
1 
 

 

 

 

 

 

“Marine biotechnologies for the decontamination 

and restoration of degraded marine habitats” 

PhD Candidate: Filippo Dell’ Anno (F7057844) 

 

 

Thesis submitted for the degree of Doctor of Philosophy, XVIII Cycle 

November 2019 

 

The Open University, Milton Keynes (UK), School of Life, Health and Chemical 

Sciences 

Stazione Zoologica Anton Dohrn Naples (Italy), Department of Marine 

Biotechnology 



2 
 

Supervision Pannel: 

Director of Studies: Dr. Adrianna Ianora (Stazione Zoologica Anton Dohrn, IT) 

Internal Supervisor: Dr. Clementina Sansone (Stazione Zoologica Anton Dohrn, IT) 

External Supervisor: Prof. Antonio Dell’ Anno (Università Politecnica delle Marche, IT) 

Advisor: Prof.  Alan Dobson (University College Cork, Ireland) 

 

Examiners: 

External Examiner: Prof. Peter Golyshin (Bangor University, UK) 

Internal Examiner: Dr. Paolo Sordino (Stazione Zoologica Anton Dohrn, IT) 

 

Chair: Dr. Alessandra Gallo (Stazione Zoologica Anton Dohrn, IT) 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

Abstract 

This research presents the results obtained using a bioremediation approach aiming to 

enhance natural remediation of the Bagnoli-Coroglio area, a post industrial site in the 

Gulf of Naples, Italy, characterized by the presence of several pollutants released in 

almost a century by the ILVA steel plant. In particular, the thesis evaluates the benthic 

microbial taxonomic composition of this area after ten decades of pollution. Results 

indicate the prevalence of the Phyla Proteobacteria, (36.7%), Planctomycetes (20.5%) 

and Bacteroidetes (9.6%) and the presence of a core microbiome suggesting that 

pollutants and other abiotic factors may have contributed to shape benthic prokaryotic 

communities. The thesis also evaluates the biotechnological potential of single isolates 

bacteria (Halomonas sp., Alcanivorax sp., Epibacterium sp., Pseudoalteromonas sp., and 

Virgibacillus sp.) and mixtures of these species isolated from polluted sediments 

collected from Bagnoli-Coroglio area and the Sarno river mouth, another polluted site 

in the Gulf of Naples. Laboratory tests highlighted the ability of mixed cultures and single 

taxa to degrade PAHs (Polyclic Aromatic Hydrocarbons) and precipitate heavy metals 

from culture media. Results of Sequential Selective Extraction (SSE) analysis emphasized 

the ability of mixed cultures to reduce the mobility of As, Cd and Zn by changing their 

partitioning in the geochemical fractions. Full genome sequencing of isolated strains has 

allowed for the genetic and molecular characterization of mechanisms underlying 

processes of degradation and detoxification of xenobiotics. In particular, many genes 

involved in hydrocarbon degradation pathways and in heavy metal detoxification 

systems have been identified. My results suggest a potential biotechnological 
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application of these strains in waste-water treatment as well as decontamination of 

polluted sediments. 
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Chapter 1 

1) General Introduction 

1.1) Bioremediation: state of art 

Compounds like polycyclic aromatic hydrocarbons (PAHs), polychlorinated byphenyls 

(PCBs) and different forms of heavy metals and metalloids are released into the 

environment through incomplete combustion of organic matter (Wuana and Okieimen 

2011), the runoff from soil (Aly Salem et al. 2013) and improper industrial discharges or 

waste disposal practices. Such toxic compounds represent a severe threat to human and 

ecosystem safety and health (Ben Chekroun et al. 2014, particularly in coastal and 

transitional ecosystems characterized by high contamination levels due to high 

anthropic pressure and reduced hydrodynamism (Zheng et al. 2011). The accumulation 

of high concentrations of pollutants in the sediments can determine significant impacts 

on biodiversity and the functioning of ecosystems and may affect the production of 

products and services and the use of resources. 

Contaminated sediments represent a serious problem of great interest at a global scale, 

due to the identification of large areas with high levels of pollutants. Today a list of 39 

Priority Sites to be reclaimed, included in the Italian National Reclamation Program, has 

been identified across the national territory, most of which are located in coastal and 

transition marine areas. High levels of contamination are also associated with sediments 

in harbor areas that due to handling to maintain the depth of navigation, cause 

management problems for their relocation. Historically most dredged harbor sediments 
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are discharged into neighboring coastal areas and / or used as landfill. Several studies 

have shown a clear biological impact due to dredging activities and sea-discharge 

activities of such matrices, which lead to a physical impact (i.e. induced by the 

immersion itself of dredging, burial, suffocation of benthic marine organisms) and 

toxicological effects determined by the associated contaminants (Regoli et al. 2002; 

Trannum et al. 2004; Tornero and Hanke 2016). Ecological changes resulting from the 

release of dredged material have also important effects on the provisioning of 

ecosystem’ s goods and services for human well-being in the short and long term 

(Mandal, Chatterjee, and Gosh 2011). 

The need to find management alternatives to sea discharge has led, in recent years to 

the production of different patents, for the reclamation of these matrices through ex-

situ treatments. However, national (see DL 152/2006) and international (WFD 2000/60 

EU; European Marine Strategy Framework Directive) policies are increasingly seeking 

management alternatives capable of limiting sediment handling interventions, and 

promoting the decontamination of these matrices by using eco-compatible in situ 

technologies. Among these, bioremediation technologies appear to be promising for 

their eco-compatibility, their efficiency in reducing contamination levels and their 

versatility for use in different types of contaminants and in different environmental 

contexts (Megharaj and Naidu 2017). 

In order to detoxify polluted sediments, many physicochemical techniques have been 

developed such as reverse osmosis, electrodialysis, ultrafiltration, ion-exchange and 

chemical precipitation (Crini and Lichtfouse 2018). 
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 Unfortunately, these methods present several disadvantages such as high costs, the 

generation of toxic sludges (Ahalya et al. 2003) and the inability to apply many of these 

techniques in situ. A valid solution to the problem may be represented by 

bioremediation which is an eco-friendly strategy based on the capability of prokaryotes, 

fungi and photosynthetic organisms (e.g.plants and microalgae) to enhance natural 

processes involved in the removal of contaminants thereby reducing their eco-

toxicological threat (Brar et al. 2017). Although bioremediation may in many instances 

be quite slow and may not completely remove toxic materials, it nonetheless represents 

the most promising method because based on cheap-technology with low 

environmental impact.  

Among the principal prokaryotes used in these processes the most abundant genera are 

Alcaligens, Bacillus, Enterobacter, Flavobacterium, Pseudomonas (Ojuederie and 

Babalola 2017) and  Achromobacter, Acinetobacter, Alteromonas, Arthrobacter, 

Burkholderia (Xu et al. 2018) as well as Obligate Hydrocarbonoclastic Bacteria (OHCB) 

such as Alcanivorax, Thallassolituus, Cycloclasticus, Oleispira (Yakimov, Timmis, and 

Golyshin 2007) that are widely known to successfully to be involved in hydrocarbons 

breakdown. Moreover, organisms such as Microalgae and Fungi have demonstrated 

bioremediation capabilities. Genera belonging to Microalgae such as Spirulina, Chlorella, 

Spirogyra, Scenedesmus, Oscillatoria quadripunctulata, Chlorococcum, Stigonema, 

Gloeocapsa and Tetraselmis  (Ayse, et al. 2005; Arunakumara, et al. 2008; Yao et al. 

2012; Ajayan, et al. 2011) have been shown to be able to remove heavy metals such as 

As, Cd, Co, Cr,Ni, Pb, Hg and Zn. According to Lei et al.(2007); Takáčová et al. (2014); 

García de Llasera et al. (2016) and Ghosal et al. (2016)  microalgae belonging to the 
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genera Selenastrum, Scendemus, Chlorella are effective microorganisms in PAHs 

degradation since they displayed a degradation activity towards naphthalene, 

phenantrene and pyrene. Another possibile strategy for the reclamation of polluted 

sites is mycoremediation since Fungi have been described as capable to survive in 

extreme conditions, as well as to produce a multitude of enzymes such as catalase, 

peroxidase, laccase and Cytochrome P450, suitable for detoxification and 

biodegradation (Morel et al. 2013; Durairaj et al. 2015). Fungi isolated from PAHs 

contaminated soils such as Aspergillus, Curvularia, Drechslera, Fusarium, Lasiodiplodia, 

Mucor, Penicillium, Rhizopus and Trichoderma have been described as capable to 

degrade aromatic compounds (Lladó et al. 2013; Balaji, Arulazhagan, and Ebenezer 

2014;  Chang et al. 2016) while species such as Aspergillus niger, flavus and foetidus as 

well as genera like Cryptococcus, Penicillium and Curvularia have been described to be 

tolerant, and effective in the removal of heavy metals such as Pb, Hg, and U through 

biosorption (Chakraborty et al. 2013; Mumtaz et al. 2013; Kurniati et al. 2014; Deshmukh 

et al. 2016). The mechanisms allowing removal of metals and hydrocarbons, forBacteria, 

Algi and Fungi, rely on a first passage mediated by exopolysaccharides which allows the 

uptake of contaminants on the cell surface or eventually their complexation into less 

bioavailable forms (Deshmukh et al.2016; Liu et al. 2016; Casillo et al. 2018). The metals 

once adhered to the mebrane or cell wall (depending on the microorganism) can remain 

adherent or internalized (microalgae and fungi) and chelated by molecules belonging to 

the phytokelatin classes (Perales-Vela et al.2006; Sharma et al. 2015; Khullar and 

Sudhakara Reddy 2019)  
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Generally, bioremediation processes can be enhanced by bio-stimulation of 

autochthonous assemblages (e.g. by adding different chemical compounds and or 

electron donors/acceptors) or by bio-augmentation, which consists in adding selected 

microorganisms that are able to degrade/mobilize contaminants (Catania et al. 2015). 

Bioremediation mechanisms, that can occur both under aerobic and anaerobic 

conditions, can differ due to the type of contaminant and the kind of matrix. For this 

reason, the degradation of organic pollutants involves aerobic/anaerobic respiration 

and fermentation metabolism while transformation/sequestration of heavy metals 

(which do not undergo degradation) are based on bio-accumulation, biotransformation, 

and bioleaching activities (Kumar et al.2019). The mechanisms of absorption of heavy 

metals and organic pollutants by microorganisms, although still largely unknown, seems 

to occur through physicochemical interactions with an uptake rate that is inversely 

proportional to the compound’s hydrophobicity (Zgurskaya et al.2016). Chemical and 

physical factors can enhance or inhibit this process. Indeed, small variations in pH can 

lead to formation of cationic and anionic species in both metals and organic 

contaminants that can be complexed with molecules having opposite charges expressed 

on the membrane or released in solution by microorganisms (Ayangbenro and Babalola 

2017).  Temperature also influences the stability of the ions in solution and thus the 

bioavailability of the contaminants. For example, an increase in temperature from 25 to 

40 °C changes the absorption rate of the heavy metal Pb from 0.596 to 0.728 mg/g 

(Arjoon et al. 2013). All these variables need to be carefully considered during the 

decontamination of marine sediments.  



6 
 

Numerous studies have shown that biodegradation processes of organic contaminants 

in sediments can be accelerated by adding appropriate compounds and/or electron 

acceptors/donors that can stimulate native microbial communities (Zhuang et al. 2019). 

For example, it is known that hydrocarbon biodegradation processes are mainly limited 

by the availability of N and P and dissolved molecular oxygen (Head et al2006). However, 

many authors have shown that biodegradation of hydrocarbons by microorganisms can 

also take place under reduced conditions by using alternative electron acceptors 

(sulphates, nitrates, Fe, Mn,) (Meckenstock et al.2004). In particular, microcosm 

experiments on harbor sediments contaminated by PAHs showed a significant reduction 

of different PAHs concentrations through the application of reducing sulphate bacteria 

(Nasser et al. 2017). This suggests that biostimulation strategies should be selected on 

the basis of the metabolic needs of the microbial community. In this regard, several 

studies have shown that the addition of inorganic nutrients to oil-contaminated 

sediments can stimulate the biodegradation efficiency of certain classes of compounds, 

while others, such as heavy metals,are somewhat refractory to biodegradation 

(Swannell et al.1996).  

Subsequent studies have confirmed that environmental manipulation due to the 

addition of stimulant compounds modifies natural microbial communities with 

cascading effects on their biodegradation capacity (Head et al. 2006). Therefore, in order 

to formulate more suitable and efficient bioremediation in situ strategies, it is necessary 

to understand and define existing relationships between biodegradation rates, 

contaminants involved (in the case of complex mixtures of compounds) and dynamics 

of the microbial community in structural and functional terms (Ibarrolaza et al. 2009). 
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Understanding these relationships requires a highly interdisciplinary approach and 

adequate analytical tools to enable the development of appropriate models of 

contaminant degradation in relation to biostimulation interventions. 

The development of appropriate in situ bioremediation strategies for sediment 

reclamation must take into account the performance of organic contaminants 

biodegradation processes and also the potential effects that biotreatment may have on 

the fate of heavy metals (Dell’Anno et al. 2003; Lloyd 2003). This should be carefully 

considered when sediments show significant contamination not only from organic but 

also from inorganic compounds. Different studies have shown that microorganisms play 

a key role in the mobilization/immobilization of heavy metals in sediments (Gadd 2010; 

Valls and De Lorenzo 2002). These effects can be attributed to the direct action of 

microorganisms on the different geochemical components to which the metals are 

associated and to the variations of redox potential generated by their metabolism (Malik 

2004; Tabak et al. 2005). In particular, there is evidence that in anaerobic conditions the 

dissimilation of Fe and Mn oxides and hydroxides in sediments by Fe and Mn reducing 

microorganisms affects carbon cycling as well as speciation of redox sensitive metals in 

the environment (Novotnik et al. 2019). In contrast, sulphides produced by anaerobic 

sulphate-reducing bacteria metabolism represent one of the major buffer systems for 

stabilizing metal cations by the formation of metallic-sulfur complexes (Ayangbenro and 

Babalola 2017). Moreover, degradation processes of organic matter by heterotrophic 

microorganisms can increase the mobility of the metals associated (Neagoe et al. 2012).  

Considering not only the effects of microbial biotransformation on organic but also on 
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inorganic contaminants is a prerequisite for the development of biotechnological 

strategies that are actually eco-compatible. 

 An effective bioremediation strategy should consider the bioremediation of metals and 

organic contaminants as a co-occurring process.  For example, microbial processes 

aimed at hydrocarbon degradation may change heavy metal mobility, influencing their 

bioavailability and toxicity for the biota (White, Sayer, and Gadd 1997; Lloyd 2003). 

Therefore, in bioremediation treatments of marine sediments contaminated with 

hydrocarbons and heavy metals attention should be paid both to the extent of 

hydrocarbon degradation and to the potential risks associated to changes of metal 

speciation ( Dell’Anno et al. 2003). 

Biotreatments can cause changes in the composition of the prokaryotic community 

living in the sediment. Bacterial communities in marine sediments are mainly composed 

by Alpha-, Gamma- and Deltaproteobacteria, Holophaga/Acidobacteria, 

Planctomycetales, Bacteroidetes, Verrucomicrobia, Actinobacteria, and Firmicutes (Gray 

and Herwig 1996; Polymenakou et al. 2005; Musat et al. 2006; Zhang et al.2008), while 

archaeal communities are mostly formed by Euryarchaeota (Röling et al. 2004). The 

main genera of prokaryotes involved in hydrocarbon degradation are Alcanivorax, 

Cycloclasticus, Oleiphilus, Oliespira, Pelagibacter, Pseudomonas, Roseobacter, 

Thalassolituus, Vibrio and species belonging to the phylum Flexibacter-Cytophaga-

Bacteroides (Hedlund and Staley 2006; Rappé et al. 2002; Yakimov et al. 2005; Head et 

al.2006; McKewet al. 2007). It has been observed that the application of strategies for 

sediment remediation can determine shifts in the composition of the prokaryotic 

community, with the selection of certain strains rather than others (Head et al. 2006; 
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McKew et al. 2007). Bioremediation performance may be affected by the particular 

composition of the microbial community. Röling et al. (2002), found that in microcosm 

experiments using different levels of inorganic nutrients lead to the selection of very 

different bacterial communities, but the extent of hydrocarbon degradation was similar 

in all the experimental microcosms. The establishment of synergistic relationships, co-

metabolic processes, and other interactions within a heterogeneous microbial 

community is an important aspect for the effectiveness of bioremediation strategies (Yu 

et al. 2005; McKew et al. 2007). 

Therefore, given the complexity of identifying efficient, ecologically, economically viable 

and technically applicable biotechnologies for in situ recovery of contaminated 

sediments, it is necessary to develop new research in this field through integrated 

approaches and interdisciplinary competencies. 
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1.2) PAH bacterial remediation 

The contamination of marine sediments by petroleum hydrocarbons is widespread in 

coastal regions of the world and represents a major concern for the potential 

detrimental consequences on ecosystems health and provision of goods and services 

(Lozada et al. 2014). Indeed, PAHs, which are the most common petroleum 

contaminants in the environment are considered to be potentially mutagenic and 

carcinogenic (Mao et al. 2012). Abdel-Shafy and Mansour 2016, (2016) reported that 

hydrocarbons such as Benzo [a] pyrene are genotoxic and implicated in human breast 

cancer. However, the focus has been placed on the biodegradation of low molecular 

wheight PAHs whilst little research has been carried out on the biodegradation of high 

molecular wheight PAHs that have been found to be of more relevance from a health 

perspective. Therefore, in recent years, effort has been devoted to explore remediation 

options based on treatments of sediments that are able to reduce contaminant 

concentrations to threshold levels below which no detrimental effects on living biota 

are expected to occur. Among these, environmental-friendly bioremediation 

technologies are arousing interest in the scientific community, for their potential in the 

safe remediation of oil-polluted areas, such as marine sediments ( Xu et al. 2005). 

Field and laboratory experiments demonstrated that biodegradation processes of oil-

contaminated sediments may be accelerated by enhancing biomass and / or activity of 

hydrocarbon-degrading microorganisms through biostimulation as well as 

bioaugmentation strategies (Azubuike, Chikere, and Okpokwasili 2016). In order to 

design an optimal bioremediation strategy, it is important to understand the factors that 
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enhance microbial metabolism and hydrocarbon degradation, a knowledge which could 

help restore the environment to a pre-pollution state as early as possible. 

One of the main factors affecting oil bioremediation is the physical nature of the crude 

oil: for instance, a single large oil slick has a smaller surface area for oil-eating microbes 

to access compared to numerous small-sized oil slicks and also, heavy and viscous 

hydrocarbon compounds may prove to be recalcitrant as lighter hydrocarbons are easier 

for microbes to digest due to the higher rate of diffusion through the oil-water interface 

(Zaki, Authman, and Abbas 2015). It is even important to investigate the chemical nature 

of the spilled petroleum because some unbranched alkanes can be degraded in a few 

weeks but branched alkanes and multiple-ringed aromatic hydrocarbons can be more 

resistant to microbial degradation. Asphalthenes are considered to be the most 

recalcitrant, and thus, could accumulate in the environment (Pourfakhraei et al. 2018). 

The rate of degradation depends on the availability of nutrients. The two most limiting 

elements are nitrogen and phosphorus that are incorporated into cellular biomass and 

stimulate hydrocarbon metabolism (McKew, Coulon, Osborn, et al. 2007; Calvo et al. 

2009), but even the lack of sulphur and potassium can affect bioremediation rates 

(Evans et al. 2004). Other factors that have to be considered during bioremediation are 

water temperature, oxygen concentration, sediment particle size and mineralogical 

composition. Indeed, the temperature of the surrounding water in which the oil occurs 

determines the rate of hydrocarbon degradation. It has been observed that crude oil 

degradation is faster in warm water because heat promotes the breakdown of the 

spilled petroleum that becomes more attainable to oil-degrading microbes following 

Arrhenius kinetics rules. In cold environments, sub-zero temperatures cause the shut 
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down of transport channels of cells and may even freeze the entire cytoplasm, thus, 

rendering most known oleophilic microbes metabolically inactive. However, 

manyoleophilic microbes are cold-tolerant, as most of the ocean is deep and cold (2-4 

C°) but have to deal with the problem of the freeze-thaw seasonal cycle between winter 

and summer, which limits the bioavailability of the spilled petroleum ( Yang et al. 2009).  

Oxygen concentration is a crucial factor in bioremediation processes, since most of 

oleophilic microbes are aerobes (such as Pseudomonas and Proteus) and only a few are 

anaerobes (such as Geobacter). Therefore, environments with low and or depleted 

oxygen concentrations such as oxygen minimum zones, surface sediments of highly 

eutrophic ecosystems and sub-surface sediments, have lower rates of hydrocarbon 

biodegradation compared to fully oxygenated systems (Mille et al, 1988) . 

Size matrix also influences bioremediation effectiveness since it determines the rate of 

sediment permeability, which indirectly affects the rate of petroleum biodegradation. 

Fine sediment particles such as silt / clay have small interstitial spaces which make the 

soil impermeable, thus, retaining the spilled petroleum at the surface and reducing the 

bioavailability of microbial nutrients and oxygen (Ahmad et al. 2019). Moderately 

drained soils are the optimum requirements for the rapid bioremediation of oil-polluted 

soils. pH is an additional factor influencing bioremediation as it can slow down and/or 

inhibit microbial activity. Generally higher bioremediation performance occurs at pH 

values around 6-8 (Ayangbenro et al. 2018). Even the presence of antagonistic oleophilic 

bacteria can reduce bioremediation rates since some species can release metabolites 

that inhibit the growth and development of other oleophilic bacteria. Understanding the 

interdependence of microbial populations is a requirement for the successful 



13 
 

application of bioremediation strategies (Abatenh et al. 2017). Therefore, it should be 

considered a complex array of factors in order to define efficient bio treatments whether 

they are conducted in an oxic or an anoxic environment. 

It has been observed that bacteria favor aerobic conditions for degradation of PAHs via 

oxygenase-mediated metabolism (Ghosal et al. 2016b). Usually, the first step in the 

aerobic bacterial degradation of PAHs is the hydroxylation of an aromatic ring via a 

dioxygenase which is a multi-component enzyme generally consisting of reductase, 

ferredoxin, and terminal oxygenase subunits. This enzyme leads to the formation of cis-

dihydrodiol, which is re-aromatized to a diol intermediately by the action of a 

dehydrogenase enzyme. These diol intermediates may then be cleaved by intra diol or 

extra diol ring-cleaving dioxygenases through either an ortho-cleavage or meta-cleavage 

pathway, leading to intermediates such as catechols or protocetechuate that are 

ultimately converted through β-ketoadipate pathway to citric acid cycle (CAC) 

intermediates (Shahsavari et al. 2019). Other pathways involved in bacteria degradation 

are gentisate, homogentisate, and homoprotocatechuate metabolic routes whose 

genes have been described in metagenomes and trascriptomes of Pseudomonas 

aeruginosa PAO1, Klesbiella Pneumoniae AWD5 and within a bacteria consortium 

consisting of Pseudomonas, Aquabacterium, Chryseobacterium, Sphingobium, 

Novosphingobium, Dokdonella, Parvibaculum, and Achromobacter (Yan and Wu 2017; 

Rajkumari, Paikhomba Singha, and Pandey 2018; Garrido-Sanz et al. 2019). Bacteria can 

also degrade PAHs via the cytochrome P450-mediated pathway, with the production of 

trans-dihydrodiols (Ostrem Loss and Yu 2018) or under anaerobic conditions, e.g. under 

nitrate-reducing conditions (Carmona et al. 2009).  
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There is increasing evidence indicating that biodegradation of hydrocarbons takes place 

also in anoxic conditions (Rabus et al. 2016). This opens new perspectives for the in situ 

treatment of contaminated sediments where reducing conditions below the sediment 

surface limit the usefulness of O2 as an electron acceptor (Hastings et al. 2016), which 

could be supplied to stimulate the degradation of petroleum hydrocarbons. Under 

reducing conditions, other options have to be evaluated for enhancing the in situ 

biodegradation of organic contaminants. 

In anoxic marine sediments, reductions of sulfate, Mn(IV) and Fe(III) are the primary 

terminal electron-accepting processes (Vandieken, Finke, and Thamdrup 2014). Thus, 

the microbial metabolism of hydrocarbons under anaerobic conditions may be effective 

for remediation of sediments only if the hydrocarbon oxidizers are sulfate, Fe(III), or 

Mn(IV) reducers. In this regard, previous studies demonstrated that, among the 

different anaerobic processes, hydrocarbon degradation coupled with sulfate reduction 

prevails in marine anoxic sediments (Coates et al. 1997) since sulfate is abundant in 

coastal sediments while Fe(III) is less available in massively contaminated sediments 

(Stauffert, Cravo-Laureau, and Duran 2014). Thus, the degradation of hydrocarbons in 

anoxic marine matrix under sulfate-reducing conditions has been thought to be the most 

suitable treatment (Dell’Anno et al. 2009). Despite different bacterial strains have been 

identified to degrade a wide variety of petroleum-based contaminants in anaerobic 

conditions, information on how to enhance microbial growth and biodegradation 

performance in anoxic marine sediments is still limited.  

Other possible promising tools for the enhancement of bioremediation processes in 

highly polluted environments are the use of microorganisms able to produce surfactant 
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compounds (Radmann et al. 2015) that can be defined as amphiphilic molecules 

presenting hydrophobic and hydrophilic features (Lee et al. 2008). These molecules can 

promote bioremediation processes by increasing the contact angle between sediments 

and pollutants, which induces the separation of hydrophobic contaminants from the 

sediment and, at the same time, makes them more soluble by partitioning them into 

internal hydrophobic cores of surfactant micelles (Cameotra and Makkar 2010). Thus, 

biosurfactants can enhance the removal of contaminants from the sediment matrix 

through chemical interactions and by increasing solubility and mobility of organic 

pollutants (i.e. bioavailability).  Nikolopoulou et al.  (2013) have shown data confirming 

the effectiveness of rhamnolipids in the remediation of crude oil contaminated matrixes. 

After adding rhamnolipids to a solution of crude oil and sand (5 g: 1000 g) a degradation 

rate of 30% for fluorene, almost 20% for phenanthrene and 10% for dibenzothiothene 

was observed after 15 days. Another biosurfuctant able to enhance the biodegradation 

of crude oil is a glycolipid produced by Candida bombicola that allows 80% 

biodegradation of saturates and 72% of aromatics (Kang et al. 2010). A series of dynamic 

column elution tests conducted by Bordas, Lafrance, and Villemur, (2005) suggest that 

rhamnolipids at a high concentration (5.0 g/L) could remove ∼70% of the pyrene in soil. 

Pyrene removal from the contaminated soil can be enhanced through the addition of a 

biosurfactant extracted from P. aeruginosa SP4. The addition of 250 mg/L biosurfactant, 

determined a pyrene removal rate of 84.6% compared to 59.8% for the control sample 

without any surfactants (Jorfi et al. 2013). A study conducted by Cheng, Zhao, and Wong  

(2004) showed a reduction in the absorption of PAHs in the soil or an increase in its 

desorption rate, through the combined use of non-ionic surfactants (Tween 80) and 
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biosurfactants in soil-aqueous systems under thermophilic conditions. The data showed 

that the concentration of the surfactant, which must be above the respective CMC 

(critical micelle concentration), increased the solubilization/desorption of PAHs from 

the soil to the aqueous phase in a dose-dependent manner. Therefore, the use of a 

mixture of surfactants should be further investigated since it could be a promising 

synergistic tool for the bioremediation of PAH contaminated soils.   

Coastal marine sediments subjected to strong anthropogenic inputs are sometimes 

characterized not only by high concentrations of petroleum hydrocarbons, but also by 

high heavy metal contents, whose fate in the environment is influenced by microbial-

mediated processes (Ezekwe and Utong 2017). Microbial processes may, indeed, either 

increase or decrease heavy metal mobility, thus influencing their bioavailability and 

toxicity (Caporale and Violante 2016). Therefore, the bioremediation of marine 

sediments contaminated by organic and inorganic pollutants should not only identify 

the best conditions for increasing the biodegradation yields of organic xenobiotics, but 

also assess the potential risks associated to changes in heavy metal speciation 

(Dell’Anno et al. 2003). 

The need for reliable techniques capable to degrade petroleum derivatives have led to 

the release in 1981 of the first patent (US Patent 4259444) of a living organism involving 

engineered Pseudomonas strains. To date, another living organism (Geobacillus sp.) has 

been patented (US 20130295650A1) capable to degrade organic recalcitrant compounds 

such as PAHs, PCB, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-

furans (PCDD/Fs). Although the application of this patent provides the ability to remedy 

both ex situ and in situ sediment samples, numerous factors, such as the yield of 
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bioremediation over time, the samples pretreatment with chemical solvents and the 

need for 60 degrees to reach the optimum temperatures for Geobacillus sp. activity, 

highlight the need to patent biological systems of simpler applicability. 
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1.3) Heavy metal bacterial remediation 

In all aquatic systems, the sediment is the compartment where metals and other 

pollutants accumulate and may enter food webs, with detrimental effects for the 

environment and human health (Lim et al. 2008). Although the contamination of 

sediments is often due to both the presence of organic and inorganic pollutants, metals 

are of growing concern in the field of water quality management. Understanding the 

dynamics of metal behavior in water environments has been a major focus to 

environmental scientists for years and the interest in this area continues to grow, as 

regulatory agencies are faced with the regulation, mitigation and remediation of water 

bodies and contaminated sediments (Carvalho 2017). Indeed, the remediation of 

contaminated sediments remains a key challenge, especially in connection with the 

interest in biotechnological approaches, which would offer environmentally friendly and 

cost-feasible strategies. 

Whereas organic pollutants have been the objective of a very large number of studies 

that have produced a large number of patents, effective techniques for metal 

decontaminants are reduced to post mining remediation. This is very likely due to a 

partial understanding of the complex behavior of metals in environmental matrices 

including sediments that are, in turn, affected by complex geochemical and biological 

processes. Thus, understanding key variables controlling metal “behavior” under 

different conditions is a pre-requisite for planning successful biotreatments for the 

bioremediation of sediments contaminated with metals (Fonti, Dell’Anno, and Beolchini 

2015). 
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Industrial and commercial activities and low hydrodynamics are the main factors for the 

accumulation of high concentrations of metals and metalloids (e.g. As) in the sediments 

of marine coastal areas (Zouch et al. 2018). 

The sediment is an essential, integral and dynamic part of marine systems. It consists of 

a complex and heterogeneous matrix of many different components and phases, 

including crystalline minerals, hydrous metal oxides, salts, calcareous biogenic particles 

and organic substances (Brils 2008). The composition of shallow marine sediments 

changes from site to site, because it is closely related to the geology and hydrography 

of the adjacent land areas, to the local climate and the socio-economic significance of 

the water systems they come from (Preda and Cox 2005). Trace metals, such as Cd, Hg, 

Zn, Ni, Cr, Pb, Cu, and semi-metals, like As, enter water systems due to multiple 

processes: atmospheric deposition, erosion of bed-rock minerals, in-stream of industrial 

effluents and other anthropogenic sources (Colacicco et al. 2010). Once metals reach 

the water column, sediments act as a sink, since they adsorb and accumulate metals by 

several mechanisms: particle surface absorption, ion exchange, co-precipitation and 

complexation with organic substances. The distribution of metal contaminants in the 

various phases of the sediment affects their behavior in the water system, including, 

their mobility, bio-availability and toxicity (Devi and Bhattacharyya 2018). 

