
Open Research Online
The Open University’s repository of research publications
and other research outputs

Vector Signal Processors in Data Compression and
Image Processing
Thesis
How to cite:

King, G (1990). Vector Signal Processors in Data Compression and Image Processing. MPhil thesis. The
Open University.

For guidance on citations see FAQs.

c© 1990 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

Vector Signal Processors in
Data Compression and Image Processing

G.A.King
MPhil 1990

ProQuest Number: 27758418

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

in the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 27758418

Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

Ail Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106 - 1346

UiJH&STRlCTED

Thesis for the degree of
MPhil

by G.A.King BA (OU)

Vector Signal Processors
in

Data Compression
and

Image Processing

Related disciplines:
Electronics,Computer Engineering, Data Compression, Image Processing

Submitted August 1990

X̂ aire. Submission » 3o th %490
IDiaVe ôî awarA i 3 \ sb O c b o b ^

Abstract

The objective is to evaluate the applicability of the Vector
Signal Processor to real time signal processing for data
compression or manipulation. Particular emphasis has been placed
on its role as a co-processor and the contribution that it
might be expected to make during joint activities with the host.

These activities would have the combination used as the
embedded computing subsystem of a FAX machine or as an image
processing unit in desk top publishing. In these cases the
hypothesis is that the Vector Signal Processor would act as an
accelerator for many computationally intensive applicable
processes.

After a review of current data compression techniques and of
specialised architectures which may also be appropriate it is
concluded that the Vector Signal Processor is the best option
available. The operational details are then discussed . In
order to be able to approximately compare experimental results
with other workers a benchmarking exercise is undertaken.

Following this is the core of the study which details
schemes for data compression of data sources involving character
symbols,line drawings, and grey scale pictures. This involves
pattern matching and substitution,Transform coding and quadtrees.

New encoding procedures are suggested based on Morse
code for the secondary encoding of symbols and on Delta
modulation for quadtrees. Image entity manipulation is discussed
followed by some speculative work on neural networks and error
control coding.

It is concluded that some processes are well served by the
Vector Signal Processor but that the lack of conditional decision
making and the difficulty of performing certain arithmetic
functions make the processor unwieldy in its necessary host
interactions.

Vector Signal Processors in Data Compression
and Image Processing

Contents
Abstract

1.0 Introduction 1

1.1 Context 1

1.2 Study areas and rationale 4
1.3 Summary of work 4
1.4 Innovation and original ideas 7

2.0 Standard techniques and innovation in time and binary
source coding. 10
2.1 Introduction 10
2.2 Shannon Fano code 10
2.3 Huffman Code 14
2.4 Run length coding 15
2.5 CCITT group 3 codes 15
2.6 Binary non-consecutive one code 19
2.7 Lynch Davisson code 20
2.8 Morse code 22

3.0 Computer Architectural Considerations 27
3.1 Introduction 27
3.2 Survey 27
3.3 Alternative architectures 29

3.3.1 Peripheral vector processors 29
3.3.2 Digital Filters 3 0

3.4 Vector Signal Processor organisation 30
3.4.1 VSP program style 33
3.4.2 Flow control 34
3.4.3 The scaling system 35

4.0 Text compression benchmarking rationale 38
4.1 Philosophy 38
4.2 Experimentation 39

4.2.1 The benchmark encoding scheme 40

5.0 Pattern Matching and Substitution 46
5.1 The Method 4 6

5.1.1 Matched filters 49
5.1.2 Implementing the matched filter 50
5.1.3 n-valued model 53
5.1.4 Using the Vector Signal Processor 53

5.2 Generating autocorrelation functions 53
5.3 The screening stage 56
5.4 The main statistical technique 60
5.5 Experiments and results 64
5.6 Secondary encoding 72
5.7 Implementing fast correlation 79

5.7.1 Overlap and discard 81
5.7.2 Convolution or correlation? 81
5.7.3 The VSP program 83

6.0 Transform Coding 86
6.1 Introduction 86
6.2 Principles and rationale 86

6.3 Transform coding and the vector signal
processor 88
6.3.1 The Hotelling transform 88
6.3.2 The Fast Fourier Transform 92
6.3.3 Architectural factors 98
6.3.4 2-D FFT 99
6.3.5 2-D FFT implementation 101
6.3.6 FFT instruction parameters 103
6.3.7 The Fast Cosine Transform 108
6.3.8 VSP implementation of the FCT 110

6.4 Transfer Coding 113
7.0 Quadtree encoding + Delta modulation 118

7.1 The application 118
7.2 Quadtree representations 118

7.2.1 Quadtree addressing scheme 121
7.3 Delta modulation 122
7.4 VSP implementation 126

8.0 Image manipulation using the Vector Signal Processor 128
8.1 Introduction 128
8.2 Object representation 128

8.2.1 Edge detection 128
8.2.2 Filtering 13 0

8.3 Chain codes 133
8.3.1 VSP chain code implementation 137

8.4 Fourier Descriptors 137
8.4.1 Fourier Descriptor manipulation

with the VSP 139

9.0 An alternative classifier - the Neural Network 144
9.1 Introduction 144
9.2 Basic concepts 144

9.2.1 Structure and components 144
9.2.2 Operation 146
9.2.3 The Hopfield net 148

9.3 Net simulation with the VSP 148
9.3.1 Matched filter models 151
9.3.2 Matched filter equivalence 151

9.4 Implementation with the VSP 154
10.0 Error Control Coding 157

10.1 Underlying principles and issues 157
10.2 Appropriate error control methods 160
10.3 Essential background 161

10.3.1 Galois fields 161
10.3.2 Cyclic codes 162
10.3.3 Polynomial representations 162
10.3.4 Generator matrix 163
10.3.5 Parity check matrix 165
10.3.6 Syndrome 165

10.4 Bose-Chaudery-Hocquenghem codes 167
10.5 BCH implementation 168
10.6 Error detection - CRCs 169

11.0 Conclusions 172
11.1 Scope 172
11.2 Relevence, currency and validity 172

11.3 Signal processing devices and data
compression 175

Appendix A Published Papers 182
Appendix B VSP programs 235
Appendix C VSP instruction set 247
Appendix D Morse compression program design

documentation 253
Appendix E EPLD matched filter design data 268

gak 10/90

1. Introduction
1.1 Context

The general objectives are to quantify the appropriateness
and performance advantages of using a Vector Signal Processor in
real time embedded data compression and image processing
functions. The Vector Signal Processor is a microprocessor class
device designed to act as a co-processor to a standard CPU.

This study seeks to review techniques used to implement data
compression and manipulation in a context such as a publishing
database or FAX.

The contention is that the use of devices optimised for
vector processing would bring benefits especially in real time
applications. Vector orientated processors are found in large
supercomputer environments (e.g. Amdahl-Cray complexes) but the
Vector Signal Processor is a rare example of a device
specifically devised to operate at the dedicated computer level.

Such devices as Vector Signal Processors, and Digital Signal
Processors form the core of the work. Consequently an overlap
between signal processing and specialised computer architectures
will feature strongly.

Many entities that are the subject of data compression or
manipulation may need to be "recognised" or "processed". There
are links between data compression, image processing, and pattern
recognition.

[1]Dougherty and Guardina make further links by exemplifying
the purpose of image processing.

"Image processing is related to computer vision,
robotics,and artificial intelligence - with a mathematical

representation of the image in hand we seek to extract
information which can be operated upon by a decision algorithm."

[2]These thoughts are echoed by Gevarter in his
classification of application areas in Artificial Intelligence
(AI) .

Dougherty and Guardina go on to analyse image processing as
having four levels of transformation :-

Level 0 Image representation
Level 1 Image to Image transformations
Level 2 Image to Parameter transformations
Level 3 Parameter to Decision transformations

If an image is encoded with a given symbol set it is
possible to transform the symbol set to one of lesser cardinality
without losing any information, or at least with insubstantial
loss.

Compression can be achieved at levels 0,1,2. Since it might
be that we reduce the number of feature parameters in a feature
vector, compression often involves vector to vector
transformations.

[3]
Wechsler states that data compression is concerned with

reducing load on resources and that pattern recognition
techniques can be used to "facilitate the task". Wechsler offers
a model which generalises the processes involved to a
prescriptive sequence.
* Pre-processing
* Feature extraction

M T)

* Classification (Pattern recognition)
* Post-processing

A synthesis of these thoughts may be regarded as the
watershed from which this study flows.

1.2 Study Areas and Rationale
Figure 1.1 is a structure chart showing the main study areas

and the techniques that are postulated to be most appropriate to
the application of Vector Signal and Digital Signal Processors.

A study of data compression requires an understanding of the
background issues and terminology. It also requires that any
computing engines used are optimised to the task.

Apart from this a question of comparing like with like
arises. If a particular compression method is to be used in a
given environment it is necessary to be able to determine the
performance of the method relative to the state of the art. In
the case of this work the standard methods , computer
architectural considerations, and the quantifying of performance
are covered before experimental ideas are developed.

The aims are to investigate the applicability of digital
signal processing techniques to those data compression ideas
that are amenable.

1.3 Summary of work
Figure 1.1 shows that data sources were expected to generate

three data types:- textual, line drawings, and grey scale
photographic images.

Techniques applicable to each data type were evaluated for
implementation with specialised digital signal processing

architectures. A number of architectures exist and a study of
the options is carried out in Section 3.0 which concludes that
the most practical designs are peripheral vector signal
processors and digital signal processors.

If a technique appeared theoretically appropriate to these
architectures then implementation was attempted. Results were
checked by simulation with high level language programs or a
maths package.

This approach was taken with the topics covered by Sections
5.0, 6.0, 7.0 and 8.0.

Of considerable interest in the area of pattern recognition
is the neural network. Section 9.0 speculates how the vector
signal processor could be used to produce a classifier of this
type. Practical achievement was precluded because the best route
to realisation requires arrays of matched filters. The numbers
needed were outside resource limits.

Error control coding, the subject of Section 10.0, is
similar in its speculative nature and although individual ideas
were tested by simulation a comprehensive implementation was not
attempted.

It was established at an early stage that where symbols or
other entities are represented in bit mapped form the resolution
in dots per inch can affect the achievable compression. As an
example, consider an alphabetical symbol such as "a". It may be
represented within an 8X16 character cell and be perfectly well
understood. It may also be represented at a resolution of 300
dots per inch, as is used in typical image scanners. The latter

has greater compression potential and many other workers have
produced results based on this resolution.

Owing to resource limitations this study is based on the IBM
PC textual and CGA standards. The effectiveness of any new ideas
can be measured by comparison with previous results, and a
benchmarking phase documented in Section 4.0 enabled valid
comparisons to be made. Section 4.0 involved data from 240
screens captured with a variety of content from dense textual to
sparse line drawings.

Capture utililities were created to allow this data
acquisition and details are given within the section.

Three sets of experiments were carried out using variations
on standard encoding techniques to obtain the benchmark results.

The main technique chosen for textual compression
implementation with the VSP was symbol matching and substitution,
details of which are given in Section 5.0. Experimental work was
necessary to evaluate the performance of the screening algorithm
and to test the main statistical matching technique. In the
latter case 26 autocorrelation functions and 676 cross
correlation functions were generated from an alphabetic character
set. All functionality was modelled in software.

After typical compression ratios were obtained, fast
convolution/correlation in the frequency domain was implemented
with the VSP. Results were checked against the original high
level language software.

The programmable matched filter demanded by the method was
first created in software and then implemented in a dedicated

electrically programmable logic device. Details of the semi
custom design are contained in Appendix E.

Only the Hotelling transform was not amenable to VSP
implementation in Section 6.0. Example VSP programs produced
during study of transform coding of screen images is provided in
Appendix B.

Quadtree encoding and delta modulation discussed in Section
7.0 were developed as an alternative to run length or Huffman
coding for line drawing compression. The VSP could not cope with
the processing required but nevertheless encouraging results were
achieved. The coding scheme was devised from scratch and tests
were made on specimen sub-pictures to quantify potential
compression performance.

The role of the VSP in manipulation of graphical data
objects was investigated because of the likelihood of a system
needing to compress images for storage purposes also being
involved with editing those images. As examples consider a
graphics workstation for CAD or a desk top publisher system.

1.4 Innovation and original ideas
i) The main statistical matching technique used in the pattern
matching and substitution section is a well known technique for
analysing gas chromatograph results, and is also used in
production engineering to identify systematic faults in the
operation of production machines. No evidence was found for its
use in the context described here. Other, less sophisticated
options have been used and one of these is compared and
discussed.

ii) A typical quadtree encoding scheme does not optimise in
terms of data compression defining, as it does, the addresses of
significant pixels. A delta modulation scheme was devised
because it was recognised that a "locality of reference"
principle applied in the address lists. It was further
recognised that line drawings with their large proportion of
vertical and horizontal lines very often produced adjacent
quadrants which were identical. The delta modulation scheme was
extended to include special repeat codes. Arbitrary unused and
unambiguous codes were chosen for this purpose.

The overall combination of ideas is thought to be original.
Details of the advantages of the scheme are given in the section.
iii) To achieve a required compression ratio it is not unusual to
cascade different techniques. A secondary encoding scheme was
applied in the case of the pattern matching and substitution
scheme. Instead of signalling ASCII codes for the character
symbols in the text, it was decided to try to take advantage of
the differing occurrence frequencies of the symbols.

Ideally this involves the use of a variable length code such
as Huffman or Shannon—Fano. There is a need for an analytical
phase to determine the allocation of the codes in this scheme.
To avoid this overhead it was remembered that Morse coding uses
statistical data derived from occurrence frequencies in the
english language. The codes allocated are fixed. The code is
variable length. An adaption would be necessary to give a
computer implementation. A scheme was devised and its
performance compared to existing standard methods. The scheme is
thought to be innovative.

8

A number of standard encoding schemes are explained in
Section 2.0.

References

[1] Dougherty, E.R. and Guardina,C.R., "Image
Processing,Vol.1,Geometric,Transform, and Statistical
Methods",Prentice Hall 1987.
[2] Gevarter, W.B., "Intelligent Machines", Prentice Hall
1985.

[3] Wechsler, H., "Invariance in Pattern Recognition" in
"Advances in Electronics and Electron Physics", Vol.69,pp261-320,
1987.

2.0 Standard techniques and innovation
in time and binary source coding

2.1 Introduction
In subsequent sections involving techniques that are

redundancy reducing, references are made to methods that have
become standards. In some cases these standards have been used
as a benchmark against which performances can be measured.

Since this work is concerned with sources that are mainly
binary, only those techniques useful for direct compression of
that data type are considered.

The term "time" in the heading refers to the fact that
additional information may need to be sent or stored along with
the compressed data to aid in the reconstruction process. This
additional information is time or position information
which needs to be coded to minimise the overhead that it
represents.

The section concludes with a newly devised innovative
encoding scheme using Morse code as a basis . The scheme is
included here to provide a reference source backing up the
experimental data in Section 5.0.

2.2 Shannon-Fano Code
[1]Fano describes a procedure for the generation of a

variable length code with codes allocated according to the
frequency with which the symbols to be encoded appear.

A feature of the scheme is that the codes are
instantaneously decodable because none are prefixes of any other.

10

QJ
~oO
CJ

ooo
o

_Q

_Qo
CL

o

C\|

Qj
L_
=j
Cn
D I—I

(3 O O O O O

11

Assuming a set of symbols to be encoded, the procedure is as
follows :-

Arrange the elements of the set in descending order of
probability.

Split the set into two groups having approximately equal
total probability, and allocate a "0" to the first group and a
"1" to the second.

Iterate the process until the groups are reduced to single
elements.

As an example consider the following message set and
associated probabilities.

message probability
1 0.4
2 0.1
3 0.1
4 0.1
5 0.1
6 0.1
7 0.1

Figure 2.1 shows the derivation of the code words. The full
communication encodes as :-

1 3 1 2 5 6 4 1 7 1
11 Oil 11 10 001 0001 010 11 0000 11
If each message were an eight bit ASCII character the use of

Shannon Fano code results in a compression because the average
code length per message is 2.7 bits.

The code is easily decoded according to the following rules.

12

_o
jQOLCL

T 1 X— 1 T— I T— I T— ! T— I

o o o o ® o o

CN
CN
cuL.
z)cn

a r-4
Li_ QJ T— I T— I %— I rvl r— IU V—i T-1 -̂1O O O O O O Oo o o o o

1st digit "1", code is 2 bits. First three digits "0", code is 4
bits. Other cases define a 3 bit code. A codebook can be used to
identify individual symbols, but clearly a codebook must be
generated during encoding and sent or stored for the future use
of the decoding process. Long code words are generated if a
large number of low probability symbols appear in the message
set.
2.3 Huffman Code

This coding scheme is a development of the Shannon-Fano code
which has the benefit of always being more efficient. Efficiency
is defined in this context in terms of the ratio of the message
entropy to the average code word length. The code is developed

[2]and applied in Huffman
The coding procedure again requires analysis in order to

arrange the source probabilities in descending order, but the
process continues :-

Combine the two lowest probabilities putting the highest on
top in a code tree arrangement.

Continue until unity is reached and then allocate "0"s and
"l"s, "0"s to the upper branch members and "l" to the lower.

Read off the code by tracing the path right to left and
noting the sequence. Consider the same messages and
probabilities that were used for the Shannon Fano example. The
code tree resulting is shown in figure 2.2.

The fully encoded communication is :-
1 3 1 2 5 6 4 1 7 1
1 Oil 1 010 0001 0010 0000 1 0011 1

14

This gives a slightly improved performance when compared
with Shannon Fano since the average code length is 2.6 bits.

2.4 Run Length Coding
Consider bit mapped displays that are scanned. Whatever

information the display carries, when a line of pixels is
examined the following is typical :-
0000000011111111100000001111111100000011000000011100000000000000

Some sources have greater sparsity than others and the codes
that have been devised may encode the run lengths of both "0"s
and "l"s or alternatively just that which has the greatest
frequency. It is often the case that "l"s are considered non-
redundant and "0"s redundant (or vice-versa). This gives rise
to the notion that a code can be classified as encoding n-r,r,or
n (non redundant,redundànt,redundant, or non redundant) run
lengths. In the literature an alternative classification may be

[3]
found as in Lynch . This alternative calls n-r "total
information time codes" because the complete n-r sequence is
involved and the term "partial information time codes" applies
to the other two possibilities.

In the example pixel line above the n-r run lengths are :-
8,9,7,8,6,2,7,3,14. Clearly an analysis would find runs of 7 and
8 more probable than the others. This leads to the idea of
applying say, Huffman code to the run lengths.

2.5 CCITT Group 3 codes
This digital facsimile set of compression recommendations

[4]
are described in CCITT . Two algorithms are possible, the 1-D

15

Mod ï f ï ed Huffman 1-D
3 white
0111 I

7 white
1 1 1 1

scan line

8 black
000101

2 black
11

Coded data 0111000101111111

* Each scan line Is analysed
* Short codes are allocated on the basis

of run length occurrence
* Codes are unique variable length or fixed length(beware of negative compression)
* Coded/uncoded flag
^ Compression 5 to 1511 (CCITT tests)

Figure 2 , 3

16

or the 2-D.
The 1-D system involves counting the run length of

consecutive same colour pixels and then counts the next pixel
group of the other colour (black or white) and so on. The run
lengths are encoded using a modified Huffman code.

An assumption is made that each scanned line begins with at
least one white pixel. If this is not so, that is, the line
begins with a black pixel then the compressor actually sends the
code for a zero length white run first. The assumption is not
unreasonable when the typical document that might be faxed is
considered. Figure 2.3 illustrates the method which is described

[5]
by Fuchs . The results obtained with varying documents or

[6]
diagrams is given by Bodson et al as between 5:1 and 15:1.

The 2-D algorithm is called "Relative Address Designate" or
READ coding. This operates by encoding scan line pixels based
on pixel positions and colour changes in the previous line. When
a change occurs in a newly scanned line directly below a change
in the previous (reference) one,then a single code bit represents
the change. Other codes cope with changes that are no further
away than 3 pixels from a change in the reference line. For
differences further apart than this a special code is generated
and a switch is made to the 1-D system. The method is
illustrated by figure 2.4. Bodson et al quantify compression for
a range of sources as between 7:1 and 50:1.

In either algorithm, the compression achieved is a
function of the type of document (text, drawing, schematic), and
the resolution with which it is scanned.

An interesting difference between the two options is in the

17

Relat îve Address Designate Code

change occurs
one position to
the right
011 change Is

one left
010

change more
than 3 pixel;
auaxy suItch to Huffman
0010110111

no corresponding
change pass

0001

scan line

reference line

Coded data 01101000010010110111

Figure 2.4

18

effect that data corruption has. An error in the 1-D code only
affects that scan line. In the 2-D case errors can propagate
through the entire document.
2.6 Binary Non-consecutive One Code

[7]Wai-Hung Ng described a scheme for coding redundant
sample run lengths using variable length codewords which may have
consecutive "0"s, but not consecutive "l"s. The code is shown
below :-

Run Length Code (ENG)
1 0
2 1
3 00
4 01
5 10
6 000
7 001
8 010
9 100

and so on.
The data is coded in two parts the non-redundant samples and

the ENG code for the redundant runs. The two are separated by
the use of a special code word containing consecutive "l"s. The
format of the special word is :-

111111111.... 0 There are 2n "l"s where n is the number of
non-redundant samples that follow the run encoded by the previous
ENG code.

This yields a structure as follows :-

19

(BNO) 1111110 (A ,A A) (BNO) mill. .0 etc
1 2 n

Because the structure encodes both redundant and non-
redundant run lengths it is a total time information code. Best
performance is achieved when non-redundancy is relatively sparse.

2.7 Lynch Davisson Code
[8,9]

Suggested by Lynch and Davisson this scheme encodes the
pattern of the sequence to be coded. The pattern is represented
by a number given by :- ny- i

Where q is the number of non-redundant samples, K=q<=N-l
N is the number of bits.
n is the bit number of the non-redundant bit K = n <=N-1
j is the index of the non-redundant sample K=j<=q^
The notation identifies code number positions in a matrix.

The matrix is generated using a Pascals triangle rule and is
reproduced below.
10 45 120 210 252 210 120 45 10 1 0 0
9 36 84 126 126 84 36 9 1 0 0 0
8 28 56 70 56 28 8 1 0 0 0 0
7 21 35 35 21 7 1 0 0 0 0 0
6 15 20 15 6 1 0 0 0 0 0 0
5 10 10 5 1 0 0 0 0 0 0 0
4 6 4 1 0 0 0 0 0 0 0 0
3 3 1 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

20

Each element is calculated....

