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Summary

Traditionally, the Philosophy of Science has examined the nature of scientific 

discovery. In recent years, Cognitive Science has gathered together work in 

Artificial Intelligence (AI) and Cognitive Psychology that attempts to understand 

scientific discovery. However, at present, there is no generally accepted account of 

scientific discovery in any of these disciplines.

This thesis aims further to explore the nature of scientific discovery from an AI 

perspective, but does so within a clearly defined Framework, designed to structure 

cognitive science research on scientific discovery. The framework proposes a 

minimum set of components as a guide to the constmction of acceptable accounts of 

scientific discovery. The focal concept is the Research Programme; a body of 

research that investigates a delimited set of phenomena using a Theoretical 

component and an Experimental component. The framework posits: three types of 

theoretical knowledge; three levels of experiments; inferences to apply and generate 

new theoretical & experimental knowledge; criteria for assessing the acceptability of 

theories & the reliability of experiments; and multiple levels of communication 

between the components.

Previous computer models and empirical studies of scientific discovery are 

reviewed. They tend not to offer complete accounts of scientific discovery, as 

defined by the framework. In particular, many completely ignore the crucial role of 

experiments.

The STERN computational model of scientific discovery is introduced. It 

instantiates all the components of the Framework. STERN currently models 

discoveries made by Galileo in the domain of naturally accelerated terrestrial 

motion, although it may be applied more generally. STERN has four main strategies 

that are used to make discoveries: (i) confirming existing hypotheses; (ii) 

generalizing experimental results to form new hypotheses; (iii) generating new 

hypotheses from known hypotheses; and (iv) generating new experiments.

STERN is more complete than previous computational models. As such it allows 

novel heuristics at the level of research programmes to be investigated and high 

level abilities to emerge from its complexity.
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Preface

Science, in all its many and varied guises, is something that has always fascinated 

me. Its domination of my early adult education is a testament to this. More recently I 

have become interested in science at a meta-level and have examined the nature of 

science as a subject in itself. A brief excursion into the philosophy of science leyft me 

thinking that there must be a better ways to understand the nature of scientific 

discovery than just theoretical speculation based on logic and myths. Thus, I have 

found my way into AI and cognitive science. I now see the real hope of being able 

to treat scientific discovery, scientifically. This thesis is thus a distillation, or 

perhaps the culmination, of all of my past studies in science and of my studies of 

science.
Like all conceptual schemes, the ideas in this thesis have evolved over time. 

Early ideas that lead to the full development of the Framework for scientific 

discovery (presented in Chapter 1) can be found in Cheng (1989a & 1989b) and 

Cheng & Keane (1989a). Some previous speculations about the nature of Cognitive 

Science research on scientific discovery are given in Cheng (1990b). A prototype of 

STERN is to be be found in Cheng (1989b).
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Introduction

Chapter 1
Introduction: 
Components Of Scientific Discovery

As a human intellectual endeavour science has been successful. It has enabled 

humanity to develop and expand its knowledge of the world, to explore the 

universe, to predict futiu*e events and to found new technologies that manipulate and 

control nature. However, the understanding which science affords us has not been 

reflexive; science has not lead to an understanding of science. There is no generally 

accepted view of how science really works. Philosophers of science have 

propounded radically different views ranging from models based on logical systems 

(e.g. Popper, 1959, 1965; Fiegl, 1970; Suppe, 1977), through to sociologically- 

oriented views which assume less logical foundations (e.g. Kuhn, 1970; 

Feyerabend, 1975).

More recently, an alternative avenue of investigation has opened up, with the 

first attempts in Artificial Intelligence (AI) and Cognitive Science to develop 

computer programs that do scientific discovery. Some of these attempts, as we will 

see in Chapter 2, have provided detailed simulations of famous discovery episodes. 

Others have provided programs that will make discoveries, albeit not in a manner 

that mirrors human abilities. However, just as in the Philosophy of Science, no 

general consensus has emerged about the fundamental nature of scientific discovery 

in Cognitive Science, although the concrete nature of the enterprise has provided a 

useful methodology for understanding the phenomenon. However, the roots of the 

lack of consensus in Cognitive Science are quite different to those in the Philosophy 

of Science. Artificial Intelligence research has tended to be technique-driven: that 

is, researchers have taken an AI technique (e.g. data space search using regularity
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Introduction

spotters) and tried to build discovery systems based on the technique (e.g. Langley 

etal., 1987; Falkenhainer & Michalski, 1986).

The present thesis is very much within this Cognitive Science tradition with one 

important exception. Rather than be technique driven, I will attempt to propose a 

general framework for scientific discovery, which will then be realized in a 

subsequent set of programs. The idea is to have a more principled approach to AI 

work.

This Framework For Scientific Discovery specifies a set of components that 

seem important for the adequate characterization of scientific discovery. Like any 

framework, it should provide a clear conceptual foundation on which a greater 

understanding can be built. This chapter will lay out the framework. In chapter 2 ,1 

will show how useful the framework is in setting previous AI work in context and 

revealing its limitations. Then much of the remainder of the thesis realizes many 

components of the framework in a discovery program called STERN.

A Framework For Scientific Discovery

The framework views the scientific enterprise as consisting of a single scientist 

or groups of scientists carrying out research programmes. Clearly, the nature of 

these programmes will depend on what is being investigated, the science in 

question, and prior theoretical and experimental developments in the field. 

However, the important abstraction to keep in mind is that a scientific research 

programme involves the investigation of a delimited set of phenomena using both 

theory and experimentation.

This may seem quite obvious but is less so when one considers that 

philosophers of science have only recently begun to acknowledge the role of 

experiment (Hacking, 1983; Galison, 1987; Franklin, 1988; Gooding et.al., 1989) 

and that AI researchers typically do not model experimentation in their computer
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programs (e.g. Langley et.a l, 1987; Fisher & Zytkow, forthcoming; Thagard, 

1988a, 1989a; Rose, 1988a). However, we clearly need to specify what we mean 

by theory and experimentation.

Within the present framework theory or theoretical knowledge is characterized 

as sets of functions. These functions characterize the behaviour of a phenonienon 

(or event in the world). That is, they relate together the initial conditions and final 

states of the event. The function predicts or explains (accounts for) the way in 

which the initial state of the phenomenon changes into some final state. In 

characterizing theoretical knowledge the framework distinguishes between entities 

that differ in their generality or abstractness. At the most general level there are 

hypotheses, at the next level models and, finally, instances of these models. In 

addition to these aspects of theory the framework also assumes that there are criteria 

for determining the adequacy of theoretical knowledge (called acceptability 

criteria).

The second main aspect of the framework is experim entation. In the 

framework, experiments are characterized as "black boxes", with input parameters 

that constitute manipulated/controlled variables and output parameters that are the 

observations and measurements that a scientist makes. Again, as in the case of 

theory, experiments are defined at three levels of generality involving experimental 

paradigms, experimental set-ups, experimental tests. Two important issues I 

will consider in this component are how new experiments are invented and how 

scientists establish the reliability of experimental results.

One of the final things that the framework is centrally concerned with, is the 

way in which the two main components of a research programme - theory and 

experiment - interact, correspond and communicate with one another.

Let us now consider the framework in more detail.
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1.1 SCIENTIFIC RESEARCH PROGRAMMES

A scientific research programme involves the directed use of both theory and 

experiment to investigate a delimited set of phenomena. In a brand new research 

programme the phenomena are identified by pre-theoretic or even pre-scientific 

means. However, typically research programmes occur within an established field. 

In this case the phenomena may be specified as a topic within that field.

In this thesis individual scientists working more or less in isolation are typically 

considered. Thus the major role of research programmes, here, is to bring together 

the main theoretical and experimental components. (Research programmes wül have 

an even more substantial role when cooperative and competitive investigations 

amongst many scientists are considered - multiple parallel research programmes will 

need to be modelled.)

1.2 THEORY

The theory component of the framework is composed of four sub-components. 

These four sub-components characterize the general nature of theoretical 

knowledge, the types or levels of knowledge, definitions of theoretical inferences, 

and acceptability criteria.

1.2.1 Theoretical Knowledge

Theoretical knowledge attempts to explain or predict the behaviour of a 

phenomenon as it changes in a natural or experimental environment. The changes 

considered are variations to the characteristic conditions, properties and quantities 

(attributes in general) of the phenomenon. A set of values for these attributes at a 

specific time constitutes a state of the phenomenon. For example, we may be 

investigating the free fall of bodies under the effect of gravity, in which case 

magnitudes of quantities like height, speed and weight, and properties like the shape 

and material of the body and the medium it travels through, may help to define the 

state at a given time.

4-



Introduction

Given the characterization of phenomena in a state-based way, the nature of 

theoretical knowledge can be conceptualized as a state transformation function, 

expressed mathematically as,

T{Si )= S 2 ,  . . . ( 1 . 1 )

where is the initial state of the phenomenon defined in terms of specific values 

of the characteristic attributes, and S2  is the final state with similar attributes but 

different values. T  is the transformation function: a mathematical or propositional 

formalism that states how Sj is related to S2 . Simply, T describes, predicts or 

explains how the initial values of the attributes change into their final values.

Consider Galileo's law of free fall as an example. The attributes considered by 

the law are speed and height and they are related by the equation:

speed = c . height^/^, . . . (1.2)

where c is a constant, say 10. Now, given that the magnitude of both height and 

speed  are zero in the initial state, then for a final state in which the height 

(measured downwards) is 4 we may calculate that the speed is 20 (ie. 10.V4). This 

is a rather trivial example, but it succinctly illustrates the transformation function 

idea.

1.2.2 Three Types Of Theoretical Knowledge

Given the above general formulation of theory it is important to distinguish 

between types of theoretical knowledge with a view to understanding the 

complexities of theory in scientific discovery. These three types of theoretical 

knowledge of are; hypotheses, models and instances.

Hypotheses are the most general type of theoretical knowledge. Their state 

transformation functions attempt to be universal accounts for all relevant 

manifestations of the phenomenon in the differing situations defined by the research 

programme. For example, we may attempt to apply Galileo's law not only to bodies 

in free fall, but to swinging pendulums, projectiles, and balls rolling down ramps.

-5-
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That is, to all naturally accelerated terrestrial bodies.

Models are a more specific type of theoretical knowledge than hypotheses. 

They attempt only to account for the phenomenon in one of the many situations 

defined by the research programme. A model's state transformation function is not 

expected to be applicable to other situations. For example, we may use the "law of 

free fall" hypothesis to infer the shape of the path described by projectiles as they 

fly through the air. The function defining the trajectory is a model, and as such has 

no relevance to the explanation of other situations; e.g. the motion of balls as they 

roll down ramps.

The instance type of theoretical knowledge is even less general than a model. 

An instance comprises a series of states of the phenomenon in just one situation and 

relates to a single event In other words the values of the attributes characterizing the 

phenomena are specified before, during and after the event. For example the 

prediction that a ball rolhng down a ramp will have travelled 10,40, and 90 cm after 

0.1, 0.2 and 0.3 seconds respectively, when the inclination of the ramp is 2°, is an 

instance. A term is a variable standing for some attribute, for example distance or 

inclination, that may be assigned a specific value at a particular moment. When one 

term is varied so that values of another may be calculated, they are called the 

independent (Si) and dependent (8%) terms, respectively.

The relationship between the three types of knowledge is one of partial 

instantiation; that is, models are more specific manifestations of hypotheses and 

instances are specific versions of models. Exactly why the instantiation is partial 

will be seen later (in Chapter 4).

1.2.3 Origins Of Theories And The Nature Of Theoretical Inferences

The nature and types of state transformation functions have been considered, 

but how they come into being and what use they are put to needs to be discussed. 

For example, new functions can be generalized from data or generated from existing 

functions, and known functions allow predictions to be made or explanations to be

-6-
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given. Consider the genesis of transformation functions first

The inference to new state transformation functions may take many different 

forms but two common ones are (i) the generalization from data, and (ii) generation 

from one or more existing functions by modification or combination. Finding a two 

term mathematical function (like equation 1.2) for a series of related Cartesian 

coordinates is an example of the generalization to a transformation function from 

data. As an example of the second form of this type of inference, consider a 

scientist whose is given the following two laws that describe different aspects of the 

same phenomenon using equations that refer to theoretical terms:

A.B = C ...(1.3a)

and

A.D = E. ...(1.3b)

The generation of a new function by combining the two equations may yield, as one 

of many possibilities, the following:

A:B.D = C.E. _(1.3c)

Understanding how and why scientists make certain types of modifications or 

combinations of functions is of course part of the investigation of the nature of 

scientific discovery. Other forms of new function generation may require the use of 

background knowledge or even the borrowing of formalisms from other research 

programmes by the use of analogy.

Like the genesis of state transformation functions, the different ways in which 

they are used or applied are many and varied. Consider just two forms of inference, 

(i) Prediction occurs when the initial state of the phenomenon is given and the 

function is used to work out what the final state will be. For example, knowing

equation (1.2) it is possible to predict that the speed after a fall of 4 metres from

rest WÜ1 be 20 m/s. (ii) Explanation requires knowledge of both the initial and final 

states, and the function is used to demonstrate or elucidate the way in which they 

are related. For example, concluding that the speed of a body falling from rest is 20

-7-



Introduction

m/s after 4 metres is explained by Equation (4.2), which tells us that speed is in 

proportion to the square root of height.

The generation of new state transformation functions and their application to 

phenomenon by prediction and explanation is a central part of the theoretical side of 

scientific discovery.

1.2.4 Acceptability Criteria For Theories

Assessing the acceptability of theoretical knowledge is another integral part of 

this component of scientific discovery. In the framework, I assume that the main, 

but not the only, index of the acceptability of a theory is the number or range of 

different phenomena to which it is applicable (ie. which it successfully predicts or 

adequately explains). This has variously been referred to as the explanatory breadth 

(Thagard, 1989a), consilience (Thagard, 1988a), or predictive scope (McAllister, 

1989). Other acceptability criteria to consider are pragmatic considerations in the 

development of theories, and in particular, the tractability or ease with which 

inferences can be made from a theory.

1.3 EXPERIMENT

The treatment of experimentation within a research framework can be broken up 

in much the same way as the treatment of theoretical knowledge. A general abstract 

conception of experiments is given, that is then broken up into a three-levelled 

scheme which parallels the hypothesis, model and instance levels of the theory 

component. There are also related issues in this component about the genesis of 

experiments and their reliability.

1.3.1 The Structure Of Experiments

Under the framework experiment is viewed as a mechanism that treats a 

phenomenon as a "black box". The scientist investigates the underlying nature of 

the phenomenon via a set of specified inputs and outputs. The inputs attempt to
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control some aspects of the phenomenon and manipulate others, whilst the outputs 

reveal the changes that result from these particular inputs.

In an experiment, a phenomenon is instantiated in a manner that allows input 

parameters (Inputs-M) to be manipulated and output parameters (Outputs) to be 

measured or observed. Some input parameters are fixed (Inputs-C), their values 

held constant to tightly control the experimental environment. The form of 

experiments can thus be represented by the equation:

E (Inputs-M/Inputs-C) = Outputs . . .  (1.4)

where the phenomenon in the black box determines the hidden functional relation, 

E, between Inputs-M/Inputs-C and Outputs. In this scheme, the experimental 

apparatus is required to instantiate and manipulate the phenomenon, and instmments 

are needed for measurement and observation. This conception of experimentation is 

depicted diagrammatically in Figure 1.1. Ideally just one Input-M should be 

manipulated at a time when performing an experiment to prevent ambiguity over the 

extent to which a parameter affects the phenomenon.

The relationship between theories as state transformation functions and 

experiments as black boxes (i.e. the similarity between equations 1.1 and 1.4) is at 

the heart of the framework. The Independent and Dependent theoretical terms 

represent experimental Input-M and Output parameters, respectively. The hidden 

experimental relationship, E, is of course the thing that remains to be discovered 

and characterized by theoretical state transformation functions. Hence, under the 

framework, the aim of scientific discovery can be characterized as the finding of 

state transformation functions that are ever closer approximations to the underlying 

nature of the phenomenon.

For example, in one experiment Galileo rolled balls down a ramp. The Input-M 

parameter was the distance down the ramp and examples of the Input-C parameters 

were the inclination of the ramp, and the weight and size of the ball. The Output, 

time, was measured using a water clock. Hence, the underlying nature of the

-9-
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Introduction

phenomenon was described by the "law of free fall" state transformation function.

The majority of experiments can be characterized in a similar way. The 

exceptions are cases where manipulative control is absent, because the phenomenon 

only occurs naturally and cannot be instantiated in an experimental environment. In 

such cases mere observation occurs, that yield results that are much less reliable 

than those formed in "normal" experiments. Examples of fields in which this 

typically occurs are astronomy, geology and areas of biology.

1.3.2 The Levels Of Experiments

More specifically, the above general characterization of experiment is treated at 

three levels of generality in the framework: as experimental paradigms, experimental 

setups, and experimental tests.

At the most general level, within most sciences there are distinguishable classes 

of experimental situations, which are used to investigate the phenomena within a 

research programme. These classes of experiments are called experimental 

paradigms. An example of one of Galileo's experimental paradigms was the 

inclined plane paradigm, in which balls were rolled down a smooth straight ramp. 

This constitutes one class of experiments, because many different configurations of 

the apparatus and entities can be used to perform different tests.

At a more specific level there are experimental setups. These are instantiated 

experimental paradigms, that is manufactured experimental apparatus and equipment 

for manipulating input parameters and instruments for observing and measuring 

output parameters. Galileo considered several experimental setups given the inclined 

plane experimental paradigm. One setup used the inclined plane to investigate the 

length of time for the ball to roll different distances with the ramp at a constant 

inclination. Another examined the relation between speed and inclination for a fixed 

height. Thus, different experimental setups provide different means of instantiating, 

manipulating and observing the phenomenon with resultant variations of the input 

and output parameters.

-10-
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Finally, at the most detailed level one has specific experimental tests. An 

experimental test refers to a particular experimental trial on a specific manifestation 

of the phenomenon. In an experimental test an experimental setup is selected and 

particular parameters are chosen to be the Input-M, Input-Cs and Output 

parameters. The experiment is then performed with a series of input values for 

which output values are recorded. As such, experimental tests are partial 

instantiations of experimental setups, which in turn are partial instantiations of 

experimental paradigms. The exact sense in which the relations hold will become 

clear in subsequent chapters when we deal with these components in detail.

1.3.3 Experimental Processes

Given this view of three levels of experiment, there are two main sets of 

processes needed to complete the picture.

One concerns those processes required to carry out an experiment. These 

processes involve (i) the selection of a particular experimental paradigm pven an 

appropriate manifestation of the phenomenon being investigated and (ii) the 

instantiation of this paradigm in an experimental setup that permits one to carry out 

experimental tests. Clearly, when a theory is being tested these processes are carried 

out with close reference to appropriate theoretical knowledge (as we shall see later).

The other type of process concerns the genesis of experiments. All the possible 

experimental paradigms in a research programme do not simply exist but must be 

conceived and manufactured by scientists. Experimental paradigms may already 

exist in another domain that a scientist may simply borrow and use in the domain of 

interest. However, scientists must also sometimes invent new experiments to carry 

out or continue a research program. I will not provide a full account of how new 

experiments are invented, since this is very much an open question. However, I 

will consider one method that has been used by scientists in the past, which 

involves the novel combination of two existing experimental paradigms to form a

-11-
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new paradigm. Other methods are left to future investigations and some no doubt 

are yet to be discovered.

1.3.4 Reliability Of Experiments

One of the important cornerstones of acceptable theoretical knowledge is the 

acceptability or trustworthiness of the experimental evidence on which the theory is 

based. Hence, there are important techniques for determining the reliability of 

experimental results. Specifically, it is essential to ensure that the input 

manipulations (inputs-M) are solely responsible for the changes to the phenomenon 

measured in the outputs. In terms of the black box conception of experimentation, 

other influences such as noise, artifactual events and errors, may affect the 

phenomenon rather than the Inputs-M, or may cause false readings in instruments 

measuring the outputs. The strategies to deal with such potential sources of errors 

have recently begun to be considered by philosophers of science (Hacking, 1983; 

Galison, 1987; Franklin, 1988; Gooding et.al.y 1989) and no complete model of 

scientific discovery can ignore them. We will see some of the techniques that have 

been used to overcome background noise, one common type of extraneous variable 

in experiments.

A Convenient Representation for the Structure O f Scientific Knowledge

Since research programmes are constituted by the combination of theory and 

experiment and the three types of theory and three levels experiment are related by 

partial instantiation, the framework can conveniently be represented as the hierarchy 

shown in Figure 1.2. However, for completeness, we also need some indication of 

the fact that the theory and experiment components communicate in various ways 

with one another.

1.4 COMMUNICATION BETWEEN THEORY AND EXPERIMENT

The communication of the theory and experiment components is a central part 

of the process of scientific discovery. As theory and experiment each have three

-12-
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Introduction

different types of component there is substantial scope for many different levels and 

types of information transfer.

The most direct connection between theory and experiment occurs at the most 

specific level of each component As mentioned above, the terms of instances in the 

theory component directly represent experimental parameters in expeiimental^tests. 

Such terms and parameters may correspond to each other only if they are of the 

same type; that is, theoretical terms for quantities like time and distance refer directly 

to experimental parameters that measure time and distance. This acknowledges that 

quantitative physical scales of measurement, founded on base units (such as the 

metre, kilogram, second. Ampere etc.) defined by international convention, are 

universally adopted throughout the physical sciences (at least). The simplifying 

consequences of this view are that no special interpretation is needed to recognize a 

parameter given a term, or vice versa, and that numerical values of corresponding 

entities have the same magnitude. The role of this level of correspondence will be 

seen in the chapters below, along with many other types of communication between 

the two sides of scientific research programmes.

1.5 FRAM EW ORK SUMMARY, ORIGINS AND SCOPE

Figure 1.3 shows a graphical summary of the components of the framework. 

The framework permits a high level description of scientific discovery to be stated: 

In a scientific research programme a delimited set o f phenomena is investigated by 

experiment and characterized by theory. Experiment treats phenomena as black- 

boxes, manipulating the input parameters to observe the effects on output 

parameters. Theoretical knowledge consists o f state transformation functions that 

account fo r  the hidden contents o f the black boxes, inferred by the direct 

correspondence between theoretical instance terms and experimental test 

parameters. A t a more general level, models and hypotheses are formed, 

accounting for the phenomena across different experimental setups and paradigms.

-13-
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Introduction

This theoretical knowledge is assessed by acceptability criteria, which is influenced 

by the reliability o f the eyperiments carried out.

The framework is composed of a number of different concepts that have been 

moulded into an integrated whole. The sources of the ideas are many and varied, 

but some can be more clearly identified than others. The concept of research 

programmes in science is one that is well established in the philosophy of science 

(e.g. Lakatos, 1974). Research programmes are central to Lakatos's view of the 

methodology of science. However, research programmes in the framework are 

quite different in that they are defined not only in terms of the theoretical knowledge 

that is present but also with regard to the available experiments. Treating 

experiments as black boxes has its origins in Cheng (1988) that uses this 

conceptualization to compare the strategies used by experimenters with concepts 

from modem engineering control theory. The importance of independent and 

dependent theoretical terms is widely acknowledged throughout science. However, 

the development of the framework's state transformation function view of 

theoretical knowledge was influenced, in a very general way, by Holland et.al's  

(1986) representation of theories as clusters of rules. The idea that there are types of 

theory and levels of experiments comes, in part, from the different levels of 

constraint that Galison (1987) sees in theories and experiments. Finally, the 

correspondence level of communication between theory and experiments is closely 

related to scales of measurement, defined in terms of base units, that are ubiquitous 

in science and engineering.

It is clear that the framework is quite a general characterization of the nature of 

science. The framework can be applied to a great range of important scientific 

fields. In particular, the quantitative physical sciences can be dealt with most 

directly by the framework - it is this type of scientific research that we will consider 

in this thesis. However, other fields of science may also be considered. For
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instance, behaviourism in psychology seems likely to be amenable to a treatment by 

the framework. Nevertheless, we must mindful of potential exceptions to the 

framework. For example, Darwin's theory of evolution explains how species 

evolve by the environmental selection of individuals that differ due to random 

variations (the survival of the fittest). Further work will be required to show 

whether or not the Darwinian view of the evolutionary process can be expressed in 

terms of inputs and outputs to a state transformation function.

1.6 THESIS OVERVIEW

A framework for the characterization of scientific discovery has been 

introduced. The work throughout this thesis relies heavily on the framework. It is 

used: (i) to organize and analyse previous work; (ii) as the basis of a computational 

scientific discovery system; and (iii) to help address issues on the nature of research 

in cognitive science concerning scientific discovery.

1.6.1 Review Of Previous Work

There has been much previous work on scientific discovery in the fields of 

philosophy of science, cognitive psychology and AI. However, only the concrete 

work from cognitive science and AI is reviewed in this thesis (Chapter 2). 

Cognitive psychologists have performed empirical studies to investigate how 

humans perform particular scientific tasks and how they behave in simulated 

scientific discovery environments. Researchers in AI have built many computational 

systems that solve real scientific problems or that model episodes of discovery from 

the history of science. Work in both fields can be classified using four categories 

derived from the framework. The categories are defined in terms of which types of 

theoretical knowledge are given as initial conditions and what is done with that 

knowledge. The categories are: (i) the instance-driven formation of models; (ii) the 

hypothesis and model-driven generation of instances; (iii) assessing the acceptability 

of known hypothesis; and (iv) multiple-process systems that encompass all the
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previous categories. We will see that all of this work is limited in various ways, but 

one major deficit stands out: they all ignore the crucial role of experiments in 

scientific discovery.

1.6.2 Galileo's Discoveries On Natural Motion

Galileo is perhaps the first scientist in the modem sense of the term, because he 

not only theorized about the nature of phenomena, but performed experiments in 

which phenomena could be manipulated and accurately measured. A major part of 

this thesis is concerned with the computational modelling of Galileo's discoveries in 

the domain of the naturally accelerated motion of terrestrial bodies. We wül consider 

the experiments that Galileo used and the theories he postulated (in Chapter 3). 

Galileo manufactured experimental paradigms and used setups to design 

experimental tests. But more than that, he also invented novel experimental 

paradigms based on the ones he already had. Galileo initially assumed that laws 

originating from Aristotle were correct but soon found, by experimental testing, that 

they were unacceptable. Galileo then used various experiment-led and theory-led 

approaches to investigate natural motion. He obtained a deep understanding of the 

phenomenon in a qualitative manner, from which he eventually inferred his law of 

free fall. This law was tested using further experiments and shown to be the only 

generally acceptable hypothesis in the domain.

1.6.3 STERN The Discovery System

STERN (Scientific Theorist and Experimental Researcher, version N=0) is a 

computational model of scientific discovery (Chapter 4). It fully implements all of 

the aspects of the framework. STERN has a hierarchy of frames to instantiate the 

types of theory and the levels of experiment. Other frames represent theoretical 

terms and experimental parameters. This permits the modelling of communication 

between the theoretical and experimental components. The criteria for the 

acceptability of theories used in STERN is based on the relative success of instances
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and models, as applied to experimental setups and paradigms.

STERN models the Galilean episode, so it is given knowledge representations 

specific to that domain. Equations and special qualitative representations are used. A 

sub-program is invoked by STERN to simulate the performance of experiments. 

The experimental results produced by the simulator contain levels of noise that are 

realistic compared to the Galilean motion experiments.

Discovery processes in STERN are instantiated as rules (productions). A 

scheme based on the framework is used for the definition of the conditions and 

action of rules in a principled manner. Similarly, tasks comprising groups of rules 

are defined using the same scheme, with a clear distinction between domain-specific 

and domain-independent rules. STERN possesses 64 rules, grouped into 16 

classes, organized into a task hierarchy.

STERN successfully models the Galilean episodes of discovery. Given the 

Aristotelian laws as input it finds that they are unacceptable. STERN then goes on 

to perform experiments to obtain a body of results for generalizing into hypotheses. 

At this stage STERN makes what is arguably a "genuine" discovery - the law 

governing the period of swing of pendulums. All the hypotheses obtained by 

generalization are then analysed in order to discover the correct law of free fall. To 

show that this law is generally acceptable, STERN has to invent new experiments. 

The discovery path followed by STERN resembles closely the course that Galileo 

took.

1.6.4 STERN'S Discovery Strategies

STERN'S discovery abilities can be considered as four main strategies or tasks 

(subprograms). The most frequently used strategy is the confirmation of existing 

hypotheses (Chapter 5). This attempts to assess known hypotheses by generating 

models and instances with respect to particular experimental paradigms and setups. 

The degree of match between the predictive instances and the experimental tests
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forms the basis of the assessment of the acceptability of models, and in turn 

hypotheses.

STERN obtains new hypotheses using one of two strategies, (i) The data-led 

approach generalizes experimental results into hypotheses (Chapter 6). 

Experimental paradigms and setups are selected by STERN and experimental, tests 

are designed. The tests are performed and the results interpreted into instances. The 

instances are then generalized into hypotheses via models, (ii) The second method is 

the theory-led generation of new hypotheses from existing hypotheses (Chapter 7). 

Qualitative and quantitative hypotheses are used and they range over the whole 

spectrum of acceptability. The free fall law is found using this new hypothesis 

generation strategy.

STERN tries to confirm the new free fall hypothesis, but is unable to, since the 

hypothesis is intractable, given the original experimental paradigms that are 

available. Specifically, a wholly theoretical term in the free fall law cannot be 

replaced by some expression with only directly measurable terms. STERN chooses 

to employ the fourth strategy to overcome this problem. The strategy involves the 

invention of new experimental paradigms (Chapter 8). The new experiments bring 

together novel ways of combining experimental parameters, which in turn allows 

STERN to get around the theoretical terms that could not be eliminated.

These four strategies allow STERN to successfully model the Galilean episode. 

However, it is not simply that STERN possesses them that makes the system so 

successful; what is particularly important is the way in which the strategies interact 

overtime.

1.6.5 The Cognitive Science Of Scientific Discovery

The framework has been used to analyse previous work and it forms the basis 

of the STERN discovery system. This much shows that it has great utility. 

Furthermore, it can be used to analyse the nature of the scientific discovery in 

cognitive science, in a reflexive way (Chapter 9). We will see how all the entities
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and types of studies in cognitive psychology and AI map neatly on to the 

components in the framework. This provides a particular useful way of considering 

interesting issues about how scientific discovery has so far been studied in cognitive 

science. We will see in a general way why STERN is a significant advance on 

previous models. In particular, STERN is a much more complete model of scientific 

discovery. As such STERN shows that there are likely to be interesting discovery 

heuristics and abilities that only emerge when systems attain a certain level of 

complexity.

-19-
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Chapter 2
Previous Work

2.1 INTRODUCTION

Within Cognitive Science, scientific discovery is now a well-established and 

steadily growing area. However, research in the field has been far from 

homogenous; three distinct approaches can be discerned. First, some researchers 

have attempted to produce computational models that simulate discovery episodes 

from the history of science with varying degrees of fidelity (e.g. Langley et.al., 

1987; Kulkami & Simon, 1988). Others have attempted to solve existing scientific 

problems, using the power of computer technology, with no pretence to model 

human discovery abilities (e.g. Buchanan & Feigenbaum, 1978). Finally, there are 

empirical studies of people's discovery abilities carried out in simulated scientific 

domains where the phenomena are under the control of the experimenter (e.g. 

Gerwin, 1974; Klahr & Dunbar, 1988). All of this work is relevant in some sense 

to the present thesis and will be called upon in the body of this chapter. However, 

the central concern of this thesis is the characterization of scientific discovery in 

computational systems -  modelling the processes of discovery. Hence, the first 

category of research, the computational models, wül predominate in the review.

2.1.1 Computational Models Of Discovery

Although only a fairly new field in AI, numerous discovery systems have 

already been developed. The number of programs is not only large (approximately 

twenty will be considered here) but the variety between them also great. There are 

many ways we can divide up the body of work formed by these programs. For 

example, one could group them in terms of the representations they adopt for 

scientific knowledge; ranging from ECHO'S (Thagard, 1989a) propositional
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representation to STAHL's (Langley et.al, 1987) predicate-attribute-value triples 

to the frames of IDS (Nordhausen & Langley, 1987). One could also classify the 

systems in terms of the architectures they adopt; whether it be production system 

(BACON, Langley et.al, 1987) or a parallel system (ECHO, Thagard, 1989a).

However, this review will be organized with respect to the processes of scientific 

discovery that emerge from the proposed framework (see Chapter 1). From this 

perspective four main concerns can be identified in the literature:

(§2.2) Data Driven Formation O f Models. These programs and empirical 

investigations are concerned with the processes that generate theoretical 

knowledge, typically laws, from empirical data. In terms of the framework, 

the processes generalize one or more instances to form a model.

(§2.3) Theory Driven Model And Instance Generation. These studies are 

concerned with processes that use theoretical knowledge often in conjunction 

with observational data, to generate new theoretical knowledge. Thus, this 

includes the formation of models from hypotheses and instances.

(§2.4) Assessing Hypothesis Acceptability. This is work that models the way the 

acceptability of hypotheses is assessed in isolation.

(§2.5) Multiple-Process Models. Programs in this category aU model a rich variety 

of discovery processes. They typically combine several of the individual 

processes considered above.

Each of these will be considered in turn later in the chapter. However, before we 

look at the programs and other research in detail it is worth considering some of the 

alternative general descriptions of scientific discovery in Cognitive Science that have 

been proposed.

2.1.2 General Accounts Of Scientific Discovery

The high level description of science has not been solely the province of 

philosophers of science. Some AI research has proposed general characterizations
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of scientific discovery.

Langley et.al. (1987, 18-20) consider scientific discovery to have four main 

phases which operate in a cyclical fashion to uncover new scientific knowledge: (i) 

data is gathered; (ii) parsimonious descriptions of the data are sought; (iii) 

explanatory theories are formulated; and (iv) these theories are tested. Since testing 

requires more data the procedure loops back to the first data gathering stage. The 

middle two phases can sometimes be condensed into a single stage when the 

parsimonious description acts as an explanatory theory. Furthermore, the data 

gathering phase comes in two forms: the observation of natural events; and the 

production of phenomena in experimental apparatus.

Reimann (1990) also considers the process of scientific discovery as a cycle, but 

one which only consists of three stages. Initially, theories are formulated and 

predictions are derived from them; then, the data is gathered that bears on the 

theory; and finally, the theories are tested by comparing the predictions with the 

data.

The similarity between the cyclical views is plain to see, but this means they also 

suffer from the same problem. Both characterizations are very general -  so general 

that they do not further our understanding of how scientific discovery occurs. At 

some vague abstract level the creative process can be said to be cyclical, but to hold 

that all discovery exactly fits this mould is not a tenable view.

A very different approach to these cyclic views is taken by Holland et.al. 

(1986). They view scientific discovery as a particular form of induction within their 

Framework for Induction. In this framework, models are represented as condition- 

action rules and hypotheses are clustered together. Scientific knowledge improves 

by modifying the strength of rules and hence heightening the likelihood of them 

being used. It also improves through the generation of rules under special triggering 

conditions. These conditions, such as the failure of predictions, help to ensure that 

new rules are relevant. Rules compete or cooperate by a principle of limited
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parallelism, and background knowledge plays a role in inference processes. The 

induction framework is coherent but it is too much like an algorithmic specification 

of a particular class of programs that are aimed at solving a limited range of 

problems. It is therefore not particularly revealing about the underlying character of 

scientific discovery. Further, it is a framework for induction in general, not just 

scientific discovery, so tends to emphasize some processes that are of minor 

significance whilst missing out others that may be unique to scientific discovery. 

These points wül become clearer when we consider the PI program later.

These descriptions of science are fairly process-oriented, that is they concentrate 

on how things happen in discovery. The framework presented in Chapter 1 is 

different in that it proposes a minimum set of components. The framework leaves 

open questions such as the specific order of discovery processes to be settled by 

computational modelling. Some general constraints are placed on the types of 

processes that can be considered, thus avoiding the vagueness of cyclical 

descriptions, but not to an extent that rigidly defines the processes even before the 

investigation has really begun, as in the Induction Framework. The present 

Framework sails between the two extremes.

But let us now look at the computational models of of scientific discovery in 

detail, starting with the ones that generalize instances to form models.

2.2 DATA DRIVEN FORMATION OF MODELS

A substantial proportion of work in AI on scientific discovery has concentrated 

on the generalization of instances (often called data) into models (typically referred 

to as laws) in situations where no prior theoretical knowledge of the domain exists. 

In this case the instances are interpreted experimental results, known to 

philosophers of science as empirical facts. Models are consequently parsimonious 

descriptions that summarize one or more instances. In this section we will see that 

the programs modelling this task vary greatly in their abilities. We wül also see that
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in and of themselves they give rather a sparse view of scientific discovery in 

general. A good proportion of these programs have been developed together under a . 

common approach, which I will call the BACON  school. It will be considered 

first.

2.2.1 The BACON School

The collection of programs developed by Langley et.al. (1987) is called the 

BAC O N  school after BACON, the best known program produced by these 

investigators. BACON has numerous versions and a suite of sibling programs: 

GLAUBER, STAHL, DALTON, FAHRENHEIT (Koehn & Zytkow, 1986; 

Zytkow, 1987) and GELL-MANN (Fisher & Zytkow, forthcoming). Figure 2.1 

shows the relationship between the various programs. All were developed under a 

common AI orientation that has been variously described in Langley et.al.{\9Zl, 

281-301), Zytkow & Simon (1988) and Langley & Zytkow (1989). It views 

scientific discovery as a problem solving task to be solved by heuristic search. This 

is a dramatic shift from their general view of scientific discovery as a cycle of 

various phases, described above. The need to adopt a different approach for the 

computation implementation only goes to further emphasize the vacuity of the cyclic 

view. The problem-solving-by-heuristic-search approach is most suitable for well 

defined tasks that have states that can be recursively generated and searched by a 

limited set of rules. The finding of parsimonious descriptions of data is ideal. All 

the BACON school of programs perform some variation on this basic theme and 

can be divided into two main groups depending on whether they deal with 

quantitative or qualitative data. Each class is described in turn.

22.1.1 Quantitative Programs - Five Versions O f BACON Plus FAHRENHEIT 

The BACON program, one of the best known scientific discovery systems, was

developed by Langley et.al. (1987) and has progressed though six versions. Some 

are built upon previous versions, but others are substantially independent (see
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Figure 2.1). All versions attempt to find quantitative laws that parsimoniously 

describe a series of numerical data, the exception being BAC0N.6 which will be 

considered later in §2.3.1.1.

The first version of the program, BACON. 1, finds a law describing the relation 

between just two quantitative terms. The sixteen production rules used are grouped 

into four main categories: data gathering and storage rules; regularity generators; 

higher-level term generators; and house keeping rules. Data gathering and storage 

mainly involves preparing variables and recording the series of values that have 

been obtained from the program user. The regularity generator heuristics examine 

the pairs of terms for certain types of regularities: (i) linearity, the terms are 

proportionally related; (ii) increasing, the magnitudes of both terms are 

monotonically increasing; (iii) decreasing, the magnitudes of one terms is 

monotonically increasing whilst the other is decreasing; and (iv) constancy, one 

term is (approximately) constant. Depending on the regularity spotted, the define 

new terms and calculate values group of heuristics forms new terms and calculates 

their values from the existing terms. The goal is to define a new term that has 

constant values or that is closer to constancy. For example, when the term P ranges 

over the values (1, 8, 27) and D ranges over the corresponding series (1,4, 9), the 

increasing regularity obtains and a new term is defined as the ratio of the terms, 

that is DIP. The values of the new term are then calculated and the regularity 

spotting process repeated for the D and DIP terms. A law is found when the new 

term has values that are constant. In the example, when the term D^iP^ is 

generated.

Any noise in the data is dealt with during the search for the constancy of a term. 

This involves a test in which all the calculated values must be within a specified 

maximum percentage deviation. A, of the mean, M, of the values. In other words, 

each value must fall within the interval [M(l-A), M(l+A)] around M.

Most of the other versions of BACON are based upon this theme. BAC0N.2
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finds polynomial laws by considering sequential regularities. BAC0N.3 accepts 

multiple input terms, rather than just a pair, and so is augmented with a set of 

heuristics that control the search through the terms in a systematic fashion. 

BACON.4 has heuristics that can identify intrinsic properties associated with 

nominal terms (the density of different bodies made of the same material js  an 

example of an intrinsic property). Many scientific laws exhibit symmetry, which 

B AC0N.5 exploits to improve its efficiency by assuming symmetry to dramatically 

cut down the number of combinations of terms it has to search through.

The BACON programs can find quantitative laws from numerical data relating 

together several terms, perhaps in a symmetrical equation, that may have intrinsic 

properties and contain some degree of noise. However, their abilities are limited in a 

number of ways. BACON copes with noisy data by employing the maximum- 

percentage-deviation technique. The technique has particular deficiencies. For 

example, a single erroneous value, in otherwise perfect data, may cause the 

technique to fail if the value falls outside the permitted band. Similarly, high noise 

levels would require large values of A, but this opens up the possibility that 

incorrect laws might satisfy the constant term test before the correct law is reached. 

Further problems have been noted by Walker (1987) and Langley gf.aZ.(1984) to 

do with irrelevant terms and the ordering of input terms. In science, discovering 

which terms are really relevant to a phenomenon is an important part of 

characterizing a domain. But BACON has no ability to find and eliminate such 

terms. Rather, it methodically searches though all the terms given as input to the 

same level of detail at the expense of performance and efficiency. However, even 

when the input terms are all relevant, the order in which they are presented must be 

carefully selected by the user, because the intermediate terms in BAC0N.3 on one 

level must be linearly related to the input term considered on the next level (Langley 

et.al., 1987, Chapter 3). Thus the program will fail if the data is presented in the 

"wrong" order. In effect BACON must be told which terms are independent and
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dependent variables. Fortunately, this problem has been tackled in FAHRENHEIT.

FAHRENHEIT (Koehn & Zytkow, 1986; Zytkow, 1987) employs BAC0N.3 

as a subprogram so can finds laws just like BACON. However, FAHRENHEIT 

also attempts to find the range of values over which the law is valid (in teims of the 

variables referred to by the law). For example. Black's law of specific heat 

concerns heat transfer between bodies of different mass, heat capacity and 

temperature, e.g. mixing mercury and water. However, it is limited to regions 

where no state transitions occur, such as the boiling of water into steam. For fixed 

quantities of mercury and water, only the initial temperatures of the substances 

affect the outcome of the process. So, FAHRENHEIT attempts to determine the 

region within which Black’s law remains valid by finding expressions that describe 

the boundaries of the law as it just breaks down, when the initial temperatures are 

varied. An additional feature possessed by FAHRENHEIT is the ability to rearrange 

the order in which terms are examined. As noted above,, the depth first search of 

BACON can fail to find a law if the user presents input terms in the "wrong" order, 

but FAHRENHEIT has a second level of search which proposes alternative 

combinations of terms whenever regularities are not found.

FAHRENHEIT is an advance on BACON as it not only finds a law but attempts 

to find the region within which it is valid with respect to certain dependent terms. 

Further, it has the ability to sort out the order of input terms for itself. However, the 

range of phenomena that can be modelled is very much more restricted than 

BACON, because the phenomena must have a region bounded by discontinuities. 

Although FAHRENHEIT considers the range of applicability of a law this should 

not be confused with the more usual sense in which theoretical knowledge is 

thought to be true. The description of the range of applicability simply characterizes 

another aspect of the law. Black's law is typically considered valid because it 

satisfactorily accounts for many different combinations of substances examined in
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different experimental situations. FAHRENHEIT considers just one pair of 

substances.

22 .13  Qualitative Programs - GLAUBER, STAHL, DALTON & GELL-MANN

There are four programs that work on qualitative data in the BACON school. For 

the sake of brevity just one will be considered in detail as it is representative of the 

rest. I will consider STAHL (Langley et.al., 1987) (see Figure 2.1) in detail, 

because it forms the basis of later work on an interesting system called 

REVOLVER.

STAHL can find models of the chemical compositions of compounds in terms of 

their elements, given data consisting of ordered sets of reactions. Like GLAUBER 

and DALTON, STAHL uses a predicate attribute and value notation to represent 

chemical reactions. For example:

(reacts inputs {charcoal air) outputs (phlogiston ash a ir)) , . . . ( 2 .1)

states the reaction that is assumed to occur during the combustion of charcoal under 

the pre-oxygen phlogiston theory.

Three main heuristics are employed by STAHL to find models of the 

compositions of substances. INFER-COMPONENTS is a heuristic that posits that one 

substance is composed of two others. When a reaction synthesizes the substances B 

and C into A, or A decomposes into the B and C, INFER-COMPONENTS reasons that 

A is composed of B and C. Once A is known to be a compound, the SUBSTITUTE 

heuristic may swap B and C for A in reaction equations. REDUCE removes 

occurrences of the same substance from both sides of a single reaction equation.

STAHL invokes the three heuristics is a specific order. INFER-COMPONENTS is 

first applied alone to the input reactions. Then REDUCE followed by INFER-COMPO

NENTS. Finally, SUBSHTUTE, REDUCE and then INFER-COMPONENTS in that order. 

The results of each path followed are analysed individually for reaction equations 

that are consistent; this is to say that their sides balance. Specific backtracking 

methods are employed to deal with inconsistencies (e.g., nothing on one side of a
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reaction equation) and circular definitions (e.g., a compound constituted by itself 

and another substance). In certain cases identification heuristics may be required to 

infer, for example, that two substances occurring in two similar equations are in fact 

the same.

GLAUBER and DALTON also work in the domain of chemistry but operate on 

different levels. GLAUBER takes specific observations about chemicals (e.g. their 

tastes and the reactions they have been involved in). It attempts to find classes of 

chemicals with similar properties and general reactions across those classes. 

DALTON considers componential models of the stmcture of substances in terms of 

constituent molecules and atoms. The descent down the scale of entities continues 

with the GELL-MANN system (Fisher & Zytkow, forthcoming), that discovers 

Quark models that explain the properties of families of subatomic particles. Grossly 

simplified, GELL-MANN proposes models based on different numbers and types 

of quarks. Those that do not satisfy the additivity law (which states that for each 

attribute, the sum of the values over component quarks must equal the particle's 

value) are eliminated.