Metals and metalloidsthat accumulate into the sediment can reach concentrations that 

are much higher than in the water column and become a very important secondary 

source of contamination, with detrimental effects on the ecosystem and on human 

health. Resuspension phenomena lead to the release of soluble metals entrapped into 

the sediment or to changes in the oxidation/reduction state which cause the release of 
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insoluble metals by the different components of the sediment (Toes et al. 2008). 

Resuspension phenomena induced by dredging activity can lead to the remobilization 

of historically accumulated metals in deeper sediment layers, which contributes to 

elevated metal concentration in the overlying waters. As a consequence, metals and 

semi-metals become bio-available to benthic organisms and the whole ecosystem 

(Chon, Ohandja, and Voulvoulis 2012). Furthermore, trace metals entering natural 

waters become part of the water-sediment system and their distribution, potential 

release into the water-phase and bio-availability is highly affected by the physiochemical 

characteristics of the sediment and the bioavailability of pollutants (Olaniran, Balgobind, 

and Pillay 2013), in a dynamic set of physical-chemical interactions and equilibria. The 

releasing intensity of metal contaminants from the sediment into the water is controlled 

by properties of the sediment, like oxidation-reduction state, concentration and type of 

complexing agents, particle size distribution, concentration of acid volatile sulfides but 

also by other factors, like pH of the water, levels of bioturbation and by rainfall and 

runoff events (Zhang et al. 2014; Burton et al. 2008). 

Coastal aquatic ecosystems characterized by high commercial and industrial exploitation 

are usually characterized by high concentrations of metals and semi-metals. Among 

these, harbor systems need to be periodically dredged in order to maintain the 

navigation depth and facilitate sailing. Nevertheless, dredging activities may also 

suspend a significant amount of metals and induce oxidation-reduction changes that 

may increase the bio-availability of metals and favor their entry into the food web 

(Eggleton and Thomas 2004). However, when dredging operations are unavoidable, 

these produce very large volumes of contaminated sediments and will lead to the 
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problem of the management of such materials. On the basis of an estimate by Junakova 

and Junak  (2017) around 100 and 200 million cubic meters of contaminated sediment 

might be produced yearly in Europe. 

Conventional remediation strategies can include in-situ sediment remediation strategies 

and relocation actions. In the first group, natural recovery consists in allowing natural 

attenuation processes without human intervention, and in situ-capping with either inert 

or reactive barriers, without dredging activities. In other cases, such as for confined 

disposal facilities and contained aquatic disposal, dredging is followed by disposal in 

submerged or partially saturated facilities. Relocation actions include mainly landfill 

disposal and dumping at sea (Adriaens, Li, and Michalak 2006). Natural recovery has 

become unsustainable, for political and social reasons, as well as problems associated 

with difficulties to quantify contaminant transport pathways. Application of in-situ 

capping and in-situ confined aquatic disposal are limited due to uncertainties about 

long-term stability under various environmental conditions. Landfill disposal, confined 

disposal facilities or dumping at sea are still the most applied management strategies, 

despite they also offer several disadvantages, including limited space capacity, costs and 

low sustainability, and environmental compatibility (Agius and Porebski 2008). 

Alternative approaches have received increased attention. Environmentally friendly 

techniques from treatment strategies for soils and other environmental matrices have 

been investigated for applications with sediments. Nevertheless, sediments are more 

difficult to treat than other waste materials, so the only technique widely used for 

sediment treatment is the separation of less polluted sand fractions, in order to 

minimize the contaminated volumes that require dumping. On the contrary, treatment 
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and reuse of dredged sediments is politically encouraged and considered as part of 

sediment management, but its application is still very limited and often characterized 

by very high costs and low feasibility (Akcil et al. 2014). 

In this context, bioremediation strategies have been recently considered as a promising 

answer to the problem of sediments contaminated also by metals (Igiri et al. 2018).  

As explained above, metal contaminants are not absolutely fixed in the sediment and 

can be mobilized in response to redox changes, such as those due to dredging activities 

and/or disposal actions, and may enter food webs with detrimental effects for the entire 

ecosystem and human health ( Peng et al. 2009). Unlike organic pollutants, metals 

cannot be degraded. They are infinitely persistent and not subjected to biological and 

chemical degradation processes occurring in the sediment, since metals can only be 

transformed into more soluble/insoluble compounds and/or in less toxic species. 

Indeed, changing their speciation has consequences on their solubility and transport 

properties, which together determine their bio-availability and affect their toxicity (de 

Paiva Magalhaes et al. 2015). As a consequence, any bioremediation strategy should be 

aimed at increasing their solubility (bio-mobilization) or increasing their stability and 

reducing their bioavailability (bio-immobilization) and toxicity. 

Biological processes leading to bio-immobilization and bio-mobilization of metals are 

components of natural biogeochemical cycles and may be exploited for the treatment 

of contaminated sediments (Jing and Kjellerup 2017). Metal mobilization can be 

mediated by a range of microorganisms and processes, including autotrophic and 

heterotrophic leaching, chelation by microbial metabolites and methylation. Similarly, 

many organisms can contribute to immobilization bio-sorption, intracellular 
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sequestration and bio-mineralization by precipitation as insoluble compounds (Tabak et 

al. 2005). Microorganisms, mainly prokaryotes, seem to find successful applications in 

bioremediation strategies. Microorganisms involved in bio-transformation strategies of 

metal contaminated sediments may be indigenous in the contaminated area or they 

may be isolated from different systems and brought to the contaminated site. In the 

first case, microorganisms are already adapted to local environmental conditions and 

bioremediation strategies consist basically in stimulating and exploiting the microbial 

function leading to bioremediation objectives (Biostimulation). In the second case, 

microorganisms are chosen on the basis of their metabolic properties, including their 

tolerance to high concentrations of metals and other contaminants, and added to 

contaminated sediments to enhance bio-transformation (Bioaugmentation) (Adams et 

al. 2015). This could require changes in natural environmental conditions (e.g. 

concentration of oxygen, pH, etc..) to favor microbial activity (Garbisu et al. 2017). 

Bioremediation strategies can be applied directly in the contaminated site, without 

moving the sediment (“in-situ”), in the contaminated area but with small scale mixing of 

the sediment (“on site” or “in-place”), or in areas or reactors designed for sediment 

treatment, that require removal and transportation (“ex-situ)”. 

Bioleaching is considered a promising ex situ strategy for metal bio-mobilization from 

contaminated sediments (Sabra et al. 2013). Bioleaching finds applications mainly in 

mining industries, and is considered a potential technique also for soil and sediment 

treatment. It is based on the exploitation of chemolithotrophic Fe/S oxidizing bacteria 

(e.g. Acidithiobacillus ferrooxidans), isolated from acid coal mine drainage, that are able 
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to oxidize elemental sulfur, and reduced sulfur compounds and/or ferrous ions, leading 

to metal solubilization through their metabolic products (Rawlings and Johnson 2007). 

Bio-immobilization strategies involving indigenous prokaryotes of the sediment consist 

mainly in bio-mineralization of metals into the sediment to reduce metal mobility, and 

consequently their toxicity. For example, indigenous sulfate-reducing bacteria in the 

sediment can be stimulated to immobilize a wide range of metals in highly insoluble 

sulfides. This approach is considered an efficient way for removing toxic metals from 

surface and underground waters (Tabak et al. 2005). 

Both bioleaching and bioimmobilization can represent alternative biotechnological 

environmental friendly techniques for treating contaminated sediments. Their 

application is still to be considered as potential, and many aspects of their use need to 

be further investigated. 

A new approach based on biosurfactant-producing microorganisms can be applied for 

the remediation of sediments contaminated with metals (Zouboulis et al. 2003; Aşçi, 

Nurbaş, and Açikel 2007). 

The desorption mechanism of heavy metals by biosurfactants occurs through 

complexion with free metals, according to the principles of Chatellier (according to 

which a system at equilibrium subjected to a change readjusts itself to counteract the 

effect of the applied change to establish a new equilibrium), and also with the linkage 

of metals bound to the solid matrix, and the bio-surfactant which consequently 

accumulates at the solid solution interface (Singh and Cameotra 2004). 
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Mulligan, Yong, and Gibbs, (2001) suggested that the metals present in the solid matrix 

can be seized by surfactants because these are initially absorbed in the matrix surface 

layer after which they are complexed with metals, promoting their detachment. 

The decontamination of the solid matrix is complicated because of the strong bonds 

between metals and soil which depends on sediment composition, particle size, soil pH, 

cation exchange capacity (CEC), type and time of contamination. At the same time a 

prolonged contact between metals and soil determines a strengthening of the links 

between components (Singh and Cameotra 2004). 

The biosurfactants most commonly used in heavy metal bioremediation include 

molecules with an electric charge, i.e. cationic and anionic biosurfactants, that bind 

metals having opposite charge and removing them through desorption (Ławniczak, 

Marecik, and Chrzanowski 2013). Such molecules bind the metals through the polar 

heads, which, as described by Satpute et al. (2010), point to outside of the micelles; 

whereas the hydrophobic residues are oriented toward the micelle core. 

The most well characterized anionic biosurfactants are the rhamnolipids which are able 

to form micellar- and lamella-like structures or lipid aggregates, exhibiting negative 

charges at low pH, even if their highest surface activity is at near neutral pH (ca. 7.0-7.5; 

(Mulligan and Wang 2006)). 

Due to these characteristics, few studies have demonstrated the ability of rhamnolipids 

to desorb heavy metals such as cadmium, copper, lanthanum, lead, zinc and nickel from 

contaminated sediments (Mulligan 2005). As demonstrated by Herman, Artiola, and 

Miller (1995) and by Frazer (2000), rhamnolipids preferentially complex with metals 
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that, due to a higher affinity, are toxic such as cadmium and lead, rather than sediment 

or soil metal cations such as calcium and magnesium. For example, Dahrazma and 

Mulligan (2007) have reported that the sediment removal rate of Cu, Zn, Ni, was 

respectively 37%, 13%, and 27%. Another study by Juwarkar et al. (2008) shows the 

efficacy of using di-rhamnolipids in remediation of soil contaminated by metals. These 

authors observed a significant soil bioremediation equal to 92%, 88%, 92%, 78%, 88% 

for Cr, Pb, Cd, Ni and Cu, respectively. 

Studies conducted on Pseudomonas aeruginosa, a bio-surfactant producer bacterial 

strain, have shown that it is able to selectively bind the cationic metals Pb, Zn and Cd. In 

particular, the P. aeruginosa ATCC9027 strain is able to produce and release 

rhamnolipids with a removal capacity of Cd equal to 92% (Tan et al. 1994). A comparative 

study conducted by Mulligan, Yong, and Gibbs (2001) has analyzed the removal rates of 

Cu and Zn from sediment by three different bio-surfactants. In particular, the authors 

found that a single washing step with sophorolipids was able to remove 25% of copper 

and 60% of zinc, while single washing with rhamnolipids removed 65% of copper and 

18% of zinc.  Surfactin, a lipopeptide, was the least effective because the removal of Cu 

and Zn from the sediment was 15% and 6%, respectively. These data confirm previous 

studies by Mulligan, Yong, and Gibbs (1999) showing that surfactin obtained from 

Bacillus subtilis, achieved removal rates of Cu and Zn of around 25% and 6%. Massara, 

Mulligan, and Hadjinicolaou (2007) have shown the possibility to employ biosurfactants 

in [Cr(III)], [Cr(VI)] soil remediation. These authors investigated the effects of 

rhamnolipids in kaolinite contaminated with chromium. Data showed the ability of 

biosurfactants to remove 25% of the stable form of Cr(III), to enhance the removal of Cr 
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(VI) by two-fold, and to reduce up to 100% of extracted Cr(VI) to Cr(III) over a period of 

24 days. Another study conducted by Ara and Mulligan (2008), has evaluated the 

effectiveness of the use of rhamnolipids for the removal and reduction of Cr(VI) from 

contaminated soil and water. Rhamnolipids were able to reduce the initial Cr(VI) in 

water by 100% when present at low concentration (10 ppm) and under optimum 

conditions (pH 6, 2% rhamnolipid and 25°C).  At higher initial Cr(VI) concentrations (400 

ppm), 24 hours were required to reduce Cr by 24.4%. In soil, rhamnolipids were only 

capable of removing the soluble fraction of Cr.  Data further supported that the 

extraction of metals was enhanced by increasing the initial concentration in the soil, but 

diminished slightly with temperatures above 30°C. Other indications on chromium 

removal have been provided by Gnanamani et al. (2010) who studied the 

bioremediation of Cr(VI) using a lipopeptide biosurfactant produced by Bacillus sp. 

MTCC 5514. Remediation involved two processes: the reduction of Cr(VI) to Cr(III) 

through extracellular chromoreductase and the entrapment of Cr(III) by the 

biosurfactant. The first process transformed the toxic state of chromium into a less toxic 

state and the second avoided the exposure of the bacterial cells to Cr(III). Both reactions 

maintained the bacterial cells active throughout the entire experiment and promoted 

tolerance and resistance to high concentrations of both forms of chromium. Further 

information on the efficacy of rhamnolipids has been provided by Slizovskiy, Kelsey, and 

Hatzinger (2011) comparing the ionic rhamnolipid biosurfactant (JBR-425) with cationic 

surfactant (DPC) and a non-ionic surfactant (mmonyxKP). Results indicated the best 

removal rate for the ionic rhamnolipid biosurfactant (JBR-425), with a removal of about 

(Zn) 39%, (Cu) 56%, Pb 68% and (Cd) 43%.  A study conducted by Okoro (2007) 
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highlighted that also saponin, a particular biosurfactant, can be efficient for heavy metal 

removal from soil and sediments. In their experiments, the soil was contaminated with 

890 mg/Kg of zinc, 260 mg/Kg of copper, 170 mg/Kg of nickel and 230 mg/Kg of total 

petroleum hydrocarbons. The highest removal rates (88% for zinc at pH 3 and 76% for 

nickel at pH 5) were obtained after five washings with a saponin concentration of 30 g/L. 

The sediment, containing 4440 mg/Kg of zinc, 94 mg/Kg of copper and 474 mg/Kg of 

lead, after treatment with saponin (30 g/L) led to zinc and lead removal rates of 33% 

and 24%, respectively. Chen, Hsiao, and Chen (2008) found that 2000 mg/L of saponin 

was able to remove 83% and 85% of copper and nickel, respectively, from soil. Song, 

Zhu, and Zhou (2008) observed the suitability of saponin in removal treatment of soils 

contaminated with both organic and inorganic contaminants such as phenanthrene and 

cadmium. The removal rates for phenanthrene and cadmium were 87.7% and 76.2%, 

respectively, demonstrating the possibility of organic and inorganics pollutants removal 

by the biological tensioactive saponin, which may be an additional tool for 

bioremediation processes. 
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1.4) Towards an Omics bioremediation approach  

 The development of Next Generation Sequencing (NGS) techniques and in silico 

analyses have allowed improvements in the field of taxonomy leading to the 

identification of many novel microbes capable of degrading or reducing the damaging 

effects of several environmental hazardous compounds (Czaplicki and Gunsch 2016a). 

This high throughput technology has been very useful to better understand the 

composition of microbial communities that were not accessible using traditional culture 

dependent approaches. However, the identification of new microorganims is not 

sufficient to have a complete knowledge of the dynamics of indigenous microbial 

consortia (Yang et al. 2016). 

To this extent, economically feasible studies relying on metagenomics, 

metatranscriptomics, metaproteomics, metabolomics, and fluxomics along with 

bioinformatics analysis are providing massive information to really understand the 

molecular mechanisms underlying the bioremediation processes of contaminants and 

how  bacteria influence each other's metabolic processes (Malla et al. 2018). Among the 

Omics tools, metagenomics has revolutionized the field of microbiology as it has 

allowed, avoiding the need to culture these organisms, concurrent analysis of thousands 

of microorganisms directly from polluted environments enabling the investigation of 

uncultured organisms in order to understand microbial community composition, 

functions and interactions, and finally their evolution under different stress conditions 

(Tripathi et al. 2018).  
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Metagenomic analysis can be divided between function-based or sequence-based 

approaches.  

More specifically, sequence-based metagenomics involves sequencing and analysis of 

DNA from environmental samples providing microbial information for gene 

identification, genome assemblages, and the identification of complete metabolic 

pathways and comparison of organisms from different communities (Loman et al. 2013). 

In contrast, function-based metagenomics is widely used to search for a particular 

function or activity. It is a powerful tool to identify antibiotic compounds as well as 

proteins involved in metabolic pollutant degradation pathways. In order to study protein 

function, function-based metagenomics involves DNA isolation from the environment 

and, after preliminary analysis necessary to identify enzymes of interest, DNA fragments 

may be cloned and expressed in the most suitable host to test the effective enzymatic 

activities. Metagenomics is a very promising tool applied to bioremediation since many 

metagenomic databases are now available, thus providing a rich stock of genes for the 

construction of novel microbial strains for targeted use in bioremediation efforts (Ngara 

and Zhang 2018). 

Although metagenomics is a powerful tool to describe microorganism community 

structure inhabiting polluted sites, it exhibits several limitations concerning gene 

expression and protein activity. To this extent, trascriptomics as well as 

metatranscriptomics, a RNA-based approach, represents a valid tool to assess the 

expression of potential bioremediative genes and thus enzymes, under stressful 

conditions. Indeed, RNA-level expression analyses provide an indirect measure of 

microbial activity, representing a better target than DNA to assess the degradation 
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ability of potential pollutants of a given microbial assemblage. Indeed, 

metatranscriptomic approaches provide information about which genes are up-

regulated under different environmental stressors and might even help in identifying 

novel degrading genes (Bashiardes, Zilberman-Schapira, and Elinav 2016). Thus, such an 

approach is very useful since it allows for the identification of key enzymes regulating 

microbial interactions in the environment. The principal limitation of 

metatranscriptomic analyses is the inability to quantify the abundance of genes since 

the genes of interest transcript number are small compared to housekeeping genes. 

However, the missing information can be supplied by carrying out a RT-qPCR analysis 

(Czaplicki and Gunsch 2016a). 

Other very promising tools often associated with transcriptomincs are environmental 

proteomics and metabolomics. Proteomics as well as metaproteomics, is based on 

protein extraction (from culture media or environmental samples), followed by a 

separation phase on liquid chromatography  and identification of the product by Mass 

Spectrometry (LC-MS)(Arsène-Ploetze et al2015; Bargiela et al, 2015). These approaches 

have been widely used to investigate the proteins expressed by microorganims under 

extreme conditions, such as hyperthermophilic conditions, since it allows for the 

investigation of the molecular basis of protein  enabling enzyme stability at high 

temperatures (Malla et al. 2018).  Moreover, despite metatranscriptomics represents a 

useful tool to monitor the physiological changes occurring in microorganisms in 

response to xenobiotics, the metaproteomic approach has some advantages since 

proteins are more stable than RNAs (especially those originating from prokaryotes). 

Thus, the metaproteome is likely to provide a better snapshot of biological mechanisms 
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expressed in situ, since this technique is supposedly less affected by extraction 

procedures compared to transcriptomics. Additionally, the proteomics approach can be 

very useful in bioremediation procedures, even without metagenomic sequences since 

as reported by Wilmes and Bond (2004) and Lacerda, Choe, and Reardon (2007), it has 

allowed, coupled with MALDI-TOF analysis, for the characterization of proteins involved 

in phosphorus removal and cadmium uptake, respectively.  

Another Omics tool capable of better elucidating the complex mechanisms occurring in 

microorganims under stress condition is metabolomics, a technique based on Gas 

Chromatography and Mass Spectroscopy to, respectively, separate and identify 

molecules. This approach, differently from proteomics which provides information 

about the total protein pattern expressed, aims to characterize the end product of 

enzyme activity e.g. the metabolites produced under a given condition ( Singh 2006). To 

this extent, Keum et al. (2008) and Wharfe et al. (2010) have been able to monitor 

biochemical and phenotypic changes in Sinorhizobium sp. and in bacterial consortia 

under the effect of aromatic compounds. In general, application of metabolome-based 

approaches, including metabolism-based wide fluxes (fluxomes), to polluted 

environmental samples provide further knowledge on how to optimize bioremediation 

strategies, since it is possible to deeply analyze the effect and the response of 

microorganisms to toxic substances as well as molecules guiding the complex 

interactions in consortia degrading pollutants.  

Even though results from the different Omics tools are providing unprecedented 

knowledge about survival mechanism and metabolism of microorganisms, a culture 

dependent approach, using a pure colony is still required since the physiological, 



33 
 

biochemical and phylogenetic characterization of the single colony allows us to more 

accurately predict the activity of microbes under different bioremediation strategies 

(Gutleben et al. 2018). 

 

1.5) Aims of the thesis 

My PhD project involves the study of a dismissed industrial site, the Bagnoli-Coroglio 

Bay situated North of the Gulf of Naples, where a large steel plant operated from 1906-

1992. My PhD project was conducted within the framework of the ABBACO project, a 

nationally-funded project that aims at the restoration of this highly polluted site. The 

results of my thesis are a separate workpackage of the ABBACO project and will provide 

information on one of the most polluted areas of Bagnoli-Coroglio, the site where most 

of the loading and unloading operations of the steel plant were conducted. My thesis 

also involves the study of samples collected in another polluted site, the mouth of the 

Sarno River in the south-west part of the Gulf of Naples, which is the most polluted river 

in Italy due to the agricultural waste and waste water from the tanning factories located 

along the river.  

The thesis is structured as follows:  

Chapter 1 with an introduction on bioremediation strategies in general.  

Chapter 2 describes the Bagnoli-Caroglio sampling site and investigates the biodiversity 

of the microbial assemblages inhabiting this polluted marine ecosystem, using a culture 

independent approach. The aim was to determine whether there were specific microbial 

taxa that were characterized by their high capacity for the degradation of organic 
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pollutants and / or resistance to PAHs and metal contamination, and understand the 

influence that environmental factors exerted on the degrading capacities of 

microorganisms.  

Chapter 3 describes the most interesting species isolated from the Bagnoli-Caroglio and 

Sarno sediments. Preliminary tests were conducted to evaluate their ability to tolerate 

high concentrations of heavy metals and PAHs. The most promising species were further 

tested in microcosm experiments using contaminated sediments to evaluate their 

potential to degrade PAHs (through HPLC) and reduce the harmful effects of heavy 

metals such as As, Cd, Cu, Pb, Zn (through Selective Sequential Extraction and Atomic 

Absorption).   

Chapter 4 involves the sequencing of the most interesting species identified in Chapter 

3 in order to obtain whole genomes and characterize potential candidate enzymes 

involved in hydrocarbon degradation pathways and leading to reduced toxicity of heavy 

metals. 

Chapter 5 including general conclusions and further perspectives.   

The three main research topics may be summarized as follows: 

1- Microbial characterization of the study area and evaluation of drivers involved in 

shaping microbial assemblages 

2- Evaluation of bioremediation potential of the most promising isolated strains 

3- Genome mining analysis to understand pathways activated by bacteria to survive in 

polluted sediments  



35 
 

Chapter 2 

Effects of multiple pollution stressors on microbial diversity: 

The case study of the Bagnoli-Coroglio area (Gulf of Naples, 

South Tyrrenhian Sea)   

In this chapter prokaryotic diversity and assemblage composition were investigated for 

the first time after almost a century of pollution due to the activity of the Ilva steel plant 

in the Bagnoli-Coroglio area. Analysing the response of prokaryotic diversity of this 

coastal ecosystem following massive heavy metals and hydrocarbons contamination is 

of fundamental importance since benthic prokaryotes are known to be involved in key 

ecological and biogechemical processes and knowledge concerning the long-term 

impact of chronic multiple pollution on prokaryotic component is still far from being fully 

elucidated. 

Sediments from four areas were collected in order to characterize prokaryotic 

abundance and metabarcoding of community structure using Illumina sequencing of 

amplicons generated from the 16s rRNA gene.  Bacterial abundances were fairly 

constant around 107 cells mL-1. Similarly, Amplicon Sequence Variant (ASV) richness did 

not vary significantly among sediments affected by different levels of pollution. 

Taxonomic composition showed the prevalence of the phyla Proteobacteria, (36.7%), 

Planctomycetes (20.5%) and Bacteroidetes (9.6%) and highlighted the presence of a core 

microbiome suggesting that pollutants and other abiotic factors can contribute to shape 

benthic prokaryotic community.  
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1) Introduction 

 

An example of contamination driven by multiple factors is the area of Bagnoli-Coroglio 

(Gulf of Naples, Thyrrenian Sea, IT) that is a highly polluted post-industrial site due to 

the activity of the former ILVA steel plant, which operated from 1905 to 1992 (Sharp and 

Nardi 1987; De Vivo and Lima 2008). Chemical characterization of this area reported by 

Romano et al. (2004) revealed concentrations above the legal limits for heavy metals 

such as Cu, Fe, Hg, Mn, Ni, Pb, Zn, as well as polychlorobiphenyls (PCBs), polycyclic 

aromatic hydrocarbons (PAHs), and dichlorodiphenyl-trichloroethane (DDT). Very high 

levels of most heavy metals (Fe, Pb, Zn, Hg Ag, As, Co, Cr, Cd) and Total Organic 

Concentration (TOC) were found at the "Colmata a Mare", an area between the two 

piers where all of the loading/unloading operations took place, and on the beach of 

Nisida (Arienzo et al. 2015). Analysis of the macrobenthic community (Fasciglione et al. 

2016), on the other hand, surprisingly highlighted the presence of seagrasses, 

multicellular green algae and 280 species of benthic invertebrates, although there was 

a marked decline in species diversity from north to south, probably due to a decrease in 

hydrodynamic rates and the concomitant presence of higher levels of pollutants in the 

southern area. 

In 2000, the area was declared a site of national interest (SIN) and thus subject to 

ministerial policies aimed at the reclamation of polluted areas. In order to plan the most 

accurate remediation and restoration strategy of this site, in May 2017 the Italian 

government funded the ABBACO project, the aim of which was to re-sample and further 

characterise, both chemically and biologically, the Bagnoli-Coroglio area. As part of this 

project, this thesis examined the bacterial assemblages colonizing the upper ten 
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centimeters of sediments sampled in front of four sewage discharges which as described 

by Bertocci et al. (2019) represent a major source of organic matter.  This thesis provides 

new insights on the microbial community composition of sediments contaminated by 

both sewage and heavy metals. Moreover, it provides new information for a possible 

bioremediation-based approach to restore the site using bacteria isolated from the 

polluted sediments. Such a strategy may represent an interesting alternative to 

conventional chemical and physical remediation techniques due to lower costs and 

reduced environmental impact (Dell’Anno et al. 2012).  

To date, most studies have focused on the bacterial communities of the uppermost 

centimeters, usually dominated by Proteobacteria (Catania et al. 2018), and only few 

studies have investigated the role played by multiple stressors, such as heavy metals 

and PAHs, on shaping sediment microbial communities (Quero et al. 2015). For this 

reason, determining the composition of dominant and rare taxa within prokaryotic 

assemblages through a high throughput sequencing (HTS) approach, can lead to a better 

understanding of the dynamics involved in determining the composition of 

autochthonous microbial populations and eventually to exploit their metabolic potential 

in bioremediation strategies.  

This Chapter characterised the prokaryotic community of the upper 10 cm of sediments 

sampled at four stations polluted by sewage, hydrocarbons and heavy metals, within 

the  Bagnoli-Coroglio area.  
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2) Material and Methods 

 

2.1) Study area 

 

Figure 1.1 shows the area previously sampled (2004-2005) by Romano et al. (2009) and 

the 4 sampling sites examined in the current study. Values for arsenic, cadmium, 

chromium, iron, mercury, magnesium, nickel, lead, zinc, and total PAH levels are 

reported in Romano et al. (2009). In order to assess the impact of multiple stressors, the 

sampling in this thesis was carried out in front of four different sewer drains. Samples 

were collected in April 2017 using a manual Core soil sampler operated by SZN scuba 

divers. For every sampling station pH, Eh, and T were monitored using a portable 

pH/EC/TDS meter HI9813-5, Hanna Instruments (Tab. 2.1). The sampling operations led 

to the collection of three cores for each of the four selected sites shown in Figure 1. Each 

core, collected by a scuba diver using sterile Plexiglas® tubes, was divided into three 

layers named A (0-3 cm), B (3-6 cm) and C (6-9 cm), which were processed separately 

for Illumina sequencing, to determine prokaryotic abundance and biomass, and for the 

analysis of Particulate organic matter (POM) according to the method described by 

Pusceddu, Bianchelli, and Danovaro (2015). POM analysis mesaured the concentration 

of total phytopigments, proteins, carbohydrates, lipids, and biopolymeric organic C. 

Each layer was stored in a 150 mL sterile box, and kept refrigerated at 4 C° until analysis. 
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Figure 1.1. Map of the four sampling sites analysed in the current study: 1) Impianto 

Sollevamento Dazio, 2) Scarico Conca di Agnano; 3) Canale Bianchettaro; 4) Galleria scarico 

Impianto Coroglio  
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Table 2.1. Coordinates, pH, Eh and T° of the four sampled stations 

 

Id. Name WGS84 GSM pH Eh T (C°) Depth 

(m) Long. Lat. 

1 Impianto 

sollevamento 

Dazio 

14° 9'31.20"E 40°48'59.30"N 7,41 178 17,3 1 

2 Scarico Conca di 

Agnano 

14° 9'43.10"E 40°48'54.10"N 6,79 264 19,5 1 

3 Canale 

Bianchettaro 

14° 9'59.60"E 40°48'33.10"N 8,02 197 20 1,5 

4 Galleria Scarico 

Impianto Coroglio 

     

14°10'36.61"E 

40°47'48.20"N 8,03 167 17,3 2,8 

 

 

 

2.2) Prokaryotic abundance and biomass 

 

Prokaryotic cells were extracted from the sediments, stained with SYBR Green I, and 

counted with an epifluorescence microscope to determine cell abundance according to 

the methods described in  (Danovaro et al. 2009). In order to determine prokaryotic 

biomass, cell biovolumes were converted into carbon content assuming an average 

carbon content of 310 fg C μm-3 (Danovaro et al. 2010;  Danovaro et al. 2015).  
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2.3) Illumina sequencing and bioinformatic procedures for sediment 

microbiome analyses 

 

Microbial genomic DNA was extracted from sediments by using the DNeasy PowerSoil 

Kit (MO BIO) in Università Politecnica delle Marche facilities. Sequence library 

preparation of the gDNA was performed using the Nextera DNA Flex kit (Illumina, 

Hayward, USA) with 1 ng DNA according to the manufacturer's instructions. Sequencing 

was performed on an Illumina MiSeq platform by LGC Genomics GmbH using paired end 

read (Berlin, Germany). 