Consider now a 16 bit pattern 0010100000000000

T= 3-1 + 5-1 = 2+6=8
1 2

since element (2,1)=2 and element (4,2)=6
The number of non-redundant bits must be used in conjunction with
the codeword in the decoding process, and so storage or
transmission would for this example be :- 2,6

Element (n,r) may also be generated by the equation :-
n,r = n!

r ! . n-r!
The value of T is unique for each sequence of q bits

distributed over N-1 positions.
Decoding also involves use of the matrix. Starting with the

qth column the T value is offered up to the matrix until it is
greater than or equal to an element,but less than the next higher
element in the column. Add 1 to the row. Subtract the identified
value and continue until the first column is reached.

According to Lynch the number of bits required for q and T
is; -

where k =log N ^ ~ /cxsî F ̂ ~ ̂"7q 2 7- vJa. L ^ J
k +k
q T

21

2.8 Morse Code
The Morse code was originally devised in a

telecommunications context and was defined after extensive
research into character frequency in the English language. The
code employs two code elements, the dot and the dash which are
differentiated in duration. The dash duration being three times
longer than the dot.

The code is a variable length code representing characters
by various combinations of the two code elements. The two most
common letters in English are "e" and "t" which are coded as a
single dot and dash respectively.

In the case of Huffman code the variable length is inversely
proportional to the probability of the message. Underlying the
Morse code is the same general relationship but it is applicable
to English text specifically.

Whilst researching the secondary encoding possibilities for
the pattern matching and substitution a scheme utilising Morse
principles was devised. In the scheme a dash is substituted for
by a "1" and a dot by a "0". Morse was intended as a real time
system and in the context of data compression some time or
positional information had to be introduced. The results are
given in Section 5.0 and the Morse code is listed in table 2.1.

The need for positional information is clear when it is
recognised that the code is not a pre-fix code, that is some
codes are pre-fixes of others so that ambiguity is possible i.e.
100000 could be "nh" or "ds" or "t5" or "bi" when "the" is
intended.

22

T—1X (S (S (S s C3 s sL. cs s IS s03 (S (S (S s sC (S o (S s s
CO s

I I I I

I I
I I
I I

I I I

I I
I I

I I I I

QJ-Mun35̂03
J1
CJ

œ cn IS

X
S s s s T-1 s s V— i s03 (S s s s s s s cs ' — 1 s s sC t— 1 o s s s s s s r— 1 ^3 ■'—1 cs s s s sIS T—1 s s s s s s s s GD T— 1 ^3 s s s

I T— I PC) [N.1 CX)T—I ̂ 3 o O ̂ 3 (S CS tS (S CS

I I

• I I I I I
I I I

I I • •
I I I I

I I
I I I II I I 'I I . .

I I I
I I

I I

rsi
(U
JD03

QJ4JU03
03
_C
CJ

o3 _Q U ”0 QJ M“ Dl JZ «i-i r— • C O 0_ CT L. in-M =3 3> 3 X X N ’. - i C N n ’t - m C D r s .

23

The scheme is a two part code comprising the morse section
and a section involving morse element counts in a fixed field of
3 bits. The example above is encoded unambiguously as :-
100000 - Morse section
001 100 001 - element counts (normally run together - 001100001)

The total code size is 15 bits compared with 24 bits for the
ASCII representation. The compression ratio is slightly reduced
by the need to explicitly indicate an inter-word space. Since no
Morse entity exceeds 6 code elements, the code 111 (7) in the
element count is used for the purpose.

One further overhead is generated when marking the end of
the Morse section and the beginning of the element count section.
A code previously unallocated such as 11011 (normally a French
accented character) has been used. Normally, coding maximises
the amount of text within the Morse section in order to reduce
the effect on the compression ratio.

The format of the coding is as follows. Because the example
is relatively short the result is well below what can be achieved
with significant quantities of text and simply serves to
illustrate the scheme.
Text :-

"the optimum noiseless codes"
Morse section :-
100000111011010011001111011100000001000000000
element count :-
001100001111011100001010010011010111010011010011001100001011011
111100011011001011

24

separated by :- 11011

Total bits :- 133

Total bits as ASCII code :- 216

Compression :- 1.63:1

Results obtained during benchmarking in Section 4.0 using
Huffman techniques combined with run length coding were
comparable for congested text. The analytical pass necessary to
establish the probabilities for the Huffman scheme is not
necessary in the Morse case. The Morse system should be
substantially quicker in operation.

Using Morse applied in this way, together with the adaptions
necessary for binary working are thought to be original. Since
the data encoding and the time/positional information can be
signalled or stored separately the new scheme is a total time
information code.

References
[1] Fano,R.M.,"The transmission of information",Technical report
no.65, M.I.T Research Lab of Electronics,1949.
[2] Huffman,D.A.,"A method for the construction of minimum
redundancy codes",Proc IRE, vol 40,pp 1098-1101, September 1952.
[3] Lynch,T.J.,"Data Compression techniques and
applications",Van Nostrand Rheinhold,1985.
[4] CCITT Recommendation T-6, ITU, Geneva.
[5] Fuchs,P.M.,"Compressing data conserves memory in bit mapped
displays", EDN,pp 173-188, October 1986.

25

[6] Bodson,D ;Urban,S .J .;Deutermann,A .R ;Clarke,C .E .,"Measurement
of data compression in advanced group 4 facsimile systems",Proc
IEEE, vol 73,No.4,pp731-739,April 1985.
[7] Ng,Wai-Hung,"Binary non consecutive one code for time tag
data compression",Proc IEE,vol 118,No.10,ppl358-1360, October
1971.
[8] Lynch,T.J. "Sequence time coding for data compression" Proc
IEEE, vol 54, No.10, ppl490-1491,1966.
[9] Davisson,L.D.,"Comments on 'Sequence time coding for data
compression'", Proc IEEE, vol 54, No.12,p2010,1966.

26

3.0 Computer System Architectural Considerations

3.1 Introduction
This section reviews some of the possible computer

system architectures considered for use in image data
compression.

The most suited architecture is identified as being the
Vector Signal Processor (VSP) , and the operational details of the
VSP are discussed.

3.2 Survey
Many image processing functions are commonly carried out in

the spatial domain. Consider the example of pattern matching
used in the context of the compression strategy for textual

[1]characters described by Holt . The scheme uses template
methods, producing an error pel map by primitive XOR operations
at bit level in the image.

Such methods always generate the need for considerable
computing power. It is a natural consequence of the 2-D spatial
distribution of the image to map the pels into an array of
processors, one processor per pel. This kind of thinking only
requires simple processors of the bit serial type, and the array

[2]is classified according to Flynn as SIMD (single instruction
multiple data stream).

The idea that an array of simple processors execute
simultaneously a broadcast sequence of instructions allows
segments of the image to be processed in parallel as described by

[3] [4]
Fountain , and Pass

27

Whilst SIMD is an appropriate technology for simple
processes performed by pel mapped bit processors, there are forms
of processing, mainly concerned with higher level functions that
are abstract in terms of the image data. Examples of the former
simple processes are image filtering and feature extraction. An
important type of higher level task is pattern recognition. The
SIMD structure is not well suited to this and the requirements

[2]of higher level image tasks are MIMD as described by Flynn
Multiple instruction multiple data stream systems can be

organised in a number of different ways. A common memory can be
shared by a number of sophisticated processors, alternatively
each processor can have local memory and the image can be
distributed among them. In the latter case it becomes most
important that high speed communications and a connectivity
scheme be implemented. Where memory is common high speed
communication is likely to be achieved by means of a parallel
bus, and the system is classified as "tightly coupled". The
distributed option is known as a "loosely coupled" system. The
advantages and problems associated with these choices are

[5]discussed by Edwards
[5]

The conclusions reached by Edwards indicate that the
communications bottlenecks in MIMD systems have not produced
solutions where throughput is extremely high. Another problem
concerns the sharing of tasks by a master processor and the need
for a satisfactory synchronisation of task completion. Again
this provides a throughput constraint.

Conversely, SIMD architectures have become widespread and
have good performance at the level of working discussed above.

28

Use in data compression for databases and for transmission
schemes does infer the higher level of operation.

SIMD is not particularly suited to the application and MIMD
may not reach the performance criterion even though costs would
be high. This applies particularly when dedicated systems are
considered.

SIMD arrays are largely designed to act as co-processors for
mainframes and minicomputers. This is evidenced by the survey

[6]carried out by Kittler and Duff . This survey also identifies
MIMD difficulties having been solved by machines able to switch
classification. The complexity inherent in both these options
does not assist in developing systems for microprocessor hosts
working magnetic or optical disc technology at the PC workstation
level.
3.3 Alternative architectures
3.3.1 Peripheral Vector Processors

Rather than arrays of processors, with all their attendant
costs, the most promising alternative is a processor that is
optimised to operate on arrays. This could provide a cost
effective co-processor within a PC type host. The question posed
is can significant and satisfactory speeds be obtained?

This option, a Peripheral Vector Processor, is a notion that
existed for some time and a number have been designed. A survey

[8]
by Karplus lists several examples. In general, these
processors are classified as Horizontal architectures since they
use uncommonly long microcode words with many fields. Each field
controls adders and multipliers in a way that makes resources

29

available in parallel. Another unusual feature of this type is
the fact that the Assembler instructions specify the microcode
level directly. Pipelining is used extensively during vector
operations and layouts specialised to certain operations are
common.

The Vector Signal Processor is a typical peripheral vector
processor and has been used extensively in this research.

3.3.2 Digital Filters
Convolution and Correlation are never far from mind in image

processing environments. The interesting thing is that an FIR
digital filter may easily perform spatial domain convolution by
virtue of its configuration. Digital Filter systems are
optimised to perform sum of products operations and some designs
are reconfigurable and flexible. These Digital Filter
Processors (DFPs) are based on the parallel operation of a
number of cells. Extra parallelism in terms of recursive

[7]operation is described by Brumfitt

3.4 Vector Signal Processor Organisation
The Vector Signal Processor (VSP) is designed for use as a

co-processor and has a bus structure and timing regime suitable
for operation in a manner similar to microprocessor peripherals
with a DMA interface.

The architectural philosophy for the microword organisation
[2]has been approximately categorised as "horizontal" by Flynn

[9]and IS comprehensively described by Dasgupta
The main features of this structure are :-

3Q

1. It enables different resources (e.g. functional units,
data paths) in the micromachine to be controlled
independently, i.e. A single microinstruction may
specify concurrent operations.

2. It leads to relatively large microword lengths.
3. Programmers can exercise control of parallelism at

machine operation level.
The characteristics of the VSP instruction set are :-

1. It operates at algorithm level - it is programmed
at functional level.

2. Instructions are Vector orientated.
3. Instructions are slanted towards DSP problems

(e.g. FFT butterflies. Magnitude Squares)
The VSP is capable of tightly coupled co-processor action,

which implies shared memory and a DMA bus structure. Two running
modes are possible. Master or Slave. The latter demands that the
host is responsible for delivering instructions to the VSP's FIFO
instruction buffer. Up to 12 instructions can be queued. The
VSP FIFO and and its other internal registers are memory mapped.
As a Master device the VSP fetches and executes its own
instructions once it has been "started" by the host. Action is
invoked by the host writing a start address into the VSP's
instruction base/start register.

Alternatively, a start can be initiated by a JUMP indirect
instruction being written to the instruction FIFO. The format of
the JUMP instruction may be :-

JMPI RS: 0,El: 0,MBA:START_ADDRESS;
This presumes the host has pre-loaded START ADDRESS with

31

Table 3.1 VSP instructions and fields
Full details in Appendix C.

Instruction
JMPI
NOP
STI n
LD

ST

FFT

MGSQ

Meaning
Jump indirect via address given
No operation
Store internal register n
Load array into internal ram from
base address specified
Store array in internal ram to
base address specified
Perform a fast fourier transform
using parameters supplied
Calculates the square of the
magnitude of an internal vector

Field
MBA
NMPT
NMBT
LPS
FPS
MDF
ADF
RS
RV
El
STR

Meaning
Memory base address
Number of points in array
Number of butterflies (FFT)
Last pass separation (FFT)
First pass separation (FFT)
Memory data format (real/imaginary)
Arithmetic data format (FP)
Internal ram section no.
Reverse data ordering (if 1)
Interrupt host when done (if 1)
Start register (used with STI,
with NMPTs to dump n registers)

32

the starting address of the VSP program. The processor performs
an indirect jump (JMPI) via this address. MBA is a term used to
refer to the address of the beginning of an array, or as in this
case of a single entity. MBA stands for "Memory Base Address".
The operand RS defines the requirement for internal concurrent
action. Here, RS:0 precludes this. If RS:1 were used with a
memory instruction then the VSP would progress any available
arithmetic instruction using a separate section of internal RAM
for scratchpad while concurrently executing the memory
instruction. The El field allows the programmer to generate an
interrupt to the host processor after any VSP instruction. This
mechanism makes it possible for the host to interact by
providing conditional testing outside the ability and specialisms
of the VSP. Details of the VSP instruction fields are given in
Appendix C and a table of those instructions an fields used in
this section are summarized in table 3.1.

In implementations the slave mode was rejected as too slow
since it relies on the host speed. In dedicated systems the host
may be a simple microcontroller. The master choice allows VSP
programs to run to completion,or until an interrupt is generated
by an instruction containing the field (EI;1).

The nature of VSP programs is best illustrated by example.

3.4.1 VSP program style
The programming effort for this processor may be compared by

considering the calculation of a Magnitude Squared Spectrum of
128 real valued time samples.

LD NMPT:128,RS:0,MDF:2,ZR;l,MBA:0;

33

FFT NMBT:128,RS:0,FPS:64,LPS:l;
MGSQ NMPT:128,RS:0,ADF:2;
ST NMPT:128,RS:0,RV:l,MDF:2,MBA:256;
The characteristics of the horizontal architecture are

evident. NMPT defines the number of points in the vector, MBA is
the memory base address of the array,MDF defines the data format-
2 is REAL data. For the FFT instructions NMBT is the number of
butterflies to be performed whilst FPS=first pass separation and
LPS=last pass separation of points for the butterflies which
specifies the Cooley Tukey algorithm in this case.

The AS: field selects the arithmetic selected. Only two
options are possible, fixed point arithmetic with automatic
scaling by 0.5 at each stage or block floating with shift on
overflow. AS:0 selects the former, AS:1 the latter.

A useful feature is that the Assembler allows global or
default values to be allocated to the fields.

3.4.2 Flow Control
There is a paucity of flow control instructions, JMPI,HLT

and NOP being all that is available. Since all flow control must
be achieved with these instructions, there is a need for
interaction with the host. Assume a memory location SWITCH_ADD.
Depending on certain tests, this address is loaded with the
address of a previous VSP instruction in order to loop.
Alternatively it could be loaded with the address of another
routine, such as a scaling module.

The host is invoked by means of an interrupt, which, via the
control bus halts further instruction fetches by the VSP. The
interrupt is caused by a VSP instruction having its El field set.

54

The instruction FIFO pipelining principle means that if the
instruction following that which caused the interrupt is a JMPI
then, because the MBA field is a variable, the loading must be
delayed. Assume that this is the case with SWITCH_ADD. After
the interrupt, the host, as part of the interrupt service
routine,makes a decision and loads SWITCH_ADD appropriately. So
as to allow this, bearing in mind the FIFO pipelining, a number
(4) of NOP instructions must be interposed. Consider the program
fragment :-

STI NMPT:1,STR:5,El:1,MBA:SCALE;
This stores a VSP internal register (the scale register) in

a location denoted SCALE, whilst interrupting the host EI:1. The
host loads SWITCH_ADD according to circumstances and subsequent
lines are :-

NOP NMPT:1;
NOP NMPT: 1;
NOP NMPT:1;
NOP NMPT:1;
JMPI MBA:SWITCH_ADD;

3.4.3 The Scaling System
A 16 bit register is divided into 4 nibbles and each nibble

carries a 4 bit number that is the scaling factor for an FFT or
IFFT operation. A Scale Register pointer fills the register from
the LS end. The pointer is reset after the MS nybble is used, or
after an LDSM instruction with MD:0,UP:1.

The Scale Register can be read by the STI STR: 5, or by
reading its memory mapped address. The largest scale factor
generated in a series of FFTs (since the last reset) is stored in
the Maximum Scale Register (MSR). The MSR is reset by LDSM

55

MD:0,UP:1. The replaced value of the MSR is retained in the Old
[10]

MSR register by LDSM MD:0,UP:1. Details are given by Zoran

References
[1] Holt,M.J.J.,"A fast binary template matching algorithm for
document image data compression",Pattern recognition,4th
International Conference Proceedings, Cambridge, pp230-9, 28th
March 1988.
[2] Flynn,M.J.,"Very high speed computer systems", Proc
IEEE,vol 54,pp 1901-1909,1966.
In "Image processing system architecture", Ed. Kittler,J.
Research Studies Press, 1986.

[3] Fountain,T.J.,"A review of SIMD architectures",in
"Image processing system architecture",Ed. Kittler, J. ,Research
Studies Press 1986.

[4] Pass,S.,"The GRID parallel computing system",ibid.
[5] Edwards,M .D .,"A review of MIMD architecture for

image processing",ibid.
[6] Kittler,J.,Duff,M.J.B.,"Image processing system

architectures",ibid.
[7] Brumfitt, P.J.,"A review of other architectural

concepts of image processing",ibid.
[8] Karplus,W.J.,"Architectural and software issues in the
design and application of peripheral array processors",Computer,
Vol 14, No.9,ppll-17 1985.
[9] Dasgupta,S.,"Computer architectures-a modern synthesis", Vol
1, Wiley, 1989.
[10] Zoran Technical Notes TN92040-0187

56

TN92045-0187
TN92043-1087
TN94028-0187.
VSP-161 Assembler reference manual
1987.

57

4.0 Text Compression Benchmarking Rationale
4.1 Philosophy

One aspect of developing a data compression system based on
feature extraction and pattern recognition is the need to
quantify performance and compare with currently popular
technology. The aim is to determine whether the greater
complexity yields a sufficient advantage.

Many current methods were examined but experimental results
quoted in papers refer to systems having such different
operational parameters as to make comparison difficult. One
example concerns FAX having a scanner resolution of 200 or 3 00

—1
dots inch . This resolution gives greater potential for run
length coding than a source complying with CGA screen
parameters.

The group 3 CCITT compression algorithm uses a modified
Huffman encoding scheme which includes a run length feature.

[6]See CCITT
[1]Fuchs indicates a compression of 5:1 to 15:1 can be achieved.

—1
He further states that a resolution of 100 pels inch
and a minimum of 1728 horizontal pels resulting in an A4 sheet
requiring 1.9Mbytes of storage. Assuming 10:1 compression
this is reduced to 190kbytes.

The same page can be represented by just over two CGA
screens with a total uncompressed size of 245 kbits as pixels,
taking 36.6kbytes of storage. The disparity between the
information stored in 1.9M bytes and the same data stored in
36.6k bytes is accounted for in that the former case has greater
redundancy. No more information is inherent in the former than

38

the latter, that is, the entropy remains the same.
The FAX resolution, by virtue of greater redundancy, gives

the greater compression potential as noted previously. This
applies only to the textual case and it must be remembered that
FAX is intended to communicate the entropy inherent to line
drawings and hand writing as well.

It was calculated that when working with CGA like
resolutions the compression ratio achieved would be scaled down
by one order of magnitude. To confirm this hypothesis
experiments were set up.

4.2 Experimentation
To carry out the tests it was first necessary to capture

640X200 screens and arrange to store the data for use as test
data subsequently.

The requirements of screen capture clearly involve direct
hardware control of the host computer keyboard, interrupt
controller, and video RAM of the host IBM PC. Source programs
in 8086 Assembly Language were written using the
Wordstar/MASM/LINK/DEBUG environment.

A bottom up approach was used starting with the interrupt
handling routine and progressing via DOS BIOS key handler and
finally File Control Block operations. This method is
appropriate when feasibility is unknown. Several difficulties

[2]were resolved by reference to Duncan . An example of
idiosyncratic behaviour occurs if a screen is saved to a filename
already used. The result was a corrupt file of double size. The

39

problem is associated with the detail of File Control Block
handling and was resolved by flushing the block by zero filling
below the file name section before a new capture.

4.2.1 The Benchmark Encoding Scheme
The basic principles of Huffman encoding are explained in

[3]
the original paper and in Section 2.0. The procedure is
appropriate to statistically independent sources and yields the
minimum average word length.

In the Section 2.0 discussion,the problem of very long code
words being generated by a large number of low probability
entities was raised.

An approach designed to avoid these long code words is
[4]

suggested by Hankamer . All low probability words are lumped
together and signalled/stored literally, preceded by a special
word indicating "uncoded data follows".

Implicit in this thinking is a decision about how many
patterns should be considered "common" enough to be Huffman
encoded. Obviously, such a decision would depend on the material
and the logical approach is proposed in a slightly different

[5]
context by Langdon and Rissanen . The key here is "adaption",
which requires statistical analysis of the source.

If analysis is implemented the question arises as to whether
the analysis should be carried out line by line or just once per
frame. Clearly an extra overhead is incurred by the line by line
method since data recovery will require that the new assignments
for the codewords are recorded at each statistical event.

Experiments were necessary to quantify the answers to the

40

questions posed. Software written in Pascal and running on the
host CPU utilised screens captured with the Assembler routine.

The experimental system was byte orientated which led to
constraints in terms of accommodating the codewords if a pure
Huffman code was to be used. It was realised that file sizes
would not reflect the compression obtainable and that a separate
"codeword size counting" exercise would be necessary.

An alternative approach proposed that if Hankamers
principles were employed for all but the most probable 4 symbols,
then a fixed codeword size of 2 or 3 bits could be used with
little departure from the theoretical performance of Huffman.
The reason for carrying out these experiments was to establish a
rough benchmark and manual test calculations comparing variable
length coding to the fixed scheme were made.