An obvious limitation of the qualitative models in the BACON school is that they 

only use qualitative reasoning, with the exception of GELL-MANN. It seems 

highly likely that the power of GLAUBER, STAHL and DALTON could be 

substantially enhanced if quantitative techniques were to supplement the existing 

qualitative heuristics. For instance, Proust's law of definite proportions was of 

great significance in (John) Dalton's thinking and discoveries (Holten & Roller, 

1958). Heuristics based on this law may help reduce the DALTON program's 

search space considerably. The importance of modelling both quantitative and 

qualitative inferences in a complementary manner within a single system is an issue 

that recurs several times in this review.

22.1.3 The BACON School Programs As General Models O f Scientific Discovery

How realistic are the programs in the school as general models of scientific
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discovery? Even in terms of the general description of the scientific enterprise given 

by the BACON school their programs do not cover much ground. The general 

description considers phases including: (i) data gathering; (ii) finding parsimonious 

descriptions of the data; (iii) formulating explanatory theories; and (iv) testing these 

theories. Of the four phases outlined only the second, formation of parsimonious 

descriptions of data, phase is considered in detail. The data gathering heuristics do 

not model the observation of natural events or the production of phenomena in 

experimental apparatus. Furthermore, once a satisfactory law has been found most 

of the programs do not use the law to make further inferences (the one exception 

being FAHRENHEIT). Finally, the processes involved in the third and fourth 

phases, the formulation and testing of explanatory theories are not modelled at all. 

With respect to the present framework (Chapter 1), the models formulated are not 

generalized into hypotheses and the acceptability of theoretical knowledge is not 

assessed.

2.2.2. Combined Qualitative & Quantitative Inference

IDS and ABACUS are programs that fit into the data driven formation of models 

category, but they are more sophisticated than the work of the BACON school. 

Each program possesses qualitative and quantitative representations and uses 

qualitative and quantitative heuristics to finds models from instances.

22.2.1 Integrated Discovery System (IDS)

IDS is an integrated discovery system in that it integrates quantitative and 

qualitative inferences (Nordhausen and Langley, 1987)^. Like FAHRENHEIT, 

IDS works with phenomena that exhibit discontinuities when some independent 

variable is increased. For example, IDS attempts to characterize the changes that 

occur when a quantity of ice is heated, melts into water and eventually boils into 

steam. The systems begins by characterizing the phenomenon using qualitative

1 Although Langley helped develop IDS, it does not fit the BACON school mould. The program 

does not recursively search an homogenous state space using a single group of heuristics.
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schemata to record the changes between states as heat is supplied. The schemata, 

represented as frames, have three slots containing: descriptions of objects present 

and their phase (e.g. solid ice and liquid water); specifications of the quantitative 

conditions of attributes of these objects (e.g. weight greater than zero, constant 

temperature), and process descriptions of changes to variables (e.g. positive rate of 

weight increase). A new schema is induced whenever a limit point, or state 

transition, is found. The qualitative schemas are used to infer two types of law: (i) 

constancies over all objects of a given class, such as the invariant melting point of 

water across different samples; and (ii) constancies within a single qualitative 

schema, such as the conservation of mass as ice melts into water.

IDS's quantitative discovery abilities are rather limited. The rich vein of 

information available in the qualitative schema is barely exploited in the inference to 

quantitative laws. This limitation is due more to lack of development than to any 

underlying weakness of the approach. Even so, IDS does begin to demonstrate how 

the combination of the quantitative and qualitative abilities can lead to more 

powerful discovery models. For instance, an effective solution to FAHRENHEIT'S 

inability to search for quantitative laws across and between state transitions is now 

available in IDS.

2 2 2 2  ABACUS

ABACUS (Falkenhainer & Michalski, 1986) considers qualitative and 

quantitative inferences in the reverse order to IDS. The finding of equations that 

describe numerical data comes first, in a manner that superficially resembles the 

BACON programs but is more sophisticated in five respects. First, ABACUS can 

find separate equations for a set of data by searching portions of the data where the 

relation between the variables is not monotonie. Like BACON regularity-spotting 

heuristics are used: Prop"^ and Prop' are analogous to BACON's increase and 

decrease regularities, and Prop‘s and Norel indicate insufficient data is available or 

that there is no relation, respectively. Second, the qualitative relations between the
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input terms are all found at once, thus eliminating irrelevant terms at an early stage. 

Third, as an initial best guess, a single equation composed of all the relevant terms 

is proposed. The equation is based on the noted and Prop' regularities, with 

the hope that the main protracted rigorous search may be avoided. Fourth, the main 

search for equations considers products, ratios, sums and differences of terms 

(nodes) on a current level and defines new nodes on the next level by 

proportionality testing of all previous nodes. The search space is reduced by 

suspending those branches that seem farthest firom constancy. Fifth, the search 

space is further constrained by three rules concerned with certain types of 

equations, (i) Equations that do not have balanced units according to dimensional 

considerations cannot be valid. They are eliminated. The units for particular terms 

are user specified inputs, (ii) Some equations are mathematically equivalent, but 

syntactically different. Only mathematically different equations are retained, (iii) 

Terms in equations that can be tiivially cancelled are cancelled out. ABACUS'S 

equation finding abilities are both extensive and powerful.

The quantification process employs the AQ algorithm (Falkenhainer & Michalski, 

1986, 386-8) that has two main stages: the first finds sets of attributes that can 

distinguish equations from each other; the second takes the best set of attributes for 

each equation as a positive instance, and finds the maximally general description 

that does not cover any other equation. The resultant quantification is in effect the 

precondition for the application of the equation.

The abilities of ABACUS clearly surpass those of BACON. The system copes 

efficiently with irrelevant variables and does not need to be told which ones are 

independent or dependent. Multiple equations are found for discontinuous data and 

quantified in a manner that achieves the same result as FAHRENHEIT'S validity 

expressions. The units of the terms are acknowledged and play a significant role in 

the identification of valid equations. In fact, this is the first program, of all the ones
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SO far considered, that really seems to have terms that refer to observed or measured 

quantities, because of the presence of units. As we will see below, more complete 

models of discovery need to exploit this technique more fuUy. The use of units is an 

example of the correspondence between the theoretical terms in instances and the 

parameters in experimental tests - the most direct form of communication between 

the theoretical and experimental components considered by the framework.

We have now seen several computer programs that successfully make 

generalizations from data, using a wide range of different techniques. But how do 

humans perform such tasks? Do they use similar methods -  like spotting trends in 

numerical values to find equations? The empirical studies that have studied this task 

will now be considered. They provide a few answers to these questions.

2.2.3 Empirical Studies Of Generalizations From Data

We are considering how instances are generalized in order to form models. 

Computational systems that perform this task were discussed above. However, this 

is something that humans scientists are well able to do and have been doing long 

before the invention of computers. So, it is not surprising that this particular aspect 

of the human scientific discovery has been investigated empirically. In all the 

studies, the investigators typically have control over the data presented to the 

subjects.

223 .1  Equations From Numerical Data

In the two studies undertaken by Gerwin (1974) and Qin & Simon (1990) 

subjects were given two lists of related numbers (pairs of cartesian (x,y) 

coordinates). Gerwin's data was generated from equations like:

y = x.cos X  + x ^ / 2  + k.e^ , . . .  (2.2)

where k.e^ is a function that adds noise. Qin & Simon's subjects were given data 

that satisfied Kepler's third law; that is D^ /  p2 = C, where D is the distance from 

the sun, P the period of revolution and C a constant

Gerwin's subjects were presented with the data plotted on a graph and suggested
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an equation composed of functions from a given list. New data points were 

calculated from the suggested equation and plotted by the experimenter. 

Additionally, comparisons between the new and the original data points were 

plotted. The subject examined the new information and suggested further equations 

until satisfied that the correct one had been found. The analysis of the protocols 

over a number of different subjects and data sets permitted Gerwin to write a 

computer program simulating the behaviour of the subjects. Then both the computer 

program and new human subjects took part in a second series of similar 

experimental trials. Both found correct equations with an accuracy of approximately 

forty per cent, with a close match between the program and human solutions. 

However, the types and sequence of processes used by the two varied in all but the 

simplest cases.

Qin & Simon (1990) found that the subjects' behaviour can be described in terms 

of two levels of search: function spotting and parameter search. Function spotting 

refers to processes of finding the general form of the equation (e.gJ, an exponential 

rather than a sinusoidal function). Diagrams and graphs were typically used for this 

purpose. Parameter search involves finding the magnitudes of constants.

Three conclusions of relevance to computer modelling can be drawn from the 

two studies. First, BACON-like regularity-spotting heuristics model human 

scientists, in certain circumstances, when looking for trends in data and proposing 

new equations. Second, qualitative techniques (like graphs and diagrams) are used 

by humans in the interrogation of data, often as a short cut to blindly applying 

quantitative analysis techniques. Third, the underlying variability in the performance 

of human subjects is great even in the simple tasks in the experiments. Thus, there 

is little hope of successfully simulating every little step in processes that bring about 

a discovery - the discovery paths of Gerwin's program and humans varied 

substantially. This supports the view that modelling  is preferable to exact 

simulation.
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2 2 3 2  WAS0N's 2  4 6’ Experimental Paradigm

Wason's (1960) '2 4 6' task is the basis of an experimental paradigm that has 

been used to investigate how scientists propose expressions that explain data. The 

paradigm has been the subject of an extensive programme of research (see Evans, 

1989, for a review). In the basic paradigm the experimenter has a rule in minà that 

describes the structure of numerical triples (e.g. 2 4 6). The subject attempts to 

find this rule by proposing triples and being told whether they are instances of the 

rule. Classically, the rule is 'Any ascending sequence' and the subject is initially 

told that '2 4 6' is a positive example. Subjects typically posit rules like 

'Ascending with equal intervals' and only propose triples that are positive instances 

of their own rule. This is has been taken as evidence that humans exhibit 

confirmatory bias', namely the fundamental tendency to only seek information 

consistent with present beliefs. This has been used to argue against the Popperian 

falsificationist view of scientific discovery (Evans, 1989).

The main criticism to make of research under the Wason paradigm is that the 

'2 4 6' task only bears a superficial resemblance to real-life scientific discovery. 

For example, binary feedback about whether the proposed is an instance of the 

target rules is supposed to represent experimental tests. Experiments provide a rich 

source of information even when negative outcomes are obtained. Other criticisms 

along this line are that: the experiment is rigidly predefined; the mapping between 

experiments and laws is obvious; and there is no parallel of prior knowledge and the 

semantics of real situations under the Wason paradigm. As we shall see later, Klahr 

& Dunbar (1988) recognize these limitations and have been motivated to perform a 

study on a much more realistic scientific discovery context.

We can draw the following general conclusion. Apart from supporting the view 

that regularity-spotting heuristics may be a reasonable model of certain aspects of 

instance generalization, the empirical research does not provide much information
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that is useful to the computational model builder.

2.2.4 Lim itations Of Data Generalization Models & Studies

In this section, we have seen a wide range of programs and reviewed empirical 

studies that have focussed on the inference to models that parsimoniously describe 

data. However, as general models of scientific discovery they are far Jrom  

complete. The generalization of data into laws is an important part of scientific 

discovery but it is by no means all or even the most significant part. Major issues 

are left unanswered by the research. How are the data obtained in the first place? 

What happens when the data are unreliable (e.g., noisy)? Typically, these programs 

take just one set of data as input and find one law, whereas scientists usually gather 

many sets of data from different experiments and consider multiple models. 

Furthermore, models themselves also become the subject of inferential processes 

when their acceptability across different experimental situations is assessed or when 

they are generalized to form higher-level theoretical knowledge (i.e., instances). 

Also, laws may be used to help infer new theoretical knowledge.

Fortunately, there are other programs that have considered some of these issues, 

to which we will now turn.

2.3 THEORY DRIVEN MODEL AND INSTANCE GENERATION 

The programs examined in this section all possess some theoretical knowledge 

from the start. The knowledge (hypotheses or models) is used typically in 

conjunction with data to infer further theoretical knowledge. A mixed bag of 

programs are considered but they can be divided into groups according to the 

particular task to which they put their theoretical knowledge. The first group deals 

with the modification of unacceptable models into forms that more closely account 

for phenomena. The second group employs valid hypotheses that are used to 

generate models, or valid models that are used to generate instances, relating to a 

specific situation.
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2.3.1 Modification Of Given Models

The programs here all possess a model that is almost adequate and use data in 

order to modify and improve that model.

23.1 .1  BAC0N.6

This version of BACON (Langley et.al., 1986) differs from the preyious 

versions (Langley et.al., 1987) because it does not find a model from data but is 

given the correct model as its input; for example Y = aX + b. However, the 

values of the constants a and b are unknown so BAC0N.6 attempts to find the 

values that give the best fit to the data. Thus, the program searches through a space 

of possible combinations of values of the constants, where each state in the space 

differs from a previously visited state with respect to the value of just one constant. 

New constant values are calculated by incrementing (or decrementing) the value by 

a geometrically decreasing amount. The control strategy here is a beam search

version of hill climbing, with termination when an invariant set of constant values is
 ̂  ̂ • • •  . . .  • found.

The task that this version of BACON performs is limited, but even the manner in 

which it is performed is very inefficient. Scientists are likely to have some idea of 

which constant is most significant and therefore consider a smaller number of 

combinations. Important constants will likely emerge naturally when a wider 

context of scientific discovery is modelled.

23.1.2 STAHLp & REVOLVER

Unlike the other qualitative programs of the BACON school, STAHL’s abilities 

have been developed further. The program becomes STAHLp in Rose & Langley 

(1986) and is improved by augmenting the representation of reactions with reduced 

lists and source tags. The reduced lists store details about which substances are 

eliminated from reactions or componential models by the REDUCE heuristic. Source 

tags indicate at what stage each substance was first considered. This information 

improves the accuracy of the program in its actual generation of models and permits
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the use of an enhanced mechanism for recovering from erroneous inferences.

In Rose (1988a) STAHLp evolves into the REVOLVER system. The new 

program uses an evaluation function to assess which of the alternative models 

should be modified. The evaluation function calculates a value for each model based 

on factors such as the number of.beliefs supported and the number of substances in 

the reaction. This value measures the desirability of modifying each model using 

criteria concerned with the minimum mutilation of the data base, conservatism and 

complexity. Two further REVOLVER enhancements (Rose, 1988b) have been 

implemented. First, the program can cope with multiple models considered by 

different agents using degrees of belief supplied as inputs. The fixed belief values 

help to order the sequence in which the models are considered. Second, 

REVOLVER is given the ability to postulate new substances when certain types of 

inconsistency arise during inferencing.

In conclusion, REVOLVER possesses sophisticated theory revision abilities but 

they are mostly domain-specific. The latest version has the user input degrees of 

belief assigned to models that are somewhat like measures of acceptability. 

However, the degrees of belief are not amended during the model revision or any 

other process. In addition to REVOLVER, only ECHO (Thagard, 1989a: see 

below) has attempted to model separate agents in scientific discovery. However, 

this ability in REVOLVER is limited and can be viewed merely as a mechanism for 

partitioning and storing sets of premises that are dealt with sequentially. An 

adequate model of separate researchers working on the phenomenon would require 

intercommunication between the agents; with, for example, specific challenges and 

defenses of particular premises.

23.1.3 COPER

COPER (Kokar, 1986) takes an equation as input and uses dimensional 

considerations to determine whether it has missing or redundant arguments. Briefly,
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dimensional analysis is based on the fact that equations normally relate together 

terms standing for independent physical quantities (e.g., length, mass, time). The 

fundamental point to note is that the units on both sides of the equation must 

balance. COPER's abilities to find missing or redundant terms relies on tests for 

dimensional consistency in equations.

COPER can make various inferences about equations just by examining their 

dimensionality. The program can do this because of its knowledge of the units of 

theoretical terms. This knowledge is derived from the fact that experimental 

quantities are defined on scales of measurements using base units (e.g., the metre, 

kilogram, second). As such. Coper is another case which indicates the importance 

of theoretical inferences having access to knowledge about experiments through the 

correspondence between theoretical terms and experimental parameters.

2.3.2 G enerating Models & Instances From  Hypotheses & Models 

We have seen how theoretical knowledge can be found by the generalization of 

instances to form models. Now we will look at another way in which theoretical 

knowledge can be generated. In particular, we will consider how hypotheses or 

models can be used to generate less general models or instances. In terms of the 

present framework all the programs perform similar tasks, so for the sake of 

exposition the approach adopted by particular groups of research will be used to 

classify the systems.

2 3 2 .1  Engineering Systems

Many AI programs have been development that solve real scientific problems 

using the sheer information processing power of computers. The researchers who 

adopt this approach have no intention of modelling human capabilities, so their 

programs can be called Engineering Systems. Engineering systems employ 

established scientific knowledge to make specific discoveries in well delimited 

domains.

Just one such discovery system, MetaDendral, is considered in detail in this
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section. Other examples of engineering AI discovery programs are: PROSPECTOR 

(Duda et.al., 1979; Campbell et.al., 1982), which was designed to help geologists 

in mineral exploration and has successfully predicted ore deposits; MOLGEN 

(Friedland & Kedes, 1985), which acts as an intelligent assistant for molecular 

biologists; and PROTEAN (Hayes-Roth et.al., 1986), which derives protein 

structure from constraints.

MetaDendral's (Buchanan & Feigenbaum, 1978) task is to find rules for the 

fragmentation of molecules in mass spectrometry. The inputs are structural 

descriptions of molecules and their mass spectra. The program is composed of three 

sub-programs that are called in sequence to perform particular tasks. The first sub

program simulates a run of a molecule through a mass spectrometer to find the 

points at which the molecules are cleaved. The second sub-program generates rules 

that describe the bond environment surrounding each break, starting with the most 

general rule that can be considered as an hypothesis. The final sub-program refines 

the rules by generalization or specialization in comparison with real mass 

spectrographs, and ranks them according to their predictive accuracy. MetaDendral 

has successfully found previously unknown rules for certain classes of molecules, 

and has been modified to perform Carbon-13 analysis of molecular structure in 

organic chemistry (Gray, 1984).

Gray et.al. (1988) consider MetaDendral as an example of Explanation-Based 

Generalization (e.g. Mitchell et.al., 1986). EBG is a technique that attempts to 

explain data (mass spectra) by forming semi-empirical laws (the fragmentation 

rules) from a domain theory (the hypothesis). The technique is established in AI but 

whether it is applicable to the general modelling of theory-led discovery is 

debatable. It is seldom the case in scientific discovery that acceptable hypotheses 

and instances are both available when no intermediate models exist. When an 

hypothesis precedes other things scientists tend to generate predictive models before 

data is gathered. Similarly, when only instances exist they tend to be generalized to

-40-



Previous Work

form models before hypotheses are inferred (however see Rajomoney et.al., 

1985).

Scientific discovery has not been the only form of discovery that has been 

considered in AI. Two important discovery programs need to be mentioned that 

work in domains that are not strictly scientific. They are L en a t's  AM and 

EURISKO (Davis & Lenat, 1982; Lenat 1983; Lenat & Brown, 1984). Both are 

given as input some detailed information about their discovery domains, and Lenat 

does not intend them to be considered as direct models of human discovery abilities, 

so his programs are engineering systems. AM and EURISKO are particularly 

effective and successful designs for discovery systems. They use concepts 

represented as frames, manipulated by heuristics expressed as productions, with a 

best-first search of tasks guided by heuristics that modify "interestingness" and 

"worth" of concept slots. AM makes discoveries in pure mathematics and 

EURISKO has, for example, successfully played a war game that involves 

designing battle fleets.

23.2.2 Models O f Problem Solving

There has been much research in Cognitive Science on scientific problem solving 

which typically takes a theory-led approach in which high-level principles, such as 

Newton's laws, are applied to particular situations.

Larkin et.al. (1980) model the behaviour of expert and novice humans in the 

domain of kinematic and dynamic physics problems. Their program, implemented 

as a production system, starts with a problem and a stock of principles. (For 

example, the problem might state that a block is sliding down a ramp with a certain 

coefficient of friction and that the speed after a certain period of time is desired.) 

The set of relevant principles are applied successively until all the unknown 

variables can be eliminated (the program does not actually manipulate the 

equations). The difference between novices and experts is captured by two
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strategies. Novice behaviour is characterized by means-ends analysis in which 

principles are selected according whether they reduce the difference between the 

current problem state and the desired goal. The experts are modelled by a 

knowledge development strategy that selects principles which permit the finding 

of the value of a new variable. In this way new information is generated at^each 

stage that follows directly from the known equations. (See Bundy et.al., 1979, and 

Luger, 1980, for other programs in this domain.)

Jones & Langley (1988) take a different approach and attempt to build certain 

properties of human problem solving behaviour into their EUREKA program. Four 

properties are considered: the use of heuristic methods; being non-systematic; 

performance improvement with experience; and, being sufficiently insightful to 

respond to external stimuli. Specific techniques are used to model each property. 

For example, EUREICA models the non-systematic property by not backtracking 

whilst problem solving using means-ends analysis. Although an interesting 

approach it does rather beg the questions being investigated in scientific problem 

solving.

Clearly, scientific problem solving and scientific discovery are related. In the 

context of theory-led inferences, finding equations to solve a particular problem is 

akin to the generating of predictions from hypotheses in order to account for a 

particular experimental paradigm. Nevertheless, they differ in an important respect. 

Problem solvers assume the stock of principles to be true when they infer an 

equation to describe the motion of a block sliding down a ramp. However, in 

discovery the aim is to determine which of the principles, if any, are acceptable. 

Which strategies scientists performing discovery follow - means-end analysis or 

knowledge development - and whether the uncertainty about the truth of hypotheses 

influences the strategies, are open questions for the future.

Another area of AI that treats problem solving is Qualitative Reasoning. As the 

name implies the approach involves purely qualitative attempts to build models of
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physical devices (such as regulators) and to perform various kinds of reasoning task 

on the models. (See Cohn, 1989, for a review.)

The modelling of scientific problem solving is closely related to scientific 

discovery but they are different. Problem solving tends to start with accepted true 

theoretical knowledge, whereas such knowledge must first be uncovered in 

discovery. The application of this knowledge to particular situations in problem 

solving aims to explain or account for the situation, whereas in discovery the aim is 

also to test the validity of the knowledge.

2.5.2.5 An Architecture For Theory Driven Scientific Discovery

An alternative to the above problem solving approach is Sleeman et.aVs (1989) 

architecture for theory-driven scientific discovery based on the analysis of an 

episode of discovery. BLAGDEN is a system being developed with this 

architecture. Discovery starts with a weak theory (e.g. a Newtonian description of 

planetary motion in the solar system) that is an instance of an acceptable core theory 

(Newton's laws). The weak theory needs to be adapted to account for a new 

situation (the discovery of a new planet) by proposing informal qualitative models. 

These models identify the relevant dependent terms (such as periods of revolution) 

and help to specify law frameworks. A law framework delimits the space of 

quantitative laws. Finally, input data is used to infer the actual law. Throughout the 

procedure the core theory and background knowledge are used in the various 

inference steps.

The fact that the architecture is based on the analysis of a particular episode of 

discovery means it is likely to be a successful model. However, it also suggests that 

it is unlikely to be more generally applicable to other cases of discovery. Further, as 

in the problem solving models, the core theory is given as input and assumed to be 

correct, whereas an important part of theory-driven discovery is the demonstration 

that high-level theoretical knowledge is acceptable in the first place.
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2.32.4 Limited Experimental Design

To finish the review of programs in this section, we will briefiy consider a 

theory-led system that differs from the rest, because it has a limited ability to design 

experiments. Rajamoney et.al.'s (1985) system (with no name) has beliefs about 

processes involving fluids, such as flow and evaporation. The system niiakes 

predictions using the beliefs that apply to specific situations, in order to test their 

validity. When a prediction fails the system attempts to find out why, by examining 

the beliefs that are closest to the unexpected behaviour. This is done by designing 

experiments to differentiate between the processes. For example, by maximizing the 

surface area in contact with the air, whilst minimizing the contact area with the 

vessel, the system can distinguish between evaporation and absorption. This is 

certainly an interesting approach, but unfortunately it has not been explored in any 

depth, or applied to other domains.

2.3.3 Limitations Of The Theory-Led Discovery Systems

The obvious criticism of the theory-led discovery systems is that they do not 

model how the theoretical knowledge, supplied as input, is generated in the first 

place. More productively, we can say that an adequate model of scientific discovery 

must include processes for both data-led inference to theoretical knowledge (as 

considered in §2.2) as well as theory-led processes that apply such knowledge.

Even though we have seen, in this section, many different types of inferences 

using theory it is clear that some aspects are absent. First, the assessment of the 

acceptability of theoretical knowledge has not been modelled; the programs usually 

proceed directly to a single answer that is assumed to be coirect. Second, the role of 

experiments is absent, their only manifestation takes the form of true and accurate 

experimental results. Nor does theory-led discovery model the generation of new 

theories from unacceptable theories. BAC0N.6, REVOLVER and COPER improve 

given theories but no programs use the information about a phenomenon that is

-44-



Previous Work

encapsulated in partly or totally unacceptable theories. Unacceptable theories may 

indicate that portions of the hypothesis space need not be searched as the terms to 

which they refer could be irrelevant. Similarly, partially acceptable theories may 

suggest which terms are likely to be relevant -  this is an idea underlying Sleeman's 

theory-driven discovery architecture.

Fortunately, the assessment of acceptability of theories has been considered in 

Cognitive Science.

2.4 ASSESSING HYPOTHESIS ACCEPTABILITY & ECHO

We will now consider the assessment of the acceptability of theories by a system 

that does not also model how the theories were obtained in the first place.

Thagard (1989a) proposes a Theory of Explanatory Coherence that is 

implemented in the ECHO computer program. The program assesses the 

acceptability of competing mature research programmes that have investigated the 

same set of phenomena; for example when the oxygen theory of combustion was 

becoming a real challenge to the previously dominant Phlogiston theory.

The theory, stated as seven principles, considers the coherence of explanations 

within a scientific theory as the basis for judging the acceptability of theories. 

Explanatory coherence relations between propositions are symmetrical and several 

propositions are deemed to cohere if they explain a common proposition. 

Propositions incohere when propositions are contradictory. Observations or data 

are assumed to have their own acceptability (a data priority principle) and there is 

coherence associated with analogies. The specific acceptability of a proposition is 

determined by its coherence with the system it is in and the overall coherence of a 

system is a function of the pairwise coherence of its propositions.

To maintain the holistic nature of the theory, Thagard adopts the connectionist 

paradigm to implement the theory in ECHO. Like all connectionist systems, ECHO 

possesses nodes and links; the nodes represent propositions and links the
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explanatory coherence relations. The weight or activation of links is positive for 

coherence and negative for contradiction. The nodes representing observational data 

are connected to special nodes that have a constant level of activation to instantiate 

the data priority principle. Analogies are modelled in ECHO by providing links 

between pairs of propositions that are similar, with a user set ’analogy in tac t' 

parameter that adjusts the significance of these groups. Each run of the network 

begins with an even distribution of the activation of nodes and a standard 

connectionist algorithm is used to update the activations at each cycle. ECHO halts, 

typically after many tens of cycles, when the activation levels of all the nodes have 

reached asymptotes. The degree of activation of the nodes indicates the relative 

acceptability of the propositions.

Normally ECHO is used to model the competing acceptability of the two sides of 

a scientific debate. The user analyses historical material, seeking the main concepts, 

data, arguments and explanations involved, and then encodes this in a network. The 

range of episodes is extensive, including: the oxygen phlogiston debate (Thagard, 

1989a & in press); Darwin versus creationism (Thagard, 1989a); dinosaur 

extinction (Thagard, 1988b & 1989a); the continental drift debate (Thagard, 

forthcoming); and, two examples of trial jury reasoning (Thagard, 1989a).

A host of criticisms of the theory of explanatory coherence and ECHO can be 

found in the open peer commentaries that accompany Thagard's (1989a) 

Behavioral and Brain Science article (see e.g., Cheng & Keane, 1989b). Here, 

three criticisms not previously considered will focus on the adequacy of ECHO as a 

general model of the assessment of the acceptability of theories.

First, a generally adequate theory of the assessment of acceptability should be 

applicable to all stages in scientific discovery, not just the revolutionary periods 

considered by Thagard. Consider, for example, the assessment of a theory as new 

evidence and explanations are incorporated over time. Should ECHO (i) be run 

from scratch each time a new node or link is required, or (ii) can new elements be
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added during a particular run when appropriate? Both options are problematic. The 

first may lead to the abandonment of a theory in its infancy even though it may in 

the long run be the most acceptable (e.g. the early development of oxygen theory in 

the presence of the phlogiston precursor). To prevent such occurrences, explanatory 

coherence will require something like a disbelief suspension mechanism, but this 

goes well beyond the scope and principles of the original theory. The second option 

(apparently favoured by Thagard; see Ranney & Thagard, 1988) leads to the 

problem of interpreting how the cycles of updating activation represent time or map 

onto events in a discovery episode. This will inevitably be arbitrary as the theory is 

atemporal. Thus, it can be concluded that ECHO cannot adequately model 

acceptability assessment in general without ad hoc assumptions. For this, and other 

reasons, Cheng & Keane (1989b) contend that a symbolic approach may be more 

adequate.

Second, although Thagard claims that the successful modelling of many episodes 

by ECHO demonstrates the validity of the Theory of Explanatory Coherence, it is 

by no means conclusive. The theory claims that it is not only explanatory breadth 

that measures acceptability, but that simplicity, analogies and contradictions have a 

substantial role. These properties should have a substantive role in the selection of 

the most acceptable theory by ECHO. However, this is not the casé. Table 2.1 

shows the numbers of data propositions explained by competing theories in 

episodes of discovery modelled by ECHO. The theories that ECHO finds most 

acceptable always possess the greatest number of data propositions. So explanatory 

breadth alone is sufficient to distinguish acceptable theories; ECHO could achieve 

the same result just by counting the numbers of data propositions. Furthermore, 

Thagard has analysed the relative contributions of the various aspects of 

Explanatory Coherence (Thagard, forthcoming. Table 10.2) and finds that 

explanatory breadth is by far the most important, with simplicity occasionally
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Table 2.1 Evidence Proposition Numbers In ECHO

E pisode
(reference)

Participants* Evidence Propositions 
Explained

Oxygen-Phlogiston Lavoisier - oxygen 8

(Thagard, 1989a) Phlogiston theorists 3 '

Evolution Darwin 13

(Thagard, 1989a) Creationists 4

Dinosaur debate Comet 9

(Thagard, 1988) Volcano 3

Dinosaurs revisited Terrestrial 13

(Thagard, 1989b) Comet 7

Continental Drift Wegner 20

(Thagard, forthcoming) Fixists 10

^ECHO finds the top participant in each episode the most acceptable.
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having a role, and the rest being of minor or no utility. This damaging criticism 

could be parried by ECHO successfully modelling a real episode of discovery 

where one theory is clearly more acceptable than another, even though they both 

explain the same amount of evidence.Whether such a case exists and how ECHO 

would deal with it remains to be seen. ^

Third, Explanatory Coherence assumes that empirical data have an inherent 

acceptability. However, this view is not justified, because the strength of support 

given to a theory accounting for an experimental result varies according to the 

reliability of the experiment. Scientists are wary of experimental phenomena that 

have not been reliably demonstrated and are able to judge the degree to which 

experimental evidence is acceptable, which is by no means a constant across all 

types of experiment.

In terms of the present framework ECHO only considers the theoretical side of 

scientific discovery. The data propositions are instances, and all other types of 

proposition are either niodels or hypotheses. The probleni with mapping Thagard's 

representations onto the framework is that his propositions do not distinguish any 

levels of theoretical knowledge.

In summary, Thagard has attempted to develop a theory that can account for how 

scientists judge the acceptability of theories. However, it suffers from just being an 

account of acceptability: the incremental development of theories presents a real 

problem; it is not clear that ECHO requires anything beyond the principle of 

explanatory breadth to explain its abilities; and the role of knowledge in the 

reliability of experimental data is glossed over.

In the next section we will consider systems that are much more complete. Not 

only do they assess the acceptability of theories, but they also discover that 

knowledge in the first place, and begin to consider the representation of 

experiments.
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2.5 MULTIPLE-PROCESS MODELS

The most complete models of scientific discovery so far developed are now 

considered. The programs have abilities that include: the generalization of instances 

to form models; the generation of models and instances from higher level theoretical 

knowledge; and the assessing of the acceptability of theories. The four models to be 

considered are PI (Thagard, 1988a), HDD (Reimann, 1990), SDDS (Klahr & 

Dunbar, 1988) and KEKEDA (Kulkami & Simon, 1990). The first is an example 

of the Induction framework of Holland et.al. (1986) described above in §2.1.3; the 

next two were based on empirical studies of subjects performing simulated 

discovery tasks; and the fourth is a detailed simulation of a well- documented 

episode of discovery.

2.5.1 PI

PI (Thagard & Holyoak, 1985; Thagard, 1988a) stands for Process of 

Induction, which is apt as it is an example of Holland et.al.'s, (1986) Induction 

framework. The program has been used to model the formulation of primitive 

scientific concepts, such as the wave theory of sound.

Three types of scientific knowledge are posited that have frame-like 

representations: messages, laws, and concepts. Messages hold the results of 

observation and inferences. Laws are represented as if-then statements. In English, 

an example of a law is, if x is copper then x conducts electricity. Concept frames 

include information about superordinate and subordinate concepts. The frames of all 

three types have multiple slots; one of the most important of them is a slot indicating 

the frame's level of activation. When this level is above a threshold the frame comes 

under direct scrutiny.

PI runs in a cyclical manner with sets of processes repeated at each time step. 

During each cycle, PI matches the active messages produced by rules fired in the 

last cycle (or stated in the problem) with all the conditions of rules stored in active 

concept frames. The rules that can be fired are fired, according to Pi's limited form
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of parallelism, to produce new messages. An automatic mechanism spreads 

activation throughout the network to related problems, concepts, laws and 

messages. For example, concepts with rules that have been fired have their 

activation levels increased. This activation spreading draws in potentially useful 

concepts and rules from up and down the conceptual hierarchy and initiated new 

sub-goals. These new problems may be analogous to previously solved problems 

so are reactivated to help with the current task. PI monitors the currently active 

items and may trigger various forms of induction including: instance and condition- 

based generalization, abduction, and conceptual combination.

The acceptability of laws is assessed using three criteria, (i) The explanatory 

breadth or consilience of a law (L) (the number of facts explained by the law), (ii) 

Simplicity, given by:

No. facts explained by L - No. co-siblings of L
simplicity = -----------------------------------------:-------------------- . . . (2.6)

No. facts explained by L

L's co-siblings on the same level (ie. co-"hypotheses") are subtracted, because they 

are likely to be special assumptions accounting for single facts, and therefore detract 

from the explanatory range of L. (iii) The overall explanatory power of a law is 

given by the product of explanatory breadth and simplicity. These three measures 

are calculated for laws on each cycle and are used in the selection of rules to be 

fired.

2 3 .1 2  Limitations O f PI

The main criticisms of PI arise mainly from the fact that it is a model based on 

the Induction framework. The suitability of one of its fundamental tenets for 

modelling scientific discovery will be questioned. Consider the representation of 

knowledge in the form of condition-action rules. Although rules are a general way 

to represent knowledge, it is questionable whether they are the most appropriate
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form of representation for all kinds of scientific knowledge. Quantitative knowledge 

in the form of equations is a particular problem. For example, consider Newton's 

second law, often stated as F=ma. As a rule it is: if F  is a force and m is a mass 

and a is an acceleration and the magnitude of m and a are known, then the 

magnitude of F  is the product of m and a. However, F  may be known and either 

m or a unknown, so a total of three rules is required to cope with all the 

combinations of terms (or one rule with very unwieldy disjunctive tests in both its 

condition and action). It is thus far more economical to express the law in a realistic 

and directly manipulable form. This allows general rules modelling scientist's 

mathematical abilities to be employed, which rearrange and substitute values into the 

equations as required. To summarize, rules are not a straightforward form of 

representation and they require extra interpretation not needed in more natural forms 

of expression.

The next program to be considered also uses rules to represent laws and is 

limited for the same reason. '

2.5.2 HDD

2.52.1 Empirical Study O f An Optics Experiment

The basis of the Hypothesis Driven Discovery (HDD) model (Reimann, 1990) is 

the empirical findings of a study performed using a simulated, optical experiment 

environment. (Reimann's sense o f hypothesis is Ifko m odel in the current 

framework). The environment created in the program called REFRACT permits 

subjects to investigate the refraction of light rays travelling into different media (e.g. 

glass, diamond) with different shapes (e.g. plane, concaved and convexed). The 

underlying behaviour is given by Snell's law, but simplified by ignoring the sines 

of terms (ie. incidence angle /  refraction angle = a constant). Qualitative or 

quantitative predictions can be made and are graphically compared to the actual 

result. It was found that qualitative feed-back from trials is important for all 

subjects. Successful subjects differed from unsuccessful subjects in that they: (i)
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tended only to vary one independent variable at a time; (ii) they paid more attention 

to the current hypothesis during experiment design; (iii) they preferred numerical 

rather than graphical or qualitative predictions; (iv) they were more willing to make 

generalizations over several experimental results; and, (vi) they found a more 

complete set of relations between terms. These results were used to guidp the 

construction of a discovery model.

25.2.2 The Computer Model

The HDD model is a production system with three main conceptual components. 

First, the run experiment component designs an experiment, makes a prediction 

from a chosen hypothesis, and compares the prediction and experimental outcome. 

Second, the evaluate and modify hypothesis component assesses the acceptability 

of the hypothesis and attempts to improve it if the prediction failed. Third, the 

hypothesis generation component infers new hypotheses from previous 

experimental outcomes. These three components operate in a cycle.

The program possesses a representation for experiments but does not have 

heuristics for the design or performance of experiments. An experiment is defined 

by the specification of: the optical medium; the values of variables; and which 

variables are independent and dependent. The user supplies different designs on 

each cycle and the program, makes a quantitative prediction (as HDD has no 

qualitative reasoning abilities). The experimental outcome, supplied by the user, is 

compared with the prediction.

Before considering how hypotheses are evaluated and modified let us consider 

the condition-action rule representation of hypotheses in HDD. The condition 

specifies the attributes (medium, angles, distances) considered by an hypothesis, 

which are assigned symbols standing for particular variables or specific values. The 

action part is an equation of the form:

Variable^ = Variable2 (op) constant, . . .  (2.3)

where the variables may be distances or angles, the constant is a real number, and
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(op) is an arithmetic operator (i.e., *, /, + or -). This is the only form of equation 

HDD knows.

Evaluation takes the form of increasing the strength of hypotheses when the 

prediction is successful and decreasing the strength when it is not. The strength is 

used to select hypotheses for consideration or to eliminate unacceptable ones when 

their strength gets too low. The hypothesis is itself modified when the prediction 

fails by the specialization of the condition part of the rule.

The generation of new hypotheses employs BACON-like regularity spotters that 

compare the values of pairs of terms from different experiments. TrendDirectl and 

TrendJnversel are analogous to BACON's increase and decrease heuristics (see 

§2.2.1.1 above). Equations of the form given by equation (2.3) are generated for 

the appropriate trend. HDD constrains the space of hypotheses by preferring 

equations that are products or quotients and ones that have the same type of term on 

both sides of the equation (e.g. both distances).

The program successfully models the performance of the prototypical subjects in 

the REFRACT experiments, but it has some problems and limitations

2.52.3 Problems & Limitations

REFRACT is a good simulated scientific discovery environment. In particular, 

the combination of graphical qualitative information and quantitative data means that 

subjects could investigate and reason about the phenomenon in more "natural" ways 

than previous studies such as Wason's (1960) paradigm. However, only 

quantitative representations and inference were implemented in the HDD model. As 

we have already seen above, the combination of both qualitative and quantitative 

inferences is desirable in, if not essential for, powerful and efficient discovery 

systems.

HDD's representation of experiment is an advance on the programs mentioned 

earlier, but as the system possesses no abilities to design, perform or even select
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experiments, it is only a minor improvement. Furthermore, the range of equations 

considered by the program is very limited; only two variables related by simple 

arithmetic operators are considered. However, the program possesses a rich 

representation of types of theoretical knowledge. For example, every variable has 

role, type and status properties in addition to its particular value (Reimann, J990, 

87).

The pattern of discovery found in the empirical study and modelled in HDD is a 

neat sequence of processes that remains constant in every cycle. However, this 

cycle emerges from the structure of the empirical study. The fact that a prediction 

must be made before experimental feedback is received forces the subject into the 

cycle. Scientists do not normally face such a restriction as they may perform many 

experiments without making any predictions in order to explore the space of 

experimental results independently of a theory.

The next model to be considered is also based on an empirical study but is more 

flexible in permitting various different discovery paths to be followed.

2.5.3 SDDS

The Scientific Discovery as Dual space Search (Klahr & Dunbar, 1988) model is 

the result of an empirical study that attempts to overcome the limitations of Wason's 

'2 4 6' experimental para^gm (see §2.23.2 above). (Klahr & Dunbar's reference 

to hypotheses has been replaced by 'proposition' in this subsection to avoid 

confusion with the term as used in the scientific discovery framework.)

25.3.1 Robot Based Empirical Study

Klahr & Dunbar (1988) performed a study on a task that is a better representation 

of a real scientific context. In two consecutive studies, human subjects investigated 

the behaviour of a computer-controlled robot, attempting to discover the function of 

a particular instruction in a LOGO-like language. The subject writes a series of 

instructions using simple commands including the "mystery" function, and 

observes the consequent movements of the robot. Propositions describing the
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function are formulated and subjects are allowed to carry out repeated tests until the 

correct operational description of the function is found.

Detailed analyses of subjects' protocols led Klahr & Dunbar (1988) to identify 

two distinct groups of subjects. One group of subjects were theorists', they had a 

"theory-led" approach which involved proposing new propositions and testing 

them. Klahr & Dunbar called this a proposition-space search. The other group of 

subjects were experim enters  and tended to be "data-driven": performing 

experiments and attempting to infer propositions from the results. Theoretically, 

they were searching in an experiment-space. Overall, they propose that scientific 

reasoning can be characterized as dual space search of the physical possibilities of 

the experimental situation and the space of conceivable propositions.

This dual-space proposal leads to two predictions: (i) it is possible to think of the 

correct proposition just by a proposition-space search, without using any 

experimental results, given the overall context of the experimental situation; (ii) 

when proposition-space search search fails, subjects will switch to experiment- 

space search. The predictions were tested by Klahr & Dunbar in a second series of 

experiments and found to have support 

2 .5 3 2  The Model And Processes Hierarchy

In a similar manner to Reimann (1990), Klahr & Dunbar (1988) have produced a 

model based on their psychological findings, although they have not implemented it 

in a running program. They have also formulated a representation that helps to 

explain the processes involved. Propositions are considered as frames with four 

slots relating to particular attributes of the mystery function. Klahr & Dunbar have 

analysed the types of inferences made by subjects in terms of transformations of 

these frames.

SDDS characterizes Scientific Discovery as a Dual Search of the proposition and 

the experiment spaces. This search comprises of three main components called, 

space proposition search, test proposition, and evaluate evidence. The search of
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Table 2.2 SDDS Processes

Process Name' SDDS Process 
Description

Framework . 
Interpretation

SEARCH HYPOTHESIS 
SPACE*

GENERATE FRAME*

EVOKE FRAME

INDUCE FRAME

° GENERATE 
OUTCOME

«GENERALIZE
OUTCOME

ASSIGN SLOT VALUES*

• USE PRIOR 
KNOWLEDGE
• USE EXP OUTCOMES*

® USE OLD 
OUTCOMES

® GENERATE 
OUTCOME

Full specification of a 
proposition using two 
processes to either 
generate a new frame or 
change slot values

Generation of a new frame 
using one of two sub
processes.

Memory search for 
information to permit 
new frame to ho 
constructed.

Generates a new frame by 
induction out of a series 
of outcomes, using two 
subprocesses in turn.

A combination of 
processes, see below, 
that yields input to next 
processes.

Generalise over the 
outcomes in an attempt to 
produce a new frame.

For a partially instantiated 
frame, using one of two 
sub-processes required 
to make a fully specified 
frame.

Assign slot values using 
prior knowledge.

Assign slot values using 
previous or new specific 
experimental outcomes.

Examine old experimental 
outcomes to determine 
specific slot values.

See below

Make a complete model 
from scratch or modify 
an existing a model.

Make a new model.

Search stored models for 
suitable base.

Make new model from 
instance(s).

Obtain instance(s).

Generalise to model from 
instances.

Fully specify partial 
model.

Use Background know
ledge to specify model.

Use existing or new 
instances to specify 
model.

Try old instances to 
specify model

TEST PROPOSITION

ESPACE MOVE* 
MAKE PREDICTION

A series of three processes 
to formulate an 
experiment, make a 
prediction and runs the 
experiment.

See below.
Take current proposition 

and experiment to make a 
prediction centred on the 
focal values.

Test model by generating 
instances and comparing 
them with expt. tests.

Generate instance from 
model and specified 
expt. setup.

continued.



Table 2.2 SDDS Processes Continued

Process Name^ SDDS Process 
D escription

Fram ew ork
In terpretation

• R U N

• OBSERVE
• MATCH

} See below 
jSee below 
Note discrepancies 

between predicted and 
observed behaviours.

Compares instance and 
experimental test.

EVALUATE EVIDENCE

• REVIEW OUTCOMES 

• DECIDE

Determines whether the 
cumulative experimental 
evidence is sufficient for 
acceptance or rejection of 
the current proposition.

Consider previous 
experimental outcomes.

Choose whether to accept, 
reject proposition or 
continue testing.

Are there enough instances 
supporting the present 
model?

Look at previous instances

Continue, accept, or reject 
model on adequacy 

' terms.
DEEPER NESTED PROCESSES^

GENERATE OUTCOME 

• ESPACE MOVE*

Generates an experimental 
outcome using three 
processes.

