. 4 shows that at 100 eV, the [V+R+2H]2+ complex 
dissociates and subsequent intramolecular fragmentation of 
vancomycin and R occurs. Fragments of the latter have been 
identified by comparison with the mass spectra of [R2+H]+ 
(see Fig. S2). The same fragments as for VUV photons are 
observed,11 but large fragments are less abundant, as in the 
case of isolated vancomycin (cf. Fig. 2). Small fragments rise 
with photon energy from 100 to 300 eV, the total 
fragmentation yield slightly increasing for both vancomycin 
and R. Interestingly, the fragmentation yield of vancomycin is 
compensated by the falling yield of [R+H]+ and vice versa, 
which is unexpected. In our previous study, we have attributed 
the formation of [R+H]+ to a proton transfer between ionized 
vancomycin and neutral R.11 Therefore, the decrease in the 
[R+H]+ yield while vancomycin fragmentation increases might 
indicate that proton transfer becomes progressively less likely 
as photon energy increases. This might be due to more 
vibrational excitation as the X-ray photon energy rises from 
100 to 300 eV, leading to the noncovalent complex 
dissociating on a faster timescale and quenching proton 
transfer. This is plausible because MacAleese et al.30 have 
reported that proton transfer can take up to hundreds of 
microseconds in an ionized peptide radical cation. These 
results show that photon energies over 300 eV give the highest 
yield of vancomycin fragments. Among the latter, and for all 
noncovalent systems studied here ([V+R+2H]2+, [V+2R+2H]2+ 
and [V2+3H]3+), we observe the same internal fragments as for 
isolated vancomycin, their relative yield increasing with 
photon energy up to 300 eV (see Fig. 4 and S2-S4). We can 
also notice that whatever the noncovalent system, the overall 
relative yield of the internal fragments of vancomycin is lower 
than in the case of isolated vancomycin. This is consistent 
with our hypothesis of fragmentation in the ground-state due 
to vibrational energy transfer, this energy being redistributed 
into more degrees of freedom when the system gets larger. 
Furthermore, if we focus on the pattern made by the peaks 
attributed to these internal fragments, we observe a high 
similarity whatever the molecular environment (cf. Fig. 5). 
This indicates that the mass spectral signature is robust and 
can be used to identify the groups responsible for the 
fragments, and thus the corresponding post-translational 
modifications in proteins.
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Figure 4. Top: mass spectra of the [V+R+2H]2+ complex after 
absorption of one photon of energy between 100 and 531.5 eV. 
The position of the precursor ion (m/z 911.6) is represented by a 
purple line. The usual nomenclature is used for the peptide 
backbone as well as for oligosaccharide fragmentation and hence 
for the main fragments observed after photoabsorption (cf. Fig. 1). 
Internal fragments of vancomycin formed by at least two bond 
cleavages are indicated. Bottom: relative yield of the different 
relaxation channels after single photoabsorption as a function of 
photon energy, normalized by the detector efficiency and the total 
yield of photoinduced cations.

Figure 5. Zoom in the m/z 158-280 region of the mass spectra of 
vancomycin in different environments, after absorption of one 
401.5 eV photon. The peaks attributed to fragments of R are 
spotted by an asterisk. Vertical bars correspond to the m/z of each 
singly-charged fragment shown in Scheme 1 with the maximum 
number of H atoms (leaving the bond orders unchanged), and 
without any H atom left.

CONCLUSIONS
In this contribution, we have shown that X-ray 

photoabsorption of a highly modified tyrosine-rich peptide 
coupled to mass spectrometric analysis of the resulting 
fragments gives a signature that can be employed to 
characterize particularly complex and dense PTM, especially 
those resulting from oxidative stress. Indeed, this mass 
spectral signature is robust with respect not only to the X-ray 
photon energy over a large range (100-531.5 eV), but also to 
the molecular environment of the peptide. This proof-of-
principle expands the potential of mass spectrometry 
techniques in proteomics. Further work is now required to test 
the applicability of this method to other peptides, proteins and 
a wider range of PTM.

ASSOCIATED CONTENT 
Supporting Information
The Supporting Information is available free of charge on the 
ACS Publications website.