The style of the tests was to define strings of 4 possible
entities or symbols. The appropriate Huffman codes were assigned
by probability, and the 4 possible two bit fixed codes were also
assigned to the entities. The strings were encoded both ways and
a simple bit count taken. An example is shown below :-

String abdaaacbdc
Probabilities a=0.4, b,c,d=0.2
Codes allocated
Entity Huffman 2-bit
a 1 00
b 00 01
c 010 10
d Oil 11

41

Strings - Huffman 1 00 Oil 1 1 1 010 00 Oil 010
2-bit 00 01 11 00 00 00 10 01 11 10

In this case, for these probabilities the fixed 2-bit
code is the same as the Huffman variable length equivalent.

The reason for this is that the Huffman coding procedure is
capable of producing more than one coding option and the two bit
code is one of the possibilities.

The fixed code length results in a simple relationship
between file size in bytes and the total data stored within it.

To allow a Hankamer "uncoded data in this byte" signal one
bit (b7) was reserved. Three 2-bit fields could carry data in a
coded byte, whereas an uncoded byte could carry 1 of 128 possible
entities. Software analysis of the data before encoding
precluded any problems when less than three consecutive codeable
entities existed.

As has been stated analysis to find the most probable
entities could be based on a line by line scheme or on an
analysis of a complete text screen. Performance differences
between the two analysis options were unknown and it was
resolved to quantify those differences by experiment.

At this stage it was suggested that two 4-bit fields might
be used to carry the most probable 16 entities. Intuitively, it
was felt that this would deviate substantially from Huffman
equivalence but nevertheless it was thought that it would be
useful to quantify results. Control functions necessary because
no "Hankamer" bit was available in this option reduced the number
of coded entities to the most probable 14.

42

Two software versions allowed the fourteen most probable
words to be coded, or four. Frame analysis and line analysis
were available by choice and finally a run length feature was
added so that approximation to CCITT group 3 could be achieved.

Results
The maximum compression achieved with the available data

occurred with four code words, line derived statistics, plus run
length coding. Results suggested a compression ratio of 3:1
might be a typical average, but when congested text is the source
it was noted that all the options gave similar results with
ratios of 1.45 to 1.7 being achieved. This was predicted since
congested text character cells were expected not to have dominant
probabilities.

Figure 4.1 shows the results achieved using 10 different
screens with 6 variations of encoding scheme. The encoding
options are denoted A to F and the array elements 0 to 9
represent the different screens. Elements 0 and 1 are textual
sources whilst 2 to 9 are line drawings captured from an
electronic CAD package (ALTERA LOGICAPS). Increasing element
number involving increasing sparseness in the drawing. Where
screens contained entities of high probabilities such as line
runs in drawings or blank space in sparse drawings the 14 code
system without run length enhancements confirmed the
intuitive predictions. This can be readily seen in comparing
C(8)/C(9) and F(8)/F(9) in figure 4.1.

This work established benchmarks against which the
pattern matching and substitution method which is the subject

43

înai'T'Hnoitûomoîinttncnnoj^^o
,0 0 0 0 0 0 0 0 0 0,

o m CM 0 in h œ fil ri

3 D
00000000 0,

D ri

> >-p 4J > >r £ ^ -ri +J +J +1 p ri ri fl fi D) 0) o000(n(nMf)0^ •NIO " 0 0 Ÿ ̂ ŸID (D £} JD rl rl
D 13 (0 ID C C
0 0 O £ D 3

00 00000 0, r—(

Q a L L
Q Q + +

D D
U D I] D

fi -ri
•rl -ri -ri -ri

(D -M o(D(\ĵ aiai0fM(\i0 ' h 0 1\ 0 m - 0 0 •
TJ D

ü t) Il T]
L 4J

0 O O O 0 0 0

D D D D D £ 00

0 1 0 ^ 0 0 1 0 1 0 0] I--
O O) 0 h 0 0 0 0 0 0 h 0 O 0 T 0) ̂ N 0 • N0 • • 00Ÿ00O1^^OOfi *00000 *00 ••••• •• f # .
,0 o , ,0 00000000 0,

■0 D u m i ü en

^ Ÿ Ÿ ̂ ̂ ̂ o

< 0 ü Û Lü 0

eu
L
z)
cr

o rH
Ll

44

of Section 5.0 is compared. The results confirmed that the CGA
resolution would cause compression algorithms to perform with a
compression ratio approximately one order of magnitude less than
for FAX resolutions.
References
[1] Fuchs,P.M.,"Compressing data in bit mapped displays",EDN,pp
173-183,October 1986.
[2] Duncan,R.,"Advanced MS-DOS",Microsoft Press, 1987.
[3] Huffman,D.A.,"A method for the construction of minimum
redundancy codes",Proc I.R.E.,vol 40,pp 1098-1101,September 1952.
[4] Hankamer,M.,"A modified Huffman procedure with reduced
memory requirements",lEE Trans on Comm, vol COM-27, no.6, pp930-
932, June 1979.
[5] Langdon,G.G.,Rissanan,J.,"Compression of black and white
images with arithmetic coding",IEEE Trans on Comms, vol COM-29,
no. 6,pp858-867,June 1981.
[6] CCITT recommendation T-6, ITU, Geneva.

45

5.0 Pattern Matching and Substitution

5.1 The Method
Documents comprise of textual characters, line drawings, and

possibly photographs. This section deals with textual characters
only. The intention is to use pattern matching and

[1]substitution after the fashion of Johnson, Segen and Cash ,
[2]and separately in a different context by Wilcox and Spitz

The method assumes document scanning, typewritten symbols
and the ability to isolate individual entities during the
segmentation process.

Several segmentation methods were considered. The classic
means of isolating an entity on a uniform background is
segmentation by histogram but this is only effective when there
is a gradual change between the background and the object. This
is because detection of the object is based on a trough in a
bimodal histogram plotting numbers of pixels against grey scale.
The background produces one peak, the object the other and
intermediate values are expected to identify the boundary.

Textual characters from a scanner or on a computer screen
have a sharp transition since only binary and not n-ary grey
scale values exist. A good candidate for isolating text
characters is thought to be chain coding as described in Section
8.2 and illustrated by figures 8.7 and 8.8. No implementation
was attempted .

Once characters are isolated, their form is matched against
those already recognised. If a match occurs the 2-D pixel image
is not transmitted or stored. Instead a suitable short code is

46

substituted,typically a variable length type in order to approach
the source entropy and data compression results.

If a "no match" condition occurs the pixel image and the
code to be associated with it in future is transmitted or stored
for use in the data recovery phase. A small amount of negative
compression is incurred but in practice this is more than
compensated for by savings when matches do occur.

The key process for successful application of these ideas is
the pattern matching method.

Most workers in this field have used template matching,
constructing an error pel map using weighted XOR to create a

[3]match figure of merit as did Holt and Xydeas . Many of the
difficulties with template matching arise from registration of
segmented characters or anomolies due to very thin entities.

The idea is illustrated by Figure 5.1. The bit maps for the
two characters are combined by means of exclusively ORing them
together. This creates an error pel map in which the error pels
are weighted according to the number of adjacent error pels
that exist.

The weighted error pel map is then totalled in order to
generate a match figure of merit. A threshold for match is
defined and decisions may then be made.

The difficulties mentioned above, concerning thin entities
and registration can easily be identified as being exacerbated by
the weighting procedure. This may be explained by considering a
1 pixel wide vertical element such as a thin "i" or "1". Slight
mis-registration in an overlayed template could mean that no

47

ILS

S

loj

m 3

El S
1 y» r i : I ? I : ! 1 j jTj

TT!îm

Figure 5.1

X Cn) X C n -1) X C n-3)

hCO) hC2) hC3)

N ~ 1
y C n) = I h Cm) * x Cn-m)

m=0

48 Figure 5.2

pixels line up. Thus every error pel would be weighted 2,
as defined in figure 5.1,excepting the two end pixels which would
be valued 1.

Holt and Xydeas have tried to compensate by further
customising, or increasing the conditionality of their
algorithms.

Other problems such as those reported by Boyle and
[4]

Thomas concern the orientation of symbols.
Moving a template across a symbol and checking for best fit

amounts to spatial domain convolution. The computational
overhead has led to convolution being performed with very small
kernels. Specialised microprocessor architectures such as the
Vector Signal Processor give the potential of larger and much
faster convolution.

The discrepancies of the weighted XOR map prompted an
investigation of an alternative scheme. Research into early
optical work revealed the notion of using matched filters for

[5]
pattern recognition as suggested by Horowitz and Shelton , and

[6]correspondence by Kain supports the idea by proposing
statistical measures of matches.
5.1.1 Matched Filters

A matched filter is characterised by having an impulse
response equal to the time reversed version of the signal
waveform to which it is matched. In the context of this
application, the filter is configured to an array generated from
the segmented symbol.

When the symbol for which the filter is configured is
applied, the output of the matched filter is the autocorrelation

49

function (ACF) for that symbol. Incorrect symbols will produce a
cross correlation function (CCF). The main matching algorithm
recognises which by statistical methods.

This application calls for the need to match large numbers
of symbols and consequently the matched filter required must be
programmable. The impulse response must be capable of being
varied by writing control words to it.

5.1.2 Implementing the Matched Filter
[7]

Lynn discusses matched filters and demonstrates a
particularly appropriate technique which applies to the sampled
data system case. The assumption is that the signal is modelled
as two-variable with binary states. This will generate an
expression for the impulse response where the coefficients of the
terms will either be 0 or 1. Clearly, where the coefficient is 0
then that term may be neglected.

In order to arrive at a configuration for the filter the
[8]following procedure was derived from Lynn , and

[9]
Blandford . Although for real segmented characters a much
longer string is involved, consider a fragment of the single
dimensional string representing a "slice" of the two dimensional
character array.

101110000101.........
The time reversed version is

 101000011101

Assuming a digital filter, the z plane transfer function
will be :-

50

5

00

LO
01L
zJCD

D I— f

u_

51

—2 —7 —8 —9 —11
H(z)=l+z +z +z +z +z

since H(z)=Y(z)/X(z) then :-
—2 —7 —8 —9Y (z)=X(z)+X(z).z +X(z).z +X(z).z +X(z).z

This allows the recurrence formula to be written as :-
y (n)=x(n)+x(n-2)+x(n-7)+x(n-8)+x(n-9)+x(n-ll)

which may be implemented as a Finite Impulse Response (FIR)
filter of the non-recursive type. Figure 5.2 shows the system
required. For the beginning of the example sequence fragment
: -

h(0)=l,h(l)=0,h(2)=l........... h(ll)=l

This system was committed to an electrically programmable
logic device (EPLD) of the Altera EP1200 type. The delay
elements are implemented as a shift register of D type flip flops
and the multipliers could simply take the form of two input AND
functions because of the basic two valued approach. The
coefficient input to the multipliers comes from a d-type PIPO
(parallel in-parallel out) register. This register connects via

address decoding and glue logic to the host processor synchronous
bus. In this way the host can store a "configuration" word in
order to configure the matched filter.

The summation requirement is satisfied by cascaded full
adders and output logic. The implementation is shown in Figure
5.3. The problem with the two valued approach is that each
character cell of, say, 16X8 pels results in long strings e.g.
128 pels. Each pel needs a signal shift register bit and
consequently the basic implementation of Figure 5.3 would need to

52

be cascaded in large numbers.
5.1.3 n-valued Model

An alternative approach involves treating each horizontal
slice of the character cell as a single sample value, and thus
each character would comprise of 16 samples. This will reduce
the string length but there will be a compensating increase in
the complexity of the multiplier circuits and the summation unit.

Using arbitrary coefficient values to illustrate, the
recurrence formula might appear :-

y(n)=252+79.x(n)+22.x(n-l)+121.x(n-2)........
The requirement is for at least a double precision (16 bit)

result, together with array multiply hardware similar to that[10]
described by Hayes . The complexity is significant.

5.1.4 Using the Vector Signal Processor
[11]

Taylor describes a variant VSP designated ZR34325 which
features an FIR instruction. This instruction has a field
specifying the number of taps in the desired filter and expects
an array in external memory to define the coefficients necessary.
This solution will not be as fast as a pure hardware
implementation but Taylor reveals results showing the ZR34325
capable of 32 tap filter action with an array of 128 real samples
in 382 microseconds. If this is a viable solution both the
Matched filter requirements and the Correlation needs can be
provided by the VSP.

5.2 Generating Autocorrelation Functions
Flowchart 5.2 shows the complete process that is proposed.

55

symbol array
■for recognition

Hatch 1 ng (1)

Matched
CCFFiIter

(ACF 1-f exact match)

Configuration
Impulse response
is bit reversed
symbol array

Figure 5.4

54

It is implied that for each character a set of full details will
be created when it is encountered for the first time. This set
has the following constituents :-

1. A bit reversed version of the character cell to be used
as configuration input to the matched filter, see Figure
5.4

2. An Autocorrelation function of the character cell sample
values.

3. A short code associated with this symbol.

Since a large number of new symbols will have to be dealt
with in the early stages of textual processing it is advantageous
if the Autocorrelation functions can be generated quickly. The
need is for fast correlation. Fast correlation involves
translations into the frequency domain.

Time domain
convolution is :-

and correlation is :-

y(n) = .h (n - m)
n

R(ra) Ŝ:.;(n) .y(n-rn))m

The applicability to the task in hand is evident if h(n) is
the impulse response of the matched filter, m= 0 to n, x(n) is
the input sample sequence and y(n) is the output. N is a power of
2 greater than the length of the shorter sequence. If DFTs
(discrete Fourier Transforms) are used then the expressions
become :-

55

for convolution.

H(k) .X(k)

and for correlation. , ,
Lüh2..fQ^ ̂—

DFT[:<(n)3 “> (X(k)]
S(>:,= H,n-v).X(>:) DFTth(n)] _ [H W)

DFT[y(n)] — > [Y(k)3
DFT [/?. (m)] -4- [S (k)]

The key point is that fast convolution can be used for
correlation if H(k) is stored in bit reversed order. The array
store instructions for the VSP allow for this.

The process of frequency domain convolution is used to
create the library ACFs. This job is invoked when a segmented
character is not recognised as having been seen before at
reference 120 in flowchart 5.3.

Details of the programming are illustrated by figure 5.5
and listing 5.1. Proof of the method is available in Gonzalez

[12] [13]
and Wintz and Zoran . The listing shows the
characteristics of the horizontal architecture of the device,
since each instruction has uncommon length with many fields, as
discussed in Section 3.0.

5.3 The Screening Stage
Before the main matching process proceeds, a rough

comparison or screening stage takes four horizontal slices
from the segmented character. In the original form of the
screening stage a majority vote algorithm noted that if, say.

56

MowcWgifr

researc

10

start

Similar candidates \ N
in library /

100

Entity
identified

130 120

130

Pull up ACFs and
Matched filters

Encode and store
or communicate

Segment entities
in image

Compare outputs to
ACFs

Apply new entity
to Matched Filters

Read in new
entity from

image

Store full details
or communicate full details

Create new library
entity Calculate ACF

Generate Matched Filter

Process for Data Compression
using Autocorrelation and Matched Filters G.A,King

Kindra VI.A
researc VERSION 7
28-Sep-88 34: 39:

57
Flouchart 5=2

O) 0)
>̂<D
E^i2

LO

LO

01
L
=iCJi

o r-|
Ll.

58

VSP 34161 AssQBblar. VI.3 Tu* Jan 01 00:01:51Inpuc File: convoi.VSP Output Fil*: convoi.HEX
LOG OBJ LINE SOURCE

1 /• Faet Correlation tor VSP */
3 /* Cooley-TuJcey Algorithm for X(N)and H(N) R:0 •
5 /* Sande-Tukey for IFFT R;1,FPS:1,LPS:64 */

7 /• Fixed divide by 2 ecaling-each pass AS:1 •/
9 /* C.A.King Data Compression version 1.00 11/10/
1011 /* SET UP INSTRUCTION FIELD DEFAULT VALUES */
1213 DEFAULT EI:0,INTRP:0,RV:0,2R:0,2P:0,MBS:128,MSS:1415 DEFAULT OR:0,CN:0,MDF:3,RS;0;
1617 DEFAULT AS:0,FSIZ:128,FFT.RBA:0,ADF:3,SB:0,LN:1:
181920 /• OTHER DECLARATIONS •/2122 equ SCRATCH-OxFFF,XN-OX200;2324 equ N-128, HZ-0X3 00, F-0X4 00, SCALE-OXFFC :250000 0040 26 M: dw 64;270001 0000 28 PROGSTART: dw 0;2930 equ OOT-OX500;3132 org 03334 /* SET UP SINGLE RAM SECTION MODE */350000 0010 36 LDSM NMPT: 1,MD:1,UP:0,MBA:SCRATCH;0001 A1700002 OFFF 37
38 /* COMPUTATION OF H(Z) STORED AS H(N-K)3940 AND STORED AS H(Z) AS THE TWO ELEMENTS FOR AU410003 0000 42 LD NMPT:N,MDF:2,ZR:1,MBA:HZ:0004 E0500005 0300 430006 9406 44 FFT NMBT:N,R:0,FPS:64,LPS:1,1:0;0007 00300008 0020 450009 0800 46 STB NMPT:N,MBAB:F;

OOOA E068
OOOB FBFF
OOOC 0800 48 ST NMPT:N,MBA:0x500;OOOD E060OOOE 0500

4950 /* RESET SCALE REGISTER POINTER AND MAX SCALE RI51OOOF 0010 52 LDSM NMPT:1,MD:0,UP:1,MBA:SCALE;0010 A2700011 OFFC
5354 /* PERFORM VECTOR MULTIPLICATION */550012 56 LD NMPT:N,MDF:2,MBA:F;0013 E0400014 570015 1006 58 MLTC NMPT:N,SH:l,MBA:Ox500;0016 E0680017 0500 5960 /* NOW PERFORM INVERSE FFT */610013 9406 62 FFT NMBT:M,R:l,FPS:l,L?S:64,I:l;0019 8180OOIA 0023
6364 /* STORE THE SCALE REGISTER IN EXTERNAL MEMORY *65OOIB 0811 66 STI NMPT:1,STR:5,EI:1,MBA:SCALE;OOlC 4050OOID OFFC 6768 /* STORE THE ACF IN EXTERNAL MEMORY */6970 /* REMEMBERING TO EXCLUDE INCORRECT RESULTS OF C7172 /* number of valid points is N-M-1 */

00 IE OBFO 74 ST NMPT:63,MDF:l,MBA:OUT;OOIF E0200020 0500
750021 COOO 76 HLT;0022 0000 7778 end;79

S Y M B 0 L TYPE SEG VALL— /SIZE AT
F CONSTANTH Z CONSTANT
M LABELN CONSTANTO O T CONSTANT
PROGSTART....................... LABELS C A L ECONSTANTSCRATCH XN CONSTANTCONSTANT

0x0400
0X0300

0x0000
0X0080
0X0500

0X0001OxOFFCOxOFFF0x0200

ASSEMBLY COMPLETECODE SIZE: 25H,79 LINES READ
0 WARNINGS DETECTED 0 ERRORS DETECTED

59 List ing 5.1

three out of four slices compare within the set tolerance to a
library symbol, then the item is regarded as a likely candidate
and is tested with the main matching technique.

A simulation of the screening process was created by
programs written in a high level language. Starting with a
library of characters defined by figure 5.8 each character was
screened against the complete set including itself. The results
are shown in table 5.1. The average number of characters
selected as "possibles" needing to be checked by the main
technique was 3.73, representing just under 15% of the library
size. It is likely in practice for the library to contain a
number of "versions" of the same character and this is expected
to increase the number of "possibles".
There is a trade off between the screening and main techniques.
If the screening is rigorous the main technique need, only be
invoked for a few candidates. The faster the processing for the
main technique, the less demanding the screening need be.
Results support the view that screening may be cursory when
compared to more traditional pattern matching, certainly less
exhaustive than the height/width/internal black run suggested by

[3]Holt and Xydeas

5.4 The Main Statistical Technique.
The essence of matching is to detect significant [6]

differences. Kain proposed several measures of similarity,
the most useful is a figure derived by comparing the standard
deviation of the filter output and the library ACF and then
dividing by the mean for each sequence.

60

Table 5.1
Character Selected by screening

a a 9,qb b f,k,m,p,w
c c e,s,v,x
d d s
e e c,o,v,xf f b,k,m,n,p
g 9 a
h h ri i 1
j j zk k b,f,m,n,p1 1 i
m m b,f,k,b,wn n f/k/P/Uo o e
P P b,f,k,m,n
q q ar r hs s c,d,v,xt tu u f,k,n,p
V V c,e,s,xw w b,f,k,m,p
X X c,e,s,v
y y

jz Z,
Characters to be checked with main technique averages 3.73

61

stats

iO
start

end

Find the standard deviations
of the sets

Find the mean of each so-t.
and hence the difference of means

Compare the ratio of the standard
error of the difference to the

difference in means

Find the standard error by
dividing the standard deviation
by the sq. root of the number of

items in the sample

Find the standard error of the difference by taking the sq. root of the sum of the
squares of the standard errors

Method for testing the
significance of differences between sample sets_____ G.A.King ver 1.01

Kindra VI.B
stats VERSION 4
02-May-89 09: 18:_ _ _ __

62
Flowchart 5.3

It was felt that a better measure could be devised. The
problem is the need to be able to determine whether the
difference between sample sequences is significant or whether it
arises from noise or other random effects. A method for doing

[14]this is described by Harrison and originates in statistical
(15)

estimation techniques, such as those described in Chatfield
The mechanism is explained as follows :-

Two statistical measures are Standard Deviation, and the
Mean.

A set of samples will have values for these two
parameters. If there are several sets of samples then the
Standard Error of the Means is the Standard Deviation for the
set of means.

If a series of sample values is not significantly different
then its mean will be within the Standard Error predicted.
If two sets of samples are possessed. One selected set should
have its mean and standard deviation calculated , knowing the
number of samples it is possible to predict the Standard Error
which would apply to a group of similar sets. The same procedure
may be repeated for the other set and then the Standard Error
of the difference of the means must be calculated.

The actual difference between the two means is then
compared with the Standard Error of the difference.

The results are interpreted in accordance with the normal
distribution, so that :-

If two sets of data differ only by random effects, then

63

their means have a 68% chance of falling within a range defined
by the standard error of the difference of those means. Other
probabilities follow the normal distribution, so that there will
be a 99.73% probability of being within three times the standard
error of the difference.

The pre-requisite is the ability to calculate the standard
error of the difference, starting with two sample sequences.