See below.

Obtain experimental test or 
instance.

RUN

OBSERVE • •

Performs the experiment. 

Note observed behaviours.

Obtain an expt. test output 
parameter values.

Note relation between 
input-m and output of 
expt. test.

ESPACE MOVE

• FOCUS

• CHOOSE & SET

Two processes for 
designing experiments.

Concentrates on the most 
"important" slot of the 
current frame.

Chooses an "important" 
slot & sets its value, and 
fixes the rest of the slots.

Full specification of expt. 
setup.

Choose input-m and output 
parameters.

Specify fixed input-c 
parameters.

Notes and Kev
Adapted from Klahr and Dunbar (1988) 
t  - fridentation of name indicates the level of nesting in SDDS.
^ - Indentation indicates depth relative to the first process in section.
• - 1st level of nesting • - 2nd level of nesting ° - 3rd level of nesting
* Process includes a conditional test for which subprocess to execute.
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the proposition space involves the generation of new frames or the modification of 

existing ones. To test a proposition an experiment is designed, a prediction made, 

the experiment performed, and the prediction and observation compared. The 

evaluation of evidence reviews the present and previous outcomes of experiments 

and decides if an adequate description of the mystery function has been found. 

Fuller descriptions of these processes, and their sub-processes, are given in the 

second column of Table 2.2 (the third column is referred to later in the thesis). 

Furthermore, Figure 2.2 shows all the processes arranged in the hierarchy proposed 

by Klahr & Dunbar, with the groups of processes that are repeated at more than one 

location deliberately highlighted. One set relates to the design of experiments 

(ESPACE MOVE). It occurs within both the proposition space search and the test 

proposition branches of the hierarchy. This clearly demonstrates that theory and 

experiment interact to a large extent.

■25.3.3 Umitations O f The Model

The experimental context of this work is the most complete of any empirical 

study to date. Since the simulated discovery task was less rigidly defined in 

Reimann's (1990) REFRACT environment, Klahr and Dunbar found that different 

discovery paths may be followed depending on the state of the investigation and the 

preferences of the subject.

However, like Reimann’s study and model, there has been no investigation of 

high-level theoretical knowledge that is applicable across several different 

experimental situations (of the sort called hypotheses in the present framework). 

Such universal laws are an important part of science. To rectify this, Klahr and 

Dunbar’s robot experiments would need to investigate several different mystery 

functions. Descriptions for a partial set of the functions would be found (models) 

and then a general account (an hypothesis) inferred. This account would then be 

tested by making predictions with the remaining functions.
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The model is also limited in the way its assesses theoretical acceptability and the 

reliability of the experiments. SDDS has a location for the evaluation of evidence in 

its process hierarchy but does not specify what form the assessment of acceptability 

might take, other than that previous outcomes are reviewed. The robot experimental 

environment was perfect in the sense that it did not suffer from noise or erroneous 

effects. Gerwin (1974) included noise in his data which meant human subjects and 

his computer program often failed to find the exact equation. It would be interesting 

to see the effect of noise and other adverse influences in future work on SDDS.

2.5.4 KEKEDA

Kulkami & Simon (1988) have simulated Hans Krebs' discovery of the Urea 

cycle in biochemistry, using their KEKEDA system. This is, perhaps, the most 

detailed and best model of an episode of scientific discovery to date. The strength of 

the model comes from the historical account of the discovery at their disposal. This 

included a detailed examination of laboratory notebooks and retrospective 

interviews with participants in the discovery. (Again, the use of 'hypothesis' by 

Kulkami & Simon is replaced by 'proposition' in this subsection).

25.4.1 Representations

KEKEDA not only makes theoretical inferences, but also assesses the 

acceptability of the theoretical knowledge and models experiments to a degree. Thus 

it has representations for theoretical and experimental knowledge and employs 

measures of acceptability.

KEKEDA works in the domain of biochemistry, and has representations for 

processes, substances, propositions (ie. "hypotheses"), experiments, and 

supplementary facts. These representations are classes of attribute-value pairs and 

contain a rich variety of information. For example, processes are chemical reactions 

represented by an input, an output, a likely locus of the reaction, and the class to 

which it belongs. Experiments are also represented in the same manner. An 

experiment is defined by attributes for: the input; the input's initial values; the
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condition and location of the experiment; and indicators of what is to be measured.

Propositions have associated measures of confidence along five dimensions that 

include: number of successful experiments verifying the hypothesis; number of 

experiments failing to do so; amount of failed effort in attempts to find positive 

instances; implied but inconclusive success; and implied but not certain failure. 

They not only state how acceptable the propositions are, but help to guide 

KEKEDA in its discoveries. For example, the current proposition is abandoned 

when the measure of failed effort, of attempts to find positive instances of the 

proposition, passes a certain threshold. This happens even though there is 

insufficient evidence to show that the proposition is unacceptable.

25.4.2 Heuristics And Simulation

KEKEDA is a production system. Sixty four heuristics, productions, are 

employed and grouped into nine classes according to the type of task performed. 

The classes are: problem choosers, problem generators, decision makers, 

experiment proposers, expectation setters, proposition generators, proposition 

modifiers, confidence modifiers, and proposition-strategy choosers. There are 

roughly equal numbers of domain specific and domain independent heuristics.

KEKEDA simulates discovery of the urea cycle in some detail, starting with the 

problem of urea synthesis and working through to the full specification of the cycle, 

including the pursuit of unproductive paths along the way. During the discovery 

particular patterns of heuristics repeatedly fire in sequence. For example, when 

testing the alternative combinations of substances in a particular class of reaction. 

The program designs experiments and makes predictions, but the user supplies 

KEKEDA with the results of the appropriate experimental tests when requested.

25.4.3 Criticisms o f KEKEDA

The obvious limitations of KEKEDA are that it does not model the most general 

levels of theory and experiment - hypotheses and experimental paradigms in the 

framework. However, we should remember that there was no intention on the part
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of Krebs in the real discovery to find a universal law of chemistry, but only to 

uncover the secrets of a particular biochemical processes.

KEKEDA does, however, possess the most sophisticated means, of any of the 

systems, to assess the acceptability of propositions (excepting ECHO). The 

measures that directly indicate the acceptability of a proposition do so by noting the 

extent to which the proposition successfully predicts the behaviour of the 

phenomena. This is a further example of the explanatory breadth criterion. Note 

also that KEKEDA needs to record the absolute number of both successes and 

failures, unlike Reimann's (1990) HDD program where a single strength value is 

used. This extra information is important for KEKEDA as it helps to guide the 

choice of strategies.

The detail and thus completeness of the simulation of the discovery of the Urea 

cycle is much greater than the level attained in any of the previous models of 

discovery. This is not surprising as there is an order of magnitude difference in 

numbers of heuristics employed. There are two implications to be drawn from this. 

First, it seems that realistic models of episodes of scientific discovery are more 

likely to be achieved by sets of domain-specific heuristics rather than a single, all 

encompassing, technique. Second, the modelling of scientific discovery in 

computer programs will require the investigation of several different domains in 

detail followed by the generalization of patterns common to each in order to 

understand the underlying character. A step towards this will be to develop 

computer models that possess a richness of heuristics and representations 

comparable to KEKEDA, but implemented in a system with an explicit organization 

of tasks and processes like SDDS. As we will see the STERN model of scientific 

discovery attempts such an integration.
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2.5.5 Summary Of Multiple-Process Models

In this section models that incorporate both theory and experiment led strategies 

have been examined. They represent and model experiments to varying degrees and 

employ a range of measures and procedures to assess the acceptability of theoretical 

knowledge. In fact, its does not seem just to be coincidental that the more 

experimental knowledge is acknowledged the more realistic the methods for the 

assessment of the acceptability of theories become. In terms of the scientific 

discovery framework this is explained by the proposal that the acceptability of 

models is assessed as a function of the success of experimental tests matching with 

(predictive) instances. The problem of the acceptability of higher levels of 

theoretical knowledge, framework hypotheses, has not been addressed in previous 

work as they simply have not modelled that type of theory.

2.6 IMMEDIATE RESEARCH OBJECTIVES

The review carried out in this chapter reveals a number of directions in which the 

development of computational models may profitably progress. These include:

• The modelling of the highest level of theoretical knowledge to account for phenomena 

across several different experimental situations (including the processes that generate 

them and use them to make inferences).

• The realistic modelling of all the types of experimental knowledge, and the processes 

that manipulate the knowledge, in as much detail as that used to model theories.

• The assessment of the acceptability theoretical knowledge, particularly in terms of the 

breadth or scope of experimental evidence for which it can account.

• The investigation of the different types of communications that occur between 

theoretical and experimental components; in particular, modelling the correspondences 

between theoretical terms and experimental parameters.

• The development of systems with a range and richness of representations and heuristics 

equivalent to KEKEDA’s (Kulkami & Simon, 1988), but organized by an over-arching
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scheme like the process hierarchy of SDDS (Klahr & Dunbar, 1988). This will require 

the explicit separation of general and domain specific knowledge and rules.

• The initial examination of processes to incorporate experiment reliability measures into 

the assessment of theory.

The development of future models must also pay attention to the lessons leamt in 

previous work. This in effect places a number of constraints, or guidelines, on the 

development of new discovery systems, these include:

• Representing domain specific knowledge using formalisms that are natural and realistic, 

to avoid problems of vagueness and ambiguous interpretation.

• Acknowledging the importance of both qualitative and quantitative knowledge 

representations and inferences in discovery.

• The use of BACON-like regularity spotters as an effective way to find relations between 

terms and quantitative descriptions of data.

• The formation of a close integration between the processes that generate new knowledge 

and those that assess the acceptability of that knowledge.

The STERN discovery system will take up the suggestions for future 

development, whilst trying to satisfy the set of constraints. The description of the 

system begins in Chapter 4, while the intervening chapter considers the episode of 

discoveiy modelled by STERN.
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Chapter 3
Galileo And Natural Accelerated Motion

3.1 WHY GALILEO'S DISCOVERIES?

In this Chapter an account of Galileo's investigation of the motion of terrestrial 

bodies moving under the effect of gravity will be related in some detail. The 

STERN discovery system models this episode of scientific discovery.

Several characteristics of Galileo's discoveries make the episode a good 

candidate for modelling. First, experimentation plays an important role in the 

episode; several different experimental paradigms are employed and even new 

experimental paradigms are invented. Second, it is a domain that requires a rich 

interplay of qualitative and quantitative formalisms. Third, since the discovery of 

the law of free fall has been superficially modelled by BACON the treatment of the 

episode within the present framework emphasizes the advances that can be made. 

Fourth, dynamics is a well-established area with adequate laws that account for 

phenomena with known levels of experimental noise and accuracy. Thus the user 

will not need to hand calculate experimental outcomes.

The experiments that Galileo used will be described first, followed by a 

consideration of the way theoretical knowledge and inferences were expressed at the 

time. Finally, the chronology of discovery events is outlined.

3.2 EXPERIMENTS

The central role of experiments in the discoveries of Galileo should not be 

underestimated. Whereas, previous thinkers, like Aristotle, simply relied on mere 

observation in their qualitative attempts to characterize motion, Galileo performed 

experiments on the phenomenon. He manufactured experimental apparatus in which
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the motions of bodies could be carefully manipulated and their consequent 

behaviour accurately measured. This allowed him to form quantitative laws and to 

test them rigorously. For this reason, Galileo is often be considered to be the first 

scientist in the modem sense of the term.

The most important classes of motion experiments used by Galileo include 

(Galileo, 1838):

(i) swinging pendulums consisting of small weights attached to the end of long 

suspended chords set into oscillatory motion (MacLachlan, 1976); and

(ii) inclined planes, or ramps, made from long straight wooden batons down which 

spherical metallic balls are rolled (Settle, 1961).

Figures 3.1a and b show these two experiments schematically. Although the 

possibility of performing accurate experiments using such equipment has been 

doubted (Koyre, 1968), actual reconstructions have shown such claims to be 

ungrounded (e.g.. Settle, 1961).

The empirical side of Galileo's work can be characterized easily by the 

experimental component of the framework. The simple pendulums and inclined 

planes are different classes of experiment or experimental paradigms. The 

manufacture of an inclined plane gives an experimental setup that has many kinds 

of parameters (e.g. including: the distance down the plane, its height, the size, 

weight and volume of the ball). Some of the parameters for each experimental 

paradigm are shown in Figures 3.1a and b. In the inclined plane paradigm distances 

can be determined from markings made on the side of the plane. However, the 

measurement of time was more difficult and required Galileo to use a water clock 

(and sometimes his own pulse!). Thus certain parameters are easier to control or 

measure than others, which to a large extent determines the selection of parameters 

that occupy the particular roles in an experimental test. For example, when using the 

inclined plane to investigate the relationship between distance and time in an
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experimental test, the distance is simpler to manipulate as the input-m parameter 

because a stopping block can be placed on the plane next to specific marks, so 

forcing time to be the output parameter.

Galileo's skill as an experimental scientist is shown by his invention of new 

experimental paradigms. The basic technique he employed was to combine known 

experiments using the output of one to feed into another. For example. Figure 3.2 

shows the combined projectile and inclined plane experiment (Drake & MacLachlan, 

1975; Drake, 1975). In this experiment a ball descends an inclined plane, PQ, and 

is launched into the air with an imposed initial horizontal motion by the lip at Q, and 

freely describes a path as a projectile until it lands at R. The first half (inclined 

plane) of such combined experiments will be called the initial part of the 

experiment, and the second half (projectile) called the terminal part. There are two 

ways (which I call modes) in which combined experimental setups can be used in 

tests, see Figure 3.3 which shows the two parts of combined experiments as black 

boxes. The initial mode (a) employs a parameter from the initial part to be the 

overall input-m and measures a terminal parameter as the output; for example the 

height of the inclined plane as the input-m and horizontal projectile length as the 

output. The terminal mode (b) focuses just on the terminal part of the combination, 

both overall input-m and output being parameters from that part, with the initial part 

output acting as a fixed terminal input parameter; for example projectile height and 

length, with fixed inclined plane height. As we will see Galileo carried out 

investigations on combined experiments in both the initial and terminal modes.

We have already seen how the relative ease with which parameters can be 

manipulated or observed influences the selection of input-m and output parameters 

during the design of an experimental test. However, this is not the only form of 

domain specific knowledge that is associated with the Galilean experiments. The 

relative ease of manufacture of experimental setups from particular paradigms plays 

a role in the selection of the setups. A pendulum paradigm is very much simpler to
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construct than an inclined plane.

The design of experiments does not just rely on knowledge that is specific to 

experiments. Background knowledge also has an important role to play. When 

choosing the parameters in a given experimental setup to be the input-m and output 

it is essential to ensure that the parameters are not trivially related. For example, 

when the inclination of an inclined plane is fixed, the distance, height and length 

will vary in proportion to each other just because of the geometry of the setup. In a 

pendulum with a fixed angle the size, height and length are also related together in a 

similar way. Experiments with such parameters would produce irrelevant or even 

misleading results. However, simple geometrical knowledge about triangles and 

circular arcs will tell the experimenter that these parameters are related together in a 

manner that is completely independent of the phenomenon in the black box. Galileo 

possessed and used his knowledge of geometry and also knew of relationships 

between the diameter, volume, and weight of spherical bodies.

The reader may be wondering why there has been no mention Galileo's most 

famous experiment that involved dropping two balls of unequal weight from the 

Leaning Tower of Pisa. The case has been omitted because there is no historical 

evidence to show that any such experiment was ever performed. The origins of this 

myth seem to be in a thought experiment that Galileo conceived as an illustration of 

his actual empirical findings.

3.2 TH EORIES AND INFERENCES

On the theoretical side of the investigation, Galileo initially believed that the 

natural motion of bodies was adequately described by an existing theory (set of so- 

called laws) that originated from Aristotle. Two important laws were the 

instantaneous acceleration law and the effective weight law. The instantaneous 

acceleration law states that acceleration lasts only for a very brief period at the start 

of the motion, followed by more or less constant velocity motion. The velocity
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attained by a body is in proportion to its effective weight according to the second 

law. Effective weight meaning either weight or density, in modem terms. It is 

interesting to note that the first is an example of a qualitative law typically expressed 

propositionally, while the second is a quantitative law that would have been 

expressed as an equation between ratios of terms, e.g.:

w*i/w*2 = V iÂ 2» . . . ( 3 . 1 )

where w* is effective weight, V is speed and the subscripts refer to different bodies 

or situations. Compared with modem equations in physics, the ratio expressions 

make manipulations more complicated and limits the form of the equations that can 

be stated, but avoids the need to consider constants of proportionality. Equation 

(3.1) is easily categorized as a state transformation function in the present 

framework.

Galileo carried out several types of theoretical inference. This included the 

simple manipulation and substitution of terms in equations like (3.1). However, he 

also employed a geometrical-pictorial method to generate models that is unusual 

compared to modem conventions (e.g. Drake, 1973a, 1973b; Humphreys, 1967). 

For example, consider how Galileo inferred the speed of bodies descending an 

inclined plane from the effective weight law (see, Humphreys, 1967). From the 

picture in Figure 3.4 he represented the inclined plane by the line gh, which is a 

tangent to a circle with centre a. Line e/indicates the path of a body falling freely 

due to its unmodified effective weight. Now, as the effective weight along gh is in 

proportion as ap is to ad, then the ratio of the speeds of gh and e /is  apiad. 

That is, for the same height, the greater the angle of the inclined plane, the greater 

the speed. This geometric-pictorial method is not particularly rigorous, nor easy to 

use, and only has sufficient expressive power to cope with the simple laws that 

Galileo considered. It is not surprising that Newton needed to invent infinitesimal 

calculus before being able to fully develop, state and apply his own theories of
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motion.

3.3 CHRONOLOGY OF DISCOVERY

Galileo’s discoveries took place between 1590 and the early sixteen-hundreds 

(see Drake, 1975). From the outset he was interested in all types of bodily motions, 

but focussed his effort on the smaller and better delimited problem of naturally 

accelerated terrestrial motion. In modem terms this is motion influenced by the 

earth's gravitational field. All together his use of both theory and experiments make 

up the research programme component of the framework.

3.3.1 Aristotelian Laws Disconfirmed

Galileo started his investigations by adopting the Aristotelian laws and attempted 

to test their validity by performing experiments. By careful observation in 

experiments using long slow swinging pendulums, Galileo saw that the speed of 

the pendulum bob increased throughout the swing, from its release to the lowest 

point of the arc (Drake, 1975). This was a direct disconfirmation of the 

instantaneous acceleration law. The test of the effective weight law was more 

involved (Humphreys, 1967). Using his characteristic style of geometric inference, 

Galileo made the prediction from the law that the speed of the balls rolling down 

inclined planes would be inversely proportional to the length of the plane. 

However, actual inclined plane experiments showed that the speeds were 

independent of the length of the plane. By checking these findings across the 

available experimental paradigms, Galileo obtained sufficient confidence to abandon 

the Aristotelian views of motion.

3.3.2 Finding Laws

During the disconfirmation of the Aristotelian laws, Galileo would have 

gathered many experimental results that were not specifically used in the 

disconfirmation process. Further, once the laws had been abandoned Galileo 

continued to explore the phenomenon using the various experimental setups that had
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been constructed. Thus qualitative and quantitative characterizations of the nature of 

the phenomenon were formed by generalizing the gathered experimental results that 

applied to specific experimental situations. Individually or in groups, some of these 

models were further generalized to form hypotheses.

Naturally, these hypotheses were then tested by comparison with experimental 

results in the manner that the effective weight and instantaneous acceleration laws 

had been considered.

3.3.3 Proposing New Hypotheses

Galileo had thus built up a wealth of information about the phenomenon and 

was in a position to generate quantitative hypotheses, including the law of free fall. 

In the inference to the law of firee fall Galileo first made the assumption, based on 

existing knowledge, that distance increases with the natural numbers (1,2,3,...) as 

the speed increases with the odd natural, numbers (1,3,5,...). Then by a mixture of 

qualitative and quantitative manipulations, using the geometric-pictorial form of 

reasonings he found (or ratlier stumbled upon) a simple relation between distance 

and speed (Drake, 1973a, 1973b). The relationship stating that the velocity squared 

is proportional to the distance travelled (or distance travelled is proportional to the 

square of the time), ie:

Vi2A^2^ = di/d2. . . . ( 3 . 2 )

where V  and d are speed and distance, respectively, and the subscripts relate to 

different distances on the inclined plane. Other hypotheses were also considered, 

such as, that velocity was linearly related to the distance travelled. To find which 

new hypotheses were correct further experiments needed to be performed.

3.3.4 Inventing Experiments To Test New Hypotheses

To experimentally test the law of free fall Galileo had to invent a new 

experiment, because of a problem concerning the speed term. Galileo wished to 

eliminate the term from the free fall equation and replace it with other terms that 

could be directly measured in experiments. He knew that speed was defined by the
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ratio of distance over time but only when the speed was constant, i.e. no 

acceleration. So distance and time terms could replace the speed term if the actual 

speed in the experiment was constant. Previously, when attempting to confirm the 

Aristotelian laws, Galileo thought the instant acceleration law, which stated that 

velocity was constant for most of the time, was true and was thus happy to make 

the substitution. However, by now it had been found that gradual acceleration 

occurs in both the inclined plané and pendulum motions. Galileo’s solution to this 

problem was ingenious. He developed a new combined experimental paradigm by 

using the inclined plane as a launcher for projectiles (Figure 3.2). Galileo knew that 

the horizontal velocity of a projectile was constant and he had the law of free fall 

describing the speed of the ball at the end of the ramp. Thus considering the 

combined experiment in the initial mode, he was able to substitute out the speed 

from both equations and obtain a relation between the height of the inclined plane 

and the horizontal distance travelled as a projectile. As both parameters were 

measurable quantities in the experiment Galileo was able to perform experiments 

that confirmed the law of free fall (Naylor, 1974).

Whilst performing those experiments Galileo was able to closely observe the 

flight of a projectile for the first time, and thus became interested in the shape of the 

path described in this motion. By applying the newly-confirmed law of free fall to 

projectile motion he was able to make predictions about its exact trajectory. These 

predictions were confirmed by further experiments using the original setup in the 

terminal mode. This not only explained the shape of the path but also increased the 

acceptability of the law of free fall (Naylor, 1975; Drake & MacLachlan, 1975; 

Naylor, 1976; Hill, 1988). The shape described by a projectile is parabolic, the 

horizontal length, L, increases with the square of the vertical height, H; ie

H i2/H22 = L i/L2, . . . ( 3 . 2 )

where the subscripts refer to different points on the path.
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3.3.5 Switching Research Programs

Galileo's work on dynamics stopped around this time his attention being 

diverted when he leamt of the invention of the telescope. Galileo used the new 

instrument to make other discoveries for which he is also justly famous. In the 

Dialogues Concerning Two New Sciences Galileo (1838, 1954) gives a full 

account of his dynamical theories, although little is said about the way in which the 

law of free fall was really discovered. It is well known that Newton took up, more 

or less, where Galileo left off and developed laws of motion that superseded the law 

of free fall. However, it is not so widely acknowledged that Newton also inherited 

Galileo’s experimental legacy, and performed experiments that were adaptations of 

Galilean paradigms.

3.4 CONCLUSIONS

The Galilean episode of discover}^ will be modelled by the STERN discovery 

system, so it seems appropriate to make a few relevant observations.

• Qualitative and quantitative theoretical knowledge had complementary roles in the 

episode.

• Galileo did not consider theories that had been generalized from experimental 

results to be inherently true, but tested them against other experimental paradigms 

before accepting them.

• In the generation of predictive models, attention was paid to the particular 

experimental paradigm that was being modelled and the terms specified in models 

corresponded to measurable and observable parameters of an experimental setup.

• Several different experimental paradigms were used by Galileo and he had 

pragmatic knowledge concerning each one: for example the relative ease with 

which experimental setups could be manufactured, and the ease with which 

particular parameters could be observed.

• Four general discovery processes can be identified: (i) the confirmation of existing
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hypotheses (§3.3.1 & §3.3.2); (ii) the generalization to new hypotheses (§3.3.2); 

(iii) the formation of new hypotheses from existing ones (§3.3.3); and (iv) the 

invention of new experiments (§3.3.4) permitting further hypotheses to be tested.

• Background knowledge played a significant part in the inferences, in particular it 

helped to identify parameters that were trivially related through the geometiy of 

specific experiments and it was used to make predictions from hypotheses.

It is interesting to note that many of these points overlap with the requirements 

and proposals for computational discovery systems outlined in the conclusions to 

Chapter 2 on previous work.

We have seen how Galileo made important scientific discoveries. In the 

remaining chapters of this thesis we will also see how the STERN discovery system 

also successfully models the discovery of the same models and hypotheses using a 

range of experimental paradigms.
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Chapter 4

STERN: Scientific Theorist And Experimental 
Researcher

4.1 INTRODUCTION

In the remainder of this thesis we apply the framework (described in Chapter 1) 

to Galileo's discoveries on the motion of naturally accelerated bodies (see Chapter 

3). The Jesuit of this work is the STERN (N is the version number, currently 0) 

computer program which is described in the remaining chapters. STERN attempts 

to overcome many of the limitations of previous computational models of scientific 

discovery (reviewed in Chapter 2).

STERN has several notable abilities, which can be summarized as follows:

• it considers aU the types of theoretical and experimental knowledge posited by the 

framework, including hypotheses and experimental paradigms, using frame like 

representations in a well-ordered hierarchical structure.

• it possesses a wide variety of processes and heuristics that can apply existing 

knowledge, or infer new knowledge.

• it distinguishes explicitly between domain-specific and domain-independent 

classes of processes, which are further organized in groups in a task hierarchy.

• it implements processes as condition-action rules in a production system 

architecture.

• it instantiates of multiple types of information transfer between theory and 

experiment, including the correspondence between theoretical terms and 

experimental parameters.

• it employs quantitative and qualitative representations and has the ability to make
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quantitative and qualitative inferences alone or in combination.

• it assesses the acceptability of theoretical knowledge by an adequacy function 

based on the relative success of hypotheses, models and instances.

• it considers methods to deal with noise in experimental results.

Although STERN is based on the framework, the range of different scientific 

domains it can model is smaller than that covered by the framework itself. In its 

present form, STERN can only cope with episodes of discovery that have similar 

types of hypotheses and models to those found in the Galilean case (i.e. mainly 

quantitative). Even so, this means that STERN is able to encompass a significant 

number of important scientific disciplines. The application of the framework to 

other scientific domains will provide interesting future research.

This chapter is the first of five describing STERN and the way it models the 

Galilean episode. The following chapters, 5 to 8, consider the main types of 

processes that STERN uses at different times when making its discoveries. The 

present chapter focuses upon basic features of the program and gives an overview 

of its performance. The following sections consider: (§4.2) an overview of the 

discoveries made and the path followed whilst making them; (§4.3) the general 

instantiation and representation of the components of the framework for scientific 

discovery; (§4.4) the representations needed to model the knowledge specific to the 

Galilean domain, including pertinent background knowledge; (§4.5) the nature of 

STERN'S heuristics, their organization as a hierarchy, and their implementation in a 

production system; (§4.6) the subprogram that simulates real experiments; and 

(§4.7) STERN'S top level of control, that chooses different discovery strategies.

The program is implemented in Common LISP (CL) and runs on an Apple 

Macintosh H.
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4.2 AN OVERVIEW OF STERN'S DISCOVERIES

STERN models Galileo's discoveries in the domain of naturally accelerated 

motion. This involves the interaction of many types of theoretical and experimental 

knowledge over a great many cycles of the program. This section presents an 

overview of STERN's performance that will help to set into context the much iriore 

detailed considerations to follow in this and later chapters. We will start with inputs 

and outputs of the program.

4.2.1 Inputs & Outputs

STERN is given the three hypotheses and six experimental paradigms. The laws 

are the instantaneous acceleration law and two interpretations of the effective weight 

law (section I, Table 4.1^). T_V, T_D, T_DEN and T_W* are theoretical terms 

standing for speed, distance, density, and effective weight. As we will see below, 

STERN represents qualitative relations using qualforms; the instantaneous 

acceleration law is a typical example. The acceptability of this hypothesis is set to a 

moderate value to reflect the fact that Galileo initially thought it to be true. STERN 

is told that the two versions of the effective weight law have not been examined 

before to acknowledge that Galileo was the first researcher to investigate them 

quantitatively. Galileo's most important experimental paradigms were the pendulum 

and the inclined plane, so STERN is given representations of them both and told 

they have been manufactured. STERN is also given knowledge about other 

experimental paradigms; for instance, projectile experiments. These paradigms are 

not yet available for use but just known about conceptually by STERN.

Two sets of background knowledge are provided to instantiate a knowledge of 

geometry and relations for spherical bodies.

What does STERN discover? (i) It finds that the three Aristotelian laws are 

unacceptable, (ii) STERN obtains a thorough qualitative understanding of the

Ifhe meaning of all the different entries of this table will become clearer as we progress through 

this chapter.
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Table 4.1 State of STERN's Hypotheses After 1600 Cycles

Section Equation or Qualform Adequacyt Tractabilityt Grouping
(=T_VT_DEN) 2 0.322 2 2

I (=T_VT_W*) 2 0.000 2 2
(INSTANTANEOUS T_V T_D) 31 33
(INCREASE T_TIME T_H) 2 2 2 2
(FROM_ZERO T_TIME T_H) 22 2 2
(INCREASE T_TIME T_L) 2 2 2 2
(FROM_ZERO T_TIME T_L) 2 2 2 2
(STEADY T_TIME T_W) 2 2 2 2

II (STEADY T_TIME T_VOL) 2 2 2 2
(INCREASE T_YT_H) 2 2 2 2
(FROM_ZERO T_V T_H) 2 2 2 2
(INCREASE T_VT_L) 2 2 2 2
(FROM_ZERO T_V T_L) 2 2 2 2
(STEADYT_VT_W) 2 2 2 2
(STEADY T_V T_VOL) 2 2 2 2
(= T_S (* T_TIME T_TIME)) 1 1 31

m (= T_D (* T_TIME T_TIME)) 21 2 2
(= T_H (♦ T_TIME T_TIME)) 21 2 2
(= T_L (* T_TIME T_TIME)) 21 2 2
(=T_V(EXPTT_Hl/2)) 2 1.862 4 2 GROUP3541
(=T_V(EXPTT_Hl/3)) • 1 0 2 0 GROUP3541
(=T_V(EXPTT_H2)) 10 2 0 GROUP3541 .

IV (=T_V(EXPTT_H2/3)) 10 2 0 GROUP3541
(=T_V(EXPTT_H3)) 10 2 0 GROUP3541
(=T_V(EXPTT_H3/2)) 10 2 0 GROUP3541
(=T_VT_H) 10 2 0 GROUP3541
(=T_V(EXPTT_Ll/2)) 2 0.000 4 2 GROUP3542
(=T_V(EXPTT_Ll/3)) 2 0.000 4 2 GROUP3542
(=T_V(EXPTT_L2)) 2 0.000 4 2 GROUP3542

V (=T_V(EXPTT_L2/3)) 2 0.000 4 2 GROUP3542
(=T_V(EXPTT_L3)) 2 0.000 4 2 GROUP3542
(=T_V(EXPTT_L3/2)) 2 0.000 4 2 GROUP3542
(=T_VT_L) 2 0.000 4 2 GROUP3542

t  - 1st and 2nd number are the fillers of the number and degree slots of the measure frame 

respectively.
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domain; finding which terms are relevant to the characterization of the phenomena 

(e.g., the weight of bodies is irrelevant but height is significant), (iii) Some 

quantitative models (not hypotheses) are also discovered; for example the law 

governing the period of swing of pendulums, (iv) STERN discovers that the law of 

free fall is the only acceptable quantitative hypothesis from amongst many 

proposed, (v) New experimental paradigms are constructed; for example the 

combined inclined plane and projectile experiment.

Let us consider in a little more detaü how STERN made all these discoveries.

4.2.2 Discovery Path

Figure 4.1 shows, at a very coarse grained level of detail, the various stages that 

STERN progresses through when modelling the Galilean episode of discovery. 

STERN chooses to perform confirmation of known hypotheses four times during 

the whole mn of the program. Confirmation first occurs when the three Aristotelian 

laws are given as input and then later after STERN has (i) generalized experimental 

results into hypotheses, (ii) generated new hypotheses from old, and (iii) 

considered new experiments.

STERN attempts to confirm the Aristotelian laws by considering each with 

respect to the pendulum and inclined plane experimental paradigms in turn. For each 

hypothesis and paradigm pair, STERN attempts to account for the phenomenon in 

the paradigm by generating models from the hypothesis. STERN disconfirms the 

instantaneous acceleration law by discovering that the predictions made from the 

law, when applied to the two paradigms, simply do not hold (i.e. the motion is 

gradual acceleration). During the disconfirmation of the effective weight laws 

STERN generates models with equations from the equations of the two laws. This 

involves the use of the background knowledge of geometry and spherical body 

relations to replace the wholly theoretical terms (such as speed and ejfective 

weight) with measurable terms (like distance, time and weight). STERN makes
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STERN

predictive instances from the models and compares them with the results of 

experiments that it designs and performs. To compare the instance and experimental 

test STERN uses a method that both assesses how closely they match and takes into 

account any noise that exists in the experimental data. Even so, few of the instances 

are found to compare well with the experimental results. Thus the models are not 

acceptable; and in turn, STERN finds the hypotheses are not acceptable either. This 

is correct because the effective weight and density terms, referred to by the laws, 

do not influence the rate of acceleration in naturally accelerated motion.

STERN then decides to obtain further experimental results that can be 

generalized into hypotheses via instances and models. STERN designs all the 

possible experiments that can be performed using the pendulum and inclined plane 

experimental paradigms. Background knowledge is used to eliminate all those 

experiments that would yield trivial results; such as, increasing the length of a 

pendulum increases the distance that the bob travels. STERN performs all these 

sensible experiments and interprets the results. Many quantitative and qualitative 

instances are found. These instances are then generalized to form models. In 

particular, the generalization to quantitative models involves finding equations from 

the lists of independent and dependent values (of the instance), whilst taking into 

account the presence of noise in the data. It is at this point that STERN discovers 

the law governing the period of swing of pendulums in terms of cord length {size). 

This is arguably a "genuine" discovery (rather than a modelled rediscovery), 

because it is a true law found by STERN, but the programmer had not specifically 

intended that STERN would find this law. It was only with hindsight that the law 

was seen to be a reasonable possibility given STERN's input. Other quantitative 

hypotheses were also found (HI, Table 4.1). The many qualitative hypotheses 

found by STERN at this stage provide STERN with a much deeper understanding 

of the nature of the phenomenon (II, Table 4.1). For example, the qualitative 

hypotheses indicate that the weight of a body does not affect its acceleration and that
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the acceleration is a gradual process in which the height of the body is significant.

Like Galileo, STERN does not simple believe new hypotheses to be true by 

virtue of being generalized from experimental results. STERN attempts to confirm 

them to make sure. But, only the quantitative hypotheses are considered as the 

qualitative ones were generalized from both experimental paradigms. However, 

none of the quantitative hypotheses are found to be any more acceptable. 

Furthermore, the law of the period of swing of pendulums is found to be just a 

model (i.e. only account for one experimental paradigm), because the inclined plane 

does not have a parameter that is equivalent to the size term of the pendulum 

paradigm

The range of hypotheses that STERN now possesses is extensive and covers 

the whole spectrum of acceptability (I, II & III, Table 4.1). STERN considers the 

generation of new hypotheses from its established stock. The qualitative hypotheses 

indicate which terms are significant and the general form that equations might take. 

The unacceptable quantitative hypotheses rule out certain terms and forms of 

equations. Thus, STERN is able to infer new hypotheses and successfully 

generates two groups of new hypotheses (IV & V, Table 4.1). The hypotheses have 

exponential equations that focus on the relation between speed (T_V) and height 

(T_H), and speed and length (T_L). The first equation of section TV in Table 4.1 is 

the correct law of free fall, but STERN does not know this yet.

Once again there are new hypotheses. STERN applies the confirmation strategy 

again, but none of the new untested hypotheses can be used to account for the 

inclined plane and pendulum experimental paradigms. The new hypotheses have 

speed terms that cannot be eliminated because the definition of speed can no longer 

be used to substitute out the speed term. The definition can only be applied when 

the speed is constant, but STERN has already established that in both experimental 

paradigms it is not constant. Thus the measures of tractability of both groups of 

hypotheses are simply amended.
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Since there are hypotheses to be tested but no suitable experimental paradigms, 

STERN chooses to consider new experimental paradigms. Like Galileo, the 

approach adopted is one of combining known paradigms together. Six combined 

experiments are made including the inclined plane and projectile paradigm (see 

Figure 3.2). To avoid having too many experimental paradigms to consider at any 

time, STERN limits the paradigms that are considered by calculating a pragmatic 

limit, in terms of the product of number of experimental setups and ease with which 

setups can be manufactured. Once all the paradigms above a given level of this 

pragmatic quantity have been exhausted, the value can be reduced until one (or 

more) other paradigm comes into play (as if it had actually been constructed). Now, 

in the present case with the new combined experiments, it is the inclined plane and 

projectile experiment that is selected for use by STERN.

For the last time STERN calls upon its confirmation strategy. STERN just 

happens to consider the law of free fall first. STERN applies the hypothesis to the 

combined experiment and successfully generates models for the experiment in both 

the initial and the terminal models. Further, these models are found to be acceptable 

by the comparison of their instances and experimental tests. In turn the hypothesis 

is considered acceptable; STERN can now be considered to have discovered the law 

of free fall. However, as the free fall hypothesis is acceptable, the rest in the same 

group (TV, Table 4.1) are, therefore, unacceptable. STERN sets their measures of 

acceptability to indicate this fact so that they will be ignored in the future. STERN 

now turns its attention to all members of the other set of hypotheses (V, Table 4.1). 

They are all found to be unacceptable.

The modelling stops after 1600 cycles of the program. A great number of 

hypotheses have been considered (Table 4.1). The Aristotelian laws have been 

disconfirmed; a range of qualitative hypotheses induced; a "genuine" discovery 

made by finding the law governing the motion of a pendulum as a model; and the
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law of free fall shown to be the only adequate quantitative law amongst the many 

produced. Throughout the episode experimental paradigms and setups have been 

selected for use, and experimental tests designed and performed, both to confirm 

theories and as a means to formulate new theories. (Appendix I is a condensed trace 

of STERN's output.)

4.2.3 Comparison With The Real Episode

As the overview demonstrates, STERN has successfully modelled the Galilean 

episode of discovery. The order of the stages in STERN's discovery match the 

phases of Galileo's described in Chapter 3. The disconfirmation of the Aristotelian 

laws occurs in both, followed by the performance of experiments to obtain 

generalizable results that are tested against existing experiments. STERN and 

Galileo both used the knowledge gained from their previous explorations of the 

domain to infer new hypotheses. This in turn requires the invention of new 

experiments, including the combined inclined plane and projectile experiment, 

undertaken by both. Finally, the correct law of free fall is found, by both, by testing 

the most recently generated hypotheses using the combined experiment. Thus at this 

level of description there is a good match between the route STERN took and the 

Galilean path to make the same discoveries.

We have seen the many discoveries that STERN has successfully made. It is 

now time to consider the details of how STERN did this. We will begin by 

considering how STERN represents scientific knowledge in general, using frames 

to instantiate all the levels of knowledge in the present framework (see Chapter 1).

4.3 INSTANTIATION OF FRAMEWORK COMPONENTS

The framework specifies the minimum set of components required for 

modelling scientific discovery. The structure of knowledge in STERN follows the 

framework closely. In general, all types of experimental and theoretical knowledge 

in STERN are implemented in frame like representations (d la Minsky, 1975).
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4.3.1 Research Programs

In the framework, the research programme component plays only a very minor 

part at present, in bringing together theory and experiments to work on a particular 

domain. In the future investigations of cooperative and competitive programmes I 

expect the notion to become more significant A prototype of STERN had a separate 

frame to represent research programmes with slots for theory and experiment, but 

as the Galilean episode concerns just a single scientist working more or less in 

isolation, it merely added an extra layer of representation that had no substantive 

role. Thus the current version of STERN has theory and experiment as its topmost 

level of knowledge.

As we saw earlier in Figure 1.3, the different levels of theory and 

experimentation can be viewed as a hierarchy. In STERN each level is represented 

by a frame and the hierarchy is reproduced by providing slots in each frame for 

items on the next lowest level in the hierarchy. For example, the model frame has 

an instance slot is filled by the instance frames associated with that model. 

The various representations will be considered in turn.

4.3.2 Theory

There are three types of theoretical knowledge in the framework - hypotheses, 

models and instances. However, we will first consider the theory frame that 

instantiates the theoretical side of a research programme.

4.3.2.1 Theory

In STERN theoretical knowledge comes in two forms, declarative and 

procedural. In other words, what is known and how (domain-specific) inferences 

are made. Of the ten slots in the theory frame (see Table 4.2) three slots contain 

declarative knowledge, and the remaining seven procedural knowledge.

The first three slots contain knowledge covering the whole the domain. The 

hypos slot is filled by a list of hypotheses. The tvars slot lists all the symbols 

standing for theoretical terms in the domain. The terms are themselves T! frames
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Table 4.2 Theory Frame Slots and Fillers

Slot name Description Filler in STERN

hypos

bgknow_relate

tvars

generate_hypos

generate_models
generate_instances
generalise_models
generalise_instances
interpret_expttests

instance_vs_expttest

list of hypothesis frames

relations for theoretical 
interpretation of background 
knowledge 

list of all theoretical terms

rules to infer new hypothesis form 
existing ones 

model generation rules 
instance generation rules 
model generalisation rules 
instance generalisation rules 
rules to interpret experimental test 

results
rules to compare instances and 

experimental test results_______

Aristotelian/Gahlean 
hypotheses 

entry frames for 
geometric^d 
bodily knowledge 

symbols standing for 
term frames 

New Hypotheses

Generate models 
Generate instances 
Generalize models 
Generalize instances 
Interpret

Compare

Table 4.3 Hypothesis Frame Slots and Fillers

Slot name Description Filler in STERN

equation quantitative domain specific an equation
formalism

qualform qualitative domain specific a qualform
formalism

adequacy hypothesis acceptability measure frame
tractability hypothesis tractability measure frame
models models accounted for by hypo. list of models frames
partial_forms unsuccessfully generated models term* frame
exptnames names of experimental paradigms various experimental

that have been considered paradigms
group group membership identifier a symbol common
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(see §4.3.4.2). The bgknow_related slot stores a special list that permits sets of 

theoretical terms to be mapped onto background knowledge (see §4.4.2 below).

The names of classes of domain-specific rules that can manipulate particular 

types of theoretical knowledge fill the other seven slots. For example, the 

generate Jiypos  slot contains the class name of the rules that infer new hypotheses 

from existing ones (i.e. new hypotheses in the current versions of STERN). (In 

§4.5 below the tasks performed by each of the classes of rules are briefly described 

and discussed in detail in Chapters 5 to 8). The contents of these slots are accessed 

by STERN’s domain-independent heuristics when domain-specific inferences are 

required.

4.32.2 Hypotheses

Hypotheses are the most general or abstract type of knowledge that actually 

accounts for a set of phenomena. They are represented by frames with eight slots 

(see Table 4.3). The equation and qualform slots store quantitative and qualitative 

formalisms respectively. Models are often partial instantiations of a particular 

hypothesis so are contained as a list in the models slot. The names of the 

experimental paradigms that the hypothesis has attempted to account for are stored 

in the exptnames slot. The ease with which a hypothesis can be applied (e.g., used 

to generate models) is contained in the tractability slot and the acceptability of the 

hypothesis contained in the adequacy slot. Both tractability and acceptability 

quantities are values calculated by particular discovery processes and represented as 

measure frames (see §4.3.2.5). When attempts to generate models fail, the results 

are store in the partial Jorm s slot as a list of fewi* frames, and may be recalled for 

later use. Hypotheses that are related together for some reason (e.g., all generated at 

the same time in one processes) have a common symbol stored in ih&ir group slots.

4.3.2.3 Models

A model frame is similar to the hypothesis frame in several ways (Table 4.4). It
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Tahle 4.4 Model Frame Slots and Fillers

Slot name Description Finer in STERN

equation quantitative domain specific 
formalism

an equation

qualform quantitative domain specific a qualform
formalism

exptsetups names of experimental setups 
associated with the model

the list of names

adequacy model acceptability measure frame
tractability model tractability measure frame.
instances instances derivable from model instance frames list
exptparadigm name of experimental paradigm 

modelled
name

expttype , indication of special types of symbol specifying
experiment terminal, initial, nil

not_tested experiment setup names not 
accounted for by model

the names
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has equivalent equation, qualform, adequacy and tractability slots, and the 

instances and exptsetups slots are like the hypothesis model and exptnames 

slots. Models are not as general as hypotheses and account for the manifestation of 

the phenomenon in one situation, thus each frame has an exptparadigm slot for the 

experimental paradigm (situation) that it covers. As we saw in Chapter 3, comWned 

experiments can be used in one of two different modes which the model notes by an 

appropriate symbol in the expttype slot. When STERN cannot use a model to 

account for a particular experimental setup, or when no experiments can be 

performed, the name of the experimental setup is stored in the model's notjested  

slot for future reference.

43.2.4 Instances

Instances are typically the predictions made from models or the interpreted 

results of experiments. The instance frame has seven slots that contain specific 

theoretical terms, their values and associated information (Table 4.5). The dep and 

indep slots contain the dependent ("measured") and independent ("manipulated") 

terms respectively; and the depvals and the indepvals slots store list of their 

values. The other je rm s  slot contains the terms with fixed values as a list. Not all 

instances are quantitative, qualitative instances use a qualform  slot to store 

qualitative formalisms. The degree slot contains a number (in the range [0 1]) that 

indicates the acceptability of the instances.

