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DYNAMICAL SYSTEMS ARISING FROM RANDOM SUBSTITUTIONS

DAN RUST AND TIMO SPINDELER

Abstract. Random substitutions are a natural generalisation of their classical ‘determin-

istic’ counterpart, whereby at every step of iterating the substitution, instead of replacing a

letter with a predetermined word, every letter is independently replaced by a word from a

finite set of possible words according to a probability distribution. We discuss the subshifts

associated with such substitutions and explore the dynamical and ergodic properties of these

systems in order to establish the groundwork for their systematic study. Among other re-

sults, we show under reasonable conditions that such systems are topologically transitive,

have either empty or dense sets of periodic points, have dense sets of linearly repetitive

elements, are rarely strictly ergodic, and have positive topological entropy.

1. Introduction

Symbolic dynamical systems associated to primitive substitutions are the prototypical ex-

amples of minimal subshifts. As such, their study has been extensive [2, 12, 15, 29] and various

approaches to extending the theory have been explored, including S-adic or mixed systems

[4, 14, 16, 31], and systems associated to non-primitive substitutions [5, 23]. Motivated by

examples arising in physics within the study of quasicrystals, Godrèche and Luck considered

the situation that the substituted image of a letter is a random variable [18], where we now call

such systems random or stochastic. Others have independently studied similar generalisations

of substitutions under the guise of multi-valued or set-valued substitutions [10], or 0L-systems

[30]. This randomised approach has recently been revisited [3, 7, 8, 24, 25, 34] with several

canonical examples now being established and studied (principally via their entropy and spec-

trum). In particular, Dekking has recently emphasised the need for a systematic approach in

the study of random substitutions [9].

A general theory of random substitution subshifts (hereby abbreviated to RS-subshifts) has

yet to be established. It is the goal of this article to remedy this situation and provide some

key topological, dynamical and ergodic theoretic results with which one is usually accustomed

when studying particular classes of symbolic subshifts. Throughout this work, we establish

results which are direct generalisations of well-known results appearing in the classical study

of deterministic substitutions. We highlight how the situation changes when moving from

the deterministic to the random situation via examples, in order to illustrate the new and

more interesting phenomena. Several of these results have been established previously for
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2 DAN RUST AND TIMO SPINDELER

particular examples and we give particular mention to the PhD thesis of Moll [24] from where

several useful ideas have been borrowed.

In Section 2, we outline the basic definitions of random substitutions, their associated

RS-subshifts, and introduce the primary standing assumption to be considered in this work;

namely the primitivity of a substitution. Under assumption of primitivity, we establish a

simple criterion in terms of the possible lengths of substituted letters for deciding when an

RS-subshift is either empty or non-empty. We show that any element of the RS-subshift

generates the entire RS-subshift as an orbit closure under the action of the shift and iterated

substitution.

In Section 3 we establish the key dynamical and topological properties of an RS-subshift

associated to a primitive random substitution. We prove that an RS-subshift is topologically

transitive by constructing an explicit element with a dense shift-orbit. RS-subshifts are in

general not minimal. We show a dichotomy result for the set of periodic points with respect

to the shift: the set of periodic points is either empty or dense in an RS-subshift. Due to the

potentially non-trivial structure of periodic points in these subshifts, this allows for robust

tools such as the Artin–Mazur zeta function to be used in the study of random substitutions,

unlike in the deterministic setting where the structure of periodic points is trivial. We show

that, although RS-subshifts are in general not minimal, the set of minimal subspaces is dense

in the subshift—in particular, we show that the set of linearly repetitive elements of an RS-

subshift is dense. As a further dichotomy result, we show that an RS-subshift is either finite

or is homeomorphic to a Cantor set. As a consequence of the topological transitivity of the

subshift, we show that the associated tiling space is connected.

Section 4 is devoted to studying some measure-theoretic properties of RS-subshifts. A key

tool used in establishing results is the notion of an induced or collared substitution. We

expect that this will be a useful tool in the future study of random substitutions. The right

Perron–Frobenius eigenvectors of the substitution matrices of these induced substitutions give

rise to shift invariant (ergodic) measures. Moreover, we characterise those RS-subshifts which

are uniquely/strictly ergodic.

In Section 5, we provide a very mild condition under which an RS-subshift exhibits positive

topological entropy, together with loose lower bounds in terms of the letter-frequencies. This

opens up the study of random substitutions to similar tools developed for the study of shifts

of finite type and other positive entropy subshifts, where the topological entropy is a powerful

invariant. Again, this is in contrast to the deterministic setting where the entropy is always

zero.

We study several key examples in Section 6 which exhibit some of the more interesting

behaviours described in the previous sections. We provide two very different representations

of the full 2-shift as an RS-subshift. We show that the golden mean shift can also be realised

as an RS-subshift—this leads to the question of whether SFTs can typically be represented

as such. This question will be addressed in forthcoming work [19]. We show that examples

of sofic shifts of non-finite type can also be described as RS-subshifts. Of particular interest

is the study of the random period doubling substitution which shares many of the dynamical
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properties of a sofic shift, and which we show is not topologically mixing. We conclude with

a list of open questions motivated by the results of the previous sections.

2. Random substitutions

An alphabet A = {a1, . . . , an} is a finite set of symbols ai referred to as letters. A word u

in A is a finite concatenation of letters u = ai1 · · · ai` and we let |u| = ` denote the length of

u. The empty word ε is the unique word of length 0. We let |u|ai = `i denote the number

of times `i that the letter ai appears in the word u. We let A` denote the set of length-`

words in A and we let A+ =
⋃
`≥1A` denote the set of all finite words in A with positive

length. If ε is also considered, then we write A∗ = A+ ∪ {ε}. The concatenation uv of

two words u = ai1 · · · ai` and v = aj1 · · · ajm is given by uv = ai1 · · · ai`aj1 · · · ajm . We let

AZ = {· · · ai−1ai0ai1 · · · | ai ∈ A} denote the set of bi-infinite sequences in A and endow AZ

with the product topology, where A is a finite discrete space. For w ∈ AZ and i ≤ j, let w[i,j]

denote the finite word w[i,j] := wiwi+1 · · ·wj−1wj .
Let P(Y ) be the power set of Y . By an abuse of notation, we assign a set-valued function

f : X → Y to a function f : X → P(Y ), where the distinction between functions and set-

valued functions will always be clear by context. If the set f(x) is finite for all x ∈ X then

we call f a finite-set-valued function.

Definition 1. Let A = {a1, . . . , an} be a finite alphabet. A random substitution (or sto-

chastic substitution) (ϑ,P ) is a finite-set-valued function ϑ : A → A+ together with a set of

probability vectors

P =

pi = (pi1, . . . , piki) | pi ∈ [0, 1]ki and

ki∑
j=1

pij = 1, 1 ≤ i ≤ n


for k1, . . . , kn ∈ N \ {0} such that

ϑ : ai 7→


w(i,1), with probability pi1,

...
...

w(i,ki), with probability piki ,

for 1 ≤ i ≤ n, where each w(i,j) ∈ A+. The corresponding random substitution matrix is

defined by

M(ϑ,P ) :=

 kj∑
q=1

pjq|w(j,q)|ai


1≤i,j≤n

.

If the set of words ϑ(ai) is a singleton for each ai ∈ A, then we call ϑ deterministic. If pij 6= 0

for all values of i, j then we say that (ϑ,P ) is non-degenerate; otherwise, we say that (ϑ,P )

is degenerate.

Less formally, a random substitution ϑ assigns to every letter ai ∈ A, a finite set of words

w(i,j) in A with a corresponding probability pij . There is a natural extension to random

substitutions that assign possibly infinitely many words to the letters of A, but we only
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consider the finite-set-valued case in the present article (with the exception of a single example

in Section 6). Most of our results extend to the infinite-valued setting, but not all.

Remark 2. Our statements will often be independent of the random variables pij in the

non-degenerate setting and so we may suppress them in the notation and write a random

substitution more compactly as

ϑ : ai 7→ {w(i,1), . . . , w(i,ki)},

where we implicitly assume that ϑ is non-degenerate and we can suppress the pair notation

that includes P . This probability-independent setting coincides with the definition of a

multi-valued substitution in the literature [7, 10], where a multi-valued substitution is simply

a finite-set-valued function ϑ : A → A+. For the sake of clarity however, we will exclusively

use the term ‘random substitution’, even in such cases.

Where the probabilities do play a role is in the study of naturally occurring invariant

probability measures associated with the spaces with which we are primarily concerned. This

will be explored in Section 4. ♦

As in the classical setting for deterministic substitutions, there is an obvious extension of

the action of a random substitution to the set of finite words A+ and to the set of bi-infinite

sequences AZ. The image of a word u ∈ A+ under the action of a random substitution ϑ is a

finite set of words ϑ(u) = {u(1), . . . , u(m)} where each u(i) is given by applying ϑ independently

to every letter in u and concatenating the images in the order prescribed by u. As a basic

example, consider the substitution ϑ : A → A+ on the alphabet A = {a, b} given by

ϑ :


a 7→

{
ab, with probability p,

ba, with probability 1− p,
b 7→ aa, with probability 1.