The final match figure of merit is obtained by dividing the
difference of the two sample means by the standard error of the
difference. Low values (<1) indicate a high level of confidence
in the match.

Figure 5.6 demonstrates the method for two sampled waveforms.
The resulting figure of merit (modulus of r), being 2.544
indicates a very low match probability.

5.5 Experiments and Results
Kains method and that developed from Harrison were the

subject of a comparative study. Complying with the original
experiments by Kain, only the alphabetic character set was used.
The character set is defined by figure 5.8. ACFs were generated
for each symbol and then stored in a library.

To test the main matching technique ACFs were generated
using an HLL(high level language) program. A typical ACF run is
shown by figure 5.7.
Each symbol to be recognised was screened against all the rest in
order to determine which, according to the screening algorithm,
were candidates for the main matching technique. The results are
shown in table 5.1.CCFs were generated for each candidate using a

64

CD
LD

01
L3lcn

T3(U
£
Ü4J<D
£

E
0Ls-
■M3
a
4J3
o

u.
u<
>L(DLD
•ri
J

in
ID

ID
ID

m CD
(0 ID
N CO

in ID 01

>

o
in

>
C Û)
to D0 4J
E (n

II I

■0 £

01

01

II

01 L
Ü 0
c £
01 £
L 01

(U 01
01 4- . t l
(D H- £
u •r1 (D

D D
£ £
Ü 01 <D
<0 £ •P
0) ■P 01

£ 4- 01
•rl 0 £

•P
L L

in oj 0 0 4-
N in L L 0

• • £ L
CQ ID ^ X Q) 01 0
01 X •H

II ^ > u U ■p
II C Q) L L <D

to u (D fO £
X (U 4J U D

X E 01 £ £ 01
> (D (D £ 10

c u II 1 ■P •P •P C
m u 01 01 ID
(U 4J 01 01
E 10 n 4- 0] 0) ■P E

£ £ CD
•P ■P n 013 £
U D U +»
£ £ r~i
• r i •rl (D H-
Ll IL U 0

VV
in
cv

I---- 1
JD
I

.D

65

matched filter set up for the original subject symbol.
If the original subject symbol was "a”, then the screening

selected"a,g,g". The correlation functions derived were
"ag","aq", and "aa". This last ideally being the same as the ACF
from the library. The correlation function "aa" should yield the
highest match probability, i.e. the lowest numerical output from
the statistical match routine. The statistical process would
have,as inputs :-

(1) The ACF of "a"
(2) The correlation functions "ag","aq","aa" in turn.
The outputs for a representative series from the tests are
shown in table 5.2. In the table an entry such as "bw"

means that the ACF for character "b" was compared with the cross
correlation of "b" and "w" (the output that would have resulted
from "w" being applied to the matched filter configured for "b").

The results in the column relating to the method due to
Harrison were derived as shown in figure 5.6. The table does not
list the result of "bb","ww","ff" etc since in all cases this
would yield 0, which means a "perfect" match. The results
column entitled method due to Kain is derived by comparing the
standard deviation of the matched filter output to that of the
library ACF and then dividing by the mean. This was the best of
the techniques suggested in Kains original research and the
figures are provided to allow a comparison.

Table entries with numerical elements in their names such as
"i2" or "e5" refer to symbol variations due to corruption, noise
or other distortions. In the experimental work symbol patterns
with such variations were added to the ACF library. Table entries

66

match figures of merit
Subject symbol Method derived Method due

and comparisons from Harrison to Kain

bw 18.10 9.80
bf 16.33 1.90
bk 13.80 0.97
bm 10.61 4.74
bp 7.94 0.45

w

f

.=,1

il

bl

el

wf 40.26 0.86
wk 34.03 1.86

6.15 0.52
28.10 0.10

wm
wp

fk 1.89 0.52
fm 17.50 4.24
fn 5.91 0.41
fp 5.38 1.26
fu 6.52 0.32
fw 21.91 5.69

6.76 0.74

jz 7.83 3.42

xc 0.53 1.34
xs 1.71 2.24
X V 2.11 0.87
xe 4.38 2.57

a2 3.34 0.81

i2 0.34 1.20

b2 0.75 0.14

e5 0.68 0.97
e4 11.63 0.16
e2 6.97 2.21

67 Table 5.2

in this class were al,il,bl,el. Symbols containing greater
distortion were matched against these in order to evaluate the
relative tolerance of the two statistical match methods in cases
of "same character but corrupted". Examples of the characters
used are given in figure 5.8.

Although Kain reported 87% correct recognition in
his original work there was a serious problem in
differentiating between "i" and "j".

This is confirmed by table 5.2 entry "ij". Note that the new
match procedure has no difficulty and clearly rejects this case,
although in an integrated system as proposed the problem would
not arise because the screening process only selects "i" and "1"
for further matching. The figures for "ij" imply that the
probability that they match is that associated with being 6.76
standard deviations from the mean in a Gaussian distribution.
Kains match procedure generates 0.74, an indecisive value.

For the purposes of experiment it was decided to set the
match figure of merit at 1.6. Outputs from the match procedure
having values less than this would be declared the "same" symbol.
This threshold is adjustable but 1.6 represents 3 or 4
uncompensated error pels. The threshold would normally be
selected to define the acceptable distortion provided the match
procedure is sufficiently discriminating and consistent. The
method due to Kain produced poor results in this respect. Where
"b" was the subject, screening suggested w,f,k,m,p,b and Kains
method gives probable matches with "k" and "p" as well as "b".
The new method has no such problem. Other examples are provided.

68

Ci'JTCiCOra jE L i'.T IC i.'l r u i i c i XCIM r* jp ; I I I T E R (,i

J 1 I J I r I I I J-1 I I I I. 11 I I IX 1

::-jZj

. . « T J4H J J l I., t , j
<14.44«4,,,444«.1 14
1J 4 I I * 4 I 4 I 4 I 4 . f r I 4 4 (y,

14 It,
14 4 ly

■X'l

no
14 4 4 4 4 4 44 4 4 27

14 4 4 4 4 4 44 20
4 44 4 2“?

TO 44 I I 44 I 4 4 I

>4. 4-4-. 4iJ
: 4 I 4 I 4 4 4 I 44 I I 4 4 4 I

I I 1 4 I 4 4 4 4 4 4 4 4 4 I 4 4 I I ! : I 4 4 4 I
► 02
'1 ' JO

4 4 4 4 4 1 4 4

444:4444 444 4 4444444444444
4 4 4 4 441 4 4 4 ! 4 1 4 4 4 4 4 4 4 4 4 44 1 4 4 4 4 4 *1 4*

4 4 4 4 4 4 4 4 4 4 4. 4 4 r 4 4 4 4 4 4 4 4 4 4 4 4 4 I * , /
4 4 4 4 4 4 4 4 4 4 4 4 I 4 4 -4 4 4 4 4 4 4 4 4 4 4 ;,Q
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4- * 4 4 4 4 4 4 4 * 4 4 * -4 .3
4 4 *4 4 4 4 4 4 4 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 * * A(,

• I 44 4 4 4 4 4 4 4 4 4 * 4 4 4 4 * 44 4 *4 44 4 4 4 4 4 44*44*4 **
4 4 4 4*4 4 *4 44 * *.* 4 j ^

4.4 * 4- 4 4 4 4 4 4 4 4 4 4 1 4 4 * .J .J
*44 1 444 4 4 44*4**4 *
4*4.*44*4** **j * *
4 *»*4 **1* , 4* -̂y

ZO 4 *4 * 4 4 *4
•!0
JO
Oil 4*11:' 3 «
JT* 4*444*1 4 4 4 4 44*4*4*
33 *11**14*14**144***
no *444144 4444***4*4*
nr.: 1***1 4 1 .» * * * * , * * * * *

27 4444441414*1*44444
I-t. 41*1 1*4 **1* 4 ,4* * * *
nS *1**1*1144*4*4**1* ,

* 50
S isn• S3 f S -!

;;f 4iii;*i,,t,i
. I 4 1 1 1 1 4 1 1 1 * 4 1
7 ' : 4 4 * * 1 14 141 1

•55
S 7

nc
no3.3.'jS
30

SO * 53
£.0

£.J
C2

► CJ
►4 £-1or.

'41 C&I 1 1 I » . * 7

4 4*4* 44 11111111**1 * * * *
I . * * 41 111***4*44 y I

111 :1111 * 11111 * * * Y :'
* ̂ 4 I 4 41 41 * 1 * * * 4 * I I , * , j ~

*S 14*114*111*1 11. 41 1 1 * 1 1 1.*1 *4 I .1
nn 41111114111*1 14 4 4 4 * * , * , 4 4 *
.;v 1 1 *11 1. 1*1 11.14 1 *4 ,14 ** , 1 1
I 3 4*1*144111444,*, 4 4 4 4 , 4 , , , ,

no 414111111*41*411114444*>*44*41
33 1411 *11411*1114 *1 4* 4 4 4 4 *,
•I 0 14*1 41 44*1 * **4»* 1*1 44 1,4 I

•II

I 41 44 yj
»**» 74 1:11*11**11 v;j

: 11 4 11. 41 4 * 1. 1.1. *
1 4 4 1 411 * 1 , * 4 * , 4 *

114*4*411 44**141**4 ,14*, 1 1**11 4* * , * 1 * * . * ..3

-I *4* 7333 **tni’.nn»i!*.n*r***i
33 4 *4 4.1 * 4.1 . , * , 14*11 *1 * , 4 1 ,no *4*,*1114**14**14**44**,

77

03 ̂ on
0 1

iX'
33
33

41 * 44 41 *
1**4 4 *4 4
4*4 1 07

• CO
03

1*4*
4 .7 ,

33
33

30 * 4 * 4 4 4 * 1.1
33 4 1 144 **1 4

4

• 3S
3£

O'" :1:1 111111441*,. 14141411,
3S 144411* 1 1 * 1 , 1 1 4 1 4 , * 1 1

3 3
3:4

I ». 1 * 1 1 . , 4 4 , 4 ..**1

I 33
lliOJfi****........ 1113

'411 I ,17 104
1*411*11* **4 *414

14»*** |(,0f W ̂ I » * * * I (ly
:rt 1 *1*11,14411,1 1 * 1 , * , * , , * 4 * 4 , , , , ,
no 444H 1 4 4 4 1 1* 4 . 4 , , * , , , , 4 , 4 , 4 4 * 1 1 1.*,

•17 * 4 , 1 1 1 1 1 1 * 1 * 1 , 4 1 1 1 * 1 14*1 *11 , 1, , ,4* 4 1 , 4 , * , , , i i i 4

Figure 5.7
30 * * *4 *»1 **4 * * 4 .41 *4 4 1 , , *4 ,a

nS 1 1 * * * 1 **4 4 * 1 *4 1 **1 4 4 1 * 4*4 1
n i 4 1 ** * 1 * 1 4 * 4 * 1 1 1 * , *4 ,4 4 . . . ,

69

*/M My-rXij W lA “• • 7T

w W W W wlix»
3 if U ww w w

u u sru j wwwvWWW WWW w W/l

o5
OD

LO

01LzJ
cn
D iH
Ll

70

ENTITY ARRAY e: ARRAY ENTITY ARRAY

NTITY ARRAY i1 NTITY ARRAY al ENTITY ARRAY

ENTITY ARRAY ENTITY A (AY ENTITY ARRAY

Figure 5.8(b)

71

but it is clear that the new method is much more consistent and
discriminating. Table entries IlI2,BlB2,and E1E5 were for
symbols differing only by small amounts of random noise. Entries
A1A2,E1E2, and E1E4 all involved seriously distorted characters.

With the font used only "x" and "c" have yielded possible
false match decisions and this has now been eliminated by
the addition of vertical slicing at the screening stage. Instead
of four horizontal slices the improved screening system uses
three horizontal and one vertical slice, with the vertical slice
centred in the character cell. Some examples of the character
versions are shown in figure 5.8(b).
5.6 Secondary Encoding

The process described for pattern matching and substitution
does not specify the "short code". Data compression will occur
if the symbols are signalled/stored as 8 bit codes, say ASCII,
but this does not take advantage of a further compression which
is possible. Inherent to Section 4.2.1 was the notion of
frequency analysis for particular pattern occurrences and it was
considered that this principle might be usefully applied.

The difference between the textual case and the line drawings
is the relative sparseness of the line drawings and the
relative lack of repeat patterns in the scan line.

A number of schemes were considered for their suitability
for improving the compression by getting away from ASCII
representations of the matched symbols. The first option looked
at was Binary Non-consecutive One code described by Wai Hung

[16]
Ng . This code is a run length type developed from

[17]
Elias but did not offer a good performance because it

72

relies on one symbol being significantly more common than the
other.

Run length options were discarded and the Lynch-Davisson
[18]

code examined. The Lynch-Davisson code is a time sequence
code which is detailed in Section 2.0.

It is a total information time code and consists of two
parts "q", which defines the number of non-redundant samples and
"T" which carries the pattern of the sequence. A binary
string is scanned and q,T determined as detailed in Section
2.7.

A number of examples were worked through and average
compressions for English language phrases were found to be of the
order 1.2 to 1.4:1. This was not considered impressive and it was
decided to try to devise an alternative.

A new approach was to use the innovative Morse coding
principle discussed in Section 2.8. A high level language
program was written to encode English phrases in this way and
a large number of examples produced an average compression of
1.5. Examples of program runs are given in figure 5.9.

This result is better than that yielded by Lynch-Davisson
but not sufficiently so to be remarkable.

Pattern matching methods were applied by Downton and[22]
Kabir in the context of complete words of handwriting.
The thought was triggered that greater compression could be
achieved by substituting special bytes for the most common
text words. Assuming that the segmentation process was able to
detect spaces between words, the strings of character symbols

75

7 THESAURUS
KEY CODE
001100001011010011011011011
CHARACTER CODES

10000000001001010001000
TOTAL DITS KEVCODE+CHAUACTER CODE

NUMDER OF DITS AS ASCII

COMPRESSION RATIO

? IN DOTH THESE SENSES THE QUOTATION IS APPOSITE
KEY CODE

010010100100011001looiqoooiiooooioi100110001100101001100101110000110000110010001
101100101000101001101OlOOOl0011100010100100011011010001001

CHARACTER CODES

00101110100000010000111010000000001110000010000000011101000001110110100100010110 000010111000000111001011001100000000010
TOTAL DITS KEYCODE+CHARACTER CODE

257

NUMDER OF DITS AS ASCII

300

COMPRESSION RATIO
.6903096

? ROYAL ASSENT TO THE DILL WILL DE GIVEN
KEY CODE

011 Oil 10001010010001001101lOOlOlOOOllOOOOlOl110000110000110010001010010010001101 0100100100100001100011010100001010
CHARACTER CODES

01000011010101001110010000000101111010001110100000111010000001000100111001100010 001001110100001110110000001010
TOTAL DITS KEYCODE+CHARACTER CODE
22A

NUMDER OF DITS AS ASCII

304

COMPRESSION RATIO
.7360421

Figure 5.9

74

THE SLEREXE COMPANY LIMITED
SÂfCiLS LANE . BOOLE • DORSET . BK 23 I E*.

(oou «M3 U) SUIT • Tmxi IIHS*

Our lU i . 350/PJC/EAC

Dr. P.M. Cundâll,
ninint Surv«yi Ltd.,
Holroyd Road,
Madint,Varkt.

18th January. 1972.

Daar Pact,

Ptrmii ma to incroduct you to tha facility of factxmila
tranamxatton.

In factimila a phococall it cauaad to parfont a raacar team ovar
tha tubject copy. Tha variationa of print daotity on tha documant
cauaa tha photocall to gaoarata aa analogoua alacct>cal vidao tigna .
Thit lignai ia uaad to aodulaca a carrier, which it tranaaittad to a
rawta dcacination ovar a radio or cable coawunicationt link.

At tha remote terminai, demodulation recontcructt tha vidao
lignai, which it uaad to modulate tha danaity of print produced by a
printing device. Tbii device ia icanning in a raatar ican lyncnronitad
with that at tha tranamitting terminal. Aa a raault, a facmimiia
copy of tha lubjact document ia produced.

Probably you have uaea for thia facility in your organiaation.

Touri iLocaraly,

fU .
P.J. CROSS f
Croup Leader " Pacelmila Raaaarch

Figure 5.10

75

Table 5.3 CCITT document 1 character frequency/occurrence
A 3 a 58
B 1 b 6
C 4 c 37
D 2 d 30
E l e 78
F I f 12
G 1 g 11
K l h 23
I l i 68J 2 j 2
K O k 2
L 2 1 29
M l m 21
N I n 48
0 2 G 55P 6 p 11
Q 0 q 0
R 5 r 48
S 3 s 51
T 3 t 66
U 0 U 27
V 0 V 9
W 0 w 3
X 0 X 0
Y 1 y 15Z 0 z 0

76

coming from the pattern matching process could be analysed for
the number of occurrences in the file or document. It was
thought that a dictionary encoding scheme would be appropriate
and that a 2 pass procedure would apply. On the first pass the
words are stored in a hash table. The occurrences are kept track
of by checking if it is already in the hash table and if not it
is added. If it is already present the "number of occurrences"
field is incremented.
On completion of the first pass the hash table is complete and
the table is sorted in descending order of "number of
occurrences". The top 128 occurrences are entered into the
dictionary and the dictionary sorted into alphabetical order.
The dictionary has two main fields, the word, and the single
byte to be substituted.

On the second pass of the source data words extracted are
searched for in the dictionary and substituted for by the single
byte code. There will be many symbols forming part of other than
the top 128 words and also some non-word symbols. All the
entities :-
1) Code bytes for common words
2) Uncoded symbols/characters from relatively rare words
3) Uncoded symbols/characters that are non-word sourced
were then subjected to the Morse encoding scheme. It will be
recalled that in the Morse scheme a 3 bit time/position indicates
how to deal with the variable length code. Having not previously
allocated any 7 bit patterns there were 128 available. Some were
used as upper case characters. A deficiency of the original
Morse code is that it does not allow for "case". Some of the

77

remaining codes were used as control codes to delimit the
different categories of encodement above. This enabled the Morse
for "a" for example to represent a popular word or simply the
recognised single character ”a" depending on how its meaning was
switched by control codes.

The dictionary is specific to a particular document or file
and must therefore be stored/transmitted for use in the recovery
phase.

Programs to test the performance of these ideas were
designed using the Axion Kindra CASE tool and auto-coded in "C".
The programs were tested on "C" source programs and resulted in
compression ratios between 1.8 and 2.0. Kindra flowcharts for
the structured and modular code are contained in Appendix D.

The development of these ideas was not carried further since
the implementation was not particularly applicable to Vector
Processors, and was not central to the research.

The overall performance of the proposed pattern matching and
substitution system then needed quantifying and in order to
arrive at an estimate typical short business letters exemplified
by CCITT document number 1 were undertaken.

Table 5.3 illustrates by defining occurrences of symbols.
This work was also useful in estimating the number of
autocorrelation functions likely to be generated. For this
document 42 ACFS would need to be produced.

Figure 5.10 is the text of document CCITT l.For this document
calculations implied that pattern matching and substitution
provided a compression ratio of 4.3:1 compared to raw pixel data.

78

This would be further improved by a secondary encoding achieving
around 1.8:1. This leads to an overall compression of 6.5:1
which compares favourably with the benchmarks arrived at in
Section 4.0. A typical average quoted there was 3:1, but less
than 2:1 where congested text was used.

5.7 Implementing Fast Correlation
Convolution and Correlation between two sequences are

very basic processes which find wide application in signal
processing. This study has the requirement to implement
correlation with very high computational rates and the
straightforward evaluation of a correlation or convolution using
n multiply/add operations per output point (n=length of shorter
sequence) is computationally too intensive.

An alternative scheme is to operate in the frequency domain
because convolution in the time domain is equivalent to
multiplication in the frequency domain.

The process must begin with the application of the Fourier
transform to both input sequences. Array multiplication is then
followed by the inverse Fourier transform to produce the result.
Fast convolution results and is illustrated by figure 5.5.

Since only sampled values are used, the discrete transform
applies. The Discrete Fourier transform is periodic with period
M. To operate with the Vector Signal Processor it is necessary
to understand the principle of cyclic convolution.

If two functions f(x) and h(x) have ranges of 0,1,2,____A-1
and 0,1,2,.... B-1 respectively, and if M is chosen to be
greater than or equal to A+B-1 and the two variables are padded

79

•H

0 4J

•1—1

•ri
E D)

O) U
(D ri
CD -M -H

•H

•r!
u n •H

Il -H
03 TD •n "O

M-
4-

H-•rl
H-

•H

•ri

-H
4J LO

•ri

4-

M-

to length with zeroes, then the padded convolution is :-

nn = o
[12]

according to Gonzalez and Wintz

An alternative expression for this can be constructed by
[20]

direct matrix multiplication as shown by Brickell . Figure
5.11 demonstrates that rows of H are related by circular right
shifts. This provides the root of a processing problem which can
be appreciated by comparing linear and cyclic convolution in
terms of samples as shown in figure 5.12.
5.7.1 Overlap and Discard

[13]
Zoran discusses two methods for overcoming the incorrect

results of cyclic convolution. The first, which is Overlap and
Add, seeks to zero pad the sequences in positions where cyclic
convolution would have produced erroneous values. Recombining
the sequences involves extra add operations which incurred
unnecessarily long execution times. For this reason, the method
was rejected.

The alternative. Overlap and discard arranges to discard all
the outputs affected, but produces the correct output sequence by
segmenting the input sequence and ensuring overlap by M-1 points.

The method is illustrated by figure 5.13, and a VSP program
for this algorithm is shown in listing 5.1 earlier in the
Section.

5.7.2 Convolution or Correlation ?

The expressions for convolution and correlation given

81

w

«1

«

Figure 5.12

N-1

N-1
Overlapped partitions

N-1

Merged partitions

Figure 5.13

82

previously demonstrate that the only substantial difference
between the two is a time reversal of one of the components.

Consider correlation through the use of the frequency
domain.

If DFT[x(n)] is [X(k)]
and DFT[h(n)] is [H(k)]

*
then DFT[R(m)] is S(k)=X (k).H(k)

[13]
Proof IS available in Zoran
Considering convolution :- Y (k)=X(k).H(k)
The difference is that one of the components is used in a

reversed way. e.g. H(k) might be substituted for by H(N-k).
The VSP provides a store backward instruction (STB), which

makes the reversal a trivial operation.