4 .3 2 5  Acceptability And Tractability

The framework does not specify what form the assessment of the acceptability 

should take and previous work has shown explanatory breadth to be a primary 

criterion. Thus, in STERN a simple adequacy function calculates acceptability in 

terms the range of experimental results successfully accounted for. Experimental 

test results are compared with instances and the degree of acceptability of the 

instance is calculated by particular functions (in the compare and interpret classes 

of rules, in Chapters 5 and 6). The acceptability of a model is given by the quotient
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Table 4.5 Instance Frame Slots and Fillers

Slot name Description Finer in STERN
dep
depvals
indep
indepvals
qualform
degree
other_terms

dependent term 
dependent term's values 
independent term 
independent term's values 
qualitative observation 
acceptability of instance 
other fixed value terms

a term (T! frame) 
list of values 
a term (T! frame) 
list of values, 
a qualform 
0 < real number < 1 
list of terms (T!s)
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of (i) the sum of instance acceptability values (i.e., the value in the degree slot of 

the measure frame contained in the adequacy slot of each instance) and (ii) the total 

number of instances that are accounted for by the model that have been 

experimentally tested. Hypothesis acceptability is in turn assessed in a similar 

manner, but with respect to models; specifically, the acceptability is the quotient of 

(i) the sum of model acceptability values and (ii) the total number of models that are 

accounted for by the hypothesis. The adequacy of hypotheses and models can thus 

be summarized by the equation:

Z k  acceptability
Acceptability of K= , . . . ( 4 . 1 )

Number of ks

where K is a hypothesis (or a model) that accounts for one or more models (or 

instances), k, respectively. All acceptability values range between 0 and 1.

STERN also calculates the tractability of hypotheses and models by recording 

the success with which models or instances have been generated. Tractability is 

defined in terms of the number of models (or instances) successfully accounted for 

by a hypothesis (model) compared to the number of attempts made to form models 

(instances). This measure plays no part in the calculation of the acceptability of 

theoretical knowledge but helps to determine the route taken in the discovery path.

The quantities that represent tractability and acceptability are represented as 

measure frames (Table 4.6). Measure frames have two slots; a number slot filled 

by the number of knowledge items or inference attempts, and a degree slot that 

contains the sum of the particular values calculated by STERN. The assessment of 

both acceptability and tractability occurs incrementally, with the quantity being 

amended each time a new model (or instance) is considered by STERN. Thus, the 

values in the degree and number slots related directly to the numerator and 

denominator of Equation 4.1, respectively.

The use of tractability and acceptability functions makes STERN similar to, but
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Table 4.6 Measure Frame Slots and Fillers

Slot name Description Filler in STERN

number
degree

number of items or events
sum of acceptability or tractability
values

non negative integer 
0 < real number
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also different from, ECHO (Thagard, 1989a). STERN is similar to ECHO in its use 

of explanatory breadth, but differs in its incremental assessment. There is a fairly 

close similarity between KEKEDA’s (Kulkami & Simon, 1988) five measures of 

confidence and STERN. Both assess acceptability in terms of the relative support 

by experimental evidence and use pragmatic measures of the effort expended to find 

the evidence. Unlike PI (Thagard, 1988a) STERN does not use a measure of 

simplicity in its acceptability function.

It is our assumption that this treatment of acceptability and tractability is 

sufficient for successful scientific discovery. This can be viewed as something 

which will be tested by applying STERN to the Galilean case.

4.3.3 Experim ents

One of the main differences between STERN and previous discovery systems is 

the extent to which experiment has been modelled. STERN has representations for 

each of the framework levels of experimental knowledge.

4.3.3.1 Experiment

Like the theory frame, the experiment frame also has slots containing declarative 

and procedural knowledge, but they are fewer in number (see Table 4.7). The 

exptparadigms slot contains the domain's experimental paradigms. The other two 

slots contain the names of the sets of rules that perform experiments (§4.6) or 

invent new experiments (see Chapter 8).

4.3.32 Experimental Paradigms

Experimental paradigms have nine slots divided into two groups depending 

upon whether they are generally applicable to all experiments or specific to 

combined experiments. Consider the former group first (Table 4.8). The generally 

applicable slots include: (i) a name slot that holds the name of the paradigm (e.g., 

'incplane' and 'pendulum' for the inclined plane experiment); (ii) a parameters slot 

for the experimental parameters, represented as a list of E! frames (see §4.3.4); 

and (iii) an exptsetups slot containing experimental setups. The ease with which
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Table 4.7 Experiment Frame Slots and Fillers

Slot name Description Finer in STERN

exptparadigms

new_exptpardigms

perform_expttest

experimental paradigms

rules for the invention of new 
experimental paradigms 

rules to design and perform 
experiments

list of various expt 
paradigms frames 

New paradigms

Experimenter

Table 4.8 Experimental Paradigm Frame Slots and Fillers

Slot name Description Filler in STERN

name experimental paradigm name the name
parameters experiment parameters a list of E! frames
exptsetups experimental setups list of setups frames
manf_ease measure of ease of manufacture 0 < real number < 1
bgknow_relate relations for the interpretation of geometry & bodily

background knowledge entry frames
initparams parameters of initial part of 

combined experiment
a list of El frames •

initials initial expts. setups in combined experimental setups
experiments frames

terminals terminal experimental setups in the experimental
combined experiments setups frames

bg_rel_initial relations for interpretation of back 
ground knowledge, for initial 
experiments

the relations
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setups can be manufactured is specified as a number in the manf_ease slot (in the 

range [0 1]). The relation between sets of parameters and background knowledge is 

given by the special lists in the bgknowjrelate slot (see §4.4.2).

The remaining four slots are only used when a combined experiment is invented 

and performed. There are slots for experimental setups that can act as the initiA and 

terminal parts of the combined experiments, initials and terminals. The parameters 

for the initial part are stored in the initparams and their particular relations to the 

background knowledge are stored in the bg_rel_initial slot. The two equivalent 

slots for the terminal parts are the "normal" parameters and bgknow_relate ones. 

Combined experiments are named by the conjunctions of two ordinary names, for 

example 'incplane+projectile'.

4.3.3.3 Experimental Setups

The frame for experimental setups has four slots (see Table 4.9). The name slot 

holds labels such as 'down_incplane' and ’up_incplane* which are two of the 

setups for the inclined plane experimental paradigm. Parameters that are specific just 

to one setup are stored as a list of E! frames in the parameters slot. Experimental 

tests are contained as a list in the expttest slot and the combine slot contains the 

names of other setups that can act as initial parts if the present setup is the terminal 

part in a combined experiment

4.3.3.4 Experimental Test Representation

The experimental tests frame has six slots that are equivalent to one in the 

instance frame on the theoretical side (Table 4.10). The input-m, output and 

input-c slots contain the manipulated input, measured output and the fixed input 

parameters, respectively, the last one being a list. The lists of values of the 

manipulated input and the measured output parameters are contained in the 

input-m _vals  and the output_vals slots, respectively. The remaining slot, 

term inal, indicates the mode in which a combined experiment is used.

-85-



Table 4.9 Experimental Setup Frame Slots and Fillers

Slot name Description Filler in STERN
name
parameters
expttests
combine

experimental setup name 
parameters specific to setup 
experimental tests 
possible initial experimental setups 
for this setup

the name 
a list of E! fi-ames 
expttest frames list 
list of setup frames

Table 4.10 Experimental Test Frame Slots and Fillers

Slot name Description Filler in STERN
input-c
input-m

input-m_vals
output

output_vals

terminal*

fixed input parameters 
manipulated input (independent) 

parameter 
manipulated input parameter values 
measure or observed output 

(independent) parameter values 
measure or observed output 

parameter values 
special experiment type indicator

list of E! frames 
anE! frame

list of values 
anE! frame

list of values

symbol to specify 
terminal expt.
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4.3.4 Com m unication, Term s & Param eters

The last component of the framework deals with communication between the 

theory and experiment components. STERN models many types of communication 

between theory and experiment that typically involves the interrogation of fillers in 

particular slots in experimentation frames by theoretical inference processes, or vice 

versa. However, the correspondence between theoretical terms and experimental 

parameters requires specific representations.

43.4.1 Correspondence By Kinds and Qualkinds

The correspondence of specific theoretical terms and particular experimental 

parameters is a requirement by the framework, thus some means of mapping 

between them is required. To map between a term and its corresponding parameter, 

or visa versa, both are given an identical symbol. The symbol is called the kind of 

the term or the parameter in STERN. Distance and time are two examples of kinds 

needed to model the Galilean episode. However, previous work and the Galilean 

episode both demonstrate the importance of qualitative representations and 

inferences in discovery systems. Hence qualkinds are used for correspondence 

between terms and parameters that are merely observed but not measurable. For, 

example, the speed of an object can be qualitatively assessed even though it cannot 

be directly measured; velocity is quaMnd of the speed term. Terms and parameters 

are in fact represented as frames with slots for the kind or qualkind.

Kinds and qualkinds in STERN are comparable to the units that exist in 

ABACUS (Falkenhainer & Michalski, 1986) and COPER (Kokar, 1986), although 

they have different roles in the different programs.

4.3.42 T! term and E! parameter frames

These are some of the most basic representations in STERN. However, STERN 

requires representations of terms and parameters with more structure than most 

previous discovery systems. The terms and parameters frames, called T! and E!,
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have five and six slots, respectively (see Tables 4.11 and 4.12). Both have kind 

and qualkind correspondence symbols. STERN knows that a term and a parameter 

correctly match when contents of either the kind or qualkind slots are identical.

The T! frame has three other slots. The val slot contains the numerical value of 

the term when it is a directly measurable. Some quantitative terms can be defined as 

some function of other measurable terms, for example speed in terms of distance 

and time. The equation slot stores such definitions and the necjqualforms slot 

contains qualforms (see §4.4.2 below) that specify the necessary conditions that 

must apply if the speed term is to be substituted for the distance and time terms 

(e.g., speed must be constant).. .

The E! parameter frame also has a val slot for its magnitude, but in addition has 

maxval and minval slots defining the permitted ranges of the values given by the 

physical dimensions of the experimental setup. The ease slot contains a value (in 

the range [01]) that indicates the ease with which the parameter can be manipulated 

or observed within the experimental setup.

The extensive range of frames used to implement the components of the 

scientific framework in a general domain-independent manner have been described. 

To model a particular episode of discovery STERN needs domain specific 

knowledge, that is, the representations to fill the slots of the many frames just 

considered.

4.4 DOMAIN SPECIFIC KNOWLEDGE

We have considered knowledge representations that are supposed to be general 

to all episodes of scientific discovery. However, the character o f scientific 

knowledge varies greatly from domain to domain. We now consider the 

representations that STERN possesses with which to model the Galilean domain.
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Tahle 4.11 T! Theoretical Term Slots and Fillers

Slot name Description FiUer in STERN

kind
qualkind
equation

nec_qualforms

val

quantitative kind of the term 
qualitative qualkind of the term 
equation defining the term using 

other terms 
necessary qualitative restrictions on 

substitutions using the equation 
value of the term

eg. length, time 
eg. speed, density 
an equation

list of appropriate 
qualforms 

a real number

Table 4.12 E! Experimental Parameter Frame Slots and Fillers

Slot name Description Filler in STERN

kind quantitative kind of the parameter eg. length, time
qualkind qualitative qualkind of the parameter eg. speed, density .
ease a measure of the ease of 0 < real number < 1

manipulation and observation
maxval maximum value . . real number
minval minimum value real number
val current value real number
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4.4.1 Quantitative and Qualitative Knowledge Representation

Galileo used a peculiar form of geometric-pictorial reasoning which would 

require a research project of its own to fully understand and model. Here, a more 

conventional approach has been adopted for both quantitative and qualitative 

representations.

First the quantitative representations are equations in theoretical terms. They 

terms may be related by simple arithmetic operators (i.e., products, quotients, 

summation, subtraction) and exponentials functions.The indices of the exponentials 

are small rational numbers - fractions with numerator and denominator as integers 

below a user specified limit, typically 3. Galileo expressed equations as ratios of 

terms, but here the equations that will be encountered will, for example, look like:

(= (*A B )(/C D )). ...(4.2a)

In conventional mathematical notation is written as:

A .B  = C / D .  . ...(4.2b)

The equality sign is not however to be read conventionally but means 

proportionality, thus making (4.2a) equivalent to the Galilean expressions using 

ratios of terms.

The second form of domain specific knowledge are qualitative relations that 

Galileo expressed propositionally. Here, such relations are stated in the form of 

Qualitative Formalisms, called qualforms. They employ a predicate argument like 

notation; for example:

(increase A B), ...(4.3a),

and (decrease C D), ...(4.3b).

where A, B, C and D are theoretical terms. The two qualforms assert, respectively, 

that "A increases as B increases" and "C decreases whilst D increases". Table 4.13 

lists all the qualforms used in STERN. Although qualforms bear a resemblance 

previous approaches to qualitative reasoning, such as IDS (Nordhausen & Langley,



Table 4.13 Qualforms and their interpretations

Qualform Variation of A as B increases uniformly

(INCREASE A B) 
(DECREASE A B) 
(STEADY A B)
(LINEAR A B) 
(INSTANTANEOUS A B) 
(REPEAT+AB)

(REPEAT-A B)

(INDEPENDENT A B)

A increase 
A decreases 
A is constant
A uniform rate of increases from zero 
A is constant after brief initial rapid increase 
A rises to a maximum and returns to its 

starting value 
A falls to a minimum and returns to its 

starting value 
None of the above.

■ .v^j.wuLarifwrrrrr................... ..................

(FROM ZERO A B) 1st A and B values at origin

Table 4.14 B a c k p r n n n d  Knowledge ENTRY Frame Slots and Fillers

Slot name Description Filler in STERN

variable
fixed
equation

qualform

limits

3 variables in any order 
the variable held constant 
quantitative relation between 

aU 3 variables 
qualitative relation between 

the 2 unfixed variables if 
no equation 

pairs of boundary values or 
substitutible variables

eg. arc_x, arc_l, arc_@ 
eg. arc_(2) 
eg. '

(= arc_x (* arc_l arc_(2))) 
eg.

(increase arc_x arc_l ) 

eg. '((0 0)(pi/2arc_d))
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1987) the role they play in STERN is quite different. Qualforms are also similar to 

BACON like regularity spotters (Langley et.al, 1987; Falkenhainer & Michalski, 

1986; Reimann, 1990) but qualforms explicitly state the relation noted in a 

manipulable form and cover a much wider range of relations. Qualforms are central 

to STERN's integrated quantitative and qualitative discovery abilities.

4.4.2 Background Knowledge

4.42.1 Entry Frames To Store Relations

An example of background knowledge in the Galilean domain is the 

understanding of geometry that underlies the geometric-pictorial form of reasoning. 

In various different types of inference STERN also employs a repository of 

background geometrical knowledge that summarizes basic trigonometrical relations. 

Figure 4.2 shows the geometric relations. To store this and all other types of 

background knowledge, STERN uses a list of entry frames, headed by a symbol 

(eg. arc) that names the list. Each frame has five slots that defines the relation 

between certain variables (Table 4.14). The variables s\ol contains a list of three 

variables that are interrelated by the equation or qualform stored in slots with those 

names, where the variable named in iht fixed slot is held constant. The ranges over 

which the other two variables can vary are specified in the limits slot. Two of 

STERN's eleven geometric, or arc, entry frames are included in Figure 4.2. 

STERN also possesses background knowledge for bodily relations of spherical 

objects.

4.4.2.2 Background Knowledge Mapping Relations

To be able to use background knowledge in the form just described the theory 

and the experimental paradigm frames have bgknow_relate (and bg_rel_initial) 

slots. These slots contain lists that define the relation between the theoretical or 

experimental knowledge and background knowledge entry frames. The lists map 

terms onto the background knowledge variables. Each list starts with the name of a 

set of background knowledge (e.g. arc) and is followed by pairs of terms and
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Relation between the variables

arc b

arc

arc 1

arc @

arc X

arc carc a

Two example definitions of entry frames

(I 1st 
'arc
(make-entry : van IobI es ' (orc_x orc_l orc_e)

;fixed ' orc_jB
; equal ion ' ( “ arc_x (* arc_l arc_^))) 

(make-entry ; variables ' (arc_c arc_i arc_s)
; fixed 'arc_i
: qua i form ' (decrease arc_j0 arc_c) 
i i i mi t s  ' ( (0 orc_i) (*pi/2* 0) ) )

)

Figure 4.2 Geometric Background Knowledge
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background variables. STERN uses the lists to transform theoretical terms into 

background variables. The variables are then used to find suitable entry frames and 

the information in the frames is used to make inferences. For example, a qualform 

from the entry frame may be transformed into an equation using the specified limits. 

The equation is then transformed back into theoretical terms using the mapping lists 

in reverse.

Two examples of the way background knowledge is used in STERN are: (i) the 

elimination of non-measurable terms by substitution and (ii) the identification of 

terms or parameters that are trivially related due to the physical geometry of an 

experimental setup rather than via the phenomenon.

4.4.3 Summary

We have considered all of STERN's knowledge representations. A clear 

distinction has been made between the general representations to implement the 

present framework and domain-specific representations to model the Galilean 

domain. The framework representations have been designed so that it should be 

possible, in principle, to use an alternative collection of domain specific 

representations without altering the general frames. This distinction based on 

knowledge specificity has been maintained in the design of STERN's processes and 

rules. We will now consider STERN's processes and rules.

4.5 DISCOVERY PROCESSES AND RULES

We have seen STERN's many different knowledge representations. Here, we 

will consider the processes used by STERN to manipulate this knowledge in order 

to make discoveries. We will see how the the framework has been used to define 

specific classes of processes to perform particular tasks and how STERN 

instantiates the processes as rules. A production system-like architecture is used for 

overall programmatic control.
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4.5.1 Knowledge States And Condition-Action Rules

We have seen how the framework provides a principled organization of 

theoretical and experimental knowledge in STERN. The framework has also been 

used to organize STERN's discovery processes.

The framework posits that three types of theoretical knowledge and three levels 

of experimentation are present in a research programme. Each has associated 

information (e.g., measures of acceptability) and may be under active consideration 

at a particular time or simply held in long-term memory. Thus it is possible to 

identify different states of a research programme in terms of: (i) the presence or 

absence of particular items of knowledge; (ii) whether those items are active; and 

(iii) the magnitudes of the various types of information related to each item. This 

state based characterization of research programmes is used in two different ways in 

the specification of rules in STERN.

First, the states of a research programme are used to express STERN's general 

domain-independent discovery processes as well defined condition-action rules. A 

particular state defines the condition and the action specifies some definite change to 

be made to the state. For example, a condition may find that there is an active 

acceptable hypothesis, but that the hypothesis does not account for a given 

experimental setup (i.e., the hypothesis does not possess any relevant models). The 

action of the rule would then use the hypothesis to generate models for the 

experimental setup.

Second, tasks are defined in STERN in terms of particular states and general 

changes to those states, rather like rules. However, tasks differ from rules in that 

they are comprised of many rules. For example, the testing of a model employs 

several rules including those to: generate predictive instances; to design and perform 

experiments for each instance; and to compare each experimental result with an 

instance. Tasks may engage sub-tasks to carry out specific procedures; generating
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predictive instances is a sub-task of the above model testing example. We will see 

below, all of STERN’s rules are classified into groups in a well defined task 

hierarchy. Tasks in STERN are similar to partitioned or packaged  rules in 

previous discovery programs (e.g., BACON, Langely et.al.^ 1987; KEKEDA, 

Kulkami & Simon, 1988). However, the state based approach used here is more 

principled. The context of each group of rules in STERN within the overall 

discovery process is transparent. Furthermore, the grouping of rules according to a 

particular task means that STERN possesses a property that is very desirable in 

discovery systems; namely, the unambiguous separation of domain-specific and 

domain-independent processes. In STERN the classes of rules that are applicable to 

a wide variety of episodes of discovery are clearly distinguished from those that 

apply only to the Galilean domain. Contrast this with KEKEDA (Kulkami & 

Simon, 1988) in which domain-specific and domain-independent heuristics are

found in every group of rules.

To summarize, the framework provides a principled method by which to define 

rules and to organize them into groups within a clearly defined hierarchy of tasks. 

We now consider the groups of rules in themselves and the tasks they perform.

4.5.2 STERN'S Classes Of Rules

STERN has 64 rules. They are grouped into 16 classes that perform specific 

tasks. There are domain-independent and domain specific sets of tasks (see Tables 

4.15 & 4.16, and Figure 4.3).

The domain-independent mles are built into STERN. They control the way 

STERN makes discoveries; guiding it down different paths as the process evolves. 

These rules typically refer to frames that instantiate the components of the 

framework without changing the contents of the slots.

The domain specific rules, on the other hand, tell STERN how to perform 

particular inferences on the Galilean knowledge representation; such as equations 

and qualforms. The groups comprise the procedural knowledge for the Galilean
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Table 4.15 General Domain Independent Classes Of Rules

Name
(STERN reference)

Description

Strategy chooser 
(RULES_0)

Top level control and strategy chooser

Hypothesis testing 
(RULES.l)
Model testing 
(RULES_2) 
Instance testing 
(RULES_9)

Hypothesis testing by experimental paradigm selection and 
model generation 

Model testing by experimental setup selection and instance 
generation.

Instance testing by experimental test design, perfoiming 
the tests, and results comparison.

Models into hypotheses 
(RULES_3)
Instances into models 
(RULES_7)
Tests into instances 
(RULES_11)

Selection of experimental paradigms to obtain models to be 
generalised into hypotheses.

Selection of experimental setups to obtain instances to 
generalise in to models.

Design and performance of experimental tests, to permit 
the interpretation of experimental results into instances.

Table 4.16 Domain Specific Classes Of Rules

Name
(STERN reference)

Description Location in STERN 
(frame: slot)

Generate models
(RULES_5)
Generate instances
(RULES_8)
Compare
(RULES_12)

Qualitative and quantitative model generation 
from hypotheses & experimental paradigms 

Qualitative & quantitative instance generation 
from models & experimental setups 

Comparison of qualitative and quantitative 
instances and experimental tests.

Theory:
Generate_models

Theory:
Generate_instances

Theory:
Instance_vs_expttest

Generalize models
(RULES_10)
GeneraHzeinstanoes
(RULES_4)
Interpret
(RULES_6)

Generalization of qualitative and quantitative 
models into hypotheses.

Generalization of qualitative and quantitative 
instances into models.

Interpretation of experimental test results into 
instances.

Theory:
Generalise_models

Theory:
Generalisejnstances

Theory:
Interpret_expttests

New paradigms 
(RULES_13)

Invention of new combined experimental 
paradigms.

Experiment:
New_exptpardigms

New hypotheses 
(RULES_14)

The generation of new qualitative and 
quantitative heuristics form existing ones.

Theory:
Generate_hypos

Experimenter
(EXPT_RULES)

(i) Design of experimental tests given a setup 
and an instance.

(ii) Experiment simulator.

Experiment:
Perform_expttest
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research programme. STERN knows which group to invoke by referring to slots in 

the theory and experiment frames (see Table 4.16). For example, when new 

hypotheses need to be generated from old, the rules named in the generatejiypos 

slot of the theory frame are retrieved (i.e., the new hypotheses class). STERN is 

run by invoking the strategy chooser (RULES_0^) class of rules. These rules 

govern STERN's overall performance by selecting one of four very different high- 

level tasks. These tasks are the four general discovery processes that were identified 

in the Galilean episode (see Chapter 3): (i) the confirmation of existing of 

hypotheses - hypothesis testing (RULES_1); (ii) the generalization from 

experimental results into new hypotheses - models into hypotheses (RULES_3); 

(iii) the formation of new hypotheses from existing ones - new paradigms 

(RULES_13); and (iv) the invention of new experiments - new hypotheses 

(RULES_14).

In STERN, confirming a hypotheses depends on the fact that the acceptability of 

hypotheses is a function of the acceptability of models, and that in turn, thé 

acceptability of models is a function of the acceptability of instances. The process 

starts with the hypothesis testing class of rules (see Figure 4.3). These rules 

generate models to account for a particular experimental paradigm and assesses the 

acceptability of the hypotheses with respect to each model. Models are formed by 

the domain specific generate models rules. Each model is individually investigated 

by the model testing rules. Testing a model has a similar pattern to assessing a 

hypothesis; specifically, instances are generated with respect to an experimental 

setup and the acceptability of the models is assessed according to the success of the 

instances. Instances are formed by generate instances. Individual instances are 

examined by instance testing. Testing an instance involves the design and 

performance of an experimental test, by the experimenter rules, and the comparison

^Each class of rules has a reference name (e.g., RULES_0) so that the class of an individual rule 

can be simply identified by its R xJ prefix, where x  is the reference number of the class (e.g., 
RO_START_CONFIRM).
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of the result with the instance, by the compare rules. We will see in detail how 

STERN performs confirmation in Chapter 5.

STERN forms hypotheses from experimental results by generalizing models. 

Models are obtained by generalizing instances, and instances are interpreted 

experimental test results. Models into hypotheses has the job of finding the models 

(Figure 4.3), using instances into models. The models are generalized to form 

hypotheses by generalize models. Models are obtained by instances into models 

that finds instances, using tests into instances, and forms them into models, using 

generalize instances. In turn, instances are found by performing experiments, 

experimenter, and interpreting the test results in to instances, interpret. We will 

see in detail how STERN obtains hypotheses in Chapter 6.

The generation of new hypotheses from old only involves one set of rules, new 

hypotheses (RULES_14). STERN only examines the one type of theoretical 

knowledge when carrying put this task and thus does not need multiple sub-tasks. 

The generation of new hypotheses from old is considered in more detail in 

Chapter 7.

Inventing new experimental paradigms also requires just one set of rules, new 

paradigms (RULES_13). Again, since only one type of experimental knowledge is 

considered, the need for additional classes of rules is obviated. The invention of 

new experimental paradigms is considered in more detail in Chapter 8.

Although the organization of rules given in Figure 4.3 follows from the 

framework it is not the only possibility. Thus the hierarchy of rules that STERN 

employs can be considered as a "hypothesis'* that will be assessed according to the 

acceptability STERN as a model of discovery.

In the review of previous work (in Chapter 2) it was concluded that it is 

desirable for discovery systems to (i) possess a richness of heuristics to match 

KEKEDA (Kulkami & Simon, 1988) but (ii) organized in a principled manner
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rather like the SDDS process hierarchy (Klahr & Dunbar, 1988). STERN's 64 rules 

in 16 groups, organized in the structure given in Figure 4.3, satisfy this dual 

requirement.

4.5.3 Production System Implementation

STERN's processes are represented as condition-action rules implemented in a 

production system like architecture. The system is loosely based on Hasemer & 

Domingue's (1989) production system, but has substantial alterations. In STERN, 

the working memory is the complex structure of frames described above plus a 

current frame. This frame has slots for the three types theory and the three levels of 

experiments. The slots {hypothesis, model, instance, exptparadigm, exptsetup 

expttest) are filled by hypotheses, models, etc. that are being actively considered at 

a particular time. The rules themselves are represented as rule frames with 

antecedent and consequent slots for the conditions and actions, respectively. Each 

rule has a name slot and a counter slot that is incremented each time the rule is 

fired. The conditions and action are CL functions. The condition can examine,.but 

never change, the contents of slots of any of the systems knowledge structures. The 

actions, however, have full access to knowledge structures; they can manipulate the 

stored information and instantiate new items in the structure. (Table 4.17 gives the 

CL code for one rule.^)

Like more classical productions systems STERN has cycles that involve: (i) the 

matching of rules against working memory; (ii) conflict resolution to select one rule 

to fire from amongst those that are successful in a cycle; (iii) firing the rule and the 

looping back to the matching stage. The conflict resolution strategy used by STERN 

normally chooses the rule with highest priority not fired in the last cycle. The order 

of the rules in a class determines their priority. In certain cases the not-fired-in-the- 

last-cycle condition is suspended as some classes of rules iterate over .a list of items 

(i.e. strategy chooser and generate models).

3 A disk with all the CL code for STERN is included with this thesis (or may be obtained on 

application to HCRL).
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TahlP 4 t7 n .  Code For R1 HYPO ASSF.SS WRT MODELS Rule.

R1_HYP0_ASSESS_WRT_M0DELS_ANT
Function to instantiate rule antecedent for assessment 

of an hypothesis with respect to a model 
Condition; there is a current hypo & a current model that has been tested 
Version 1.2 29/3/90 (VI 20/9/89)
Returns: T if Condition satisfied, nil otherwise 
Calls: untested? current c_slot
Arguments : —
Variables : —
Structures : current hypo model

(defun Rl_hypo_assess_wrt_models_ant ()
;;an active hypothesis 

(cond ((and (current hypo)
;;an active model 
(current model)

;;the model has been successfully tested 
(or (null (untested? (c_slot model adequacy)))

; ;unsuccessful attempts have been made to test the model 
(c_slot model not_tested))))))

R1_HYP0_ASSESS_WRT_M0DELS_C0N
Function to instantiate rule consequent of hypo assessment 

with respect to a model.
Version 1.1 13/3/90 (VI 20/9/89)
Action : Assesses the hypothesis acceptability, deactivates the model,

and clears expt paradigm if all models have been tested.
Calls: statement clear_current. current. amend_measure 
Arguments : —
Variables : —
Structures : hypo model measure

(defun Rl_hypo_assess_wrt_models_con ()
(setf (c_slot % p o  adequacy)

(amend_næasure (c_slot hypo adequacy)
(/ (measure-degree (cslot model adequacy))

(measure-number (c_slot nfodel adequacy) ) ) ) )
(clear_current model)
(statement *rules_l "hypo adequacy =" (c_slot hypo adequacy)

"and current model cleared")
; ; clear current paradigm only if all models have now been tested 
(cond ((null (antested_hypo_models (c_slot hypo models)))

(clear_carrent exptparadigm)
(statement 'rules_l "All models tested, exptparadigm cleared ))))

N otes:
All frames are inseantiated as def structs
(c slot frame s lo t )  - retrieves the filler of slot in the Qctiw&frajne 
(untested? measure) - checks whether the item with the specified measure 

frame has been tested 
(statement itesis) - prints the items to the output stream 
(ciear_Gurrent frame) - makes t h e i n a c t i v e
(amend_measure measure amount) - increments the frame by the

given amount.
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In conventional production systems with large numbers of rules, the rules are 

often packaged into groups with common tests in their conditions. However, 

STERN's sixteen sets of rules need to be organized hierarchically as shown in 

Figure 4.3, so a different technique is employed. This technique involves recursive 

calls to the PS with particular class of rules. A new class of rules (on level m-1 of 

the hierarchy) can be invoked from a single rule (on level m) by recursively calling 

the PS with the new rules. For example, the action of the RO_START_CONFIRM rule, 

in the strategy chooser class, calls the PS with the hypothesis testing rules. The 

PS to cycle through the hypothesis testing rules until, eventually, none match. 

Control is then popped back up one level to the PS with the strategy chooser rules. 

Two of the hypothesis testing rules make recursive calls (to generate models and 

model testing). The whole hierarchical structure of rules is implemented using this 

simple technique.

4.6 EXPERIM ENT SIMULATION

Unlike previous systems, where the user is responsible for supplying hand 

calculated experimental results, STERN possesses an experiment simulator. All but 

one of the experimenter (EXPT_RULES) class of rules comprise the subprogram 

that simulates the performance of experiments (the exception designs experimental 

tests). This has no bearing of STERN's discovery abilities but obviates the need for 

user to supply experimental results as inputs. STERN has no access to the contents 

of the simulator other than via its inputs and outputs. The simulator is given 

specified experimental parameters as inputs and calculates the values of the 

parameters as its outputs.

4.6.1 Black Box S im ulator

The black box conceptualization of experiments given by the framework 

suggests a technique for the simulation of the phenomenon in an experiment.
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Generally, in science the objective is to discover the contents of the "black box" 

phenomenon that functionally relates the input and output parameters. However, for 

the Galilean motion domain, a high level characterization of the phenomena already 

exists; namely the conservation of energy, as expressed as the constant magnitude 

of the sum of potential (height) and kinetic (speed) energies, throughout the 

movement of a body. Thus, given an input parameter and its successive values, it is 

possible to determine the corresponding output parameter values, by calculating the 

transfer of potential to kinetic energy .This is a feasible proposition because the all 

the experimental paradigms in the domain have parameters that are related to height 

and speed by their physical geometry. This forms the conceptual basis of STERN’s 

rules that simulates the performance of real experiments.

4.6.2 Im plem entation And Perform ance

The experimenter is the set of rules instantiating experimental performance. All 

but one simulates the performance of experiments under particular experimental 

setups. (The exception is used to prepare experimental tests when an instance is 

available. It will be described in Chapter 5.) The rules are instantiated by such a 

central function, that incrementally varies the input parameter in order to calculate 

the series of output values. However, the rule to perform combined experiments is 

different, because separate simulations are required for the initial and terminal parts. 

However, the same principle is used for each of the parts in turn, and then the two 

are combined.

Noise is artificially added to the calculated output values. Each value is altered 

by a random amount within a band given by a certain specified percentage of the 

calculated value. The new noisy value can be any where within the band, with an 

approximately uniform probability. Settle's (1961) experiments show that the noise 

level given by a half band width of 2 percent is realistic for the Galilean domain.

We have just seen how STERN simulates experiments. Earlier we considered 

STERN's knowledge representations and classes of rules. Now we can begin to

-97-



STERN

examine how STERN brings all these pieces together to make discoveries. The next 

section describes how STERN chooses which of the four main discovery processes 

to carry out.

4.7 TOP LEVEL CONTROL - Strategy Chooser

STERN has four main discoveries making processes (i.e., confirming 

hypotheses, generalization from experimental results, generating new hypotheses 

from old, and the invention of new experiments). Choosing which to cany out at 

any particular time is the task of the strategy chooser rules. They constitute 

STERN's top level of global control. Invoking the production system with strategy 

chooser runs the program.

Four rules comprise the strategy chooser class (see Table 4.18). The priority of 

the rules in production system conflict resolution is the same as their order in Table 

4.18. The action of all four rules is to make recursive calls to the production system 

with sets of rules to carry out the particular strategy chosen. STERN chooses the 

confirmation strategy (using RO_START_CONFIRM) when there are hypotheses that 

have not been used to account for all experimental paradigms, successfully or 

otherwise. For example, given the effective weight law (hypothesis) as an input, 

STERN tries to confirm the hypothesis by applying it to the pendulum and inclined 

plane experiments. The generalization of experimental results into hypotheses 

(RO_START_INDUCE) occurs when experimental paradigms have not been 

successfully accounted for by a hypothesis. For example, STERN performs 

experiments on the pendulum experiments to find equations and qualforms for 

generalization. New hypotheses are inferred from old (RO_NEW_HYPOS) when 

attempts to (dis)confirm all existing hypotheses have been made and hypotheses 

have been generalized from experimental results. The law of free fall is found by 

STERN using this strategy. New experimental paradigms are considered when 

hypotheses have not been (dis)confirmed but all existing paradigms have been tried
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Tahle 4.18 Strategy Chooser Rules (RULES Q)

RO_START_CONFIRM*
C ondition:

There are stored hypotheses that are completely untested or have not been tested against all 
manufactured experimental paradigms.

A ction:
Call PS with Hypothesis testing (RULES_1) to examine the untested hypotheses in conjunction 

with the experimental paradigms with which they have not yet been tested by generating 
models.

RO_START_INDUCE
C ondition:

All hypotheses have been examined irrespective whether they were tractable, 
and not all the manufactured experimental paradigms have been successfully accounted for by a 

hypothesis.
A ction:

Call PS with Models into hypotheses (RULES_3) to perform experiments on the unaccounted for
experimental paradigms in an attempt to generalization the results into hypotheses via models.

RO_NEW _HYPOS
C ondition:

All stored hypotheses have been tested using at least one model 
A ction:

Call PS with the set of rules in the theory frame generate_hypos slot (i.e., New Hypotheses, 
RULES_14) to gerieiated new hypotheses from existing ones.

RO_NEW_ EXPTPARADIGMS 
C ondition:

There are stored hypotheses that remain untested.
A ction:

Call PS with rules in the experiment frame new_experiments slot, (i.e.. New paradigms, 
RULES_13) to make new combined experiments

*The order of rules indicates their relative priority in conflict resolution.
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(RO_NEW_EXPTPARADIGMS). For example, STERN needs the combined inclined 

plane and projectile experiment as the law of free fall cannot be tested using the 

pendulum or inclined plane paradigms.

We now know the circumstances in which STERN chooses to employ each 

strategy. The four main strategies will be considered in their own chapters, 5 to 8. 

Chapter 5 - The confirmation or otherwise of existing hypotheses;

Chapter 6 - The performance of experiments to obtain results that are generalized 

into hypotheses via models;

Chapter 7 - The generation of new hypotheses from a stock of existing hypotheses 

with varying degrees of acceptability; and.

Chapter 8 - The consideration of new experiments and the pragmatic selection of 

paradigms.

The chapters will also compare STERN's abilities and those of existing discovery 

systems, with particular attention to the manner in which STERN attempts to 

overcome their limitations.
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Chapter 5
Confirming Existing Hypotheses

%
5.1 INTRODUCTION

At the beginning of his investigations Galileo adopted the Aristotelian laws 

current in his day. He attempted to demonstrate these laws were correct by making 

predictions about the behaviour of balls rolling down inclined planes and the motion 

of swinging pendulums. Through successive experimental trials, Galileo tested 

these predictions but found they were poor. Much later in the episode Galileo 

inferred his law of free fall. The acceptability of this law was determined by the 

making of predictions for comparison with experimental results. These two 

examples show that predictive (dis)confirmations of known hypotheses plays an 

important part in, scientific discovery.

STERN models this important aspect of discovery. On four occasions during 

STERN's run (see Chapter 4) known hypotheses came to be tested against 

experimental outcomes. Each time this happened STERN acted in a theory-led 

fashion and invoked the confirmation strategy (rule RO_START_CONFIRM in 

Strategy chooser).

This chapter considers the details of how STERN models the process of 

predictive confirmation of existing hypotheses. After an overview of the process is 

given, I will present a detailed account of the stages in the process. Finally, 

comparisons to previous work will be made.

5.2 STAGES IN CONFIRMING A HYPOTHESIS

Confirming a known hypotheses requires many different classes of rules 

invoked on many occasions to perform specific tasks. However, the whole process
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Tahle 5.1 HYPOTHESIS TESTING Rules (RULES^l)

Rl_CHOOSE_M ODEL*
C ondition:

There is no active model, but an active hypothesis and experimental paradigm, 
and the active hypothesis has 1 or more models and no attempts have been made to test them. 

A ction:
Make active the first stored model on which no attempts at testing have been made.

R 1_H Y P 0-> M 0D E L S
C ondition:

There is no active model, but an active hypothesis and an active experimental paradigm,
and there are no stored hypotheses with models that account for the active ejqperimental 

paradigm.
A ction:

Call the PS with the domain specific rules whose name is in the generate_models slot of the 
theory frame (i.&.,Generate models, RULES_5) to infer models from the active hypothesis 
and paradigm.

On return amend tractability, and if no models have been generated deactivate the experimental 
paradigm.

R 1_C H 00SE _PA R A D IG M _W ITH _H Y P0
C ondition:

There is an active hypothesis, but no active experimental paradigm, 
and there are stored manufactured experimental paradigms that have not been tested with the 

active hypothesis.
A ction:

Make active the manufactured experimental paradigm with the greatest product of number of 
setups and ease of manufacture.

R 1_H Y P 0_A S S E S S
C ondition:

There are no active models,
and there is an active hypothesis that has been tested with all manufactured paradigms, 
and attempts have been made to test all stored models of the active hypothesis.

A ction:
Store the hypothesis (ie. make it inactive),
and if it is acceptable and a member of a group, then make the other members unacceptable.

R 1_H Y P 0_A SSE SS_W R T _M 0D E L S
Condition:

There is an active hypothesis and an active model, 
and attempts have been made to test the model.

A ction:
Calculate the acceptability of the model using equation 4.1 and use it to amend the acceptability 

measure of the hypotheses.
And make the model and the experimental paradigm inactive.

*The order of rules indicates their relative priority in conflict resolution.

continued. .  .



Tahle 5.1 Continued HYPOTHESIS TESTING Rules

R1 T E S T M O D E L  
C ondition:

There is an active model and no attempts have been made to test i t  
A ction:

Call the PS with Model testing (RULES_2) to test the model by instance generation.

R l_C H O O SE_H Y PO
C ondition:

There is no active hypothesis,
and there are stored hypotheses that are have not been or only partly tested against all the 

manufactured experimental paradigms. .
A ction:

Make active a stored hypothesis that has not already been fully tested preferring quantitative 
hypotheses.

Rl_CH O O SE_PARADIG M _NO _H YPO
C ondition:

There is an active hypothesis, but no experimental paradigm,
and some paradigms have not already been tried with the hypothesis.

A ction:
Make active the manufactured experimental paradigm with the greatest product of number of 

setups and ease of manufacture.
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can been be summarized diagrammatically, see Figure 5.1. The boxes are levels of 

knowledge in the framework, and the circles are inference processes. STERN uses 

the hypothesis testing rules (Table 5.1) to control the confirmation process.

STERN begins the assessment of the acceptability of a hypotheses by choosing 

an experimental paradigm (R1_CH00SE_PARADIGM_WITH_HYP0) and a hypothesis 

(Rl_CHOOSE_HYPO). The hypothesis is not one that has previously been tested with 

all the stored experimental paradigms. Models are then generated using not only the 

hypothesis but also knowledge about the experimental paradigm (R1_HYP0- 

>M ODELS). STERN chooses one model to test (Rl_CHOOSE_MODEL &  

R1_TEST_M0DEL). This involves selecting an experimental setup with which the 

model is used to generate predictive instances. For each instance an appropriate 

experimental test is designed and performed. The instance and experimental test 

results are then compared; this involves STERN calculating the degree of predictive 

accuracy of the instance. This value is used to determine the acceptability of the 

model and the acceptability of the model is used to assess the acceptability of the 

hypothesis (R1_HYP0_ASSESS_WRT_M0DELS). When a hypotheses has been tested 

against all experimental paradigms it is stored and another hypothesis chosen 

(Rl_HYPO_ASSESS).

STERN may generate several instances from one model. Thus, STERN 

employs repeated cycles of the processes to test a model using each instance (i.e. 

the Instance testing rules. Table 5.2). The cycles are comprised of (i) the design 

and performance of an experimental test, (ii) comparing the test results and the 

instance, and (iii) assessing the model given the degree of success of the instance. 

Similarly, several models may be generated from one hypotheses. Thus, there are 

cycles of processes to test each hypothesis using the models (i.e. the Model testing 

rules. Table 5.3). These cycles include: (i) selecting an experimental setup; (ii) 

generating the instances from the model; (iii) testing all the instances to assess the
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Table 5.2 INSTANCE TESTING Rules (RULES_9)

R9_TEST_INSTANG E*
C ondition:

There is an active instance,
and an active experimental test with a fully specified set of results.

A ction:
Call PS with rules named in the instance_vs_expttest slot of the theory frame (i.e.. Compare, 

RULES_12) to compare the instance and experimental test, 
and deactivate the experimental test.

R9_NO _TEST_PERFO RM ED
C ondition:

There is an active instance,
and an active experimental test but no experiment has been successfully performed. 

A ction:
Make the experimental test inactive,
and set the instance acceptability (degree slot) to -1 as flag noting that no experiment was 

performed.

R 9_P E R F 0R M  EXPT TEST  
C ondition:

There is an active instance that has not been compared with an experimental test, 
and an active model and experimental setup, 
and no active experimental test.

A ction:
Call PS with the set of rules named in perform_expttest of the experiment frame (i.e.. 

Experimenter, EXPTJRULES) to design and perform an experiment to match the active 
instance using the active setup.

*The order of rules indicates their relative priority in conflict resolution.



Table 5.3 MODEL TESTING Rules (RULES^2)

R2_NO _M ORE_INSTANCES*
C ondition:

There is an active experimental setup, and no active instance,
and an active model with no stored instance on which attempts have been to test with the active 

setup.
A ction:

Make the current experimental setup inactivate

R 2_A S S E S S _M 0D E L
C ondition:

There is an active model,
and an active instance on which attempts at comparison with experimental tests have been 

made.
A ction:

Amend the acceptability of the model paying attention to non comparison situations because of 
failures to perform an experimental test.

R2_TEST_IN STA N C E
C ondition:

There is an active instance and no attempt has been made to compare it with an experimental 
tests.

A ction:
Call PS with Instance testing (RULES_9) to test the instance.

R 2_C H 00S E _IN ST A N C E
C ondition:

There is an active experimental test,
and an active model with associated instances,
and no active instance.

A ction:
Make active the first instance stored with model.

R 2 _C H 00S E _S E T U P
Condition:

There is no active experimental setup, and an active model, 
and stored setups that have no been tried with the model.

A ction:
The first untried experimental setup is made active.

R 2_0B T A IN _IN ST A N C E S
Condition:

There is an active experimental setup and an active model,
and no instance associated with the model,
and the setup has not been considered before by the model.

A ction:
Call the PS with the named rules in the generate_instance slot in the theory frame (i.e.. 

Generate instances, RULES_8) to make instances; if successful amend the model's 
tractability and store the instances under the model, otherwise deactivate the experimental 
setup.

*The order of rules indicates their relative priority in conflict resolution.
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model (i.e. sets of the cycle just described); and (iv) assessing the hypothesis with 

respect to the model. Hence, the confirmation of hypotheses by STERN can be 

viewed as a process with nested cycles of sub-processes (see also Figure 4.2).

However, STERN's confirmation strategy can be broken down in to three 

distinct stages. We can think of the process as being comprised of: (i) m ^ n g  

predictive instances from a hypothesis; (ii) comparing the predictions with 

experimental tests; and (iii) assessing the acceptability of the hypothesis using the 

instances. We will now consider the details of confirmation strategy using these 

three stages. Seven classes of rules are involved in the confirmation process (see 

Tables 5.1 to 5.7). The priority of the rules in each class are given by their order (in 

each table).