Raw sequencing paired-end reads were first joined using the bbmerge tool from the 

BBMap suite (Bushnell, Rood, and Singer 2017) in a two-step process: reads that did not 

merge in a first step were quality-trimmed to remove low-quality bases (Q<10) prior to 

re-joining to increase the number of merged sequences. Subsequently, joined 

sequences were analysed using the QIIME2 pipeline (https://qiime2.org) following a 

previously published pipeline (Bolyen et al. 2019). Amplicon sequence variants (ASVs) 

were identified using the DADA2 strategy (Callahan, McMurdie, and Holmes 2017). The 

SILVA database v132 (Quast et al. 2013) was used as a reference database for taxonomic 

affiliation of sequences; briefly, reference 16S sequences contained in the database 

were trimmed within QIIME2 to the region amplified by sequencing primers and 

representative ASVs were analyzed using the classify-consensus-vsearch approach 

(consensus over 51% of at most 5 best hits) for taxonomic affiliation (Rognes et al. 2016). 

The ASV abundance table was randomly subsampled to 50000 sequences per sample 

and used, together with the rooted phylogenetic tree, to carry out statistical analyses to 

compare samples according to the method described by Corinaldesi et al. (2019).  
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2.4) Statistical analyses 

 

In order to evaluate whether differences in prokaryotic abundance, biomass, ASV 

richness and effective number of species (ENS, Cao and Hawkins 2019) observed were 

statistically significant, a 2-sample T testing using Welch’s test (Welch 1947) was carried 

out. For β-diversity, Bray-Curtis dissimilarities (Bray and Curtis 1957) were calculated 

between different samples based on their ASV distribution. Dissimilarities were 

investigated using the Unweighted Pair Group Method with Arithmetic mean (UPGMA) 

dendrograms using the R package vegan (www.cran.r-project. org/ web/ packages/ 

vegan/ index .html).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 
 

 

3) Results and discussion  

 

3.1) Chemical characterization 

 

   

 

 

a 

b 
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Figure 1.2. Heat-maps showing the concentrations reported of Biopolymeric organic C (a), 

Carbohydrates (b), lipids (c), phytopigments (d) and protein (e) along the littoral area of Bagnoli-

Coroglio 

 

 

The region investigated is highly affected by pollution from both heavy metals and PAHs 

( Romano et al. 2004; 2009). Specifically, sediments from Canale Bianchettaro exhibited 

the highest concentrations of arsenic (13 ± 10 mg kg-1), cadmium (0.71 ± 1.16), copper 

(40 ± 35), lead (261 ± 281), zinc (539 ± 538), and PAHs (172 ± 506). Lower concentrations 

c 

d 

e 
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of both PAHs and heavy metals were present in Conca di Agnano, Dazio, and Scarico 

Coroglio ( Romano et al. 2009).   

Although arsenic is the most widely distributed contaminant in the entire area, it has 

been suggested that it is released from nearby geothermal springs (Aiuppa et al. 2006). 

The pollutants present in the highest concentration were Zn, PAHs and Pb, reaching the 

values of 1110 ppm, 800 ppm and 540 ppm, respectively. The concentrations of Cu, As, 

and Cd ranged from 1 to 70 ppm and were also above the permitted limits (US EPA 

2017), although they were lower than those for Zn, Pb, and PAH. The high 

concentrations of these heavy metals as well as PAHs might have contributed to shape 

the microbial assemblages (Ahmed et al. 2018). 

In this thesis the concentrations of the different organic matter fractions in the Bagnoli-

Coroglio area were investigated (Fig 1.2 and Tab 2.2). The lipid and Biopolymer C 

fractions were far more abundant in the Canale Bianchettaro compared to the other 

stations.  

 

Tab 2.2: Distribution of the different fractions of organic matter in Bagnoli-Coroglio sediments 

 

  
 

Total 
phytopigment

s  

Proteins Carbohydrate
s 

Lipids Biopolymeri
c organic C 
 

µg g-1 mg g-1 mg g-1 mg g-
1 mg g-1 

Impianto sollev. 
Dazio 

2,1 ± 0,06 0,3 ± 
0,04 

0,6 ± 0,09 0,4± 
0,18 

0,7 ± 0,17 

Scarico Conca 
Agnano 

1,1 ± 0,15 0,5 ± 
0,03 

0,6 ± 0,07 0,2± 
0,03 

0,6 ± 0,04 

Canale Bianchettaro 4,5 ± 1,7 0,6 ± 0,1 1,1 ± 0,1 7,5± 
4,2 

6,3 ± 3,2 

Gall. scarico imp. 
Coroglio 

4,4 ± 0,6 1,0 ± 0,2 0,6 ± 0,0 0,6± 
0,2 

1,1 ± 0,2 
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3.2) Prokaryotic Abundance 

 

No significant differences were observed in the prokaryotic abundances in the surface 

layers (0-3 cm) (Figure 1.3a) among the four analysed stations.  The same trends were 

observed for prokaryotic biomass (Figure 1.3b). Such prokaryotic standing stocks 

differed from those previously reported in other benthic coastal ecosystems (Zhang et 

al. 2017; Sun et al. 2013). For example, the prokaryotic abundance in coastal 

contaminated sediments of Manfredonia Gulf (Southern Adriatic Sea) (Molari et al. 

2012) and Mediterranean Sea (Luna et al. 2013) were over one order of magnitude 

higher than the values found here (108 vs 107). Prokaryotic abundances found here were, 

at least, one order of magnitude lower than those observed in sediments from the 

Medway Estuary (UK) even though these sites were contaminated by zinc, nickel, lead, 

and copper (Quillet et al. 2012).  

Conversely the values found here are comparable to abundances typically found in 

deep-sea sediments (Danovaro et al. 2009).  

From the data presented, it is not possible to assess a direct correlation between the 

different pollution patterns recorded throughout the entire area and the number of 

prokaryotic cells among the different sites analysed since abundances were fairly 

constant, around 2 x 107 even in the most polluted station (Canale Bianchettaro). 

Although Molari et al. (2012), have reported the importance of local trophic conditions 

in shaping prokaryotic abundaces, the present study did not find any correlation 

between the organic matter content and prokaryotic abundances, despite Canale 

Bianchettaro exhibited the highest concentrations of Biopolymer C and lipids, while 

Conca di Agnano contained lower amounts of organic matter.  
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Additionally, bacterial abundances were not affected by other environmental variables 

(Tab 2.1) such as pH and Eh that differed by 1.5 and 90 mV, respectively, between 

Bianchettaro and Conca di Agnano.   

Temperature is generally considered as an important factor influencing bacterial 

abundances and biomasses (e.g. Castro et al. 2010). However, temperature did not seem 

to play a role in determining bacterial abundances between the four stations. Indeed, 

bacterial abundances were constant in the area even if Bianchettaro and Conca di 

Agnano exhibited higher temperatures (> 2 °C) compared to the other stations.  

Also no significant correlation was found between sediment grain size (analysed by 

Bertocci et al. (2019), in the same stations) and prokaryotic abundances. Moreover, the 

significant higher prokaryotic abundance (p-value  0,004) found in the deepest sediment 

layer of Dazio (6-9 cm) contrasts with previous findings, which showed a decrease in 

prokaryotic abundances with depth in the sediment (Rissanen et al. 2019).  

 

 

 

 



48 
 

 

 

 

 

Figure 1.3. Prokaryotic Abundance (a) and Biomass (b) counting in epifluorescence bacterial cells 

labelled with SYBR Green according to Danovaro et al. 2009. Bacterial cells have been collected 

at three different depths (0-3 cm, 3-6 cm, 6-9 cm) at four different sites as indicated in the map. 

Biomass has been calculated basing on the different prokaryotic size. 
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3.3) Alpha diversity 

 

The analyses of α-diversity carried out across all samples highlight that the deepest 

sediment layer of Coroglio and the subsurface layer of Dazio exhibited the greatest ASV 

richness (Fig. 1.4 a). A similar pattern of higher ASV richness in subsurface sediment 

layers was already described in previous works (Luna et al. 2013), and can be due to a 

variety of factors such as a reduced energy-stress conditions, and/or predatory pressure 

and competition as well as to the effect of the pollutants (Molari et al. 2012). Shannon 

index, converted in Effective Species Number (ESN) (Fig 1.4 b) (Leinster and Cobbold 

2012) was correlated to ASV richness. The highest values were found in the deepest 

sediment layers (31250 predicted speciess) and sub superface layer (20517 predicted 

species) of Scarico Coroglio and Dazio with an average value of 13248 predicted taxa per 

site. 

Although (Quero et al. 2015) observed that the long term contamination of heavy metals 

and hydrocarbons in Taranto Gulf led to a selection of bacterial communities more 

tolerant to pollutants and Korlević et al. (2015) highlighted a negative correlation 

between OTU richness and the presence of pollutants, the metal concentrations found 

in the upper layer of sediments in the present study were not found to be related to ASV 

richness and ESN. Indeed, both indices did not present significant variations among the 

four stations characterized by different levels of contamination. Such observations are 

likely to depend not only on the role played by contaminants over almost a century but 

also on environmental and biological factors.   

Conversely, although the Evenness index (Fig 1.4 c) showed an overall uniformity of 

species distribution in the different layers of the analyzed sites with an average value of 
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0.88, species evenness in the 0-3 cm and 3-6 cm layers from Canale Bianchettaro (0.85 

± 0.02) were significantly lower than those calculated for Scarico Coroglio (0.89 ± 0.01, 

p-value of 0.026) and Dazio (0.88 ± 0,01, p-value 0.0135). Thus, these data suggest the 

influence of toxic compounds on microbial assemblages since the Bianchettaro station 

contains greater concentrations of both heavy metals and hydrocarbons compared to 

the other stations (as reported by Romano et al. 2004). Environmental drivers such as 

pH, Eh, T° granulometry and organic matter did not explain the evenness distribution 

found here. 
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Figure 1.4. Amplicon Sequence Variance richness (a), ffective species number (b) and Evennes 

values (c) calculated for samples collected at three different depths (0-3 cm,3-6 cm, 6-9 cm) in 

the four analysed station of Bagnoli-Coroglio area.  
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3.4) Taxonomic composition 

 

The analysis of the prokaryotic assemblage assigns the ASVs found here to 53 Phyla and 

156 Classes. As shown in Fig. 1.5, after removing phyla exhibiting low abundances 

(<1000 sequences), the most represented phyla at the various stations were 

Proteobacteria (36 % ASV richness; 45% read abundance), Planctomycetes (20% 

richness, 15% abundance), Bacteroidetes (9% richness, 13% abundance), Acidobacteria 

(6% ASVs; 5% sequences) and Actinobacteria (3% ASVs; 6% sequences). Specifically, 

observing the Class distribution at all stations (fig. 1.6), the most abundant Classes were 

Gamma-, Delta- and Alphaproteobacteria as well as Planctomycetacia, represented by 

22%, 11%, 9.1%, 8% read abundances and 13%, 12.9%, 9.3%, 9,2% ASV richness, 

respectively. Overall, the results support findings from previous studies from New South 

Wales (Australia; Sun et al. 2013), Adriatic Sea (Italy; Quero et al. 2015), Northern 

Zhejiang Sea (China; Wang et al. 2016) and Basque coast (Spain; Aylagas et al. 2017). 

At the Class level (fig. 1.7), the prokaryotic assemblage associated with the surface layers 

in the 4 stations was dominated by Gammaproteobacteria ( ̴24.5%), although their 

contribution was lower for the Scarico Coroglio site (  ̴18.1%). The dominance of this 

class has already been described previously (Franco et al. 2017; Chiellini et al. 2013;  

Danovaro et al. 2010; Edlund et al. 2008) and suggests an important ecological function 

for Gammaproteobacteria. Gammaproteobacteria have been shown to play a primary 

role in catalysing sulfur oxidation and carbon fixation in coastal sediments (Lenk et al. 

2011; Dyksma et al. 2016). Gammaproteobacteria were dominated by representatives 

from the order Xanthomonadales (fig. 1.8), in particular in Dazio (surface and deep 

layers) as well as in the surface layers of Conca di Agnano, Bianchettaro, and Coroglio; 
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Xanthomonadales were particularly abundant in areas polluted by metals and PAHs 

(Patel et al. 2012; Sun et al. 2013). These findings could provide a partial explanation for 

the high abundances of Xanthomonadales since the area in front of the steel plant has 

been polluted with PAHs for many years. 

Most ASVs associated with Xanthomonadales (fig.1.9) were either uncultured or belong 

to the widespread marine benthic group JTB255 (Bienhold et al. 2016). Specifically, the 

abundance of JTB255 representatives was higher in Dazio (ca 4000 reads) than Scarico 

Coroglio (2000 reads). The presence of the JTB255 marine benthic group in heavily 

polluted sites could be attributed to the ability of this group to adapt to various 

biogeochemical conditions. The JTB255 group shows a wide metabolic versatility 

covering a broad physiological spectrum ranging from facultative sulfur- and hydrogen-

based chemolithoautotrophy to obligate chemorganoheterotrophy (Mußmann et al. 

2017). 

Other 3 classes with abundant distribution in the surface layers of Scarico Coroglio and 

Bianchettaro were Flavobacteria, Planctomycetacia and Alphaprotobacteria, the 

abundance of which was 2 fold higher than that of the other two stations. The class 

Flavobacteria has been shown to be involved in organic matter degradation (Telling et 

al. 2012) and this capability may partially explain its presence in Bianchettaro site where 

TOC (Total Organic Carbon) concentrations were 10 times higher (Table 2.2) compared 

to the other stations. A number of Alphaproteobacteria representatives are known to 

be able to degrade aromatic compounds ( Kim and Kwon 2010) and their high 

abundance in Bagnoli-Coroglio area might be attributed to the ubiquitous presence of 

PAH in this area ( Romano et al. 2004). The lower abundances of Acidomicrobia, 
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Sphingobacteria and Delta proteobacteria in Scarico Coroglio and Bianchettaro stations 

does not agree with previous findings, since these classes have been found (Oregaard 

and Sørensen 2007; Dell’Anno et al. 2012) in contaminated sediments. Moreover, 

Coroglio and Bianchettaro sites differ from the others due to the presence of the 

Verrucomicrobia class that, according to Genovese et al. (2014) is considered capable of 

coping with hazardous compounds. 

The deltaprotobacteria Classes especially from the order Desulfobacterales, are able to 

degrade hydrocarbons by methanogenesis and sulfate reduction (Stagars et al. 2017). 

These Classes are mostly represented in Dazio and Conca di Agnano.  Compared to other 

sites, Dazio and Conca di Agnano also included Classes such as Holophage, Anaerollinae, 

Nitrospirae and Ignavibacteria. The presence of these latter Classes has already been 

described in contaminated areas probably due to their ability to survive the toxic effects 

of metals (Ni, Cu, Cd), and to degrade Polychlorinated biphenyls (PCB) as well as 

polycyclic aromatic hydrocarbons (Zanaroli et al. 2012;  Wang et al. 2016).  

The taxonomic composition of the sub-surface (3-6 cm) and deep (6-9 cm) layers differs 

only slightly from that of the surface layer. Indeed, the two deeper layers of Canale 

Bianchettaro were comparable to the surface layer in terms of number of classes with 

the only exception given by the presence of the Class Phycisphaerae belonging to the 

phylum Planctomycetes. 

The bacterial composition of Scarico Coroglio sediments did not differ significantly 

between the surface and the sub-surface layers; in contrast the deep layer exhibited 

greater abundances of species belonging to the Classes Phycisphaerae and Nitrospirae. 

Finally, the 3-6 cm and 6-9 cm layers of the Dazio site showed a similar taxonomic 
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composition with the presence of Ignavibacteria that were not found in the surface 

layer.  

In general, we observed a greater number of bacterial Classes in the sub-surface and 

deep layers compared to the surface layer only in Canale Bianchettaro; this might be 

due to the toxic activity of hazardous compounds in surface layers as suggested by the 

eveness index. However, comparing the layers at different depths from the 4 stations it 

is evident that Classes which have been shown to survive in polluted environments 

(Gillan et al. 2005; Yin et al. 2015), such as Nitrospirae, Chloroflexy were not detected in 

the most polluted station (Canale Bianchettaro) described in this study, but were 

present in less contaminated stations (Impianto Sollevamento Dazio and Conca di 

Agnano).  Heavy metal and PAH pollution in the Bagnoli-Coroglio area might thus not be 

the only drivers shaping the microbial diversity.  

Additionally, the analysis of OTU distribution between the different stations and layers 

led to the identification of a core microbiome composed by 57 ASVs (Table 2.3) 

belonging to the Classes Gamma, Delta, Alphaprotobacteria, Planctomycetacia, 

Phycisphaerae OM190, Nitrospira, PAUC43f marine benthic group, B2-11 terrestrial 

group, Sphingobacteriia, Flavobacteria, Thermoleophilia, Acidimicrobiia, Blastocatellia 

and Holophagae. This core microbiome comprised some of the more abundant OTUs, 

such as OTUs within the Flavobacteriales and Xanthomonadales Orders.  The remaining 

core microbiome OTUs belong to 20 bacterial Orders.  

A similar core microbiome has been found in a previous study by Sun et al. (2013), who 

reported the presence of Gamma, alpha, Deltaproteobacteria and Acidobacteria. 

However, Quero et al. (2015) reported a core microbiome consisting of OTUs belonging 
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to Beta, Epsilonbacteria, Clostridia, Cytophagia, and Archea. The reason why these 

differences in core OTUs were observed may depend on the different pollution patterns 

found in the various studies, the seasons in which the samplings took place (Gilbert et 

al. 2009) and also the different physico/chemical factors of the study site. In fact, as 

reported by Sun et al. (2013) the comparison of OTUs from contaminated and 

uncontaminated sites revealed that the drivers significantly influencing OTU abundance 

were related to other environmental conditions rather than the presence of 

contaminants.  

In general, our data suggest that the presence of different levels of pollutants does not 

affect the composition of the microbial diversity along the investigated area since 

Scarico Coroglio and Canale Bianchettaro stations, showing a similar taxa composition, 

lie in areas exhibiting very different contamination levels in terms of PAHs as well as 

heavy metals. Moreover, even other environmental variables do not seem to act as 

drivers influencing taxonomic composition since values of pH, eH, T° did not change 

significantly between the four stations. The variables that may represent drivers capable 

of shaping bacterial community structure are organic matter concentration and grain 

size distribution: all samples from Bianchettaro and Coroglio group together in our Bray-

Curtis dissimilatory matrix based dendrogram (fig. 1.10), exhibiting significantly higher 

concentrations of organic matter (p-value = 0.012) and contained coarser sediment 

grains (>0.5 mm, Bertocci et al. 2019) compared to samples from the other stations.   

Finally, it is not excluded that the chronic contamination of metals and hydrocarbons 

over decades has selected for a microbial community tolerant to such pollutants since 

many classes shown here have been widely described as capable of adapting to both 
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PAH and heavy metals, but the ecological differences, shown here, are shaped by the 

presence of different levels of POM, related to sewage discharges and grain size. 

 

 

Figure 1.5. Abundances of the most represented Phylum in the study area of Bagnoli-Coroglio. 

Blue bars refer to percentage of sequences while red bars refer to percentage Otus observed. 
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Figure 1.6. Abundances of the most represented phylum and classes in the study area of Bagnoli-

Coroglio. Blue bars refer to percentage of sequences while red bars refer to percentage Otus 

observed. 
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Figure 1.7. Percentage ofdistribution of bacterial Classes at different four stations and layers (0-

3 cm, 3-6 cm, 6-9 cm) studied in Bagnoli Coroglio area 
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Figure 1.8. Percentage of distribution of Orders belonging to the Gamma Proteobacteria at four 

different station and layers (0-3 cm, 3-6 cm, 6-9 cm) analysed in Bagnoli-Coroglio area. 
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Figure 1.9. Distribution of the most abundant families belonging to the Order Xanthomonadales 

at different stations and layers (0-3 cm, 3-6 cm, 6-9 cm) analysed in Bagnoli-Coroglio area. 
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Table. 2.3: List of ASVs present in all samples at all sites. 

Phylum Class  Order OTUs reads 
frequency 

Acidobacteria Blastocatellia Blastocatellales 0.05 

Holophagae Subgroup 10 0.02 

Subgroup 22 uncultured 
bacterium 

0.03 

Actinobacteria Acidimicrobiia Acidimicrobiales 0.91 

Thermoleophilia Gaiellales 0.03 

Bacteroidetes Flavobacteriia Flavobacteriales 3.08 

Sphingobacteriia Sphingobacteriales 0.07 

Gemmatimonadet
es 

B2-11 terrestrial 
group 

uncultured 
bacterium 

0.13 

PAUC43f marine 
benthic group 

uncultured 
bacterium 

0.06 

Nitrospirae Nitrospira Nitrospirales 0.16 

Planctomycetes OM190 uncultured 
bacterium 

0.08 

Phycisphaerae Phycisphaerales 0.05 

Planctomycetacia Planctomycetales 1.60 

Proteobacteria Alphaproteobacteri
a 

Rhizobiales 0.29 

Rhodobacterales 0.13 

Rhodospirillales 0.29 

Sphingomonadales 0.15 

Betaproteobacteria Nitrosomonadales 0.09 

Gammaproteobact
eria 

B7-8 marine group 0.74 

Oceanospirillales 0.16 

uncultured 0.99 

Xanthomonadales 2.98 

Data refer to the proportion of total reads 
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Figure. 1.10. Cluster Dendogram (d) built usingBray-Curtis distances matrix, using R package 

Vegan. The dendogram clusterized the different layers belonging to the four analysed station 

relying on their similarity, 
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4) Conclusion 

 

 This study shows that contamination by multiple chemical stressors does not produce 

appreciable variations on alpha diversity and taxonomic composition at the four 

analysed stations. Such observations do not exclude that chemical pollution has selected 

a pool of resistant taxa over a century of contamination given by the activity of ILVA 

steel plant but, rather, they suggest that the different distribution of toxic compounds 

do not affect the microbial composition along the studied area. Conversely, the 

concentration of POM released by sewage discharge and the sediment grain size are 

likely to have played a major role in shaping the microbial assemblages since only these 

two variables are correlated with the clusterization of the four stations. Further studies 

are required to better understand the combined role of pollutants and environmental 

conditions in shaping microbial community composition. 
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Chapter 3 

 

Biotechnological potential of bacteria isolated from two highly 

anthropic-impacted coastal areas from the Gulf of Naples 

 

 

Abstract   

 

In this chapter, I isolated bacteria from sediments of two highly polluted sites, the 

Bagnoli-Coroglio area and the mouth of the Sarno River, both located in the Gulf of 

Naples. Bacterial isolates, once identified on the basis of Sanger sequencing of 16S rRNA 

genes were tested for their ability to cope with heavy metal pollution (As, Cd, Cu, Pb, 

and Zn) and/or Polycyclic Aromatic Hydrocarbon (PAHs, Naphtalen, Phenantrene and 

Pyrene) pollution. Capacity to grow under different concentrations (100, 1000, and 

10000 ppm) of these elements, separated or mixed together, was recorded over time 

together with the estimation of the removal rate of heavy metals and the PAH 

degradation rate ability. 

This study aimed to investigate, select and propose efficient bacterial taxa – 

monospecific or consortium - for bioremediation purposes. Four mixed cultures 

composed by Halomonas sp., Alcanivorax sp., Epibacterium sp., Pseudoalteromonas sp., 

and Virgibacillus sp. were selected (one from the Sarno River and three from Bagnoli-

Coroglio) because these were the ones that grew best in laboratory conditions.  Both 

mixed cultures and single taxon exhibited a PAHs degradation rate ranging from 60 to 

100%. They were also able to precipitate heavy metals from culture media, especially 
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Pb, with the highest removal rate reaching   ̴ 100%. Of the two, single taxon was less 

effective than mixed cultures. Results of Sequential Selective Extraction (SSE) analysis 

highighted the ability of mixed strains in reducing the bioavailability and - thus the 

associated toxicity - of As, Cd and Zn by changing their partitioning in the geochemical 

fraction. These data indicate the strong potential interest of these mixed strains in 

effective bioremediation of polluted sediments. An interesting result from this study 

was the identification of the same species, Holomonas sp. and Alcanivorax sp., at both 

sites. 
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1) Introduction 

 

The release and accumulation of inorganic (e.g., heavy metals) and/or organic (e.g., 

petroleum derivatives) compounds in coastal environments are an important threat 

affecting the ecological and economic quality of these areas, in term of biodiversity, 

human health and quality of the provisioned goods (Islam and Tanaka 2004). 

Contaminants of major concern include organic pollutants and heavy metals (Tashla et 

al. 2018) whose persistence in the environment is enhanced by accumulation affecting 

different levels of biological organization, from cells, tissues, organisms to communities. 

Bioaccumulation and biomagnification of these compounds occur along the entire food 

web representing a threat for human health (Fuentes-Gandara et al. 2018; Loflen et al. 

2018; Buah-Kwofie, Humphries, and Pillay 2018).  

Polycyclic aromatic hydrocarbons (PAHs) and heavy metals like arsenic (Yedjou and 

Tchounwou 2007a), cadmium (Tchounwou, Ishaque, and Schneider 2001), chromium 

(Patlolla et al. 2009), lead (Yedjou and Tchounwou 2007b) and mercury (Sutton et al. 

2002) have been reported to affect biological systems such as cell membrane or 

organelles to enzymes involved in metabolism, detoxification and DNA damage repair 

(S. Wang and Shi 2001), thus causing cell cycle modulation, carcinogenesis or apoptosis 

(Beyersmann and Hartwig 2008; Kim, Kim, and Seo 2015).  

The persistence, bioavailability and toxicity of heavy metals is modulated by 

microorganisms’ activities that, through a great variety of resistance like chromosomal, 

transposon and, mostly, plasmid-mediated systems, modify their mineral forms and 

geochemical phases (Alomary and Belhadj 2007; Dziewit et al. 2015). 
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The present chapter aims to investigate the potential bioremediation activity of heavy 

metal and PAH resistant bacterial strains isolated from the marine sediments of two 

highly impacted coastal areas: The Bagnoli-Coroglio site (Gulf of Naples, Tyrrhenian Sea) 

described in the previous chapter and the Sarno river mouth (Gulf of Naples, Tyrrhenian 

Sea). The idea is to understand if differently polluted sites have selected similar taxa 

showing similar bioremediation abilities and if such taxa can be used for the 

decontamination of both the polluted sites The Sarno River is one of the most polluted 

rivers in the world (Cicchella et al. 2014; Montuori et al. 2013; Pepi et al. 2016). In this 

area, multiple sources of pollution make it difficult to trace back the origin of the 

contamination (Lofrano et al. 2015). The high population density (Cicchella et al. 2014), 

the massive use of fertilizers/pesticides in agriculture and the industrial development of 

the area (Baldantoni et al. 2018) are among the main causes of pollution. The main 

pollutants affecting quality of water and sediments are heavy metals that originate 

mainly from the industrial activities along the river path (Montuori et al. 2013). Surface 

marine sediments at the mouth of the Sarno River present high levels of contamination 

by lead (Pb), arsenic (As), chromium (Cr), copper (Cu) and zinc (Zn) and moderate 

contamination by cadmium (Cd) and mercury (Hg) (Pepi et al. 2016). The objectives of 

this chapter was to isolate, select and characterize the most adapted bacterial strains 

growing in the Sarno site and to compare the bacterial communities with those isolated 

from the Bagnoli-Coroglio site. The final aim was to select the best strains from both 

sites able to survive in the presence of high concentrations of heavy metals and/or PAHs, 

and to evaluate their potential degradation of Polycyclic Aromatic Hydrocarbons (PAHs). 
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2) Material and Methods  

 

2.1) Sediment sampling 

 

The sampling was performed in April 2014 at one station at the mouth of the Sarno River 

(40.728156 N, 14.463472 E, Fig. 2.1), collecting the top (0–20 cm) sediment with a grab 

sampler. Duplicate samples were immediately placed into sterile sacks (Whirl-Pak, 

Nasco) and stored at 4 °C in the dark, until their processing in laboratory. Samples were 

collected by Dr. Milva Pepi of the Stazione Zoologica Anton Dohrn who kindly gave me 

the samples when I first started my PhD. 

The Bagnoli-Coroglio Sediment sampling (Fig. 2.2) was carried out in November 2017 in 

the framework of the ABBACo research project, led to the harvesting of 127 sediment 

samples. Of the total sampled stations, 95 were sampled with a box corer which 

provided deeper cores of about 1 to 4 meters’ length. The sediment samples that led to 

the isolation of the bacteria used in this study were taken with a grab sampler from the 

3 sampled stations located as follow: 40.81555 N, 14.16075 E; 40.80834 N, 14.15966 E; 

and 40.79644 N, 14.17293 E.   
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Figure 2.1. Map of the study area with the position of the sampling site of Sarno River Mouth  

 

Figure 2.2. The Bagnoli-Coroglio Sediment sampling strategy (ABBAco research project). The 

blue dots outside the inner grid represents superficial sampling points. The triangles inside the 

grid represents sampling points where coring activity has been carried on 

S

1 
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2.2) Bacteria isolation from sediments from both sites 

The sediment was plate into Petri dishes containing Marine Agar (MA) (Bacto-Agar, 

Difco) in the presence of three different heavy metal concentrations: Pb2+ (500 μg.ml-

1), As3+ (500 μg.ml-1), Cd2+ (10 μg.ml-1), and incubated at 28°C for 48 hours. I selected 

such metals for the initial screening since As and Cd (Anetor, Wanibuchi, and Fukushima 

2007; Jaishankar et al. 2014) are among the most toxic compounds while Pb is the most 

abundant element in the studied area. 

At the end of the incubation time, growth of mixed strains in the plate was noted, and 

genomic sequencing (described in the Chapter 4 of the thesis) by Illumina Miseq 

identified all the strains present within the mixed cultures. To isolate the culturable 

strains, the mixed cultures were re-plated on Marine Agar for 15 days. At the end of the 

incubation period, 5 different types of colonies were noted, which were taken with a 

sterile loop and plated again on Marine Agar for another 15 days. In order to have mono 

specific strain colonies with specific colours, margins and shape, it was necessary to 

repeat the isolation operations 2 more times for a total of 30 days of incubation. Once 

isolated, the colonies were suspended in 30% sterile glycerol and stored at −80 ° C. 

 

2.3) Bacteria characterization and identification 

Strain DNA extraction was performed according colony PCR protocols as described by 

Bergkessel and Guthrie, (2013). Amplification of 16S rRNA gene was performed adding 

1 μL (10 ng.μL-1) of genomic DNA to 24 μl of PCR mix composed by  2.5 μL of 10X 
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‘Amplitaq’ buffer (10 mmol.L−1 Tris-HCl; 50 mmol.l−1 KCl; 1.5 mmol.l−1 MgCl2; 0.001% 

gelatin), 2.5 μL of dNTPs (2 Mm), 1 μL  each of E9F  (5′- GAGTTTGATCCTGGCTCAG-3′) 

and U10510 R (5′- GGTTACCTTGTTACGACTT-3′) (0.5 μm), 16.875 μL of steril double 

distilled water and 0.125 μL of ‘Taq Gold’ (Applied Biosystem). The reaction mixtures 

were incubated at 95°C for 5 minutes and then cycled 30 times through the following 

temperature profile: 95°C for 30 s, 55°C for 30 s and 72°C for 90 s. Lastly, the mixtures 

were incubated at 72°C for 5 min; 2 μl of each amplification mixture was analyzed by 

agarose gel (1.2% w/v) electrophoresis in TAE buffer (0.04 M Tris-acetate, 0.001 M 

EDTA) containing 0.5 μg ml−1 (w/v) ethidium bromide.  