Simulated mass spectra of singly-charged internal fragments of 
vancomycin shown in Scheme 1; Photoabsorption mass spectra 
[R2+H]+, [V2+3H]3+ and [V+R2+2H]2+; Total yield of internal 
fragments of vancomycin in different environments (PDF)

AUTHOR INFORMATION
Corresponding Author
* poully@ganil.fr  

Author Contributions
All authors have given approval to the final version of the 
manuscript.

ACKNOWLEDGMENT 
We thank HZB for the allocation of synchrotron radiation 
beamtime and T. Kachel for his support during experiments. The 

Page 5 of 8

ACS Paragon Plus Environment

Journal of the American Society for Mass Spectrometry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

mailto:poully@ganil.fr


French “Conseil Régional de Normandie” is acknowledged for a 
PhD funding (#15P01339) and CNRS for a PICS grant (07390) 
supporting the collaboration between CIMAP and the Open 
University. This project has received funding from the European 
Union's Horizon 2020 research and innovation program under 
grant agreement No 730872. AR acknowledges Fundação para a 
Ciência e a Tecnologia (FCT-MCTES) for subsiding him with a 
PhD scholarship (grant number PD/BD/114449/2016) under the 
Radiation Biology and Biophysics Doctoral Training Programme 
(RaBBiT, PD/00193/2012) organized by the Applied Molecular 
Biosciences Unit - UCIBIO (UIDB/04378/2020) and CEFITEC 
Unit (UIDB/00068/2020) from Faculdade de Ciências e 
Tecnologias of Universidade Nova de Lisboa. The Sir John 
Mason Academic Trust is also acknowledged for the financial 
support provided to AR for a beamtime at HZB.

REFERENCES
(1) Hawkins, C. L.; Davies, M. J. Detection, Identification, and 

Quantification of Oxidative Protein Modifications. Journal of 
Biological Chemistry 2019, 294 (51), 19683–19708. 
https://doi.org/10.1074/jbc.REV119.006217.

(2) Nicolaou, K. C.; Mitchell, H. J.; Jain, N. F.; Winssinger, N.; 
Hughes, R.; Bando, T. Total Synthesis of Vancomycin. 
Angewandte Chemie International Edition 1999, 38 (1‐2), 
240–244. https://doi.org/10.1002/(SICI)1521-
3773(19990115)38:1/2<240::AID-ANIE240>3.0.CO;2-5.

(3) Doll, S.; Burlingame, A. L. Mass Spectrometry-Based 
Detection and Assignment of Protein Posttranslational 
Modifications. ACS Chem. Biol. 2015, 10 (1), 63–71. 
https://doi.org/10.1021/cb500904b.

(4) Huang, H.; Lin, S.; Garcia, B. A.; Zhao, Y. Quantitative 
Proteomic Analysis of Histone Modifications. Chem. Rev. 
2015, 115 (6), 2376–2418. https://doi.org/10.1021/cr500491u.

(5) Gupta, K.; Kumar, M.; Balaram, P. Disulfide Bond 
Assignments by Mass Spectrometry of Native Natural 
Peptides: Cysteine Pairing in Disulfide Bonded Conotoxins. 
Analytical Chemistry 2010, 82 (19), 8313–8319. 
https://doi.org/10.1021/ac101867e.

(6) Foreman, D. J.; Parsley, N. C.; Lawler, J. T.; Aryal, U. K.; 
Hicks, L. M.; McLuckey, S. A. Gas-Phase Sequencing of 
Cyclotides: Introduction of Selective Ring Opening at 
Dehydroalanine via Ion/Ion Reaction. Anal. Chem. 2019, 91 
(24), 15608–15616. 
https://doi.org/10.1021/acs.analchem.9b03671.

(7) Greer, S. M.; Brodbelt, J. S. Top-Down Characterization of 
Heavily Modified Histones Using 193 Nm Ultraviolet 
Photodissociation Mass Spectrometry. Journal of Proteome 
Research 2018, 17 (3), 1138–1145. 
https://doi.org/10.1021/acs.jproteome.7b00801.

(8) Greer, S. M.; Sidoli, S.; Coradin, M.; Jesperser, M. S.; 
Schwammle, V.; Jensen, O. N.; Garcia, B. A.; Brodbelt, J. S. 
Extensive Characterization of Heavily Modified Histone Tails 
by 193 Nm Ultraviolet Photodissociation Mass Spectrometry 
via a Middle-Down Strategy. Analytical Chemistry 2018, 90 
(17), 10425–10433. 
https://doi.org/10.1021/acs.analchem.8b02320.