5.3 MAKING PREDICTIONS

STERN begins the confirmation processes by choosing the pendulum 

experinient, from amongst those that have been made available (see Chapter 8). It 

is selected as it is the most easily manufactured and has the most setups. The first 

hypothesis to be (dis)confirmed by STERN is one of the effective weight 

hypotheses, with the equation:

(=T_VT_DEN), . . . ( 5 . 1 )

where T_V and T_DEN are speed and density terms. This hypothesis is chosen 

because it has not been considered before with the pendulum paradigm. STERN can 

now attempt to generate models from hypothesis for the chosen experimental 

paradigm.

5.3.1 G enerating Models

STERN generates models from quantitative and qualitative hypotheses (using 

the Generate models rules. Table 5.4).

53.1.1 Typical Quantitative Model Generation

The effective weight law. Equations 5.1, is a typical form hypothesis that
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Table 5.4 GENERATE MODELS Rules (RULES, .5)

R5_COM B_COM PLEX_EQNt
Condition:

There is an active quantitative hypothesis and all of its associated models have been tested, 
and there is an active paradigm that is a combined experiment, 
and the equation does not have terms that are all measurable.

A ction:
Attempt to generate models for the combined experiment in the initial and terminal modes in 

turn, by trying to find a substitute for one theoretical term that is not measurable by 
examining suitable background knowledge, 

and amend the tractability of the hypothesis according to the success of the action.

R 5_C 0M PL E X _Q U A L F0R M
C ondition:

There is an active qualitative hypothesis and all of its associated models have been tested, 
and at least one of the terms of the qualform is not measurable.

A ction:
Generate a qualitative model, if the two terms of the qualform of the hypothesis are observable 

terms, by copying the qualform into a new model frame stored under the active hypothesis, 
and amend the tractability of the hypothesis appropriately, even if no model is generated.

R 5_SIM PLE_Q U A LF0R M
C ondition:

There is an active qualitative hypothesis and all of its associated models have been tested, 
and the terms of the hypothesis qualform are aU measurable.

A ction:
Generate a qualitative model by copying the qualform into a new model frame stored under the 

active hypothesis, 
and amends the tractability of the hypothesis appropriately.

R 5_SIM PL E _H Y P0_EQ N
C ondition:

There is an active quantitative hypothesis and all of its associated models have been tested, 
and there is an active paradigm that is not a combined experiment, 
and all the equation's terms are measurable.

A ction:
Generates a quantitative model by copying the equation into a new model frame stored under the 

active hypothesis, 
and amends the tractability of the hypothesis appropriately.

R 5_M A IN _W 0RK ER
C ondition:

There is an active quantitative hypothesis and all of its associated models have been tested, 
and an active paradigm that is not a combined experiment, 
and the equation does not have terms that are all measurable.

A ction:
Attempt to generate a quantitative model from an hypothesis equation (or a term* frame) using 

background knowledge or definitions to infer alternative combinations of tenns for 
unmeasurable terms, paying attention the necessary qualitative conditions, by substitution 
of the terms; several alternatives may possible, just 1 is considered and the rest are stored as 
term* frames in the partial_forms slot of the under the active hypothesis: 

and amends the tractability of the hypothesis appropriately.

^The order of rules indicates their relative priority in conflict resolution.
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STERN considers (R5_MAIN_W0RKER). Generating quantitative models from such 

a quantitative hypothesis involves replacing terms that do not have corresponding 

measurable experimental parameters. STERN knows the T_V and T_DEN terms are 

not directly measurable, in this sense. This is just one of many examples of how 

experimental knowledge influences theoretical inferences. Two sources are 

investigated by STERN to replace them; (i) the definitions of the terms, and (ii) 

background knowledge.

Some terms are defined by combinations of other terms that are measurable. For 

example, T_V is related to T_D (distance) and T_TIME (time), by the equation:

(= T_V (/ T_D T_TIME)) . . . .  (5.2)

STERN finds this equation (by looking for a filler in the equation slot the term's 

T! frame) and substitutes T_V, in Equation 5.1, for ( /T_D T_TIME). In general, 

this can only be done when certain necessary qualitative conditions obtain for the 

term to be eliminated (as specified in the necjqualform slot of the T! frame). T_V 

can be replaced so long as T_V is constant. STERN knows (as one of its inputs) that 

the Aristotelian instantaneous acceleration is acceptable and thus the speed in the 

pendulum experiments is constant. (The Aristotelian law is later disconfirmed.) In 

this case STERN can perform the substitution.

The second way STERN can replace non-measurable terms is by appealing to 

background knowledge. STERN finds that the density term, T_DEN (of Equation 

5.1), is one that maps onto a variable in the "spherical body" background 

knowledge relations; that is BODY_DEN. Background knowledge possessed by 

STERN is in the from of lists of entry frames (see Table 4.14). STERN chooses 

the entry that contains the BODY_DEN variable, and retrieves an equation that relates 

BODYJDEN to other variables from the entry frame. STERN converts this equation 

into theoretical terms and finds that T_DEN equals (/ T_W T_VOL) (the quotient of 

weight and volume). This formalism is substituted for T_DEN in equation 5.1.

The result of both substitutions is the model equation:
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(= (/T_DT_TIME) (/T_WT_DEN). . . . (5.3)

STERN manufactures a model frame and this equation is placed in its equation 

slot.

However, the examination of background knowledge is really more complex 

than just described. STERN possesses more than one set of background knowledge 

and several entries may have variables that map on to the term to be substituted. 

Further, when the entry contains a qualform (rather than equation), the qualform 

must be converted into an equation before substitution can take place. Several 

equations may be generated from a single qualform. STERN only considers one 

possibility at a time, so all the remaining alternatives are stored for future reference 

(in terrn^ frames).

When STERN considers the other effective weight law:

(= T_V T_W*) , . . .  (5.4)

the substitution of the T_V term is the same as before. However, Ae T_W* term (that 

stands for effective weight) is replaced using geometric background knowledge. 

This mimics Galileo’s geometric-pictorial form of reasoning. Furthermore, STERN 

finds a qualform, rather than an equation, from the entry for T_W*. As qualforms 

cannot be used for in substitutions, STERN must find an equation based on the 

qualfrom. The program possesses several inference processes for converting 

qualforms into equations. For example, when the qualform has an increase 

predicate, STERN proposes a linear equation. The equation inferred is used for 

substitution, as before.

All new equations found by STERN are checked for new non-measurable terms 

that the substitution processes may have introduced. Such terms are themselves 

treated by recursively re-applying the same procedures to the new equation.

5 3 .1 3  Model Generation For Combined Experimental Paradigms

The process we have just considered for generating models deals with more
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typical experimental paradigms like pendulums. When STERN has an active 

combined experimental paradigm things are different (R5_C0MB_C0MPLEX_EQN). 

For example, STERN uses the combined inclined plane and projectile paradigms to 

confirm the law of free fall, given by:

(=T_V (exptT_H 2)), ...^(5.5)

where T_H is height STERN cannot eliminate T_V by substitution of its definition, 

as was the case for equation 5.1 above. The instantaneous acceleration law has, by 

now, been disconfirmed by STERN. So, the qualitative condition that the speed 

must be constant no longer obtains. This is why STERN uses the combined 

inclined plane and projectile experimental paradigm (see Chapter 8).

The are two inodes in which STERN uses a combined experimental paradigm 

(see Chapter 3). In the initial mode, the manipulated input parameter is one 

belonging to the inclined plane, and the measured output parameter is from the 

projectile. In the terminal mode both the manipulated input and measured output are 

projectile parameters; with the inclined plane merely serving as a feeder for 

projectile. Variations in the model generation procedure are required for each of the 

two modes.

First, the initial mode: STERN initially applies Equation 5. to the inclined plane 

part of the combined experiment. This can be used to find the speed at the end of the 

plane for a given vertical height though which the ball drops. STERN then attempts 

to find a relationship describing the projectile part of the experiment that includes the 

T_V term. The program finds that:

(=T_V(/T_LT_TTME)), . . . ( 5 . 6 )

where T_L is the projectile's horizontal distance and T_TIME is time. This asserts 

that the horizontal speed of the projectile is uniform. Hence, substituting out V from 

both equations 5.5 and 5.6 STERN obtains the model equation:

(= (expt T_H 2) (/ T_L T_TTME)). . . . ( 5 . 7 )

This equation is then treated like any other model equation by STERN.
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Second, for terminal mode, STERN's generation of the model equation is 

almost the same as that just considered. The difference being that the free fall. 

Equation 5.5, is applied to the projectile rather than the inclined plane. By doing this 

STERN describes the shape of the projectile's path, just like Galileo.

53.1.4 Qualitative Models Generation

Generating qualitative models firom hypotheses is a much simpler process for 

STERN than generating quantitative models.

To generate qualitative models STERN checks that all the terms in the 

hypothesis qualform have corresponding experimental parameters that are directly 

measurable in the active experimental paradigm (R5_SIMPLE_QUALF0RM). When 

this is the case, STERN constructs a model firame and puts a copy of the qualform 

in its appropriate slot. However, when there are terms that are not measurable 

STERN checks that they are at least observable (see §4.2.4.1) (R5_C0M - 

PLEX_QUALFORM). The instantaneous acceleration law is one such qualform as it 

contains a term for speed. When the qualform has terms that are neither measurable 

nor observable STERN simple amends the hypothesis's measure of tractability to 

indicate that no model could be found.

Once STERN has found quantitative or qualitative models for the active 

hypothesis and experimental paradigm it uses each model to generate instances 

{Generate instances rules. Table 5.5).

5.3.2 Instance Generation

To generate instances STERN first chooses an experimental setup 

(R2_CH00SE_SETUP). When considering the first Aristotelian, Equation 5.1, 

STERN selects one of the pendulum setups. STERN only uses two processes to 

generate instances; one for quantitative and one for qualitative models.

53 2 .1  Qualitative Instances

STERN generates qualitative instances from  qualitative m odels by first 

reproducing the m odel's qualform in an instance frame (R8_GEN_QUAL_INS-
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Tahle S.5 GF.NF.RATK INSTANCES Rules (RULES 8>

R8_G EN_Q U AL_INSTA N CESt
C ondition:

There is an active qualitative model but no associated instances.
A ction:

Construct a new instance, select terms to be the independent and dependent terms based on the 
manipulation and observation ease of the corresponding experimental experimental % 
parameters (ie. matching kinds), and copy the model's qualform into the instance.

R8_G EN_Q UANT_INSTANCES
C ondition:

There is an active quantitative model but no associated instances.
A ction:

A five stage process: (i) make all possible combinations of pair of terms found in the equation; 
(ii) eliminates aU pairs that have one or more terms without experimental equivalents in the 
active experimental setup; (iii) removes all pairs that are trivially related by comparison 
with relevant background knowledge (iv) makes new instances for all the pairs of terms 
where the independent and dependent terms are chosen by reference to the manipulation ease 
of corresponding experimental parameters, and the values of the independent and fixed terms 
are also specified by interrogating experimental parameters; and (v) calculates the values of 
the dependent term by rearrange the equation so the term is on the left hand side, and 
substituting in the values.

t lb e  order of rules indicates their relative priority in conflict resolution..
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TANCES). STERN then specifies which terms are to be independent and dependent 

by examining the experimental parameters of the active experimental setup. The 

term that corresponds to the parameter that is most easily manipulated is chosen by 

the program to be the independent term. The other term from the qualform is then, 

by default, the dependent term.

5 3 2 2  Quantitative Instances

The generation of quantitative instances in STERN also employs the same 

correspondence procedure to choose its independent and dependent terms, but only 

after a number of other stages (R8_GEN_QUANT_INSTANCES). STERN's aim when 

generating instances is to find values for independent and dependent terms. The 

values of the dependent terms are calculated from an equation like 5.3 using 

independent term values, with the values of all other terms held constant. This is a 

three step process.

In the first step of the process, STERN finds all the possible combinations of 

pairs of terms from Equation 5.3:

(T_D T_TIME), (T_D T_W), (T_D T_VOL),

(T_W T_TIME), (T_VOL T_TIME), (T_VOL T_W). . . . (5.8)

Second, since an experimental setup need not instantiate aU the parameters available 

in its paradigm, STERN removes any pairs from the list that include terms that are 

not measurable in the active setup. Third, further pairs are also eliminated if they are 

found to be trivially related. STERN does this by applying background knowledge 

to the experimental setup. Fourth, new instances are made employing the 

correspondence procedure just mentioned above; for the list of pairs (5.8) the 

(independent dependent) order of the terms is same as they are printed. Fifth, 

STERN calculates a number of evenly spaced independent term values within the 

range given by the maximum and minimum values of the term's corresponding 

experimental parameter. The values of the fixed terms are specified as the mid range
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values of their corresponding parameter ranges. Sixth, magnitudes of the dependent 

term are calculated. STERN rearranges the Equation 5.3 so that the dependent term 

stands alone. Then the independent values and fixed term values are substituted into 

the equation to find the dependent values. That completes the steps in quantitative 

instance generation. All the generated instances are stored under the active model.

STERN has thus generated instances from the effective weight law (hypothesis) 

via models. This, in turn, completes the first stage of the confirmation processes. 

The next stage is the comparison of experimental test results and the instances.

5.4 COMPARISON WITH EXPERIMENTAL RESULTS

Here we will consider the third stage of the confirmation processes. During this 

stage STERN compares predictive instances and experimental test results in such a 

way that both predictive accuracy and noise in the experimental data are taken into 

account. But first, before comparisons can be made, STERN must obtain the 

experimental results.

5.4.1 The Design & Performance Of Experiments

STERN does two things when trying to obtain experimental results: (i) it 

designs an experimental test; and (ii) it performs the test {Experiment rules. Table

5.6). .

STERN uses the active instance to design an experimental test from the given 

experimental setup. This ensures that the experiment will be relevant to the instance. 

Designing an experiment requires two things: (i) specifying the input-m, output and 

fixed parameters; and (ii) setting all their values, except the output. STERN does 

both by referring to the active instance (E_PREPARE_wrTH_INSTANCE). The instance 

has terms and values that are equivalent to those required by the experimental test. 

For example, STERN uses the independent theoretical term to identify the input-m 

experimental parameter and gives the input-m identical values to those of the 

independent term.
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Table 5.6 EXPERIMENTER Rules (EXPT RULES)

E_COM BINED_EXPTS+
C ondition:

There is an active experimental setup and test,
and the experiment is the incplane+projectile or double pendulum combined experiment, 
and the input-m and output parameters are of specific kinds.

A ction:
Perform the combined experiment using the experimental test input values to calculate the  ̂

output values with added noise.

The other five experimental performance rules have a similar form to the 
E_COMBINED_EXPTS rule except that different experimental setups and 
parameters are specified. The rules are:

E_DO W N_INCPLANE_SPECIAL  
E_PEND ULU M _SPECIAL  
E_SW ING_PENDULUM  
E_DOW N_INCPLANE  
E DOW N PENDULUM

E_PREPARE_W ITH_INSTANCE
C ondition:

There is an active instance but no experimental test, 
and an active experimental paradigm.

A ction:
For a qualitative instance the experimental setup is made with input and output parameters that 

have the same kinds and the instance independent and dependent terms.
For a quantitative instance the input, output and fixed parameters of the experimental test have 

the same kinds as the instance's independent, dependent and fixed terms, and the input and 
. fixed parameter values are set according to their related instance term values.

tThe order of rules indicates their relative priority in conflict resolution.
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The performance of the experimental test is a job for STERN's experiment 

simulator {Experimenter rules, see Table 5.6). The simulator determines output 

values for all the input-m values. The output values are given an amount of noise 

that is realistic for experiments like the pendulum and inclined plane.

5.4.2 Assessing Predictive Accuracy

To assess how well his predictions matched experimental results Galileo 

employed various methods. For qualitative predictions, such as the one from the 

instantaneous acceleration law, it was sufficient for Galileo just to watch the motion 

of bodies when performing experiments. For his qualitative predictions, he 

compared the numerical values of terms directly and plotted graph like diagrams 

(eg. Drake, 1975; and Drake & MacLachlan, 1975).

STERN also uses different methods to assess qualitative and quantitative 

predictions {Compare rules. Table 5.7). However, STERN’s methods are quite 

different from Galileo's, because STERN is not able to "see" the motion of bodies 

in experiments and does not have the ability to reason using diagrams.

Qualitative comparisons in STERN involves modelling the simple observations 

made during the performance of experiments. This is a three stage process 

(R12_TEST_QUAL_INSTANCE). First, since the results produced by the experiment 

simulator are quantitative, they have to be changed into qualitative forms before 

STERN can compare them with its instances. STERN infers qualforms from the 

inputrin and output values of the test using regularity spotters (see Chapter 6). 

Second, the experimental qualforms are interpreted; that is, theoretical terms are 

substituted for their corresponding experimental parameters. Finally, STERN 

simply sees whether the instance qualform is amongst those just found. If it is, the 

instance is acceptable, if not the prediction has failed. The acceptability of the 

instance is set to zero or unity accordingly.

The comparison of quantitative instances and experimental tests by STERN is 

somewhat more involved. Basically, STERN determines how accurately the values
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Table 5.7 COMPARE Rules (RULES 12)

R12_TEST_Q U A N T_IN STA N C E
C ondition:

There is an active quantitative instance that has not been compared with an experimental test, 
and an active experimental test 

A ction:
A two stage process: (i) check that neither the instance dependent term nor the experimental test 

ouq)ut parameter are invariant; (ii) calculate the degree of match between the instance and 
experimental test according to equation (5.8) and set the instance acceptability.

R12_TEST_Q U A L_IN STA N C Et
C ondition:

There is an active qualitative instance that has not been compared with an experimental test, 
and an active experimental test 

A ction:
A three stage process: (i) infer qualforms from the input and output experimental test values; 

(ii) re-express these qualforms in theoretical terms by matching kinds and qualkinds; (iii) if 
one matches the instance qualform set instance acceptability to unity, otherwise zero.

t lb e  order of rules indicates their relative priority in conflict resolution.
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of the instance independent and dependent terms match up to the values of the 

input-m and output experimental parameters. There is no simple way to distinguish 

whether an instance and experimental test differ because the instance is a poor 

prediction or because the test data is noisy. Thus, STERN employs a single method 

to determine predictive accuracy and to take experimental noise into account. The 

technique comprises two main tests. (Bear in mind that the independent term and 

input-m parameter have identical sets of values.) The first test is the established 

product-moment correlation technique. It is applied to the dependent theoretical 

term and the output experimental parameter to find the degree to which two 

variables are related. A correlation coefficient, r, is found (where -1  < r < 1). 

The second test relies on the fact that the ratios of the dependent term and 

experimental output parameter would all be identical if there is a perfect match. The 

second tests measures how far actual instances are from this ideal, by seeing how 

the ratios vary with respect to the independent term. Ideally the ratio's values should 

fall on a straight line with zero gradient. Thus STERN employs least squares 

analysis to find the gradient, m, of the line that is the closest fit to all the ratios. 

When m is zero the match is ideal, but when m it is significantly far from zero the 

match is poor. For typical domain data, this second test is more than an order of 

magnitude more sensitive than product-moment correlation technique. However, the 

second technique may also find very poorly correlated data has m «l if it is fairly 

evenly scattered. Hence, STERN combines both techniques to overcome each 

other's weaknesses (R12_TEST_QUANT_INSTANCE). STERN calculates the value of 

predictive accuracy using the formulas:

degree = [(1 - lml).r]i  ̂> - . . .(5.9a),

when r < Rnmit,

and lml>Miimit;

otherwise degree = 0 . . . .  (5.9b)
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Zero indicates no match between instance and experiment test, and a value near 

unity means good predictive accuracy. The user specified emphasis index, n, is 

used to further distinguish the degree by skewing values much less than unity 

towards zero (typically n=5). Rumit and are user specified parameters

(typically both=0.5). When the absolute magnitude of r is too low or m too far 

from zero, the degree of match is set to zero. Thus the lowest degree calculated by 

Equation 5.9a will be no greater than 3 per cent (with n=5). STERN stores the 

value of predictive accuracy in the instance frame.

In our example involving the Aristotelian effective weight law, most of the 

comparisons between instances and experimental tests do not yield values that 

satisfy the two limits. The acceptabilities of the instances are consequently set to 

zero. However, for one instance, with T_D and T_TIME as the independent and 

dependent terms, the prediction of the motion on the inclined plane is rather good 

and the degree of match found by STERN was 0.966. We will see how these value 

are now used to help assess the acceptability of models and hypotheses, as we 

move on to the last stage of the confirmation process.

5.5 ASSESSING THEORETICAL KNOWLEDGE

We have seen how STERN compares instances and experimental results using a 

function that calculates values of predictive accuracy of instances. In this section we 

will consider the third, and final, stage of the confirmation process. During this 

stage STERN (i) assesses the acceptability of models with respect to the predictive 

accuracy of the instances generated from it and (ii) assesses the acceptability of 

hypotheses with respect to the acceptability of models.

In both cases STERN applies the acceptability criterion defined by Equation 4.1 

(see §4.2.2.5) (R2_ASSESS_M0DEL & R1_HYP0_ASSESS_WRT_M0DELS). For 

example, when STERN was (dis)confirming the effective weight law. Equation 

5.1, using the inclined plane paradigm, one model was generated and three
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instances from that model. The instances were tested and just one was found to 

have a non -zero acceptability of 0.996. Thus the overall acceptability of the model 

is 0.332 (= (0.0 + 0.0 + 0.996) /  3). In addition to the inclined plane's model, one 

model was inferred for the pendulum paradigm, but was found to have an 

acceptability of zero. Thus the overall acceptability of the hypothesis is 0.166 (= 

(0.0 + 0.332) /  2).

Typically, once a hypothesis has been considered with all the existing 

experimental paradigms STERN simply moves on to the next hypothesis. 

However, if the hypothesis is a member of a group of related hypotheses, such as 

the law of free fall (IV, Table 4.1), STERN may perform an additional inference. 

Such groups of hypotheses are formed by STERN's strategy for generating new 

hypotheses from old (Chapter 7). The group of hypotheses has mutually exclusive 

members; that is, only one can be acceptable. Thus when STERN confirms the law 

of free fall all the others in the same group must be unacceptable (IV, Table 4.1). 

STERN makes the other hypotheses unacceptable by setting their acceptability 

measure to zero. This prevents STERN from unnecessarily attempting to confirm 

hypotheses it knows to be unacceptable by other means.

We have considered the three stages of STERN's confirmation strategy. The 

sheer number of knowledge types used and processes modelled gives an initial 

impression of the completeness of STERN. In the next section we will consider this 

in more detail and we will see how STERN has managed to overcome limitations of 

existing systems.

5.6 STERN ASSESSMENT ON CONFIRMATION

The quality of STERN's ability to confirm hypotheses can be assessed in two 

ways; (i) how well it models this aspect of the Galilean episode and (ii) how 

STERN compares with previous discovery systems that perform similar types of 

processes.
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5.6.1 Completeness Of The Confirmation Strategy

In Chapter 4, we saw that STERN models the whole of the Galilean episode 

rather well. The confirmation strategy is called upon by STERN four times: first to 

disconfirm the Aristotelian laws; second to test the hypotheses that were generalized 

from experimental results; third to examine new hypotheses that have been 

generated from old hypotheses; and fourth after new experimental paradigms had 

been invented. In each case STERN successfully judged as acceptable the 

hypotheses that Galileo thought were true. Further, no hypotheses were considered 

as acceptable when they were not generally valid - STERN did not produce false 

positive hypotheses.

The overall success of the confirmation strategy argues for the acceptability of 

the criterion of acceptability assumed in STERN. The criterion is basically one of 

explanatory breadth, but it does not just consider numbers of items of evidence. The 

acceptability of hypotheses is assessed in terms of the relative successes of its 

models, that are in turn assessed in terms of the relative success of its instances. 

The instances are compared directly with experimental tests. In this way the law of 

free fall was found to be the only generally-acceptable hypothesis in the domain.

Chapter 3 highlighted the importance of both qualitative and quantitative 

reasoning in Galileo's inferences. The modelling of the confirmation strategy 

acknowledges this by dealing with both quantitative and qualitative hypotheses, 

models and instances. Although STERN considers individual hypotheses in turn, 

previously-assessed qualitative hypotheses may influence the way later quantitative 

hypotheses are assessed. For example, the instantaneous acceleration law was 

initially thought to be valid and thus permitted speed terms to be substituted for 

distance and time in equations early on. However, later in the episode the law was 

shown to be unacceptable and other means were required to deal with the speed 

term.
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The results provided by the experiment simulator contain a realistic amount of 

noise. STERN is able to cope with this adverse influence on experiments during the 

comparison of instances and experimental tests. The function that determines the 

predictive accuracy of an instance takes noise into account The greater the noise the 

less the degree of acceptability. Dealing with noise in experimental data is one of the 

aspects of determining the reliability of the experiments.

The importance of the communication between theory and experiments during 

the confirmation strategy is clearly seen in STERN. When choosing which 

hypothesis to test it is necessary to know if the hypothesis has already been 

considered with all the manufactured experimental paradigms. The generation of 

models and the making of predictions relies on the knowledge of the experimental 

paradigm and experimental setup that is to be accounted for. The design and 

performance of experimental tests needs information about the predictive instance so 

that the two can eventually be compared.

STERN models the ability of scientists to recognize mutually exclusive or 

contradictory theories and to differentially assess their acceptabilities when just one 

has been successfully tested. A simple mechanism groups together hypotheses that 

are obtained simultaneously from a single inference. STERN uses information 

during the confirmation strategy to reduce the size of the hypothesis space. For 

example, when the law of free fall was found all the other hypotheses with similar 

terms were known to be unacceptable. Their measures of acceptability were set to 

reflect this and from then on they were simply ignored.

In general, STERN is well able to model the confirmation of hypotheses. As we 

will see its abilities go beyond those of previous systems.

5.6.2 Advances On Previous Work

In Chapter 2 we saw that most previous computer models of scientific discovery 

have tended to concentrate on the generalization of instances into models (eg. all the 

programs of the BACON school), so only a few programs can be compared directly
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with the confirmation strategy in STERN. However, none of these follow a 

discovery path anything like STERN's and none model a domain like the Galilean 

one. MetaDendral, SDDS and KEKEDA will be considered in detail.

MetaDendral (Buchanan & Feigenbaum, .1978) does possess a representation 

that can be considered as a hypothesis from which models are generated. However, 

this hypothesis is simply the most general rule that describes how a molecule may 

fragment. Models in this view, are the child rules that are successive specializations 

of a original parent rule, as generated by the RULEGEN subprogram. Thus the 

hypothesis merely serves as the root of the search tree of possible fragmentation 

rules, without being related to its children and grand children in any substantive 

sense. In STERN, however, many different hypotheses (not just one) are 

considered. Furthermore, the structure of model equations depends on the particular 

form and terms of hypotheses, and instances are specific instantiations of a model.

The SDDS model of discovery (Klahr & Dunbar, 1988) has not been 

implemented in a running program, however it does propose processes that are like 

those instantiated in STERN, including a subset of those employed in the 

confirmation strategy. One possible pattern of discovery permitted by SDDS's 

processes hierarchy starts by fully specifying a proposition using prior knowledge 

or old outcomes (see Figure 2.2). The testing of the proposition involves: (i) 

designing an experiment by focusing  on some aspect of it and choosing and 

setting  variables; (ii) mdkmg di prediction; (iii) running the experiment and 

observing the outcome; and (iv) matching the prediction and outcome. Finally, the 

decision  is made whether to accept or reject the proposition by reviewing  

outcomes. This pattern maps neatly onto STERN's processes of; generating 

instances from a model, designing and performing an experimental test, and 

comparing the instance and test result to assess the model (see Table 2.2). 

However, Klahr and Dunbar (1988) do not have quantitative measures of 

proposition acceptability.
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A similar situation occurs between STERN and KEKEDA (Kulkami & Simon, 

1988) as just described for STERN and SDDS. KEKEDA simulates the discovery 

of the Urea Cycle by formulating a model that involves several different reactions in 

sequence. Each of these reactions, or propositions, is formulated and tested in turn 

by making predictions about the nature of the reaction with specific participating 

substances. The confidence that the reaction is correct is determined in part by the 

number of correct predictions made from it. All this is similar to that part of 

STERN's confirmation process that just focuses on model confirmation. To map 

KEKEDA into STERN read; model for reaction, prediction for instance, substance 

for term or parameter, and confidence for measure of acceptability. The essential 

point is that KEKEDA and SDDS are subsumed by STERN.

A limitation of STERN's confirmation strategy is that it only considers one 

hypothesis at a time. Sleeman et.al.'s (1989) Architecture for Theory-Driven 

Scientific Discovery notes that well established core theories in conjunction with 

less general weak theories may both play a part in the generation of new theories. 

The work on problem solving in the domain of physics problems (eg. Larkin 

et.al., 1980; Bundy et.aL, 1979; and Luger, 1980) shows that scientists can use 

several principles (hypotheses) in combination to account for a particular situation. 

When considering more than one hypothesis at a time, heuristics like those found in 

AM and EURISKO (Davis & Lenat, 1982; Lenat 1983; Lenat & Brown, 1984) that 

consider the "interestingness" and "worth" of concepts may be required to choose 

between competing hypotheses with the same degree of acceptability. The ability to 

deal with multiple hypotheses at one time may be needed by STERN in the future, if 

it is to cope with more complex theories. However, in the Galilean domain dealing 

with one hypothesis at a time approach is sufficient.
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5.6.3 Conclusion

Clearly STERN's confirmation strategy is compatible with previous successful 

scientific discovery systems and proposed models. However, STERN also 

overcomes some of their limitations. In particular:

• All the types and levels of scientific knowledge posited by the framework are 

represented.

• Processes operating on all the types and levels of knowledge are modelled 

including many that require communication between theory and experiment

• The acceptability of hypotheses and models is assessed in terms of breadth of 

experimental evidence as indexed by the acceptability and numbers of models and 

instances, respectively.

• Noise in experimental results is dealt with whilst predictive accuracy is assessed 

using a function that considers all the available data at once.

• Many different types of communication occur between all levels of the theory and 

experiment components in a research programme.

• Background knowledge was used to help in the generation from hypotheses to 

models, and from model to instances.

• Mutually exclusive hypotheses are considered as groups to improve the efficiency 

of the discovery processes by dramatically cutting down the searched space.

Many of these abilities are are not unique to STERN's confirmation strategy but 

range across all of the program's main processes, as we wül see in the following 

chapters.

In this chapter we have seen how STERN assesses the acceptability of existing 

hypotheses by generating models and making predictive instances. But where do 

the hypotheses come from in the first place? The next two chapters will answer this 

question. Specifically, in the following chapter we will see how STERN employs a 

strategy of experimental-led inductive generalization to find hypotheses.
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Chapter 6
Generalization From Experiments To 
Hypotheses

6.1 INTRODUCTION

Galileo’s original intention was to confirm the Aristotelian laws by comparing 

predictions made from them against experimental results. However, as we saw in 

Chapter 5, the laws were found to be unacceptable and he was left with a small 

number of experimental results. In the next stage of this episode of discovery 

Galileo found new hypotheses by generalizing experimental results. This involved 

designing and performing a wider range of experiments than before to establish a 

body of experimental results. These results were then generalized to form 

hypotheses. Such a generalization strategy is an important constituent of the overall 

discovery process.

The generalization of empirical data into higher level theoretical knowledge is 

the area in which most previous work on scientific discovery has focussed (see e.g. 

Langley et.aL, 1987; Thagard, 1988a; Falkenhainer & Michalski, 1986; Gerwin, 

1973; Qin & Simon, 1990). In terms of the framework for scientific discovery all 

such work has typically concentrated on the formation of a model from a set of 

instances.

STERN instantiates .the inductive process in a more complete manner. It deals 

with the selection of experimental paradigms, the design and performance of 

experimental tests and the interpretation of the results into instances. The instances 

are generalized to form models and the models generalized to form hypotheses. 

Whereas previous systems have only found models, STERN finds a large variety of 

quantitative and qualitative hypotheses. These hypotheses give STERN a deep
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understanding of the domain; for example, the qualitative hypotheses tell STERN 

which terms are relevant or irrelevant to the characterization of the phenomena. 

During the generalization stage of of its modelling, STERN also makes a "genuine" 

discovery - the law governing the period of swing of pendulums.

STERN chooses to invoke the strategy that generalizes experimental results into 

hypotheses when all existing hypotheses have been tested and show n to be 

unacceptable but experim ental paradigms remain to be accounted for (rule 

RO_START_INDUCE o f Strategy chooser).

This chapter considers the experimental-led inductive generalization to 

hypotheses, beginning with an overview of the process (§6.2); this is followed by a 

detailed examination of the stages in the strategy (§6.3 to §6.5). Finally, 

comparisons are made between this aspect of STERN's abilities and previous 

discovery systems (§6.6).

6.2 STAGES IN MODELLING GENERALIZATION

The strategy employed by STERN to generalize from experimental results into 

hypotheses can be summarized diagrammatically (see Figure 6.1). The boxes in 

Figure 6.1 are levels of knowledge as given by the framework and the circles are 

inference processes. STERN uses the models into hypotheses class of rules to 

control the process (Table 6.1).

The process starts with the selection of an experimental paradigm, such as the 

pendulum. It has not been accounted for by any acceptable hypotheses stored on the 

theoretical side of the research programme (R3_CH00SE_PARADIGM). From the 

paradigm, an experimental setup is chosen; such as the setup allowing the pendulum 

to swing freely in a periodic manner. This in turn permits STERN to design various 

experimental tests with different parameters as the INPUT-M and the OUTPUT. For 

example, one test may involve manipulating the length of the pendulum to see how
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Table 6.1 MODELS INTO HYPOTHESES Rules (RULES,.3)

R3_CHOOSE_PARADIGM *
C ondition:

There is no active experimental paradigm, 
and the active hypothesis (if there is one) is firame,
and there are stored experimental paradigms for the research programme of which at least one 

has not been acceptably accounted for by previous hypotheses or is being considered with 
active hypotheses now.

A ction:
Construct and make active an hypothesis frame for the storage of models if none already exists, 
and make active the manufactured experimental paradigm that has the greatest product of 

number of setups and manufacture ease that has not been acceptably accounted for by 
previous hypotheses,

and add the name of the paradigm to the list of names stored under the active hypothesis

R 3_G E T _M 0D E L S
C ondition:

There is an active experimental paradigm, 
and no active model(s).

A ction:
Call the PS with Instances into models (RULES_7) to obtain models from experimental 

setups and instances to generalize the models into hypotheses.

R 3_S T 0R E _M 0D E L S
C ondition:

There an active list of models.
A ction:

Store the models under the active hypothesis (ie. copy the list of models and then clear them).

R 3_G EN ER A LISE_M 0D ELS
C ondition:

There is a single active hypothesis with associated models.
A ction:

Call the PS with the domain specific rules in generalise_models slot of the theory frame (i.e.. 
Generalize models, RULES_10) to generalise the models into hypotheses.

On return make inactive any current models or experimental paradigms

*The order of rules indicates their relative priority in conflict resolution.
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the period of swing varies. STERN then performs the experiment to obtain 

experimental results (using its experiment simulator). To be able to work with the 

results theoretically STERN must convert them into instances. This interpretation 

process mainly involves finding the corresponding theoretical terms for particular 

experimental parameters. Many instances are obtained from many experiniental 

tests. Once all the experimental tests for a given experimental paradigm have been 

performed and interpreted into instances, STERN can go about generalizing the 

instances to form models. Both qualitative and quantitative models are inferred and 

the experimental paradigm to which they applied is noted. One of the models that 

STERN finds at this stage is the law relating the length of a pendulum to its period 

of swing. In the same way STERN obtains many other models for the same 

experimental paradigm and stores them (R3_GET_M0DELS & R3_ST0RE_M0DELS). 

The whole processes is repeated for the other available experimental paradigms. 

STERN finally generalizes the many models associated with specific experimental 

paradigms into hypotheses (R3_GENERALISE_M0DELS).

STERN designs many experimental tests for each experimental setup. Thus it 

employs repeated cycles of the processes that perform the testing and interpretation 

of experimental results into instances (i.e. the tests into instances rules, Table 6.2). 

Similarly, an experimental paradigm may have more than one experimental setup. 

Hence, cycles of processes are also associated with each setup (i.e. the instances 

into models rules. Table 6.3). One of theses cycles consist of four processes in 

sequence: (i) selecting an experimental setup; (ii) designing experimental tests; (iii) 

performing all the tests and interpreting their results into instances (i.e. sets of 

previous cycle just described); and (iv) generalizing the instances into a model. 

Hence, in overview, STERN's generalization strategy consists of cycles of 

processes which employ sub-processes that also comprise cycles of nested 

processes at a deeper level (see also. Figure 4.2).

This rather complex corpus of processes can fortunately be broken down into
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Tahle 6.2 TESTS INTO INSTANCES Rules (TtULES 11)

R ll_IN T E R P _T O _IN ST *
C ondition:

There is no active instance,
and an active experimental test that has been performed.

A ction:
Call the PS with the rules in the theory frame interp_expttest slot Interpret, RULES_6) 

to interpret the experimental test into an instance.

R 11_PE R F0R M _E X PT _T E ST
C ondition:

There is an active experimental setup, 
and no active instance,
and an active experimental test yet to be performed (ie. the output parameter values are yet to be 

found).
A ction:

Call the PS with the rules in the experiment frame perform_expttest slot (i.e.. Experimenter, 
EXPT_RULES) to carry out the experiment

*The order of rules indicates their relative priority in conflict resolution.
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stages. We can think of the overall generalization as having three stages: (i) 

obtaining experimental test results from experimental paradigms; (ii) interpreting test 

results into instances; and (iii) generalizing instances into hypotheses via models. 

We will consider details of the generalization in STERN in terms of the three stages 

in the next three sections. STERN uses seven classes of rules to model this strategy 

(Tables 6.1 to 6.5 & 6.7). The priority of the rules is given by their order (in each 

table).

6.3 OBTAINING EXPERIMENTAL RESULTS

As we saw in the summary of the whole generalization strategy (in the previous 

section), just obtaining experimental results requires STERN to: (i) choose an 

experimental paradigm and setups; (ii) design experimental tests; and (iii) perform 

the tests to obtain the results.

6.3.1 Selecting Experimental Paradigms & Setups

STERN chooses an experimental paradigm from amongst those that are 

available (see Chapter 8). The exact choice depends on (i) whether a paradigm has 

been adequately accounted for by an existing hypothesis and (ii) a pragmatic value 

that is calculated for each paradigm. For a given paradigm this pragmatic value is 

the product of the number of setups and their ease of manufacture. The experimental 

paradigm with the lowest value is chosen (R3_CH00SE_?ARADIGM). This just 

happens to be the pendulum paradigm, because it is so easy to manufacture its 

setups. At this point an active hypothesis is also constructed as a repository for 

models found later on.

For the active experimental paradigm STERN now needs to choose an 

experimental setup, with the long term aim of obtaining models (R3_GET_M0DELS 

invokes the instances into models rules. Table 6.3). When selecting an 

experimental setup STERN simply chooses the first that has not already been 

considered, provided that it does not need to be part of a combined experiment
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Table 6.3 INSTANCES INTO MODELS Rules (RULES 7)

R7_OBTAIN_EXPTTESTS*
C ondition:

There is an an active experimental paradigm,
and an active experimental setup with no associated (stored) experimental tests, 
and no active experimental tests,
and no active instance. ^

A ction:
Make a list of active experimental tests by: (i) making a list of experimental parameters 

preferring those from the active setup over the active paradigm; (ii) making all 
combinations of pairs of parameters without duplication (iii) eliminating pairs that are 
trivially related by examining pertinent background knowledge; (iv) making an experimental 
test for each pair in turn, choosing the input-m and output parameters according to their 
values of ease of manufacture, and setting the range of input-m and fixed values using their 
maximum and minimum permitted values given by the fillers of those slots in the 
parameter.

R7_M AK E_INSTA NCES
C ondition:

There is an an active experimental paradigm,
and an active experimental setup,
and active experimental test that is a frame.

A ction:
Call the PS with Tests into instances (RULES_11) to obtain instances from experimental 

tests.

R7 EXPTTEST PREFERENCES  
C ondition:

There is an an active experimental paradigm and experimental test, 
and the experimental setup does not have any associated tests.

A ction:
Store all experimental tests that have speed or time as input-m or ouQ)ut parameters (ie. are 

actually concerned with accelerated motion) in the setup’s list of tests.

R 7_ST 0R E _IN ST A N C E S
C ondition:

There is an active experimental paradigm 
and active instance(s).

A ction:
Add the instance(s) to the list of instances in the models instance slot, 
and deactivate the instance(s).

R 7_C H 00SE _E X P T T E ST
C ondition:

There is an an active experimental paradigm,
and an active experimental test with associated experimental tests,
and no active experimental tests.

A ction:
Remove the and make active the first experimental test associated with the experimental setup.

continued



Table 6.3 Continued INSTANCES INTO MODELS Ruks
(RULES .7)

R 7_C H 00SE _SE T U P *
C ondition:

There is an an active experimental paradigm, 
and no active experimental setup,
and an active model that is a frame, ^
and experimental setups that have not yet been tried that do not have to be part of a combined 

experiment.
A ction:

Construct an active model if one does not already exist,
and make active an experimental setup that has not already been covered by the model that does 

not have to be part of a combined experiment, 
and add the setup's name to the model's list of such names.

R7_G ENERALISE_INSTANCES
C ondition:

There is an an active experimental paradigm,
and an active model that is a frame with associated instances,
and their is no active instance.

A ction:
Call the PS with the rules stored in generalisejnstance slot of the theory frame (i.e.. 

Generalize instances, RULES_4) to generalise instances into models.

*The order of rules indicates their relative priority in conflict resolution.
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(R7_CH00SE_SETUP). At this point an active model is constructed as a repository 

for instances that are made later on. Now that an active setup exists STERN uses it 

to design experimental tests.

6.3.2 Designing Experimental Tests

The procedure STERN employs to design experimental tests from an active 

setup involves five stages. First, a list of all the experimental parameters is made, 

preferring those from the active setup over the active paradigm 

(R7_0BTAIN_EXPTTESTS). For the pendulum setup these paradigms are ones for 

tim e, d ista n ce , heigh t, length , w eigh t, vo lum e, size, angle  and speed . 

Second, all the combinations of pairs of parameters are made without duplication; 

36 for the pendulum setup. Third, pairs of parameters are eliminated if they are 

known to be trivially related using pertinent background knowledge. For the 

pendulum setup, those pairs with any combination of distance, height, length, 

size, and angle are eliminated using the geometric knowledge. The {weight 

volume) pair is eliminated using the relations for spherical bodies, leaving 27 pairs. 

Fourth, experimental tests are made for each pair in turn (i.e. their frames 

constructed). The parameters to be the input-m and output are chosen from the pairs 

according to their relative ease of manipulation and observation (e.g. for the {time 

size), input-m = size, output = time). A  series of evenly spaced values are 

calculated for the input-m parameter using its maximum and minimum permitted 

values. The magnitude of each fixed parameter is set to its mid-range value. (The 

series output parameters values are to be found by performing the test.). Fifth, 

those experimental tests that have no relevance whatsoever to the domain are 

weeded out (R7_EXPTTEST_PREFERENCES). When modelling the Galilean domain 

STERN removes tests that have nothing to do with motion; that is, those that do not 

include either a time or a speed parameter as an input-m or an output. Thus a total 

of 15 experimental setups are finally designed for the pendulum setup.
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In this way STERN makes many experimental tests. Each experimental test is 

considered in turn, with the aim of obtaining instances (R7_MAKE_INSTANCES 

invokes the Tests into instances rules). Each experimental test is performed and its 

results interpreted into instances.

6.3.3 Performing An Experimental Test

STERN performs an experiment on active tests using its experiment simulator 

(see see §4.5) (Rll_PERFORM_EXPT_TEST invokes the Experimenter rules). The 

details of this processes were considered when we looked at the confirmation 

strategy (see §5.3.2). The net effect of performing the test is that the output 

parameter values of the experimental test are found. STERN's test results may now 

be interpreted into instances.

6.4 INTERPRETING EXPERIMENTAL RESULTS

STERN attempts to find both quantitative and qualitative instances from the 

experimental test results (R11_INTERP_T0_INST invokes Interpret, Table 6.4).

The interpretation to instances with quantitative data has two parts: (i) finding 

corresponding theoretical independent and dependent terms for the input-m and 

output experim ental parameters; and (ii) copying their respective series o f  

m agnitudes (R6_SIMPLE_TRANSFER). An instance is constructed for each set o f  

quantitative data. The acceptability o f  the instance is set to 1 to reflect the fact that 

the magnitudes o f the instance were obtained directly from experiment.

When STERN looks for qualitative instances it is in effect modelling the 

observations (rather than measurements) that Galileo made during the performance 

of experiments. Thus STERN must convert the quantitative experimental data into 

qualforms (R6_FIND_QUALF0RMS). STERN recognizes many qualforms (Table 

4.13) and possesses functions that spot whether such qualforms apply to two 

related series of values. For example, the test for the relevance of the INCREASE 

qualform requires that all magnitudes in both series are monotonically increasing.
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Table 6.4 INTERPRET Rules (RULES 6)

R6_SIM PLE_TR AN SFER *
C ondition:

There is an list of active instances,
and an active experimental setup that has input-m and ouQ)ut parameters that are measurable and 

are not unrelated (ie. the independent and steady qualforms do not apply to the input-m and 
output).

A ction:
Construct a new instance using the experimental test parameters to find the conresponding 

theoretical terms to fill the ^propriate slots, 
and set the degree of acceptability slot of the instance to unity, 
and make inactive the experimental test

R 6_F IN D _Q U A L F 0R M S
C ondition:

There is an active experimental setup, 
and no active instance.

A ction:
Identify qualforms based on the input-m and output parameters of the experimental test 

converted into their corresponding theoretical terms, 
and construct an instance for each qualform with the degree of acceptability set to unity.

*The order of rules indicates their relative priority in conflict resolution.
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These functions are applied to the lists of values from the experimental test input-m 

and output parameters. If a function finds an applicable qualform STERN 

constructs an instance for the qualform.