Then ϑ(aba) is the set of words {abaaab, abaaba, baaaab, baaaba} with probabilities p2, p(1−p),
(1−p)p, (1−p)2 respectively. We may then consider finite powers of the random substitution

ϑk so that, in the above example for instance, ϑ2(a) = ϑ({ab, ba}) = {abaa, baaa, aaab, aaba}
(with corresponding probabilities). The extension to AZ is similar.

Consequently, ϑ(ai), and hence ϑ(u) for any u ∈ A+, should be considered as a random

variable with finitely many possible realisations. The (i, j)-entry of the substitution matrix

Mϑ is then the expected number of times1 that the letter aj appears in the word ϑ(ai).

Remark 3. As mentioned above, a random substitution ϑ is applied independently to every

letter in a given word. Alternatively, one could introduce some dependence using the induced

substitution matrix, which will be discussed in Section 4. However, we will restrict to the

independent case in this paper.

To proceed, we need to introduce generalised notation from symbolic dynamics that is

particular to the random setting.

1Properly, the matrix M(ϑ,P ) should itself be considered as a random variable, where the definition of

M(ϑ,P ) introduced in Definition 1 is then the expected value of that random variable. For our purposes, this

formal consideration is unnecessary.
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Definition 4. Let u ∈ A+ and v ∈ A+ or v ∈ AZ. By u / v we mean that u is a subword

of v, and by u J ϑk(v) we mean that u is a subword of at least one image of v under ϑk for

some k ∈ N. Similarly, by u
•
= ϑk(v) we mean that there is at least one image of v under ϑk

that coincides with u. We say that u is a realisation of ϑk(v).

Definition 5. A random substitution ϑ : A+ → A+ is called irreducible if for each pair (i, j)

with 1 ≤ i, j ≤ n, there is a k ∈ N such that ai J ϑk(aj). Moreover, ϑ is called primitive if

there is a k ∈ N such that for all 1 ≤ i, j ≤ n we have ai J ϑk(aj).

Remark 6. As in the deterministic case, a non-degenerate random substitution ϑ is irre-

ducible/primitive if and only if Mϑ is an irreducible/primitive matrix. Note that degenerate

random substitutions can be irreducible/primitive and have non-irreducible/non-primitive

substitution matrix. ♦

Definition 7. A word u ∈ A+ is called (ϑ-)legal if there is a k ∈ N such that u J ϑk(aj) for

some j ∈ {1, . . . , n}. We define the language of ϑ by

Lϑ := {u ∈ A∗ | u is ϑ-legal}.

If w ∈ A+ or w ∈ AZ, we define the language of w by

L(w) := {u ∈ A∗ | u / w}.

If X ⊆ AZ, we define the language of X by

L(X) :=
⋃
w∈X
L(w).

We let L`ϑ ⊆ Lϑ,L`(w) ⊆ L(w) and L`(X) ⊆ L(X) denote the set of elements of length `.

Let (Xϑ, S) denote the random substitution subshift (RS-subshift for short) associated with

the random substitution ϑ, where

Xϑ := {w ∈ AZ | L(w) ⊆ Lϑ}

and S : Xϑ → Xϑ is the usual shift operator defined by S(w)i = wi+1 for an element w ∈ Xϑ.

Remark 8. The language and the RS-subshift are independent of the explicit values of pij ,

assuming the substitution is non-degenerate. ♦

As Xϑ is defined in terms of a language, it is immediately a closed (hence compact) shift

invariant subspace of AZ, and so Xϑ is a subshift. Unlike in the deterministic case, it is not

true that a primitive random substitution ϑ always has non-empty RS-subshift Xϑ. Take as

an example the primitive substitution ϑ : a 7→ {a, b}, b 7→ {a} whose language Lϑ = {a, b} is

finite and so has empty RS-subshift. This example also highlights the fact that we can only say

that L(Xϑ) ⊆ Lϑ in general, in contrast to the primitive deterministic case where we always

have equality. Thankfully, an RS-subshift is empty only in very specific circumstance and

we can characterise the non-degenerate primitive random substitutions whose corresponding

RS-subshift is non-empty.

Proposition 9. Let ϑ be a primitive random substitution. Then, the RS-subshift Xϑ is empty

if and only if the set of realisations of ϑ(ai) consists only of words of length 1, for every ai ∈ A.
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Proof. If the set of realisations of ϑ(ai) consists only of words of length 1, for every ai, it is

immediate that the subshift is empty.

On the other hand, assume that there is a letter, say ak, such that at least one realisation

of ϑ(ak) has length at least 2. Then, there is a N ∈ N such that ak is a subword of ϑN (ai)

for all ai ∈ A. Hence, ϑN+1(ai) has at least length 2. Arguing the same lines, we obtain that

ϑ2N+2(ai) has length at least 4. Inductively, we find that ϑkN+k(ai) has length at least 2k.

As A is finite, this implies that the subshift is non-empty. �

From now on, we assume that Xϑ is always non-empty. Many of the proofs that follow will

require picking an element in Xϑ and so this assumption will be implicit.

Lemma 10. If w ∈ Xϑ, then ϑ(w) ∈ Xϑ for every realisation of ϑ(w).

Proof. Let w ∈ Xϑ. Suppose u ∈ A∗ is a subword of a realisation ŵ
•
= ϑ(w). It follows that

there exists a subword v of w such that u J ϑ(v). As v is a subword of w and w ∈ Xϑ,

there exists a natural number k ∈ N and a letter a ∈ A such that v J ϑk(a). It follows that

u J ϑk+1(a). As u was chosen to be an arbitrary subword of ŵ, it follows that ŵ ∈ Xϑ. �

It is a classic result in the deterministic setting [29, Prop. 5.3] that if ρ is a primitive

deterministic substitution and w0 is a fixed point of some power of ρ, one can alternatively

define the subshift by

Xρ := {Skw0 | k ∈ Z},
where here we let A ⊆ X denote the closure of the subset A in the space X. Even more,

we have Xρ = {Skw | k ∈ Z} for every w ∈ Xρ. In the random situation, there is no direct

analogue of a fixed point. However, one does have the following result of a similar flavour.

Proposition 11. Let ϑ be a primitive random substitution with RS-subshift Xϑ. Let w be

any element of Xϑ. Then

Xϑ = {Sk(x) | x •= ϑn(w), k ∈ Z, n ≥ 0}

where ϑn is understood to range over all possible realisations.

Proof. Let w ∈ Xϑ be fixed. Let A = {Sk(x) | x •= ϑn(w), k ∈ Z, n ≥ 0}. We first show the

left-to-right inclusion. Let x ∈ Xϑ be an arbitrary element. By primitivity, and the fact that

x[−`,`] is a legal word, let n` be the least natural number such that x[−`,`] J ϑn`(w0). Then

there exists a k` such that Sk`(ϑn`(w))[−`,`]
•
= x[−`,`]. Hence, there exists a realisation x(`) of

Sk`(ϑn`(w)) such that x
(`)
[−`,`] = x[−`,`] and clearly x(`) ∈ A. By construction, lim`→∞ x

(`) = x

and so x ∈ A. It follows that Xϑ ⊆ A.

The right-to-left inclusion is immediate as Lemma 10 and the shift-invariance of Xϑ auto-

matically gives us A ⊆ Xϑ and so

A ⊆ Xϑ = Xϑ

by compactness of Xϑ. It follows that Xϑ = A. �

Let

r : Z→ (A+)n, i 7→
(
ϑ(i)(a1), . . . , ϑ

(i)(an)
)
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be one particular bi-infinite realisation of the random substitution ϑ, where ϑ(i) denotes the

realisation at index i. Then, we define the map

ϑ[r] : AZ → AZ, w = (wi)i∈Z 7→
(
ϑ(i)(wi)

)
i∈Z.

The continuity of ϑ[r] follows as in the deterministic case. Now, let w ∈ Xϑ be arbitrary. We

want to show that elements have pre-images with respect to the random substitution in the

RS-subshift. Finding pre-images relies on the existence of a particular choice of a concrete

realisation which means that we can make use of the continuity of ϑ[r].

Lemma 12. Let ϑ be a primitive random substitution. If w ∈ Xϑ, then there exists an

element w′ ∈ Xϑ and n ≥ 0 with w
•
= Sn(ϑ(w′)).