5.7.3 The VSP program
The program operates on 128 points and a summation of the

number of VSP machine cycles for the listed instructions yields a
total execution time of 5079 clocks. With the processor running
at 10 MHz the program runs in 508 microseconds.

References

[1] Johnson,O.,Segen,J.,Cash,G.L.,"Coding of two level pictures
by pattern matching and substitution". Bell System Technical
Journal , Vol 62 No.8 pp2513-2520, October 1983.
[2] Wilcox,L.D.,Spitz,L., "Automatic recognition and
representation of documents",in Document manipulation and

83

typography,Ed. J.Van Vliet (Proc Int. Conf on Electronic
Publishing, Nice, France)),1988.
20-22 , Ed J.Van Vliet. 1988.
[3] Kolt,M.J.J.,Xydeas,C.S., "Recent developments in image data
compression for digital facsimile", ICL Technical Journal
ppl23-146,May 1986.
[4] Boyle,R.D.,Thomas,R.C., "Computer Vision ", Blackwell
Scientific, 1988.
[5] Horowitz,L.P.,Shelton,G.L., "Pattern recognition using
autocorrelation", Shelton G.L., Proc IRE 49 ppl75-185,1961.
[6] Kain,R.Y., "Autocorrelation pattern recognition",Proc IRE 49
pp 1085-1086,1961.
[7] Lynn,P.A.,"An introduction to the analysis and processing of
signals", Methuen, 1983
[8] Open University,"T326 Electronic Signal Processing", 1984.
[9] Blandford,D.K.,"The Digital Filter Analyser", Addison
Wesley, 1988.

[10] Hayes ,"Computer Architecture and Organisation" ,
[11] Taylor,D.M.,"Single commands for complex DSP functions".
Electronic Product Design,pp31-37, November 1987.
[12] Gonzalez,R.C.,Wintz,P.,"Digital Image Processing", Addison
Wesley 1982.
[13] Zoran,"Fast Convolution", Technical Note TN 92045-0187.
[14] Harrison.R., "Statistics and Reliability", Open University

1976.
[15] Chatfield,C.,"Statistics for Technology", Chapman and Hall,
1978.

84

[16] Ng Wai-hung, "Binary non-consecutive one code for time
tag data compression" lEE, vol 118, No. 10,pp 1358-1360,October
1971.
[17] Elias,P.,"Predictive coding", IRE Trans on Inf Theory IT-1
No. l,ppl6-33, 1955 .
[18] Lynch,T.J.,"Sequence time coding for data compression",
Proc IEEE, 54, No.10, ppl490-1491, 1961.
[19] Fano,R.M.,"The transmission of information".. Technical
report No.65, MIT Research Lab of Electronics, 1949.
[20] Brickell,F .,"Matrices and Vector Spaces", Allen and Unwin,
1972.
[21] Lynch,T.J.,"Data Compression - Techniques and Applications",
Van Nostrand Rheinhold,1985.
[22] Downton,A.C.,Kabir,E.,"Verification techniques for high
performance OCR of hand printed postcodes",lEE Colloquium digest
No.1989/109,pp7/l-7/7,1989.

85

6.0 Transform Coding

6.1 Introduction
This section deals with the methods available for

compressing grey scale image data. A characteristic of raster
scanned n-valued image pixels is that they are usually strongly
correlated. The purpose of transform coding is to involve a
linear transformation in which the samples are mapped into a
transform space. In doing this, the process results in a set of
samples that are more independent. The transformation does not
of itself provide data compression but the processes that do,
such as quantisation, can be more effective with more independent
samples.

6.2 Principles and Rationale
Consider a function of time such as a line of a raster

scanned image. A typical case is shown in figure 6.1. Taking
any sample as a starting point, the next sample will not be
entirely independent. That is, a sample in the vicinity of the
previous one will most probably be close in value rather
than wildly different . This indicates that there is correlation
between them.

[1]Gonzalez and Wintz consider two consecutive pixels x and
1

X . They produce a scatter plot of one against the other, see
2 ̂ [2]

figure 6.2. Chatfield explains a measure of association
between two variables. This measure is Covariance and is a
statistic obtainable from the scatter plot mentioned above.

86

■f (t l)

t

Figure 6.1

X
III

2

Figure 6.2

Figure 6.3

87

Covariance is defined as :-
o

/

U =z /

If most points are in the quadrants II and III, the
covariance will be large and positive. Alternatively, most
points in 1 and IV yield large negative covariance. If there is
no correlation between the variables the points will be evenly
scattered in the quadrants and the covariance approaches 0.

6.3 Transform Coding and the Vector Signal Processor

A number of transforms have been considered and evaluated
for their ease of implementation with a Vector Signal Processor.

6.3.1 The Hotelling Transform
. [3]Hotelling describes a transform that is based on the

[4] [5]statistical properties of an image. Karhunen and Loeve
developed Hotellings discrete variable approach into an analogous
process for continuous variables. Since the Vector Signal
Processor (VSP) operates within a sampled data system environment
Hotellings approach will be discussed.

Suppose the existence of a set of sample images denoted
f (x,y). Each image may be treated as a vector comprising of i
individual sample values x , which denotes the jth sample value

ijof vector x which represents the ith image.
A row,column array may be constructed by assigning the first

n components of x to the first row, the next n components to the
next row and so on.

88

The covariance between all the x vectors may be expressed as
a matrix. The covariance matrix of the x vectors is :-

(2)

(3)

Where m is the mean vector, E is the expected value and the
X [1]

prime indicates transposition. Gonzalez and Wintz explain
that equations (2) and (3) can be approximately derived from :-

/

/

C - /

(4)

(5)
\

which relates to equation (1).

The procedure then requires the derivation of the
eigenvalues and eigenvectors of C . An array whose rows are the

X
eigenvectors of C is then constructed and denoted A.

X

A =
A:

(6)

Where e is the jth component of the ith eigenvector. The
ijHotelling transform is complete when the image vector (x-m) is

multiplied by array A.

89

This yields a transformed image vector :-

y = ^ (x ~ n n \ (7)

In order to examine the effect of this transformation it is
necessary to consider the covariance matrix of the y vector. By
applying similar equations to (3) and (5)

and

a

but substituting (7) into (9) gives

(8)

(9)

(10)

(11)

The estimated value of (A -A) is the same as the estimated
X mx

value of X, multiplied by array A, and minus the value of A
mxhence :-

^ y i Æ' DC rki (12)

but m =E[x] and substituting :
X

m =A.m -A.m =0 , a zero vector,
y X X

It is now possible to write C in terms of C by substitutions
Y X

90

Remembering m =0 and y=A(m-m) equation (8) becomes :-
y X

C =E[y.y']
y =E[(Ax-Am).(Ax-Am)']

X X
=E[A(x-m) (x-m)'.A']

X X
=A.A'.E[(x-m)(x-m)']

X X
but C =E(x-m)(x-m)'

X X X
therefore C =A.C .A*

y X
[1]

(13)

(14)

Gonzalez and Wintz show that C is a diagonal matrix with
yelements equal to the eigenvalues of C .
X

o

Io --------
Since the terms off the main diagonal are 0, the elements

of y are uncorrelated. To arrive at this point it is necessary
to have derived the eigenvalues of C .

X
The eigenvalues of C are the solutions

X
equation :-

to the matrix

(15)

where A represents the eigenvalues.

Firstly, the characteristic equation :-

=r O (16)

is solved for the eigenvalues A . I is the unit matrix. The

91

eigenvalues are then arranged in descending order of magnitude
and substituted into — X X ^ ̂ - Ci to solve for the
eigenvectors.

One of the basic concepts underlying the Hotelling transform
is that rows of [A] point in the direction of maximum variance of
the data as shown in figure 6.3. . The transform is reversible
and does decorrelate the samples. It packs the maximum amount of
variance into the first n coefficients, and the quantising
process can discard the higher order coefficients to obtain a
data compression.

In summary, the operations required to implement the
transform are :-

(i) Means of vectors
(ii) Deriving covariance matrices as illustrated by equation

(5)
(iii)Solution of equations such as (16)
In these contexts the VSP does not offer any advantages over

standard microprocessors and its lack of conditional jump and
branch instructions would demand interactive reliance on the
host. Useful functions which would improve the applicability of
the VSP are DIVIDE,SUBTRACT, and CONDITIONAL JUMP.

Although this transform is optimal the present development
state of the VSP does not allow it to be a useful tool.

6.3.2 The Fast Fourier Transform
[6]

Boyle and Thomas correctly observe that Fourier theory
plays an important part in image processing. This is also true

[7]
of signal processing and Lynn starts by analysing repetitive

92

waveforms in terms of the Fourier series and then extends the
principle to cover the non-repetitive waveform case.

In general the Fourier transform allows a signal that is a
function of time to be represented in the frequency domain.

For the purposes of this research only sampled data signals
will be considered. Such signals are modelled as a series of
weighted Dirac functions :-

f(t)= -f- jc:.̂ . - T ^ -+ JC^. <§'(6-a-r) . .

The Fourier Transform of this function is :-
-jwt -]2wt

G(jw)=x +x .e +x .e
0 1 2

This transform of a sampled data signal is generally known
as the Discrete Fourier Transform (DFT).

As opposed to the Hotelling transform, which has to be
calculated for each data set, the Fourier Transform is fixed in
form whilst its performance is nearly as good. For a detailed

[8]quantitative comparison see Pearl
Specifically, the DFT is given by the expression :-

N - I KfV

X ̂ ^ • ' - ' r \ ^ I

n =. o
where X(n) is a signal sample value

X(k) are frequency domain values
-j2(Pi)/N

W =e
N

2
Direct computation requires N complex additions, which can

produce a large overhead.
The basic idea behind the fast fourier transform is that the

95

A - B W , /

Figure 6.4

W| ̂= cos(2r{^) - j sin(2;rj ̂)

Figure 6=5

94

summation over N samples can equally well be achieved by a
combination of summations over N/2 samples. In the case where N
is a power of two, the sample grouping principle can be applied
repeatedly , culminating in a final summation of only two
values. [10]

Hutton discusses an algorithm to accomplish the basic
operation needed. This algorithm is called the Radix-2 DIT
(Decimation in time). The technique breaks down the DFT into
two smaller transforms, thence into two smaller transforms and so on.

Eventually, the DFT is broken down into a number of two
point transforms. A two point transform is known as a BUTTERFLY.
The origin of the name derived from the configuration of the
signal flow diagram which may be used to describe it , as shown
in figure 6.4.

The operation accepts 2 complex words, A and B and delivers
[11]two transformed words. Taylor describes the operation

in a more detailed way as shown in figure 6.5.
Figure 6.5 indicates that any system attempting FFT action

will involve a complex multiplication and two complex additions.
The complex multiply may be achieved by four real multiplies and
two real additions. Complex addition can be provided by two real
additions.

This leads to a total number of computations required to
implement the butterfly of :-

4 multiplications and 6 additions [10]
Hutton derives the total number of butterflies required

to execute an N point transform as :-
N/2(log N)

2
95

■ 10) XIO)

■ (31 XII)

■ U)

■ I I)

■ Q)

■ IB) X(A)

XC7)

W O (2-fOX)fT BFT) * # TK I XXXJIWHJHCI

(a)

■ (0)

■ 13)

■ (A)

■ (%)

■ 13)

■ (7) ■ '

(0) X* 10)

(3)

(I) X* U)

trr
X* (3)

(b)
Figure 6.6

(c)

(d)

M (0) X(0)

X(l)

X(3)

K(l) X(4)

H(3} X(6)

X(7) XC7)

96

Thus a 1024 point operation is achieved by 5120 butterflies,
and the computational advantage increases with N.

The detailed algorithm must be analysed in order to detect
any special computational requirements.

[12]
The Sande-Tukey factorisation explains the necessary

steps.
It should be noted that an 8 point FFT is achieved by two 4

point DFT followed by 4 butterflies. The 4 point DFTs can be
decomposed so that a single 4 point DFT may be realised as two 2
point DFTs or butterflies, as shown in figure 6.6 (b),(c).

The full decomposition into butterflies is shown in figure
6.6 (d) .

If the butterflies are executed in 3 passes it should be
noted that the bit separation of the input is 1 for the first
pass and 4 for the last pass. These are important parameters and
will be denoted to comply with the Vector Signal Processor
assembly language field names "FPS", and "LPS" (the first and
last pass separations).

Sande-Tukey factorisation proceeds by treating the time
samples as two groups, odd and even indexed. It is noticeable
that the results are subject to a bit reversed re-ordering of the
original time samples.

x(o;
x(4
x(2
x(6
x(l
x(5
x(3
X(7:

97

This means that the data must be loaded in the re-ordered
way before the FFT is performed. The output is then correctly
ordered.

The VSP uses an RV (reverse data field) with its LD (load)
array instruction. The instruction sequence is :-

LD RV=1 load reverse ordered data
FFT
ST RV=0 store normally ordered

[9]An alternative algorithm, the Cooley-Tukey form has the same
"addition and subtraction before or after multiplication by a
complex weighting" structure. The index groupings of the
Cooley-Tukey technique mean that input in normal order results in
a bit reversal output. Thus for the VSP the instruction sequence
in this case is :-

LD RV=0
FFT
ST RV=1
A VSP program for an n point FFT is in Appendix B.

6.3.3 Architectural Factors
The internal RAM capacity of the Zoran VSP co-processor is

128x38 bit complex words. The most significant 19 bits are
allocated to the real component. Only 17 bits are used for
storage and two bits are guard bits coping with temporary
overflows. 16 bits of the word are accessible. From the users
point of view the memory is effectively 128x32.

The Zoran VSP achieves concurrent action with separate
execution and input/output units. This is a common feature in

98

[13]
peripheral vector processors (Karplus), but for it to be an
advantage it is necessary to be able to partition the RAM. In
this case the RAM can be partitioned into 2x64 locations. This
contributes a 13% speed advantage for small FFTs.

A number of processors optimised for signal processing
support both fixed point as well as block floating point
operations. When using fixed point operation the ALU results are
scaled by two at the end of each pass. Block floating point
results are only scaled by two if an overflow has occurred.

6.3.4 Two Dimensional Fast Fourier Transform
[1]Gonzalez and Wintz claim two main advantages for the two

dimensional transform . The first advantage is concerned with
interpretation, in that the Fourier spectra are often usefully
displayed as an intensity function.

Many image spectra have a dramatic amplitude reduction as a
function of frequency, and the usual processing procedure is to
display the function modified by a Logarithmic operation, e.g.

D(u,v)=log[l+|F(u,v)|]

A further adjustment is often made to the centre of the
display. The properties of conjugate symmetry and periodicity
then give a characteristic display.

The second advantage is best explained by considering the
coding performance for a transform encoder.

99

t :
/1\

Figure 6.7

Adjacent pixels a and b are separated
this subpicture shape strategy

-UQO

Performance depends on :-
1) The transformation
2) The quantisation strategy
3) The sub-picture size and
4) The sub-picture shape
A one dimensional transform tends to be implemented with a

concatenation strategy, in which an entity having adjacent pixels
in a two dimensional sense has then "separated" as shown in
figure 6.7, in order to form a long single dimensional array.

As an alternative, the two dimensional method maintains the
adjacency. According to Gonzalez and Wintz Transforming an nxn
array yields better performance with an advantage of the order of
0.2 bits per pixel when using the same quantiser and transfer
coding scheme.

6.3.5 Two dimensional FFT implementation
The FFT has a characteristic "separability" property which

allows a specific and particular advantage. This is that the two
dimensional transform, or its inverse can be achieved in two
steps.

1) Application of the 1-D transform
2) A further application of the 1-D transform
If the discrete Fourier transform pair are expressed as

follows, the method becomes clear.

^ . . r -1

mi

o

CO
LU

l i

o

œ
Cû
QJL_
en

o rH

102

In (2), each value of x inside the brackets is a 1-D
transform with frequency values v=0,l,2,3,................N-1.

The function F(x,v) is inferred to mean that it can be
derived by taking the 1-D transform along the x or row axis and
then multiplying by N.

The final result F(u,v) is then obtained by taking the 1-D
transform along the columns of F(x,v) as expressed by (1). The

[14
computational sequence is found in Zoran , and figure 6.8 gives
a diagrammatic illustration.

6.3.6 FFT Instruction Parameters
In order to execute the algorithm in figure 6.8 it is first

necessary to consider the bit order problems associated with
Sande-Tukey and Cooley-Tukey options and make an appropriate
option.

An assumption of an 8x8 sub-image will be made, and the
first operation requires the loading of VSP internal RAM. The
Load instruction gives an opportunity to manipulate the order of
the data.

LD NMPT:64,MDF:2,ZR:1,RV:3,MBS:8,MSS:8,MBA:SUB-PICTURE;

This loads 64 points, and RV:3 results in data of size MBS
being accessed in bit reversed order whilst blocks are accessed
in normal order. Making this decision implies a bit reversed
start condition for the FFT and this in turn has fixed the option
as Sande-Tukey.

103

other terms in the fields of the instruction are defined as
follows :-

MDF:2 - memory data format- sequential data in external
memory is loaded into the REAL part of internal
memory.

The normal expectation is that image data will be all real
i.e. grey scale for pixels and all values will be non-negative.

MBA - The address of the sub-picture in external RAM
MSS - Memory step size8
MBS - Memory block size ... 8
These last two parameters load all 8 pixel values in an 8

word block.
The next step in the algorithm is to calculate the FFT of

the rows, leading to the instruction :-

FFT NMBT:64,R:1,FSIZ; 8,FPS: 1,LPS: 4 ;

R:1 selects the Sande-Tukey option, NMBT:64 determines that
64 butterflies are to be performed per pass.

FSIZ:8, is the size of the FFT. Making this parameter less
than the NMBT allows multiple SIMULTANEOUS FFT's to be performed
in this case.

8 simultaneous row FFT's are performed to complete the row
FFT operation. The result of this method is to produce normally
ordered data at this point.

The difficulty with the columnar FFT's is that the

104

^0 >'0
--

>'1 — ^2 >̂ 2 etc

Figure 6.9

1Q5

individual elements of each column are spaced at 8 bit intervals.
Furthermore, the concept of these elements as an array means
that each column array is interleaved,as shown in figure 6.9.The
flexibility in defining the instruction parameters means that
this is manageable.The interleaved data demands just 3 passes of
a 64 point FFT to achieve the equivalent of the necessary three
passes of an eight point FFT.

The key instruction field values are :-

FSIZ: 64,FPS: 32,LPS: 8 ;
yielding an instruction as follows :-
FFT NMBT: 64,R:0,FSIZ: 64,FPS: 32,LPS: 8 ;

Note that starting with normally ordered data requires the
use of the Cooley-Tukey algorithm. FSIZ:64 indicates the size of
the FFT, R:0 selects Cooley-Tukey.

The resulting prescribed action is illustrated by figure
6.10.

After the third pass, elements of the array separated by 8
bits are subjected to the butterfly action. The parameter LPS:8;
stops the action at this point.

After this process the results are grouped in sequential
order of the interleaved vector elements. The original
organisation is restored by th einstruction :-

ST NMPT: 64,MDF: 3,RV: 2,MBS : 8,MSS : 8,MBA: SUBPICTURE ;
MDF:3 writes real and imaginary internal RAM locations to

sequential external RAM.

106

x(0) , .

Figure 6.10

x(l) 4 \ /
y / X (8)

x(32) / \ >C

' x(16 ..
*./y w
.

x(G4)

Third PassFirst Pass Secondpass

107

RV:2 Reverses internal bits within blocks of size MBS,
whilst preserving the order of the blocks.

Larger FFT's than 8x8 e.g. 16x16 cannot be achieved by a
single FFT instruction. Special techniques are available if
necessary.

6.3.7 The Fast Cosine Transform
[1]Gonzalez and Wintz show that the performance of the

Hotelling Transform is approached by the Cosine Transform when
the original data is strongly correlated as is usually the case
with image data.

The Vector Signal Processor is designed for array operations
and for the Fast Fourier Transform, but the decision to use the
Cosine Transform prompted the investigation into which of several
fast discrete options which proceed via the FFT are most
appropriate.

(14)
Alaul Hague proposes a 2-D algorithm working directly on

2-D data sets. The method involves the partitioning of matrices
and the subsequent regrouping of submatrices. For large arrays
the computational and floating point overheads are great.

(15)
Ghanbari and Pearson suggest a Fast Cosine

Transform (FCT) algorithm based on Hadamard sparse matrices, the
bonus being that coefficients assume only 1,0,-1 states, allowing
relatively simple hardware implementations. Since the VSP is
quite happy with floating point operations this is an unnecessary
limitation.

108

CD

O)L_3l
cn

□ p H

Li_

'ro 5.Ô-

■o

f l< 1o ’co1<S
II

109

(16) (17)
Byeong Gi Lee and Makhoul describe FCT

implementations based on the Fast Fourier Transform (FFT). Both
of these methods are used in a procedure which re-orders the
input data.

The development choice was Makhouls algorithm, which is
defined by figure 6.11.

If the input data sequence is x(n), then the re-ordered data
v(n) is derived as follows :-

Y(n) : =

X (rll)

x(2II - 2n - 1)

M - 1

2 J

W f
< n > !! - \

Where ^ J indicates " the integer part of". This means
that the re-ordered sequence is obtained by taking the even
points in x(n) in order, followed by the odd points in reverse
order. The method then calls for the DFT of v(n) to yield v(k).
This may be executed as an FFT. The final step is to multiply
the array v(k) by

6.3.8. VSP implementation of the FCT
Assuming a normally ordered array of samples of size N

residing at memory base address (MBA), MBA:SUBPICTURE, the first
task is to load the array into the internal memory of the VSP
system - even points first.

LD NMPT:N/2,MBS :1,MSS : 2,RV: 0,MBA:SUBPICTURE+1;
This instruction loads half the number of points selecting

every other point beginning with point 2, normal order. Next the
odd points must be loaded in reverse address order. The RV field

110

is capable of prescribing bit reverse operations on addresses or
data, but what is required here is a re-ordering which can be
achieved by loading in normal order, storing backward, and then
loading again in normal order. The bit reversal operations are
provided for certain FFT operations and are not appropriate to
Makhouls algorithm. The instruction sequence needed is :-

LD NMPT:N/2,MBS :1,MSS : 2,RV: 0,MBA: SUBPICTURE ;
STB NMPT:N/2,MBS :N/2,MSS :N/2,MBAB:SCRATCH+N/2;
LD NMPT:N/2,MBS :N/2,MSS :N/2,MBA: SCRATCH;
The STB instruction stores data arrays whilst decrementing

the memory base address. MBAB defines the base address when
storing backward. The results are that data is loaded into VSP
memory as follows:x(2),x(4),x(6),..x(n/2),..,x(7),x(5),x(3),x(l).