The instances that STERN finds by interpreting each experimental test result are 

stored (R7_ST0RE_INSTANCES). When all the experimental tests for an active 

experimental paradigm have been considered (via its setups), STERN starts to 

generalise the stock of instances into higher theoretical knowledge beginning with 

models.

6.5 GENERALIZING INSTANCES INTO HYPOTHESES

STERN does the generalization of instances into hypotheses in two stages: (i) 

models are found from the instances; (ii) the models are generalized to form 

hypotheses.

6.5.1 Instances In to  Models

When STERN has finished performing and interpreting experimental tests from 

a particular experimental paradigm there will be many stored instances (in the model 

acting as a repository). STERN generalizes the instances into models (R7_GENERA- 

LISE_INSTANCES inwokts Generalize instances. Table 6.5). STERN finds 

qualitative models from qualitative instances, and quantitative models from 

instances with numerical data.

The aim of STERN when generalizing qualitative instances into models is to 

obtain model-qualforms that validly apply to each of the experimental setups, under 

the active experimental paradigm (R4_M0DEL_QUAL). STERN groups together 

instances with identical qualforms. For example, all instances with 

(INCREASE T_V T_H) are put together. Those groups that have fewer than a user- 

specified number of qualforms are rejected. The qualform that is common to each 

group is used directly in the construction of a new model, with acceptability and 

tractability measures set according to the number of instances in the group.

-124-



Table 6.5 GENERALIZE INSTANCES Rules (RULES 4)

R4_M ODEL_QUAL*
C ondition:

There is an list of active instances some of which have qualforms.
A ction:

Generalization of instances into qualforms by: (i) finding all instances that have qualforms; (ii) 
making a list of just qualforms from instances; (iii) constructing a model for those 
qualforms that occur X or more times, where X is a user specified integer.

R 4_M 0D E L _E Q N S
C ondition:

There is an list of active instances,
and some of the instance have dependent terms.

A ction:
For each quantitative instance make a model by: (i) obtaining the index of the power function 

that b^t fits the independent and dependent terms by finding the gradient of line of the graph 
of the logs of the terms using the least squares fit technique; (ii) finding a fraction that is 
equal to the index within a user specified accuracy, and maximum integer range of the 
numerator and denominator; (iii) when a rational index is found construct a model with an 
equation in terms of the independent and dependent using the fractional index, with the 
tractability and acceptability set accordingly, 

and make the instance(s) inactive.

R 4 P R E P A R E
C ondition:

There is an active model that is a frame with associated instances, 
and no active instance(s).

Act ion:
Remove the instances stored under the active model and make them active.

*The order of rules indicates their relative priority in conflict resolution.
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However, when modelling, the Galilean episode STERN has few experimental 

setups for each experimental paradigm. Thus the user-defined number of instances 

per group is set to one: that is, all qualitative instances become models with 

qualforms. This simply reflects that fact that the experiments in this domain do not 

have the same degree of complexity found in many other fields. However, this does 

not mean that there is no difference between instances and models in STERN. Some 

models are generalized from more than one instance and quantitative instances are 

very different from quantitative models, as we will now see.

The generalization to quantitative models in STERN involves finding an 

equation relating together the instance independent and dependent terms, given their 

lists of values (R4_M0DEL_EQNS). This is exactly the sort of task that BACON. 1 

(Langley et.al., 1987) performs. However, a rather different approach is adopted 

in STERN.

Consider the power function of two terms. A graph of the terms with values 

plotted as logarithms will be a straight line whose gradient is equal to the power, or 

index, of the function. Thus given a set of data the best fitting power function can 

be found by plotting a log-log graph and finding the straight line that intersects most 

points. This procedure is exploited by STERN in its three stage process for finding 

equations. First, the index of the power function is found. Graphs cannot be plotted 

by STERN so the least squares fit  method is applied to the logarithms of the values 

of the instance's independent and dependent terms. The result is an index, n, 

whose value is a positive real number. However, Galileo only considered simple 

power equations with rational indices. Similarly, in STERN the second stage of the 

processes involves finding a fraction of equal magnitude to the index. Let the 

fraction be p!q, where q is the denominator and p  the numerator. Now, STERN 

only considers values of p  and q that are integers below a certain user-specified 

limit (typically 3). So a search of the rational index takes place in the space of
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fractions defined by the different combinations of p  and q. A deviation test 

determines whether p!q is sufficiently close to n by testing if the difference 

between n and ptq is less than some user-specified value (typically 0.015). If and 

when a suitable value of p!q is found, the third stage constructs a model that has a 

power equation relating the two terms with p!q as the index. When the index is 

itself an integer (e.g. 2p=q) the standard form of equation is used with multiples 

of one term. For example, STERN finds the equation relating the period (T_TIME) 

of swing of a pendulum to the length of its chord (T_S):

(= T_S (* T_TIME T_TIME)). . . . (6.1)

A model is constructed for the equation, and the tractability and acceptability of the 

model are set. In the case when no rational index is found, no model is constructed.

Overall this procedure differs in three significant ways from the technique 

employed in BACON. 1 (Langley et.al., 1987). First, the first stage of STERN's 

procedure uses just the one process to find the relation between the terms, in effect 

condensing BACON's multiple applications of regularity spotters into a single 

operation. Second, the procedure is more efficient because the search processes in 

the second stage only examines the space defined by the integer values of p  and q, 

where a new state is generated by adding (or subtracting) 1 to p  or q. BACON's 

search, however, is in a space of terms; each state is generated by finding a new 

term but also calculating a whole new series of values for that term. Third, the least 

squares technique that initially finds the index also has the effect of averaging out 

any noise in the data. BACON on the other hand employs a technique that examines 

whether each individual value is within a band centred on the mean of a constant 

term.

STERN discovers many models with qualforms and equations (see Table 6.6). 

Thirty three models are found that apply to the pendulum paradigm, and 21 that 

apply to the inclined plane. The qualforms with REPEAT+ and REPEAT- predicates 

only occur under the pendulum paradigm, indicating that repetitive motion (i.e. the
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Tablg-.6t6 Model Qualforms And Equations For Two Experimental 
ParadigTTijs

PEN DULUM

(FROM_ZERO T_V T_0) 
(REPEAT+ T_V T_S)
(STEADY T_V T_VOL)
(STEADY T_V T_W)
(REPEAT+ T_V T_L)
(REPEAT+ T_V T_H)
(REPEAT+ TjriME T_@) 
(REPEAT- TJTIME T_VOL) 
(REPEAT+ T_TIME T_W) 
(FROM_ZERO TJTIME TJL) 
(FROM_ZERO TJTIME T_H) 
(INCREASE T_V T_0) 
(REPEAT- T_V T_VOL) 
(INCREASE T_V T_L) 
(INCREASE T_TIME T_0) 
(INCREASE T_TIME TJL)
(= T S (* T TIME T TIME))

(REPEAT+ T_V T_0) 
(REPEAT+ T_V T_VOL) 
(REPEAT- T_V T_W) 
(FRQM_ZERO T_V TJL) 
(FRŒJZERO T_V T_H) 
(FROM_ZERO T_TIME T_0) 
(REPEAT+ T_TIME T_S) 
(STEADY T_TIME T_VOL) 
(STEADY TJTIME T_W) 
(REPEAT+ T_TIME T_L) 
(REPEAT+ T_TIME T_H) 
(INCREASE T_V TjS) 
(INCREASE T_V T_W) 
(INCREASE T_V T_H) 
(INCREASE T_TIME T_S) 
(INCREASE T TIME T H)

INCPLANE (inclined plane)

(STEADY T_V T_VOL)
(STEADY T_y T_W) ' 
(INCREASE T_V TJL) 
(INCREASE T_V T_H) 
(INCREASE T_V TJ))
(STEADY TJTIME T_W) 
(FROM_ZERO T_TIME T_L) 
(FROM_ZERO T_TIME T_H) 
(FROM_ZERO T_TIME TJ))
(= T J  (* T_TIME T_TIME) ) 
(= T L (* T TIME T TIME) )

(INCREASE T_V T_VOL) 
(FROMJERO T_V TJ) 
(FROMJERO T_V T_H) 
(FROMJERO T_V TJ) 
(STEADY T_TIME TJ/OL) 
(INCREASE T_TIME T_W) 
(INCREASE T_TIME TJ) 
(INCREASE TJIME TJ) 
(INCREASE TJIME TJ)
(= T H (* T TIME T TIME))
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swinging) is unique to that experiment. Equation 6.1, found under the pendulum 

paradigm, correctly describes the relationship between the period of swing of a 

pendulum and its length (size). This is arguably a "genuine" discovery made by 

STERN, because there was no intention that this model should be found on the part 

of the programmer. However, with hindsight it is not completely unexpected given 

STERN’s realistic experiment simulator. Notice that the three model-equations 

found under the inclined plane paradigm have the same form. This is not surprising 

because distance, height and length are related by the geometry of the inclined 

plane. Of the three equations, the two covering distance & time, and height & time, 

are expressions of Galileo's law of free fall. However, in this form these equations 

are not completely general.

Thus many models are inferred by STERN for each experimental paradigm. The 

models are stored (R3_ST0RE_M0DELS) and further experimental paradigms are 

considered. Once all available paradigms have been considered an attempt is made 

to generalize the models into hypotheses.

6.5.2 Models In to  Hypotheses

The generalization of models to form hypotheses also considers qualitative and 

quantitative knowledge separately (R3_GENERALISE_M0DELS invokes Generalize 

models. Table 6.7).

The generalization of qualitative models into hypotheses by STERN is a three 

stage process, whose aim is to obtain hypotheses that range over a sufficiently large 

number of experimental paradigms (R10_HYPO_QUALS). First, all qualitative models 

are grouped according to similar qualforms. Second, those groups that have one 

model for every available experimental paradigm are chosen; that is, the one type of 

qualform common to the group is applicable across all the experimental paradigms. 

In STERN there must be two models to the group as two experimental paradigms 

have been considered. In the third stage, hypotheses are constructed that contain a 

qualform from each chosen group. The acceptability and tractability of each
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Table 6.7 GENERALIZE MODELS Rules (RULES^lQl

R10_H YPO _Q UALS*
C ondition:

There is an active list of models some of which are qualitative.
A ction:

Generalization of qualitative models with into qualitative hypotheses by: (i) grouping together 
all models with similar qualforms; (ii) choosing groups that have more than a user specified 
number o f models that account for different experimental paradigms; and (iii) constructing a 
hypotheses for each of the groups using the group's qualform and set the acceptability and 
tractability appropriately.

And remove qualitative hypotheses from the current list of models.

R10_H Y PO _EQ N S
C ondition:

There is a list of active quantitative models.
A ction:

For each quantitative model a model is made with the same equation and the acceptability and 
tractability are set appropriately.

R 10_PR E PA R E
C ondition:

There is an hypothesis that is a frame with associated models, 
and no active model.

A ction:
Remove the models from the hypothesis and make them active.

*The order of rules indicates their relative priority in conflict resolution.
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hypothesis is set according to the number of models in the group. In the modelling 

of the Galilean episode, STERN reduces the 50 qualitative models down to just 12 

hypotheses (II, Table 4.1). This demonstrates the importance of modelling the 

hypothesis and experimental paradigm levels of scientific research programmes. 

Previous discovery systems have tended not to do so and have consequently had to 

deal with explosive numbers of models.

The twelve qualitative hypotheses that STERN has found contain some very 

valuable information (II, Table 4.1). For example, the qualform (STEADY T_TIME 

T_VOL) indicates that T_TIME is unrelated to T_VOL, because T_TIME is constant as 

T_VOL is varied. Now as the qualforms:

(STEADY TJIM E T_VOL) (STEADY TJIM E T_W)

(STEADY T_VT_VOL) (STEADY T_V T_W), . . . (6.2)

are all found in hypotheses, this means that the terms T_VOL and T_W (volume and 

weight) are not relevant to the characterization of naturally accelerated motion. By a 

similar argument using the INCREASE and FROMJERO qualforms, and STERN's 

other qualitative hypotheses (II, Table 4.1), we can see that STERN knows that 

T_V, T J IM E , T_H and T_L (speed, time, vertical and horizontal distances) are 

important to the characterization of the phenomena.

A simpler process performs the generalization of quantitative models into 

hypotheses. The desirability of quantitative hypotheses is contrasted by the 

comparative rarity of quantitative models, thus it seems worthwhile considering all 

models with equations as potential hypotheses. Hence, STERN simply constructs 

an hypothesis using the model's equation to fill the equivalent slot in the hypothesis 

(RlO_HYPO_EQNS). The measures of hypothesis acceptability and tractability are set 

to indicate the hypothesis is so far acceptable even though it has only been 

generalized from one model; later (dis)confirmatory testing will find out if the 

hypothesis is really acceptable. Four hypotheses are constructed by STERN in this
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manner (in, Table 4.1).

Since STERN has now found hypotheses using the strategy for the 

generalization of experimental results into hypotheses, control returns to the top 

level in STERN {Strategy chooser rules). New hypotheses have been found: the 

qualitative ones are applicable to all available experimental paradigms but the 

quantitative ones are not. Thus STERN chooses to try the confirmation strategy 

(described in detail in Chapter 5) on the quantitative hypotheses. For completeness, 

we will briefly consider what happens to the four new quantitative hypotheses 

during confirmation.

6.5.3 Partly Disconfirming The New Quantitative Hypotheses

The four hypotheses discovered by generalization are shown to be unacceptable 

by the confirmation process. The hypotheses are unable to account for the 

experimental paradigms that were not involved in their original formation. Attempts 

at making predictions fail when the hypothesis (law) describing the period of swing 

of a pendulum is applied to the inclined plane paradigm. This is because there is no 

parameter in that paradigm that coiresponds to the size parameter (i.e. the length of 

the pendulum cord). STERN has thus correctly demonstrated that the pendulum law 

is just a model. Two of the other three hypotheses are variations of Galileo's law of 

free fall. STERN manages to generate predictions for the pendulum experimental 

paradigm with both hypotheses. However, their predictive instances do not match 

well with the experimental test results. The equations were originally inferred from 

the linear motion of the inclined plane. Thus STERN has correctly found that these 

equations cannot apply to the curved path of the pendulum. In other words the two 

variations of Galileo's law are not the most general form of the law.
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6.6 STERN ASSESSMENT ON GENERALIZATION

6.6.1 Completeness Of The Generalization Strategy

Significant discoveries have been made by STERN using the strategy for the 

generalization of experimental results into hypotheses. All the terms that are relevant 

to the characterization of the phenomenon (i.e. speed, height, time and length^, and 

those that are irrelevant (volume, weight), have been identified. Further, those 

terms that are relevant to only one experimental paradigm have also been delimited 

(such as the size and angle of the pendulum). Thus, STERN possess a full (mainly 

qualitative) understanding of the phenomenon. Quantitative models that describe the 

phenomenon in specific experimental paradigms have also been discovered (and 

shown by the confirmation strategy to be specifically limited to particular 

experimental paradigms).

Being able to deal with noisy data is something that computational models of 

scientific discovery should be able to do. The experimental simulator adds noise to 

instances but STERN is well able to cope with it. During the generalization of 

instances into quantitative models, noise in the data is naturally dealt with by the 

combination of: (i) the least squares method applied to the log-log "graph" of 

independent and dependent terms; and (ii) the accuracy of the match between the 

rational fraction and the index. Furthermore, this method allows STERN to find 

several correct model-equations without producing a false positive equation.

Designing experiments is a significant part of scientific discovery. STERN’s 

design abilities are sophisticated. Of the many experimental tests designed by 

STERN, no experiments are produced that consider trivial relations between 

parameters or that are irrelevant to the phenomena being investigated. The use of 

background knowledge and pragmatic knowledge about experiments are essential 

components of this ability.

The extent of communication between the theoretical and experimental sides of 

the research programme is less than in the confirmation strategy. However, this
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should not be considered a deficit. The reduced amount of communication simply 

reflects the fact that the design and performance of experiments, to build up a body 

of empirical results, does not require any theoretical considerations. Nevertheless, 

the correspondence between experimental parameters and theoretical terms has an 

underpinning role in the interpretation of experimental results into instances/It is 

only by the use of correspondence relations that STERN is able to determine that the 

law governing the period of pendulum swing was limited just to the pendulum 

paradigm.

In general, we have seen that STERN is well able to model the generalization 

from experimental results to hypotheses.

6.6.2 Advances On Previous Work

The generalization of empirical data into higher-level theoretical knowledge is 

the area that many previous scientific discovery systems have modelled. Typically, 

the current systems model the generalization of one set of data into a parsimonious 

description that constitutes a model (derived from several instances). Some of the 

computer models have considered quantitative inferences in this respect (e.g. 

BACON, Langley et.al, 1987; FARENHIET, Zykow, 1987), others have 

considered qualitative inferences (e.g. STAHL, Langley et.al, 1987; GELL- 

MANN, Fisher & Zytkow, forthcoming). Two program have even combined both 

types of inferences (e.g. IDS, Nordhausen & Langley, 1987; ABACUS, 

Falkenhainer & Michalski, 1986).

The generalization strategy in STERN not only models the generalization of 

instances into models, but also considers: the design and performance of 

experiments; the interpretation of experimental results; and the generalization of 

models into hypotheses (for both quantitative and qualitative representations). 

STERN clearly covers more ground than previous programs, but it does more than 

that Previous systems are in effect subsumed by STERN. For example, BACON. 1
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could in principle be substituted for the Generalize instances rules and not make 

any difference to STERN's overall performance.

BACON (Langley et.al, 1987) and ABACUS (Falkenhainer & Michalski, 

1986) use regularity spotters in the inference to equations from numerical data. To 

discover power relations STERN uses the more efficient log-log "graph" technique 

described in §6.5.1. However, STERN also uses regularity spotters in the shape of 

its qualforms but they differ in many ways from "conventional" regularity spotters. 

First, STERN's qualforms constitute explicit declarative knowledge in the program. 

Second, the number of different qualforms in STERN is more than double that of 

"conventional" regularity spotters. Third, the qualforms are considered at all levels 

of theory. These advances on the use of regularity spotters underlie many of 

STERN's powerful qualitative reasoning abilities. We will see how these abilities 

extend beyond the generalization to the generation of new quantitative hypotheses 

from old (Chapter 7).

STERN's qualforms are like the qualitative schema of IDS (Nordhausen & 

Langley, 1987) but are somewhat simpler. STERN and IDS differ in that IDS's 

qualitative schemata attempt to characterize the behaviour of a phenomenon as it 

progresses through a number of discontinuous states (e.g. melting, boiling). The 

schemata are induced as a preliminary step and form the basis for quantitative 

reasoning. STERN also uses its qualforms to infer quantitative theoretical 

knowledge but also employs them in other ways; for example to test the validity of 

substitutions of terms when confirming hypotheses (Chapter 5).

Previous models that have had some ability to design experiments have done so 

when some theoretical prediction is to be tested (i.e. Rajamoney et.al., 1985; 

Kulkami & Simon, 1988). STERN can do the same (as we saw in Chapter 5) but it 

can also design and perform a comprehensive range of experimental tests without 

reference to theory. This depends on the rich representation of experiments STERN 

possesses and the ability to use background knowledge.
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In terms of Klahr & Dunbar’s (1988) SDDS model one pattern of discovery is 

similar to STERN’s generalization strategy (see Figure 2.2). The process covers the 

induction of a. frame by the generation of experimental outcomes. This involves 

focusing on, choosing and setting the experimental variables to permit a trial to be 

run and outcomes to be observed. The outcomes are generalized into a frame. 

This SDDS process is equivalent to the design and performance of an experimental 

test and the generalization of the results into a model. Thus STERN subsumes 

SDDS as well as partly implementing its processes hierarchy.

6.6.3 Conclusions

In this chapter we have seen how STERN is able to obtain experimental results 

and generalize them into hypotheses. STERN also overcomes the limitations of 

previous discovery systems that generalise data into models. In particular, STERN:

• Designs experiments in the absence of (and also with) any theoretical predictions 

using background knowledge and the pragmatic information on experiments.

• interprets experimental results into theoretical inferences (STERN does not simply 

assume that experimental results are true data that feed straight into theoretical 

inferences).

• Employs a wide range of explicitly represented regularity spotters (i.e. 

qualforms), on all the levels of theoretical knowledge, that are used in many 

diverse ways throughout the program.

• Takes into account noise in experimental data during its generalization of instances 

into quantitative models.

• Obtains a deep and broad understanding of a domain by finding a wide range of 

qualitative hypotheses that indicate which terms are relevant or irrelevant for the 

characterization of the phenomena.

• Avoids an explosion in numbers of models that apply to experimental setups by 

generalizing models into hypotheses that apply to experimental paradigms.

STERN can perform the generalization of experimental results into theories. In
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the modelling of the Galilean domain many qualitative hypotheses were formed but 

no successful quantitative hypotheses. In the next chapter we will see how STERN 

finds successful quantitative hypotheses from the acceptable qualitative hypotheses 

and the unacceptable quantitative hypotheses discovered here. In particular, we will 

see how STERN infers the most general form of the law of free fall.
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Chapter 7
New Hypotheses From Old

7.1 INTRODUCTION

Galileo did not find the law of free fall by a direct process of inductive 

generalization from quantitative experimental data. We have seen in previous 

chapters how the Aristotelian laws were rejected and how experiments were 

performed to gather more information about the phenomenon in question, using two 

different strategies. Thus a wealth of information about the phenomenon is 

available, including: some definitely incorrect hypotheses, others that are only 

applicable in specific circumstances, and many generally-acceptable qualitative 

hypotheses. It was from this extensive body of knowledge that the law of free fall 

was eventually proposed. The law of free fall was finally accepted by Galileo when 

all of the proposed hypotheses had been tested against experimental results.

STERN models this important aspect of scientific discovery using its strategy 

that infers new hypotheses from old. The type of new hypotheses that STERN 

seeks are quantitative ones; that is ones with equations. To generate new hypotheses 

from old there must be some existing hypotheses. STERN chooses the strategy 

when attempts have been made to test the existing hypotheses against all the 

manufactured experimental paradigms. The strategy is instantiated in STERN’s 

New Hypotheses rule class (Table 7.1). STERN uses the strategy to find not only 

the correct law of free fall but many other quantitative hypotheses (although only the 

free fall hypothesis will eventually be shown to be acceptable). This chapter 

considers the details of how STERN generates new hypotheses from old. We will 

first consider the theoretical basis for generating new hypotheses and then see how 

STERN actually finds new hypotheses. Finally, we will consider how STERN
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Table 7.1 NEW HYPOTHESES Rules (RULES 14)

R 14_Q UA L_TO _EQ N S
C ondition:

All the hypotheses in the research programme have been tested experimentally.
A ction:

A multi-stage procedure with four processes to specifically find new equations:
(1) from all adequate qualforms find the set of pairs of increase and from_zero qualforms that 

have the same terms; (2) eliminate from the set any pairs of qualforms that have terms that 
are referred to by a semi acceptable quantitative hypothesis; (3) isolate the terms from the 
qualforms and generate exponential equations from the pairs of terms, with the term last in 
each of the pairs of qualforms being the term on which the exponential function operates, 
and the index ranging over all combinations of fractions that have denominator and 
numerator number equal to or less than 3; 

and for each equation generated construct a new hypothesis with the group slot filled by a 
symbol that relates all the equations that were originally inferred from the same pair of 
terms.
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overcomes the limitations of previous discovery systems which perform similar 

discovery tasks.

Before we considered the specific way in which STERN generates new 

hypotheses, we should note that STERN's approach is just one of several different 

methods that exist. For example, scientist may generate new hypotheses by analogy 

to theories found in related research programmes or even in quite different fields of 

science. Investigations of alternative approaches will be interesting work for the 

future that will build upon STERN's present abilities.

7.2 GENERATING NEW HYPOTHESES FROM OLD

Before we consider how STERN actually generates new hypotheses from old, 

we need to understand why STERN employs the techniques it does. Existing 

hypotheses can be used in three ways in the inference to new hypotheses. Known 

hypotheses can: (i) indicate which theoretical terms are relevant and irrelevant to the 

characterization of the domain; (ii) rule out specific forms of equations; and (iii) 

suggest likely forms of potentially acceptable equations.

7.2.1 Relevant And Irrelevant Terms From Qualforms

The strategy that STERN uses to generalize experimental results into hypotheses 

involves the discovery of many acceptable hypotheses with qualforms. STERN 

uses many different qualforms (Table 4.13). Qualforms state qualitative 

relationships that have been found between two terms; for example, 

(INCREASE A B), indicates that the magnitude of A increases monotonically with 

B. Qualforms in acceptable hypotheses thus contain valuable information that is 

useful in the present task. One way the qualforms can be used is in determining 

which terms are relevant or irrelevant for characterizing the phenomena.

Consider a qualform with a STEADY predicate; for example (STEADY T_V T_W). 

This qualform indicates that T_V is constant as T_W varies. Thus, T_W is not
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functionally related to T_V. When the qualform belongs to an acceptable hypothesis 

this means that the qualform has been found to apply in a way generally applicable 

to the phenomena. Therefore, we can conclude more generally that the phenomena 

will not be characterized by any equation that relates T_V and T_W. Similarly, an 

INDEPENDENT qualform indicates that there is no known relation between the two 

terms, thus its terms would not appear in an acceptable equation either.

Furthermore, most of the qualforms indicate definite relations between terms 

(e.g. (INCREASE T_V T_H)). Thus any term that does not appear in any qualforms 

whatsoever is unlikely to be relevant. For example, the term for the length of the 

chord in a pendulum, T_S, does not appear in any of the acceptable qualforms that 

STERN has found (Table 4.1). This is hardly surprising as this term only refers to 

a parameter that occurs in the pendulum paradigm.

Relevant terms can also be found using qualforms from acceptable hypotheses. 

For example, (INCREASE T_V T_H) indicates that T_V and T_H are in a functional 

relationship. Thus we would expect an equation to include both terms. The same 

argument applies to all the other qualforms except those with the STEADY or 

INDEPENDENT predicates (Table 4.13).

By a combination of aU three techniques just described, all the terms in a research 

programme can be classified as relevant or irrelevant. For example, STERN finds 

that T_TIME, T_V, T_L and T_H are relevant when modelling the Galilean episode. 

The irrelevant terms found include T_S, T_VOL and T_W, amongst others.

7.2.2 Unlikely Terms And The Forms Of Equations

STERN has existing hypotheses with equations in addition to hypotheses with 

qualforms. None of these equations are acceptable. Some are unacceptable and 

some partly acceptable. However, it is because they are not completely acceptable 

that they can play a part in the generation of new hypotheses in one of two ways, 

depending on their degree of acceptabihty.

First, an equation that is partially acceptable indicates that its terms cannot form
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the basis of a generally acceptable equation. Consider an hypothesis with an 

equation that is only partly acceptable; for example:

(= T_D (* T_TIME T_TIME)) , . . .  (7.1)

This is an expression of the law of free fall that is only applicable to the inclined 

plane experiment. From this equation we can deduce that the generally acceptable 

hypotheses will not include just T_D and T_TIME. On the one hand Equation 7.1 

only applies to the inclined plane experimental paradigm, so it is not generally 

acceptable; and on the other hand, any other equation in terms of T_D and T_TIME 

alone cannot apply to the inclined plane paradigm, so again is not acceptable. 

Therefore, no equation in T_D and T JIM E  will be acceptable. In general, a partly 

acceptable hypothesis cuts down the range of potential new hypotheses dramatically 

with respect to the terms that are considered in its equation.

Second, a completely unacceptable hypothesis helps to cut down the space of 

new equations to be considered by explicitly ruling out one equation. For example, 

the two Aristotelian effective weight laws were found to be unacceptable by the 

disconfirmation processes. Thus, the processes to generate new hypotheses need 

not bother to consider them during its processing. An unacceptable quantitative 

hypothesis only indicates that a particular equation does not account for any 

experiments. The modification of the equation may in fact produce a generally- 

acceptable hypothesis. For example, it cannot be inferred from the unacceptable 

Aristotelian effective weight laws that no other equation in those terms could be an 

acceptable hypothesis. However, in this case, a new acceptable equation is unlikely, 

because the effective weight and density terms do not appear in any acceptable 

qualforms (see §7.2.1).

7.2.3 Suggesting The Form Of Equations

To recap, there are inferences that can be made which will find likely 

combinations of terms as candidates for new hypotheses and qualitative formalisms 

have significant role in this. However, qualforms are also important when it comes
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to postulating the structure of equations that may relate previously-selected terms. 

Because qualforms indicate that certain regularities obtain, equations which satisfy 

those regularities are likely to be good candidates.

Given the two acceptable hypotheses with the qualforms (INCREASE A B) and 

(INCREASE C B) a likely form that an equation involving A and C may take is:

f(A) = g(C), . . . ( 7 . 2 )

where /  and g are monotonie functions of A and C. The rationale behind this

inference is that as both A and C increase in magnitude with respect to the term

B, so A and C may themselves be directly related.

Conservation laws are often favoured by physical scientists (Feynman, 1965). 

So combinations of qualforms that suggest that two terms may be combined to yield 

a constant quantity are worth considering. For example, consider the pair of 

qualforms (REPEAT+ A B) and (REPEAT- C B). The first one states that as B 

increases monotonically, A increases from an initial value, rises to a maximum 

value and returns to the initial value. Similarly with the second qualform, except that 

C decreases to a minimum value. Reasonable equations that fit this pair of 

qualforms are:

f(A) + g(C) = const, . . .  (7.3a)

f(A ). g(C) = const, . . .  (7.3b)

where the /  and g are again simple monotonie functions and const is some 

arbitrary constant. Other combinations of qualforms may also imply conservation 

equations. For example, two qualforms of the same type [e.g. (increase A B) and 

(increase C B)] may be satisfied by equations 7.3a and b with their operators 

replaced by and V ,  respectively.

Clearly, only the general form of the equation is implied by a combination of 

qualforms so the potential range of one type of equation is infinite; there is no limit 

to the range of form that the monotonie functions /  and g may take. However,
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only a small proportion would be considered by a scientist, for example exponential 

relationships with rational indices under 3. Search methods like those embodied in 

BACON.6 (Langley et.al., 1986) might also be employed.

Thus we have seen the different methods that will form the basis of STERN's 

ability to generate new hypotheses from old. In the next section the particular 

manner in which they are used in STERN will be discussed.

7.3 STERN'S NEW HYPOTHESES MECHANISM

7.3.1 Exponential Equations

STERN models the generation of new hypotheses from old using some of the 

the techniques discussed (QUAL_TO_EQNS in New Hypotheses, Table 7.1). The 

equations that STERN finds are exponential equations with small rational indices. 

Such equations have two properties that are particularly relevant here: (i) they are 

monotonically increasing functions; and (ii) they pass through the origin. STERN 

has qualforms that can identify when the values of two terms have these properties; 

namely the INCREASE and FROM_ZERO qualforms. To be specific; 

(FROM_ZERO A B)  means that A and B pass though the origin and 

(INCREASE A B) indicates that A increases as B increases. Thus both can be 

considered as necessary conditions for an exponential equation of the form

(= (expt B n) A ) , . . .  (7.4).

where n is the index of the function. The next subsection describes in detail how 

STERN goes about searching for such equations.

7.3.2 Inferring Equations

The generation of new hypotheses in STERN is a four stage process (see Table

7.1 & Figure 7.1). First, existing qualitative hypotheses are analysed for pairs of 

INCREASE and FROMJERO qualforms that have identical terms. Four such pairs of 

qualforms are found. Second, those pairs of qualforms with terms referred to in 

partially-acceptable hypotheses are eliminated, leaving only two pairs. Third, the 

terms themselves are isolated and exponential equations are generated for each pair
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{1}

{H}

Initial Hypothesis Qualforms
(INSTANTANEOUS T ^ V  T -D )
(INCREASE T_TIME T_H)
(FROM_ZERO T_TIME T_H)
(INCREASE T_TIME T_L)
(FROM_ZERO T-TIME T_L)
(STEADY T -T lt lE  T^W )
(STEADY T ^T IH E  T -V O Ü  
(INCREASE T_V T_H)
(FROM_ZERO T_V T_H)
(INCREASE T_V T_L)
(FROM_ZERO T_V T_L)
(STEADY T - V  T -W )
(STEADY T ^ V  T^VOL)

/T in  Initial Hypothesis Equations
^  ̂ r- T_/ 7LDEW

f- T - V  T-W **)
( •  T -S  (** T -T ir iE  T -T it lE ) )
(~  T -D  (** T -T ir iE  T -T IH E ))
(- T_H (* T_TIME T_TIME))
(- T_L (*» T_TIME T_TIME))

(INCREASE T -T l t lE  T -H )  

-Œ RQll-ZERQ.T - T i n E J ^ }  
(INCREASE T -T lt lE  T -L )

. (FROrUERQ I-TimJ-L). 
(INCREASE T_V T_H) 
(FRQM-ZERO T_V T_H)
(INCREASE T_V T_L) 
(FROM_ZERO T_V T_L)

{IV} (INCREASE T_V T_H)
■tfiLOH-ZERP T_Y T_H) 
(INCREASE T_V T_L) 
(FRQM-ZERO T_V T_L)

Final Hypotheses - 
group 3541
(- T_V (EXPT T_H 1/2)) 
(- T_V (EXPT T_H 1/3)) 
(- T_V (EXPT T_H 2))
(- T_V (EXPT T_H 2/3)) 
(- T_V (EXPT T_H 3))
(- T_V (EXPT T_H 3/2)) 
(- T_V T_H)

{V} Final Hypotheses • 
group 3542
(- T_V (EXPT T_L 1/2)) 
(- T_V (EXPT T_L 1/3)) 
(- T_V (EXPT T_L 2))
(- T_V (EXPT T_L 2/3)) 
(- T_V (EXPT T_L 3))
(- T_V (EXPT T_L 3/2)) 
(■ T_V T_L)

Figure 7.1 New Hypotheses From Old

Italics indicates qualfroms that will be eliminated or will 
be ignored by the next process.
See Table 7.1 for a description of numbered processes
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of terms according to equation 7.4. The values taken by the index n are all the 

different combinations of fractions, piq, given by numerator and denominator 

integers up to a user defined limit. The limit typically chosen is 3; Galileo never 

consider power equations in which p or q were greater than 3 and very few laws 

of nature have values of p  and q above 3 (when they can be expressed as power 

equations with rational indices). As each pair of terms yields more than one 

equation, the several hypotheses generated are given a unique symbol indicating that 

they belong to particular set inferred by the same process. In Chapter 6, we saw 

how this information was used to cut down significantly the number of hypotheses 

considered, once one had been found to be acceptable.

Fourteen hypotheses originating from two pairs of terms were in fact generated. 

The hypothesis with the equation

(= T_V (EXPT T_H 1/2)), : . . (7.5)

is the correct law of free fall, although at this stage any hypothesis could be 

acceptable. When the generation of a new hypothesis is complete, control is 

returned to the top level {Strategy chooser). STERN now chooses the confirmation 

strategy to attempt to test the new hypotheses against the available experiments. 

However, as the Aristotelian law is no longer believed to be tme, the process fails 

to generate models from the hypotheses. The necessary constant speed condition no 

longer applies, so speed term (T_V) cannot be substituted by its definition. Thus, 

the tractability of the hypotheses is in effect reduced whilst their acceptability 

remains to be considered. To test the new hypotheses the invention of new 

experimental paradigms is required, as we will see later (in Chapter 8).

7.3.3 Summary

The formation of new hypothesis from old ones can be conceived of as a serial 

search of two spaces, guided by the existing hypotheses and their various degrees 

of acceptability. The first search is in the space of all the theoretical terms in the 

research programme. This search finds the terms that are relevant to the
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characterization of the phenomenon in all the experimental paradigms of the research 

programme. The second search is through the space of general forms of equations 

for ones that are compatible with accepted findings. The first and second processes 

in Figure 7.1, perform the search of the space of terms in STERN, and the third 

process attempts to find equations with suitable forms.

The processes taken together can also be considered as one of specialization, 

modifying qualforms into equations that cover a very much more restricted set of 

interrelations between the terms.

7.4 STERN ASSESSMENT ON NEW HYPOTHESES

7.4.1 Completeness

From the nineteen hypotheses obtained from the previous discovery stages, 

STERN was able to generate 14 new hypotheses in two sets, one of them 

containing the correct law of free fall. The techniques used are a powerful means of 

finding potentially acceptable hypotheses that may be generally applicable. The 

power of the processes resides in the fact that all previous hypotheses are 

considered. Relevant and irrelevant terms are found from the qualitative hypotheses 

and partially acceptable quantitative hypotheses. Likely forms of equations are 

found using the acceptable qualitative hypotheses and unacceptable quantitative 

hypotheses.

Without this strategy to generate new hypotheses from old, STERN would not 

have been able to find the true law of free fall. Furthermore, in using this method to 

find the law, STERN is closely modelling the way in which Galileo found the same 

law. Galileo used the knowledge which he had gained from performing experiments 

to postulate possible forms of a general law of motion (See Chapter 3).

7.4.2 Advances On Previous Work

The processes to generate new quantitative hypotheses described above paid
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particular attention to the degree of acceptability of all existing hypotheses. STERN 

relies on the extent to which hypotheses have been applied successfully to all the 

experimental paradigms in the research programme. No previous model of scientific 

discovery has considered the inference to new theoretical knowledge using both 

qualitative and quantitative knowledge of such varying degrees of acceptability. 

However, some previous systems have employed techniques that are interesting to 

compare to STERN's abilities.

First, let us consider programs that modify one unacceptable model (or 

hypothesis) to form a model that is potentially more acceptable. A range of different 

methods are used in different programs. REVOLVER (Rose & Langley, 1986; 

Rose, 1988) revises inconsistent chemical reactions by adding or subtracting atoms 

from premises about the structure of molecules. Various item of information are 

stored about the types of inference made and when they were made {reduced lists 

& sources tags). These items are used by REVOLVER in a function that evaluates 

how best to revise the reactions. Amongst KEKEDA's (KuUcami & Simon, 1988) 

proposition generators and proposition modifiers are heuristics that suggest how 

reaction equations may be changed when unexpected experimental outcomes are 

obtained. The evoke fram e and use prior knowledge processes in Klahr & 

Dunbar’s (1988) SDDS process hierarchy are possible locations for the strategy 

considered above. Thus, a range of methods to modify existing unacceptable 

theoretical knowledge are used by previous systems. However, unlike STERN 

which takes into account all known hypotheses to infer a new one, the previous 

systems only attempt to modify individual laws that have been found to be 

inconsistent or inadequate. The power of STERN’s new hypothesis generation 

strategy comes from its use of all available hypotheses.

Several programs have made use of regularity spotters. These roughly resemble 

STERN’s qualforms in the way they function. BACON (Langley, et.al., 1987) 

employs regularity spotters in its heuristics that look for simple increase, decrease.
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linear and constant relationships between terms. When a regularity is found it is 

not explicitly represented but immediately used to define a new term. The regularity 

spotters in ABACUS (Falkenhainer & Michalski, 1986) are used for a similar 

purpose, but in a more sophisticated manner. ABACUS attempts to find all the 

relevant variables by applying regularity spotters to all the different combinations of 

pairs of variables (to find the maximal cycles in the proportionality graph) before 

making any quantitative inferences. The result is similar to STERN's search though 

its qualforms for relevant terms, but in ABACUS the search is data-led and only 

two types of substantive qualitative relation are considered. STERN can use nine 

qualforms so is able to find a much great variety of relations amongst terms. 

Furthermore, STERN qualforms are used in other inference processes throughout 

the program (Chapters 5 & 6). Qualitative knowledge about processes is stored 

explicitly in EDS (Nordhausen & Langley, 1987) but is only used in a most 

rudimentary way to infer quantitative laws. The main differences between STERN 

and previous systems in this respect is that STERN: (i) explicitly represents the 

qualitative relations it finds; (ii) assesses their acceptability across different 

experimental paradigms; and (iii) then uses them to find new quantitative 

hypotheses in a theory-led fashion. Other systems have tended to only use such 

knowledge implicitly in the generalization from observations to descriptive 

equations in a data-led manner.

7.4.3 Conclusions

In this chapter we have seen how STERN can generate new hypotheses from its 

existing ones. One of the laws found is the correct law of free fall. STERN's 

powerful strategy for generating new hypotheses encompasses many abilities. 

These include:

• Using acceptable qualitative hypotheses, and unacceptable and partially acceptable 

quantitative hypotheses, to distinguish terms that are either relevant or irrelevant 

for the characterization of the phenomena.
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• Proposing the form of likely equations based on acceptable qualitative hypotheses 

and unacceptable quantitative hypotheses.

♦ The grouping together of mutually exclusive hypotheses generated from a single 

process, for future reference.

Although many new hypotheses have been generated, STERN has not managed 

to find any which are acceptable. In the next Chapter we will see how STERN has 

to invent new experiments to be able to test the new hypotheses successfully.
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Chapter 8
Inventing New Experiments

8.1 INTRODUCTION

We have already seen how experiments have played a large part in the modelling 

of the discoveries in the Galilean domain by STERN. Experiments have been used 

to (dis)confirm hypotheses by allowing experimental test results and predictions to 

be compared. Experiments have also been designed and performed to obtain a large 

body of results that have been generalized into hypotheses. Now, in this chapter we 

will consider some quite radical things: the manufacture and use of new 

experiments; and the high level control of the availability of experimental 

paradigms.

Galileo invented new experiments by combining the experiments he already 

knew (see Chapter 3). For example, he realized that the inclined plane could be used 

as a launcher for the projectile experiments. The initial part of the combined 

experiment (inclined plane) allows the terminal part (projectile) to be investigated for 

the first time as the terminal part cannot be used in isolation. Galileo invented other 

combined experiments, such as the pendulum with shortening cord and the 

combined curved ramp and projectile (see Figure 8.1). Inventing new experiments 

by combing existing experimental paradigms is ubiquitous in science. For example, 

Newton used a double pendulum experiment (Figure 8.2) in which the two 

pendulums with bobs of different mass were placed side by side (Magie, 1935,41). 

The initial pendulum is released and swings down to collided with the terminal 

pendulum. This experiment is one that Newton employed in the discovery of the 

conservation of momentum. In fact, it depends on a knowledge Galileo's law of 

free fall to determined the relative speeds of the pendulum bobs just before and after
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(A) Curved Ramp And Projectile

(B) Pendulum With Shortening Cord

Figure 8.1 Two Of Galileo’s Combined Experiments



terminal initial

Figure 8.2 Newton's Double Pendulum Experiment

Key: p - release of initial pendulum, q - collision, 
r & s - final positions.

Adapted from Magie (1935).
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their collision. This is an example of how Newton's discoveries were built on the 

foundation provided by Galileo. More recently, subatomic physics experiments, 

like those performed at CERN, can be considered as combined experiments. The 

particle generator and accelerator constitutes the initial part that generates high 

energy particles. The bubble chamber in which the particles are smashed together is 

the terminal part. Although combining experimental paradigms is an important and 

widely used method to obtain new experiments it is not the only means that exists. 

For example, new experiments may be devised by examining paradigms used in 

other domains and adapting them, by analogy, to one's own research programme. 

Often new types of experiments come into being by the invention of new 

technologies. However, here we will just consider the combination process to 

devise new experiments; and in particular, the combination of just two experimental 

paradigms.

Inventing new experiments provide new variations of experimental parameters 

and conditions which can circumvent the limitations of previous experiments. 

Furthermore, new experiments may also allow solutions to be found for problems 

that have occurred during theoretical inferences. Galileo used his combined inclined 

plane and projectile experiment to do exactly that. Galileo had found his law of free 

fall but was only able to test it once the combined inclined planed and projectile 

experiment had been invented (we will see exactly why below).

Inventing new experimental paradigms had a crucial role in Galileo's 

discoveries. Thus, the modelling of this episode would be incomplete without some 

consideration of this important aspect. Fortunately STERN can cope with new 

experimental paradigms and setups. STERN does not devise new experimental 

paradigms just because it runs out of experiments; it is given many paradigms as 

input and they are not exhausted before STERN needs to consider new ones. 

STERN constructs new experimental paradigms to overcome the intractability of
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certain hypotheses in theoretical inferences. Devising experiments involves 

combining known experimental paradigms; for example, the use of the inclined 

plane in conjunction with projectiles (see Figure 3.2).

Galileo knew of many simple experiments that he could perform and had the 

means to invent many new experiments. Clearly he did not manufacture and 

perform experimental tests on all the experiments he ever conceived. It seems that 

Galileo only used a relatively small number of experiments, in the main preferring 

pendulums and the inclined plane. STERN also considers a limited number of 

experiments at a time. The limiting of the availability of experimental paradigms in 

STERN has been found to be important to how efficiently STERN is able to make 

discoveries. Simply stated, if there are too many experimental paradigms the 

discovery process becomes to cumbersome. Hence, a mechanism is used by 

STERN to limit the availability of experiments.

In this chapter we will consider why STERN needs to consider new experiments 

and how it finds new combined experiments. We will also consider in detail why 

STERN needs to hmit the availability of experimental paradigms and its mechanism 

for doing so.

8.2 NEW EXPERIMENTAL PARADIGMS & SETUPS

8.2.1 Why STERN Employs New Experiments

The are several reasons why STERN constructs new experimental paradigms. 

The first and the most important one is that new experiments make intractable 

hypotheses tractable; for example free fall hypotheses. These hypotheses are 

intractable for theoretical inferences because the speed term (T_V) cannot be 

eliminated when modelling either the pendulum or inclined plane experiments. In 

the confirmation strategy, STERN can only replace a term by its definition when 

certain specific conditions apply. To eliminate the speed term, speed must be 

constant. Previously, speed could be replaced because the Aristotelian law of
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instantaneous acceleration was applicable, but it has by now been disconfirmed. 

Thus STERN is left with an intractable hypothesis. Considering new experiments 

may allow the speed term to be eliminated. For example, the free fall hypothesis can 

be applied to an inclined plane to find an expression for the speed down the plane. 

A second expression for the horizontal speed of the projectile can also be inferred. 

One expression can thus be substituted into the other to eliminate the speed term, 

leaving a single equation that just has measurable terms (see §5.3.1.3).