Proof. Recall that all finite subwords of w are ϑ-legal. This means that there is a k ∈ N such

that for all ` ∈ N0 the centrally positioned subword w[−`,`] of w is a subword of ϑk(a`) for some

a` ∈ A and we choose k minimal with this property. This implies that there is some image

v`
•
= ϑk−1(a`) with w[−`,`] J ϑ(v`) and we choose the indexing of v` such that Sn`(ϑ(v`)) has its

subword w[−`,`] centrally positioned around the reference point for the minimal non-negative

choice of the shift index n` ≥ 0. Now, let ŵ(`) be an element of Xϑ such that ŵ
(`)
0 = a`—this

is certainly possible for primitive ϑ. Then there again exists a shift Sm` of a realisation of

ϑk−1(ŵ(`)) such that w(`) •= Sm`(ϑk−1(ŵ(`))) ∈ Xϑ contains a centrally positioned copy of the

word v` with the necessary indexing as described. In particular, Sn`(ϑ[r`](w
(`)))[−`,`] = w[−`,`]

for a particular realisation ϑ[r`]. As the possible lengths of the words ϑ(ai) are bounded, the

possible values of the minimal non-negative shift indices n` are also bounded, and so we can

pick an infinite subsequence of the lengths `(j) such that n`(j) = n is constant.

Due to the compactness of Xϑ, there is a further subsequence (`(j)i)i∈N such that the limit

w(∞) := limi→∞w
(`(j)i) exists. Note that, by construction, any two realisations ϑ[r`(j)i ] and

ϑ[r`(j)i+m
] agree with each other on all blocks of radius `(j)i around the 0th index, and so

there is a natural limit realisation of the random substitution ϑ[r], given by letting `(j)i →∞,

which can be used in place of each of the realisations ϑ[r`(j)i ]. Putting things together yields

w = lim
i→∞

Sn(ϑ[r](w(`(j)i))) = Sn(ϑ[r](w(∞)))

by continuity of the shift and ϑ[r]. �

As one can quickly see, the pre-image of any such w is in general not uniquely defined. This

is a further difference to the purely deterministic primitive case where this uniqueness holds

for aperiodic subshifts by the celebrated result of Mossé [26] who showed the equivalence of

aperiodicity with the property known as unique recognisability ; we refer to [29, Sec. 5.5.2]

and [15, Sec. 7.2.1] for background.

3. Dynamics and Topology

In the deterministic setting it is immediate that the subshift (Xρ, S) of a primitive sub-

stitution ρ contains dense orbits. Even more, the subshift is minimal; see [29, Prop. 5.5].

We will now show that the first statement remains true for random substitution, while the

second, in general, is false.
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Proposition 13. Let ϑ be a primitive random substitution. The RS-subshift (Xϑ, S) contains

an element with dense shift-orbit in Xϑ.

Proof. Let w ∈ Xϑ and let ai ∈ A be a letter which appears infinitely often in w. As A is

finite and w has infinitely many entries, such an ai must exist. Let Gk := {u ∈ A+ | u •
=

ϑk(ai)}. For all k ≥ 1, let w(−k) be an element in Xϑ such that there exists an nk ≥ 0

with w−k+1 •= Snk(ϑ(w(−k)). Such a sequence of elements exists by a repeated application of

Lemma 12. Note in particular that this means each w(−k) is a preimage of w under ϑk up to

a translation.

We define the sequences w(k) recursively by setting w(0) = w and then, for every k ≥ 1,

we define w(k) •= ϑk(w(−k)) by picking the realisation in the following way: we let ϑk(w(−k))

be a realisation which coincides with w(−k+1) on a large enough radius rk so that w
(k)
[−rk,rk]

contains all words in Gk−1 as subwords. Further, the realisation is chosen so that the first

|Gk| appearances of ai closest to the origin (but still outside of this radius) in ϑk(w(−k)), are

bijectively mapped by ϑk onto the words in Gk. This process is well defined and by necessity,

the radii rk must tend to infinity. By Lemma 10, w(k) ∈ Xϑ for all k ≥ 0. Furthermore, due

to the primitivity of ϑ, we find that every word u ∈ Lϑ appears as a subword of some v ∈ Gk
for large enough k. In particular, for every ` ∈ N there is a k ≥ 0 such that L`ϑ ⊆ L(w(k)).

Since Xϑ is compact, there is a subsequence (w(ki))i∈N converging towards a word w(∞) ∈ Xϑ.

Also, as the words w(k) agree on larger and large patches around the origin as k grows, it

means that L`ϑ ⊆ L(w(∞)) for every ` ∈ N (that is, no legal words are ‘pushed to infinity’ in

the limit). This implies

{Skw(∞) | k ∈ Z} = Xϑ.

�

The bi-infinite word w∞ constructed in the proof of Proposition 13 is somewhat of an

analogue to a fixed point, but for the random setting.

To see that (Xϑ, S) is not necessarily minimal (although ϑ is primitive), consider the

following random substitution first studied by Godrèche and Luck [18]. Let A = {a, b},
p1 = (p, q) and p2 = (1). The random Fibonacci substitution σ is defined by

σ :


a 7→

{
ba, with probability p,

ab, with probability q,

b 7→ a.

If we denote by XFib the well-known minimal Fibonacci subshift, it is not difficult to see that

XFib is a proper subset of Xσ (there are elements in Xσ which have bb as a subword). Hence,

(Xσ, S) cannot be minimal.

It would be interesting to know whether there are sufficient or necessary conditions for

(Xϑ, S) to be minimal. We shall address this question in Section 4.

Definition 14. For a continuous dynamical system X = (X, f), let

Per(X) = {x ∈ X | ∃n > 0, such that fn(x) = x}

denote the set of periodic points of X under the action of f .
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The following is a surprising dichotomy result for periodic points in RS-subshifts.

Proposition 15. Let ϑ be a primitive random substitution with RS-subshift (Xϑ, S). Either

Per(Xϑ) is empty or Per(Xϑ) ⊆ Xϑ is dense.

Proof. Suppose that Per(Xϑ) is non-empty. Let w(0) be a periodic point of Xϑ with prime

period p ≥ 1. So Sp(w(0)) = w(0) and Si(w(0)) 6= w(0) for all 0 < i < p.

Let w ∈ Xϑ. Let a = w
(0)
0 ∈ A be fixed. By primitivity, for every finite subword u / w,

there exists a natural number n ≥ 0 such that u J ϑn(a). Let n(u) be the minimal such n.

For all ` ≥ 1, we have w[−`,`] J ϑ
n(w[−`,`])(a). In particular, we have

w[−`,`] J ϑ
n(w[−`,`])(w

(0)
0 · · ·w

(0)
p )

and so defining w̃(`) := ϑn(w[−`,`])(w(0)) (in such a way that every periodic block is substituted

identically) gives us w[−`,`] J w̃
(`).

There exist finite shifts of the sequence w̃(`) such that Si(w̃(`))[−`,`] = w[−`,`]. Let w(`) be

the required shifted sequences. It follows that lim`→∞(w(`)) = w. By construction, for all

` ≥ 0, the sequence w(`) is legal and periodic and so it follows that Per(Xϑ) is a dense subset

of Xϑ. �

There exist examples exhibiting both kinds of behaviour. Any primitive aperiodic deter-

ministic substitution is periodic-point free. Moreover, the random Fibonacci substitution

introduced above has no periodic points as the relative frequencies of as to bs is irrationally

related for every element of the RS-subshift. On the other hand, as we shall see in Section 6,

there exist examples of primitive random substitutions ϑ whose RS-subshift Xϑ has Per(Xϑ)

contained as a proper dense subset.

Periodic elements form a special subclass of a more general family of bi-infinite sequences;

the linearly repetitive sequences.

Definition 16. We say that a sequence w is linearly repetitive if there exists a real number

L ≥ 1 such that for all n ≥ 1, we have u ∈ Ln(w) and v ∈ LLn(w) implies that u / v. If w is

a linearly repetitive sequence then we call the subshift Xw linearly recurrent.

Clearly every periodic sequence with prime period p is linearly repetitive with L = p. It

is well-known [12] that if ρ is a primitive deterministic substitution then every w ∈ Xρ is

linearly repetitive and hence Xρ is linearly recurrent. Let Lin(Xϑ) ⊆ Xϑ denote the set of

linearly repetitive elements of Xϑ.

Although not every primitive RS-subshift contains periodic elements, they all contain lin-

early repetitive elements. Moreover, we have the following density result for Lin(Xϑ).

Proposition 17. Let ϑ be a primitive random substitution with RS-subshift Xϑ. The set

Lin(Xϑ) ⊆ Xϑ is dense.

Proof. Let w ∈ Xϑ. Let a ∈ A be a fixed letter. Let n(`) be the minimal natural number such

that w[−`,`] J ϑn(`)(a) which exists by primitivity. There is then a primitive deterministic

substitution ρ(`) : A → A+ such that w[−`,`] / ρ
(`)(a) which is a particular realisation of ϑn(`).

In particular, Xρ(`) ⊆ Xϑ, Xρ(`) is non-empty, and every element of Xρ(`) is linearly repetitive.
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By construction, there exists a point w(`) ∈ Xρ(`) such that w
(`)
[−`,`] = w[−`,`]. It follows that

lim`→∞w
(`) = w. Hence the set of linearly repetitive elements of Xϑ is dense. �

Although Proposition 17 only refers to the subset of linearly repetitive elements, the con-

struction used in the proof shows that the set of substitutive sequences2 is also dense in Xϑ.

The result also trivially implies that the set of repetitive elements form a dense subset of Xϑ.