It is necessary to have precalculated 2exp(-j k/2N) for
0<=k<=(N/2) . This task is best done by the VSP and to
this end the instruction set provides a special instruction.

The DEMO instruction multiplies a complex vector in internal
memory by a series of complex coefficients generated from a look
up table which contains 256 Cosine values ranging from 0 to 90
degrees. After multiplying each element of the specified Cosine
vector with corresponding array in internal RAM, the products are
placed in the internal RAM also.

There are a number of microword control fields unique to the
DEMO instruction. These are :-

RBA - ROM base address
This parameter defines the starting angle of the Cosine

vector, and is set to lOx the value in degrees, i.e. to start at

111

90 degrees RBA=900. The internal look up table contains 1024
discrete values and this makes only some values for RBA legal.
The rule is :-

If "i" is the angle, 1*3600/1024, where 0<=i<1024

RDA - ROM decrement address.
This address is used to define the incremental angles for

successive Cosine coefficients. As with RBA the parameter is
specified as lOx the required value in degrees. Legal values
belong to the set ;

(i+l)*1800/512, 0<=i<=511.

VSIZ - Vector size
Specifies the number of samples beginning with RBA to be

addressed from the internal look up table. After this value the
look up table address reverts to the RBA value. Legal values are
4,8,16,32,128 points.

The sequence of instructions required is as follows :-
FFT
DEMO (multiply by 2exp(-j k/2N)
ST (leave result back in external memory)
A full program listing appears in Appendix B.

The inverse FCT developed by Makhoul requires that the input
data be first complex conjugated,rotated by the MODLT instruction
and then inverse FFTed. The MODLT instruction is exactly
analogous to the DEMO instruction except that the frequency is
translated up in frequency instead of down. Complex conjugation

112

is specifically provided by the CMCN VSP instruction. The CMCN
is not required for the forward transform and so the inverse
transform takes about 10% longer to execute.

6.4 Transfer Coding

A spatial domain array and its transformation by the FCT are
shown in figure 6.12 and 6.13.

Merely transforming into the frequency domain does not
generate a compression of itself. As can be seen by figure 6.13
the transformation has produced strong compression potential with
all the high valued coefficients bunched together followed by a
long run of similarly valued ones. This long run consists of
zero or near zero valued coefficients which may be allocated
zero.

These contribute very little and may be ignored or
compressed because of their redundancy. Zero valuing small but
non-zero coefficients will create some small distortion when the
data is reconstituted. The amount of distortion acceptable for a
given system will determine what coefficients must be considered
significant, and which may be zeroed. The allocation of bits to
coefficients either zonally, i.e. only allocating significant
values to a particular portion of the frequency spectrum

in this case equivalently low pass filtering, or by threshold
i.e. zeroing all values below a given amplitude, is a function of
quantising.

Whichever quantising equivalent scheme is chosen, and the
effects of the threshold type are illustrated in figure 6.14,the

113

CN

0)0) ü) n rf n CD

en
o rH

L l_

(D CD 4J 01
(0 ri

LCD (D (0 CN
Lin

CD
. înNCDcnnoifljoninniaiiû̂ in

ninNcnai^owoN^(D
01 r i

in'T'TinioNmmoiminmrimooi
(D (0 ^ U) (Û N a i P) n 0 1 n ^ M D O (\ l

ri 0|n ri [\|H ^

ûin
Z(D Li_

114

N-

Cû
(Uk_z)cn

a r H

Li_

115

result is that a Run length or Huffman scheme can provide
compression. Zonal quantising is particularly easily implemented
with the Vector Signal Processor as is demonstrated in Section
7.0 during a discussion on edge detection by filter.

The threshold quantising is more difficult and best achieved
by the host processor. This is because the VSP does not have
instructions capable of testing for value.

References
[1] Gonzalez,R.C,Wintz P.,"Digital Image Processing"
Addison Wesley,1987.
[2] Chatfield C., "Statistics for Technology", Chapman and
Hall, 1978.
[3] Hotelling H.,"Analysis of a complex of statistical variables
into principal components", J. Educ. Psychol, vol 24,pp417-441
and 498-520, 1933.
[4] Karhunen ,translation by Selin I.,"On linear methods in
Probability Theory",T-131 The RAND Corp, 1960.
[5] Loeve M.,"Fonctions aléatoires de seconde ordre". Processus
Stochastique et mouvement Brownien, Hermann, 1948.

[6] Boyle R.D. and Thomas R.C., "Computer Vision",Blackwell
Scientific, 1988.
[7] Lynn P.A., "An introduction to the analysis and processing
of signals" Methuen, 1983.
[8] Pearl J.,"On coding and filtering stationary signals by
discrete Fourier transforms",IEEE Trans.on Info Theory,pp229-232,
March 1973.

116

[9] Cooley, J.W.,Tukey,J.W.,"An algorithm for the machine
calculation of complex Fourier series",Math. of Comp., vol-
19,pp297-301,1965.
[10] Hutton S.,"Handling complex data in digital signal
processing". Electronic Product Design, pp61-65, November 1987.
[11] Taylor D.M.,"Single commands for complex DSP functions"
Electronic Product Design, pp31-42, November 1987.
[12] Zoran, Technical Notes TN 92040-0187, pp3-5

[13] Karplus W.J., "Architectural and software issues in the
design and application of peripheral array processors". Computer
vol 14. No.9 pp 11-17, 1985.
[14] Alaul Hague M.,"A two dimensional fast cosine transform",
IEEE Transactions on Acoustics, Speech, and Signal Processing.
Vol ASSP-33 No6. pp 1532-1539,1985.
[15] Ghanbari M.,D.E.Pearson,"Fast cosine transform
implementation for television signals", lEE Proc Vol 129 Pt F,
No.l, pp 59-68, 1982.
[16] Byeong Gi Lee, " FCT - a fast cosine transform", IEEE
Proc, pp 28A.3.1-28A.3.4, 1984.
[17] Makhoul J.," A fast cosine transform in one and two
dimensions", IEEE Transactions on Acoustics,Speech, and Signal
Processing, Vol ASSP-28, No.l, pp 27-34, 1980.

117

7.0 Quadtree encoding + Delta modulation

7.1 The application
Section 5.0 is concerned with textual characters and Section

6.0 with grey scale photographic pixel data. There is a
considerable class of images not covered by these sections,
namely line drawings.

Characteristically, line drawings are often sparse and
conseguently the potential for redundancy reduction and the
analysis and run length coding in Section 4.0 could be used.
Figure 4.1 contains line drawings of increasing sparseness,for
example.

The best results achieved are listed in arrays E and F which
show compression ratio maxima of the order of 30:1. The average
compression for a range of images was approximately 5:1.

An alternative scheme was devised and only when its
performance was quantified was the applicability of the VSP
considered. The origins of the alternative are well known but
its use in combination with a form of Delta modulation and the
detailed encoding are thought to be original.

7.2 Quadtree representation
The quadtree encoding principle was the subject of early

[1],[2],[3], [4]
work by Tanimoto and Chen and workers in this
area often return to it, for example Zhongquiang Li and

[5]Telfer
[6]

Gonzalez and Wintz use quadtrees under the general
heading of Region Orientated Segmentation, specifically defining

118

Figure 7.1

LKVÏL 4

NW SW SE

F 1 gu-TG 7 . 2

119

NW 0

-2

■94

SW SE

Figure 7.3

Figure 7.4

120

a region splitting and merging algorithm.
Clearly, quadtrees have been found to be useful in several

areas of image processing, but the interests of this research are
particularly data compression.

Consider figure 7.1. A quadtree may be constructed from a
square binary array of pixels which represent an image. A set of
connected black pixels in the image are referred to as a region.

n n
If it is assumed that an image is comprised of a 2 x2

binary array of pixels, then a quadtree encoding represents the
image by recursively sub-dividing it into four quadrants until no
further subdivision is necessary. This process is illustrated by
figure 7.2 which is the pyramid form of representation that
spawned the name "quadtree".

7.2.1 Quadtree addressing scheme
Figure 7.3 shows a possible addressing scheme for quadtrees.

The major quadrants are number 1,2,3,4 corresponding to
the north-west,north-east,south-west,south-east quadrants of
the sub-picture. The redundancy reduction technique of only
recording the black pixels is used, but each node or pixel has
a unique key.

This key can be processed to show the level at which it was
formed and also the x,y position within the complete subpicture.
The list of keys is, by convention, given in order from the
origin.

As an example, the region shown in figure 7.4 is encoded as
follows ;-

121

Key 4000 refers to the whole south-east quadrant, 4400 to
the south-east quadrant of 4000, and so on.

Using this principle the region in question is encoded as :-
1212,1213,1214,1223,1232,1233,1234,1240,1320,1330,1340,1400,2300
3121,3122,3142,3144,3220,3232,3233,3234,3240,3420,4000

O's are used to fill all undefined points.

7.3 Delta Modulation
The addressing scheme above does not produce any worthwhile

data compression, for instance figure 7.1 in its raw data state
comprises of 16X16 bit words. The encoding sequence above calls
for 24 words of at least 13 bits resulting in negative
compression in this case. If there were far fewer black pixels
to define a small compression could be achieved. On average the
overall compression for a practical picture is, as stated, hardly
worthwhile.

To obtain data compression a significant saving in word size
is necessary and to achieve this Delta modulation was applied,
using the rule that the prediction would be the same as the
previous sample. This is justified by the fact that the encoding
sequence exhibits a "locality of reference", that is samples are
very close in value to the one which preceded them.

In this way the north-west quadrant of the example
previously encoded :-
1212,1213,1223,1232,1233,1234,1240,1320,1330,1340,1400
becomes :-
1212,+l,+10,+9,+l,+l,+6,+80,+10,+10,+60

122

This has not reduced the number of elements representing the
region, but it has allowed 8 bit words to be used in each case
with the exception of the opening sample. This problem was
tackled by utilising a "never used" digit e.g. 5. This number
was chosen arbitrarily from the range of digits 5 to 9.

Thus the opening element 1212 becomes a two part entity :-
51,+212 and the full sequence for the example region is :-

51,212,1,10,9,1,1,6,80,10,10,60
The code 5 means "first digit of literal starting value

for a quadrant follows". The second word, in this case 212 could
have a maximum value of 444. To accommodate this within 8 bits
an alternative starting code 8 is used so that 4444 becomes
84,+244. Code 8 means the same as code 5 except that 200 must
be added to the following word.

The result of this scheme is that the original 16X16
subpicture is signalled or stored as 28X8 bit words. This
represents a small compression, 1.14:1.

The notion of additional "special codes" was extended to
include :-

60 - meaning new sub-picture starts
70 - meaning delta modulation sequence repeats
66 - meaning complete sub-picture blank or devoid of I's

Using the full encoding options figure 7.5 would be encoded
as 60,54 and figure 7.6 which has a single line one pixel wide
horizontally across the sub-picture would produce the sequence
:-60,51,131,1,9,1,89,1,9,1
52,70

123

îgure 7.5

4000

+60, +54

îgure 7.6

+60 ,+51 , + 131 , + l,+9, + l ,+89 , + l ,+9
+52,+70.

keyl
+60
+5X
+70

start
quadrant (X)
repeat sequence

124

A total of 12 bytes. The sub-pictures being used are 16x16,
thus the sub-picture represented is equivalent to 32x8 bit words
and a compression of 2.67 is achieved.

The maximum compression possible will occur if a sub-picture
is completely blank, as might be expected. In this case it is
necessary to signal "new sub-picture", i.e. prefix 6, but it also
necessary to signal "all blank". The special code word suggested
is 66.

For this circumstance the compression ratio will be 32:1.
When compared with the run length methods described in Section
4.0 this result appears surprisingly good. The derivation of the
scheme is purely theoretical and no implementation was done. The
theoretical performance cannot therefore be confirmed.

The scheme offers two possible advantages not easily
obtained from Huffman style operation.

These are :-
(1) That it provides a high level view of spatial entities

in images.

(2) That it allows spatial entities to be analysed.

Many line graphics images contain a large proportion of
vertical or horizontal lines. The "repeat" delta modulation
sequence commands are applicable when lines cross any major
quadrants. Figure 7.6 shows an example of this.

The effects of errors on run length coding are to corrupt a
single line of pixels and in READ coding the error would

[8]propagate throughout the drawing as described by Fuchs

125

Errors in the quadtree system will only corrupt a localised
2-dimensional 16x16 block.
7.4 VSP implementation

The array instructions provided by the VSP are not
particularly applicable to the encoding process which is more
suited to bit operations available with a standard
microprocessor. Alternatively, the bit operations within the C
high level language are ideal. This scheme was not proceeded
with past the conceptual stage because of the inapplicability to
the VSP.

References

[1] Tanimoto,S.L., "A pyramid model for binary picture
complexity", Proc.IEEE Comp.Soc. Conf on Pattern
Recognition, pp25-27,1977.
[2] Tanimoto,S.L., "Image transmission with Gross information
first". Computer Graphics and Image Processing No.9,pp72-
76,1979.
[3] Tanimoto,S.L., "A hierarchical data structure for picture
processing". Comp. Graphics and Image Processing, voll4. No.2,
PP104-119 ,1975.
[4] Chen C.H.,"Pattern recognition and artificial intelligence"
Academic Press pp452-471,1982.
[5] Zhongqiang Li,Telfer,D., "Primitive quadtree and type code
quadtree approaches for the representation of binary regions",
lEE digest no.1989/53,pp3/l-3/7,1989.
[6] Gonzalez,R.C.,Wintz,P., "Digital image processing", Addison
Wesley,1987.

126

[7] Fuchs,P.M.,"Compressing data conserves memory in bit mapped
displays",EDN,ppl73-183,October 1986.

127

8.0 Image Manipulation using the Vector Signal Processor

8.1 Introduction
Previous sections have assumed that entities can be isolated

from the background in graphics images. In Section 5.0 it was
suggested that a chain coding scheme could be used for this
purpose. The algorithm for tracing an entity boundary by chain
code is rehearsed in order to determine the compatibility of the
process with the VSP. If objects have been isolated they may be
operated on for compression purposes as in Section 5.0, but it is
a short step to considering other manipulative operations such as
might be appropriate to desk top publishing. Once again it is
compatibility with the VSP which is a prime consideration and
suitable ideas are developed.
8.2 Object representation

This research is concerned with the low level operations
performed by specific hardware. In this context the
representation of objects encompasses detecting their outline
once they have been segmented out of the overall image.

When the outline has been detected it will need to be
described in a manner suitable for operating on the object in
order to manipulate it.

8.2.1 Edge Detection
[1]Boyle and Thomas explain that although primitive edge

detection is much less ambitious than template matching as
discussed in Section 5.0, there is, nevertheless a similarity
between the ideas.

128

Inrensirv /

Light

Dark

Distance s

dl
n

Figure 8.1

0 1

-1 0

1 1 0
0 -I

Figure 8.2

-1 0 1 I
1 ’ 1 - 1

! . : 1 0 j : 1 1 0 1 0
° 1

•1 ! 0 j I i ! -1 j -2 1 -1 j1 ; : ; » 1 1

Figure 8.3

129

Typically, primitive edge detection consists of passing a
template or templates across the image in an attempt to detect
sharp changes of intensity. When found these are good evidence
of an edge or boundary of an object.

What is required is to examine the rate of change between
adjacent pixels. Figure 8.1 shows first order detection.

[2] [3]Special templates have been developed by Roberts and Sobel
which enable the gradient magnitude at any point to be
calculated. These templates are shown in figure 8.2 and 8.3. It
should be noted that these templates, often called "edge
operators", are provided in pairs with sensitivities of each
adjusted to give a measure of intensity change in two orthogonal
directions. Generally, two numbers are generated and then used
to calculate the gradient magnitude. The process for the Roberts
case is shown below :-

i j) - f C " - 0

J j - ^ ') _L/ a, . a . X

The Vector Signal Processor is appropriate for these
kinds of operation, being particularly fast at passing the
template over the image and producing a new array upon which the
numerical processes could be applied.

8.2.2 Filtering
The basic formulation of edge detectors calls for localised

derivative operators. The template methods approximate this by
differences. One of the premises underlying the use of the
Vector Signal Processor is that the image pels are treated as a

13Q

f i l l

C
10_
start

20

creates a brick wall response
low pass, nign pass or oanopass
oepenoent on suDset filled

determine relationship
between array elements

ana frequency

Zero fill array Dy array
load constant-0 for a subset

of elements

c stop

Figure 8.-1 G A King
Kinora vi 3 |

fill VERSICfJ 3119-MaY-90 12: I

Figure 8.4

151

v(t)

d a (t)/dt

F I G U R E 8 . 5

F I G U R E 8 . 6

13 2

signal. The classic signal differentiator is the high pass
filter.

Edges and other high rate discontinuities are associated
with the high frequency components in the signal. Edge detection
may be achieved by attenuating the low frequency components
whilst retaining the high frequency components.

The ideal highpass filter has a transfer function valued at
zero below a cut-off frequency. The ideal "brick wall"
characteristic cannot be realised physically, but it is a simple
matter to create these within a computer.

The basic algorithm is shown in figure 8.4 . The action is
described by considering figure 8.5 a sample line traversing an
image object. The result of ideal filtering is shown in figure
8 .6 .

In common with the templating methods two passes would be
necessary to identify vertical and horizontal edges. The
vertical edges are detected by a 1-D transform. The method
described in Section 6.0 illustrated by figure 6.9 shows the
interleaved column data upon which a further FFT is performed in
order to detect horizontal edges.

Underlying the differentiated image is an implicit co
ordinate system. What is then needed is a means of defining the
edge demarcating the object boundary.

8.3 Chain Codes
The basic idea behind the chain code is that from a known

starting point the direction followed by an edge is indicated as
a straight line segment pointing in any of eight possible

153

Figure 8.8

Y co-ordînates

1 3 4 5 6 7

7 t

X co-ordînates

X's have underlying

Figure 8.7
/î\

5

\l/

134

directions. The directions are shown in figure 8.7.
The algorithm required to trace the boundary starts by first

finding, by means of an array search, the upper left neighbour of
a non-zero mark. This is illustrated by pixel grid reference
2,2 in figure 8.8. Once having found this starting point,
the algorithm continues with the following steps ;-
1) Call the starting point L and allocate xy co-ordinates

pres
X =2 Y =2 s=start k=kth chain (since
sk sk

each object defined will have its own chain code).

2) Identify the next link candidate by advancing one square in
each of the directions in the following order 1,2,3,4,5,6,7,8 as
defined in figure 8.7.

3) For each candidate check RIGHT NEIGHBOUR for "1", if not
advance to next in order. If so, L =L where

pres cand
cand=candidate.

4) Make a note of the series of co-ordinates.

To check the squares in the correct order the following
sequence is necessary :-
(i) X =X

sk sk+1
Y =Y
sk sk

(ii) X =X
sk sk+1

Y =Y
sk sk+1

(iii)X =X
sk sk

135

Y =Y
sk sk+1

(iv) X =X
sk sk-1

Y =Y
sk sk+1

(V) X =X
sk sk-l

Y =Y
sk sk

(vi) X =X
sk sk-1

Y =Y
sk sk-1

(vii)X =X
sk sk

Y =Y
sk sk-1

(viii)X =X
sk sk+1

Y =Y
sk sk-1

In the case of figure 8.8, the series of xy co-ordinates
describing the boundary are :-

start
X Y
sk sk

2 2
3 2
4 2
5 2
6 3
5 4
5 5
4 6
3 7
2 6
2 5
2 4
2 3
2 2 return to start point

136

These positions derived from the directional sequence
1,1,1,2,4,3,4,4,6,7,7,7 for the object of figure 8.8.

It is purely a conceptual matter to regard the absolute
values for the co-ordinates to be in the all positive quadrant of
a real+imaginary system. i.e. the references are 2+j2, 3+j2,
4+j2, 5+j2 etc. This a+jb form will be useful for operations
involving Fourier Descriptors. The chain code representation was

[4]first proposed by Freeman

8.3.1 VSP Chain code implementation
The VSP is not well suited to this task which is easily

implemented with the host processor in either high level language
or assembler.

8.4 Fourier Descriptors
[5]

Gonzalez and Wintz discuss taking the Fourier Transform
of the sequence of complex numbers representing an object
boundary. They correctly refer to the result as a Fourier
Descriptor and point out that because the DFT/FFT is a reversible
linear transformation, no information is lost.

Contributions to the principles may be found in Persoon and[6]Fu
Certain operations can be carried out on the object by

operating on its frequency domain representation. These
operations are :-
1) Scaling
2) Rotation

137

O l f l r i - r i O O O O• ID in o • •00
+
10
o

L (\l N .
0 N I_!__1
4J E
U 0 H
(D N
> 1

1-1 0 •P •p
X 0
(D + ,------ p
H + U iH r lO ’riQ TliHTH <p
d 0 0 N ^ N «P
E in 11 in N N N 0 [\l u
0 • 1 0 ^ 0 Ti 0 •rl

«1 U • • • .
L 11 1- 0 0 0 0 0 0 I
0 m h
V N + + + + I 1
a in ri d
■rl ra X N ' î N 0 h Ÿ h
L 0 ION N h 0 01
u 1/1 Û •f-l 0 Ti 0 n 0 ^
Ü1 p 1-1 0 • • • • • .
QI c (Ü 0 0 0 0 0 0 0
G ■ri + 1 1 1 1

0 m + '------ ----------1
L a •ri 0

0 1
-rl Q) •p 1
L C u 11 s-
] •H Q)
0 0
l l 0 Û 0 N

Û 0 M

O in -ri -ri 0 -rl -rl
• in in m n
0 o
+
in
0

0 0 0ri ri ri
0 0 01• 01rl 0 01
1 1 h
0 1ri
1 0

0 0 T4ri ^ 10
m 0 ri
mN 0 0

136

3) Change of position
Figure 8.9 demonstrates the generation of a Fourier

Descriptor for an object and its subsequent reconstitution. A
simple rectangle is described in terms of its four corner
positions expressed using a+jb form. The corner references form
the elements of array z. The array f is obtained by taking the
complex FFT of z. Array q is the reconstituted z obtained by
inverse complex FFT of array f.