Second, new experiments are sometimes needed because certain experiments 

cannot be carried out in isolation. For example, experiments on the motion of 

projectiles cannot be considered without some means to launch the body into the air. 

The inclined plane is one suitable candidate for the role of launcher. In general, such 

an arrangement is one in which the initial part of the experiment (inclined plane) 

instantiates the phenomenon so that it can be observed in the terminal part 

(projectile). This is a technique widely used in experimental science.

The third and final reason why STERN might consider new experiments is if 

runs out of experiments to use. However, this eventuality does not arise when 

modelling the Galilean episode.

8.2.2 How STERN Constructs New Experiments

The basic strategy that devises new experiments in STERN involves combining 

two old experimental paradigms in to one new paradigm. This models what Galileo 

did, at least twice, in his investigations of naturally accelerated motion.

The most important new experimental paradigm devised by STERN is the 

combined inclined plane and projectile experiment (see Figure 3.2). A combined 

experiment has two parts. The initial part (the inclined plane) acts as a feeder into 

the terminal part (the projectile). Some means may be required to modify the exact 

behaviour of the phenomenon during the transition from the initial to terminal parts 

(e.g. the lip at the end of the inclined plane to convert the ball's angled descent into 

purely horizontal motion just as it becomes the projectile). In domains like
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Galileo's, human scientists can see whether two experiments can be combined. 

How such inferences are made using real world knowledge is an interesting topic, 

but is beyond the scope of the present work. Thus, STERN is told as one of its 

inputs which paradigms can be legally combined. What is of particular interest here 

are the circumstances that lead to the invention of new experiments and how they 

are subsequently employed. Experiments may be performed on combined 

experiments in one of two modes that depend on whether the input-m parameter is 

in the initial or terminal part. As the names of the modes suggest, the input-m 

parameter is in the initial part in the initial mode, and in the terminal part in the 

terminal mode. In STERN, devising new combined experimental paradigms is a 

three stage process {new paradigm class of rules. Table 8.1).

In the first stage a single experimental paradigm is chosen to be the terminal part 

(R13_CH00SE_TERM INAL). STERN prefers available (already manufactured) 

paradigms over ones that have only just been conceived and also chooses the 

paradigm with the most setups. The chosen paradigm, say the projectile paradigm, 

is made active.

To begin the second stage, initial parts for the terminal projectile are sought 

(R13_MAKE_C0MBINES). STERN knows which paradigms have setups that are 

suitable initial parts for the projectile paradigm (they are named in the combine slot 

of its frame). For example, down_incplane is the name of one of the inclined 

plane's setups that is a suitable initial part. The construction of the combined 

experimental paradigms from the inclined plane and the projectile paradigms is a 

matter of instantiating a new paradigm frame and filling the slots that relate to each 

part, using the information available for the existing paradigms (see. Table 4.8). 

For example, the ease of manufacture of the new combined experimental paradigm 

is calculated from the values of its two parts. This measure is always a value 

between zero and unity; the larger the value the easier the paradigm is to
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Table 8.1 NEW PARADIGMS Rules (RULES_13)

R13_CO M BINED_SETUPS*
C ondition:

There is an active list of experimental paradigms.
A ction:

For each active experimental paradigm in the list, construct experimental setups from the 
paradigm;

the name of the setup is made by concatenating the initial and terminal setup names with a '+' 
between.

R13_M AK E_CO M BINES
C ondition:

There is a single active experimental paradigm,
and other experimental paradigms exist in the experimental side of the research programme. 

A ction:
The active experimental paradigm that is considered as a terminal part of a combined 

experiment;
search for suitable initial paradigms from amongst those in the research programme by 

examining the combine slot of the terminal paradigm's setup frames;
construct a combined experimental paradigm for each suitable initial paradigm with the active 

terminal paradigm, filling the slot of the paradigm frame from the two existing paradigms;
and calculate the ease of manufacture using the formula (i.t)/(i+t), where i and t are the values 

of manufacturing ease of the initial and terminal paradigms, respectively.

R 13_C H 00SE _T E R M IN A L
C ondition:

There is no active experimental paradigm,
and there are hypotheses stored in the theoretical part of the research programme,
and no combined experiments have been made under the active paradigm before.

A ction:
Make active the experimental paradigm that has the greatest number of experimental setups that 

can act as terminal parts in a combined experiment, preferring those that have been 
manufactured over those that are just conceived, but not ones that are in combined 
experiments.

R13_REDU CE_*_TH RESH O LD
C ondition:

There is no active experimental paradigm,
and there are paradigms in the research programme that have not been "manufactured".

A ction:
Choose the experimental paradigm with the greatest product of manufacture ease and number of 

experimental setups that has setups that are not just a terminal parts of combined 
experiments, and reduce the ease*setup parameter to a value as if the paradigm had been 
manufactured, thus making it available.

*The order of rules indicates their relative priority in conflict resolution.
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manufacture. STERN calculates the value using the equation:

manufacture ease = ( i . t) /  (i + 1), . . .  (8.1)

where i and t are the ease values for the chosen initial and terminal paradigms. 

Equation 8.1 always yields a value between 0 and 1, that is less than the magnitude 

of either i or t alone. The name of the new experiment is a concatenation of the 

names of its parts (e.g. 'incplane+projectile').

The third and final stage of the process involves making setups for the combined 

experimental paradigm (R13_C0MBINED_SETUPS). This involves constructing new 

experimental setups using the information stored in the new paradigm frame and 

storing the setups under the paradigm. STERN interrogates the terminal paradigm to 

find which combinations of setups are legitimate to combine (i.e the contents of the 

combine slot). The names of setups are concatenations like those of the paradigms.

STERN repeats all three stages of the process for all the experimental paradigms 

it knows. In addition to the combined inclined plane and projectile, STERN 

constructs five other new paradigms, such as the combined curved ramp and 

projectile, and a double pendulum with a shortening cord (See Figure 8.1). All the 

experimental paradigms are considered by STERN, when it decides to employ new 

experiments, because the process that controls the number of available experiments 

needs detailed information about the new experimental paradigms; as we will now 

see.

8.3 CONTROLLING THE AVAILABILITY OF EXPERIMENTS

8.3.1 Why Limit The Numbers Of Experiments?

STERN is given six experimental paradigms as its initial input and we have seen 

how it makes six more combined experiments. To cope with such a profusion of 

experiments STERN uses a mechanism to limit the number of available paradigms. 

There are three reasons why STERN needs to limit the availability of experimental 

paradigms. First, as Galison (1986) notes, scientists working in a particular field
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will not use all the experimental paradigms that are present in the field. They have 

preferences for particular experiments. Galileo seemed to concentrate on 

pendulums, inclined planes and projectiles, whilst other researchers favoured 

curved ramps.

Second, considering only a limited number experiments at a given time is a 

heuristic that improves STERN's efficiency. For example, attempting to confirm 

hypotheses using just two experimental paradigms saves considerable effort. Those 

hypotheses that are unacceptable can be been found using just two paradigms and 

so eliminated from further investigation. Thus effort is only expended on the testing 

of the remaining (partially) acceptable hypotheses with additional paradigms. A 

similar argument applies to the generalizing of experimental results into hypotheses. 

The minimum number of experiments that is necessary to base the generalization on 

is two, if there is to be a reasonable chance that the inferred hypothesis is general. 

Therefore, STERN only bothers to make generalizations from two sets of 

experimental results rather than wasting effort on more.

Third, the mechanism differentiates between experimental paradigms that are 

available for STERN to use and those that are not. This models the real difference 

that exists in science between experiments that have actually been physically 

constructed and those that have only been conceived.

8.3.2 Controlling Available Experiments In STERN

To limit the number of experiments that are available STERN calculates a 

pragmatic value for each experimental paradigm. This value is the product of (i) the 

measure of the ease of manufacture of experimental setups of the paradigm and (ii) 

the number of setups. STERN only considers those experimental paradigms that 

have a value of this product above a certain limit Initially this limit is chosen (by the 

user) so that typically two experimental paradigms will be available. Less than two 

paradigms means that STERN cannot assess the acceptability of hypotheses or 

generalize experimental results to hypotheses. Using two experimental paradigms
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also models Galileo's preference for his two favourite paradigms. Thus, STERN 

typically starts with the pendulum and inclined plane experimental paradigms as 

available experiments. Later when new experimental paradigms need to be made 

available, because the existing paradigms have been exhausted, the liiriit on the 

pragmatic value is lowered (by R13_REDUCE_*_THRESH0LD). STERN chooses the 

new value so that just one new paradigm becomes available.

Whilst modelling the Galilean episode, STERN decides to make a new 

experimental paradigm available just after new experimental paradigms have been 

constructed. The combined inclined plane and projectile experiment is made 

available ^ d  permits STERN to go on to confirm the free fall hypothesis.

8.4 STERN ASSESSMENT OF NEW EXPERIMENTS

8.4.1 Completeness

The construction and use of new experiments are important processes that 

STERN is able to model. STERN would not be such a complete discovery system 

if it did not have these abilities. Furthermore, STERN would have been unable 

successfully to model the Galilean domain, because there would have been no way 

to confirm that the law of free fall was correct. The main reason STERN considers 

experiments is to allow intractable hypotheses to become tractable.

STERN controls the availability of experimental paradigms. This enhances the 

performance of STERN by improving how efficiently it makes discoveries.

8.4.2 Comparison With And Advances On Previous Work

Previous discovery systems have not modelled the experiment component of 

scientific research programmes. This occurs even though the role of experiment has 

been acknowledged theoretically in Cognitive Science; for example in the cyclical 

account given by the BACON school (see Chapter 2). Typically, the only 

manifestation of experimentation is in the form of observational data that the
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program is given. However, there are three hmited exceptions.

HDD (Reimann, 1990), KEKEDA (Kulkami & Simon, 1988) and Rajamoney 

et.al.’s (1985) programs all have some representation of experimental tests. Their 

representations consider the input-m and output parameters of the experiment, and 

the values that the parameters take. However, there is no consideration of pragmatic 

knowledge, such as which parameters are the easiest to manipulate and observe. 

Such knowledge is essential for the selection and design of experiments, 

particularly when no specific prediction is being tested. None of the systems 

consider the higher setup and paradigm levels of experimentation. This means that 

they are not able to to assess the general applicability of models or hypotheses.

As the representation of experimental knowledge is so poor, few processes that 

involve elements of experiments have been modelled by previous systems. The 

interpretation of experimental results to instances has not been considered as most 

previous models do not even distinguish between experimental tests and instances. 

The assessment of the accuracy of predictions is absent for the same reason. There 

are many different types of communication that occur between theory and 

experiments, but none have really been examined in the existing systems. COPER 

(Kokar, 1986) for example has units for its theoretical terms, but they are given as 

program inputs and are not used to refer to parameters in experiments.

The three programs that do have limited representations of experiment use them 

is different ways. In HDD, the representation of experimental tests act as a store for 

the pre-designed tests that are given as input. KEKEDA does design experimental 

tests, but only when there is a particular reaction to be tested and using mainly 

domain specific heuristics. Rajamoney gf.a/.'s (1985) program is also theory led 

and domain-specific. Incidentally, SDDS (Klahr & Dunbar, 1988) gives locations 

for experimental design and performance in its processes hierarchy.

The experimental representations and processes modelled by previous systems 

are limited compared to STERN. STERN is much more complete, it can: select
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different experimental paradigms and setups using pragmatic experimental 

knowledge; design experimental tests in a general fashion using background 

knowledge, in the presence of a theory or not; construct and use new experimental 

paradigms from existing experiments; and control the availability of the experiments 

using pragmatic assessments of the experiments.

8.4.3 Conclusions

In this chapter we have seen how STERN constructs new experiments, by 

combining old experimental paradigms, and uses them to make further discoveries. 

STERN also controls the availability of experimental paradigms as a means to 

enhance the efficiency with which it makes discoveries. To summarize, the 

program's processes that deal with experiments allow STERN to:

• Construct new experiments by combining existing experimental paradigms.

• Employ new experiments to make further discoveries.

• Use combined paradigms as experimental solutions to intractability problems in 

theoretical inferences.

• Use combined paradigms to instantiate experiments that would otherwise have 

been impossible to perform in isolation.

• Control the availability of experimental paradigms as a way of enhancing the 

efficiency of the system, by cutting down wasted effort during the confirmation 

of, and the generalization to, hypotheses.

• Model the complex inter-play between the theory and experimental components of

a research programme at a high level.

This ends our consideration of STERN experimental abilities, and it also draws 

to a close our considerations of STERN's many and varied processes that constitute 

its extensive range of powerful discovery abilities.
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Chapter 9
Conclusions: The Cognitive Science Of 
Scientific Discovery

9.1 INTRODUCTION

One of the points we made at the beginning of this thesis was that our 

understanding of scientific discovery has not been reflexive. Science has advanced 

our knowledge of very many aspects of our universe in great detail. However, we 

do not have such a deep understanding of the nature of science and how scientists 

make discoveries. It is only recently that direct empirical investigations and 

theoretical studies have been carried out to further our knowledge in this area. 

Cognitive Science is the field in which much of this work has taken place. It is 

comprised loosely of three areas that have employed very different methods to 

investigate scientific discovery. Cognitive psychologists have performed empirical 

studies on simulated scientific discovery tasks. Philosophers of science have 

propounded many and varied theses of how science is performed, and even 

prescribed how it ought to be carried out. In Artificial Intelligence (AI) 

computational scientific discovery systems have been built to model episodes from 

the history of science.

This thesis is clearly located in the AI camp. However, the approach is 

somewhat different in that a framework for scientific discovery has been proposed. 

The framework proposes a minimum set of components that must be possessed by 

accounts and models of scientific discovery if they are to be acceptable (Chapter 1). 

The review of existing computational models and empirical studies was organized, 

and to some extent assessed, in terms of the framework (Chapter 2). STERN is a 

discovery system that models Galileo's discoveries on naturally accelerated motion
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(Chapter 3). STERN instantiates all the components of the framework and has 

successfully made the same discoveries as Galileo (Chapters 4 to 8).

So, we have the field of cognitive science which investigates scientific discovery 

and a framework that partially characterizes scientific discovery. It is interesting to 

consider what we might leam by using the framework to analyse reflexively the 

investigation of scientific discovery in Cognitive Science. This is main objective of 

this chapter. We will consider:

(§92) Mapping The Study Of Scientific Discovery Into The Framework. There are 

many different approaches to research on scientific discovery in Cognitive 

Science. The different types of study, and the entities in them, neatly map onto 

components and items in the framework.

(§9.3) The Experimental Component O f The Cognitive Science O f Scientific 

Discovery. The framework's experimental component encompasses the 

empirical studies and the historical episodes considered in Cognitive Science. 

(§9.4) The Theoretical Component O f The Cognitive Science O f Scientific 

Discovery. The framework's theoretical component encompasses the theories 

proposed by the researchers in all three areas and the computational models from 

AI in particular.

(§95) The Acceptability O f Computational Models O f Scientific Discovery. The 

theoretical work in cognitive science can be assessed according to criteria that 

are equivalent to those often used in other sciences. How well the existing 

computational models do according to these criteria is assessed.

We will also consider some other issues that are relevant to the computational 

modelling of scientific discovery; Remaining Issues And Thoughts (§9.6).
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9.2 MAPPING THE STUDY OF SCIENTIFIC DISCOVERY INTO 

THE FRAMEWORK

The framework proposes a minimum set of components that seem to be essential 

for the characterization of scientific research programmes. In it, a research 

programme consists of a theoretical component and an experimental component 

that together investigate and characterize some delimited set of phenomena. 

Theoretical knowledge is viewed as state transformation functions and three types 

of theoretical knowledge are distinguished - hypotheses, model and instances. 

The acceptability of theoretical knowledge is assessed using acceptability criteria; 

for example explanatory breadth. Similarly, there are three levels of experiments - 

experimental paradigms, setups and tests. On some phenomena no experiments 

can be performed and only observations made; in these cases the reliability of 

experimental test results is substantially reduced. The framework also 

acknowledges that multiple types of communication occur between all the levels of 

the two main components. We will consider the experimental component, the 

theoretical component, and theory acceptability in the analysis of work in Cognitive 

Science. The Galilean episode will be used for comparison throughout (see Table 

9.1).

9.2.1 The Experimental Component

Galileo's research programme was on the delimited phenomena of the motion of 

naturally accelerated bodies. On the experimental side Galileo used inclined planes, 

pendulums and invented new combined experiments; each of these is an 

experimental paradigm. A particular configuration of the inclined plane is an 

experimental setup. Performing a test on the setup is an experimental test that gives 

specific results, such as lists of values for input-m and output parameters. The 

comparison of the test result and a prediction relating to the inclined plane is an 

example of the communication that occurs between theory and experiment.

Now let us assume that the framework applies to the study of scientific discovery
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Table 9.1 Galileo Versus The Cognitive Science Of Scientific 
Discovery Under The Framework

Framework
Components

Galileo on the motion of naturally 
accelerated bodies*

Cognitive Science of Scientific 
Discovery*

Research
Programme

Naturally accelerated motion Scientific discovery

Experiment
Experimental

Paradigms
Experimental

Setups
Experimental

Tests
Activities

Reliability

Inclined planes, pendulums, 
combined experiments 

(An inclined plane with fixed 
height)

(Particular predictions on inclined 
plane)

(Inventing combined experiments 
and running tests on them) 

(Acknowledging the influence of 
noise)

Computer simulated environments, 
specific tasks 

(REFRACT, Wason's '2 4 6’)

Historical episodes of discovery & 
(results from REFRACT) 

(Designing REFRACT & '2 4 6' 
task, and running tests on them) 

("Averaging" behaviour of many 
subjects)

Theorv
Hypotheses

Models

Instances

Inferences

Acceptability
Criteria

Aristotelian effective weight laws, 
law of free fall, etc.

(Descriptions of motion on the 
inclined plane, with fixed height)

(Specific predictions on the inclined 
plane)

(Make prediction for inclined plane 
with free fall law)

Success of applying hypotheses to 
experimental paradigms

Philosophical & psychological 
theories (BACON school cyclic 
account, the Framework) 

Computational models: Previous 
discovery, e.g. BACON; e.g. 
STERN 

Runs of discovery systems on 
particular domains with specified 
inputs.

(Writing STERN using Framework, 
running STERN)

Completeness, generality, internal 
coherence.

Communi
cation

(Comparing inclined plane 
prediction and test results)

Comparing discovery system output 
and with episodes (REFRACT 
findings built into HDD)

‘(Examples in brackets)
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in Cognitive Science. The crucial point to realize is that the delimited phenomenon 

that is being studied is the behaviour of human scientists as they make discoveries 

(see Table 9.1, for direct comparison to Galileo). Hence, accounts of past and 

present episodes of scientific discovery, and the results of empirical psychological 

studies of human scientists, constitute the basic data of this domain. These data are 

considered as experimental tests results in terms of the framework. The account of 

the Galilean episode (Chapter 3) is a case in point. In the empirical studies scientific 

discovery domains have been simulated with varying degrees of realism (e.g. 

Wason's, 1960, '2 4 6' paradigm; Klahr & Dunbar's, 1988, computer controlled 

robot). These environments are experimental setups in the framework. They allow 

experimental tests to be carried out on the behaviour of scientists. The use of a 

computer simulated environments and specific pen-and-paper tasks are contrasting 

experimental paradigms (e.g. Reimann's, 1990, REFRACT program; cf. Qin & 

Simon's, 1990, equation finding task). There is communication between the 

experiments and theory; for example the findings of an empirical study may be used 

in the design of a computational model (e.g. Reimann, 1990, used his REFRACT 

findings to to build HDD) (see Table 9.1).

9.2.2 The Theoretical Component

In the theoretical component of his research on the motion of bodies, Galileo 

characterized the phenomena using hypotheses such as the Aristotelian effective 

weight laws and his own law of free fall. The models he inferred from these 

hypotheses applied to specific situations; for example the inclined plane. Both 

hypotheses and models were expressed as simple mathematical equations, so are 

examples of the state transformation conceptualization of theoretical knowledge. 

Galileo's predictions of motion down the inclined plane, generated by applying the 

model, are instances consisting of values for specified independent and dependent 

terms.

On the theoretical side of Cognitive Science, the abstract characterization of the
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behaviour of the human scientist takes several forms. The theses proposed by 

philosophers of science, and the theories of some cognitive psychologists, are 

hypotheses. The computational models built in AI often instantiate such hypotheses 

and are considered as models. The specification of AI programs in terms of sets of 

heuristics and processes constitute state transformation functions. The 

transformation function's input state is given by the domain and inputs to the 

program on a particular run. The function's output is the description of how the 

program performs. Running a discovery system on a given domain generates an 

instance (see Table 9.1).

9.2.3 Criteria For The Acceptability Of Theories

Galileo assessed the acceptability of the free fall hypothesis in terms of the 

number of experimental paradigms to which it could be successfully applied. In AI 

the assessment of computer programs is typically in terms of performance (e.g. 

Kibler & Langley, 1988). However, when modelling scientific discovery in 

Cognitive Science the assessment of computational models is often considered in 

terms of the generality of the programs - explanatory breadth. The acceptability of 

computational models is something we will consider in more detail below.

We have seen how research in Cognitive Science into scientific discovery maps 

onto the framework. This neatly groups the various computer programs and 

different types of studies into distinct classes. This classification in turn reveals 

several different issues concerning the nature of the research on scientific discovery. 

We will consider: (§9.3) the limitations of the empirical research that has so far been 

carried out and how it may progress in the future; (§9.4) how computational models 

have, or very often have not, modelled the various components of scientific 

discovery; (§9.5) criteria for assessing the acceptability of discovery systems, and 

how well existing systems fared; (§9.6) other issues, for example, how the 

completeness of computational models may lead to emergent abilities.
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9.3 THE EXPERIMENTAL COMPONENT OF THE COGNITIVE 

SCIENCE OF SCIENTIFIC DISCOVERY

According to the framework analysis, the experimental component of research in 

the study of scientific discovery in Cognitive Science is constituted by the historical 

episodes of discovery and the empirical research on human scientists. Both are 

involved in the development and assessment of hypotheses and computational 

models. How adequate they are for this purpose is an important issue in this field.

9.3.1 Historical Accounts Of Discovery

In terms of the framework accounts of episodes of discovery are mere 

observations; there is no manipulative control over the parameters that affect the 

discoveries made. This reduces substantially the reliability of the accounts as a 

means to assess or develop computational models or higher level characterizations. 

Without manipulative control of the phenomena, it is impossible to determine with 

certainty what has caused a scientist to perform a particular action.

It seems that the best that we can hope to achieve with historical cases studies is a 

detailed chronology of the events in an episode. The ordering of events is useful 

because a discovery system that manages to reproduce the same sequence of events 

is more likely to possess the right heuristics. In this sense we should prefer 

KEKEDA (Kulkami & Simon, 1988) and STERN, over PI (Thagard, 1988), 

because they make discoveries in the same order as the episodes they model.

However, the approach is still susceptible to the vagaries of the historian's 

reconstruction of the course of events and even the model builder's interpretation of 

the published account. The empirical studies do not suffer from the same lack of 

manipulative control over the phenomena, but the are lacking in other ways.

9.3.2 Empirical Studies

Empirical research on scientific discovery has not had the same emphasis as the 

building of computational models. One explanation is that most investigators prefer 

not to get their hands "dirty" so have stuck to building computational models.
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Another more technical explanation is that devising suitable simulated scientific 

discovery environments is difficult to do.

Many researchers have studied particular discovery tasks, these include: (i) how 

numerical data is generalized into laws (e.g. Gerwin, 1974); (ii) the solution of 

physics problems (e.g. Larkin et.al., 1980); and (iii) the proposing of expressions 

to explain data (e.g. Wason, 1960). Although these studies have led to some 

interesting conclusions (such as the existence of confirmatory bias) it is by no 

means clear that the conclusions are applicable more generally beyond the narrow 

range of tasks considered.

One solution to such limitations is the construction of simulated scientific 

discovery environments (e.g. Klahr & Dunbar, 1988). The making of discoveries 

by subjects in these environments resembles the making of real discoveries more 

closely. To make a discovery the subjects have to carry out many different tasks, 

including the performing of experimental tests and the inference to and testing of 

laws. However, the simulated environments are not without their own limitations. 

The two following criticisms are partly related. First, the simulated environments 

over-constrain the behaviour of the subjects, distorting or preventing them from 

expressing the full range of processes they might normally display. Second, the 

environments only simulate one experimental setup. Thus the subjects can only 

make inference to models and not hypotheses. To be able to find general theories 

several experimental paradigms must be made available to the subject. Future work 

may address these deficiencies. The problem of the lack of experimental paradigms 

could be overcome in, for example, Klahr & Dunbar's (1988) computer controlled 

robot environment by giving the subject a number of mystery functions to 

characterize. The generalizing of all the descriptions of functions into a higher level 

characterizations would yield hypotheses.

The experimental component of scientific discovery research in Cognitive 

Science has been considered. We now more on to the theoretical component.
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9.4 THE THEORETICAL COMPONENT OF THE COGNITIVE 

SCIENCE OF SCIENTIFIC DISCOVERY

The theoretical side of Cognitive Science research programmes on scientific 

discovery contains theoretical knowledge of several types. There are the theses of 

philosophers of science, some theories proposed by cognitive psychologists, and 

computational models in AI. Following the central theme of the thesis, our main 

concern will be with computational models of scientific discovery, with some 

attention to the conclusions drawn for empirical studies.

Amongst the computational modellers there have been some distinct biases. 

Many researchers have tended to be driven by specific AI techniques rather than 

being led by the episodes being modelled. The consequence of this is that important 

, aspects of discovery have been ignored. In terms of the framework, discovery 

systems have typically focused on the models and instances of the episodes they 

consider. We will see how STERN has managed to overcome this and other 

limitations.

9.4.1 Theoretical Knowledge

AI has provided researchers with a means to model theoretical knowledge that no 

longer relies on the systems of logic used by philosophy of science (and all that that 

entails). The quality of the new representations is an important issue for the 

computational modelling of scientific discovery.

Early systems, like the programs in the BACON school, used simple 

representations of theoretical knowledge. Slightly later systems combined 

qualitative and quantitative representations into single programs (e.g. IDS, 

Nordhausen & Langley, 1987). Other systems have employed numerous classes of 

value-attribute pairs (e.g. KEKEDA, Kulkami & Simon, 1988; HDD, Reimann, 

1990). However, these representations have typically been domain-specific. Some
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representations do not even consider the semantic contents of theories (e.g. 

Thagard, 1989a).

STERN is different. It makes a clear distinction between domain-specific and 

domain-independent knowledge. Domain-specific knowledge are formalisms such 

as the equations and qualforms used to model Galileo's knowledge. Domain- 

independent representations are the knowledge structures that instantiate the 

framework. Thus, in principle, it should only be necessary to change the domain- 

dependent formalisms (and rules) when modelling different domains (such as an 

episode from the history of chemistry).

To see whether this scheme in STERN works out in practice will require another 

domain to be modelled. There are many to choose from and herein lies another 

issue. The types of theoretical knowledge that have been modelled are ones that can 

be easily represented; such as arithmetic equations, chemical reactions, classes of 

objects and so forth. Non-trivial realistic representations of more complex, but also 

more interesting, types of theoretical knowledge have been avoided. A few 

examples are infinitesimal calculus, quantum mechanics, theories expressed 

propositionally (as in psychology), and even Galileo's geometric-pictorial 

representation. A full understanding of scientific discovery may not possible 

without the consideration of these more complex types of knowledge. For example, 

we may require specific processes to break up detailed hypotheses into manageable 

parts for testing.

9.4.2 Theoretical Inferences

A similar picture to that just considered with representations emerges with the 

modelling of theoretical inferences; this is not surprising as they are so closely 

related in discovery systems. Earlier systems tend to consider just one task (e.g. 

generalization from data to laws in the BACON school). Later programs combine 

quantitative and qualitative inference in particular tasks (e.g. ABACUS, 

Falkenhainer & Michalski, 1986). The most complete systems employ a number of
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different processes that deal with one hypothesis or model at a time (e.g. SDDS, 

Klahr & Dunbar, 1988; HDD; KEKEDA). The hypotheses may be tested against 

experimental test results and modified according to the outcome.

STERN makes significant advances on previous systems, using three strategies 

to make theoretical inferences. The confirmation strategy not only tests quantitative 

and qualitative hypotheses against experimental tests but can make inferences with 

groups of mutually exclusive hypotheses (Chapter 6). The generalization strategy 

allows STERN to fully characterize the domain in a qualitative fashion, in which all 

relevant and irrelevant terms are identified. It also finds tentative quantitative 

hypotheses from the data. The strategy for the generation of new hypotheses from 

old considers qualitative and quantitative hypotheses using old hypotheses from the 

whole spectrum of acceptability.

Furthermore, STERN subsumes existing systems. The BACON programs have 

the same task as just one of STERN classes of rules; this is the generalizing of 

instances into models. The various types of knowledge and processes of HDD, 

SDDS and KEKEDA can also be mapped onto the components and rules of 

STERN.

Many different types of scientific reasoning have been modelled by STERN and 

other systems. However, there is one obvious omission -  inferences using pictorial 

representations. Qin & Simon (1990) found that graphs are important in the 

generalization of data into laws, in particular to help identify the form of the 

function describing the data. Galileo used a geometric-pictorial method to generate 

models from hypotheses. Simon & Larkin (1987) have considered why graphical 

summaries of information are often so effective.

STERN roughly models some of these abilities. The function to assess predictive 

accuracy uses a least squares technique that is equivalent to the plotting of points 

and drawing a line though them (Chapter 5). STERN uses qualforms (i.e. 

regularities found in experimental data) to help choose the form of equations in the
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Strategy that generates new hypotheses from old. This is rather like the process of 

function spotting using diagrams that Qin & Simon observed. Clearly there is much 

interesting work yet to be done on this topic.

9.4.3 Acceptability Of Theories

How scientists ought to and how they actually assesses the acceptability of 

theories is something that philosophers have argued over long and hard. The 

builders of computational models have been more pragmatic and given their systems 

particular techniques to see if they are effective. The acceptability criterion typically 

considered by researchers are variations of explanatory breadth. STERN is not an 

exception in this respect and even ECHO (Thagard, 1989a) seems to boil down to it 

(see §2.4).

The various systems that assess the acceptability of theories have successfully 

modelled episodes of discovery using just the one criterion, but this is far form 

conclusive proof that it is a necessary and sufficient one. Intuitively, internal 

consistency and fruitfulness are two that seem to be relevant. Furthermore, 

McAllister (1989) contends that aesthetic criteria are important too. Watson (1968), 

one of the discoverer's of the structure of DNA, recollects that the beauty of the 

model substantially increased their belief in the double helix. Simplicity is one 

aesthetic criterion that has been considered at length by philosophers of science 

(e.g. Lakatos, 1971; Sober, 1975; McAllister, 1989) that has to some extent been 

taken on board in AI (e.g. Harman et.al, 1988; Thagard, 1988a).

9.4.4 Experimental Knowledge

We now turn to experimental matters. The work on the theoretical component of 

scientific discovery outweighs the experimental component substantially. This 

parallels the neglect of experiment in the philosophy of science, that has begun to be 

rectified by the new experimentalists (e.g. Hacking, 1983; Galison, 1986; 

Franklin; 1987). In AI, STERN attempts to fulfil the same role, as we will see.
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Almost without exception, the representation of experimental knowledge in 

discovery systems in absent. Typically the programs take interpreted, tme, noise- 

free data as input. In the exceptional cases only the experimental test level of the 

experimental component of the framework is considered (i.e. KEKEDA, HDD).

STERN on the other hand considers experimental paradigms, experimental 

setups and experimental tests. Many types of experimental paradigms and setups are 

given to STERN as inputs. STERN also considers new paradigms and setups by 

itself. AU three levels of experiments have associated information; such as pragmatic 

measures of their relative ease of manufacture and use. Different types of 

experiments are also acknowledged; normal experiments (e.g. pendulum paradigm) 

and combined experiments (e.g. inclined plane and projectile paradigm) used in 

one of two modes. Like terms in theory, the experimental components have 

parameters. Parameters are not simply variables with assigned values but include 

information on (i) the range over which its values may vary and (ii) how easy the 

parameters are to manipulate and observe. Furthermore, STERN distinguishes 

between experiments that it has only conceived and those that have been 

manufactured.

9.4.5 Experimental Processes

Since most previous systems do not represent experiments they do not instantiate 

any experimental processes. HDD represents experiments, but all its experimental 

tests are given as inputs. KEKEDA designs domain-specific experimental tests but 

only when there is some instance to be tested.

The experimental processes in STERN are extensive. Unlike KEKEDA, it can 

design experiments when there is no instance to be tested (and when there is). 

When there is no instance the wealth of experimental knowledge is used to generate 

all possible tests and the background knowledge is used to eUminate designs that are 

trivial. STERN uses various rules for the selection of experimental paradigms and 

setups. The selection depends on (i) the hypothesis (or model) being tested, if any.

- 1 6 7 -



Conclusions

(ii) the number of setups possessed by the paradigm, and (iii) whether the 

hypothesis and paradigm have been considered together earlier. Furthermore, 

STERN limits the manufactured experimental paradigms to a manageable number. 

Typically previous systems do not distinguish between experimental tests and 

instances. STERN, however, can compare experimental tests and predictive 

instances, and is able to interpret tests into instances. The pinnacle of STERN’s 

experimental abilities is the construction of new experiments by combining known 

experimental paradigms. STERN does this when there are theories that are 

intractable from a wholly theoretical approach. This is a good example of the 

interaction between theory and experiment in STERN.

9.4.6 Reliability Of Experiments

The framework for scientific discovery acknowledges the importance of the 

assessment of the reliability of experimental knowledge. This is something that the 

new experimentalists in the philosophy of science have shown to be crucial in 

scientific discovery. One aspect of experimental reliability concerns the presence of 

noise in experimental data and how to deal with it.

BACON uses a simple mechanism to cope with noise, but it is rather crude (see 

§2.2.1.1). Other systems have assumed that experimental data is noise free.

STERN deals with noise in different ways depending on the strategy being 

followed. During the confirmation strategy STERN compares predictive instances 

with experimental results. The function that assesses predictive accuracy takes noise 

into account, the greater the noise the lower the degree of accuracy. In the strategy 

that generalizes experimental results into hypotheses noise is considered as 

instances that are generalized to form models. A model is only formed when a 

deviation test, that ranges over all the data, is satisfied.

The many other strategies discovered by the new experimentalists for dealing 

with experimental reliability have been analysed by Cheng (1988) using the black 

box conceptualization of experiments.
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9.4.7 Communication

Communication between the theoretical and experimental components of a 

research programme is essential to scientific discovery. The implicit view of most 

researchers is that the only type of communication is the feeding of experimental 

data into theoretical considerations. However, in research programmes there is 

information transfer between all the levels of the two main components for all sorts 

of different reasons. On a mundane level, to test a prediction an experimenter needs 

to know which parameters are relevant when designing and performing an 

experimental test. More interestingly, there must have been some subtle 

interchanges between theory and experiments for Galileo to know that invention of 

combined inclined plane and projectile paradigm would allow the, otherwise 

intractable, law of free fall to be tested.

In previous work experiments are almost completely ignored, so there has been 

little modelling of communication. However, KEKEDA and HDD are both able to 

compare predictions and experimental results.

Since the theory and experiment components are instantiated in STERN many 

types of communication occur between the levels of theory and experiment. The 

confirmation of a hypothesis requires continual exchange of information (Chapter 5) 

and the generalization strategy requires a moderate amount of communication 

(Chapter 6). The correspondence between theoretical terms and experimental 

parameters is assumed to be the most fundamental level of communication by the 

framework. STERN models this in its rich representation of experimental 

parameters and theoretical terms.

9.4.8 Background Knowledge

Background knowledge certainly has a role in scientific discovery - the scientific 

life of researchers is not isolated from the rest of their knowledge and experiences. 

Galileo is a good case in point; he used his knowledge of geometry in many
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different ways to make discoveries.

Sleeman et.al.'s (1989) architecture for theory driven discovery acknowledges 

the importance of background knowledge. However, the architecture does not spell 

out how such knowledge is to be distinguished from the other forms of knowledge 

considered (e.g. meta-knowledge), nor does it indicate in detail how the knowledge 

is used. Holland et.al.'s Induction framework states that background knowledge is 

important. However, the PI program instantiation of the Induction framework does 

not seem to use such knowledge (Thagard, 1988a). None of the previous systems 

actually employ background knowledge to make discoveries.

In STERN background knowledge can be defined as any knowledge that does 

not fall within the theoretical or experimental components. Such knowledge may 

still be scientific, in a general sense, but it will be background information as far as 

the delimited set phenomena of the domain is concerned. STERN possesses 

background knowledge of geometry and relations for spherical bodies. This 

knowledge is used in the generation of models to form hypotheses and in the design 

of experiments.

We have considered a long list of features that we would expect an acceptable 

model of scientific discovery to instantiate. The extent to which models cover these 

features is one way to assess the acceptability of the models. We will now consider 

this and other criteria for the assessment of computational models.

9.5 THE ACCEPTABILITY OF COMPUTATIONAL MODELS OF 

SCIENTIFIC DISCOVERY

We have considered the investigation of scientific discovery in Cognitive Science 

as a scientific pursuit in terms of the framework. One of the aspects of the 

theoretical component of the framework are criteria by which to assess the 

acceptability of theories. In this section we will consider three important criteria.
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9.5.1 Completeness

In the previous section we considered many different aspects of the framework 

that computational models of scientific discovery ought to consider if they are to 

successfully model all parts of complex episodes of discovery in detail. The degree 

to which a model does this can be considered as a measure of its completeness. 

This way of assessing the acceptability of discovery systems does not seem to have 

been considered before; perhaps because no one has produced a model as complete 

as STERN.

Completeness is an important property for a discovery system to possess. 

Without it, it is impossible for a system to model an episode of discovery in any 

detail. Furthermore, completeness allows the modeller to consider tasks and 

heuristics at a higher level than before - at the level of the main tasks and processes 

within the research programme being modelled. There are interesting types of 

behaviour to be studied at this level that are not manifested in less complete and 

hence less complex systems (see §9.6.1).

Along the completeness dimension of acceptability the previous discovery 

systems are clustered at the incomplete end. For example, programs in the BACON 

school only generalize instances into models. ECHO only assesses the acceptability 

of propositions in terms of data. Although KEKEDA has many classes of heuristics 

it does not consider hypotheses, experimental setups and paradigms. STERN, 

however, is fairly complete as it instantiates all the components of the framework, 

that is: the three levels of theory and experiments; theoretical inferences and 

experimental processes; criteria for the acceptability of theories and the reliability of 

experiment; and communication between theories and experiments.

9.5.2 Generality

Another important criterion is generality; that is the range of different domains to 

which a model can be validly applied - explanatory breadth. This is a criterion that 

has been acknowledge in this field and which some researchers have striven to
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achieve (e.g. Thagard, 1988). Like any theoretical knowledge, the more domains a 

computational model validly applies to the more likely it is to be a characterization 

that captures some underlying essence of scientific discovery phenomena.

BACON and ECHO are two systems that have generality, both have been 

applied successfully to many domains. However, this generality is at the expense of 

being very incomplete. Other programs have much less generality. For instance, 

GELL-MANN (Zytkow, 1987) only considers the inference to quark models from 

data, and KEKEDA only models the discovery of the urea cycle; although in 

KEKEDA’s favour it is moderately complete.

STERN has only modelled the Galilean domain so far, so it has not been shown 

to be general. However, various facts indicate that it has potential to satisfy this 

acceptability criterion. First, STERN is based heavily on the framework, that is in 

turn quite general. Second, STERN's knowledge structures and processes largely 

subsume HDD, SDDS and KEKEDA that each relate to quite different domains. 

Third, STERN's knowledge structures and classes of rules have been carefully 

separated into domain-specific and domain-independent groups. This allows the 

domain-independent rules to be tested using other domains just by swapping the 

domain-specific formalisms and rules (at least in principle). The real test of 

STERN's generality will be to try to model other episodes of discovery in the 

future.

9.5.3 Internal Coherence

Applying the framework in a reflexive fashion, to the Cognitive Science of 

scientific discovery, focuses our attention on the relation between the various 

theoretical elements. These elements are the computational models and any general 

hypotheses about scientific discovery. Three examples are: (i) the BACON school's 

cyclic general description of science and the programs in the school (Langley et.ah, 

1987); (ii) the Theory of Explanatory Coherence and ECHO (Thagard, 1989a); and
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closer to home, (iii) the framework for scientific discovery and STERN.

In this respect, there is another important criterion for assessing the acceptability 

of computational systems. This time it is the internal relationship between the 

computational model and the hypothesis which is of interest, rather than external 

reference to discovery episodes. In a Cognitive Science research programme that 

includes a computational model, the internal coherence of the theoretical component 

(of the research programme) is to a large extent determined by the quality of the 

relationship between its hypothesis and its computational model. The computational 

model should follow fully and rationally from the hypothesis; in other words the 

relationship should: (i) not be arbitrary or involve ad hoc assumptions; and (ii) 

have all the essential features of the hypothesis instantiated in the model. If these 

conditions are not satisfied, then the acceptability of the model cannot be used to 

assess the generality of the hypothesis.

Let us compare the BACON school with the research in this thesis. They are 

areas of research with very different degrees of internal coherence.

The general cyclic description of the BACON school considers four phases 

including: (i) data gathering; (ii) finding parsimonious descriptions of the data; (iii) 

formulating explanatory theories; and (iv) testing these theories. Of the four phases 

outlined, only the second (formation of parsimonious descriptions of data) phase is 

actually modelled in the programs. Furthermore, separate programs are required to 

deal with different domains. The school is far from internally coherent.

The framework in this thesis has been implemented in STERN. Everything 

posited by the framework reappears in the program (See Chapters 1 & 4 and §9.4). 

This is not only in terms of knowledge structures but includes inference processes 

and acceptability and reliability criteria. The work here has internal coherence. 

Furthermore, this coherence is clearly demonstrated by the reflexive abilities of the 

framework - STERN is based on it within the present research programme and the 

research programme is itself characterized by the framework.
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This completes the consideration of issues arising out the analysis of Cognitive 

Science research on scientific discovery using the framework. We will now 

consider other issues, some of which relate indirectly to what we have just 

considered.

9.6 REMAINING ISSUES AND THOUGHTS

We have considered various issues to do with computational models and how 

successful they have been so far at modelling scientific discovery. Now we will 

consider some tentative conclusions drawn from the performance of STERN and 

the best of the previous systems.

9.6.1 Completeness Leads To Emergent & High Level Abilities

One of the criterion for the assessment of the acceptability of computational 

models considered above was completeness. Apart from the fact that it gives more 

exact representations of scientific research programmes, there are two other related 

reasons why completeness is important.

First, a complete model possesses many different processes that instantiate 

particular tasks that make up the overall ability of a system. Compared with less 

complete models that only model one task, the more complete system allows 

processes and heuristics amongst the tasks to be considered. These higher or 

research programme level procedures are particularly interesting. Included amongst 

them are approaches that scientists use to speed up their research. For example, 

scientists often prefer "dirty" but fast approaches as in Crick and Watson's 

discovery of the Double Helix structure of DNA. They used the quickest, if not the 

most reliable, methods because they were attempting to beat Pauling to a discovery 

worthy of a Nobel Prize. Platt (1964) has formalized some heuristics derived from 

this episode into a prescriptive method he calls "strong inference".

In the most complete discovery systems such research programme heuristics 

have begun to be studied. KEKEDA has measures of the amount of effort spent on
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certain tasks. They are used to help control the path of discovery by forcing the 

system to abandon propositions when there has been too much work for too little 

reward, even if there is insufficient evidence to show the proposition is really 

unacceptable. KEKEDA can also recognize surprising outcomes and places a task to 

study the surprising effect at the top of its agenda; thus abandoning what it was 

previous investigating. STERN possess two heuristics at the level of the research 

programme to cut down the amount of search. First, the program groups together 

mutually exclusive hypotheses that were generated by a single process. Later, when 

one hypothesis is confirmed, STERN knows that the rest can simply be ignored. 

Second, the mechanism to control the availability of the experiments eliminates 

much wasted effort during the confirmation and the generalization strategies.

The second reason why completeness in a computational model is desirable is 

related to the first. Completeness allows the programmer to build in high level 

procedures, but it also means that discovery systems will start to exhibit behaviour 

that is emergent as they become more and more complex. By emergent behaviour 

we mean that the performance of the systems is no longer simple to predict from its 

structure and inputs. For example, STERN found the law governing the period of 

swing of a pendulum, even though there had been no intention on the part of 

STERN's designer that it would find this true law. Another, perhaps more 

significant, behaviour that is exhibited in STERN is chronological dependency.

STERN has four main strategies that use many processes to perform many 

different tasks to gradually increase and modify the knowledge about the 

phenomena. These processes are dependent on what previous processes have done. 

When a process modifies the knowledge in the system this indirectly affects later 

processes that use the knowledge. For example, in STERN the initial acceptability 

of the Aristotelian instantaneous acceleration law permitted the term for speed to be 

eliminated from equations using the term's definition. A bit later the instant
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acceleration law was disconfîrmed. Thus, when STERN came to consider the free 

fall equation it found it could not replace the speed term. Finally, to overcome the 

intractability of the theoretical inferences STERN considered the combined inclined 

plane and projectile experiment. It would have been difficult to predict that this long 

line of many different processes would have occurred just given the specification of 

STERN's four main strategies and the Aristotelian laws as input. This clearly 

shows how interesting behaviour over time emerges from complex and complete 

systems.

The completeness of models is clearly an important aspect to be pursued in the 

modelling of discovery. But there are also many other aspects of scientific 

discovery that are interesting to study.

9.6.2 Beyond The Single Scientist And Research Program m e

The framework for scientific discovery has been at the heart of this thesis. So far 

we have considered the framework as applied to a single scientist working more or 

less in isolation with the theoretical and experimental components fixed in several 

ways. A great deal has already been achieved using the framework in this manner, 

but loosening up some of the present constraints will allow the framework's 

potential to be explored even more fully.