Recall that a topological space is perfect if it contains no isolated points. For a point x ∈ X,

we let Ox denote the orbit of x under the homeomorphism f . That is, Ox = {fn(x) | n ∈ Z}.

Proposition 18. Let ϑ be a primitive random substitution. The RS-subshift Xϑ is either

finite or is homeomorphic to a Cantor set.

Proof. We use the fact that a topological space X is homeomorphic to a Cantor set if and

only if X is a compact, perfect, totally disconnected, metrisable space. It is clear that Xϑ is

a compact metric space. A subspace of a totally disconnected space is totally disconnected,

and so Xϑ is totally disconnected because it is a subspace of AZ. It only remains to show

that Xϑ is perfect.

From Proposition 13 we know that Xϑ contains an element w0 such that Ow0 is a dense

orbit. For all w ∈ Xϑ \ Ow0, the point w cannot be isolated, as all neighbourhoods U of w

intersect Ow0; that is, (U \ {x}) ∩Ow0 6= ∅. The only other possibility is that Ow0 contains

isolated points.

Suppose w0 is linearly repetitive. Then Xϑ is linearly recurrent, hence minimal and there

exists a primitive deterministic substitution ρ such that Xϑ = Xρ (this follows from the proof

of Proposition 17). If ρ is deterministic, then the result is well-known [2, Proposition 4.5], so

we may assume that w0 is not linearly repetitive. In particular, Xϑ must be infinite.

Recall from Proposition 17 that the set Lin(Xϑ) is a dense subset of Xϑ. In particular, for

every point w ∈ Ow0 and every neighbourhood U of w, we have U ∩ Lin(Xϑ) 6= ∅, and as

w /∈ Lin(Xϑ), we can conclude that w is not isolated. It follows that Xϑ is perfect and hence

is homeomorphic to a Cantor set. �

Recall that a topological dynamical system (X, f) is topologically transitive if for all open

sets U, V ⊆ X, there exists a natural number n ≥ 0 such that fn(U) ∩ V 6= ∅. If X is

either a Cantor set or a finite discrete space, then (X, f) is topologically transitive if and

only if (X, f) admits a dense orbit (this does not hold in general [11]). Hence, transitivity

of primitive RS-subshifts follows from a simple application of Proposition 13 and Proposition

18.

Corollary 19. Let ϑ be a primitive random substitution. The RS-subshift (Xϑ, S) is topo-

logically transitive.

Although tiling spaces are not the main focus of this work, we briefly mention them in order

to generalise a result attributed to Gähler and Miro in the context of the random Fibonacci

substitution [17]. They showed that the tiling space associated to the random Fibonacci

2By substitutive sequence, we mean an element of a subshift associated with a primitive deterministic

substitution.
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substitution is connected. In fact, we can show that this is true for any primitive random

substitution.

Definition 20. Let (X, s) be a subshift. Let ΩX denote the tiling space or continuous hull

associated with X defined by

ΩX = X × [0, 1]/ ∼
where (x, 1) ∼ (Sx, 0) generates an equivalence relation that glues together the ends of inter-

vals associated with elements x ∈ X with the beginning of the intervals associated with the

shifted element Sx ∈ X.

If ϑ is a random substitution with RS-subshift Xϑ then we write Ωϑ := ΩXϑ
and call Ωϑ

the tiling space associated with ϑ.

For an accessible introduction to the study of tiling spaces from a topological perspective,

we recommend the book of Sadun [32].

Proposition 21. Let X be a subshift admitting a dense orbit. The associated tiling space

ΩX is connected.

Proof. We first note that for every x ∈ X, the set x+ R := {(Sn(x), t) | n ∈ Z, t ∈ [0, 1)} is a

connected subspace of ΩX which is the continuous image of a real line, given by the mapping

r 7→ (Sbrcx, r − brc). Let w ∈ X be an element with a dense orbit. Hence w + R is a dense

subset of ΩX . As w + R is dense, it follows that the closure w + R is the entire space ΩX .

The closure of a connected space is connected and so ΩX is connected.

�

Then, by a simple application of Proposition 13, the result follows as a corollary.

Corollary 22. Let ϑ be a primitive random substitution. The associated tiling space Ωϑ is

connected. �

Gähler and Miro also studied the first Čech cohomology group Ȟ1(Ωϑ) of the tiling space

in the particular case where ϑ is the random Fibonacci substitution [17]. They showed that

Ȟ1 has infinite rank. Using results from this section, one can show the same in much more

generality. In fact, a tiling space associated with a primitive random substitution is either

minimal or has its first Čech cohomology group of infinite rank. As cohomology of tiling

spaces is not the focus of this paper, a proof of this result is postponed to forthcoming work

of the first author.

4. Measure theoretic properties

So far, we have not made any use of the probability vectors pi. One might wonder why

we have introduced them, and why one is justified in calling these substitutions ‘random’.

The reason is that in some cases, e.g. when one studies ergodic or spectral properties [3], the

probabilities play a vital role. Here, we focus on some aspects of the ergodic part.

It is well-known that, in the case of a primitive deterministic substitution ρ, the frequency

of each element of Lρ exists. Furthermore, it is encoded in the statistically normalised right

Perron–Frobenius eigenvector of the associated substitution matrix as in [29, Sec. 5.4] which
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we henceforth refer to as Queffelec’s method. The idea is to introduce an induced substitution

ρ`, which is a primitive substitution that acts on the set of elements of Lρ of length `. Such an

induced substitution is also called right-collared in the literature [16], and a two-sided collared

version also exists.

Our aim is a generalisation of Queffelec’s method to the random situation. This was first

investigated by Moll [24, Ch. 4] based on the example of the random noble means substi-

tutions, which are generalisations of the random Fibonacci substitution mentioned above.

Unfortunately, Moll’s proof of ergodicity contains an error 3. In light of this, we assume here

that the measures we are going to construct are ergodic and we postpone a corrected proof of

ergodicity to forthcoming work [20]. Using this result, we are able to characterise the uniquely

and strictly ergodic dynamical systems that arise from random substitutions.

Next, we are going to introduce a substitution ϑ` that acts on the alphabet A` of ϑ-legal

words of length `. We denote by A∗` the set of all finite words with respect to the alphabet A`.
When we want to generalise Queffelec’s method, we have to take into account the (possibly)

different lengths of the images ϑ(ai) and the realisation probabilities of subwords in the image

of some word w ∈ A` under ϑ, since we work with random substitutions.

Definition 23. Let ` ∈ N and ϑ be a primitive random substitution. Then, we refer to

ϑ` : A` → A+
`

as the induced random substitution defined by

w(i) 7→


u(i,1) :=

(
v
(i,1)
[k,k+`−1]

)
0≤k≤|ϑ(w(i)

0 )|−1
, with probability pi1

...
...

u(i,ni) :=
(
v
(i,ni)
[k,k+`−1]

)
0≤k≤|ϑ(w(i)

0 )|−1
, with probability pini ,

where w(i) ∈ A` and v(i,j) is an image of w(i) under ϑ with probability pij . Here, |ϑ(w
(i)
0 )| is

the length of the corresponding realisation of ϑ(w
(i)
0 ).

The induced random substitution matrix is given by M` := Mϑ` .

Example 24. Consider the random Fibonacci substitution σ from above. Let ` = 2. In this

situation, we have A2 = {aa, ab, ba, bb}, and we obtain the induced substitution ϑ2 given by

(aa) 7→


(ab)(ba) with probability q2

(ab)(bb) with probability qp

(ba)(aa) with probability pq

(ba)(ab) with probability p2

, (ab) 7→

{
(ab)(ba) with probability q

(ba)(aa) with probability p

(ba) 7→

{
(aa) with probability q

(ab) with probability p
, (bb) 7→ (aa) with probability 1.

3He says on p. 50 that each X ∈ {(Xi,k)k∈N0 | s ≤ i ≤ ` + m + s − 1} consists of pairwise independent

words, which is wrong.
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Hence, we get

M2 =


pq p q 1

1− pq q p 0

1− pq 1 0 0

pq 0 0 0

 .
This matrix is primitive. The Perron–Frobenius eigenvalue is τ , where τ denotes the golden

ratio, and the associated right eigenvector is

R =
1

τ + 2τ2(1− p+ p2) + p(1− p)
·


τ

τ2(1− p+ p2)

τ2(1− p+ p2)

p(1− p)

 (1)

Remark 25. Notice that ϑ2 admits the word (ab)(ab) in its language because

(ab)(ab) J ϑ((ba)(aa))
•
= ϑ2((ab)).

This highlights a key difference between induced substitutions for deterministic substitutions

as compared to random substitutions. For a primitive deterministic substitution ρ, the in-

duced substitution ρ` gives rise to a topologically conjugate subshift—that is, Xρ ' Xρ` . The

topological conjugacy is given by a sliding block code of length ` which maps the letters in

an element of Xρ to the length ` word to their immediate right. The inverse is given by the

forgetful map. In the case of RS-subshifts, as the above example suggests, such a sliding block

code will in general not be surjective; there is no ϑ-legal word, under the usual sliding block

code, which will give rise to the ϑ2-legal word (ab)(ab). In general, the most we can say is

that the usual sliding block code gives an embedding of subshifts e : Xϑ ↪→ Xϑ` and the usual

forgetful map gives a topological factor map f : Xϑ` � Xϑ. The map e is also a right inverse

of f , giving f ◦ e = idXϑ
.