To scale an object it is only necessary to multiply its FFT
by a factor. This is simply an array multiply by a real number.
The process is shown in figure 8.10. The same procedure as that
used in figure 8.9 is repeated but the FFT, once obtained as
array f is multiplied by 8 in this case. After the complex IFFT
is performed the original rectangle has been scaled up by 8, as
can be seen by comparing the first four elements of arrays z and

9"
Rotation is achieved by array multiplying by an exponent as

illustrated by figure 8.11 . Within Exp(jx), x is the angle of
rotation and is a constant for any particular calculation.
Although the rotated object appears distorted in figure 8.11,this
is not due to a discrepancy in the process but to a deficiency in
the laser printer scaling and resolution.

8.4.1 Fourier Descriptor manipulation with the VSP
Movement of the position of an object entails adding

constants to the real and complex parts of each reference point
on the boundary. Vector add, real and complex are standard
instructions. The task is performed in two steps.

139

O 0 - H f l O O O O • 0 0
o • •0 0
+
0

 0 ^
I
H

O ^ -ri H O M -ri -ri 7 T 0 0 0
C 0 ,N ri ri ri
0 N ------ 4 1 1 1
-p E 0 0 0

0) ü 0 H ^ ri ri ri
c (U Nri > 1 -n m m mH ■n 0 V 4- 0 m m
m X 0 S- • 0
u dJ y 4 <*- I------ ----------1 4> ri 0 •
m H + U -ri ri 0 -ri 0 ■ri ri ri 4- m

û 0 t N 0 m 4- 1 1
1 E 0 1 0 N N N 0 0 U 1

0 • 1 0 ri 0 ri 0 4- -ri 0 0
0) 0 • • • . ri ri (\J
L 1 4- 0 û 0 0 0 0 1 II 1 1 ri
0 (D N 0 0 1
+J N 4 4 4 4 1 1 ri ri 0
a 0) ri 4- cr ri
ri (D X N N 0 N ' Î N 0) 0
L 0 0 N N N 0 0 0 0 0
U n û 0 ri 0 ri0TT 0 • 0
DI -p 0 • • • • f 1 0 •
m c (D 0 0 0 0 0 0 0 0 1 ri
0 •ri 4 • 1 1 1 1 1 1

0 tQ 4-
L û •ri 0
m 0 1 1ri (U -M 1
L c U 1 4- (T
] -ri m
0 'U 0
II <u D Û N

û 0 N

00

O l D - H f i O O O O•in in 0 • •0 0
+
in
0 ^

I
N

L w lü .0 Nc ■P E
0 Ü 0 H
rl 0
4J > 1
m T1 0

X 0
0 0 4
Œ H ■f

Q 0
1 E in

0 • 1
in 0 ..
L 1
0 0 N
+J N
CL m ri
■rl 0 X N
L 0
U 0 Û ■n01 -p 0
(D c 0 0
□ •H 4

0 m ■f
L Û •ri 0
m 0
■rl 0 -p 1
L c u 1] •rt m
0 'l- 10IL 0 Û 0 NÛ 0 N

1 1 1 1
I
H-

0 "t I t I t I 0 ■rl f i t I^ in 10 (11 (11 ni
rl N rl rl rl•n 01 N 1 1 1

. . . 0 0 00) ’H 0] OJ rl rl rl01 4 4 4 01 in t
© 0 0Q 4- in t ^ 01 in ©

X N 011 •
I---------- m 4> M O rl n (11 1
- r l f l O T l O r l T l f l 4-N 01 N 'î N 10 4- (11 r i r i 1 1 1in N N Ninni u 101 ̂ 0 r H i n ^ 4- ■rl (11 (11 ©

rl rl rl
0 0 0 0 0 0 1 11 1 1 1

0 0 04 4 4 4 1 1 rl rl rl
4- tJ

^ N 01 N t N © © 01in N N M n n i 0) ^ ©
01 n 0 noi'? w o ©
0 0 0 0 0 0 W rl m

1 1

141

ADDR - Vector add real
ADDC - Vector add complex
Both of these have a CN field which, when set allow a

constant to be used. The constants address is specified in the
MBA field.

Scaling involves array multiplication by a constant. The
appropriate instruction is

MLTC - Vector multiply complex

Rotation can use the DEMO instruction used in section 6.0
during Fast Cosine Transform operations. The difference in this
case would be that the RBA field would indicate the starting (
and only) angle, whilst the RDA would specify a zero incremental
angle. In this way the same angle from the internal look up
table would multiply each of the array elements of boundary
points.

Further details of VSP instructions can be found in Appendix
C.
References
[1] Boyle,R.D.,Thomas,R.C.,"Computer Vision",Blackwell
Scientific,1988.
[2] Roberts,L.G.,"Machine perception of three dimensional
solids",Optical and electro-optical information
processing,Tippett (Ed), MIT Press, 1965
[3] Ballard,D.H.,Brown,C.M.,"Computer vision", Prentice
Hall,1982.

[4] Freeman,H.,"Computer processing of line

142

drawings",Comput.Surveys,vole,pp57-97,1974.
[5] Gonzalez,R.C.,Wintz,P.,"Digital Image Processing", Addison
Wesley,1987.
[6] Persoon,E.,Fu,K.S.,"Shape descrimination using Fourier
descriptors",IEEE Trans. Systems Man Cyb,vol SMC-7 No.2,ppl70-
179,1977.

145

9.0 An alternative classifier - The Neural Network

9.1 Introduction
This section is not an exhaustive review of neural net theory

or performance but is an investigation of how the VSP (Vector
Signal Processor) may find a role in substitution or simulation
of neural net actions. Part 9.2 is intended to identify the
basic parameters and principles, whilst 9.3 onward is a
speculative approach to the application of the VSP.

9.2 Basic concepts
[1]Clarkson provides the historical perspective of the

origin of the Neural network and its relationship to neurology.
The characteristic feature of Neural nets is that they are

composed of many non-linear elements operating in parallel. It
is recognised that human equivalent performance in pattern
recognition will require enormous distributed computing power and
Neural nets offer one technique by which the required capacity
may be achieved.

9.2.1 Structure and components
The nets are made up of computational elements or nodes

having several inputs and a single output. Each input carries a
weighting factor and the node produces a summation of the
weighted inputs. The node then passes the result through a
non-linearity involving an internal threshold. The arrangement
is illustrated by figure 9.1.

A large variety of interconnection schemes have been devised

144

Figure 9.1

inputs

uix3

x4

X output

Figure 9.2

Inputs
A B C D
0 0 0 0 0
1 0 0 1 1
1 1 0 -0 .5 0
1 1 1 1 1
0 0 1 1.5 1
1 0 1 2.5 1
0 1 1 0 0

145

but for the purposes of description figure 9.2 shows a simple two
layer network. Figure 9.3 provides an example set of weights and
a node with a threshold of 0.5, and a truth table of outputs.

The "intelligence" of the network is in the combined
interaction of the weighting factors and the summing values.

9.2.2 Operation
[2]

Lippman provides a taxonomy of six neural network
structures that can be used as classifiers. What was needed
in the context of this research is a net appropriate to the case
when exact binary representations are possible, as with black and
white pixels that have suffered from noise or other random
distortion as described in Section 5.0. For these reasons the

[3]
Hopfield type net was chosen as being most appropriate.

[2]
Lippman also provides a description of general neural net

classifier action.
"In the simplest type of net the inputs are provided in

parallel. The first stage computes matching scores and outputs
these in parallel over n lines. These are input to the second
stage which selects and enhances the strongest output . After
classification is complete only one output will show a
significant value. In this design each class must have a unique
output allocated to it. "

Of course, more sophistication is possible but it is clear
that the weights will be a unique set for each class. For use as
a classifier there are immediate similarities to the operation of
the matched filter classifier. The weights in the neural net
case are analogous to the configuration data (reverse impulse

146

response) applied to the matched filter.
Obviously there will be a need to arrive at the weights for

each pattern to be recognised. The process of arriving at these
is termed "training" the net.

The general training method known as the "backwards
[1]propagation" strategy is described by Clarkson as follows :-

" Initially, when a network is being trained all the
weighting factors are set to random values. A particular
weighting factor is selected and for a given set of input data
the actual output values are compared to what they are specified
to be for that set of inputs. The value of the weighting factor
is then adjusted to yield minimum error between actual and
specified output. The process is then repeated for each
weighting factor. Usually the networks stabilise at a
satisfactory solution."

Operation then proceeds as follows. The net is initialised
with the weights of the exemplar classes. The candidate pattern
is applied and the output is examined for class identity.

One of the more sophisticated options is the adaptive neural
network. In this case the classifier outputs are fed back to
adapt the weights. This is essentially the importation of the
learning or training process into the classifier. The result of
this strategy is that differences between the exemplars and the
actual applied data are adjusted for so that adaption will make a
correct response more likely for succeeding input patterns that
are similar to the current pattern.

147

9.2.3 The Hopfield Net
The variant used in this research has N nodes containing

hard limiting non-linearities and binary inputs and outputs
taking on the values -1,1. The output of each node is fed back
to all other nodes with a weighting factor denoted t , where

ijthe outputs are never fed back to the same node. The arrangement
is shown in figure 9.4.

First, weights are set using a recipe from exemplar patterns
from all classes. A candidate pattern is then forced onto the
output lines. The net then iterates or converges toward an
unchanging state. On reaching this state the output should be
the exemplar that the input pattern most resembles. There is a
link between this style of operation and associative memories.

[4]
The principles of associative memory are discussed by Willis

This study is not an exhaustive review of neural net theory
or performance but is an investigation of how the Vector Signal
Processor may find a role in substitution or simulation of neural
net actions. The foregoing background information is intended to
identify the basic parameters and principles.

9.3 Net simulation with the VSP
Traditionally neural nets have been modelled in computer

memory and first thoughts considered using the VSP in a similar
way but using the potentially very fast array operations for
enhancement.

The array approach means using three arrays for each net
node. An input array, a weighting array, and an output array.

Figure 9.5 shows the arrangement. The weighting and

148

OUTPUTS {Valid A fter Convergence)

N-1N-2

INPUTS (Applied At Time Zero)

Figure 9.4

149

Figure 9.5

WEIGHTING
ARRAY

OUTPUT ARRAY

INPUT

ACCUMULATE

LD MLTR STI
store internal registers
ACCUMULATOR ONLY

150

summation functionality is provided by array multiply and
accumulate features leading to a sequence :-

LD - Load input array
MULTR - Multiply real by weighting array
STI - Store internal register (accumulator)
The last instruction performs the summation storage into the

output array. One real problem is the non-linearity. No VSP
action could be devised to satisfy the requirement and the
thresholding or hard limiting tests would have to be performed by
the host processor.

Another daunting feature is the number of arrays that would
have to be worked with. A typical Hopfield net for eight
exemplars might involve 120 nodes, implying at least 360 arrays.

9.3.1 Matched filter models
[5]

This option is proposed by Selviah, Midwinter et al . A
new modelling formalism is proposed for the purpose of allowing a
more intuitive grasp of the internal actions of neural nets than
has been hitherto available.

The neural network is represented by an equivalent network
of matched filters which may be analysed by standard correlation
techniques.
9.3.2 Matched Filter Equivalence

A correlating matched filter implementation replaces the
weighted interconnection net with a network of matched filters.
The general arrangement is shown in figure 9.6.

The input filter array has each filter having an impulse
response of the signal complex conjugate associated with one of

151

the patterns being searched for.
The output of this set of filters is a series of correlation

functions with a variety of amplitudes for the main correlation
spike. The amplitudes are measures of the similarity between the
offered signal and the memorised (as time reversed impulse
responses) codes.

Only the central spike of the correlation function is
useful, as it will be used as a multiplier. The side lobes and
the noise will need to be removed by what Selviah et al call a
"noise gate".

The noise gate output of a weighted Dirac function for each
channel is applied to another array of matched filters. This
time the matched filters have an impulse response that is a NON
reversed version of the memorised signals. The result is that
from this second array will emerge the range of memorised
signals, but that which has the greatest similarity to that
applied will be largest in amplitude. In short, the output of
the first array is used to scale the output of the second.

Selviah et al provide proof that the action up to this point
is mathematically identical to the vector matrix multiplication
neural net. This proof is reproduced as figure 9.7.

Remembering that the binary input to neural nets is expected
to be bipolar e.g. +1,-1, and therefore the memorised signals are
expressed in this form, the action of the summation and
thresholding in figure 9.6 are evident.

The output codes of the second matched filter set are
summed. When several bipolar binary codes are added, if all

152

jAj jAi

— ** s j (T -t)

•sjd-i)
input
r(t)

noise
gate

A js j (t)

T^2 7*2
noise
gate

’ s ,(t)

Jl. - W

" S 3 (T -t) noise threshold
gate

"S3 (t)
output

noise
gate

feedback loop

Figure 9.6

output r '(t)

1 I1

- 1
in pu t r (t)

- I

Figure 9,7

153

the kth bits are of the same polarity then the sum code will have
the largest amplitude. Differing kth bits will have a reduced
sum amplitude.

The action of a hard threshold, response shown in figure
9.7, will be to suppress the similarities and enhance the
differences. This is because large outputs from the summation
unit are clamped to a maximum of 1 or -1 whilst outputs that are
less than 1,-1 are amplified up to 1,-1.

The overall effect of the summation and hard threshold is to
act as a feature extractor.

Adding a feedback path allows iteration of the process.
This feedback creates a system which iterates toward the
strongest memorised code. There are problems when a number of
correlations produce strong outputs. This may cause convergence

[5]
to an incorrect or spurious code. Selviah et al explain the
reason for this as being the strength of the non-linearity and
show that a threshold function having a lower rate of change
reduces incorrect convergence at the expense of speed.

9.4 Implementation with the Vector Signal Processor
It has been demonstrated in previous sections that the

Vector Signal Processor can be programmed to perform as a non
recursive Finite Impulse Response filter. The development of the
design proceeding via the impulse response to the recurrence
formula has again been demonstrated with the use of the FIR
instruction.

By these means it is possible to have the input signal
stored as an array, and each of the memorised impulse responses

154

stored as arrays. The Matched Filter program module may be
called for each filter action, either loading the impulse
response backward (LDB), for the time reversed cases or forward
(LD) for the non reversed second array of filters.

The filter outputs can be stored as a signal array set.
The noise gate and side lobe removal is achieved by

zero filling the time domain filter output arrays and is a simple
array store action.

The summation is catered for by a series of array add
instructions.

The only difficulty is the threshold action which involves a
test of individual array elements and replacement . This is not
a feature provided for within the VSP and would have to be
undertaken by the host processor.

References
[1] Clarkson,D., "Neural networks". Electronic Technology Vol 23
ppl50“152,September 1989.
[2] Lippman,R.P.,"An Introduction to Computing with Neural Nets"
IEEE ASSP Magazine pp4-22,April 1987.
[3] Hopfield,J.J., "Neural Networks and Physical Systems
with emergent collective computational abilities", Proc Nat
Acad. Sci, U.S.A. Vol 79, pp 2554-2558, April 1982.
[4] Willis,N., "Computer Architecture and Communications",
Paradigm, 1986.
[5] Selviah D.R., Midwinter J.E., Rivers A.W., Lung K.W. ,
"Correlating Matched Filter model for analysis and

155

optimisation of Neural Networks", lEE Proceedings Pt F, Vol 136,
No.3,ppl43-148,June 1989.

156

10.0 Error Control Coding

10.1 Underlying principles and issues
Error control coding theory has been built up over a thirty

year period and has been applied to telecommunications and to
applications involving computers. This study is concerned only
with ideas appropriate to computing. The uses to which error
control coding has been put in this field include designs for
memory which is error correcting (within certain bounds),
arithmetic processors, and data communication.

The subjects of data compression and error control coding
are interesting when studied together because of the opposite
effects they have on data size.

[1]Lynch points out that the function of data compression is
to remove natural redundancy, whilst error control coding makes
specific use of artificial redundancy.

It is legitimate to question the validity of an exercise
which on the one hand compresses data, and on the other expands
it. Supportive arguments may suggest that many applications rely
on significantly error free action and if that is the main
purpose then compression is a secondary affair which mollifies
to some extent the negative compression caused.

Another argument might be advanced in the case of an error
coding scheme which only partly offsets the gains of compression,
especially where errors would cause exaggerated distortion.

The use of error control coding in a given case would need
to be the subject of careful evaluation in terms of "cost-
benefit" analysis.

157

QJ
L
z)cn

o rH
Li_

I — I
in'TviniûNmnojc^innvicnocii
(ûm7iniohnjm-H(\jTiTîr\Qo(ii

H (\J rH 'H (11.

•ri •H
(Û • r i • r i (0 • r i•H 0) 'T 00 0) rl
n to 00 (D m

(\l • n • r i C\l • 0
(0 (0 • 0 • rl

in • C\l h m in m in
N 00 Ti rl w
ID + I •H

1
10

in m (D
m (\l n ID h h r\ CD 1

p) N N 0 0 CO
• 0 . 10 • •

00 • 0) 01
1 01 ri 1 m ri

in 1 1 1

01 n CVl 0
n m 01 c\i 01 m rl rl rl 01 01 01 0 0 0 rl
n rl rl rl rl rl 01 0 0) rl rl n rl n rl 0
m CD m CD cn OD • • 00 01 0 0 CD 0 •
• • • • N 01 cu • • • n

in CD cn 10 10 C\l 0) rl 01 01 rl 0 01 CU
10 CD 7 ID 10 h rl 01 rl 01 rl h 01 0) CM

158

It should also be borne in mind that some data compression
techniques have a "built in" error averaging action. Prominent
among these techniques is Transform coding.

The effect is clearly demonstrated in figure 10.1. A vector
v[16] is transformed by FFT into the frequency domain, and
denoted f[16]. Elements f and f are corrupted and after the

0 4
inverse transform vector h[16] displays evidence of the
distributed or averaged error.

A similar effect can be found in the use of Delta modulation
and it may be that the system has a tolerance for such errors
e.g. photographic data, making error control coding less crucial.

There are many other techniques which are seriously prone to
errors. A striking example is Two-dimensional Relative Address
Designate coding commonly used in high compression FAX.

[2]The nature of 2-D READ coding is discussed by Fuchs who
explains that the algorithm codes a scan line by relating to the
black/white transitions in the previous line. An error can
propagate through an entire document but the potential
compression is quoted as 50:1, with results showing a range
between 7:1 and that figure.

[3]
Bodson, Urban et al also identify the deficiency and

suggest that every n-lines the 2-D algorithm is suspended and a
1-D encodement such as Huffman is used. In this way an error
"striation" through the document is stopped.

Clearly, this scheme is a candidate for error control
coding.

159

10.2 Appropriate Error Control Methods
Included in the generic term "error control" are both error

detecting and error correcting schemes. Simple parity methods
tend to be error detecting, but to a poor level of efficiency and
will not be considered further.

The use of block codes, i.e. where the data is segmented
into blocks is relevent but the error correction capability
inherent to parity block check characters will also not be
considered because of the limitations imposed by being able to
consider only character orientated data.

To be appropriate to the hardware upon which this research
is rooted schemes must be amenable to the use of arrays, shift
registers and other signal processing tools. The Vector Signal
Processor is optimised for arrays and any algebraic requirements
can be met either by the VSP or by the host processor.

The choice is restricted to Linear Block Codes, preferably
cyclic. After a review of error trapping, majority logic, Hamming
and Golay coding/decoding, these options were rejected. The

[4][5]
selected method is Bose,Chaudery,Hocquenghem (BCH)

BCH codes appear to be the most extensive and powerful
option commensurate with the conditions defined above.

To correct t errors for a given artificial added redundancy,
(m-1) m

m (t<2), then n, the overall block size,=2 -1 and n-k=< mt.
Where k is the size of the information field of the block, as
examples consider a code where n,k=31,ll. With an overall block
size of 31 and an information field of 11 there are 20 parity

m
digits (mt). 2 =32 therefore m=5 and since mt=20, t=4.

160

A 31,11 code can correst 4 errors. Consider a code 63,45.
m

In this case 2 =64 and thus m=6. With mt=18, in integer terms
t=3. A 63,45 code corrects 3 errors.

BCH codes are decoded by using the technique of representing
code digits as coefficients of a polynomial and carrying out
algebraic operations on those polynomials. As a result, an error
location polynomial can be developed which pinpoints the
locations of the errors. BCH is a binary system and a sub-class
involving n-ary operations is referred to as Reed-Solomon code.

The details included have been derived from Bose and Ray-
[4][5] [6] [7]

Chaudery , Shu Lin and Rao and Fujiwara

10.3 Essential Background
It will be useful to describe terms and concepts generally

applicable to block codes.
10.3.1 Galois Fields

In many instances applications of algebraic thinking are
required to be implemented by digital computer. In this context
it is important that, whatever is done, the rules of ordinary
arithmetic must apply in order that algebraic techniques can be
used.

A Galois field defines the constraints in terms of number
symbols and operations within which this is true. For binary
work the alphabet 0 and 1 are defined along with the basic
arithmetic operations of modulo 2 addition and multiplication.
This set or field of elements is usually denoted GF(2).

n
Galois fields must have 2 symbols, where n is a positive

integer. An arithmetic with two symbols can be developed into

161

n [6]
one involving 2 and this is done by Shu Lin
eventually arriving at a definition of a "primitive" polynomial

10.3.2 Cyclic Codes
Cyclic codes are those where if an n-tuple
v=v ,v ,v V

0 1 2 n-1
is a code vector, then the n-tuple

V =v ,v ,..V ...V
n—i n—i+1 0 n—i—1

obtained by end around shift (one place right) is also a code
vector.

10.3.3 Polynomial representations
It is possible to treat each code vector as having a one to

one correspondence to a polynomial of degree n-1 or less.
.Shu Lin shows that with polynomial representation it is

possible to develop some important properties for a cyclic code
which make implementation of encoding and syndrome generation
easier. Also provided are a number of theorems and proofs.