(9) Mukherjee, S.; Fang, M.; Kok, W. M.; Kapp, E. A.; 
Thombare, V. J.; Huguet, R.; Hutton, C. A.; Reid, G. E.; 
Roberts, B. R. Establishing Signature Fragments for 
Identification and Sequencing of Dityrosine Cross-Linked 
Peptides Using Ultraviolet Photodissociation Mass 
Spectrometry. Analytical Chemistry 2019, 91 (19), 12129–
12133. https://doi.org/10.1021/acs.analchem.9b02986.

(10) Bari, S.; Gonzalez-Magaña, O.; Reitsma, G.; Werner, J.; 
Schippers, S.; Hoekstra, R.; Schlathölter, T. Photodissociation 
of Protonated Leucine-Enkephalin in the VUV Range of 8–40 
EV. The Journal of Chemical Physics 2011, 134 (2), 024314.

(11) Abdelmouleh, M.; Lalande, M.; Vizcaino, V.; Schlathölter, T.; 
Poully, J.-C. Photoinduced Processes within Noncovalent 

Complexes Involved in Molecular Recognition. Chemistry – A 
European Journal 2020, 26 (10), 2243–2250. 
https://doi.org/10.1002/chem.201904786.

(12) Schwob, L.; Lalande, M.; Rangama, J.; Egorov, D.; Hoekstra, 
R.; Pandey, R.; Eden, S.; Schlatholter, T.; Vizcaino, V.; 
Poully, J.-C. Single-Photon Absorption of Isolated Collagen 
Mimetic Peptides and Triple-Helix Models in the VUV-X 
Energy Range. Physical Chemistry Chemical Physics 2017, 19 
(28), 18321–18329. https://doi.org/10.1039/c7cp02527k.

(13) Egorov, D.; Schwob, L.; Lalande, M.; Hoekstra, R.; 
Schlathölter, T. Near Edge X-Ray Absorption Mass 
Spectrometry of Gas Phase Proteins: The Influence of Protein 
Size. Phys. Chem. Chem. Phys. 2016, 18 (37), 26213–26223. 
https://doi.org/10.1039/C6CP05254A.

(14) Egorov, D.; Hoekstra, R.; Schlathölter, T. A Comparative 
VUV Absorption Mass-Spectroscopy Study on Protonated 
Peptides of Different Size. Phys. Chem. Chem. Phys. 2017, 19, 
20608–20618. https://doi.org/10.1039/C7CP03203J.

(15) Jørgensen, T. J. D.; Delforge, D.; Remacle, J.; Bojesen, G.; 
Roepstorff, P. Collision-Induced Dissociation of Noncovalent 
Complexes between Vancomycin Antibiotics and Peptide 
Ligand Stereoisomers: Evidence for Molecular Recognition in 
the Gas Phase. International Journal of Mass Spectrometry 
1999, 188, 63–85.

(16) Florencio, M.; Despeyroux, D.; Jennings, K. R. COLLISION 
GAS EFFECTS IN THE COLLISION-INDUCED 
DECOMPOSITION OF PROTONATED AND 
CATIONIZED MOLECULES OF CARBOHYDRATE 
ANTIBIOTICS. Organic Mass Spectrometry 1994, 29 (9), 
483–490. https://doi.org/10.1002/oms.1210290907.

(17) Bockova, J.; Rebelo, A.; Ryszka, M.; Pandey, R.; da Fonseca 
Cunha, T.; Limao-Viena, P.; Mason, N. J.; Poully, J. C.; Eden, 
S. Mapping the Complex Metastable Fragmentation Pathways 
of Excited 3-Aminophenol(+). International Journal of Mass 
Spectrometry 2019, 442, 95–101. 
https://doi.org/10.1016/j.ijms.2019.05.006.

(18) NIST Chemistry WebBook, NIST Standard Reference 
Database Number 69, National Institute of Standards and 
Technology.; P.J. Linstrom and W.G. Mallard.

(19) J. de Vries; R. Hoekstra; R. Morgenstern; T. Schlathölter. 
Multiple Ionization and Fragmentation of the DNA Base 
Thymine by Interaction with Cq+ Ions. Eur. Phys. J. D 2003, 
24, 161–164.