As in the case for deterministic substitutions, an induced substitution for a primitive ran-

dom substitution is also primitive.

Proposition 26. Let ` be a positive integer and let ϑ be a random substitution. If ϑ is

primitive then ϑ` is primitive.

Proof. The proof is similar to the usual proof for collared substitutions [1].

It is enough to show that for any ` ∈ N, there exists a k` such that for every pair of words

u, v ∈ L`ϑ we have u J ϑk`(v). By primitivity of ϑ, let k be such that for every ai, aj ∈ A, we

have ai J ϑk(aj). Without loss of generality, suppose that k = 1 (otherwise replace ϑ with

ϑk). By primitivity, let ku and au ∈ A be such that u J ϑku(au). As au J ϑ(ai) for all ai ∈ A,

we have u J ϑku(ϑ(ai))
•
= ϑku+1(ai). Then by induction, u J ϑku+n(ai) for every n ≥ 1 and

every letter ai ∈ A. As there are only finitely many letters in A and only finitely many pairs

of words u, v ∈ L`ϑ, there must then exist a finite k` = max{ku | u ∈ L`ϑ} + n` such that for

every u, v ∈ L`ϑ, u J ϑk`(v0) J ϑk`(v), as required. �

Since the matrix M` is primitive, we know from Perron–Frobenius theory that there is a

unique positive right eigenvector R` and a unique positive left eigenvector L` corresponding
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to the maximal positive eigenvalue λ` such that

‖R`‖1 = 1 and 〈L`,R`〉 = 1.

As in the deterministic case, we would like to interpret the entries of R` as the frequencies of

the legal words of length `. In order to do so, let us proceed as follows.

An open, closed and countable basis for the topology of AZ is given by the class Z(AZ) of

cylinder sets

Zk(v) := {w ∈ AZ | w[k,k+`−1] = v}
for any k ∈ Z and v ∈ A of length `. We refer to [6, Sec. 2], [22, Ch. 6] and [29, Ch. 4] for

general background. If X ⊆ AZ is a subshift, the class of cylinder sets Z(X) is induced by

Z(AZ) via the subspace topology. Here, we get

Z(X) := {Z ∩ X | Z ∈ Z(AZ)}.

Consider the RS-subshift Xϑ. It is well-known that Z(Xϑ) generates the Borel σ-algebra Bϑ

of Xϑ, compare [2, Sec. 4.1]. In later sections, it will be useful to consider subclasses of Z(Xϑ)

consisting of cylinder sets specified by a block that contains the zero-coordinate:

Z0(Xϑ) := {Zk(v) ∈ Z(Xϑ) | −|v|+ 1 ≤ k ≤ 0} ∪ {Xϑ}.

Note that Z0(Xϑ) also generates the σ-algebra Z(Xϑ). Let v be a legal word of length `.

Then, we define a measure µ on Zk(v) ∈ Z0(Xϑ) by

µ(Zk(v)) := R`(v), (2)

for any k ∈ Z, where R`(v) is the entry of the statistically normalised right Perron–Frobenius

eigenvector of the primitive matrix M` corresponding to the word v. According to [29, Sec.

5.4], this is a consistent definition of a shift-invariant measure on Z0(Xϑ) and there is an

extension of µ to the Borel σ-algebra Bϑ [28, Cor. 2.4.9]. Due to [28, Prop. 2.5.1], this

extension is unique and we will denote it again as µ. Furthermore, µ is a probability measure

on Xϑ because for any k ∈ Z and ` ∈ N, we have

µ(Xϑ) = µ
( ⋃̇
v∈L`ϑ

Z(v)
)

=
∑
v∈L`ϑ

µ
(
Zk(v)

)
=
∑
v∈L`ϑ

R`(v) = 1.

We will show in [19] that, for certain random substitutions, the measure µ is ergodic.

This result implies that the relative frequencies of subwords of length ` can be computed by

the statistically normalised right Perron–Frobenius eigenvector R`. To see this, consider the

function 1Zt(v)(x) with v ∈ L`ϑ, which is obviously integrable. From the ergodicity of µ, we

infer

lim
n→∞

1

n

n−1+s∑
i=s

1Zt(v)(S
ix) =

∫
Xϑ

1Zt(v) dµ = µ(Zt(v)) = R`(v)

for µ-almost every x ∈ Xϑ.

The next question that arises is whether we can expect the system (Xϑ, S) to be uniquely

ergodic, which happens in the deterministic situation [29, Thm. 5.6]. It is obvious that

different choices of the probability vectors pi lead to the same RS-subshift Xϑ. Still, in most

cases, they give rise to different measures µ. Consequently, the system (Xϑ, S) is not uniquely
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ergodic in general. For example, consider the random Fibonacci substitution σ. If we choose

p1 =
(
1
2 ,

1
2

)
, then for µ-almost all x ∈ Xσ we obtain from Eq. (1)

R2(bb) ≈ 0.043.

On the other hand, choosing p1 = (1, 0), we get

R2(bb) = 0.

Furthermore, a subshift Xϑ cannot be uniquely ergodic if it contains periodic and non-periodic

elements.

However, we will now characterise the uniquely/strictly ergodic systems.

Theorem 27. Let ϑ be a primitive random substitution.

(a) The corresponding dynamical system (Xϑ, S) is uniquely ergodic only if the right

Perron–Frobenius eigenvectors R` are independent of the probability vectors pi for

every ` and every i.

(b) Additionally, let µ be ergodic. Then, (Xϑ, S) is uniquely ergodic if and only if the

right Perron–Frobenius eigenvectors R` are independent of the probability vectors pi
for every ` and every i.

Proof. It is recalled that, by Oxtoby’s theorem [2, Prop. 4.4], a subshift is uniquely ergodic

if and only if the frequencies of all finite subwords exist uniformly for each element in the

subshift.

(a) Let us assume that (Xϑ, S) is uniquely ergodic. This means that there is only one S-

invariant probability measure µ. This is precisely the one we constructed above, see Eq. (2).

Consequently, it is the same for every choice of the probability vectors pi. Due to Eq. (2),

the vectors R` are independent of pi.

(b) On the other hand, let us now assume that the vectors R` are independent of the proba-

bilities pi. We start with the case ` = 1 and set R := R1. As the substitution matrix M of

ϑ is given by
(∑kj

q=1 pjq|w(j,q)|ai
)
1≤i,j≤n, we obtain

∑n
j=1

∑kj
q=1 pjq|w(j,q)|a1Rj

...∑n
j=1

∑kj
q=1 pjq|w(j,q)|anRj

 = MR = λ

R1
...

Rn

 ,
where λ is the Perron–Frobenius eigenvalue of M . Thus, we have

λ =

n∑
j=1

kj∑
q=1

pjq|w(j,q)|ai
Rj
Ri

for all i ∈ {1, . . . , n} and therefore

n∑
j=1

kj∑
q=1

pjq|w(j,q)|ai1
Rj
Ri1

=

n∑
j=1

kj∑
q=1

pjq|w(j,q)|ai2
Rj
Ri2
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for all i1, i2 ∈ {1, . . . , n}. Now, choose j1 ∈ {1, . . . , n} and fix pj for all j ∈ {1, . . . , n} with

j 6= j1. Then, there are c1, c2 > 0, which are independent of pj1 such that

kj1∑
q=1

pj1q|w(j1,q)|ai1
Rj1
Ri1

+ c1 =

kj1∑
q=1

pj1q|w(j1,q)|ai2
Rj1
Ri2

+ c2.

This is equivalent to

kj1∑
q=1

pj1q

(
|w(j1,q)|ai1

Rj1
Ri1
− |w(j1,q)|ai2

Rj1
Ri2

)
= c3,

where c3 := c2 − c1, for every choice of pj1 . Next, choose pj1 = eq1 respectively pj1 = eq2 for

some q1, q2 ∈ {1, . . . , kj1}. We obtain

|w(j1,q1)|ai1
Rj1
Ri1
− |w(j1,q1)|ai2

Rj1
Ri2

= |w(j1,q2)|ai1
Rj1
Ri1
− |w(j1,q2)|ai2

Rj1
Ri2

,

which is equivalent to

|w(j1,q1)|ai1 − |w
(j1,q2)|ai1 =

(
|w(j1,q1)|ai2 − |w

(j1,q2)|ai2
) Ri1
Ri2

. (3)

Now, Eq. (3) tells us the following. If w(j1,q1) and w(j1,q2) are two different realisations of ϑ(aj1)

with |w(j1,q1)|ai1 = |w(j1,q2)|ai1 for some letter ai, then |w(j1,q1)|ai2 = |w(j1,q2)|ai2 for every other

letter ai2 . On the other hand, if |w(j1,q1)|ai1 < |w
(j1,q2)|ai1 , then |w(j1,q1)|ai2 < |w

(j1,q2)|ai2 for

every other letter ai2 and the ratio

|w(j1,q1)|ai1 − |w
(j1,q2)|ai1

|w(j1,q1)|ai2 − |w
(j1,q2)|ai2

is given by
Ri1
Ri2

. Hence, the letter-frequencies exist uniformly for every element of Xϑ.