 

2.4) Analysis of sequenced data 

The consensus sequences of the isolates were compared with those deposited in 

GenBank using the BLAST program. The 16S partial sequences strains were compared to 

the prokaryotic small subunit rDNA on the Ribosomal Database Project II website and 

the NCBI website using the BLAST program. The 16S rRNA gene sequences retrieved 

from the databases were aligned using CLUSTALW included in the MEGA software, 

version 7. The phylogenetic tree was inferred by NCBI website.  

 

2.5) Bacteria growth versus metal and PAH concentrations 

In order to asses the capability of the mixtures and/or isolated strains to cope with the 

pollutants, I evaluated their growth in the presence of five single heavy metals (As3+, 

Pb2+, Cd2, Cu2+, Zn2+) and PAHs mix (Naphtalen, Pyren and Phenanthrene; ratio of 1:1; 
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previously solubilized in pure Exan). For each type of pollutant, three concentrations 

(100, 1000, 10000 ppm) were tested.  

Growth curves were analyzed in triplicate in a 96 Multiwell plate using a UV 

spectrophotometer (TECAN, Infinite 1000) setup at 600 nm. Strains were diluted to a 

concentration of 1x 106 cells/ml in a total volume solution of 200 μl. The total volume of 

200 μl was distributed as follows: 100 μl of metals / PAHs solution and the remaining 

100 μl divided between strain solution and Marine Broth (Pronadisa –Conda) MB 

medium to reach the desired volume. Optical Density (OD) measured in the presence of 

bacteria and metals/PAHs mix were normalized by subtracting the blanck signal, i.e. the 

OD of the solution (200 μl) containing metals, PAHs mix and MB. Also, a negative control, 

containing only MB and a positive control containing only MB and strains was set up. 

Multiwell plates were incubated in Tecan Microplate Readers Infinite 1000 at a constant 

temperature of 28 °C for 48 hours. 

 

2.6) Evaluation of Polycyclic Aromatic Hydrocarbon (PAH) degradation 

and removal rate of heavy metals in liquid solution   

 

In addition to assessing the ability of bacteria strains – in mixture or alone -  to grow in 

culture conditions enriched with single metal contaminants, I evaluated the ability of 

the strains: 

- to promote the precipitation of several metals simultaneously dissolved in the 

culture media (MB), 

- and to degrade a hydrocarbon mix composed of Naphthalene, Phenanthrene 

and Pyren suspended in MB.  
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The concentrations of the toxic compounds added to the growth medium were selected 

from the data reported by Romano et al. (2009) from a sampling campaign carried out 

in the area of Bagnoli Coroglio. 

The experiments were carried out in Marine Broth since the selected strains were not 

able to grow in seawater even when enriched with organic compounds and 

contaminants.  

For this purpose, in flask T175 (TPP tissue culture flasks), an experimental system was 

set up in triplicate both for the consortium and for the single isolates. The different 

conditions were: three flasks with marine broth, bacteria (8 x 107 cells ml-1) and As3+ (14 

ppm), Pb2+ (331 ppm), Cd2+ (1 ppm), Cu2+ (74 ppm), Zn2+ (899 ppm), three flasks with the 

same metals as previously described and marine broth, three flasks with bacteria and 

Naphtalen, Pyren and Phenanthrene (ratio of 1: 1: 1 with a total concentration of 242 

ppm) and three flasks with hydrocarbons and marine broth.  

The flasks were incubated for 27 days at 28°C. Biomass growth and pH were monitored 

at day 0, 3, 9 and 27. The amount of precipitated metals and degraded hydrocarbons 

were analysed by the company Ambiente Spa (Massa-Carrara, Italy) using method 

EPA35108270 using GC-MS technique for the determination of the breakdown products 

of aromatic compounds and method EPA6010for the determination of heavy metals 

using ICP-OES technique.   
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2.7) Evaluation of Polycyclic Aromatic Hydrocarbon (PAH) degradation 

and removal rate of heavy metals during coupled water-sediment 

experiments  

 

20 ml of Marine Broth containing bacteria at a concentration of about 8 x 107 cells ml-1 

were incubated in TPP tissue culture flasks (50ml volume), together with 20 grams of 

sediment sampled in the area of Bagnoli Coroglio (14,16381 E; 40,80791 N). All 

experiments were carried out in triplicate.  

Each experimental set was composed by six flasks. Three were filled with sediment, MB 

and bacteria, while the other three were used as control for metal and hydrocarbon 

analyses; controls were filled with sediment and marine broth. Flasks were incubated 

for 27 days at 28 °C and 10 ml samples were taken at day 0 and day 27. Analyses for the 

determination of heavy metal bioleaching and hydrocarbon degradation were carried 

out by the company Ambiente spa (Massa-Carrara, Italy) using, respectively, method 

EPA 30516020 based on ICP-MSandmethod EPA 35458270 based on GC-Ms. In order to 

determine the solubilization of heavy metals from the sediment each sample was 

treated under sequential selective extraction following the protocol described by Tessier 

et al. (1979). 
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3) Results and Discussion 

 

3.1) Bioremediation of Bacteria Isolated from the Sarno River Site 

 

3.1.1) Identification of bacterial isolates and bacterial growth in the 

presence of contaminants  

 

After several isolation procedures it was possible to isolate two different colonies from 

the initial mixed culture (Fig. 2. 3, a, b, c). Following extraction of the gDNA, amplification 

of the 16s rRNA gene (Fig. 2. 3, d) and subsequent Sanger sequencing it was possible to 

assign the two colonies to the genus Halomonas and Alcanivorax. The concomitant 

presence of Halomonas sp. and Alcanivorax sp. within a microbial community from 

sediments contaminated with hydrocarbons had already been described by Zhao et al. 

(2009), due to their hydrocarboclastic activity (Fathepure 2014). However, the 

phylogenetic tree (Fig. 2.4) created with 20 best matches after blasting both sequences 

against the NCBI database showed a significant difference compared to the other 

sequences suggesting a reduced conservation of this sequence. The percentage of 

similarity shown here is, for both strains below 95%, the threshold used as a cut off to 

distinguish microorganisms belonging to different genera (Stackebrandt and Goebel 

1994). However, recent studies have shown that the use of this threshold is not anymore 

appropriate to distinguish different genera since as shown by Donovan  et al. (2018)  

bacterial taxonomy have to be carried out using concatenated protein phylogeny.In any 

case data, relying on genomic analysis shown in chapter 4, allowed me to clearly identify 

the two isolated strains as belonging to genus Halomonas and Alcanivorax, from 

hereafter named Halomonas sp. SZN1 and Alcanivorax sp. SZN2 
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Figure 2.3. Agar plates with Mix culture (A), the two isolates Halomonas sp. (B), Alcanivorax sp. 

(C) and the agarose gel after 16s RNA amplicon (D) (Lanes 1, 2, 3, respectively contain DNA 

ladder, Halomonas SZN1 16s rRNA, Alcanivorax SZN2 16s rRNA 

 

 

A 

C 

B 

D 
1 2 3 
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Figure 2.4. 16s RNA tree of Halomonas sp. SZN1 and Alcanivorax sp. SZN2 built using the best 

twenty 16s RNA sequences retrieved from NCBI database. Tree has been created with the 

Maximum Likelihood Method using MEGA 7 software after alignment conducted with Muscle 

algorithm. 
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Preliminary analyses of the mixed culture, from hereafter referred as Consortium A2, 

and the two relative isolates showed their ability to tolerate the presence of a mix of 

hydrocarbons and the majority of the metals tested. 

 

Consortium A2, composed of Halomonas sp. SZN1 and Alcanivorax sp. SZN2 isolated 

from the sediment at the mouth of the Sarno River was able to grow in the presence of 

PAHs, As, Pb, Cd, Cu and Zn, with, however a reduced growth in the presence of Cd, Cu 

and Zn (Figures 2.5, 2.6, 2.7, 2.8, 2.9, 2.10).  

More specifically, Consortium A2 showed a greater tolerance toward Pb (Fig. 2.5 A) 

since, after 24 h, it reached, in the presence of 100 and 1000 ppm, the same values as 

the control. In the presence of 10,000 ppm the curve reached optical density values 

lower than those observed for the other two concentrations. Nonetheless, the data 

denote the ability of these microorganisms to grow in a severely contaminated 

environment. 

The growth of Halomonas sp. SZN1 and Alcanivorax sp. SZN2 in the presence of Pb (Fig. 

2.5 B and C), showed differences compared to the treatment with the mixed culture 

since a growth similar to the control was observed only in the treatment with 100 ppm 

while the other two concentrations tested displayed a marked toxicity. 

Consortium A2 also demonstrated an excellent adaptation to the presence of PAHs (Fig. 

2.6 A) since at 100 and 1000 ppm the curves reached growth values equal to those of 

the control although concentrations of 10000 ppm lead to a growth inhibition. 

Tests performed on Halomonas sp. SZN1 as well as Alcanivorax sp.  SZN2 (Fig. 2.6 B and 

C) in the presence of PAHs showed, in some cases, a trend similar to those observed for 
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mixed cultures. In particular, Halomonas sp. SZN1 showed a growth curve similar to 

Consortium A2 as both curves, at 100 and 1000 ppm, reaching values of optical density 

one unit higher if compared with the control (3.5 OD vs 2.5 OD). Analyzing Alcanivorax 

sp. SZN2 only the curve at 100 ppm reached values similar to the control only at 38 h, 

highlighting a possible metabolic switch able to allow a better growth. For both isolated 

strains, as well as the consortium, a concentration of 10,000 ppm of PAHs was highly 

toxic inducing a growth inhibition. 

 

In the presence of As, Consortium A2 (Fig. 2.7 A) reached values close to the control only 

in presence of 100 ppm concentration, while, surprisingly, concentrations of 10,000 ppm 

inhibited the growth of the culture less than 1000 ppm. This phenomenon is in contrast 

with the hormesis phenomenon described in the literature by Shi et al. (2016) as, 

generally, a low dose concentration leads to growth stimulation while a higher dose 

leads to a growth inhibition. A possible explanation for this phenomenon has been 

hypothesized by Torres-Barceló et al. (2016) who, studying the dose-effect response of 

antibiotics on Pseudomonas aeruginosa, noticed that this microorganism was capable 

to accelerate its growth by activating an SOS metabolic pathway, a response to DNA 

damage, when subjected to high stress. 

The same phenomenon was also noted when studying the effects of pesticides on higher 

organisms such as arthropods, whose viability rate increased when treated with 

sublethal dose of pyrethroid permethrin (Guedes, Magalhães, and Cosme 2009). It is 

also interesting to understand why some compounds belonging to metals, antibiotics or 

pesticides lead to a dose-effect inverse response as well as conventional responses. In 
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the presence of As, both Halomonas sp. SZN1and Alcanivorax sp. SZN2 (Fig 2.7 B and C) 

showed an overlapping trend with Consortium A2 as a marked growth was observed 

only in the presence of 100 ppm, although only Halomonas reached values of optical 

density of 3.5; a higher unit than the mix and Alcanivorax sp. SZN2. 

Furthermore, Consortium A2 showed a kind of inverse hormesis, similar to the response 

with As, in the presence of Zn 10,000 ppm since the growth was higher than treatment 

with Zn 100 and 1000 (Fig. 2.8 A). Conversely, differences were noted by comparing the 

curves of Consortium A2 with Halomonas sp. SZN1 and Alcanivorax sp. SZN2 in the 

presence of Zn (Fig. 2.8 B and C). Indeed, Halomonas sp. SZN1 was inhibited in the 

presence of all three Zn concentrations while Alcanivorax sp. SZN2 when treated with 

100 ppm, was able to achieve growth rates comparable to the control at the end of 

incubation period. 

Consortium A2 response to Cd and Cu was almost similar, with strong toxicity at all three 

concentrations tested (Fig. 2.9 A and 2.10 A). 

Differently from what was observed for Consortium A2, Alcanivorax sp. SZN2 was able 

to grow slowly in the presence of 100 ppm of Cd (Fig. 2.9 C). Surprisingly, under the 

stress of 100 Cu ppm, both Halomonas sp. SZN1 and Alcanivorax sp. SZN2 grew well, 

differently from what was observed in the treatment with Consortium A2 (Fig. 2.10 B 

and C). 

MIC analysis of the two isolated strains indicated that Alcanivorax sp. SZN2 dispalyed 

the highest resilience as it was capable of growing with all the tested pollutants even if 

Halomonas sp., SZN1 according to Nanca et al. (2018), Dong et al. (2015), Dastgheib et 

al. (2012) is reported to have the highest tolerance towards PAHs. Moreover, despite 
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some strains of Alcanivorax sp. SZN2 have been isolated from polluted sediments with 

PAHs, heavy metals and PCBs (Gorovtsov, Sazykin, and Sazykina 2018), this is the first 

time that an isolated Alcanivorax strain exhibits a resistance pattern as shown here. 

The results indicate that the two isolated strains act synergisticaly when present in the 

mixed culture thereby increasing their ability to resist the toxicity of a metal (e.g. Pb 

treatment). In other cases, this capacity is reduced as in the presence of Cu. As shown 

by Geesink et al. (2018) such different kinds of interactions depend on the secondary 

metabolites produced under different treatment conditions. In order to understand the 

dynamics driving the community response to toxic compound treatments, analyses 

detecting the production of growth promoting molecules such as nonribosomal peptide 

synthetases (NRPs), lipopeptides, polyketide synthases (PKSs) (Pawlowski et al. 2018; 

Shen et al. 2017) or inhibiting molecules (Antimicrobial agents), are required. 
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Figure 2.5.  Minimum Inhibition Concentrations (MIC) testing Pb at concentrations of 100, 1000 

and 10000 ppm on Consortium A2 (A), Halomonas sp. SZN1 (B), and Alcanivorax sp. SZN2 (C) 

expressed as Optical density (OD) values with time 
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Figure 2.6.  Minimum Inhibition Concentrations (MIC) testing PAHs at concentrations of 100, 

1000 and 10000 ppm on Consortium A2 (A), Halomonas sp. SZN1 (B), and Alcanivorax sp. SZN2 

(C) expressed as Optical density (OD) values with time 
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Figure 2.7.  Minimum Inhibition Concentrations (MIC) testing As at concentrations of 100, 1000 

and 10000 ppm on Consortium A2 (A), Halomonas sp. SZN1 (B), and Alcanivorax sp. SZN2 (C) 

expressed as Optical density (OD) values with time 
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Figure 2.8.  Minimum Inhibition Concentrations (MIC) testing Zn at concentrations of 100, 1000 

and 10000 ppm on Consortium A2 (A), Halomonas sp. SZN1 (B), and Alcanivorax sp. SZN2 (C) 

expressed as Optical density (OD) values with time 
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Figure 2.9.  Minimum Inhibition Concentrations (MIC) testing Cd at concentrations of 100, 1000 

and 10000 ppm on Consortium A2 (A), Halomonas sp. SZN1 (B), and Alcanivorax sp. SZN2 (C) 

expressed as Optical density (OD) values with time 
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Figure 2.10.  Minimum Inhibition Concentrations (MIC) testing Cu at concentrations of 100, 1000 

and 10000 ppm on Consortium A2 (A), Halomonas sp. SZN1 (B), and Alcanivorax sp. SZN2 (C) 

expressed as Optical density (OD) values with time 
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3.1.2) Evaluation of PAH degradation and heavy metal precipitation of 

bacterial cultures (as single isolate and in mixtures) 

 

Incubation experiments of bacterial cultures with the mix of hydrocarbons and heavy 

metals in Marine Broth showed the ability of microorganisms to effectively degrade 

hydrocarbons and precipitate heavy metals, especially Pb. 

Atomic Absorption Spetroscopy to determine heavy metal content were performed on 

3 cultures (Consortium A2, Alcarivorax sp. SZN2 and Halomonas sp. SZN1) on aliquots 

sampled at 0 and 27days since biomass growth and pH showed that at 27 days the 

overall culture conditions were the best to obtain an optimal bioremediation rate (in 

terms of resistance to heavy metals with respect to controls). Indeed, the three cultures 

reached maximum growth rates at the end of the incubation period when treated with 

heavy metals and hydrocarbons (Fig. 2.11 A, B, C). Furthermore, the number of cells at 

the end of the incubation with the hydrocarbon mix was found to be about 1.5 fold 

higher, suggesting a reduced toxicity of organic contaminants. 

The pH variation data showed a different trend depending on the type of contamination 

used for the incubation. As shown in Figure 2.12 A, the pH of the cultures in the presence 

of metals showed an increase during the incubation period with the maximum values 

reached at the end of the incubation. This pH increase may be attributed to the growth 

of bacterial biomass as both Halomonas sp. SZN1, and Alcanivorax sp. SZN2, being 

moderately alkaliphilic microorganisms (B. Cheng et al. 2016; Kadri et al. 2018), tend to 

alkalize the medium. Ratzke and Gore (2018) have in fact shown that bacteria modify 

environmental pH with feedback systems in order to reach the optimal conditions for 
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growth. Additionally, a similar phenomenon was noted by Boechat et al. (2018) who, 

after adding metals to a culture containing moderate alkaliphilic bacteria, noticed an 

increase in pH, from 5 to 6.5 in time. Conversely the pH of the cultures incubated with 

the hydrocarbon mix (Figure 2.12 B), being apolar structures, showed a neutral initial pH 

followed by a reduction of about one unit. The pH decrease is due to the presence of 

weak acid intermediates such as bezoic acid derivates and phenolic compounds 

following the activation of bacteria degradation pathway (Ghosal et al. 2016a). 

In any case, the results of the 3 culture incubations with the hydrocarbons showed the 

ability of the microorganisms to effectively biodegrade all three compounds in the mix 

(Fig. 2.13 A). Both Pyrene and Naphtalene showed a rate of degradation close to 100% 

while Phenatrene reached values around 60%. Although results confirmed the ability of 

Halomonas sp. SZN1, and Alcanivorax sp. SZN2 to degrade PAHs as described by 

Budiyanto et al. (2018) and Kadri et al. (2018), no significant differences were noted in 

the degradation rates among the 3 different treatments suggesting that the 

concomitant presence of the two isolated strains does not lead to a synergistic effect in 

terms of degradation. Furthermore, the data shown here show a correlation between 

the PAHs degradation rate and the pH change as the acidification of the medium, 

present only in treatments with bacteria, corresponds to a high rate of degradation. 

Although . Kim et al. (2005) and   Liu et al. (2019) have described that a pH lowering 

corresponds to an increase in the degradation of aromatic compounds, this is the first 

time that a reduction of pH through the activity of Halomonas sp. SZN1, and Alcanivorax 

sp. SZN2 is observed. 
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The effect of the bacterial cultures on metal dynamics in Marine broth is described in 

Figure 2.13 B, which shows that Pb is the element that undergoes the greatest solubility 

reduction (i.e. by precipitation), reaching values above 80%. Furthermore, Halomonas 

sp. SZN1 and Alcanivorax sp. SZN2 showed a greater reduction of metal solubility when 

present as isolated rather than in mixed cultures as both significantly increased the 

precipitation of Cd (over 40% of the total fraction). Moreover, Halomonas sp. SZN1 was 

a valid candidate to reduce Zn solubility with a two-fold increase in precipitation rate 

compared to control and Alcanivorax sp. SZN1. The reduced solubility of As increased 

only with Halomonas sp. SZN1, although the increase was not statistically significant. 

Similarly, Cu was not influenced by the presence of microorganisms as its concentration 

in solution remained similar to the control. These observations suggest that the 

precipitation of As and Cu is to be attributed only to the saline component present in 

the culture medium. In general, the capacity of Halomonas sp. SZN1 of precipitating Pb 

and Cd confirms what has already been observed by Amoozegar, Ghazanfari, and Didari 

(2012) who, following incubation of Halomonas elongata, observed a precipitation rate 

of about 80% and 50% for Pb and Cd, respectively. Zinc removal through an Halomonas 

strain (Halomonas halophila), as well as Pb and Cd, has already been observed by 

Rothenstein et al. (2012), eventhough they used Zinc concentrations that were 

considerrably lower than mine (32.5 ppm vs 899 ppm). In any case, this is the first time 

that a Halomonas strain is reported to co-precipitate Pb, Cd and Zn in the same 

treatment. Equally, although Alcanivorax sp. SZN2 has already been described as 

capable to survive in polluted environments (Ranawat and Rawat 2018), its capability to 

co-precipitate Pb and Cd has not been described so far. The mechanism by which 
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precipitation occurs is mainly due to the production of exopolysaccharides (EPS) widely 

produced by Halomonas sp. SZN1 (Gutierrez et al. 2013) and Alcanivorax sp. SZN2 (Suja, 

Summers, and Gutierrez 2017), able to complex the cations in solution (Morillo Pérez et 

al. 2008). Further studies are required to understand which molecular mechanism take 

place when the two cultures are mixed, since the treatment with both strains has 

highlighted a reduced metal precipitation capacity. 

 

  

 

Figure 2.11: Biomass growth mesaurements at four different time, of the MIX culture 

(Consortium A2), Halomonas sp. SZN1 and Alcanivorax sp. SZN2 incubated with a mix of heavy 

metals (A), PAHs (B) and no amendments (C)   
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Figure 2.12: pH variations at four different hours, of the mix culture (Consortium A2), 

Halomonas sp. SZN1, and Alcanivorax sp. SZN2 incubated with a mix of Heavy metals(A), PAHs 

(B) and no amendments (C) 
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Figure 2.13: (A) Percentage of PAHs degradation after the incubation time (27 days) with 

Halomonas sp. SZN1 and Alcanivorax sp. SZN2 and its mixture. (B)  Heavy metal precipitation 

after the incubation time (27 days) with Halomonas sp. SZN1 and Alcanivorax sp. SZN2 and its 

mixture   
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3.1.3) Effects of bacterial cultures addition (as isolates and as mixtures) 

on hydrocarbon degradation and heavy metal partitioning in 

contaminated sediments from Bagnoli-Coroglio 

 

New experiments were performed by adding single bacterial taxon and mixed cultures 

to the contaminated sediment from Bagnoli-Coroglio to evaluate their effects on metal 

partitioning and on hydrocarbon degradation cultures directly. 

The results of hydrocarbon degradation are shown in Figure 2.14. Hydrocarbon 

degradation ranged from 30% for benzo (k) fluorantrene by Alcanivorax sp. SZN2 to 90% 

for benzo (a) anthracene by Consortium A2. The addition of Alcanivorax sp. SZN2 was 

always less efficient in the degradation of hydrocarbons when compared to Halomonas 

sp. SZN1 and Consortium A2. Although Consorium A2 promoted degradation rates of 

Indeno (1,2,3, cd) pyrene (63.6%), benzo (a) anthracene (86.9%), and Benzo (a) pyrene 

(70%) significantly higher than those obtained using single taxon, Halomonas sp. SZN1 

showed higher degradation rates for Pyrene (64%), benzo (k) fluoranthene (46%) and 

benzo b fluorantrene (68%) than Consortium A2 indicating that , depending on the 

molecule under examination, metabolic processes in the culture mix may have been 

inhibited or reduced by the presence of Alcanivorax sp. SZN2. 

In general, PAH degrading activity of Alcanivorax sp. SZN2 and Halomonas sp. SZN1 in 

polluted sediments is described in association with other bacteria (Fodelianakis et al. 

2015), and few studies describing the activity of single isolates on polluted sediments 

are reported in the literature (Kadri et al. 2018). The data reported here, therefore, 
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confirm that the strains Alcanivorax sp. SZN2 and Halomonas sp. SZN1 are effective in 

reducing the PAHs concentrations of contaminated sediment even when they do not act 

in consortia formed by multiple bacteria. Interestingly these data indicate that the 

consortium, even if composed by two highly specialized bacteria, do not always exhibit 

a better activity compared to the single isolates. These observations contrast with what 

is generally described in the literature (Bradáčová et al. 2019; Ding et al. 2017; 

Markiewicz et al. 2014), and therefore requires further studies to identify potential 

metabolites capable of reducing overall microbial PAHs degrading activity. 

In this study, the addition of mixed cultures determined major changes in the repartition 

of metals among the different geochemical phases. In particular, such treatments 

significantly reduced the percentage of As, Cd and Pb (fig. 2.15 A, B, C) associated with 

the carbonate / exchangeable fraction, partitioning them in the Fe/Mn oxidizable and 

Organic matter fraction. Conversely, the treatments with Halomonas sp. SZN1 and 

Alcanivorax sp. SZN2 did not show significant differences compared to controls (i.e. 

without bacterial addition). The mixed cultures ability to reduce the fraction of metal 

associated with the exchangeable / carbonate is of significant interest in a 

bioremediation approach, as it is known (Sungur, Soylak, and Ozcan 2014) that the 

metals associated with the oxidizable and reducible fraction have a lower mobility, and 

thus a minor toxicity, than those associated with the exchangeable/carbonate fraction. 

The ability to reduce mobility of metals by changing their repartition in a less mobile 

sediment fraction has been described for sulfate reducing bacteria (Peng et al. 2018), 

which are able through their metabolism to form insoluble sulfur-metal complexes 

(Kramer, Bell, and Smith 2007). Conversely, Halomonas sp. SZN1 (Gupta and Diwan 
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2017) and, Alcanivorax sp. SZN2 are expected to stabilize heavy metals mainly by 

complexation with exopolysaccharides. However, Achal, Pan, and Zhang  (2012), 

described the ability of Halomonas sp. SZN1 to immobilize metals through the formation 

of carbonate compexes and this may suggest that similar mechanism might take place 

during metals immobilization. More detailed analysis on geochemical changes and 

metabolites production are required in order to better understand the processes leading 

to metals immobilization. 

 

 

Figure 2.14. Percentage of PAHs removal rates in sediments after inoculation with Halomonas 

sp. SZN1 and Alcanivorax sp. SZN2 and a mixture of both strains (Consortium A2) 
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Figure 2.15. As (A), Cd (B), Pb (C), Cu (D) and Zn (E) distribution in the four sediment fractions 

following Selective Sequential Extraction  
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3.2) Microcosm simulation of Bacteria isolated from the 

Bagnoli-Coroglio site 

 

3.2.1) Identification of bacterial isolates and bacterial growth in the 

presence of contaminants  

 

Following isolation procedures, it was possible to isolate 5 species belonging to 3 

consortia (Fig. 2.16, a, f), 2 species of which were already isolated from the Sarno river 

Mouth (Consortium A2). The three consortia are refered to as Consortium 2b, 

Consortium 4, and Consortium 41. Following extraction of the gDNA, amplification of 

the 16s rRNA gene (Fig. 2.16 G) and subsequent Sanger sequencing, it was possible to 

assign the colonies to the genera Epibacterium sp., Pseudolateromonas sp., Virgibacillus 

sp., (Fig. 2.16 D, F and Fig. 2.17), and Halomonas sp. and Alcanivorax sp. In particular, 

Halomonas sp., Pseudolateromonas sp., and Virgibacillus sp. were isolated from 

Consortium 2b, Pseudoalteromonas sp. and Alcanivorax sp., from Consortium 41, 

Epibacterium sp., and Halomonas sp. from Consortium 4. Interstingly the 2 species 

Halomonas sp. and Alcanivorax sp. were present also at this site, as shown by the further 

genomic analysis (Chapter 4).  

The isolation of a Pseudoalteromonas strain from such polluted sediments is consistent 

with data reported by Izzo et al. (2019),  Liu et al. (2019), and Iohara et al. (2001) who 

showed that this strain plays a predominant role in the degradation of hydrocarbons 

and in the reduction of metal toxicity, for example through the presence of mercury-

resistant operons whose presence has been described in Pseudoalteromonas 

haloplanktis. Few studies report the presence of Epibacterium sp. in contaminated 
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sediments because many of these strains are usually identified as belonging to the clade 

of Reugeria. Indeed, Ganesh Kumar et al. (2019), Kumar and Gopal (2015) and Horel, 

Mortazavi, and Sobecky (2015) highlighted how Roseobacter and specifically Ruegeria 

sp. were able to favor the degradation of hydrocarbons. Interestingly Virgibacillus sp. 

has been described as being associated with polluted sediments in a few studies 

(Besaury et al. 2013) but despite the limited literature information, it represents a 

promising bacteria for bioremediation purposes since it is able to produce 

bioflocculating compounds able to enhance hydrocarbon biodegradation and metal ion 

removal (Ugbenyen, Simonis, and Basson 2018; Cosa et al. 2011). 

 

                                                              

  

A B 
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Figure 2.16. Agar plates with Mix cultures: Consortium 2B  (A), Consortium 4 (B), Consortium 

41 (C); the three isolates  Epibacterium sp. SZN4 (D), Pseudoalteromonas sp. SZN3 (E), and 

Virgibacillus sp. SZN7 (F) and the agarose gel after 16s RNA amplification (G) (Lanes 1, 2, 3, 4, 

respectively contain DNA ladder, Epibacterium 16s rRNA, Pseudoalteromonas 16s rRNA, and 

Virgibacillus 16s)  
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Figure 2.17. 16s RNA tree of Epibacterium sp. SZN3, Pseudoalteromonas sp. SZN3, and 

Virgibacillus sp. SZN7, built using the best twenty 16s RNA sequences retrieved from NCBI 

database. Tree has been created with the Maximum Likelihood Method using MEGA 7 

software after alignment conducted with Muscle algorithm.   
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Preliminary analyses on cultures grown in metal and hydrocarbon contaminated broth 

indicated that all Consortia and single cultures isolated from Bagnolo-Coroglio are 

promising microorganisms for bioremediation purposes. 

The 3 mixed cultures (Consortia 2B, 4 and 41) showed the best growth capacity in the 

presence of As and hydrocarbons. In particular, Consortium 2B (Fig. 2.18 A) was able to 

grow at all three concentrations of As tested, although in the presence of 1000 and 100 

ppm growth was reduced after 40 h and 36 h, respectively. Consortium 4 (Fig. 2.19 A) 

grew well at 100 ppm of As reaching the highest levels of optical density, equal to 

controls. However, growth diminished at 1000 and 10000 ppm. Similarly, to what has 

already been described for the curves of the A2 consortium (previous chapter), the 

growth of Consortium 41 at 100 and 10000 ppm of As (Fig. 2.20 A) were equivalent at 

46 hours, while the growth at 1000 ppm was significantly reduced. 

 In the presence of PAHs, all three consortia (Fig. 2.18 B, 2.19 B and 2.20 B) reached 

optical density levels comparable to controls in the presence of 100 and 1000 ppm, but 

only consortium 41 was able to grow even at 10000 ppm. The high capacity of this 

consortium to tolerate hydrocarbons was also highlighted by the number of cells 

reached in the presence of the different concentrations of PAHs, since although at 

different times, all curves significantly exceeded the controls. 

Consortium 4 was the most tolerant to the presence of Pb since growth in presence of 

100 and 1000 ppm was superimposable to the controls (Fig. 2.19 C). Although 10,000 

ppm of Pb exhibited high toxicity for consortium 4, this was the only concentration 

allowing growth of the 2b and 41 consortia. 
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The presence of 1000 and 10000 ppm of Cd and Cu was highly toxic for all three consortia 

as none showed an appreciable increase in biomass. Consortium 2b was able to grow in 

the presence of 100 ppm of Cd as well as Cu, reaching comparable optical density values 

in both treatments (Fig. 2.18 D and E). In contrast, consortia 4 and 41 showed biomass 

growth only in the presence of 100 ppm of Cu (Fig. 2.19 E and 2.20 E), with cell 

concentrations comparable to controls. Finally, although Zn proved to be highly toxic for 

consortia 2b and 4, consortium 41 showed, in presence of 10,000 ppm, an increase in 

the number of cells, albeit reduced compared to controls (Fig. 2.20 F). 