The framework may be applied to research programmes that involve cooperating 

or competing scientists investigating a common class of phenomena. Such domains 

could be modelled by giving STERN one complete scientific knowledge hierarchy 

to represent the knowledge possessed by each scientist (see Figure 1.2). 

Interactions between the two would then be modelled using heuristics like those 

found by Frankel (1987) in his analysis of the continental drift debate. Frankel's 

heuristics consider how to challenge the work of opponents whilst improving one's 

own position.

The framework may also be used to model the reasons scientists have for 

working in a particular domain and why they choose to abandon or switch to
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another domains. For example, Crick (1988) decided to work in molecular biology 

by applying his "gossip test". This test was based on which fields of research were 

being talked about the most by scientists in general. Galileo switched research 

programmes when he learnt of the invention of the telescope. Perhaps astronomy 

fascinated him more, but it is also reasonable to consider whether discoveries in the 

natural motion domain were drying up. STERN might use some mechanism to 

measure the rate at which hypotheses and models were being generated to assess the 

fruitfulness of a domain.

These are just two examples of how the framework may be applied more 

generally than has so far been considered in this thesis.

9.7 CONCLUSION

A great deal has been achieved in this thesis. A framework for characterizing 

scientific discovery has been introduced. It has been used to organize a review of 

previous work in this area of Cognitive Science, and to some extent assess the 

acceptability of existing computational models. The STERN discovery system was 

based on the framework and has successfully modelled in detail the discoveries of 

an important historical episode of science. STERN overcomes the limitations of 

existing discovery systems, particularly with respect to the criteria of completeness 

and internal coherence.
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Appendix I
s t e r n 's Discovery Trace

The output trace produced by STERN when modelling the Galilean episode is 

presented below in a condensed form.

The cycles of the Production System (PS) begin on the numbered lines. The first 

figure is the cycle number and the second in square brackets is the depth PS 

nesting. On each cycle the matched rules are named in the parentheses and one 

chosen by conflict resolution is shown after the arrow (=>). The statements 

following the numbered lines give a brief description of the actions performed; the 

amount of indentation of these lines provides an additional indication the level of PS 

nesting.

The inputs to STERN are briefly discussed in §4.2.1.

I .l  Disconfirming The Aristotelian Laws
STERN is run by an initial call to the PS with RULES_0. In the first cycle the 

RO_START_CONFIRM rule is chosen from amongst the alternatives that have 

successfully matched. The action of this rule sends STERN down the route of 

hypothesis testing through the generation of models by a recursive call to the PS 

with RULES 1.

+++ P.s. called with RULES_0 +++
l-[0] (RO_NEW_EXPTPARADIGMS RO_START_CONFIRM) => RO_START_CONFIRM 

Calling production system with rules_l 
+++ P.S. called with RULES 1 +++

One of the three Aristotelian hypotheses is chosen in cycle 2. The pendulum 

experimental paradigm is selected on cycle 3. A recursive call to the PS with 

RULES_5, cycle 4, permits the generation of models, in cycle 5. The model is 

inferred by substituting the definition of speed for the velocity term and the quotient 

of weight and volume for the density term. No further rules match at in the present 

PS level, [2], so control is returned to the PS with RULES_1 on level [1], in cycle
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6. The final action of the rule begun on cycle 4 is to store the new model.

2-[l] (R1_CHCX)SE_PARADIGM_N0_HYP0 R1_CH00SE_HYP0) =>
R1_CH00SE_HYP0
hypo with (= T_V T_DEN) made current

3-[l] (R1_HYP0_ASSESS R1_CH00SE_PARADIGM_WITH_HYP0) => 
R1_CH00SE_PARADIGM_WITH_HYP0

PENDULUM m a d e  c u r r e n t
4-[l] (R1_HYP0_ASSESS R1_HYP0->M0DELS) => R1_HYP0->M0DELS 

Calling production system with RULES_5 to generate models
+++ P. S. called with RULES 5 +++

5-[ 2] (R5_MAIN_W0RKER) => R5_MAIN_W0RKER
model with equation (= (/ T_D T_TIME) (/ T_W T_VOL) ) 
added to hypo's list and tractability now 
#S(MEASURE NUMBER 1 DEGREE 1)

6-[2] NIL => no rule to fire
  No rules in RULES_5 to fire --

1 model(s) generated and stored

STERN now makes the model active, cycle 7, and proceeds to investigate it by 

calling RULES_2, cycle 8. The first action at the new level is the choice of an 

experimental setup from amongst those stored in the current experimental paradigm, 

cycle 9. Instances are then generated by RULES_8 in a further recursive call to the 

PS. Six instances are found, cycle 11, and control is popped back up a level. The 

instances are stored and the measure of tractability of the model is incremented, 

cycle 12.

7-[l] (R1_HYP0->M0DELS R1_CH00SE_M0DEL) => R1_CH00SE_M0DEL 
model with equation (= (/ T_D T_TIME) (/ T_W T_VOL) ) made 
current

8-[l] (R1_TEST_M0DEL) => R1_TEST_M0DEL 
call production system with RULES_2
+++ P.S. called with RULES_2 +++

9-[2] (R2_CH00SE_SETUP) => R2_CH00SE_SETUP 
DOWN_PENDULUM made current

10-[2] (R2_0BTAIN_INSTANCES) => R2_0BTAIN_INSTANCES 
Calling production system with RULES_8 to generate 
instances
+++ P.S. called with RULES_8 +++

11-[3] (R8_GEN_QUANT_INSTANCES) => R8_GEN_QUANT_INSTANCES
6 instance(s) and stored in current instance

12-[3] NIL => no rule to fire
  No rules in RULES_8 to fire --

model tractability now #S (MEASURE NUMBER 1 DEGREE 1)
6 instance(s) made and stored in model, current instance 
cleared

Each instances is chosen in turn for comparison with an experimental test in cycles

13-20, 21-28, 29-36, 37-47, 48-58, and 56-66. The first and fourth sets of cycles 

will be considered as they are examples of the two patterns of instance testing. First 

cycles 13-20, that shows the failure to test an instance. At cycle 13, distance and
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time are chosen as independent and dependent terms, and the PS is called with 

RULES_9 to consider instances and experimental tests, cycle 14. Yet another 

recursive call is made to invoke the experimental performance rule, cycles 15 and 

16. However, no experiment is performed, cycle 17, because it is difficult to 

measure distances for swinging pendulums. So the adequacy of the instance is set 

to -1 to indicate the fact that no experimental results were available, cycle 18. No 

further experimental performance rules can fire, cycle 19, so the instance is simply 

made inactive and model adequacy is not incremented, cycle 20.

13-[2] (R2_CHCX)SE_INSTANCE) => R2_CHCX)SE_INSTANCE 
An instance with these variables made current 
independent = T_D and dependent = T_TIME 
their values are respectively -
( 0.000 0.337 0.673 1.010 1.346 1.683 2.020 2 . 3 5 6  )
( 0.000 0.000 0.001 0.001 0.001 0.002 0.002 0.002 )

14-[2] (R2_TEST_INSTANCE) => R2_TEST_INSTANCE
call production system with rules_9 to test the instance 
+++ P.S. called with RULES_9 +++

15-[3] (R9_PERF0RM_EXPT_TEST) => R9_PERF0RM__EXPT_TEST
Calling production system to perform experiment 

++ +  P .S. called with EXPT_RULES; +++
16-[4] (E_PREPARE_WITH_INSTANCE) => E_PREPARE_WITH_INSTANCE

Test prepared
17-[4] NIL => no rule to fire

  No rules in EXPT_RULES to fire --
Test Performed

18-[3] (R9_N0_TEST_PERF0RMED) => R9_N0_TEST_PERF0RMED
Instance degree set to -1 and current expt test cleared

19-[3] NIL => no rule to fire
  No rules in RULES_9 to fire --

degree of match of instance and expt. test -1
20-[2] (R2_ASSESS_M0DEL) => R2_ASSESS_M0DEL

Model tractable but current instance not testable.
Current instance cleared.

The second set of cycles, 37-47, is the first to successfully compare an instance 

with experimental test results. The instance with time and weight terms is chosen, 

cycle 37, and the PS is called twice in succession, cycles 38 and 39, to test the 

instance that in turn requires the performance of an experiment. The 

down_pendulum experiment is performed and produces a list of experimental 

weight and time parameter values, cycles 40 to 42. The comparison of the two pairs 

of. values is the task of RULES_12, cycles 43 to 45, which finds there is no 

correlation (weight and time being independent). Cycle 46 ends the instance testing, 

and the adequacy of the model is calculated, cycle 47.
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37-[2] (R2_CH00SE_INSTANCE) => R2_CHCX)SE_INSTANCE 
An instance with these variables made current 
independent = T_W and dependent = T_TIME 
their values are respectively -
(0.000 0.143 0.286 0.429 0.571 0.714 0.857 1.000) 
(58904862254808624.000 0.004 0.002 0.001 0.001 0.001
0.001 0.001 )

38-[2] (R2_TEST_INSTANCE) => R2_TEST_INSTANCE
call production system with rules_9 to test the instance 
+++ P. S. called with RULES 9 +++

39-[3] (R9_PERF0RM_EXPT_TEST) => R9_PERF0RM_EXPT_TEST
Calling production system to perform experiment 

+ + +  P .S. called with EXPT_RULES +++
40-[4] (E_PREPARE_W ITH_INSTANCE) => E _PR EPA R E_W ITH _IN STANCE

Test prepared
41-[4] (E_DOWN_PENDULUM) => E_DOWN_PENDULUM

TIM E v a l u e s  f o u n d  f o r  o / p  v a l u e s  o f  c u r r e n t  e x p t t e s t
42-[4] NIL => no rule to fire

  No rules in EXPT_RULES to fire --
Test Performed
i/p* and o/p vais are -
( 0.000 0.143 0.286 0.429 0.571 0.714 0.857 1.000)
( 0.710 0.687 0.696 0.707 0.687 0.697 0.690 0.693)

43-[3] (R9_TEST_INSTANCE) => R9_TEST_INSTANCE
Calling production system with RULES_12 
to compared instance and expttest
+++ P.S. called with RULES_12 +++

4 4- [ 4 ] (R12_TEST_QUANT_INSTANCE ) => R12_TEST_QUANT_INSTANCE
degree of match = 0.000

45-[4] NIL => no rule to fire
  No rules in RULES_12 to fire --

Degree of agreement between instance and expttest 
=  0 . 0 0 0
Current expt test cleared

46-[3] NIL => no rule to fire
  No rules in RULES_9 to fire --

degree of match of instance and expt. test 0
47-[2] (R2_ASSESS_M0DEL) => R2_ASSESS_M0DEL

Model adequacy now #3 (MEASURE NUMBER 1 DEGREE 0)
& current instance cleared.

Once RULES_2 has cycled through all the instances, the active experimental setup 

is dropped, cycle 67. Beginning with the selection of the s w i n g _ p e n d u l u m  setup, 

cycles 68 to 126, the whole process of testing a model against an experimental setup 

is repeated (as in cycles 9 to 67). Control is passed back up to RULES_1 in cycle 

127, and the adequacy of the model is given; four instances have been tested but 

none compared well with experimental results. No.more suitable setups exist under 

the active paradigm so the adequacy of the hypothesis is incremented, cycle 128.

67-[2] (R2_N0_M0RE_INSTANCES) => R2_N0_M0RE_INSTANCES 
current setup cleared

68-[2] (R2_CH00SE_SETUP) => R2_CH00SE_SETUP 
SWING PENDULUM made current
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126-[2] (R2_N0_M0RE_INSTANCES) => R2_N0_M0RE_INSTANCES 
current setup cleared

127-[2] NIL => no rule to fire
  No rules in RULES_2 to fire --

model adequacy now #S (MEASURE NUMBER 4 DEGREE 0)
128-[1] (R1_HYP0_ASSESS_WRT_M0DELS) => R1_HYP0_ASSESS_WRT_M0DELS 

hypo adequacy — #S (MEASURE NUMBER 1 DEGREE 0) and current 
model cleared.
All models tested, exptparadigm cleared

The whole hypothesis testing process is repeated with the i n c p l a n e  experimental 

paradigm (as per cycles 3 to 128) in cycles 129 to 197. The new model has the 

same form of equation as that in cycle 7. The comparison of the instance, with 

distance and time as independent and dependent terms, with its experimental test 

was good. The degree slot of the adequacy measure of the model is significantly 

above zero.

129-[1] (R1_HYP0_ASSESS R1_CH00SE_PARADIGM_WITH_HYP0) => 
R1_CH00SE_PARADIGM_WITH_HYP0

INCPLANE made current
130-[1] (R1_HYP0_ASSESS R1_HYP0->M0DELS) => R1_HYP0->M0DELS 

Calling production system with RULES_5 to generate models
m o d e l  a d e q u a c y  now
#S(M EASURE NUMBER 3 DEGREE 0.96635554951792)

The hypothesis has thus been tested against two experimental paradigms and their 

various setups. The adequacy of the hypothesis is finally calculated in cycle 198. 

This is below the adequacy limit, so it is abandoned. The next Aristotelian 

hypothesis is chosen, cycle 200, and it is tested in a similar manner (a repeat of 

cycles 2 to 199) using the same two experimental paradigms to generate models, 

cycles 200 to 386.

198-[1] (R1_HYP0_ASSESS_WRT_M0DELS) => R1_HYP0_ASSESS_WRT_M0DELS 
h y p o  a d e q u a c y  =
#S(M EASURE NUMBER 2 DEGREE 0.3221185165059733)
a n d  c u r r e n t  m o d e l  c l e a r e d
A l l  m o d e l s  t e s t e d ,  e x p t p a r a d i g m  c l e a r e d

199-[1] (R1_HYP0_ASSESS) => R1_HYP0_ASSESS 
c u r r e n t  h y p o  c l e a r e d

200-[1] (R1_CH00SE_PARADIGM_N0_HYP0 R1_CH00SE_HYP0) => 
R1_CH00SE_HYP0

h y p o  w i t h  (= T V T W*) m a d e  c u r r e n t

385-[1] (R1_HYP0_ASSESSJWRT_M0DELS) => R1_HYP0_ASSESS_WRT_M0DELS 
hypo adequacy = #S (MEASURE NUMBER 2 DEGREE 0) and current 
model cleared
All models tested, exptparadigm cleared
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386-[1] (R1_HYP0_ASSESS) => R1_HYP0_ASSESS 
current hypo cleared

The third Aristotelian law is the qualitative instantaneous acceleration hypothesis. 

The procedure has a similar structure to the two previous quantitative hypotheses 

except that qualitative heuristics for the domain specific generative processes are 

employed. The testing of the hypothesis with the first experimental setup of the first 

paradigm is shown below, cycles 387 to 409. The cycles 410 to 425 cover the 

second experimental setup and cycles 428 to 450 cover the inclined plane 

experimental paradigm.

387-[1] (R1_CH00SE_PARADIGM_N0_HYP0 R1_CH00SE_HYP0) => 
R1_CH00SE_HYP0

hypo with (INSTANTANEOUS T_V T_D) made current
388-[1] (R1_HYP0_ASSESS R1_CH00SE_PARADIGM_WITH_HYP0) => 

R1_CH00SE_PARADIGM_WITH_HYP0
PENDULUM m a d e  c u r r e n t

389-[1] (R1_HYP0_ASSESS R1_HYP0->M0DELS ) => Rl_HYPQ->MODELS 
Calling production system with RULES_5 to generate models
+++ P.S. called with RULES_5 +++

390-[2] (R5_C0MPLEX_QUALF0RM) => R5_C0MPLEX_QUALF0RM 
model made with (INSTANTANEOUS T_V T_D) as qualform

391-[2] NIL => no rule to fire
  No rules in RULES_5 to fire --

1 model(s) generated and stored
392-[1] (R1_HYP0->M0DELS R1_CH00SE_M0DEL) => R1_CH00SE_M0DEL 

model with qualform (INSTANTANEOUS T_V T_D) made current
393-[1] (R1_TEST_M0DEL) => R1_TEST_M0DEL 

call production system with RULES_2
+++ P.S. called with RULES_2 +++

394-[2] (R2_CH00SE_SETUP) =>'r2_CH00SE_SETUP 
DOWN_PENDULUM made current

395-[2] (R2_0BTAIN_INSTANCES) => R2_0BTAIN_INSTANGES 
Calling production system with RULES_8 to generate 
instances
+++ p.S. called with RULES_8 +++

396-[3] (R8_GEN_QUAL_INSTANCES) => R8_GEN_QUAL_INSTANCES
1 qualitative instance made and stored in current 
instance as a list

397-[3] NIL => no rule to fire
  No rules in RULES_8 to fire --

model tractability now #S(MEASURE NUMBER 1 DEGREE 1)
1 instance(s) made and stored in model, current instance 
cleared

398-[2] (R2_CH00SE_INSTANCE) => R2_CH00SE_INSTANCE 
An instance with these variables made current 
independent = T_D and dependent = T_V

399-[2] (R2_TEST_INSTANCE) => R2_TEST_INSTANCE
call production system with rules_9 to test the instance 
+++ p.S. called with RULES_9 +++

400-[3] (R9_PERF0RM_EXPT_TEST) => R9_PERF0RM_EXPT_TEST 
Calling production system to perform experiment
+++ P.S. called with EXPTJRULES +++

401-[4] (E PREPARE WITH INSTANCE) => E PREPARE WITH INSTANCE
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Test prepared 
4 02- [ 4 ] (E_DOWN_PENDULUM) => E_DOWN_PENDULUM

SPEED values found for o/p values of current expttest
403-[4] NIL => no rule to fire

  No rules in EXPT_RULES to fire --
Test Performed

404-[3] (R9_TEST_INSTANCE) => R9_TEST_INSTANCE
Calling production system with RULES_12 
to compared instance and expttest
+++ p.S. called with RULES 12 +++

405-[4] (R12_TEST_QUAL_INSTANCE) => R12_TEST_QUAL_INSTANCE
Qualform not matched

406-[4] NIL => no rule to fire
  No rules in RULES_12 to fire --

Degree of agreement between instance and expttest 
=  0 . 0 0 0
Current expt test cleared

407-[3] NIL => no rule to fire
  No rules in RULES_9 to fire --

degree of match of instance and expt. test 0
408-[2] (R2_ASSESS_M0DEL) => R2_ASSESS_M0DEL

Model adequacy now #S (MEASURE NUMBER 1 DEGREE 0)
& current instance cleared.

409-[2] (R2_N0_M0RE_INSTANCES) => R2_N0_M0RE_INSTANCES 
current setup cleared

model adequacy now #S (MEASURE NUMBER 2 DEGREE 0)
427-[1 ] (R1_HYP0_ASSESS_WRT_M0DELS) => R1_HYP0_ASSESS_WRT_M0DELS 

hypo adequacy = #S (MEASURE NUMBER 2 DEGREE 1) and current 
model c le a r e d

A ll  m odels t e s t e d ,  exptparadigm c lea red

The final adequacy of the qualitative Aristotelian hypothesis is calculated at cycle 

451.

451-[1 ] (R1_HYP0_ASSESS_WRT_M0DELS) => R1_HYP0_ASSESS_WRT_M0DELS 
hypo adequacy = #S (MEASURE NUMBER 3 DEGREE 1) and current  
model c le a r e d .
A ll  m odels t e s t e d ,  exptparadigm c le a r e d

The whole discomfirmation procedure is finished by cycle 452. AU the Aristotelian 

hypotheses have been experimentally tested and found to be unacceptable. So the 

RULES_1 has nothing else to do but return control to RULES_0, which now 

decides to foUow the generalization strategy.

4 52-[1 ] (R1_HYP0_ASSESS) => R1_HYP0_ASSESS 
cu rrent hypo c lea red

4 53-[1 ] (R1_CH00SE_PARADIGM_N0_HYP0) => R1_CH00SE_PARADIGM_N0_HYP0 
PENDULUM paradigm made current

4 54 -[1 ] NIL => no r u le  to  f i r e
  No r u le s  in  RULES_1 to  f i r e  -----

F in ish ed  t e s t in g  e x i s t in g  hypos
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1.2 Generalizing Experiments Into Hypotheses
When generalizing experimental findings into hypotheses it is necessary to first 

obtain models and instances. To begin an experimental paradigm is chosen, cycle 

456, and the PS is called with RULES_7 in order to obtain models, cycle 457. 

RULES_7 prepares an model frame, with unfilled slots, and selects the 

DOWN_PENDULUM experimental setup is chosen, cycle 458. Experimental tests are 

prepared for all the possible permutations of experimental parameters, cycle 459, 

and then whittled down to a set of reasonable combinations, cycle 460.

455-[0] (RO_NEW_HYPOS RO_START_INDUCE) => RO_START_INDUCE 
current paradigm cleared
Calling production system with RULES_3 
+++ P.S. called with RULES_3 +++

456-[1] (R3_CH00SE_PARADIGM) => R3_CH00SE_PARADIGM 
New current hypo made
Selected paradigm PENDULUM

457-[1] (R3_GET_M0DELS) => R3_GET_M0DELS
Calling production system with rules_7 to get models 
+++ P.S. called with RULES_7 +++

458-[2] (R7_CH00SE_SETUP) => R7_CH00SE_SETUP 
A current model made
expt. setup DOWN_PENDULUM chosen

459-[2] (R7_0BTAIN_EXPTTESTS) => R7_0BTAIN_EXPTTESTS 
27 expt. tests made

460-[2] (R7_EXPTTEST_PREFERENCES) => R7_EXPTTEST_PREFERENCES 
15 expt. tests stored in setup and current expt test 
cleared

The performance and analysis of the fifteen different experimental setups falls into 

two patterns, as exemplified by the two sets of cycles, 461 to 465, and 466 to 476. 

In the first set no suitable experimental tests are performed. The test is chosen, cycle 

461, and the PS is called with RULES_11 to handle instances, cycle 462. This in 

turn calls the PS is with the experimental rules, but no test can be performed, cycle 

463 and 464, so control is return to RULES_7.

461-[2] (R7_CH00SE_EXPTTEST) => R7_CH00SE_EXPTTEST
Expt test with i/p* as DISTANCE and o/p as TIME removed 
from expt setup and made current

462-[2] (R7_MAKE_INSTANCES) => R7_MAKE_INSTANCES
Calling production system with rules_ll to make instance(s) 
+++ P.S. called with RULES_11 +++

463-[3] (R11_PERF0RM_EXPT_TEST) => R11_PERF0RM_EXPT_TEST
Calling production system to perform experiment 
+++ p.s. called with EXPT_RULES +++

464-[4] NIL => no rule to fire
 No rules in EXPT_RULES to fire--

current expttest cleared
465-[3] NIL => no rule to fire

  No rules in RULES_11 to fire --
0 instance(s) made and made current.
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Current ex p t. t e s t  c lea red .

In the second pattern of cycles, STERN successfully performs an experimental test 

and interprets the results to obtain instances which are stored. The experimental test 

has height and time as input and output parameters, respectively, cycle 466. Again

the PS is called successively with RULES_7 and EXPT_RULES to obtain

instances and experimental tests, cycles 467 and 468. The appropriate experimental 

test is performed, cycles 469 and 470. RULES_6 is invoked to to interpreted the 

test results into instances, cycles 471 to 473. The new instances are stored, cycles 

475-6.

466-[2] (R7_CH00SE_EXPTTEST) => R7_CH00SE_EXPTTEST
Expt test with i/p* as HEIGHT and o/p as TIME removed from
expt setup and made current

467-[2] (R7_MAKE_INSTANCES) => R7_MAKE_INSTANGES
Calling production system with rules_ll to make instance(s) 
+++ p.S. called with RULES_11 +++

468-[3] (R11_PERF0RM_EXPT_TEST) => R11_PERF0RM_EXPT_TEST
Calling production system to perform experiment 

++ +  P .S. called with EXPT_RULES +++
469-[4] (E_DOWN_PENDULUM) => E_DOWN_PENDULUM

TIME values found for o/p values of current expttest
470-[4] NIL => no rule to fire

-—  No rules in EXPT_RULES to fire ---
i/p* and o/p vais are -
( 0.000 0.179 0.357 0.536 0.714 0.893 1.071 1.250)
{ 0.000 0.234 0.334 0.404 0.493 0.562 0.654 0.758)

471-[3] (R11_INTERP_T0_INST) => R11_INTERP_T0_INST
Calling production system with RULES_6 
to expttest and make instance(s)
+++ P .S. called with RULES_6 +++

472-[4] (R6_FIND_QUALF0RMS) => R6_FIND_QUALF0RMS
Instance with qualform (INCREASE T_TIME T_H) 
made and appended to current instance 
Instance with qualform (FROM_ZERO T_TIME T_H) 
made and appended to current instance

473-[4] (R6_SIMPLE_TRANSFER) => R6_SIMPLE_TRANSFER
Instance made with values copied from expt test and 
appended to current instance.
Current expt test cleared.

474-[4] NIL => no rule to fire
  No rules in RULES_6 to fire --

3 instance(s) made
475-[3] NIL => no rule to fire

— —  No rules in RULES_11 to fire--
3 instance(s) made and made current.
Current expt. test cleared.

476-[2] (R7_CH00SE_EXPTTEST R7_ST0RE_INSTANCES) => 
R7_ST0RE_INSTANCES
3 instance(s) now stored in current model 
current instance cleared
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The rest of the experimental tests are examined one of the two ways considered. 

Twenty two instances are found. The whole processes, from cycle 458 to 599, is 

then repeated with the next experimental setup of the current paradigm, starting at 

cycle 600 and ending at 742.

600-[2] (R7_GENERALISE_INSTANCES R7_CH00SE_SETUP) => 
R7_CH00SE_SETUP

ex p t. setu p  SWING_PENDULUM chosen
601-[2] (R7_GENERALISE_INSTANCES R7_0BTAIN_EXPTTESTS) => 

R7_0BTAIN_EXPTTESTS
27 expt. tests made

602-[2] (R7_GENERALISE_INSTANCES R7_EXPTTEST_PREFERENCES) => 
R7_EXPTTEST_PREFERENCES
15 expt. tests stored in setup and current 
expt test cleared
51 instance(s) now stored in current model 
current instance cleared 

742-[2] (R7_GENERALISE_INSTANCES) => R7_GENERALISE_INSTANCES 
Calling production system with RULES_4 to generalise 
instances

STERN now calls the PS with RULES_4 to generalise the 51 instances. Thirty 

three models are found, 32 with qualforms and 1 with an equation, cycles 743 to 

747. The models are stored, cycle 748. The quantitative model is in fact the correct 

law describing the relation between the length of a pendulum and its period of 
swing.

+++ P.s. called with RULES_4 +++
7 4 3- [ 3 ] (R4_PREPARE ) => R4_PREPARE

51 instance(s) moved from model and made current.
Current model instances cleared.

744-[3] (R4_M0DEL_EQNS R4_M0DEL_QUAL) => R4_M0DEL_QUAL
Instances with qualforms removed from current 
instance and generalised to models with qualforms 
(FROM_ZERO T_V T_0) (REPEAT+ T_V T_0) (REPEAT+ T_V T_S) 
(REPEAT+ T_V T_VOL) (STEADY T_V T_VOL) (REPEAT- T_V T_W) 
(STEADY T_V T_W) (FROM_ZERO T_V T_L) (REPEAT+ T_V T_L) 
(FROM_ZERO T_V T_H) (REPEAT+ T_V T_H)
(FROM_ZERO T_TIME T_0) (REPEAT+ T_TIME T_0)
(REPEAT+ T_TIME T_S) (REPEAT- T_TIME T_VOL)
(STEADY T_TIME T_VOL) (REPEAT+ T_TIME T_W)
(STEADY T_TIME T_W) (FROM_ZERO T_TIME T_L)
(REPEAT+ T_TIME T_L) (FROM_ZERO T_TIME T_H)
(REPEAT+ T_TIME T_H) (INCREASE T_V T_0)
(INCREASE T_V T_S) (REPEAT- T_V T_VOL) (INCREASE T_V T_W) 
(INCREASE T_V T_L) (INCREASE T_V T_H)
(INCREASE T_TIME T_0) (INCREASE T_TIME T_S)
(INCREASE T_TIME T_L) (INCREASE T_TIME T_H)

745-[3] (R4_M0DEL_EQNS) => R4_M0DEL_EQNS
1 model (s) made with equations (= T_S (* T_TIME T_TIME) ) 
Current instance cleared

746-[3] NIL => no rule to fire
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  No rules in RULES_4 to fire --
33 model(s) made and current expt paradigm cleared

747-[2] NIL => no rule to fire
  No rules in RULES_7 to fire --

33 model(s) made
748-[1] (R3_ST0RE_M0DELS) => R3_ST0RE_M0DELS 

Models store in current hypo and current model 
and expt paradigm cleared

The inclined plane experimental paradigm is now chosen and the whole 

generalization processes to obtain models is repeated (as in cycles 456 to 748). 

Beginning at cycle 749, producing and storing 18 qualitative model and 3 

quantitative models, by cycle 878.

874-[3] (R4_M0DEL_EQNS R4_M0DEL_QUAL) => R4_M0DEL_QUAL
Instances with qualforms removed from current 
instance and generalised to models with qualforms 
(STEADY T_V T_VOL) (INCREASE T_V T_VOL) (STEADY T_V T_W) 
(FROM_ZERO T_V T_L) (INCREASE T_V T_L)
(FROM_ZERO T_V T_H) (INCREASE T_V T_H)
(FROM_ZERO T_V T_D) (INCREASE T_V T_D)
(STEADY T_TIME T_VOL) (STEADY T_TIME T_W) :
(INCREASE T_TIME T_W) (FROM_ZERO T_TIME T_L)
(INCREASE T_TIME T_L) (FROM_ZERO T_TIME T_H)
(INCREASE T_TIME T_H) (FROM_ZERO T_TIME T_D)
(INCREASE T_TIME T_D)

875-[3] (R4_M0DEL_EQNS) => R4_M0DEL_EQNS
3 model (s) made with equations
(= T_D (* T_TIME T_TIME) ) (= T_H (* T_TIME T_TIME) )
(= T_L (* T_TIME T_TIME) )
Current instance cleared

876-[3] NIL => no rule to fire
  No rules in RULES_4 to fire --

21 model(s) made and current expt paradigm cleared

The models just stored and the ones obtained for the pendulum experimental 

paradigm are now generalised into hypotheses, cycles 879 to 884, using 

RTJLES_10; 12 qualitative and 4 quantitative ones are made.

879-[1] (R3_GENERALISE_M0DELS) => R3_GENERALISE_M0DELS
Calling production system with RULES_10 to generalise models 
+++ P.S. called with RULES_10 +++

880-[2] (R10_PREPARE) => R10_PREPARE
54 model(s) copied from hypo and made current.
Current hypo models cleared.

881-[2] (R10_HYPO_EQNS R10_HYPO_QUALS) => R10_HYPO_QUALS 
Models with qualforms removed from current model and 
generalised to hypos with qualforms
(INCREASE T_TIME T_H) (FROM_ZERO T_TIME T_H)
(INCREASE T_TIME T_L) (FROM_ZERO T_TIME T_L)
(STEADY T_TIME TJW) (STEADY T_TIME T_VOL)
(INCREASE T V T H) (FROM ZERO T V T H) (INCREASE T V T L)
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(FROM_ZERO T_V T_L) (STEADY T_V T_W) (STEADY T_V T_VOL)
882-[2] (R10_HYPO_EQNS) => R10_HYPO_EQNS 

4 hypo(s) made with equations
(= T_S (* T_TIME T_TIME)) (= TJD (* T_TIME T_TIME) )

. (= T_H (* T_TIME T_TIME) ) (= T_L (* T_TIME T_TIME) )
Current model cleared

883-[2] NIL => no rule to fire
  No rules in RULES_10 to fire --

16 hypo(s) made. Current hypo and exptparadigm cleared
884-[1] NIL => no rule to fire

  No rules in RULES_3 to fire --
Finished trying generalise new hypos strategy 
16 hypo(s) made and stored. Current hypo cleared

These hypotheses are adequate, because they have been successfully inferred from 

experimental results. They are also now candidates for the confirmation generative 

strategy, as considered in §1.1 above. However, only the quantitative hypotheses 

were not generalised from both manufacture experimental paradigms, so only they 

are tested. In cycles 885 to 890 STERN attempts to test the first new quantitative 

hypothesis against the inclined plane experiment. However, it fails to generate a 

model because the size term (t _ s  ) has no equivalent experimental parameter.

885-[0] (RO_NEW_HYPOS RO_START_CONFIRM) => RO_START_CONFIRM 
C a llin g  production  system  w ith  r u le s _ l
+++ P.S. called with RULES_1 +++

886-[1] (R1_CH00SE_PARADIGM_N0_HYP0 R1_CH00SE_HYP0) => 
R1_CH00SE_HYP0

hypo with (= T_S (* T_TIME T_TIME) ) made current
887-[1] (R1_HYP0_ASSESS R1_CH00SE_PARADIGM_WITH_HYP0) => 

R1_CH00SE_PARADIGM_WITH_HYP0
INCPLANE made current

888-[1] (R1_HYP0_ASSESS Rl_HYPO->MODELS) => Rl_HYPO->MODELS 
Calling production system with RULES_5 to generate models
+++ P.S. called with RULES_5 +++

889-[2] (R5_MAIN_W0RKER) => R5_MAIN_W0RKER
no model equation made, tractability now 
#S(MEASURE NUMBER 2 DEGREE 1) 
and current hypo cleared

890-[2] NIL => no rule to fire
  No rules in RULES_5 to fire --

current paradigm cleared

The other three quantitative hypotheses are tested in turn in cycles 885-890, 891- 

926, and 927-999. Fewer instances and experimental tests are need because there a 

many fewer terms in the equations of the hypotheses. When finished there are no 

more hypotheses that need testing so control is passed back up to the top most level, 

cycle 1(X)0.
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1000-[1 ] NIL => no ru le  to  f i r e
  No r u le s  in  RULES_1 to  f i r e  -----

F in ish ed  t e s t in g  e x is t in g  hypos

1.3 N ew  H ypotheses From  Old

Both the generative and the generalization strategies have run their course with all 

the stored hypotheses and experimental paradigms, so STERN attempts to infer 

new hypotheses from the existing ones by invoking RULES_14, cycle 1001. 

Fourteen quantitative hypotheses are made, cycle 1002. Control is returned to 

RULES_0, cycles 1003.

1 0 01 -[0 ] (RO_NEW_HYPOS) => RO_NEW_HYPOS 
C a llin g  production  system  w ith  RULES_14 
t o  make new hypos form e x is t in g  ones

+++ P.S .  c a l le d  w ith  RULES_14 +++
1002-[1 ] (R14_QUAL_T0_EQNS) => R14_QUAL_T0_EQNS 

14 hypo(s) made and s to red , w ith  equations
(= T_V (EXPT T_H 1 /2 ) )  (= T_V (EXPT T_H 1 /3 ) )
(= T_V (EXPT T_H 2)) (= T_V (EXPT T_H 2 /3 ) )
(= T_V (EXPT T_H 3)) (= T_V (EXPT T_H 3 /2 ) )  (= T_V T_H)
(= T_V (EXPT T_L 1 /2 ) )  (= T_V (EXPT T_L 1 /3 ) )
(= T_V (EXPT T_L 2)) (= T_V (EXPT T_L 2 /3 ) )
(= T_V (EXPT T_L 3)) (= T_V (EXPT T_L 3 /2 ) )  (= T_V T_L)

1003- [1]  NIL => no ru le  to  f i r e
  No r u le s  in  RULES_14 to  f i r e  -----

F in ish ed  tr y in g  generate new hypos
and current exp t paradigm c lea red , i f  any

Untested hypotheses now exist, so STERN tries to confirm all fourteen in turn. 

Cycles 1004 to 1009 are the set o f cycles for the first hypothesis with the pendulum 

experimental paradigm; it is representative o f actions performed on the same 

hypothesis with the inclined plane paradigm, and other the other thirteen 

hypotheses, up to cycle 1146. From the chosen hypothesis, cycle 1005, and an 

experimental paradigm, cycle 1006, an attempt is attempt is made to generate 

models, cycle 1007. However, this fails because the speed term can no longer be 

replaced by its definitional equation (as in eg. cycle 5), as none o f its necessary 

qualitative conditions apply any longer (ie. the Aristotelian instantaneous 

acceleration law was disconfirmed earlier). Thus the hypothesis tractability is 

incremented the experimental paradigm cleared, cycles 1008 and 1009.

1004- [0]  (RO_NEW_EXPTPARADIGMS RO_START_CONFIRM) => 
RO_START_CONFIRM
C a llin g  production  system  w ith  r u le s _ l  

++ +  P . S. c a l le d  w ith  RULES_1 +++
1005- [1]  (R1_CH00SE_PARADIGM_N0_HYP0 R1_CH00SE_HYP0) => 

R1_CH00SE_HYP0
hypo w ith  (= T V (EXPT T H 1 /2 ) )  made current
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1006-[1] (R1_HYP0_ASSESS R1_CH00SE_PARADIGM_WITH_HYP0) => 
R1_CH00SE_PARADIGM_WITH_HYP0
PENDULUM made current

1007-[1] (R1_HYP0_ASSESS R1_HYP0->M0DELS) => Rl_HYPO->MODELS 
Calling production system with RULES_5 to generate models
+++ P.S. called with RULES_5 +++

1008-[2] (R5_MAIN_W0RKER) => R5_MAIN_W0RKER
no model equation made, tractability now 
#S (MEASURE NUMBER 1 DEGREE 0) 
and current hypo cleared

1009-[2] NIL => no rule to fire
  No rules in RULES_5 to fire --

current paradigm cleared
1146-[1] NIL => no rule to fire

— —  No rules in RULES_1 to fire--
Finished testing existing hypos

1.4 New Experim ental Paradigm s
All the hypotheses have now been tested with all the stored experimental 

paradigms. So STERN decides to consider new experimental paradigms by 

combining existing paradigms using RULES_13, cycle 1147. This process 

involves: choosing a terminal, cycle 1148; finding suitable initial parts, cycle 1149; 

and making experimental setups, cycle 1150. The process is repeated five more 

times, in cycles 1152 to 1176, with other experimental paradigms as terminals.

1147-[0] (RO_NEW_EXPTPARADIGMS) => RO_NEW_EXPTPARADIGMS 
Calling production system with RULES_13 to make new 
expt paradigms

+ + +  P .S. called with RULES_13 +++
1148-[1] (R13_REDUCE_*_THRESH0LD R13_CH00SE_TERMINAL) =>

R13_CH00SE_TERMINAL
PENDULUM chosen as current expt. paradigm

1149-[1] (R13_MAKE_C0MBINES) => R13_MAKE_C0MBINES 
PENDULUM+PENDULUM combined expt paradigms created

1150-[1] (R13_C0MBINED_SETUPS) => R13_C0MBINED_SETUPS 
Expt setups made for each expt paradigm

1151-[1] (R13_C0MBINED_SETUPS) => no rule to fire 
  No rules in RULES_13 to fire --

1 expt paradigms made and stored

Of the six newly invented experimental paradigms, and the simple ones that have 

not previously been considered, one must be selected for manufacture and use. In 

cycles 1177 to 1179 RULES_13, reduces the value of the pragmatic parameter of 

manufacture ease and number of setups to a value that just brings one new 

experimental paradigm into reach. The paradigm is the combined inclined plane and 

projectile experiment.
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1177-[0]  (RO_NEW_EXPTPARADIGMS) => RO_NEW_EXPTPARADIGMS 
C a llin g  p roduction  system  w ith  RULES_13 to  make new expt

paradigms
+++ P.S .  c a l le d  w ith  RULES_13 +++

1178-[1 ] (R13_REDUCE_*_THRESH0LD) => R13_REDUCE_*_THRESH0LD 
Expt manf. ea se  and setup  product reduced to  0.6000

1179-[1]  (R13_REDUCE_*_THRESH0LD) => no r u le  to  f i r e  
 No r u le s  in  RULES_13 to  f i r e -----

0 exp t paradigms made and sto red

The confirmation strategy takes over once again, cycle 1180, starting with the size 

time hypothesis originating from the pendulum experiments. Cycles 1181 to 1185 

are a repeat of cycles 886 to 890, in which no model is generated, and the 

tractability is simply amended.

1180-[0]  (RO_NEW_EXPTPARADIGMS RO_START_INDUCE 
RO START CONFIRM) => RO START CONFIRM

The next hypothesis to be chosen is in fact the free fall hypothesis, cycle 1186. The 

combined experiment is chosen, cycle 1187, and two models generated, cycles 

1188 to 1190, One model applies to each of the modes of the combined 

experimental paradigm.

1186-[1] (R1_CH00SE_PARADIGM_N0_HYP0 R1_CH00SE_HYP0) => 
R1_CH00SE_HYP0
hypo with (= T_V (EXPT T_H 1/2) ) made current

1187-[1] (R1_HYP0_ASSESS R1_CH00SE_PARADIGM_WITH_HYP0) => 
R1_CH00SE_PARADIGM_WITH_HYP0

INCPLANE+PROJECTILE made current
1188-[1] (R1_HYP0_ASSESS R1_HYP0->M0DELS) => R1_HYP0->M0DELS 

Calling production system with RULES_5 to generate models
+++ P.S. called with RULES_5 +++

1189-[2] (R5_C0MB_C0MPLEX_EQN) => R5_C0MB_C0MPLEX_EQN 
Model of INITIAL type, with
(= (EXPT T_H 1/2) (/ T_L T_TIME) ) as equation.
Model of TERMINAL type, with 
(= (EXPT T_H 1/2) (/ T_L TJTIME) ) as equation

1190-[2] NIL => no rule to fire
  No rules in RULES_5 to fire --

2 model(s) generated and stored

The initial mode model is chosen for examination first, cycle 1191. In cycles 1192 

to 1260, the model is tested in the established manner. For the combined model it is 

possible to eliminate the quantitative theoretical term for speed, because the speed at 

the end of the ramp is equal to the horizontal speed of the projectile. The 

comparison of the instance and experimental test is good so the acceptability of the 

model is set accordingly, cycle 1260.
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1191-[1] (R1_HYP0->M0DELS R1_CH00SE_M0DEL) => R1_CH00SE_M0DEL 
model with equation (= (EXPT T_H 1/2) (/ T_L T_TIME) ) made

current
Model is of INITIAL type

1192-[1] (R1_TEST_M0DEL) => R1_TEST_M0DEL 
call production system with RULES 2

1260-[1] (R1_HYP0_ASSESS_WRT_M0DELS) => R1_HYP0_ASSESS_WRT_M0DELS 
hypo adequacy =
#S(MEASURE NUMBER 1 DEGREE 0.9299284370149901) 
and current model cleared

The terminal model is chosen and tested in the same way as the first, cycles 1261 to 

1329. The input and output experimental parameters in this experiment are both 

from the terminal part of the experimental setup. As parameters are the height and 

length this model describes the parabolic flight path of projectiles.

1261-[1] (R1_CH00SE_M0DEL) => R1_CH00SE_M0DEL
m o d e l  w i t h  e q u a t i o n  (=  (EXPT T_H 1/2) (/ T _L  T_TIM E) ) m a d e
c u r r e n t
M o d e l  i s  o f  TERMINAL t y p e

1262-[1] (R1_TEST_M0DEL) => Rl_TEST_MODEL 
call production system with RULES 2

1329-[2] NIL => no rule to fire
 No rules in RULES_2 to fire--

model adequacy now
#S(MEASURE NUMBER 1 DEGREE 0.9320678881749285)

The final acceptability of the hypothesis is high as both models were themselves 

acceptable.

1330-[1] (R1_HYP0_ASSESS_WRT_M0DELS) => R1_HYP0_ASSESS_WRT_M0DELS 
hypo adequacy = #S(MEASURE NUMBER 2 DEGREE 1.861996325189919) 
and current model cleared
A l l  m o d e l s  t e s t e d ,  e x p t p a r a d i g m  c l e a r e d

The current hypothesis is acceptable so its associated hypotheses (with t _ h  &  

T _ T IM E  terms) are unacceptable. The heuristic concerning grouped hypotheses 

generated by the same procedure thus applies and sets the measure of acceptability 

of the associated hypotheses appropriately, cycle 1331. This saves considerable 

effort as the six related hypotheses are not examined. It is purely an accident of 

ordering of the hypotheses (by RULES_14) that the Galilean hypothesis was 

investigated first. Had it been stored further down the list other hypotheses wound 

have been considered first

1331-[1] (R1_HYP0_ASSESS) => R1_HYP0_ASSESS 
Adequacy of hypotheses related to current hypo
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decremented because current hypo adequate. 
current hypo cleared

STERN now tests all the hypotheses with the speed and length terms, starting at 

cycle 1332 and ending at cycle 1589. Again two models are generated for each, but 

none of the hypotheses are found to be adequate. STERN has to plough though 

every hypothesis, because there is no effort saving heuristic applicable for these 

disconfirmed hypotheses.

1332-[1] (R1_CH00SE_PARADIGM_N0_HYP0 R1_CHCX)SE_HYP0) => 
R1_CH00SE_HYP0

hypo with (= T_V (EXPT T_L 1/2)) made current

STERN has now modelled the main elements of the Galilean episode. Galileo 

stopped at this point because his attention was diverted by the invention of the 

telescope. However, STERN continues by attempting to confirm the qualitative 

hypotheses that have not been tried with the combined experimental paradigm, 

cycles 1598 onwards. The experiment performance rules have almost been 

exhausted, so STERN will simply find that it cannot obtain experimental results.

1598-[1] (R1_CH00SE_PARADIGM_N0_HYP0 R1_CH00SE_HYP0) => 
R1_CH00SE_HYP0
hypo with (INCREASE T_TIM E T_H) made current

1599-[1] (R1_HYP0_ASSESS R1_CH00SE_PARADIGM_WITH_HYP0) => 
R1_CH00SE_PARADIGM_WITH_HYP0 
INCPLANE+PROJECTILE made current

1600-[1] (R1_HYP0_ASSESS R1_HYP0->M0DELS) => R1_HYP0->M0DELS 
Calling production system with RULES_5 to generate models
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