Since, for general `, we can argue analogously (ϑ` is primitive for all ` ∈ N), the claim

follows. �

In general, uniquely ergodic systems are not minimal. However, in the case of primitive

random substitutions, we obtain the following corollary.

Corollary 28. Let ϑ be a primitive random substitution. If (Xϑ, S) is uniquely ergodic, it is

also strictly ergodic.

Proof. Since ϑ is primitive and (Xϑ, S) is uniquely ergodic, we know that the relative word

frequencies of finite words exist uniformly, for every element of Xϑ. Moreover, they are

encoded in the entries of the vectors R`. But ϑ` is primitive for all ` ≥ 1, which implies that

all entries of R` are positive for all ` ≥ 1. Due to Oxtoby’s theorem, the system (Xϑ, S) is

strictly ergodic. �

Now, we can make use of the right eigenvectors R` to give a characterisation of the mini-

mality of (Xϑ, S) when ϑ is primitive and µ is ergodic.
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Proposition 29. Let ϑ be a primitive random substitution and suppose that the measure µ

is ergodic. The RS-subshift (Xϑ, S) is minimal if and only if the vectors R` do not depend

on pi for all ` ≥ 1 and all i ∈ {1, . . . , ki}.

Proof. Note that, by Proposition 17, the set Lin(Xϑ) of linearly repetitive elements of Xϑ is

dense. If Xϑ is minimal, then Lin(Xϑ) = Xϑ. By construction (in the proof of Proposition

17), Xϑ is equal to a minimal subshift Xρ, where ρ is a primitive deterministic substitution.

In particular, it is well-known that the relative frequency of a word is independent of the

element chosen from a minimal deterministic substitution subshift [29, Sec. 5.4.1].

Assume that R` does depend on pi for some ` and some i. Then, there are k, j ∈ N such

that the k-th entry of R`, let us call it R`,k, depends on some pij . This means that the

frequency of the word u which corresponds to R`,k depends on pij . But this implies that

there are w,w′ ∈ Xϑ such that

frequ(w) 6= frequ(w′).

Hence, the system (Xϑ, S) cannot be minimal.

Now for the converse, suppose that R` is independent of pi. Then, (Xϑ, S) is strictly

ergodic, hence minimal, by Theorem 27 and the ergodicity of µ. �

To illustrate this result, let us have a look at the following example.

Example 30. Consider again the random Fibonacci substitution σ. It will be shown in

[20] that the corresponding frequency measure is ergodic. It is not difficult to compute the

substitution matrix and the corresponding right Perron–Frobenius eigenvector, which is given

by R = [τ−1, τ−2]T , where τ is the golden ratio. Clearly, R is independent of the probabilities.

However, the right Perron–Frobenius eigenvector R2 of the induced substitution matrix M2

does depend on the probabilities, as shown in Example 24. By Proposition 29, Xσ cannot be

minimal.

Remark 31. There exist examples of (strictly non-deterministic) random substitutions which

give rise to minimal RS-subshifts such as in Example 34 in the next section. Unfortunately,

this example is somewhat unsatisfying as the corresponding RS-subshift is finite. One would

like to be able to give an example of a strictly non-deterministic random substitution whose

RS-subshift is minimal and infinite. Our experience suggests that such a random substitution

may not exist, and Proposition 29 appears to offer an obstruction to its existence.

We finish this section with the following observations which highlights the interplay (and

differences) between the topological notion of dense subsets and the measure theoretic notion

of having full measure. Compare and contrast this result with the topological results from

Section 3.

Proposition 32. Let ϑ be a primitive random substitution. Assume that (Xϑ, S, µ) is ergodic,

where µ is given by Eq. (2). Then,

(i) the set Dense(Xϑ) of elements with dense orbit has measure 1.

(ii) the set Rep(Xϑ) of repetitive elements has measure 1 if Xϑ is minimal and measure

0 otherwise.
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(iii) the set Lin(Xϑ) of linearly repetitive elements has measure 1 if Xϑ is minimal and

measure 0 otherwise.

(iv) the set Per(Xϑ) of elements with periodic orbit has measure 1 if Xϑ is finite and

measure 0 otherwise.

Proof. (i) Let Dense(X, f) ⊂ X be the set of points in X with dense orbit under the home-

omorphism f : X → X. We make use of a well-known result [33, Thm. 1.7] which says that

Dense(X, f) has full measure in an ergodic dynamical system (X, f, µ) whose non-empty open

sets all have positive measure. The only thing which remains to be shown is that µ(U) > 0

for every non-empty open set U . We mentioned earlier that Z(Xϑ) is an open basis for the

topology of AZ. Hence, it suffices to show µ(Z) > 0 for every Z ∈ Z(Xϑ). But this follows

from Eq. (2) and the Perron–Frobenius theorem because ϑ is primitive and so is ϑ` for all `.

(ii) It is well-known that if Xϑ is minimal, then every element is repetitive and so

µ(Rep(Xϑ)) = µ(Xϑ) = 1.

If Xϑ is non-minimal, then for x ∈ Rep(Xϑ), the orbit closure Ox is a minimal subset of Xϑ

and so Ox cannot be dense in Xϑ. It follows that Rep(Xϑ)∩Dense(Xϑ) = ∅. So, by part (i),

countable additivity and µ(E) ≤ 1 gives

µ(Rep(Xϑ)) = µ(Rep(Xϑ)) + µ(Dense(Xϑ))− 1 = µ(Rep(Xϑ) ∪Dense(Xϑ))− 1 ≤ 0.

(iii) The same proof as for part (ii) follows for Lin(Xϑ) using the fact that repetitivity and

linear repetitivity are equivalent for minimal subshifts associated with primitive deterministic

substitutions and the fact that Lin(Xϑ) ⊆ Rep(Xϑ).

(iv) If Xϑ is finite, then every point is periodic so µ(Per(Xϑ)) = µ(Xϑ) = 1. Now suppose

that Xϑ is infinite. If Per(Xϑ) = ∅, then µ(Per(Xϑ)) = 0. If Per(Xϑ) 6= ∅, then as Xϑ is

infinite, the RS-subshift cannot be minimal as it has a proper closed invariant subset given by

a periodic orbit. It follows from part (iii) that µ(Lin(Xϑ)) = 0. The set Per(Xϑ) is a subset

of Lin(Xϑ) and so µ(Per(Xϑ)) ≤ µ(Lin(Xϑ)) = 0. �

5. Topological entropy

The aim of this section is to examine the amount of disorder inherent in the random

substitution ϑ. To do so, we refer to the map C : N → N, assigning to the natural number `

the number of ϑ-legal words of this length, as the complexity function of ϑ. If X is a subshift,

then we similarly let C(`) = |L`(X)|.

Definition 33. Let X be a subshift and let C be the complexity function of X. Then, we

let

htop(X) := lim
`→∞

log
(
C(`)

)
`

(4)

denote the topological entropy of X.

Obviously, the complexity function meets C(k + `) ≤ C(k)C(`) for all k, ` ∈ N. The

existence of the limit in Eq. (4) in this setting is a well-known result; the proof is based on

Fekete’s Lemma [13].
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One might be inclined to think that every non-deterministic RS-subshift has positive en-

tropy. However, this is not the case.

Example 34. Consider the random substitution

ϑ : a 7→ {ab, abab}, b 7→ {ab}.

The corresponding RS-subshift consists of the two periodic bi-infinite sequences

· · · abab.abab · · · and · · · baba.baba · · · ,

thus, htop(Xϑ) = 0.

In fact, this happens because one of the words in the set of realisations of ϑ(a) is redundant.

This means that omitting either ab or abab will not change the subshift and, moreover, gives

rise to the subshift of a deterministic substitution. The problem is that the first two letters

and the last two letters of the second realisation of the image of a coincide with the first

realisation of the image of a. This example motivates a useful definition.

Recall that u is an affix of v if u is either a prefix or a suffix of v. That is, u = v[0,|u|−1] or

u = v[|v|−|u|,|v|−1]. If u is both a prefix and a suffix of v then we call u a strong affix of v.

Definition 35. If a ∈ A is such that there exist realisations u, v
•
= ϑ(a) with |u| ≤ |v| and u

is not a strong affix of v then we say that a admits a splitting pair for ϑ.

The intuition is that whenever a admits a splitting pair, then when substituting a word u0
containing a, there are at least two possible distinct realisations of ϑ(u0) and so a ‘splitting’ or

‘branching’ occurs in the tree of iterated substitutions of u0. The condition regarding strong

affixes ensures that we cannot accidentally double count, as emphasised in the proof of the

following theorem.