The capacity of certain pollutants to stimulate bacterial growth at high concentrations 

is consistent with what has been confirmed by Pearce et al. (2014), who noted an 

increase in tumor mass following treatment with high doses of N-glycolylneuraminic 

acid. A cellular response of this type is called inverse hormesis and could therefore be a 

cellular survival mechanism used also in prokaryotes where environmental conditions 

become too hostile. Further studies are needed to understand the molecular basis of 

this phenomenon. 

Epibacterium sp. SZN4 showed the highest tolerance to As since it was able to grow as 

well as controls even at concentrations of 10,000 ppm (Fig. 2.21 A). Conversely, 

Pseudoalteromonas sp. showed tolerance to As only at 100 ppm (Fig. 2.22 A), while 

Virgibacillus sp. was unable to grow at any of the concentrations tested (Fig. 2.23 A). The 

tests carried out in the presence of Cd confirmed the high toxicity of this heavy metal 

since only Epibacterium sp. SZN4  was able to reach growth rates close to the control at 

100 ppm (Fig 2.21 B). Similarly, Cu, Pb and Zn exerted toxic effects on the 3 isolates since 

none of the 3 bacteria was able to grow at concentrations above 100 ppm. More 
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specifically, Pseudoalteromonas sp. SZN3 and Virgibacillus sp. SZN7 reached and 

exceeded control OD values only when treated with 100 ppm of Cu and Pb (Fig 2.22 C, 

D and 2.23 C, D).  

On the other hand, Epibacterium sp. SZN4 exhibited reduced growth compared to the 

other two strains since its growth, on Cu and Pb, did not reach the control values (Fig 

2.21 C, D). In contrast, Epibacterium sp. SZN4 had the best growth capability when 

exposed to Zn since it was able to reach values equal to about half of those reached by 

the controls in the presence of 100 ppm of Zn (Fig 2.21 E). The other two strains were 

more sensitivity to this metal although Virgibacillus sp. SZN7 showed an increase in cell 

numbers starting from 36 h (Fig. 2.23 E). These observations may suggest that Zn induces 

the activation of metabolic resistance mechanisms over time allowing survival in 

Virgibacillus sp. SZN7. 

Finally, despite Virgibacillus sp. SZN7 was the most tolerant to hydrocarbons, exhibiting 

an appreciable growth also at 10,000 ppm (Fig 2.23 F), both Epibacterium sp. SZN4 and 

Pseudoalteromnas sp. SZN3 reached a biomass growth equal to the control at 100 and 

1000 ppm (Fig 2.21 F and 2.22 F), suggesting that the three isolates are potential 

candidates for PAHs bioremediation. 

In general, although many studies, mainly metagenomics (Chauhan, Nain, and Sharma 

2017; Keren, Lavy, and Ilan 2016; Zhou et al. 2013; Nithya and Pandian 2010) describe 

the ability of Epibacterium sp. SZN4, Pseudoalteromonas sp. SZN3 and Virgibacillus sp. 

SZN7 to survive in environments contaminated by heavy metals this is the first study 

that investigates the real tolerance capacity of these isolates at different concentrations 

of heavy metals. 
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Figure 2.18: Minimum Inhibition Concentrations (MIC) testing As (A), PAHs (B), Pb (C), Cd (D), Cu 

(E), and Zn (F), on Consortium 2B at concentrations of 100, 1000 and 10000 ppm, expressed as 

Optical density (OD) values with time 
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 Figure 2.19: Minimum Inhibition Concentrations (MICs) testing As (A), PAHs (B), Pb (C), Cd (D), 

Cu (E), and Zn (F), on Consortium 4 at concentrations of 100, 1000 and 10000 ppm, expressed 

as Optical density (OD) values with time 
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Figure 2.20: Minimum Inhibition Concentrations (MIC) testing As (A), PAHs (B), Pb (C), Cd (D), Cu 

(E), and Zn (F), on Consortium 41 at concentrations of 100, 1000 and 10000 ppm, expressed as 

Optical density (OD) values with time 
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Figure 2.21: Minimum Inhibition Concentrations (MIC) testing As (A), PAHs (B), Pb (C), Cd (D), Cu 

(E), and Zn (F), on Epibacterium sp. SZN4 at concentrations of 100, 1000 and 10000 ppm, 

expressed as Optical density (OD) values with time 
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Figure 2.22: Minimum Inhibition Concentrations (MIC) testing As (A), PAHs (B), Pb (C), Cd (D), Cu 

(E), and Zn (F), on Pseudoalteromonas sp. SZN3 at concentrations of 100, 1000 and 10000 ppm, 

expressed as Optical density (OD) values with time 
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Figure 2.23: Minimum Inhibition Concentrations (MIC) testing As (A), PAHs (B), Pb (C), Cd (D), Cu 

(E), and Zn (F), on Virgibacillus sp. SZN7 at concentrations of 100, 1000 and 10000 ppm, 

expressed as Optical density (OD) values with time 
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3.2.2) Evaluation of PAHs degradation and heavy metal precipitation 

capacity of bacterial cultures (as isolates and and in mixtures) 

 

In order to evaluate the possible bioremediation applications of these cultures, I 

investigated the ability to degrade hydrocarbons and precipitate heavy metals after 27 

days of incubation in contaminated broth. As shown in Figure 2.24, culture growth 

decreased in the presence of metals and hydrocarbons, reaching a maximum growth 

only after 27 days. Conversely, controls reached the end of the exponential phase 

already after 3 days of incubation. Moreover, as already described in the previous 

chapter, the incubation with hydrocarbons led to a significantly higher number of cells 

than incubation with heavy metals, indicating that the latter compounds exerted a more 

toxic effect than the organic contaminants. pH changes (Fig. 2.25) were monitored 

during the incubation period to determine if 27 days of incubation led to optimal 

conditions for the evaluation of bioremediation activity. pH variations followed an 

opposite trend depending on the type of pollutant used (organic vs inorganic). Indeed, 

as observed for the cultures isolated from the Sarno river, an increase in pH was noted 

after treatment with metals, confirming the moderately alkaliphilic nature of bacterial 

taxa under examination (Senghor et al. 2017; Collins et al. 2015; Ali, Habib, and Riaz 

2009) vice versa, a lowering of pH was recorded during incubation with hydrocarbons, 

suggesting the production of weak acids by bacterial metabolism. 

Analyses concerning metal precipitation ability carried on samples collected at the end 

of the experiments showed a higher capability of the 3 consortia to precipitate Pb (c.a 

.50%) compared to controls (Figure 2.26 B).  
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Differently, Pb precipitation did not change compared to controls in single strain 

treatments. The effect of single strains was appreciable in terms of Cd and Cu removal, 

as all three taxa led to the precipitation, respectively, of about 60% and 80% of metals 

under examination.  

These data confirm what has already been described by Caruso et al. (2018), Vela-Cano 

et al. (2014), Zhou et al. (2013), who described the capacity of Virgibacillus sp., 

Pseduoalteromonas sp. MER144 and Pseudolateromonas sp. SCSE709-6 to effectively 

remove heavy metals (Cd and Hg) from the medium through the production of 

extracellular polysaccharides.  

Conversely, metal precipitation from solution via Epibacterium sp. SZN4 had not yet 

been reported in the literature and suggests that this microorganism may be a 

promisisng new candidate for bioremediation processes. In general, the data here 

reported show the absence of a direct correlation between cell growth and metal 

removal as the metal removal efficiency of Pseudolateromonas sp. SZN3 did not differ 

significantly from the other two isolates, although it exhibits a higher biomass at the end 

of the incubation period. Thus, these data may suggest, in agreement with Zhou et al. 

(2013), that the removal of contaminants occurs by exopolysaccaride adsorption rather 

than intracellular accumulation.  

Similarly to what has been described for the bacterial isolated from the mouth of the 

Sarno River, all cultures shown here were able to degrade the 3 PAHs analysed (Figure 

2.26 A). Degradation rates on naphthalene were close to 100% in all investigated 

systems.  
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With the exception of Epibacterium sp. SZN4 which allowed a decrease of about 50% of 

Pyrene, the concentration of this hydrocarbon was significantly reduced in a range 

between 75% and 95% by Consortium 4, 41, 2B and Pseudoalteromonas sp. SZN3 and 

Virgibacillus sp. SZN7. Phenanthrene has been the most recalcitrant pollutant to 

bacterial degradation, as degradation has never exceeded 65% and the 2B consortium 

was not able to degrade more than 30%. The degradation observed here suggest, unlike 

the cultures of the Sarno River, that in certain situations, the single bacterial isolates 

may have a better degradation performance than the original consortium since both 

Halomonas sp. SZN1 and Pseudoalteromonas sp. SZN3 exhibited better phenanthrene 

degradation than when present together in the same culture (consortium 2B). This 

phenomenon is consistent with results reported by Piakong and Zaida Z (2018), and it is 

likely due to the antagonistic interaction among members of the consortium which may 

lead to a reduced degradation efficiency. 
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Figure 2.24: Biomass growth measurements, at four different timings, of Consortium 4 (4), 

Consortium 41 (41), Consortium 2B (2B), Epibacterium sp. SZN4, (1), Pseudoalteromonas sp. 

SZN3, (3), Virgibacillus sp. SZN7(7) incubated with a mix of heavy metals (A), PAHs (B) and no 

amendements (C) 
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Figure 2.25: pH measurements, at four different hours, of Consortium 4 (4), Consortium 41 

(41) , Consortium 2B (2B), Epibacterium sp. SZN4, (1), Pseudoalteromonas sp. SZN3, (3), 

Virgibacillus sp. SZN7 (7) incubated with a mix of heavy metals (A), PAHs (B) and no 

amendements (C) 
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Figure 2.26: PAH degradation rates (A) and heavy metals removals (B) of Consortium 4 (4), 

Consortium 41 (41), Consortium 2B (2B), Epibacterium sp. SZN1, (1), Pseudoalteromonas sp. 

SZN3, (3), Virgibacillus sp. SZN7, (7) at the end of incubation time (27 days) 

 

 

 

 

 

 

 

 

 

 

0

20

40

60

80

100

120

CTR 41 4 2B 1 3 7

%

Metal removal from culture media

As Cd Cu Zn Pb

B

*

*

* 

* 

* 

* 

* 

* 

* 

* 



121 
 

3.2.3) Effects of bacterial culture addition (as isolates and as mixtures) on 

hydrocarbon degradation and heavy metal partitioning in contaminated 

sediments from Bagnoli-Coroglio 

 

After verifying the performance of consortia and isolates in contaminated liquid 

solutions I proceeded to inoculate bacteria into flasks containing polluted sediment 

samples collected from Bagnoli-Coroglio. 

Data regarding the degradation of hydrocarbons (Fig. 2.27) from sediments showed that 

the cultures were generally capable of degrading hydrocarbons (about 40% on average), 

although each culture had a specific degradation rate for each substrate. For example, 

Consortium 41 showed a degradation capacity of around 90% for Dibenzo (a, h) 

Anthracene, and 50% for PAHs, Benzo (a) Pyrene, Benzo (g, h, i) Perylene and Indeno (1, 

2, 3) Pyrene while the degradation of Pyrene, Chrysene, Benzo Fluoranthrene and Benzo 

(a) Anthracene was almost null. Similarly, Pseudolateromonas sp. SZN3 exhibited a 

degradation below 10% for Benzo (a) pyrene and Pyrene; Benzo (g, h, i) Perylene, Indeno 

(1, 2, 3) Pyrene were also not significantly degraded by Consortium 2B. 

Only Consortium 4, had an overall degrading ability of around 40% even if it showed 

lower degradation yield for Benzo (g, h, i) perylene and Pyrene. These data are also in 

agreement with what described by Nuñal et al. (2017) who, using an artificial consortium 

composed of Pseudomonas aeruginosa, Marinobacter mobilis, Gaetbulibacter sp. and 

Halomonas sp. observed a degradation rate of about 50 % of hydrocarbons added to the 

sediment. 
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Of the pure isolates, Virgibacillus sp. SZN7 showed the best biodegradation capacity 

since the least degraded compound (Benzo (g, h, i) Perylene) reached degradation 

values of above 20%. Finally, Epibacterium sp. showed an effective degradation between 

30% and 50% for the majority of the analyzed compounds except for Benzo (a) pyrene 

and Chrysene whose degradation did not exceed 20%. The data shown here, thus, 

highlight the possibility of using such consortia as effective tools capable of degrading 

most of the pollutants present in the area of Bagnoli-Coroglio.  

Likewise, the results here reported indicate that even single isolates may be valid 

candidates in the degradation of hydrocarbons. Indeed, although the ability of 

Psedudolateromonas sp. SZN3 to degrade hydrocarbons in association with other 

bacteria and within artificial systems was already known (Hochstein et al. 2019; Moreno-

ulloa et al. 2019; Hedlund and Staley 2006) its real ability to degrade hydrocarbons 

following a bioaugmentation directly into the polluted sediment had never been 

evaluated. Similarly, this is the first study where Epibacterium sp. SZN4 and Virgibacillus 

sp. SZN7 are proposed as new potential candidates for hydrocarbon bioremediation in 

polluted environments and the results shown below suggest that they can also be 

applied in heavy metal bioremediation. 

To this aim, the results of the selective sequential extraction (SSE) analysis indicated that 

the addition of bacteria significantly reduced the mobility (and thus bioavailability and 

toxicity) of As as the percentage of such metalloid associated with the exchangeable 

carbonate fraction decreased in favor of a more stable fraction (Fig 2.28 A). 

Consortium 4 was the culture that highly reduced the mobility of As, since it partitioned 

the metal into a Fe / Mn oxidizing fraction and into the residual fraction, considered the 
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least bioavailable fraction of all. Moreover, this consortium was the only one to exert an 

effect on Cd (Fig. 2.28 B), reducing the component associated with the exchangeable 

carbonate fraction to about 15%. 

Similarly, the mobility of Pb (Fig. 2.28 C) also decreased following treatment with 

bacterial cultures. The effects were significant for all microorganisms except for 

Virgibacillus sp. SZN7 which did not generally affect the repartition of any metal. 

Finally, none of the microorganisms significantly partitioned Cu and Zn (Fig. 2.28 D and 

E) in the other fractions, compared to controls. This observation suggests that the 

proposed bacteria are not optimal for the biostabilisation (i.e. reduction of metal 

mobility) of these elements in the analyzed sediments. 

In general, data regarding the changes in metal partitioning after treatment with 

isolated cultures from Bagnoli-Coroglio, agree with results obtained following treatment 

with the consortium isolated from the Sarno River, as in both cases the mobility of As, 

Cd and Pb significantly decreased. 

Additionally, the reduced mobility of these metals can be superimposed on the activity 

of the sulfur reducing bacteria described by Li et al. (2016) which led to the metals Cu, 

Cd, Zn and Pb in a more stable mineral phase. Interestingly, in my study Cu and Zn metals 

were not affected by the bacterial treatment. According to Zhang et al. (2014), this 

difference could be attributed to a different composition of the sediment used. 

However, my study indicates that other bacteria that do not belong to the class 

Deltaproteobacteria, that are widely recognized as comprising most of the sulfur-

reducing bacteria (Barton and Fauque 2009), are able to lower the toxicity of metals by 
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increasing their immobilization. Further studies based on genome mining are needed to 

confirm if the same molecular mechanisms employed in these processes by sulphur 

reducing bacteria occur even in bacteria here investtigated  

 

 

Figure 2.27. Percentage PAH degradation rates in sediments at the end of the incubation time 

(27 days) compared to controls 
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Figure 2.28. As (A), Cd (B), Pb (C), Cu (D) and Zn (E) distribution in the four sediment fractions 

following Selective Sequential Extraction at the end of incubation time (27 days) 
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4) Conclusion  

 

The data here reported show the capability of the four consortia and the isolated strains 

to grow under heavy metal and hydrocarbon stress as well as to degrade PAH mixtures 

and effectively precipitate lead, cadmium and copper from solutions. Moreover, the 

ability of all cultures, both consortia and pure colonies, to degrade PAHs directly in the 

contaminated sediments, suggest their possible employement as an effective solution 

for the bioremediation of hydrocarbon derivatives polluting Bagnoli-Coroglio sediments. 

Additionally, the ability of Consortium A2 and Consortium 4 to reduce the biovailability 

and thus the toxicity of three of the tested metals (As, Cd and Pb) suggests that these 

Consortia may be suitable for in situ bioremediation since these heavy metals would not 

be resuspended into the water column. 

This study opens new insights into marine bioremediation strategies since it highlights 

that a similar pattern of pollution characterized by high concentrations of heavy metals 

and hydrocarbons, found in the two different study areas (Sarno River and Bagnoli- 

Coroglio), has selected the same strains with bioremediation potential in the two 

investigated areas. 

Further studies are required to better understand chemical interactions among strains 

comprising the Consortia since, under different treatments, different responses were 

observed between the single isolates and mixtures containing the same taxa.  

Furthemore, the mechanism used by these bacteria, leading to a different heavy metal 

partitioning in the sediments, need to be better investigated since, for the isolated 

colonies described in this study, this has not yet been described in the literature. 
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Chapter 4 

Genomic characterization and functional analysis of 

bacterial isolates 

 

 

Abstract   

 

Marine bacteria have long been known as potentially employable in bioremediation 

strategies (Dash et al. 2013). In order to fully exploit their potential, genome 

characterization appears to be desirable as it allows for in depth studies of the genetic 

and molecular mechanisms underlying processes of degradation and detoxification of 

xenobiotics. This chapter reports the genomic sequencing results of bacteria isolated 

during the sampling activities that took place in the former industrial area of Bagnoli 

Coroglio (Naples, IT). The investigation has allowed me to identify 6 different genomes 

belonging to the genera Alcanivorax, Alkaliphilus, Epibacterium, Halomonas, 

Pseudoaltromonas and Oceanicaulis. The results of the Average Nucleotide alignment 

demonstrated the presence of 4 new taxa belonging to Alkaliphilus sp., Halomonas sp, 

Oceanicaulis and Pseudoalteromonas since the scores with closest related strains were 

under the cutoff of 95%. Automatic and manual annotation confirmed the possibility of 

employing these bacteria in bioremediation processes since many genes are involved in 

hydrocarbon degradation pathways and in heavy metal detoxification systems, the 

sequences and organization of which are described below. 
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1) Introduction 

 

Environmental pollution is of global concern since mutagenic and toxic effects of 

compounds such as polycyclic aromatic hydrocarbons, metals and chlorinated / nitro 

aromatic hydrocarbons pose a serious threat to the entire ecosystem (Fulekar and 

Sharma 2008). 

Despite the existence of many chemical-physical methods, microbial bioremediation has 

been demostrated to be one of the most effective sustainable and cost competitve 

approaches to remove anthropogenic compounds from polluted environments. In order 

to optimise this strategy, a thorough understanding of features driving the removal of 

pollutants and of degradation processes is required (Desai, Pathak, and Madamwar 

2010).  Microorganisms have colonized almost all extreme environments due to their 

ability to activate a myriad of different metabolic pathways. For this reason they harbour 

a reservoir of genes with high biotechnological potential that has yet to be fully 

exploited (Plewniak et al. 2018). 

In order to investigate this potential, the use of molecular biology associated with DNA 

sequencing techniques appears to be the preferred strategy as it allows to obtain an 

overall view of genes involved in pollution abatement. In particular, the technological 

achievements of the last twenty years in the field of high-throughput sequencing based 

on Next generation sequencing (NGS) and software assemblies have allowed the rapid 

sequencing at affordable costs of entire bacterial genomes, which according to the 

estimates of the Earth Microbiome Project, will allow for the full sequencing of 500,000 

genomes (Thompson et al. 2017; Bharagava et al. 2019). 
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A very effective strategy for identifying the dynamics of communities and the 

distribution of non-cultivable microorganisms in highly polluted sites is metagenomic 

sequencing to obtain the overall microbial assemblage genomes from direct sequencing 

of metagenomic libraries or environmental DNA (Martín et al. 2006; Plewniak et al. 

2018). However, the simple mapping and sequencing of genomes does not provide a 

complete explanation of ongoing processes unless associated with a functional study of 

genes that can lead to the identification of various promoters and genes involved in 

degradation pathways and the choice of optimal candidates to design high performance 

bioremediation treatments (Czaplicki and Gunsch 2016b). The advancement of Omics 

approaches based on functional genomics, considered as the set of techniques aimed at 

whole genome sequencing associated with bioinformatics analysis, has provided 

effective tools such as proteomics and transcriptomics able to clarify the biological 

function of genes and thus, to reveal the complex regulation of biochemical pathways 

activated under stress conditions (Deutschbauer, Chivian, and Arkin 2006). 

Although culture independent methods such as metagenomic and metatrascrptomic 

techniques associated with bioinformatics and genome-mining analyses are useful tools 

to unveal the potential of bacterial communities (Machado and Gram 2017; Vallenet et 

al. 2017), a culture dependent approach still remains an important strategy to isolate 

microorganisms with high biotechnological potential directly usable in bioremediation 

strategies based on bioaugmentation (Overmann, Abt, and Sikorski 2017).  In this 

chapter I describe the genomes obtained at the Institute for Microbial Biotechnology 

and Metagenomics (University of Western Cape, SA) through Next Generation 

Sequencing, after having assessed the capacity (described in chapter 1 and 3) of isolated 
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colonies to reduce metal mobility and degrade polycyclic aromatic hydrocarbons. In 

addition, following automatic and manual annotation, I describe the main genes 

involved in mechanisms of resistance and degradation of hazardous compounds. 

 

2) Materials and Method 

 

2.1) Bacterial culturing 

 

The four cultures were isolated from sediments sampled from the Sarno River (Culture 

A2) and Bagnoli-Coroglio regions (Consortia 2B, 41, 4) as described in chapter 3. Each of 

these cultures represents a consortium of bacteria but for simplicity they are referred 

to in the text as A2, 2B, 41 and 4. 

 

2.2) Genomic DNA preparation and Genome sequencing 

 

Genomic DNA (gDNA) was extracted with the DNeasy Blood & Tissue kit, according to 

the manufacturer's instructions. DNA concentration was estimated by measuring the 

absorbance at 260 nm and purity by 260/230 nm and 260/280 nm ratios (Thermo Fisher, 

Waltan, US). 

Sequence library preparation of gDNA was performed using the Nextera DNA Flex kit 

(Illumina, Hayward, USA) with 1 ng input DNA according to the manufacturer's 

instructions. The resultant libraries were sequenced with an Illumina MiSeq instrument 

at the University of Western Cape sequencing facility using a MiSeq Reagent kit V2 (500 

cycle) with a 10% phiX v3 spike generating 2 × 250 bp reads per sample. The raw reads 
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were trimmed (bases with a Q-score less than 36 were trimmed from the 3′ end) and 

demultiplexed at the sequencing facility. 

 

2.3) Annotation and comparative genomics 

 

To assembly the genomes, contigs generated with Illumina Miseq were up loaded on a 

binning tool called MyCC (Lin and Liao 2016). Subsequently I evaluated the degree of 

completeness of the genome by uploading them into CheckM (Parks et al. 2015). To 

identify the de novo assembled genomes I proceeded with phylogenetic identification 

using three housekeeping genes. More specifically I selected, as suggested by Chun et 

al. (2018), the genes recA (recombinase A), gyrB (DNA gyrase subunit B), and rpoB (RNA 

polymerase subunit beta) since such genes, in terms of phylogenetic resolution, can be 

comparable or even better than 16S rRNA (Větrovský and Baldrian 2013). In order to 

determine the species relatedness of the genomes I evaluated the average nucleotide 

identity (ANI) (Rodriguez-R and Konstantinidis 2016; Han, Qiang, and Zhang 2016) by 

comparing the de novo genomes with the genomes found following the analysis with 

the three marker genesand with the closest related genomes identified by loading the 

major contigs (> 100,000 bp) on BLAST (Madden 2013). The closest related genomes 

were chosen using a cut-off point of 90 % nucleotide sequence identity. The obtained 

genomes were annotated by RAST (Overbeek et al. 2014) providing an automatic and 

hypothetical annotation for every gene of the genome. KEGG was used to predict the 

pathways in which the annoted protein could be involved (Kanehisa et al. 2017). After 

having identified the genes involved in metal resistances or hydrocarbon degradation, I 
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verified their identity by manual annotation. In order to manually annotate the 

sequences, the genomes were handled with CLC Genomic Workbench 11 

(https://www.qiagenbioinformatics.com/) to detect all open reading frames (ORF) and 

translated  into amminoacidic sequences. I also carried on sinteny analysis through  

manual annotation ofthe sequences flanking the genes of interest to better understand 

the organisation of these areas and to compare them with homologous sequences of 

other phylogenetically similar strains. To graphically represent the comparison of the 

most interesting sequences with the closest homologous sequences I used the program 

Easyfig (Sullivan, Petty, and Beatson 2011). To verify the degree of correlation between 

the different dioxygenases, key enzymes in the hydrocarbon degradation pathways 

identified in the 6 different genomes, i used MEGA X (S. Kumar et al. 2018), a 

phylogenetic and molecular evolutionary software. 

 

 

 

 

 

 

 

 

 

https://www.qiagenbioinformatics.com/
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3) Results and discussion 

 

The output (Fig. 3.1) generated, following sequencing by Illumina Miseq highlighted the 

presence of multiple clusters, in particular 59 clusters for culture 2B, 46 for culture A2, 

15 for culture 41 and 7 for culture 4.  The de novo assembly highlighted the presence of 

two different genomes for culture 2B, A2 and 41, while 3 different genomes were 

detected in culture 4 (table 3.1).   

Phylogenetic investigations using three housekeeping genes (Table 3.2) identified three 

Gammaproteobacteria, two Alphaproteobacteria and one Clostridia. In particular 

housekeeping gene analysis (table 3.2) clearly indicated the presence of the following 

strains: Alkaliphilus oremlandii OhILAs, Epibacterium scottomollicae DSM 25328, 

Halomonas alkaliantarctica strain FS-N4, Oceanicaulis alexandrii HTCC2633, and 

Pseudoalteromonas spiralis DSM 16099 c4. Conversely, a double affiliation was found 

for Alcanivorax since recA and rpoB matching the sequences belonging to Alcanivorax 

dieselolei B5, while gyrB was affiliated to Alcanivorax xenomutans p 40.  

The results of Average Nucleotide identity (Table 3.3) highlighted the presence of new 

species for Alkaliphilus oremlandii sp, Halomonas alkaliantarctica sp, Oceanicaulis 

alexandrii sp and Pseudoalteromonas spiralis sp, with highest ANI values of 77.47%, 

87.63%, 82.53% and 93.99%, below the species similarity cutoff of 96% (Richter and 

Rosselló-Móra 2009;  Kim et al. 2014). Conversely, the ANI alignment for Alcanivorax sp. 

end Epibacterium sp. led to the assignment of such taxa to the species Alcanivorax 

xenomutans p 40 and Epibacterium scottomollicae DSM 25328 since the values were 

respectively 97.53% and 98.82%.  
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Surprisingly, the alignment of the de novo Pseudoalteromonas spiralis sp. with 

Pseudoalteromonas sp. DL-6 showed an ANI value (93.99%) greater than the alignment 

with Pseudoalteromonas spiralis DSM 16099 c4 (88.78%) which was the closest species 

as indicated by the marker gene score. 

The same was observed for the de novo Halomonas alkaliantarctica sp. with higher ANI 

values following alignment with H. ventosae NRS2Hap1 (87.20%), H. sp. R57-5 (87.18), 

H.sp. K0166 (85.67) and H. olivaria TYRC17 (87.63%) compared to Halomonas 

alkaliantartica strain FS-N4 (78.68%). Although a negative correlation between marker 

gene and ANI values has been described by Kim et al. (2014) and Gomila et al. (2015), 

these findings are not very frequent compared to the inter-species concordance 

between marker genes and ANI values. A possible explanation for this uncoupling may 

be due to the presence of chemical pollutants which may force horizontal gene transfer 

and therefore the composition of genomes ( Zhang et al. 2018). However, further 

investigations based on concatenated genes are required in order to fully asses the 

novelty of draft genomes here presented. 
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Figure 3.1. Illumina Miseq Output after sequencing. The different colours of the dots represent 

a different number of estimated clusters for consortia 2B (A), A2 (B), 41 (C) and 4 (D). 
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Table 3.1. List of identified strains per culture consortia (see text for expalantion) 

 

Original culture ID Identified genomes 

2B  consortium Halomonas sp. 
Pseudoalteromonas sp. 

41 consortium Pseudoalteromonas sp. 
Alkaliphilus sp. 
Alkanivorax sp. 

4 consortium Epibacterium sp., 
Alkaliphilus sp., 
Glycocaulis sp. 
Halomonas sp. 

A2 consortium Halomonas sp., 
Alcanivorax sp. 

 

 

Table 3.2. Homology % of marker genes in recombinase A (recA), DNA gyrase subunit B (gyrB) 

and RNA polymerase subunit B (rpoB) 

Identified taxa Marker genes % homology E value Taxa 

Alcanivorax sp. recA 97.97 0.0 Alcanivorax 
dieselolei B5 

gyrB 99.88 0.0 Alcanivorax 
xenomutans p 40 

rpoB 98.08 0.0 Alcanivorax 
dieselolei B5 

Alkaliphilus sp. recA 82.39 0.0 Alkaliphilus 
oremlandii OhILAs 

gyrB 79.30 0.0 Alkaliphilus 
oremlandii OhILAs 

rpoB 80.82 0.0 Alkaliphilus 
oremlandii OhILAs 

Epibacterium sp recA 100 0.0 Epibacterium 
scottomollicae DSM 
25328 

gyrB 100 0.0 Epibacterium 
scottomollicae DSM 
25328 

rpoB 100 0.0 Epibacterium 
scottomollicae DSM 
25328 

Halomonas sp.  recA 99.72 0.0 Halomonas 
alkaliantarctica 
strain FS-N4 
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gyrB 100 0.0 Halomonas 
alkaliantarctica 
strain FS-N4 

rpoB 99.85 0.0 Halomonas 
alkaliantarctica 
strain FS-N4 

Oceanicaulis sp. recA 100 0.0 Oceanicaulis 
alexandrii 
HTCC2633 

gyrB 99.75 0.0 Oceanicaulis 
alexandrii 
HTCC2633 

fusA 99.06 0.0 Oceanicaulis 
alexandrii 
HTCC2633 

Pseudoalteromonas 
sp. 

recA 99.71 0.0 Pseudoalteromonas 
spiralis DSM 16099 
c4 

gyrB 100 0.0 Pseudoalteromonas 
spiralis  DSM 16099 
c4 

rpoB 100 0.0 Pseudoalteromonas 
spiralis DSM 16099 
c4 

 

 

 

Table 3.3: Results of the average nucleotide alignment. Each reference genome was chosen 

following the output generated by blast of the 3 largest contigs for each genome, assembled 

with MYCC 

 

Identified taxa Reference strains 
used for the 
comparison 

ANI Identity  SD NCBI reference 
sequence 

 
 

Alcanivorax sp.. 