(20) Alvarado, F.; Bari, S.; Hoekstra, R.; Schlathölter, T. 
Quantification of Ion-Induced Molecular Fragmentation of 
Isolated 2-Deoxy-D-Ribose Molecules. 
Phys.Chem.Chem.Phys. 2006, 8, 1922–1928.

(21) Poully, J.-C.; Vizcaino, V.; Schwob, L.; Delaunay, R.; 
Kocisek, J.; Eden, S.; Chesnel, J.-Y.; Mery, A.; Rangama, J.; 
Adoui, L.; Huber, B. Formation and Fragmentation of 
Protonated Molecules after Ionization of Amino Acid and 
Lactic Acid Clusters by Collision with Ions in the Gas Phase. 
Chemphyschem 2015, 16 (11), 2389–2396. 
https://doi.org/10.1002/cphc.201500275.

(22) Agnihotri, A. N.; Kasthurirangan, S.; Nandi, S.; Kumar, A.; 
Galassi, M. E.; Rivarola, R. D.; Fojon, O.; Champion, C.; 
Hanssen, J.; Lekadir, H.; Weck, P. F.; Tribedi, L. C. Ionization 
of Uracil in Collisions with Highly Charged Carbon and 
Oxygen Ions of Energy 100 KeV to 78 MeV. Physical Review 
A 2012, 85.

(23) Itälä, E.; Huels, M. A.; Rachlew, E.; Kooser, K.; Hagerth, T.; 
Kukk, E. A Comparative Study of Dissociation of Thymidine 
Molecules Following Valence or Core Photoionization. J. 
Phys. B-At. Mol. Opt. Phys. 2013, 46.

(24) Itälä, E.; Ha, D. T.; Kooser, K.; Rachlew, E.; Huels, M. A.; 
Kukk, E. Fragmentation Patterns of Core-Ionized Thymine 
and 5-Bromouracil. Journal of Chemical Physics 2010, 133.

(25) Ptasinska, S.; Denifl, S.; Scheier, P.; Märk, T. D. Inelastic 
Electron Interaction (Attachment/Ionization) with 
Deoxyribose. Journal of Chemical Physics 2004, 120, 8505–
8511.

Page 6 of 8

ACS Paragon Plus Environment

Journal of the American Society for Mass Spectrometry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(26) Vall-Ilosera, G.; Huels, M. A.; Coreno, M.; Kivimaki, A.; 
Jakubowska, K.; Stankiewicz, M.; Rachlew, E. 
Photofragmentation of 2-Deoxy-D-Ribose Molecules in the 
Gas Phase. Chemphyschem 2008, 9, 1020–1029.

(27) Shin, J.-W.; Dong, F.; Grisham, M. E.; Rocca, J. J.; Bernstein, 
E. R. Extreme Ultraviolet Photoionization of Aldoses and 
Ketoses. Chemical Physics Letters 2011, 506, 161–166.

(28) Ghosh, D.; Golan, A.; Takahashi, L. K.; Krylov, A. I.; Ahmed, 
M. A VUV Photoionization and Ab Initio Determination of 
the Ionization Energy of a Gas-Phase Sugar (Deoxyribose). J. 
Phys. Chem. Lett. 2012, 3, 97–101.

(29) Shin, J.-W.; Bernstein, E. R. Vacuum Ultraviolet 
Photoionization of Carbohydrates and Nucleotides. Journal of 
Chemical Physics 2014, 140, 044330.

(30) MacAleese, L.; Hermelin, S.; Hage, K. E.; Chouzenoux, P.; 
Kulesza, A.; Antoine, R.; Bonacina, L.; Meuwly, M.; Wolf, J.-
P.; Dugourd, P. Sequential Proton Coupled Electron Transfer 
(PCET): Dynamics Observed over 8 Orders of Magnitude in 
Time. J. Am. Chem. Soc. 2016, 138 (13), 4401–4407. 
https://doi.org/10.1021/jacs.5b12587.

Page 7 of 8

ACS Paragon Plus Environment

Journal of the American Society for Mass Spectrometry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8

For Table of Contents Use Only
Mass spectral signatures of complex post-translational modifications in proteins: a proof-of-

principle based on X-ray irradiated vancomycin
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Gas-phase X-ray photoabsorption coupled to mass spectrometry of a heavily-modified peptide 
provides a robust signature of its post-translational modifications.
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