Note that, trivially, no letter admits a splitting pair for a deterministic substitution.

Theorem 36. Let ϑ be a random substitution. If there is w ∈ Xϑ such that a appears in w

with positive letter-frequency ν(a) and a admits a splitting pair for ϑ, then the system (Xϑ, S)

has positive entropy.

Proof. Let u and v be a splitting pair admitted by ai with lengths |u| = k1 and |v| = k2 and

without loss of generality assume that k1 ≤ k2. Denote by Wn the set of different realisations

of ϑ(w[−n,n]). If N ≥ |ϑ(b)| for every b ∈ A and every possible realisation of ϑ(b), one clearly

has

lim sup
n→∞

log |Wn|
N (2n+ 1)

≤ lim sup
n→∞

log |Wn|
|ϑ(w[−n,n])|

≤ htop(Xϑ). (5)

Now, choose for every letter b 6= a a fixed realisation ub of ϑ(v). The letter a is alternately

mapped to u and v. In that case, given any word u0 / w which does not contain the letter a,

we obtain that the word au0a is mapped to either

uϑ(u0)v or vϑ(u0)u.

These two words have the same length, and they are different by assumption because u is

not a strong affix of v. Suppose |w[−n,n]|a is even. Let us partition the word w[−n,n] into

alternating blocks Ui which contain no as and blocks Vi which contain exactly two as on their
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boundary. If |w[−n,n]|a is odd, then we include a leftover block Ũ at the end of the word which

contains exactly one a (or is equal to Ub 1
2
|w[−n,n]|ac if |w[−n,n]|a is even). So if

w[−n,n] = u1au2au3au4au5 · · · auk−1auk
where |uj |a = 0 for all j < k and |uk|a ≤ 1, then the blocks Ui are given by Ui = u2i−1 and

the blocks Vi are given by Vi = au2ia. So

w[−n,n] =

U1︷︸︸︷
u1

V1︷︸︸︷
au2a

U2︷︸︸︷
u3

V2︷︸︸︷
au4a

U3︷︸︸︷
u5 · · ·

Vb 12 |w[−n,n]|ac︷ ︸︸ ︷
auk−1a

Ũ︷︸︸︷
uk

= U1V1U2V2U3 · · ·Vb 1
2
|w[−n,n]|acŨ

Since, by the above, every two consecutive as give rise to at least two different words under

substitution, hence we have at least two possible choices of image under substitution for every

block Vi in the partition of w[−n,n], then we obtain

|Wn| ≥ 2b
1
2
|w[−n,n]|ac.

Consequently,

lim sup
n→∞

log |Wn|
N (2n+ 1)

≥ lim sup
n→∞

b12 |w[−n,n]|ac
(2n+ 1)

· log(2)

N
=
ν(a)

2N
log(2) > 0.

Hence, together with Eq. (5), the claim follows. �

Remark 37. It is not necessary that the letter a has positive letter-frequency. The proof

shows that the condition lim supn→∞
b 1
2
|w[−n,n]|ac
(2n+1) > 0 is sufficient. This condition is satisfied,

for example, if ϑ is primitive. ♦

Corollary 38. Let ϑ be a primitive random substitution with a letter admitting a splitting

pair. Then htop(Xϑ) > 0.

Remark 39. It is sufficient if some power of ϑ has a letter admitting a splitting pair. Consider

for example the primitive substitution

ϑ : a 7→ {ab, abab}, b 7→ {abb}.

This substitution ϑ has no letter admitting a splitting pair, however both letters admit split-

ting pairs for the square ϑ2. Hence, the corresponding RS-subshift has positive entropy.

♦

We conjecture that for primitive substitutions, the converse of Theorem 36 is also true up

to taking powers. That is, for a primitive random substitution ϑ, we make the conjecture

that the RS-subshift Xϑ admits positive topological entropy if and only if there exists a power

k ≥ 1 and a letter a ∈ A such that a admits a splitting pair for ϑk. It is possible that this is

further equivalent to being non-minimal—we have not yet found an example of a non-minimal

primitive RS subshift with zero topological entropy.

Example 40. Consider the random Fibonacci substitution. By the previous theorem, we

know that the corresponding RS-subshift has positive entropy because a admits the splitting

pair ab and ba. The precise value is
∑∞

i=2
log(i)
τ i+2 ≈ 0.444399, which can be found in [24, Ch.

3].
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6. Examples and open questions

Our guiding example has been the random Fibonacci substitution. There are of course a

plethora of other interesting and illuminating examples of random substitutions exhibiting

a varied landscape of behaviours. We highlight just a few of these examples, both familiar

and exotic, that help to illustrate some of the possible behaviours that one can expect RS-

subshifts to display. Along the way, we then highlight some of the key open questions that

these examples naturally give rise to. The examples and open questions appearing in this

section are far from exhaustive, owing to the relative youth of the study of RS-subshifts.

Example 41. Let A = {0, 1} be a binary alphabet. Let AZ be the full shift on A. We leave

it as an exercise to the reader to show that if we define the random substitution ϑ by

ϑ : 0 7→ {00, 01, 10, 11}, 1 7→ {00, 01, 10, 11},

then ϑ is primitive and Xϑ = AZ. By writing the full shift in terms of a random substitution,

this offers a novel proof for the well-known property that the full shift is topologically transitive

and has a dense set of periodic points via a simple application of Propositions 13 and 15 and

the observation that the periodic element · · · 000.000 · · · is in the full shift.

Example 42. We can give another representation of the full shift on two letters as an RS-

subshift which is in some ways more appealing, although the substitution is an example where

the set of realisations of a substituted letter is infinite. Due to this, one should be careful

when applying the machinery that has been set up in the previous sections, as not all methods

of proof carry over in the infinite-image case. For instance, the proof of Theorem 36 relies on

the existence of a number N ≥ |ϑ(aj)| for every aj ∈ A, which this particular example does

not satisfy (even though the conclusion of positive entropy still holds).

Let the random substitution ϑ on the alphabet A = {a, b} be given by

ϑ :


a 7→ ban, with probabilty

1

2n+1
, n = 0, 1, . . .

b 7→ abm, with probabilty
1

2m+1
, m = 0, 1, . . .

.

The substitution ϑ is primitive. Any word u ∈ A+ can be written as u = an1bm1an2bm2 · · · ankbmk

with ni,mi ≥ 1 for all 1 ≤ i ≤ k except possibly n1,mk = 0. The word u can then be rewritten

as

u = an1−1(abm1−1)(ban2−1)(abm2−1) · · · (bank−1)(abmk)

where we obviously regroup letters if n1 = 0. This then shows that u is a subword of a

realisation of ϑ((ab)k). As (ab)k J ϑ(bak) J ϑ2(a), it follows that u J ϑ3(a) for all u ∈ A∗
and so Xϑ = AZ. Using the equality

∑∞
n=0 n/2

n+1 = 1, it is clear that the substitution matrix

for ϑ is just the matrix

Mϑ =

[
1 1

1 1

]
and so we have Perron–Frobenius eigenvalue λϑ = 2 and normalised left and right eigenvectors

L = [1, 1] and R = [1/2, 1/2]T . For ease of notation, let us write the two-letter word xy as
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xy in its ‘right-collared’ form. The induced substitution ϑ2 on two-letter words is given by

ϑ2 :



aa 7→


bb, with probabilty

1

2

baa
n−1
a ab, with probabilty

1

2n+1
, n = 1, 2, . . .

ab 7→ baa
n
a , with probabilty

1

2n+1
, n = 0, 1, . . .

ba 7→ abb
m
b , with probabilty

1

2m+1
, m = 0, 1, . . .

bb 7→


aa, with probabilty

1

2

abb
m−1
b ba, with probabilty

1

2m+1
, m = 1, 2, . . .

.

with associated induced substitution matrix given by

Mϑ2 =


1/2 1 0 1/2

1/2 0 1 1/2

1/2 1 0 1/2

1/2 0 1 1/2

 .
As expected, the Perron–Frobenius eigenvalue of Mϑ2 is still λϑ2 = 2 and the left and right

eigenvectors are given by L = [1, 1, 1, 1] and R = [1/4, 1/4, 1/4, 1/4]T .

The above suggests that the measure µ associated with ϑ most likely coincides with the

uniform Bernoulli measure for the full shift.

Example 43. Let A = {0, 1}. Let F = {11} be the set of forbidden words for the shift of

finite type

XF = {w ∈ AZ | u ∈ F =⇒ u /∈ L(w)}.

The subshift XF is often called the golden mean shift. We claim that the RS-subshift Xϑ

associated with the primitive random substitution given by

ϑ : 0 7→ {010, 0}, 1 7→ {01, 1}

is equal to the shift of finite type XF . Clearly the word 11 is not in the language Lϑ because

there is no letter a such that 11 J ϑ(a) and the only two letter word ab such that 11 J ϑ(ab)

is ab = 11 itself. So we clearly have Xϑ ⊆ XF .