Alcanivorax 
borkumensis SK2 

77.99% 5.74% NC_008260 

alcanivorax dieselsoi 
B5 

93.41% 3.08% NC_018691 

Acanivorax sp. N3-2° 80.84% 6.95% CP022307.1 

Alcanivorax 
xenomutans strain 
P40 

98.82% 2.12% NZ_CP012331.1 

 
 
 
 

Gottschalkia 
acidurici 9° 

73.62% 3.15% CP003326.1 

Alkaliphilus 
oremlandii OhILAs 

77.47% 4.80% NC_009922.1 
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Alkaliphilus sp.. Clostridium 
formicaceticum 
strain DSM 92 

73.55% 3.91% NZ_CP020559.1 

Alkaliphilus 
metalliredigens 
QYMF, 

74.50% 4.24% NC_009633.1 

 
 

Epibacterium sp. 

Ruegeria sp.TM1040 81.86% 4.59% NC_008044.1 

Ruegeria mobilis 
F1926 

83.24% 5.38% CP015230.1 

Epibacterium mobile 
EPIB1 

83.09% 5.21% NZ_LR027553.1 

Epibacterium 
scottomollicae strain 
DSM 25328 

97.53% 1.60% PVUF01000001.1 

 
 

Halomonas sp. 

halomonas ventosae 
NRS2Hap1 

87.20% 4.37% CP022737.1 

halomonas sp.R57-5. 87.18% 4.38% NZ_LN813019.1 

halomonas sp.Ko166 85.67% 4.96% NZ_CP011052.1 

halomonas olivara 
TYRC17 

87.63% 4.23% AP019416.1 

Halomonas 
alkaliantarctica 
strain FS-N4 

78.68% 4.92% JHQL01000001.1 

 
 
 
 
 

Oceanicaulis sp. 

Parvibaculum 
lavamentivorans DS-
1 

74.09% 3.66% NC_009719.1 

Maricaulis maris 
MCS10 

75.38% 3.78% NC_008347.1 

Glycocaulis 
alkaliphilus strain 
6B-8 

76.23% 4.18% CP018911.1 

Brevundimonas 
naejangsanensis 
strain FS1091 

73.98% 3.77% CP038027 

Oceanicaulis 
alexandrii HTCC2633 

82.53% 4.56% CH672428.1 

 
 
 
 
 
Pseudoalteromonas 

sp. 

pseudoalteromonas 
tetraodonis strain 
GFC 

89.49% 4.78% CP011041.1 

pseudoalteromonas 
sp. DL-6 

93.99% 3.67% NZ_CP019770.1 

pseudoalteromonas 
issachenkonii strain 
KMM3549 

89.41% 4.74% CP011030 

pseudoalteromonas 
issachenkonii strain 
KCTC12958 

89.33% 4.77% CP013350.1 

pseudoalteromonas 
sp. SM9913 

89.57% 4.77% NC_014803.1 

Pseudoalteromonas 
spiralis strain DSM 
16099 c4 

88.78% 5.44% LVCN01000034.1 
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3. 1) General features of Metagenome Assembled Genomes (MAGs) 

 

3.1.1) Halomonas sp. SZN1 

Complete genome sequencing (Fig. 3.2) of Halomonas sp. SZN1, a gammaproteobacteria 

belonging to the Order Oceanospirillales, was 4,673,840 bp long; CheckM analysis 

showed a 100% completness with a contamination of 0.87% as two markers were 

duplicated (Tab. 3.4). Halomonas sp. SZN1 had a G+C content of 54.8% and contained 

4217 predicted protein-coding sequences (CDSs) with an average length of 1006.73 with 

a protein coding density of 88.32% (Tab. 3.4). Of the total predicted CDSs, 3200 (75.9%) 

were assigned as functional, 1017 (24.11%) were classified as hypothetical and 74 

(1.75%) as coding for RNAs (see Clusters of Orthologus Groups (COG) annotation in Fig. 

3.2 and Tab. 3.4). Thirty-four Genomic Islands (GIs) (part of a genome that has evidence 

of horizontal origins) were predicted in the genome of Halomonas sp. SZN1 using the 

integration of IslandPath-DIMOB, SIGI-HMM and Island Pick provided by IslandViewer4 

(Bertelli et al. 2017), comprising a total of 334,200 bp (7.15% of the genome) and 281 

predicted CDSs of which 151 were classified as proteins of unknown function. The most 

interesting GC island (Fig. 3.3), relying on automatic annotation, was in the genome 

region betweem 1.96 Mb and 1.995 Mb that included genes involved in PAHs 

degradation. In addition, heavy metal cation efflux coding genes were found along the 

GIs, suggesting that horizontal gene transfer may have increased hydrocarbon 

degradation capacity.  

 

 

 



141 
 

 

Table 3.4: General genomic features of Halomonas sp. SZN 1 

HALOMONAS SP. SZN 1  

CHECKM COMPLETENESS 100% 
CHECKM CONTAMINATION 0.87% 
SIZE, BP 4,673,840 
G+C CONTENT, % 54.8 
N50 282492 
L50 6 
NUMBER OF CONTIGS (WITH PEGS) 41 
NUMBER OF SUBSYSTEMS 498 
NUMBER OF CODING SEQUENCES 4217 
FUNCTION ASSIGNED 3200 
HYPOTHETICAL 1017 
NUMBER OF RNAS 74 
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Figure 3.2. Circular representation of Halomonas sp. SZN1 genome. The different rings represent 
(from outer to inner) predicted protein-coding sequences (CDS) on the forward (outer wheel) 
and the reverse (inner wheel) strands (circle 2 and 3) colored according to the assigned COG 
classes (circle 1, 4), G+C content (circle 5), GC skew (circle 6), genomic position (circle 7). The 
COG colors represent functional groups (A, RNA processing and modification; B, chromatin 
structure and dynamics; J, Translation, ribosomal structure and biogenesis; K, Transcription; L, 
Replication, recombination and repair; D, Cell cycle control, cell division, chromosome 
partitioning; O, Posttranslational modification, protein turnover, chaperones; M, Cell 
wall/membrane/envelope biogenesis; N, Cell motility; P, Inorganic ion transport and 
metabolism; T, Signal transduction mechanisms; U, Intracellular trafficking, secretion, and 
vesicular transport; V, Defense mechanisms; W, Extracellular structures; Y, Nuclear structure; Z, 
Cytoskeleton; C, Energy production and conversion; G, Carbohydrate transport and metabolism; 
E, Amino acid transport and metabolism; F, Nucleotide transport and metabolism; H, Coenzyme 
transport and metabolism; I, Lipid transport and metabolism; Q, Secondary metabolites 
biosynthesis, transport and catabolism; R, General function prediction only; S, Function 
unknown) 

 

 

 

Figure 3.3. The red bars indicate the Genomic Islands found in Halomonas sp. SZN1. The most 

interesting GC island was in the genome region betweem 1.96 Mb and 1.995. 
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3.1.2) Alcanivorax sp. SZN2. 

Alcanivorax sp. SZN2 complete genome (Fig. 3.4), a gammaproteobacteria belonging to 

the Order Oceanospirillales, presents 3,881,818 bases; CheckM analysis showed a 

completeness of 83.6% (70 markers missing) and a contamination of 0.5% (3 markers 

duplicated) (Tab. 3.5). Alcanivorax sp. SZN2 presents a GC content of 61.5% and 3528 

predicted coding sequences with an average length of 956.77 bp having a protein coding 

density of 90.01% (Tab. 3.5). Of the total predicted CDSs, 2.641 (74.8%) were assigned a 

function.  887 (25.1%) were classified as hypothetical and 36 (1%) as coding for RNAs 

(see COG annotation in Fig. 3.4 and Tab. 3.5), Twenty four GIs were predicted for the 

Alcanivorax sp. SZN2 genome using the integration of IslandPath-DIMOB, SIGI-HMM and 

Island Pick provided IslandViewer4 (Bertelli et al. 2017), comprising a total of 181,712bp 

(4.68% of the genome) and 177 predicted CDSs of which 88 were classified as proteins 

of unknown function (Fig. 3.5).  

From the automatic annotation provided by island viewer it was possible to identify only 

one gene (beta-ketoadipyl CoA thiolase) as 1673405-1674613, involved in the beta-

ketoadipate pathway, a metabolic central pathway of hydrocarbon degradation (Song 

2009). 
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Table 3.5. General genomic features of Alcanivorax sp. SZN2. 

 

ALCANIVORAX SP. SZN2  

CHECKM COMPLETENESS 83.6 
CHECKM CONTAMINATION 0.47% 
SIZE, BP 3,881,818 
G+C CONTENT, % 61,5 
N50 306,384 
L50 5 
NUMBER OF CONTIGS (WITH PEGS) 55 
NUMBER OF SUBSYSTEMS 388 
NUMBER OF CODING SEQUENCES 3528 
FUNCTION ASSIGNED 2,641 
HYPOTHETICAL 887 
NUMBER OF RNAS 36 
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Figure 3.4. Circular representation of Alcanivorax sp. SZN2 genome. The different rings 
represent (from outer to inner) predicted protein-coding sequences (CDS) on the forward (outer 
wheel) and the reverse (inner wheel) strands (circle 2 and 3) colored according to the assigned 
COG classes (circle 1, 4), G+C content (circle 5), GC skew (circle 6), genomic position (circle 7). 
The COG colors  represent the functional groups (A, RNA processing and modification; B, 
chromatin structure and dynamics; J, Translation, ribosomal structure and biogenesis; K, 
Transcription; L, Replication, recombination and repair; D, Cell cycle control, cell division, 
chromosome partitioning; O, Posttranslational modification, protein turnover, chaperones; M, 
Cell wall/membrane/envelope biogenesis; N, Cell motility; P, Inorganic ion transport and 
metabolism; T, Signal transduction mechanisms; U, Intracellular trafficking, secretion, and 
vesicular transport; V, Defense mechanisms; W, Extracellular structures; Y, Nuclear structure; Z, 
Cytoskeleton; C, Energy production and conversion; G, Carbohydrate transport and metabolism; 
E, Amino acid transport and metabolism; F, Nucleotide transport and metabolism; H, Coenzyme 
transport and metabolism; I, Lipid transport and metabolism; Q, Secondary metabolites 
biosynthesis, transport and catabolism; R, General function prediction only; S, Function 
unknown) 

 

 

Figure 3.5. The red bars indicate the Genomic Islands found in Alcanivorax sp. SZN2. From the 

automatic annotation provided by island viewer only one gene (beta-ketoadipyl CoA 

thiolase; 1673405-1674613 bp), linked to central hydrocarbon degradation pathway has 

been identifed 
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3.1.3) Pseudoalteromonas sp. SZN3 

The Pseudoalteromonas sp. SN3 complete genome (Fig. 3.6), a Gammaproteobacteria 

belonging to the Order Alteromonadales, presents 4,115,154 bases; CheckM analysis 

showed a completeness of 100% and a contamination of 2.6 % (20 markers duplicated) 

(Tab. 3.6). Pseudoalteromonas sp. SZN3 had a GC content of 39.9 % and 3674 predicted 

coding sequences with an average length of 957.61 bp having a protein coding density 

of 89.01% (Tab. 3.6). Of the total predicted CDSs, 2.661 (72.4%) were assigned a 

function, 1013 (27.6%) were classified as hypothetical and 128 (3,5%) as coding for RNAs 

(see COG annotation in Fig. 3.6 and Tab. 3.6). Eighteen GIs were predicted (Fig. 3.7) for 

the Pseudoalteromonas sp. SZN3 genome using the integration of IslandPath-DIMOB, 

SIGI-HMM and Island Pick provided IslandViewer4 (Bertelli et al. 2017), with a total of 

214,638 bp (5.2% of the genome) and 250 predicted CDSs of which 123 were classified 

as proteins of unknown function. No genes involved in metal tolerance and hydrocarbon 

degradation were detected in the identified genome islands. 

 

Table 3.6. General genomic features of Pseudoalteromonas sp. SZN3 

 

PSEUDOALTEROMONAS SP. SZN3  

CHECKM COMPLETENESS 100% 
CHECKM CONTAMINATION 2,64% 
SIZE, BP 4,115,154 
G+C CONTENT, % 39.9 
N50 267815 
L50 6 
NUMBER OF CONTIGS (WITH PEGS) 32 
NUMBER OF SUBSYSTEMS 461 
NUMBER OF CODING SEQUENCES 3674 
FUNCTION ASSIGNED 2661 
HYPOTHETICAL 1013 
NUMBER OF RNAS 128 
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Figure 3.6. Circular representation of Pseudolateromonas sp. SZN3 genome. The different rings 
represent (from outer to inner) predicted protein-coding sequences (CDS) on the forward (outer 
wheel) and the reverse (inner wheel) strands (circle 2 and 3) colored according to the assigned 
COG classes (circle 1, 4), G+C content (circle 5), GC skew (circle 6), genomic position (circle 7). 
The COG colors represent the functional groups (A, RNA processing and modification; B, 
chromatin structure and dynamics; J, Translation, ribosomal structure and biogenesis; K, 
Transcription; L, Replication, recombination and repair; D, Cell cycle control, cell division, 
chromosome partitioning; O, Posttranslational modification, protein turnover, chaperones; M, 
Cell wall/membrane/envelope biogenesis; N, Cell motility; P, Inorganic ion transport and 
metabolism; T, Signal transduction mechanisms; U, Intracellular trafficking, secretion, and 
vesicular transport; V, Defense mechanisms; W, Extracellular structures; Y, Nuclear structure; Z, 
Cytoskeleton; C, Energy production and conversion; G, Carbohydrate transport and metabolism; 
E, Amino acid transport and metabolism; F, Nucleotide transport and metabolism; H, Coenzyme 
transport and metabolism; I, Lipid transport and metabolism; Q, Secondary metabolites 
biosynthesis, transport and catabolism; R, General function prediction only; S, Function 
unknown) 

 

 

 

Figure 3.7. The red bars indicate the Genomic Islands found in Pseudoalteromonas sp. SZN3. No 
genes involved in metal tollerance and hydrocarbon degradation were detected in the 
identified genome islands. 
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3.1.4) Epibacterium sp. SZN4 

The complete genome of Epibacterium sp. SZN4 (Fig. 3.8), an Alphaptoteobacteria 

belonging to the Order Rhodobacteriales, presents 4,702,605 bases; CheckM analysis 

showed a completeness of 99.9% (1 marker missing) and a contamination of 0.4 % (2 

markers duplicated) (Tab. 3.7). Epibacterium sp. SZN4 had a GC content of 60.95 % and 

4547 predicted coding sequences with an average length of 873.28 bp having a protein 

coding density of 89.32% (Tab. 3.7). Of the total predicted CDSs, 3295 (72.4%) were 

assigned a function, 1252 (27.5%) were classified as hypothetical and 46 (1%) as coding 

for RNAs (see COG annotation in Figure 3.8, and Table 3.7). Thirty five GIs were predicted 

for the Pseudoalteromonas sp. SZN4 genome using the integration of IslandPath-

DIMOB, SIGI-HMM and Island Pick provided IslandViewer4 (Bertelli et al. 2017), with a 

total of 610,124bp (12.97% of the genome) and 776 predicted CDSs of which 494 were 

classified as proteins of unknown function.  

Genes involved in mechanisms of resistance to Zinc, Cadmium Nickel, Copper (CzcA, czrB 

NccC, CopA, cueR) and Mercury (merR, merT, merA) were identified in the region 

between 4.25M and 4.65M (Fig. 3.9) which has numerous transposase and integrase 

sites suggesting that these genes may have been acquired through horizontal transfer. 
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Table 3.7. General genomic features of Epibacterium sp. SZN 4 

 

EPIBACTERIUM SP. SZN4  

CHECKM COMPLETENESS 99.1% 
CHECKM CONTAMINATION 0.4% 
SIZE, BP 4,702,605 
G+C CONTENT, % 60.95% 
N50 298271 
L50 63 
NUMBER OF CONTIGS (WITH PEGS) 73 
NUMBER OF SUBSYSTEMS 465 
NUMBER OF CODING SEQUENCES 4547 
FUNCTION ASSIGNED 3295 
HYPOTHETICAL 1252 
NUMBER OF RNAS 46 
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Figure 3.8. Circular representation of Epibacterium sp. SZN4 genome. The different rings 
represent (from outer to inner) predicted protein-coding sequences (CDS) on the forward (outer 
wheel) and the reverse (inner wheel) strands (circle 2 and 3) colored according to the assigned 
COG classes (circle 1, 4), G+C content (circle 5), GC skew (circle 6), genomic position (circle 7). 
The COG colors represent functional groups (A, RNA processing and modification; B, chromatin 
structure and dynamics; J, Translation, ribosomal structure and biogenesis; K, Transcription; L, 
Replication, recombination and repair; D, Cell cycle control, cell division, chromosome 
partitioning; O, Posttranslational modification, protein turnover, chaperones; M, Cell 
wall/membrane/envelope biogenesis; N, Cell motility; P, Inorganic ion transport and 
metabolism; T, Signal transduction mechanisms; U, Intracellular trafficking, secretion, and 
vesicular transport; V, Defense mechanisms; W, Extracellular structures; Y, Nuclear structure; Z, 
Cytoskeleton; C, Energy production and conversion; G, Carbohydrate transport and metabolism; 
E, Amino acid transport and metabolism; F, Nucleotide transport and metabolism; H, Coenzyme 
transport and metabolism; I, Lipid transport and metabolism; Q, Secondary metabolites 
biosynthesis, transport and catabolism; R, General function prediction only; S, Function 
unknown) 

 

 

Figure 3.9. The red bars indicate the Genomic Islands found in Epibacterium sp. SZN4.  The 
following genes CzcA, czrB NccC, CopA, cueR, merR, merT, merA involved in mechanisms 
of resistance to Zinc, Cadmium Nickel, Copper and Mercury were identified in the region 
between 4.25M and 4.65M 
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3.1.5) Oceanicaulis sp. SZN5 

The complete genome of Oceanicaulis sp. SZN5 (Fig. 3.10), an Alphaproteoacteria 

belonging to the Order Rhodobacterales, presents 2,954,327 bases; CheckM analysis 

showed a completeness of 96.5 % (27 markers missing) and a contamination of 0.32 % 

(1 marker duplicated) (Tab. 3.8). Oceanicaulis sp. SZN5. had a GC content of 62.71 % and 

2873 predicted coding sequences with an average length of 937.28 bp having a protein 

coding density of 91.51% (Tab. 3.8). Of the total predicted CDSs, 1995 (69.4%) were 

assigned a function, 842 (29.3%) were classified as hypothetical and 44 (1,5%) as coding 

for RNAs (see COG annotations in Fig. 3.10 and Tab. 3.8). Eleven GIs were predicted for 

the Oceanicaulis sp. SZN5 genome using the integration of IslandPath-DIMOB, SIGI-

HMM and Island Pick provided IslandViewer4 (Bertelli et al. 2017), with a total of 

129,287 bp (4.39% of the genome) and 151 predicted CDSs of which 42 were classified 

as proteins of unknown function. MATE multi-drug resistance genes possibly involved in 

mechanisms of resistance to metals (B. Dong et al. 2019) were identified in the region 

between 1.142 M and 1.154 M (Fig 3.11). 

Table 3.8. General genomic features of Oceanicaulis sp. SZN5 

 

OCEANICAULIS SP. SZN5  

CHECKM COMPLETENESS 96.5% 
CHECKM CONTAMINATION 0.3% 
SIZE, BP 2,954,327 
G+C CONTENT, % 62.71% 
N50 209292 
L50 2 
NUMBER OF CONTIGS (WITH PEGS) 40 
NUMBER OF SUBSYSTEMS 383 
NUMBER OF CODING SEQUENCES 2837 
FUNCTION ASSIGNED 1995 
HYPOTHETICAL 842 
NUMBER OF RNAS 44 
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Figure 3.10. Circular representation of Oceanicaulis sp. SZN5 genome. The different rings 
represent (from outer to inner) predicted protein-coding sequences (CDS) on the forward (outer 
wheel) and the reverse (inner wheel) strands (circle 2 and 3) colored according to the assigned 
COG classes (circle 1, 4), G+C content (circle 5), GC skew (circle 6), genomic position (circle 7). 
The COG colors represent functional groups (A, RNA processing and modification; B, chromatin 
structure and dynamics; J, Translation, ribosomal structure and biogenesis; K, Transcription; L, 
Replication, recombination and repair; D, Cell cycle control, cell division, chromosome 
partitioning; O, Posttranslational modification, protein turnover, chaperones; M, Cell 
wall/membrane/envelope biogenesis; N, Cell motility; P, Inorganic ion transport and 
metabolism; T, Signal transduction mechanisms; U, Intracellular trafficking, secretion, and 
vesicular transport; V, Defense mechanisms; W, Extracellular structures; Y, Nuclear structure; Z, 
Cytoskeleton; C, Energy production and conversion; G, Carbohydrate transport and metabolism; 
E, Amino acid transport and metabolism; F, Nucleotide transport and metabolism; H, Coenzyme 
transport and metabolism; I, Lipid transport and metabolism; Q, Secondary metabolites 
biosynthesis, transport and catabolism; R, General function prediction only; S, Function 
unknown) 

 

Figure 3.11. The red bars indicate the Genomic Islands found in Oceanicaulis sp. SZN5. MATE 

multi-drug resistance genes linked to metals resistance were identified in the region 1.142 M 

and 1.154 M 
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3.1.6) Alkaliphilus sp.  SZN6 

The complete genome of Alkaliphilus sp. SZN6 (Fig. 3.12), a Clostridium belonging to the 

Order Clostridiales, presents 2,581,546 bases; CheckM analysis showed a completeness 

of 98.6 % (2 markers missing) and a contamination of 0.23 % (1 marker duplicated). 

Alkaliphilus sp. SZN6 had a GC content of 29.1% and 2671 predicted coding sequences 

with an average length of 814.49 bp having a protein coding density of 86.22% (Tab. 

3.9). Of the total predicted CDSs, 1827 (68.4%) were assigned a function, 844 (31.6%) 

were classified as hypothetical and 25 (0.93%) as coding for RNAs (see COG annotations 

in Fig. 3.12 and Tab. 3.9). Fifteen GIs were predicted for the Alkaliphilus sp. SZN6 genome 

using the integration of IslandPath-DIMOB, SIGI-HMM and Island Pick provided 

IslandViewer4 (Bertelli et al. 2017), with a total of 155.812 bp (6.1% of the genome) and 

213 predicted CDSs of which 61 were classified as proteins of unknown function. MATE 

multi-drug resistance gene possibly involved in mechanisms of resistance to metals (B. 

Dong et al. 2019) was identified in the region between 429Kand 448K (Fig. 3.13). 

 

Table 3.9. General genomic features of Alkaliphilus sp. SZN6 

 

ALKALIPHILUS SP. SZN6  

CHECKM COMPLETENESS 98.6% 
CHECKM CONTAMINATION 0.23% 
SIZE, BP 2,581,546 
G+C CONTENT, % 29.1% 
N50 65217 
L50 12 
NUMBER OF CONTIGS (WITH PEGS) 81 
NUMBER OF SUBSYSTEMS 336 
NUMBER OF CODING SEQUENCES 2671 
FUNCTION ASSIGNED 1827 
HYPOTHETICAL 844 
NUMBER OF RNAS 25 
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Figure 3.12. Circular representation of Alkaliphilus sp. SZN 6 genome. The different rings 
represent (from outer to inner) predicted protein-coding sequences (CDS) on the forward (outer 
wheel) and the reverse (inner wheel) strands (circle 2 and 3) colored according to the assigned 
COG classes (circle 1, 4), G+C content (circle 5), GC skew (circle 6), genomic position (circle 7). 
The COG colors represent functional groups (A, RNA processing and modification; B, chromatin 
structure and dynamics; J, Translation, ribosomal structure and biogenesis; K, Transcription; L, 
Replication, recombination and repair; D, Cell cycle control, cell division, chromosome 
partitioning; O, Posttranslational modification, protein turnover, chaperones; M, Cell 
wall/membrane/envelope biogenesis; N, Cell motility; P, Inorganic ion transport and 
metabolism; T, Signal transduction mechanisms; U, Intracellular trafficking, secretion, and 
vesicular transport; V, Defense mechanisms; W, Extracellular structures; Y, Nuclear structure; Z, 
Cytoskeleton; C, Energy production and conversion; G, Carbohydrate transport and metabolism; 
E, Amino acid transport and metabolism; F, Nucleotide transport and metabolism; H, Coenzyme 
transport and metabolism; I, Lipid transport and metabolism; Q, Secondary metabolites 
biosynthesis, transport and catabolism; R, General function prediction only; S, Function 
unknown) 

 

Figure 3.13. The red bars indicate the Genomic Islands found in Alkaliphilus sp. SZN6. MATE 

multi-drug resistance gene, involved in mechanisms of resistance to metals, was identified in 

the region comprised 429Kand 448K. 
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3.2) Genetic basis of PAHs degradation 

 

Rapid Annotation using Subsystem Technology (RAST) generated annotation allowed 

the identification of genes coding for proteins related to the metabolism of Aromatic 

Compounds (36, 61, 11, 52 and 15 genes for Alcanivorax sp. SZN2, Halomonas sp. SZN1, 

Pseudoalteromonas sp. SZN3, Epibacterium sp. SZN4, and Oceanicaulis sp. SZN5, 

respectively).  Figure 3.14 reports the genes involved in the metabolism of Aromatic 

Compounds and their distribution and number of copies in the different taxa.  

Halomonas sp. SZN1, had the highest number of genes followed by Epibacterium sp. 

SZN4, and Alcanivorax sp. SZN2. Interestingly Alkaliphilus sp. SZN6 did not possess any 

gene possibly involved in the degradation of hydrocarbons. Conversely, the automatic 

annotation of the other five genomes allowed the identification of several genes 

involved (whose distribution among the draft genomes is reported in Fig. 3.15) in the 

central pathways of hydrocarbon degradation, including the catechol, protocatechuate, 

homoprotocatechuate, homogentisate and phenil acetic pathways.  The only strain with 

almost all the enzymes involved in these metabolic pathways was Halomonas sp. SZN1 

while the other strains possessed only some of the required enzymes.The heterogenous 

distribution of enzymes involved in pollution-resistance mechanisms found in the five 

draft genomes can be explained by the fact that they have been isolated in consortia 

and that therefore each strains may play a complementary role in the degradation of 

hydrocarbons by producing metabolites accessible for the other bacteria as described 

by Festa et al. (2017). In addition, it is possible that some enzymes have not been 

identified by automatic annotation since they may have sequences that are poorly 
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conserved and were not been found in the reference databases. An example is the 

absence of enzymes capable of the first oxidation of aromatic rings such as ring 

hydroxilating dioxygenase. Even if RAST did not provide annotations for such enzymes I 

proceeded to select enzymes described in the literature as capable of degrading 

molecules which I later manually blasted within the draft genomes. In this way, I 

succeeded in identifying two enzymes able to catalyze, through the addition of an 

oxygen atom in the aromatic ring (Fig 3.15), the initial step in the aerobic bacterial PAH 

degradation pathway: ring hydroxilating dyoxygenase (RHD) subunit α (2Fe-2S) 

(Singleton, Hu, and Aitken 2012) and cytochrome P450 (Brezna et al. 2006). In particular 

I found these enzymes in the draft genome of Alcanivorax sp. SZN2, Halomonas sp. SZN1, 

Pseudoalteromonas sp. SZN3, and Epibacterium sp. SZN4. 
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Figure 3.14. Heat map of genes and relative copy numbers identified by RAST in the five 

draft genomes analyzed. On the left column are indicated genes involved in the 

metabolism of aromatic compounds. The different colour intensity is related to number 

of gene copies. (white: “no genes”; dark green “max. number of genes) 
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Figure 3.15. Aromatic hydrocarbon degradation pathway. A)  catechol and protocatechuate 

produced as central intermediates of aerobic pathways. B) Degration pathway of Benzoate. 

Benzoate can be degraded through a dioxygenase or a monooxygenase. Both the enzymes 

capable of such reactions (Ring Hydroxilating Dioxygenase and Cytochrome P 450 

monooxygenase) have been identified in the draft genomes of Halomonas sp. SZN1, Alcanivorax 

sp. SZN2, Pseudolateromonas sp. SZN3, Epibacterium sp. SZN4. The cis hydroxylation via 

dioxygenase favours the formation of Salycilate and the subsequent Catechol formation through 

salicilate hydroxylase found in Alcanivorax sp. SZN2, Halomonas sp. SZN1, and Epibacterium sp. 

SZN4. The catechol became substrate of catechol 1,2 dyoxygenase (only in Halomonas sp. SZN1) 

that led to formation of cis cis muconic acid and β ketoadipic acid. This compound enters the β-

ketoadipite pathway that, through the β- ketoadipate succinyl CO-A transferase and β ketoadipyl 

thiolase (Halomonas sp. SZN1, Epibacterium sp. SZN4, Pseudoalteromonas sp. SZN3, and 

Oceanicaulis sp. SZN5,), led to the formation of Acetyl CoA and succinyl CoA. The trans 

hydroxylation via monooxygenase led to the formation of protocatechuate intermediate. This 

pathway begins with a hydroxylation in position 3 of 4-Hydoxybenzoate by hydroxybenzoate 

hydroxylase, found only in the genomes of Halomonas sp. SZN1, and Epibacterium sp. SZN4, 

which leads to the formation of the compound 3,4 hydroxybenzoate. The next step is catalyzed 

by the protocatechuate enzyme 3, 4 dioxygenase able to convert 3, 4 hydroxybenzoate in β 

carboxy muconate which through the activity of 3 carboxy ci-cis muconolactone cycloisomerasi 

is tranformed in y Carboxy muconolactone. The protocatechuate 3, 4 dioxygenase sequence 

found in Halomonas sp. SZN1, and Epibacterium sp. SZN4. The subsequent decarbosillation 

reaction catalyzed by the enzyme 4 carboxy muconolactone decarboxylase is described only in 

Halomonas sp. SZN1, Epibacterium sp. SZN4, and Oceanicaulis sp. SZN5. This leads to the 

formation of 3 oxoadipate enol lactonase which is transformed in 3 oxoadipate by the activity 

of β ketoadipate enol lactonase, an enzyme identified in the genomes of Halomonas sp. SZN1, 

Alcanivorax sp. SZN2, and Epibacterium sp. SZN4. The last two steps of the pathway are 

catalyzed by enzymes whose sequences have been reported only in Alcanivorax sp. SZN2, and 

Halomonas sp. SZN1; more specifically, the activity of 3 oxo adipate Co-A transferase promotes 

the formation of 3 oxoadipyl CoA which becomes a substrate of β ketoadypil CoA thiolase 

capabysing the production of succynil CoA, a compound involved in the citric acid cycle. 
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3.2.1) Ring Hydroxylating dioxygenase 

Generally, RHDs need a reductase and a ferrodoxin to be functional. In this system, the 

dioxygenase is composed of large α and small β subunits (Kauppi et al. 1998). The alpha 

subunit (RHDα) contains two conserved regions: the [Fe2-S2] Rieske centre and the 

mononuclear iron-containing catalytic domain which promotes the incorporation of 

molecular oxygen into the aromatic nucleus forming a cis-dihydrodiol. 

 Comparing the sequence (about 20 kb) of Halomonas sp. SZN1, including the gene 

encoding for Ring Hydroxilating dioxygenase and the sequences flanking the gene of 

interest with the closest related sequences corresponding to Halomonas olivaria TYR C 

17, Halomonas alkaliphila X3 and Halomonas campaniensis, it was possible to identify 

about 10 genes in the same position in all four sequences (Fig. 3.15). From this 

comparative analysis it was possible to observe that in addition to ring hydroxylating 

dioxygenase and ferrodoxin, both directly involved in the degradation of hydrocarbons, 

serin hydroxy methyl transferase genes, sarcosine oxydase sub unit (alpha, beta, gamma) 

and formyl tetra hydrofolate deformylase were also located in proximity of ring 

hydroxylating dioxygenase. The presence of these genes confirms observations by Yan 

and Wu (2017) that genes associated with the metabolism of glycine and serine are 

involved in the mechanisms of hydrocarbon degradation. 

Conversely, the sequence of Alcanivorax sp. SZN2 showed a homology of 100% with the 

entire gene region of Alcanivorax xenomutans sp 40 even if AraC and ThiJ genes were 

absent, confirming the results obtained through the average nucleotide alignement (Fig 

3.16). Comparison between Alcanivorax sp. and A. dieselsoi B5 showed a lower 

correlation than the previous comparison even if 11 Open Reading Frames (ORFs) 
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(including the ring hydroxylating dioxigenase) showed a homology of ≥ 70%. Other genes 

involved in hydrocarbon detoxification and degradation processes were found analyzing 

the flanking region of ring hydroxylating dioxygenase including glutathione s-

transferase, linear amide C-N hydrolase, aldo-keto reductase and nitrite reductase. 

According to  Cao et al. (2015), Al-Turki (2009) and Lloyd-Jones and Lau (1997), 

glutathione s transferase is often involved in PAH degradation processes due to its ability 

to render compounds less toxic. Aldo keto reductase is involved in PAHs degradation 

since it is capable of oxidating trans dihydrodiols and reducing PAHs or quinones to PAHs 

catechols ( Zhang et al. 2012). According to Imperato et al. (2019) and Salam and Ishaq 

(2019), amidase (C-N hydrolase) and nitrite reductase are associated with the benzoate, 

styrene and pyrene degradation pathways. Similarly to Alcanivorax sp., comparison of 

the sequences of Pseudoaltromonas sp. SZN3 with Pseudoialteromonas sp. DL-6 showed 

a high conservation of the gene region under examination, with a homology close to 

100% for enzyme ring hydroxilating dioxygenase and for the subsequent transporter 

(Fig. 3.17).  

Comparison of the gene regions of Pseudoalteromonas tetradonis GFC and 

Pseudoalteromonas sp. SM9913 showed a reduced homology with the draft genome, 

highlighting the absence of dioxygenase and thus a different gene rearrangement. 

Analysis of the ring hydroxylating dioxygenase flanking region indicated the presence of 

2 other genes involved in the degradation of hydrocarbons: a rubredoxin reductase and 

an aldehyde dehydrogenase (ORF 6, 7, 8) which according to Brooijmans, Pastink, and 

Siezen (2009) are involved in the degradation of alkanes and pyrene. Similarly to 

Pseudoalteromonas sp. SZN3, Epibacterium sp. SZN4 showed a different genetic 
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reorganization compared to the 3 genomes: Epibacterium mobile EPIB1, Ruegeria 

mobilis 1921, Ruegeria sp. TM1040 (Fig. 3.18). The only two conserved genes were NADP 

dependent oxidoreductase required for the functionality of dioxygenase and ring 

hydroxyalting dioxygenase. In the region flanking the above mentioned enzymes, no 

genes involved in the degradation of hydrocarbons were found. Finally, a transposase 

was identified that could indicate a successful gene transfer, capable of explaining such 

a reduced conservation of the region. 

Phylogenetic analysis of the four ring hydroxilating dioxygenases identified in the draft 

genomes of Halomonas sp. SZN1, Alcanivorax sp. SZN2., Pseudoalteromonas sp. SZN3., 

and Epibacterium sp. SZN4, showed an absence of correlation between the investigated 

enzyme, clustering the four ring hydroxilating dioxygenases with organisms of the same 

genus in the case of Halomonas sp. SZN1, Epibacterium sp. SZN4, and Oceanicaulis sp. 

SZN5 (Fig. 3.19). Interestingly, Alcanivorax sp. SZN2 and Pseudoalteromonas sp. SZN3 

showed an homology with the sequences belonging respectively to Tistrella mobilis 

strain KA081020-065, an alpha protobacterium isolated from the Red Sea (Xu et al. 

2012), and to Vibrio nereis, isolated from a shrimp intestine in Bangladesh (Mondal et 

al. 2016). 
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Figure 3.16. Comparison of strain sequences from my Halomonas sp. SZN1 draft genome and 

the three closest sequences identified in the National Centre for Biotechnology Information 

(NCBI) data bank. Ring hydroxylating dioxygenase (RHD) is indicated as ORF 2. Contig 29 is the 

genomic region where the gene encoding for RHD was identified in my draft genome. The right 

panel lists genes that are encoded by Halomonas sp. SZN1 (ORFs 1-10) and those that are 

encoded by reference genomes (ORFs 11-30)  
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Figure 3.17. Comparison of strain sequences from my Alcanivorax sp. SZN2 draft genome and 

the three closest sequences identified in the National Centre for Biotechnology Information 

(NCBI) data bank. Ring hydroxylating dioxygenase is indicated as ORF 4. Contig 9 is the genomic 

region where the gene encoding for RHD was identified in my draft genome. The right panel lists 

genes that are encoded by the draft genome of Alcanivorax sp. SZN2 (ORFs 1-10) and those that 

are encoded by reference genomes (ORFs 11-30) 
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Figure 3.18. Comparison of strain sequences from my Pseudoaltromonas sp. SZN3 genome and 

the three closest sequences identified in the National Centre for Biotechnology Information 

(NCBI) data bank. Ring hydroxylating dioxygenase is indicated as ORF 8. Contig 18 is the genomic 

region where the gene encoding for RHD was identified in my draft genome. The right panel lists 

genes that are encoded by the draft genome of Pseudoalteromonas sp. SZN3 (ORFs 1-11) and 

those that are encoded by reference genomes (ORFs 12-19) 

 

 

 

Figure 3.19. Comparison of strain sequences from my Epibacterium sp. SZN4 draft genome and 

the three closest sequences identified in the National Centre for Biotechnology Information 

(NCBI) data bank. Ring hydroxylating dioxygenase is indicated as ORF 8. The right panel lists 

genes that are encoded by the draft genome of Epibacterium sp. SZN4 (ORFs 1-13) and those 

that are encoded by reference genomes (ORFs 14-22) 
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Figure 3.20. Phylogenetic tree built with MEGA 7 using the best twenty hits after blasting the 

ring hydroxylating dioxygenase belonging to Halomonas sp. SZN1Alcanivorax sp.SZN2, 

Epibacterium sp.SZN4, Pseudoalteromonas sp.SZN3) and Oceanicaulis sp. SZN5 on Swiss Prot 

Data bank. 
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3.2.2) Cytochrome P450 

Even though Cytochrome P450 monooxygenase is a  very versatile superfamily protein, 

its role in degradation of hydrocarbons by microorganisms has already been 

documented (Moody, Freeman, and Cerniglia 2005). The CYP 450 system acts by 

catalyzing trans dihydrodiols formation by the epoxidation of the aromatic nucleus with 

enzymatic hydration by epoxide hydrolase. Depending on whether it occurs in cis or in 

trans form, the aromatic compound can then be degraded by the catechol or 

procatecuate degradation pathways.  

Comparative analysis of cytochrome P450 and the related flanking sequence of 

Halomonas sp. SZN1 with the regions belonging to Halomonas axialiensis Althf1, 

Halomonas olivaria TYRC17 and Halomonas aestuari Hb3 highlighted the absence of this 

enzyme in the 3 reference sequences. This indicates a genetic rearrangement in the 

region, even if the subsequent nucleotide composition, corresponding to cytochrome C 

genes, nitrogen metabolism (NosR, NosD) and membrane transporters, is conserved in 

the other Halomonas species (Fig. 3.20). The presence of oxidizing nitrogen proteins 

close to Cytochrome P450 has been extensively described in fungal organisms (Shoun et 

al. 2012) and therefore this organization could be due to a horizontal passage from 

eukaryotic organisms. To validate this assumption other studies are necessary. 

Conversely, the sequence comparison containing cytochrome P450 of Alcanivorax sp. 

SZN2 with three sequences belonging to the genus Alcanivorax,  highlighted an almost 

complete conservation of the entire analyzed region (Fig. 3.21). In particular the 

homology with the sequence of Alcanivorax xenomutans sp. 40 is equal to 100% and is 
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above 70% compared with Alcanivorax sp. N3-2A and Alcanivorax dieselsoi B5. Two 

other genes used in the detoxification and biodegradation of xenobiotics were found by 

analysing the region containing cytochrome P450: glutathione disulfide reductase 

(Moron, Depierre, and Mannervik 1979) and a rieske domain non heme oxygenase 

(Barry and Challis 2013). The presence of the gene encoding for a Par A familiy protein, 

responsible  for segregating protein clusters through the spatial organization of DNA 

sequences (Roberts et al. 2012) suggests that it could play a role in the organization of 

this region. 

Although the sequence related to Epibacterium sp. SZN4 showed a homology higher 

than 70% for the regions containing 6 ORFs (Cytochrome P450, C-4 decarboxylate and 

TRAPP transorters, a transcriptional regulator and a precursor for Arylsulfatase B) 

belonging to the genomes of Epibacterium mobile EPIB1, Ruegeria mobilis F1926 and 

Ruegeria sp. TM1040, the flanking regions did not have any relation to each other 

suggesting that the shared region could be due horizontal gene transfer (Fig. 3.22). 

Phylogenetic analysis showed the absence of an evolutionary correlation between the 

sequences of the P450 cytochromes identified in the three draft genomes clustering 

them with proteins belonging to the genomes of Halomonas subglaciescola, Alcanivorax 

dieselsoi B5 and Ruegeria sp. TM1040 (Fig. 3.23).  With the exception of A. dieselsoi B5, 

the other species  Halomonas subglaciescola and  Ruegeria sp. TM1040 have not been 

isolated from contaminated areas (Lai, Li, and Shao 2012; Moran et al. 2007). This 

observation may suggest that cytochrome P450, at least for Halomonas sp. SZN1 and 

Epibacterium sp. SZN4 could be evolutionary conserved in these microorganisms.  
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Figure 3.21. Comparison of strain sequences from my Halomonas sp. SZN1 draft genome and 

the three closest sequences identified in the National Centre for Biotechnology Information 

(NCBI) data bank. Cytochrome P450 is indicated as ORF 6. Contig 15 is the genomic region where 

the gene encoding for Cytochrome P450 was identified in my draft genome. The right panel lists 

genes that are encoded by the draft genome of Halomonas sp. SZN1 (ORFs 1-14) and those that 

are encoded by reference genomes (ORFs 15-27) 

 

 

 

 

 



176 
 

 

Figure 3.22. Comparison of strain sequences from my Alcanivorax sp. SZN2 draft genome and 

the three closest sequences identified in the National Centre for Biotechnology Information 

(NCBI) data bank. Cytochrome P450 is indicated as ORF 12. Contig 76 is the genomic region 

where the gene encoding for Cytochrome P450 was identified in my draft genome. The right 

panel lists genes that are encoded by the draft genome of Alcanivorax sp. SZN2 (ORFs 1-20) and 

those that are encoded by reference genomes (ORFs 21-29) 
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Figure 3.23. Comparison of strain sequences from my Epibacterium sp. SZN4 draft genome and 

the three closest sequences identified in the National Centre for Biotechnology Information 

(NCBI) data bank. Cytochrome P450 is indicated as ORF 5. Contig 44 is the genomic region where 

the gene encoding for Cytochrome P450 was identified in my draft genome. The right panel lists 

genes that are encoded by the draft genome of Epibacterium sp. SZN4 (ORFs 1-14) and those 

that are encoded by reference genomes (ORFs 15-25) 
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Figure 3.24. Phylogenetic tree of built with MEGA 7 using the best twenty hits after blasting the  

Cytochrome P450 belonging to Halomonas sp. SZN1, Alcanivorax sp. SZN2,  and Epibacterium 

sp. SZN4 on SwissProt Databank. 
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3.2.3) Catechol pathway 

 

In general, molecules having two cis diols lead to the formation of salicylate that enters 

the catechol pathway, a typical bacterial degradation pathway found mainly in 

proteobacteria and actinobacteria (Nešvera, Rucká, and Pátek 2015). Here I propose this 

pathway based on a previous description of Habe and Omori (2003) and the 

identification of the involved enzymes by automatic notation. The enzyme salicylate 

hydroxylase present in the draft genomes of Alcanivorax sp. SZN2, Halomonas sp. SZN1, 

and Epibacterium sp. SZN4, catalyzes the formation of catechol acid which becomes the 

substrate of the catechol 1-2 dioxygenase like enzyme. Only Halomonas sp. SZN1 

showed a catechol 1, 2 dioxygenase like protein. More specifically, the protein I 

identified by blasting against the Swissprot database was hydroxiquinol 1,2 dioxygenase. 

Phylogenetic analysis clustered this protein with a dioxygenase belonging to the genome 

of GFAJ-1, a strain isolated in a hypersaline lake located in California (Fig 3.24). Ferraroni 

et al. (2005) suggested that hydroxiquinol 1,2 dioxygenase, as well as Catechol 1-2 

dioxygenase, is able to promote the formation of cis cis muconic acid and, following a 

double oxygenation, the formation of β ketoadipic acid. This compound enters the β-

ketoadipite pathway and through the addition of a CoA group by the β- ketoadipate 

succinyl CO-A transferase, forms β-ketoadipyl-CoA which, due to the action of β 

ketoadipyl thiolase, leads to the formation of the terminal products Acetyl CoA and 

succinyl CoA able to enter the citric acid cycle (R. H. Peng et al. 2008). Interestingly, the 

enzyme catalysing the formation of β-ketoadipyl-CoA was found in the genome of 

Halomonas sp. SZN1, Epibacterium sp. SZN4, Pseudoalteromonas sp. SZN3, and 

Oceanicaulis sp. SZN5, while β ketoadipyl thiolase has been identified only in Alcanivorax 
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sp. SZN2, and Halomonas sp. SZN1. The presence of a salicylate hydroxilase in the draft 

genome of Epibacterium sp. SZN4 is quite rare since Buchan, González, and Chua (2019), 

analyzing the overall metabolic pathways of strains belonging to the family 

Rhodobacteraceae did not include such enzymes and thus the catechol pathway in the 

list of prevalent routes involved in hydrocarbon breakdown. Further analyses are 

required in order to understand if the presence of salicylate hydroxilase in the 

Rhodobacteraceae genome is an exception or is due to limited data. 

 

 

 

 

Figure 3.25. Phylogenetic tree built with MEGA 7 using the best twenty hits after blasting the 

Hydroxiquinol 1,2 dioxygenase belonging to Halomonas sp. SZN1 on Swiss Prot data bank. 
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3.2.4) Protocatechuate pathway 

The degradation of hydrocarbons following trans-hydroxylation takes place via the 

Protocatechuated metabolic pathway (Fuchs, Boll, and Heider 2011). This pathway 

begins with a hydroxylation in position 3 of 4-Hydoxybenzoate by hydroxybenzoate 

hydroxylase, found only in the genomes of Halomonas sp. SZN1, and Epibacterium sp. 

SZN4, which leads to the formation of the compound 3,4 hydroxybenzoate. The 

formation of 3,4 hydroxybenzoate can also derive from the activity of the enzyme 

vanillate o demetylase monooxygenase starting from the monocyclic vanillate 

compound. This latter enzyme has been idenfied only in Halomonas sp. SZN1, after 

manual annotation (Fig 3.25, ORF 1). The next step is catalyzed by the protocatechuate 

3, 4 dioxygenase able to convert 3, 4 hydroxybenzoate in β carboxy muconate which 

through the activity of 3 carboxy ci-cis muconolactone cycloisomerasi is tranformed in y 

Carboxy muconolactone. The protocatechuate 3, 4 dioxygenase sequence found in 

Halomonas sp. SZN1, and Epibacterium sp. SZN4 was clustered, through phylogenetic 

analysis, with sequences belonging to Halomonas sp. G11 and Ruegeria strain TM1040, 

suggesting an absence of a close evolutionary relation between the two homologus 

enzymes (Fig. 3.27). The subsequent decarbosillation reaction catalyzed by the enzyme 

4 carboxy muconolactone decarboxylase is described only in Halomonas sp. SZN1, 

Ruegeria sp. SZN4, and Oceanicaulis sp. SZN5. This leads to the formation of 3 

oxoadipate enol lactonase which is transformed in 3 oxoadipate by the activity of β 

ketoadipate enol lactonase, an enzyme identified in the genomes of Halomonas sp., 

SZN1 Alcanivorax sp., SZN2 and Epibacterium sp. SZN4. The last two steps of the pathway 

are catalyzed by enzymes whose sequences have been reported only in Alcanivorax sp., 
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SZN2 and Halomonas sp. SZN1; more specifically, the activity of 3 oxo adipate Co-A 

transferase promotes the formation of 3 oxoadipyl CoA which becomes a substrate of β 

ketoadypil CoA thiolase capable of catalysing the production of succynil CoA, a 

compound involved in the citric acid cycle. 

Comparison of the sequences belonging to Halomonas sp. SZN1 and Epibacterium sp. 

SZN4 with the homologous sequences has shown an overall conservation of all genes 

actively involved in this pathway (> 70%), with the only difference given by the absence 

of the PCA operon transcriptor factor PCAQ in the sequence belonging to the genome 

of Halomonas Olivaria TYRC 17 (Figs. 3.25 and 3.26). Moreover, as suggested by 

Kamimura and Masai (2013), by observing the protocatechuate 4, 5 cleavage pathway, 

the structure of the analyzed sequences suggests that also the organization, not yet 

described in the literature, of the genes associated with the 3, 4 protocatechuate 

degradation pathway is operon like for both for Halomonas sp., and Epibacterium sp. 

Indeed, both genomes adjacently localized the genes coding for 3, 4 protocatechuate 

dioxygenase, 3 carboxy ci-cis muconolactone cycloisomerase, 4, carboxy muconolactone 

decarboxylase, β ketoadipate enol lactonase / thiolase. Further analyses are needed to 

fully understand whether the organization in operon of the aforementioned pathway is 

a peculiarity of the two draft genomes or if this structure is widely diffused in other 

microorganisms. 
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Figure 3.26. Comparison of strain sequences from my Halomonas sp. SZN1 draft genome and 

the three closest sequences identified in the National Centre for Biotechnology Information 

(NCBI) data bank.  Protocatechuate 3-4 dioxygenase sun unit beta and alpha are indicated as 

ORF 4 and 5. Contig 30 is the genomic region where the genes encoding for Protocatechuate 3-

4 dioxygenase sun unit beta and alpha were identified in my draft genome. The right panel lists 

genes that are encoded by the draft genome of Halomonas sp. SZN1 (ORFs 1-13) and those that 

are encoded by reference genomes (ORFs 14-16) 
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Figure 3.27. Comparison of strain sequences from my Epibacteriums sp. SZN4 draft genome and 

the three closest sequences identified in the National Centre for Biotechnology Information 

(NCBI) data bank.  Protocatechuate 3-4 dioxygenase sun unit beta and alpha are indicated as 

ORF 8 and 9. Contig 8 is the genomic region where the genes encoding for Protocatechuate 3-4 

dioxygenase sun unit beta and alpha were identified in my draft genome. The right panel lists 

genes that are encoded by the draft genome of Halomonas sp. SZN4 (ORFs 1-13) and those that 

are encoded by reference genomes (ORFs 14-16) 
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Figure 3.28. Phylogenetic tree built with MEGA 7 using the best twenty hits after blasting the 

protocatechuate 3, 4 dioxygenase belonging to Halomonas sp. SZN1 and Epibacterium sp. SZN4 

on Swiss Prot data bank. 
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3.2.5) Homogentisate pathway 

 

The homogentisate pathway, involved in the catabolism of the aromatic amino acids 

phenylalanine and tyrosine  is also involved in the degradation of PAHs (Arias-Barrau et 

al. 2004). As suggested by Guazzaroni et al. (2013), Fuchs, Boll, and Heider (2011), 

hydroxylation by oxygenases can lead to the formation of various products including 

hydroxyphenilacetate which, following decarboxylation to hydroxyphenil pyruvate, can 

be transformed in homogentisate via 4 hydroxy phenil pyruvate dioxygenase.   The 

sequences coding for this latter enzyme have been identified in the genomes of 

Halomonas sp. SZN1, Pseudoalteromonas sp. SZN3, and Oceanicaulis sp. SZN5. The 

activity of homogentisate 1,2 dioxygenase (HmgA), showed by Halomonas sp. SZN1, 

Pseudoalteromonas sp. SZN3, Oceanicaulis sp. SZN5, and Epibacterium sp. SZN4, 

promotes the conversion of homogentisate in 4 maleyloacetate. This is then converted 

in a second step into fumaryl aceto acetate by maleyloacetate isomerase (HmgC), an 

enzyme found in all the genomes except for Alkaliphilus sp. SZN6. The pathway ends 

with the production of fumarate, which can thus enter the citric acid cycle. This last step 

is catalyzed by fumaryl aceto acetate hydrolase (HmgB) which is shared among all the 

genomes except for Oceanicaulis sp. SZN5 and Alkaliphilus sp. SZN6.  

Although the aforementioned pathway has been described in the Roseobacters clade 

(Buchan, González, and Chua 2019), I describe its presence for the first time in 

Oceanicaulis and Epibacterium strains.  

Interestingly, the only two genomes that showed genes involved in the pathway, 

organized in an operon-like structure, were Pseudolateromonas sp. SNZ3 and 
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Epibacterium sp. SZN4, whose sequences are reported and described below (Figs. 3. 28 

and 3.29). 

Comparison of the sequences of Pseudolateromonas sp. SZN4 containing the 

Homogentisate 1, 2 dioxygenase with Pseudoalteromonas issachenkoni KMM3549, 

Pseudolateromonas sp. SM9913 and Pseudolateromonas tetradonis GFC showed a 

sequence homology higher than 70% for the genes encoding for maleyloacetate 

isomerase and homogentisate 1, 2 dioxygenase enzymes that are well known to be 

involved in PAHs degradation (Arias-Barrau et al. 2004), and for Mar transcriptional 

regulator and Ton B channels. Although the Mar family has been described in antibiotic 

response pathways, its conservation within the region suggests that it may play a role in 

the degradation of hydrocarbons, confirming what was observed by J. Cao et al. (2015). 

Similarly, the presence of Ton-B channels also appears to be related to hydrocarbon 

metabolism that act by mediating the uptake of chemical compounds through the outer 

membrane (Hua and Wang 2014). 

Similarly to what observed for Pseudoalteromonas sp. SZN3 also the comparison of 

Epibacterium sp. SZN4 with the sequences belonging to Epibacterium mobile EPIB1, 

Ruegeria mobilis F1926 and Ruegeria sp. TM1040 showed a homology higher than 70% 

for the genes potentially involved in the homogentisate pathway, i.e. the Mer R family 

transcriptional regulator, Homogentisate 1, 2 dioxygenase, and fumarylacetoacetate. 

The rich homology suggests an evolutionary conservation of this region in the 

Roseobacter clade since the contiguos genes of the analyzed sequences (metallophospo 

esterase, histidine phosphatase and HprK kinase B) did not show any homology with the 



188 
 

sequences of the other reference microorganisms and did not seem to have any relation 

with the Homogentisate pathway. 

Phylogenetic analysis showed the absence of a relationship between the Homogentisate 

1, 2 dioxygenase identified in 4 different draft genomes, excluding that the enzyme has 

been transferred from an organism to another by horizontal transfer (Fig. 3.30). Indeed, 

the homogentisate 1, 2 dioxygenase found in the genomes of Pseduolateromonas sp., 

Halomonas sp., Epibacterium sp. and Oceanicaulis sp. clustered respectively with 

Pseudoalteromonas haoplanktis TAC 125, Halomonas olivaria, Ruegeria sp. TM1040 and 

Oceanicaulis sp. HTCC2633. 

 

 

Figure 3.29. Comparison of strain sequences from my Pseudoalteromonas sp. SZN3 draft 

genome and the three closest sequences identified in the National Centre for Biotechnology 

Information (NCBI) data bank.  Homogentisate 1-2 dioxygenase is indicated as ORF 5. Contig 15 

is the genomic region where the genes encoding for Homogentisate 1-2 dioxygenase was 

identified in my draft genome. The right panel lists genes that are encoded by the draft genome 

of Pseudoalteromonas sp. SZN3 (ORFs 1-9) and those that are encoded by reference genomes 

(ORFs 10-12) 
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Figure 3.30. Comparison of strain sequences from my Epibacterium sp. SZN4 draft genome and 

the three closest sequences identified in the National Centre for Biotechnology Information 

(NCBI) data bank.  Homogentisate 1-2 dioxygenase is indicated as ORF 7. Contig 69 is the 

genomic region where the genes encoding for Homogentisate 1-2 dioxygenase was identified in 

my draft genome. The right panel lists genes that are encoded by the draft genome of 

Epibacterium sp. SZN4 (ORFs 1-14) and those that are encoded by reference genomes (ORFs 15-

18) 
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Figure 3.31. Phylogenetic tree built with MEGA 7 using the best twenty hits after blasting the  

Homogentisate 1, 2 dioxygenase belonging to Halomonas sp. SZN1, Epibacterium sp. SZN4, 

Pseudoalteromonas sp. SZN3 and Oceanicaulis sp. SZN5 on Swiss Prot databank. 

 

3.2.6) Homoprocatechuate pathway 

 

Another route associated with PAHs degradation is the homoprotocatechuate pathway, 

whose genes identyfied in Halomonas sp. SZN1 and Alcanivorax sp. SZN2, and the 

associated organization are described below. As suggested by (Méndez et al. 2011), this 

metabolic route involves the degradation of homoprotocatechuate, a compound 

generated from 4 hydroxyphenilacetate via 4 hydroxyphenyl acetate 3 monooxygenase 

reductase and 4 hydroxyphenyl acetate 3 monooxygenase (not identified in the draft 

genomes). The following reactions catalyzed by 3, 4 dihydroxy phenylacetate 2, 3 

dioxygenase led to the formation 2 hydroxy 5 carboxy methyl muconate semialdehyde 

converted to 5 carboxyl methyl 2 hydoxymuconate by the enzyme 5 carboxymethyl 1,2 

hydroxy muconic semialdehyde dehydrogenase. 

The latter mentioned compound is isomerated, through 5 carboxymethil 2 hydroxy 

muconate delta isomerase, into 5 carboxy 2 oxo hepta 3 enedioate which is converted 

to 2 hydroxyhepta 2-4 dienedioafe by the enzyme 5-carboxymethyl-2-oxo-hex-3-ene-

1,7-dioate decarboxylase (not shown in the sequence comparison). The enzymes 2 

hydroxy epta diene 1,7 dioate isomerase and subsequentely the 2-oxo-hept-3-ene-1,7-

dioate hydratase catalyze the formation of 2 oxohepta 3 enedioate and 2, 4 

dihydroxyhepta 2 enedioate respectively. These are in turn converted to succinate 
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semialdehyde by 2, 4 dihydroxy hepta diene 1, 7 dioic acid aldolase. Finally, succinate 

semialdehyde dehydrogenase leads to the formation of succinate and thus its availability 

for the citric acid cycle. 

Although the comparison of the gene sequence coding for the Homoprotocatechuate 

pathway identified in Alcanivorax sp. SZN2, with the homologous sequences of 

Alcanivorax xenomutans p 40 and Alcanivorax dieselsoi B5 showed a high nucleotide 

conservation, the protein products associated with ORFs were, in some cases, different 

indicating therefore a different organization of the operon during the evolution of the 

organisms (Fig. 3.31). Indeed, the ORF 13 of Alcanivorax sp. SZN2 coding for 2 oxohepta 

3 ene 1, 7 dioic acid hydratase found no match in the genome of A. xenomutans p40 as 

well as NAD dependent succinate semialdehyde dehydrogenase (ORF 16) that was not 

found in the sequence of A. dieselsoi B5. Finally, the comparison with the sequence of 

Alcanivorax sp. N3-2A demonstrated the absence of the Homoprotocatechuate pathway 

in the genome of this microorganism as the only two homologous ORFs code for sterol 

desaturase and aconitate hydratase. 

Similar to what has just been described, the analysis of the region including the 

homoprotocatechuate pathway identified in Halomonas sp. SZN1 showed a very low 

homology among the reference genomes of Halomonas hydrotermalis Y2, Halomonas R 

57-5 and Halomonas ventosae strain NRS2HaP1 (Fig. 3.32). Except for the GNTR family 

transcriptional regulator and cytocrhome C oxydase with a homology greater than 70%, 

all other genes involved in the pathway did not have homologous sequences in the other 

organisms indicating a reduced conservation of the region probably due to horizontal 

gene transfer. The phylogenetic tree (Fig. 3.33) related to the sequence of 3, 4 



193 
 

dihydroxyphenilacetate 2, 3 dioxygenase of Halomonas sp. SZN1, and Alcanivorax sp. 