For the other inclusion, let u ∈ L(XF ). Suppose that |u|1 = m. We can form the word

(01)m+1 as a subword of ϑm+1(0) by always realising ϑ(0) as 010 and ϑ(1) as 1. We may

then generate u from (01)m+1 by ‘padding out’ enough 0s in between the 1s. For instance, to

generate the word 0100100010 we substitute

(01)4 = 0101̇01̇01 7→ 0 1 0 01 0 01̇ 0 1 7→ 0 1 0 0 1 0 0 01 0 1,

where a dot above a letter indicates that it will be substituted non-trivially. This word

contains 0100100010 as a subword. In this way, every element of the language L(XF ) is legal

for ϑ and so XF ⊆ Xϑ.
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The above result can be generalised using a more systematic method. It can be shown that

every topologically transitive shift of finite type can be realised up to topological conjugacy

as a primitive RS-subshift [19].

Example 44. Let A = {0, 1} be a binary alphabet. Let

ϑPD : 0 7→ {01, 10}, 1 7→ {00}

be the so-called random period doubling substitution, see [3, 21]. The substitution matrix is

given by

MϑPD
=

[
1 2

1 0

]
which is primitive with Perron–Frobenius eigenvalue λϑPD

= 2 and normalised left and right

eigenvectors L = [13 ,
1
3 ] and R = [2, 1]. This implies that the ratio of 0s to 1s in any substituted

word will be 2 : 1. It follows that if any periodic element w of XϑPD
exists, the periods of x

must be divisible by 3. Indeed, we find that the 3-periodic element · · · 001 001.001 001 · · · is

ϑPD-legal. The word 001 appears as a subword of 0010 J ϑPD(10) J ϑ2PD(0). From 001 we

can generate any power (001)k as a subword of ϑnk
PD(001) for some nk by using the rule that

we always substitute 00 7→ 10, 01 7→ 01 and 1 7→ 00, where here we use the notation that xy
is any appearance of x immediately preceding a y. Thus, we have

001 7→ 10 01 00 7→ 00 10 01 00 10 01 7→ 10 01 00 10 01 00 10 01 00 10 01 00 7→ · · ·

The method for producing a periodic point in this way is rather ad hoc. It would be useful

to have a method which works in general. Certainly, as in the case of the random Fibonacci

substitution, a sufficient obstruction to periodic points existing in the RS-subshift is for the

relative frequencies of a pair of letters (or words of a given length `) to be irrationally related

for all elements of the subshift.

Question 45. Does there exist an effective method for determining if Per(Xϑ) is empty or

non-empty?

By Proposition 15, the periodic points of XϑPD
form a proper dense subset (proper because

not all elements are periodic). Although Theorem 36 tells us that XϑPD
has positive entropy,

we actually know more. For the specific case of ϑPD being the random period doubling

substitution, the entropy htop(XϑPD
) has been calculated in [3] to be

htop (XϑPD
) =

2

3
log 2.

Certain aspects of the RS-subshift XϑPD
are similar to those of an irreducible shift of finite

type. For instance XϑPD
is a Cantor set by Proposition 18, is topologically transitive by

Proposition 13, contains a dense set of periodic points, and has topological entropy given by

the logarithm of an algebraic number.

Recall that a subshift X is topologically mixing, or just mixing if for all u, v ∈ L(X), there

exists an N ≥ 0 such that for all natural numbers n ≥ N , there exists a word w of length

|w| = n such that uwv ∈ L(X). Recall that if f : X → Y is a factor map of dynamical

systems, then if X is mixing, so is Y . A shift of finite type is called primitive if it is conjugate
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to an edge shift of a directed graph G whose adjacency matrix AG is primitive. A shift of finite

type is primitive if and only if it is mixing [22, Prop. 4.5.10], hence all factors of primitive

shifts of finite type are mixing.

Let u = v = bb. This word is ϑPD-legal. Moreover, bb can only ever appear as a ϑPD-legal

subword of the word abba with the only possible partition of this word into legal substituted

words being abba = (ab)(ba)
•
= ϑPD(a)ϑPD(a). Suppose there exists a word w of odd length

such that uwv is legal. By the above, this means that the word auwva must also be legal, and

moreover this word can be partitioned exactly into legal substituted words because the end

points of this word are uniquely partitioned as such. However, every substituted word has

even length, and so the length of auwva must also be even. This contradicts the assumption

that the length of w is odd. It follows that XϑPD
is not mixing and so XϑPD

cannot be a

factor of a primitive shift of finite type.

It would be nice to extend the above argument to a general class of random substitutions

which are not mixing. Clearly some RS-subshifts are mixing, as in the case of the golden

mean shift and the full shift.

Question 46. Given a primitive random substitution ϑ, can we determine necessary or

sufficient conditions for Xϑ to be topologically mixing?

As RS-subshifts have potentially non-trivial subsets of periodic points, it makes sense to

try and characterise the structure of the periodic points of an RS-subshift. This is often

studied via the Artin-Mazur zeta function of the subshift. The zeta function ζϑ is defined by

ζϑ(z) = exp

( ∞∑
n=1

|Fix(Sn)|z
n

n

)
(6)

where Fix(Sn) = {w ∈ Xϑ | Sn(w) = w}. The zeta function is an invariant of Xϑ up to

topological conjugacy. The zeta functions of shifts of finite type have been well studied [22]

and so we can determine ζϑ for some of the examples considered in this section. In fact, the

zeta function is just given as the reciprocal of a polynomial determined by a non-negative

matrix associated to the shift. For instance, we know that the golden mean shift of Example

43 has zeta function ζϑ(z) = (det(1− z[ 1 1
1 0 ]))−1 = (z2 − z − 1)−1. This relies on us knowing

that the golden mean shift can be represented as a shift of finite type however.

Example 47. One can also describe some sofic shifts of non-finite type using random sub-

stitutions. Consider the random substitution

ϑ : a 7→ {ab, ba}, b 7→ {ab, ba}.

It is not difficult to see that Xϑ is a sofic subshift. The right-resolving graph of Xϑ is shown

in Figure 1—elements of Xϑ are precisely those coded by bi-infinite directed paths in the

right-resolving graph with the corresponding edge-labels. Applying standard techniques [22,

Thm. 6.4.8], we find that the zeta function ζϑ is given by

ζϑ(z) =
1− z2

1− 2z2
,
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21 3

a a

bb

Figure 1. The right-resolving graph representation of Xϑ as a sofic shift.

whence Xϑ cannot be an SFT. However, using the explicit structure of ϑ, there is an elemen-

tary method for determining ζϑ. One quickly verifies that |Fix(Sn)| = 2k+1−2 if n = 2k, and

0 otherwise. This comes from the fact that every legal word of length 2k can appear as the

periodic block in a periodic word of period 2k. Such a word is either an exact concatenation

of words of the form ϑ(a) so u
•
= ϑ(a)k (of which there are 2k choices of ϑ(a)) or is the exact

concatenation of words of the form ϑ(a) extended by either an a or b on the left and then

by the other choice of b or a on the right so u
•
= xϑ(a)k−1y where x 6= y (of which there are

2 · 2k−1 = 2k choices). The only words of length 2k that can be formed in both ways are the

words (ab)k and (ba)k, as any appearance of the subword aa or bb uniquely determines the

supertile structure. It follows that we have 2k + 2k − 2 = 2k+1 − 2 possible legal words of

length 2k and hence |Fix(Sn)| = 2k+1 − 2.

Now, by Eq. (6), we calculate

ζϑ(z) = exp
(∑∞

k=1(2
k − 1) z

2k

k

)
= exp

(∑∞
k=1

(2z2)k

k −
∑∞

k=1
(z2)k

k

)
= exp

(
− log(1− 2z2) + log(1− z2)

)
= 1−z2

1−2z2 .

We have also calculated, via ad hoc methods, the first few terms of the zeta function of the

random period doubling substitution to be ζϑPD
(z) = exp(z3 + 15

6 z
6 + 21

9 z
9 + 375

12 z
12 + · · · ) but

we presently have no method for determining arbitrarily large terms and are far from being

able to present ζϑPD
(z) as a closed form expression in z.

Question 48. Given a primitive random substitution ϑ, does there exist an effective method

for calculating its zeta function ζϑ?

As suggested by the results of Section 5, the topological entropy is also a useful invariant

of RS-subshifts. Again, in the case that the RS-subshift is conjugate to a shift of finite type,

there are well-known methods for calculating the topological entropy of the subshift, given

in terms of the logarithm of the Perron–Frobenius eigenvalue of an integer matrix [22, Thm.

4.3.1]. Also, for specific examples, and small families of examples which are not shifts of

finite type, we can give an explicit description of the topological entropy [3, 18, 24, 27, 34].

However, these methods do not obviously generalise.

Question 49. Given a primitive random substitution ϑ, does there exist an effective method

for calculating the topological entropy of its RS-subshift htop(Xϑ)?
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[4] V. Berthé and V. Delecroix, Beyond substitutive dynamical systems: S-adic expansions, RIMS
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