SZN2 clustered the sequence of Halomonas sp. with the dioxygenase belonging to the 

strain Terasakiispira papahanaumokuakeensis, a gram negative bacteria 

Oceanospirillaceae isolated in a volcanic hyper saline lake located in the Northwestern 

Hawaiian Islands (Zepeda et al. 2015). Furthermore 3, 4 dihydroxyphenilacetate 2, 3 

dioxygenase of Halomonas sp. SZN1 falls into the clade also comprising the dioxygenase 

identified in Alcanivorax sp. SZN2 confirming a high diversity with respect to the 

enzymes belonging to the genus Halomonas. 
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Figure 3.32. Comparison of strain sequences from my Alcanivorax sp. SZN2 draft genome and 

the three closest sequences identified in the National Centre for Biotechnology Information 

(NCBI) data bank.  The genes involved in Homoprotocatechuate pathway are indicated from ORF 

7 to ORF 19. Contig 65 is the genomic region where the genes encoding for 

Homoprotocatechuate pathway were identified in my draft genome. The right panel lists genes 

that are encoded by the draft genome of Alcanivorax sp. SZN2 (ORFs 1-20) and those that are 

encoded by reference genomes (ORFs 21-38) 

 

 



195 
 

Figure 3.33. Comparison of strain sequences from my Halomonas sp. SZN1 genome and the 

three closest sequences identified in the National Centre for Biotechnology Information (NCBI) 

data bank.  The genes involved in Homoprotocatechuate pathway are indicated from ORF 4 to 

ORF 14. Contig 29 is the genomic region where the genes encoding for Homoprotocatechuate 

pathway were identified in my draft genome. The right panel lists genes that are encoded by the 

draft genome of Halomonas sp. SZN1 (ORFs 1-17) and those that are encoded by reference 

genomes (ORFs 18-47) 

 

 

 

Figure 3.34. Phylogenetic tree built with MEGA 7 using the best twenty hits after blasting the  

3, 4 dihydroxy phenylacetate 2, 3 dioxygenase belonging to Halomonas sp. SZN1 and 

Alcanivorax sp. SZN2 on Swiss Prot data Bank. 
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3.2.7) Phenilacetic pathway 

 

A metabolic route to degrade aromatic compounds such as styrene and trans 

styrylacetic acid is represented by the phenilacetic pathway which involves the addition 

of Coenzyme A to a carboxilic residue through a Phenil acetate CoA ligase. This pathway 

has been described in about 16% of all bacterial species with sequenced genomes 

including gammaproteobacteria, actinobacteria, firmicutes and some bacteroidetes 

(Fuchs, Boll, and Heider 2011). Moreover, despite Liebgott et al. (2007) reported 

Halomonas orgarivorans and Halomonas sp. strain HTB24 as capable, respectively, to 

grown on phenilacetic acid and to degrade 3,4-dihydroxyphenylacetic acid, there are no 

previous descriptions in the literature of the phenilacetic degradation pathway in 

Halomonas sp. SZN1. Below I report the complete pathway based on the enzymes 

identified in the draft genome after manual annotation. More specifically, phenyl 

acetate degradation starts with the conjugation with a CoA group through the activity 

of phenylacetate CoA ligase PaaK (ORF15 and ORF 11) which then undergoes an 

epoxidation driven by 1, 2 phenyl acetate CoA epoxydase sub unit A PaaA, hydroxyphenyl 

acetate PaaD and PaaC (ORF 14, 16, 12) leading to the formation of 2 (1, 2 epoxy 1-2 

dihydro phenyl) acetyl- CoA. The activity of 2 (1, 2 epoxy 1, 2 dihydroxy phenyl acetyl 

CoA isomerase PaaG (ORF 17) promotes the formation of 2 oxepin 2 (3H) ylideneacetyl-

CoA, whose conversion into 3 oxo 5,6 dehydro suberyl CoA semialdehyde and 3 oxo 5-6 

didehydrosuberyl CoA is catalyzed by Oxepin-CoA hydrolase (PAAZ (ORF 10)). The final 

conversion step in acetyl CoA and succynyl CoA is promoted, respectively, by 3-

oxoadipyl-CoA thiolase (PAAJ (ORF12)). 
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Comparing the sequence described above with homologous regions identified in 

Halomonas GFAJ-1, Halomonas sp. GT and Halomonas campaniensis LS21 C showed a 

high conservation of the genes coding for this pathway (Fig. 3.34). This observation is in 

contrast with what observed by Martin and McInerney (2009) who stated that this gene 

cluster was hardly seen to be complete of all the pathway components as it was 

supposed to be subjected to weak selective pressure. Since Halomonas GFAJ-1 isolated 

from Mono lake in California (Wolfe-Simon et al. 2011), and Halomonas campaniensis 

isolated from an algal matte from the Malvizza site in Italy (I. Romano et al. 2005) (the 

isolation site of Halomonas sp. GT is not well described), both coming from volcanic 

areas with a high presence of hydrocarbons (mainly methane), the data could suggest 

that the phenylacetic pahway is widespread in the Halomonas genus and represents an 

additional pathway capable of favoring its survival. In order to confirm this hypothesis, 

an in-depth study is needed to correlate the possible presence of genes for the 

phenylacetic pathway in the already sequenced genomes of Halomonas and the 

chemical characteristics of the isolation sites. 

Finally, the PaaJ gene, coding for an enzyme capable of catalyzing the last step of the 

pathway, was also identified in the draft genomes of Alcanivorax sp. SZN2 and 

Epibacterium sp. SZN4. Although the presence of a single gene does not mean the 

presence of the entire pathway, it could however suggest that these two 

microorganisms can contribute to the detoxification of hydrocarbons, especially when 

they are associated in a microbial consortium exhibiting the entire route of degradation. 

The phylogenetic analysis of the PaaJ gene (Fig. 3.35) did not show the existence of a 

close evolutionary correlation between the three genes. 
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Figure 3.35. Comparison of strain sequences from my Halomonas sp. SZN1 genome and the 

three closest sequences identified in the National Centre for Biotechnology Information (NCBI) 

data bank.  The genes involved in Phenilacetic pathway are indicated from ORF 10 to ORF 19. 

Contig 29 is the genomic region where the genes encoding for Phenilacetic pathway were 

identified in my draft genome. The right panel lists genes that are encoded by the draft genome 

of Halomonas sp. SZN1 (ORFs 1-19) and those that are encoded by reference genomes (ORFs 

20-36) 
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Figure 3.36. Phylogenetic tree built with MEGA 7 using the best twenty hits after blasting the  

phenylacetyl CoA oxygenase reductase belonging to Halomonas sp. SZN1, Alcanivorax sp. SZN2 

and Epibacterium sp. SZN4  on Swiss Prot data bank. 
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3.3) Genetic bases for Metal detoxification 

 

The automatic annotation generated by Rast allowed the identification of the draft 

genomes of Alcanivorax sp. SZN2, Alkaliphilus sp. SZN6, Halomonas sp. SZN1, 

Pseudoalteromonas sp. SZN3, Epibacterium sp. SZN4, and Oceanicaulis sp. SZN5. These 

were characterized respectively by 34, 15, 39, 35, 37, 30 genes for a total of 62 different 

proteins involved in mechanisms of metal detoxification (Fig. 3.36). The proteins were 

distributed heterogeneously in different draft genomes with only eight genes identified 

in all six draft genomes: Acriflavin resitance protein (specific for arsenic detoxification), 

two cobalt zinc cadmium eflux pumps, Copper homeostasis CutF, Magnesium and Cobalt 

efflux protein CorC, Multi Drug Resistance efflux pumps, and a trascriptional regulator 

(MerR) involved in mercury resistance.  

The presence of such a heterogeneous set of genes, involved in mechanisms of 

resistance for multiple metals suggests that all the organisms investigated here have 

adapted to the high levels of pollution, developing detoxification systems over time. 

More specifically, of the 62 identified proteins, 24 code for efflux pumps capable of 

carrying ions selectively and non-selectively. Specifically, 15 proteins were identified 

that are able to carry ions non-selectively, of which 6 belong to the Resistance 

Nodulation Division (RND) efflux pump class and 7 to the multi drug resistrance (MDR) 

class. Other genes coding for proteins able to co-selectively carry more ions have also 

been annotated such as CzcA, CzcB, CzcC, CzcD able to transport Cobalt, Zinc and 

Cadmium and CorC, specific for the transport of magnesium and cobalt. 

From the automatic annotation 11 genes were identified that encode for proteins 

involved in the detoxification of copper, i.e. a copper chaperone, copper homeostasis 
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protein CutE and CutF, copper resistance protein B, D, CopC and CopD, a copper ATP ase, 

a multicopper and a blue multicopper oxidase and two regulator genes named “Copper 

sensing two component system response regulator CusR” and “Cu responsive 

transcriptional regulator”. Many of the efflux pumps and copper resistance proteins 

were identified in a single genic region in the genomes of Pseudoalteromonas sp. SZN3 

and Epibacterium sp. SZN4 that are described below (Figs. 3.37 and 3.38). 

The manual annotation of the region belonging to Pseudoalteromonas sp. SZN3 

highlighted the presence of genes generally involved in the detoxification of metals (ORF 

1 and ORF 8) and in the specific resistance mechanisms for copper (ORF 2, 3, 4, 5, 6), 

zinc, cadmium, cobalt and lead (ORF 10, 11, 12, 14) and mercury (ORF 9) confirming 

what has already been described by Qin et al. (2011) following the genome analysis of 

Pseudoalteromonas sp. SM9913. 

Comparison with the homologous regions of Pseudolalteromonas carragenovora IAM 

12662, KCTC 22325 and Pseudolateromonas sp. Xi13 displayed a degree of homology 

close to 100%. The only difference was with Pseudoalteromonas sp. Xi13 that exhibited 

a trypsin like serin protease (ORF 16) not currently believed to be involved in metal 

detoxification. The high homology suggests that this region is highly preserved at the 

evolutionary level in Pseudoalteromonas since the homologous species have been 

isolated in geographical areas far from each other, respectively in Cow Bay, Novo Scotia, 

Canada (Pseudoalteromonas carragenovora KCTC 22325; SAMN05271512/) and in 

Antarctica (Pseudolateromonas sp. Xi13). Unfortunately, it is not possible to know if and 

which stressors exerted evolutionary pressure as the characterization of the sampling 

sites are not available. 
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Similar to Pseudolateromonas sp. SZN3, the region comprising several genes for metal 

detoxification in Epibacterium sp. SZN4 also shows a high homology with the comparison 

sequences belonging to Epibacterium mobile EPIB1, Pelagibaca abyssi JLT2014 and 

Ruegeria mobilis F1926 suggesting that this region is highly preserved at the 

evolutionary level since the three microorganisms were isolated in different areas of the 

globe such as the Pacific Ocean (E. mobile EPIB1, and P. abyssi JLT2014; https: 

//www.ncbi.nlm. nih.gov/biosample/SAMEA4921595) and Indian Ocean (E. mobile 

F1926, https://www.ncbi.nlm.nih.gov/biosample/SAMN02471033). 

Further chemical characterization data are therefore desirable to understand if the 

presence of metal response genes are typical of such microorganisms or are selected 

following environmental stress. 

In particular, the analysis of the gene region belonging to Epibacterium sp. SZN4 similarly 

to what reported by Matallana-Surget et al. (2018) following proteogenomic analysis of 

Epibacterium Mobile BBC367) identified the presence of genes codifying for 

detoxification in the presence of metals (ORF 4, 18, 25 and 28), specific genes for copper 

(ORF 1, 3, 4, 16, 22), a cadmium-zinc-cobalt efflux pump (ORF 19) and part of the genes 

constituting the operon involved in the detoxification of mercury (ORF 24, 26 and 27). 

The entire mercury operon was also identified in Halomonas sp. SZN1  (Fig 3.39) whose 

coding sequence (from ORF 6 to ORF 11) was found to be highly conserved both in the 

reference organisms: Halomonas axialiensis Althf1 and Halomonas sp. ZM 3, isolated, 

respectively, from hydrotermal vents in the Pacific Ocean and from a minearal waste 

repository that was highly polluted with heavy metals in Poland (Dziewit et al. 2013). 

The typical structure of the mercury operon described by Boyd and Barkay (2012) was 
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also found in the sequence of Halomonas sp. SZN1 which shows two transcriptional 

regulator MerR (ORF 6 and 11), a mercuric transport protein MerT (ORF 7) able to 

transport Hg (II) to the cytoplasm, a periplasmatic binding protein MerP (ORF 8), a 

mercuric reductase MerA (ORF 9), and an organic mercurial lyase MerB (ORF 10). 

Finally also numerous proteins implicated in mechanisms of resistance to arsenic were 

found in the draft genomes. In particular, the genes coding for acriflavin resistance 

protein, arsenate reductase and arsenic resistance operon repressor were identified in 

almost all the genomes. However, these genes were organized in an operon like 

structure only in Alcanivorax sp. SZN2, Halomonas sp. SZN1, and Epibacterium sp. SZN4. 

Sequences and relative comparisons with the regions of homologous microorganisms 

are shown in figures 3.40, 3.41 and 3.42. In particular, in the sequence belonging to 

Alcanivorax sp. SZN2, I identified an arsenical resistance protein ArsH (ORF 11), an 

oxidoreductase whose function is still not clear even if this enzyme is widely distributed 

among bacterial taxa (Chang, Yoon, and Kim 2018), an arsenic transporter ArsB (ORF 12), 

an arsenate reductase ArsC (ORF 13) capable of converting arsenate to arsenite by 

reduced glutathione (GSH) (Rosen and Liu 2009) and a transciption factor ArsR. 

Comparison with the sequences of A. xenomutans p 40, A. Dieselsoi B 5 and A. sp. N3-

2A showed the conservation of more than 70% of the nucleotide residues coding for the 

operon proteins, even if the ORFs of Alcanivorax xenomutans p 40 code for different 

products compared to the other sequences, highlighting the absence of ArsH and ArsC. 

However, the presence of a high homology between the regions comprising the As 

operon and its flanking regions suggests that it is highly preserved at the evolutionary 

level in the genus Alcanivorax. Similarly, the region comprising the arsenic operon in 
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Halomonas sp. SZN1 also found a high degree of homology in the comparison sequences 

belonging to Halomonas Olivaria TYRc 17, Halomonas sp. R57-5, and Halomonas 

ventosae strain NRS2HaP1. Interestingly, the operon genes (ORF 6, 7, 10, 11, 12) in the 

draft genome of Halomonas sp. SZN1 are contiguous to each other while in the three 

genomes ORFs 6 and 7 are separated from the other ORFs by genes coding for non-

identified products (ORF 8). The absence of these ORFs in the Halomonas sp. SZN1 draft 

genome suggests a possible removal of genes not involved in the detoxification of 

arsenic following evolutionary pressure given by the massive presence of this metalloid 

in the area in which it was isolated. This hypothesis, although it requires further 

experimental evidence, is supported by the observation that both H. Olivaria TYRC 17 

and H. sp. R57-5 were isolated in areas that are not contaminated by this metal, 

including olive processing effluents (Nagata et al. 2019) and from Arctic marine waters 

(Williamson et al. 2016). Unfortunately there is no information about the site where 

Halomonas ventosae strain NRS2HaP1 (NCBI access: PRJNA397791) was isolated. 

 Finally the sequence identified in Epibacterium sp. SZN4, including genes for 

detoxification of arsenic, coding for a family transcriptional regulator ArsR, a novel 

transporter ArsJ (ORF 6), and another 2 transporters (ORF 7 and 8) showed a high 

homology with the homologous regions of Epibacterium Mobile EPIB1, Ruegeria mobilis 

F1926 and Ruegeria sp. TM1040. Interestingly, the flanking regions showed no 

correlation suggesting that the presence of arsenic resistance genes is due to horizontal 

gene transfer. 
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Figure 3.37. Heat map of genes and relative copy numbers identified by RAST in the six draft 

genomes analyzed. On the left column are indicated genes involved in “resistance to antibiotics 

and toxic compounds”. The different colour intensity is related to number of gene copies. (white: 

“no genes”; dark green “max. number of genes) 
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Figure 3.38. Comparison of strain sequences from my Pseudoalteromonas sp. SZN3 genome 

and the three closest sequences identified in the National Centre for Biotechnology 

Information (NCBI) data bank.  The genes involved in metal resistance are indicated from ORF 

2 to ORF 14. Contig 10 is the genomic region where the genes encoding for metal resistance 

were identified in my draft genome. The right panel lists genes that are encoded by the draft 

genome of Pseudoalteromonas sp. SZN3 (ORFs 1-15) and those that are encoded by reference 

genomes (ORFs 16-19) 
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Figure 3.39. Comparison of strain sequences from my Epibacterium sp. SZN4 draft genome and 

the three closest sequences identified in the National Centre for Biotechnology Information 

(NCBI) data bank.  The genes involved in metal resistance are indicated as ORF 1, 3, 4, 5, 16, 

18, 19, 22, 24, 25, 26, 27, 28, 29. Contig 22 is the genomic region where the genes encoding for 

metal resistance were identified in my draft genome. The right panel lists genes that are 

encoded by the draft genome of Epibacterium sp. SZN4 (ORFs 1-31) and those that are 

encoded by reference genomes (ORFs 32-36) 
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Figure 3.40. Comparison of strain sequences from my Halomonas sp. SZN1 genome and the 

three closest sequences identified in the National Centre for Biotechnology Information (NCBI) 

data bank.  The genes involved in mercury resistance are indicated as ORF 6, 7, 8, 9, 10, 11. 

Contig 30 is the genomic region where the genes encoding for mercury esistance were 

identified in my draft genome. The right panel lists genes that are encoded by the draft 

genome of Halomonas sp. SZN1 (ORFs 1-15) and those that are encoded by reference genomes 

(ORFs 16-23) 
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Figure 3.41. Comparison of strain sequences from my Alcanivorax sp. SZN2 genome and the 

three closest sequences identified in the National Centre for Biotechnology Information (NCBI) 

data bank.  The genes involved in Arsenic resistance are indicated as ORF 11, 12, 13, 14. Contig 

30 is the genomic region where the genes encoding for mercury esistance were identified in 

my draft genome. The right panel lists genes that are encoded by the draft genome of 

Alcanivorax sp. SZN2 (ORFs 1-18) and those that are encoded by reference genomes (ORFs 19-

24) 

 

 

 

Figure 3.42. Comparison of strain sequences from my Halomonas sp. SZN1 genome and the 

three closest sequences identified in the National Centre for Biotechnology Information (NCBI) 

data bank.  The genes involved in Arsenic resistance are indicated as ORF 6, 7, 10, 11, 12. 

Contig 68 is the genomic region where the genes encoding for Arsenic resistance were 

identified in my draft genome. The right panel lists genes that are encoded by the draft 

genome of Halomonas sp. SZN1 (ORFs 1-15) and those that are encoded by reference genomes 

(ORFs 16-29) 
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Figure 3.43. Comparison of strain sequences from my Epibacterium sp. SZN4 genome and the 

three closest sequences identified in the National Centre for Biotechnology Information (NCBI) 

data bank.  The genes involved in Arsenic resistance are indicated as ORF 5, 6, 7, 18. Contig 74 

is the genomic region where the genes encoding for Arsenic resistance were identified in my 

draft genome. The right panel lists genes that are encoded by the draft genome of 

Epibacterium sp. SZN4 (ORFs 1-11) and those that are encoded by reference genomes (ORFs 

12-24) 
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4) Conclusion  

 

Average Nucleotide Identity identified new species for the draft genomes of Alkaliphilus 

sp. SZN6, Halomonas sp. SZN1, Oceanicaulis sp. SZN5 and Pseudoalteromonas sp. SZN3 

(Tab. 3.10). Indeed, the allignment of my draft genomes with the three closest genomes 

showed a reduced nucleotide conservation below 96%; the cutoff used to identify new 

species. 

The analysis of the 6 draft genomes shown here denote a hydrocarbon degradative 

potential for 5 of the 6 genomes with the exception of Alkaliphilus sp. SZN6. 

Furthermore, it is clear that the most promising organism in bioremediation processes 

is Halomonas sp. SZN1 as it is involved in all hydrocarbon degradation pathways as well 

as in mechanisms of metal detoxification, exhibiting almost all genes required for the 

metabolic routes here investigated (Tab. 10). Another two promising species are 

Alcanivorax sp. SZN2 and Epibacterium sp. SZN4 since both showed the presence of key 

enzymes such as Ring Hydroxylating dioxygenase and Cytochrome P450 as well as 

arsenic operon coding genes and numerous genes coding for metal efflux pumps 

involved in heavy metal resistance.  

Additionally, intergenomic gene complementarity has been noted at the level of many 

hydrocarbon degradation pathways, since some genes belonging to a specific pathway 

were absent in a given microorganism but were present in others. These observations 

suggest that in the original environment, different bacteria work together to degrade 

toxic organic compounds. For this purpose, further analyzes are necessary to better 

understand the dynamics of microbial communities regulating these processes. Future 
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Transcriptome analysis of the most promising species (Halomonas sp. SZN1, Alcanivorax 

sp.SZN2, and Epibacterium sp.SZN4) is desiderable to evaluate the presence of new 

proteins involved in the degradation / detoxification of toxic compounds since I already 

have the genomes sequenced and annotated. In details, the RNA seq will allow me to 

understand which genes in over expressed during a particular stressful condition. 

 

 

Table 3.10. Summary table of the features shown by the draft genomes. In detail, ANI is 

the acronym of Average Nucleotide Identity; RHD is the acronym of Ring Hydroxylating 

Dioxygenase; CYP 450 is the acronym of Cytochrome P450 
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Chapter 5 

General conclusions 

 

The results obtained during my PhD thesis work reveal the potential of some bacterial 

taxa/consortia for the bioremediation of heavy metals and/or organic pollutants. New 

information acquired in the present work on the biostimulation of the microbial 

communities and bioaugmentation experiments with autochthonous communities 

provide useful insights on how to enhance the removal rates of contaminants from the 

environmental matrix, for further technological development and applications in highly 

polluted sites, such as the Bagnoli-Coroglio sediments. 

The possibility of designing an effective biostimulation strategy arises from the data 

obtained in my work and described in Chapter 2. Indeed, the extraction of 

environmental DNA from highly polluted sediments from Bagnoli-Coroglio, with its 

subsequent amplification and sequencing of 16s rRNA genes revealed the bacterial taxa 

assemblages thriving in such harsh environmental conditions. In detail, the most 

abundant classes identified in the Bagnoli-Coroglio sediments were 

Gammaproteobacteria, Alphaproteobacteria, Actinobacteria and Flavobacteria. These 

bacterial classes have already been identified as being capable of reducing organic 

contaminants by more than 80% by Al-Kindi and Abed (2016),and Al-Mailem, Eliyas, and 

Radwan (2018). 

In the Bagnoli-Coroglio sediments, meta-barcoding analysis carried out on bacterial 

communities shows that the taxa distribution in the three different depth layers was not 
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affected directly by the concentration of contaminants. My results do not exclude that 

chronic chemical pollution has played a role in selecting a pool of resistant bacteria over 

a century of contamination by the activity of the ILVA steel plant but, rather, they 

suggest that the distribution of different toxic compounds does not affect the microbial 

composition in the studied area. Conversely, the concentration of Particulate Organic 

Matter released by sewage discharge and the grain size of the sediments are likely to 

have played a major role in shaping the microbial assemblages since only these two 

variables are correlated with the Bray-Curtis clusterization at the four stations. Cronin-

O’Reilly et al. (2018) and Babcsányi, Meite, and Imfeld (2017) also found that a variety 

of factors, such as organic matter, N and P bioavailability, bioturbation and grain size 

play a major role in shaping the composition of bacterial assemblages even in areas 

polluted with inorganic contaminants.  

Isolation and cultivation of promising cultures are discussed in Chapter 3 showing the 

capability of mix cultures (Consortia A2, 2B, 41, 4) and isolated taxa (Halomonas sp. 

SZN1, Alcanivorax sp. SZN2, Pseudoalteromonas sp. SZN3, Epibacterium sp. SZN4, and 

Virgibacillus sp. SZN7) to grow in presence of organic and inorganic pollutants. In 

particular, of the five heavy metals tested, Cd and Zn exerted the most toxic effects since 

all bacterial cultures, except Alcanivorax sp. SZN2 did not grow (Tab. 4.1). Conversely, 

all the isolated or mixed taxa were able to grow with PAH concentrations between 1000 

and 10,000 ppm (Tab. 4.1).  
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Table 4.1. List of cultures and their ability to grow at different concentrations (100, 1000, 

10000 ppm) of As, Pb, Cd, Zn, Cu and PAHs. 

 Concentrations (ppm) of pollutants at which Cultures grow  

Cultures As Pb Cd  Zn Cu PAHs 

Halomonas sp. 100 100, 1000 - - 100 100, 
1000, 
10000 

Alcanivorax sp. 100, 1000 100 100 100 100 100, 
1000 

Pseudoalteromonas sp. 100, 1000 100, 1000 - 100 100 100, 
1000, 
10000 

Epibacterium sp. 100, 
1000, 
10000 

100 100, 1000 100 100 100, 1000 

Virgibacillus sp. - 100 - 100 100 100, 
1000, 
10000 

Consortium A2 100, 10000 100, 
1000, 
10000 

- 10000 - 100, 1000 

Consortium 2B 100, 
1000, 
10000 

10000 100 - 100 100, 1000 

Consortium 41 100, 
10000 

10000 - 10000 100 100, 
1000, 
10000 

Consortium 4 100, 
1000, 
10000 

100, 1000 - - 100 100, 1000 

 

Interestingly, tests conducted in marine broth solutions highlighted the ability of all 

cultures, both mix and bacterial isolates, to remove PAH mixtures, with the highest 

removal performance observed in the presence of Naphtalene followed by Pyrene and 

Phenathrene. Moreover, my data demonstrate the ability of such microorganisms to 

enhance the precipitation of metals, mainly Lead, Cadmium and Copper. Only 

Halomonas sp. SZN1 promoted the precipitation of As and Zn (Tab. 4.2).  
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The ability shown by the cultures to precipitate heavy metals and degrade PAHs when 

incubated in liquid solution highlight their applicative interest and their potential 

usefulness for wastewater treatments, with adequate optimization of variables such as 

salinity and nutrient concentrations. 

Table 4.2. List of cultures and their ability to precipitate heavy metals (As, Pb, Cd, Zn, 

Cu) and remove PAHs in marine broth solutions after 27 days of incubation. 

 % of Metals precipitated by cultures  % of PAHs degraded by cultures 

Cultures As Pb Cd  Zn Cu Pyrene Phenantrene Naphtalene 

Halomonas sp. 11% 46% 57% 10% - 99% 62% 99% 

Alcanivorax sp. - 34% 35% - - 99% 62% 99% 

Pseudoalteromonas 
sp. 

- - 42% - 65% 94% 63% 99% 

Epibacterium sp. - - 51% - 80% 47% 62% 99% 

Virgibacillus sp. - - 38% - 71% 99% 62% 98% 

Consortium A2 - 54% - - - 93% 67% 99% 

Consortium 2B - 47% - - - 74% 28% 99% 

Consortium 41 - 48% - - - 88% 64% 99% 

Consortium 4 - 20% - - - 86% 64% 99% 

 

Despite the treatments have been carried out in a rich broth such as Marine Broth, the 

ability of all the cultures, both mixed and bacterial isolates, to degrade hydrocarbons 

directly in the sediments suggests their possible use in an effective treatment of highly 

contaminated sediments being able to decrease the concentration of organic 
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contaminants, especially di Benzo anthracene, Benzo (g, h, i) perylene, Benzo (b) 

fluoranthrene, and Benzo anthracene by about 50% (Tab. 4.3).  

Table 4.3. List of cultures and their ability to degrade hydrocarbons after 27 days of 

incubation in contaminated Bagnoli –Coroglio sediments.  

 

 

The most suitable cultures for hydrocarbon degradation were Halomonas sp. SZN1 and 

Consortium A2 since both allowed to obtain, on average, a degradation yield about 60%.  

In many cases, a different hydrocarbon degradation performance was observed 

comparing single isolates and the mixture of these taxa highlighting 

synergetic/antagonistic activities among taxa. Further studies addressing this aspect are 

needed.  

Bacterial effects on the heavy metals present in the Bagnoli-Coroglio sediments 

highlighted the ability of all taxa to reduce the mobility (and thus its potential toxicity) 



218 
 

of As, although the most notable effects (> 30%) were found following treatment with 

Consortia A2, 41, 4 (Tab. 4.4).  

Table 4.4. List of cultures and their ability to reduce Heavy Metal bioavailability (As, Pb, 

Cd, Zn, Cu) after 27 days of incubation with Bagnoli-Coroglio sediments. 

 % of Heavy metals partitioned into a less bioavailable sediment 
fraction 

strains As Pb Cd  Zn Cu 

Halomonas sp. 16% - - - - 

Alcanivorax sp. 15% - - - - 

Pseudoalteromonas sp. 15% 22% - - - 

Epibacterium sp. 20% 11% - - - 

Virgibacillus sp. 54% - - - - 

Consortium A2 28% 22% 33% - - 

Consortium 2B 20% 11% - - - 

Consortium 41 30% 27% - - - 

Consortium 4 43% 20% 32% - - 

 

Similarly, all the Consortia along with Pseudoalteromonas sp. SZN3, and Epibacterium 

sp. SZN4, reduced Pb mobility in sediments, with the highest value obtained by 

Consortium 41 (27%). Only consortium A2 and 4 reduced Cd mobility in sediments, 

promoting a reduction of the Cd concentration associated with the exchangeable 

carbonate fraction of about 30% (Tab. 4.4). 

Therefore, the effect mediated by Consortia A2, 4 e 41 in lowering the mobility of As, Cd 

and Pb heavy metals associated with sediments suggests that the bacterial taxa present 
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therein are suitable for the reduction of such harmful inorganic compounds. The 

mechanism used by these bacteria leading to different heavy metal partitioning need to 

be further investigated. A mechanism has been described for sulfur reducing bacteria 

(Jiang and Fan 2008), which generally are metabolically active in anaerobic conditions 

due to their ability to use sulfate as a terminal electron acceptor (Muyzer and Stams 

2008). A possible hypothesis explaining the partitioning of heavy metals observed here 

may be due to modification of interactions between heavy metals and the different 

geochemical fractions of the sediment favoured by the addition of cultures. Indeed, as 

described by Kumari et al. (2016), bacteria are able to induce the partitioning of metals 

into different geochemical fractions through the production of enzymes capable of 

mediating chemical reactions such as the formation of carbonates, which may complex 

soluble heavy metals. To better understand this phenomenon, further studies 

combining metabolomics and transcriptomics coupled with the genome analysis are 

warranted. 

In particular, the analysis of the genomes of promising bacterial taxa (Chapter 4), 

highlights that a similar pollution condition of the Sarno river and the Bagnoli-Coroglio 

area, characterized by hydrocarbons and heavy metals, has selected for two identical 

taxa: Halomonas sp. SZN1 and Alcanivorax sp. SZN2. 

Halomonas sp. and Alcanivorax sp. from the Sarno river mouth showed 100% Average 

Nucleotide Identity with the homologous taxa from Bagnoli-Coroglio. This suggests that 

both Halomonas sp. SZN1 and Alcanivorax sp. SZN2 are capable of effectively degrading 

hydrocarbons, and could therefore be used for the possible in-situ bioremediation of 

these two areas. Furthermore, the cultures, isolated here, may be used for future ex-
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situ bioremediation tests on sediment samples from other polluted areas in order to 

understand whether their bioremediation abilities are affected by the presence of a 

different contaminated matrix or if, instead, they are able to exhibit the same properties 

regardless of the matrix typologies. 

Genome analysis described in Chapter 4 highlighted the genes involved in hydrocarbon 

degradation for 5 of the 6 genomes with the exception of Alkaliphilus sp. SZN6, whose 

role, within microbial communities capable to cope with high pollutant levels, still 

remains to be defined. 

Genome analysis as well as culturing results (Tab 4.2 and Tab. 4.3) suggest, that 

Halomonas sp. SZN1 may be the most promising strain to be tested in a real 

bioremediation experiments. Indeed, it has been shown to be implicated in all the 

hydrocarbon degradation pathways as well as in mechanisms of metal detoxification, 

containing almost all the genes involved in the investigated metabolic routes. The 

distribution of genes belonging to the same pathway in different microorganisms 

suggest that different bacteria can have a complementary role in the degradation of 

toxic organic compounds. 

Further analyses are necessary to understand the potential synergistic interactions 

among bacteria in hydrocarbon degradation processes. Finally, since the genomes of 

Halomonas sp. SZN1, Oceanicaulis sp. SZN5 and Pseudoalteromonas sp. SZN3 have been 

shown to differ markedly in terms of nucleotide conservation if compared to the closest 

genome deposited in the databases, the analysis of the transcriptomes would allow to 

evaluate the presence of potential new proteins/enzymes or even new pathways 

involved in the degradation / detoxification of toxic compounds. 
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