Included is
In an n,k cyclic code there exists only one polynomial g(X)

of degree n-k.
2 n—k—1 n—k

g(X)=l+g X+g X + g X +X
1 2 n—k—1

Every code polynomial v(X) is a multiple of g(X) and every
polynomial of degree n-1 or less which is a multiple of g(X) must
be a code polynomial.

162

10.3.4 Generator Matrix
To generate each code word then a generator matrix G could

be used instead of a look up table. The code word is arrived at
by matrix multiplication e.g.

[v]=[m][G]
where v is an nXl column matrix and m is a IXk matrix, thus

G is an nXk matrix. This is best illustrated by example taken
[6]

from Shu Lin , who is concerned with linear block codes that
are systematic. A systematic code is one where the codeword has
two concatenated parts. The first part is the message word and
the second part is a group of redundant digits which are a parity
function of the message bits. Assume a message word 101. The
redundant bits, say three, might be defined as follows :-

bit 1 even parity bit for 1st and 3rd message bits
bit 2 even parity bit for 1st and 2nd message bits
bit 3 even parity bit for 2nd and 3rd message bits
This yields a redundant portion :- Oil and therefore a

complete code word of :- 101011
The code contains 3 message bits within a total of six and

would be described as a 6,3 code.
Consider an encoder segmenting messages into 3 bit blocks,

it then transforms each block into a code vector of 6 digits.
Message Code

000 000000
001 001101
010 010011
Oil 011110
100 100110
101 101011
110 110101
111 111000

163

3
Because k=3 there are 2 =8 possible distinct messages. Each is
transformed into a unique codeword. The list of 8 6-bit words
is a subspace of the total vector space of all 6-tuples. It is
possible to find a set of linearly independent 6-tuples such that
each 6-tuple is a linear combination of others. The whole code
can then be described by a matrix and a codeword can be found by
a linear combination of the rows of this "Generator" matrix.

Using the 6,3 code example above a generator matrix for it
is: -

vl 100110
G= v2 010011

V 001101
3

Element v corresponds to the message word 100, v
1 2

corresponds to message word 010 and v corresponds to message
3

word 001. All other codewords are found by modulo-2 addition of
these.

Thus if the message is 101 then the codeword is :-
l.v +0.V +1.V

1 2 3
=1. (100110)+0. (OlOOll)H-l. (001101)=101011 (modulo-2)

Clearly the first 3 digits of the code word are the message
bits, and the last n-k bits are linear functions of the message
bits. These n-k bits are the parity check bits and the code is
systematic. Instead of storing the full 8 codeword options at
the encoder only the 3X1 generator matrix is necessary in order
to generate the full set. The code is specified by the generator
matrix.

164

10.3.5 Parity Check Matrix
The transpose of the generator matrix is the parity check

matrix, e.g. for the generator matrix above the parity check
matrix H is

101100
110010
011001
This is obtained by the transposition being specified as

below:-

V, = 1 0 0 1 (0

o I o o

— O O I (O I

^ CZ-f

H z='

/V ̂ = i o I I o o

V ' zz I I o a I o
ZL

O / I O o I

The usefulness of the parity check matrix is to allow the
derivation of the syndrome.

10.3.6 The Syndrome
Consider the case of a message word 111 from the generator

t
matrix the code word is 111000. If the transpose of H i.e. H is
derived by converting rows into columns it is :-

165

110
oil
101
100
010
001
If the code word 111000 is denoted u then a matrix

multiplication can be carried out as follows :-
t

s=u.H
=110+011+101=000 (modulo 2). s is called the "syndrome" and
will be 0 for all genuine codewords, but not if corruption has
taken place. For example consider the case where codeword
100110 had been corrupted into 101110.

The syndrome will be
s=110+101+100+010=101 and is non-zero.

Having detected the errors it is necessary to identify them
in order to correct. One way of doing this is to use the
standard array method which allocates a one to one
correspondence between non-zero syndromes and the correctable
set of error patterns.

Each formulation of this type of code has a different error
correcting capability. The 6,3 example is only capable of
correcting single bit errors. Using the notion that a correct
codeword can be changed into a corrupted codeword by the modulo-2
addition of an error vector then the error vectors that can be
corrected by the 6,3 code above are :-

000001
000010
000100
001000
010000
100000
These are the "correctable set" of error vectors, otherwise

166

known as the coset leaders. Six non-zero syndromes could be
associated with these coset leaders and simple interpretation
will allow error correction for these error vectors.

If a corruption occurs for which a coset leader is not
responsible then an incorrect decode will result. Systems should
be devised so that the coset leaders are the most likely errors
to occur.

The details above are general and apply to any n,k linear
block systematic code. The term "distance" is used to define the
number of components by which two code words differ. The
"minimum distance " for a code is the smallest distance between
all possible pairs of codewords. The notion of minimum distance
is important in that it determines the error correcting
capability of a linear code. Greater than 1-bit error correction
is possible but an n,k of more than 6,3 is needed. For instance
a 15,5 code corrects up to 3 error bits.

10.4 Bose-Chaudery-Hoccfuenghem Codes
The code is generated by means of a generator polynomial.

This is derived by letting "a" be a primitive element of Galois
m

field (2). A primitive element is any element whose powers
m

generate all the non-zero elements of GF(2). The least common
i

multiple of the minimum polynomials of a .
4

The form of the generator polynomial for GF(2)

is as follows :-
4 6 7 8

g(X)=l+X +X +X +X
yielding a 15,7 cyclic code able to error correct 2 bits. Other

167

possibilities can be created by using more or fewer of the
minimum polynomials. Thus using the three minimum polynomials
generates a 15,5 code that corrects 3 bits, whereas using the
single minimum polynomial is single error correcting.

The decoding of BCH codes assumes that the code vector has been
added to by a noise vector. The first step of the decoding
process is to calculate the syndrome which is a vector with 2t
components, using the received vector. The set of equations are
solved for each of the vector elements and then a technique
is applied which finds an error location polynomial. Finally, the
roots of this last polynomial are found which identifies the
error positions within the received vector. Details are

[7]available in Rao and Fujikawa

10.5 BCH Implementation
Implementation of binary cyclic codes may be achieved by a

shift register involving modulo 2 addition between delay
elements, additional control logic and switching. The examples

[7] [6]given by Rao and Fujikawa together with Shu Lin suggest
architectures reminiscent of those used for programmable matched
filters earlier in this study.

This allows consideration of the use of programmable Digital
Signal Processors or even the imaginative use of the FIR
instructions in some versions of the VSP. In addition a purely
hardware solution could be developed, but would be relatively
inflexible.

One problem remains for the BCH option and the use of the

168

DSP or VSP processors. Neither are structured for the finding of
roots of polynomials, even using the iterative methods suggested

[8]
by Berlekamp , and since this is a vital decoding function, the
host processor would have to be used, ideally with an arithmetic
co-processor.

10.6 Error Detection - CRC
As has been pointed out, and quantified above, very large

overheads are incurred in error correcting systems. These
overheads are so large that considerable data compression is
needed to offset them. In many cases the necessary compression
is not available, and bandwidth is limited.

In some of these situations it may be that the detection of
errors may be enough and correction be made by retry or
retransmission, especially in data communications.

To satisfy the need for a reliable error detection one
option is the CRC algorithm. Computationally it is relatively
trivial, and the overhead can be very small, perhaps 16 bits
added to a information field of 1024 bits. It is suitable in
cases of minimal compression availability.

A CRC generator is based on a PRBS (pseudo random binary
sequence). A shift register with feedback is used to operate on
the data within a block. A shift register may be defined using
an operator D defined such that :-

X(t)=DX(t-l)
Multiplying by D is equivalent to delay by 1 bit. The

feedback equation may be described by :-
4 4

D X(t)+DX(t)+X(t) or simply X +X+1

169

or similar. Thus the system is able to be represented as a
polynomial.

[9]Frohwerk correctly points out that feeding a data block
into a PRBS generator of this kind is equivalent to dividing the
data stream by the characteristic polynomial of the generator.

At the end of the process a residue or remainder is left in
[9]the shift register. The remainder is shown by Frohwerk to be

characteristic of the data stream and is defined by him as a
"signature".

[10]
Gordon and Nadig prove that if when data blocks are

created they are tagged with this signature and if on recovery
the same algorithm is used, then the probability of error
detection is given by :-

(m-n) m
Prob(PRBS fail)=2 -1/2 -1

where m is the message length and n is the number of bits in the
shift register.

A 16 bit register dealing with 256 bit blocks of data would
give a system where the probability of failure to detect any

—5
error is 1.526.10 , and proof is also provided that single bit
errors are always detected.

Arguments regarding implementation are the same as for BCH
coding.

References
[1] Lynch,T.J.,"Data compression-techniques and applications".
Van Nostrand Rheinhold, 1985.

170

[2] Fuchs,P.M.,"Compressing data in bit mapped
displays",EDN,ppl73-183, October 1986.
[3] Bodson,D.,Urban,S.J.,Deutermann,A.R.,Clarke,C.E.,
"Measurement of data compression in advanced group 4
facsimile systems",Proc.IEEE, vol73,No.4,pp731-739,April 1985.
[4] Bose,R.C.,Ray-Chaudery,D.K.,"On a class of error correcting
binary group codes",Inf. and Control, 3, pp68-79,1960.
[5] Bose,R.C.,Ray-Chaudery,D.K.,"Further results on error
correcting binary group codes,Inf. and Control,3,pp279-290,1960.

[6] Shu-Lin, "An introduction to error correcting
codes",Prentice Hall,1970.
[7] Rao,T.R.N.,Fujiwara,E.,"Error Control coding for computer
systems",Prentice Hall,1989.
[8] Berlekamp,E.R.,"Algebraic coding theory",McGraw Hill,1968.
[9] Frohwerke,R.A.,"Signature analysis a new digital field
service method",Hewlett Packard application note 222-2, pp9-15,
October 1980.
[10] Gordon,G.,Nadig,H.,"Hexadecimal signatures", ibid ppl-8.

171

11.0 Conclusions

11.1 Scope
The conclusions derived are in two categories, firstly there

are those associated with the relevence,currency and validity of
the research and secondly the summary of the value and results of
the work to test the original hypotheses.

11.2 Relevence, currency and validity
The main thrusts of this work have been :-
1) Matched filters and Correlation techniques
2) Transform coding
3) Quadtree derived ideas

[1]Certain authors, such as Marshall advocate that these
methods are inelegant because it is often the case that analysis
and coding techniques require different . principles and
algorithms. This is particularly true of transform coding, but
true or not technological innovation is only fruitful where it is
possible to proceed to a viable product.

Recently, large resources have been allocated to solving the
computational problems of transform coding, especially the DCT.
VLSI has been developed to the point where signal processing
algorithms are implemented with an efficiency that allows for
real time application. Many useful products are strongly reliant
on real time operations.

Systems that are universally used must comply to standards
and the subject of low bit rate coding is no exception.
Specification of a technique within a standard is a vote of

172

confidence that it represents, if not the most elegant solution,
then the best, commensurate with feasible realisation.

One of the main drives for data compression has naturally
come from the telecommunications industry, with particular
reference to the services expected to have to be provided under
the ISDN (Integrated Services Digital Network). These services
are likely to include videophone teleconferencing, and
photographic videotex.

Another prime mover for this technology is the coding of
moving images on digital storage media. In both these areas

[2]standards are at the point of publication, as shown in Shah
Of considerable importance is CCITT recommendation H261,

which is aimed at the telecommunications objectives above. H261
segments the video problem into motion compensation and transform
coding, specifying the DCT in the latter case. A review of the

[3]situation has been carried out by Yates and Ivey
The digital storage media position is that ISO

(International Standards Organisation) is presently considering
the CD-I (Compact disc interactive) standard which is based upon

[2]the DCT, again described by Shah
It is concluded that the study of transform coding is a

current and valid area of interest, which retains some
interesting problems in implementation.

The quadtree approach was stated in Section 7.0 as being a
concept often returned to. An example of this is found in Ireton

[4]
and Xydeas , which contains implicit thinking developed by

[5]Tanimoto in an earlier decade.
This fact prompts the thought that during this research

173

numerous instances of "circular thinking" have been noted.
[5]Another case in point is where Selviah, Midwinter et al

suggest that a more intuitive grasp of the action of neural
networks may be obtained via a matched filter model, as
described in Section 9.0. The circularity here concerns
only classifiers.

The justification for the inclusion of quadtree methods is
in the need for comprehensive cover, a wide understanding, and
the ability to easily accomodate radical thinking such as

[1]proposed by Marshall
Ideas of signal processing are an inherent part of image or

data compression and since correlation is never far from mind in
signal processing, it is held to be relevent to have studied
applications of auto and cross correlation.

The conclusion that the areas studied are relevent and
valid indicates that the underlying philosophy for this research
was sound.

The research did allow a conclusion to be reached concerning
the hypothesis that "devices optimised for signal processing
brings benefit to real time" data compression, but it is
additionally believed that in the course of study small
contributions have been made to technique.

These are : -
1) Developing the VSP implementations
2) The adaptive use of Morse code principles in variable

length transfer coding.
3) The coding developed using quadtrees and delta

174

modulation.
In experiments both 2) and 3) achieved close parity

with the performance of existing schemes despite the fact
that neither were further developed.

The subject of data compression has been reviewed and topics
showing the greatest potential for the application of array and
signal processors were looked at in detail. Interactions
between data compression techniques and image processing were
examined and implementations explored for appropriate cases. The
use of a Vector Signal Processor has been demonstrated. The
groundwork for further research has been laid and is expected to
be of immediate use in a Medical electronics imaging project and
a trans-national project for maritime data communications.

11.3 Signal processing devices and data compression
The results of experiments in pattern matching and

substitution, transform coding and filtering using the Vector
Signal Processor as a co-processor reveal that it is
significantly useful, but has certain deficiencies.

The hope was that very fast real time processing could be
achieved but performance was limited by the fact that most
techniques involve either array processing together with bit
orientated operations or secondary encoding involved methods for
which the VSP is not optimised.

The consequence was that the host processor had to be used
for proportionately more tasks than was hoped. Notwithstanding
this the VSP produces a significant increase in performance than
is available from the host type general purpose processor.

175

Certain functionality is best supplied by means of dedicated
hardware. Included in this category is error control coding.

It is concluded that the best role of the VSP is that of
acting as an "accelerator" for difficult or time consuming
operations such as frequency domain convolution, FFTs, DCTs, and
fast finite impulse response filters flexibly implemented in
software.

Experimental measurements indicate 128 point FCT was
calculated in 39. 7 microseconds. This is slower than the
manufacturers data but this may be due to the use of an XT
(Norton benchmark 1.0) host instead of an AT. With the means
at my disposal it was not possible to split host and VSP
action times as they were interacting and bus sharing at a
high rate.

Using the GIF (common intermediate format) of CCITT H261,
which has a luminance spatial resolution of 352 pels by 288 lines
and a frame rate of 30 Hz calculations were made to evaluate
the transform coding performance.

Experiments suggest that segmentation into 16X16 sub blocks
is optimal, in terms of the trade off between host interaction
and array size maximisation. It was estimated that a 16X16 DCT
would take 1000 microseconds using a single VSP. H261 resolution
requires 22X18 sub-blocks of 16X16. The 396 blocks require
around 396 milliseconds for processing. This is an order of
magnitude too slow for H261, even if sufficient compression is

—1
achieved to fall within the 64kbs bandwidth maximum.

What is too slow for real time video-phone is not too slow
for many applications. If picture storage on backing store

176

media, such as CD or Winchester dises, were to be considered for
desktop publishing then the VSP can provide good performance.

Calculations based on the VSP measured speeds were carried
out for a FAX application using pattern matching and
substitution. CCITT document No.l resulted in the VSP needing to

[6]
calculate 42 ACFs. Zoran source data expects the VSP to
execute 128X128 fast convolutions in 570 milliseconds resulting
in a 24 second "generating" period which will be added to by
screening and statistical matching. The pre-transmission
processing time is thus further stretched. Since a FAX need not
be "on line" during this delay it is likely to be absorbed by
concurrent processing within the scanning period expected by
users.

This kind of application, where it is possible to process
data before storage or transmission, is suited to the VSP at its
present clock rate and performance. This enables use in
electronic publishing,CD/ROM databases, medical imaging and
machine vision - where the characteristics of the human eye do
not force no-flicker frame rates and relatively high resolution
is not involved.

The VSP is capable of multiprocessor configuration, but the
performance increase is approximately proportional so that the
H261 standard would require an uneconomical number of processors.

[3]
Yates and Ivey contains an analysis which shows that up

to 20 parallel "single architecture" units would be required and
this confirms the conclusions above.

Present performance is adequate for compression of

177

Table 11.1 VSP general applicability

Text

Line Dwg

Grey scale

Symbol matching Transform coding Quadtrees

*
yes n/a n/a

yes n/a no

+
n/a yes no

for fast correlation and FIR matched filters+
With the exception of the Hotelling transform

n/a = not applicable

Table 11.2 Applicability of techniques to VSP

Suitable Speed Comment
Shannon-Fano no - -

Huffman no - -
Run length no - -

BNO no - -

Morse no - -
Convolution yes 4mS 16X16 2-D
FIR filter yes no data VSP-325
FFT yes 0. 4mS 16X16 2-D
FCT yes 0.95mS 16X16 2-D
Fourier Desc yes 0.04mS 16,1-D,rotate
Hotelling no — -

178

11.2 contd
Suitable Speed Comment

Neural net
*

yes 20mS 120 node Hopfield
net,threshold
ing by host.
(estimate,based
on lOMHz clock)

Segmentation no - -

+
Screening yes 0.03mS per 16X16 character

cell.
Statistical

+
Matching

i+

no

------— -------------

-

as described in Section 5.0
using matched filter modelling,

179

— 1
"still" images. Any slow scan e.g. up to 5 frames second would
be feasible.
11.4 Summaries

Tables 11.1 and 11.2 respectively show the applicability of
the VSP to major areas of work and to individual techniques.
11.5 Other considerations

Several other aspects of a device must be considered in
appraising its value. Such an aspect is the development system
environment. The VSP is provided with an editor/assembler and a
debugger which are basic. Interaction with the VSP is possible
via the host running "C" programs utilising a library of
procedures, but the style of operation involves the "C" modules
downloading assembler modules and invoking them. This leads to a
"to and fro" action resulting in the host processor operating in
a less than optimal way. Comparing the VSP with a DSP product
such as the TMS32020 shows that in pure assembly level terms
that the VSP is significantly faster and that program lengths are
much shorter leading to reduced development periods. It is
concluded that the VSP concept is hampered in reaching its full
potential by the VSP/host mechanism and by the lack of a full
cross compiler type facility. These disadvantages are outweighed
when the VSP is used for those tasks for which its architecture
is sympathetic or optimised but reference to figures 11.1 and
11.2 reveal the limitations.

References
[1] Marshall,S., "Contour based image coding", lEE Electronics

180

Colloquium digest 1990/075 , pp4/l-4/3, May 1990.
[2] Shah,Y.,"State of the art in low bit rate coding", lEE
Electronics Colloquium digest 1990/075,ppl/1-1/3. May 1990.
[3] Yates R.B. and Ivey P.A., "Approaches to image data
compressionfor video coding" lEE Electronics Colloquium digest
1990/075, pplO/1-10/5,May 1990.
[4] Ireton,M.A., and Xydeas,C.S., "A Progressive coding technique
for binary images", lEE Electronics Colloquium digest 1990/075,
ppll/1-11/4. May 1990.
[5] Tanomot,S.L., "Image transmission with gross information
first". Computer Graphics and Image Processing,9,pp72-76,1979.
[6] Zoran, Technical notes, TN 92040-0187, pp3-5, 1987.

181

Appendix A

Published Papers

182

Listing 1.1 Details of published papers
Copies of the following are Included as Appendix “A” .

(1) "Vector Signal and Digital Signal Processors
in Character Recognition”. Colloquium on
Pattern Recognition and Applications
lEE groups C5/E4 digest No.1989/109 October 1989.

This paper explains the pattern matching and substitution which Is the subject of Section 5.0

(2) “Applying the Vector Signal Processor” .
Colloquium on Practical applications of digital
signal processing devices.
lEE groups C2/E5 digest No.l 990/100 June 1990.

The paper defines the nature of Vector Signal Processors and discusses architectural and operational
details together with experiences of Implementing Fast Convolutlon/FFTs/FCTs/Fourler descriptors. The
material arises out of Section 3.0

(3) “On Hardware for development of Signal
Processing Hardware”.
Polytechnics and Colleges Software Engineering Journal No.3 Winter 1989.

Surveys the options for platforms appropriate to real time software development. Relates to Section 3.0

(4) “Vector Signal Processors and Digital Filters
in Data Compression for Electronic Publishing”.
In the refereed journal "Microprocessors and Microsystems", November 1990 edition.

Expands paper 1, providing experimental results and discussing Fast Cosine transform Implementation.
Covers material from Sections 5.0 and 6.1.4

183

VECTOR SIGNAL AND DIGITAL FILTER PROCESSORS IN CHARACTER
RECOGNITION

G.A.King and P.Picton

Introduction
The techniques discussed arise from work on Data Compression

for facsimile or for document databases and processing that will
be found in new generations of photocopiers. Background details
of each application may be found in Johnson,Segen and Cash [1] together with Wilcox and Spitz [2].

It is assumed that suitable segmentation methods will have
isolated textual characters, line drawings, and possibly
photographs. ^In our system characters are dealt with by symbol
pattern matching, whilst adaptive Huffman style or Relative Address Designate encoding is used for the line drawings. The
concern of this paper is symbol pattern matching.
Pattern Matching Method

Most workers in this field have used template matching,
constructing an error pel map using weighted XOR to create a
match figure of merit. See Holt and Xydeas [3]. Reported problems
with template matching are due to mis-registration, anomalies due to thin entities, or orientation of symbols. See Boyle and
Thomas[4]. Moving a template across a symbol and checking for
best fit amounts to spatial domain convolution. The position
of least difference creating the lowest figure of merit and athreshold may be defined for a "match".

The deficiencies of the weighted XOR map mentioned
previously prompted the investigation of alternatives. In early
optical work the notion of using Matched Filters for pattern
recognition was suggested by Shelton and Horowitz[5], and
correspondence by Kain[6] supports the idea by proposing
statistical measures of matches. Computational overheads appear
to have halted this line of development at the time but advances
in specialised architectures suggested that a review of these original ideas would be worthwhile.

To achieve the necessary speed for real time applications a
fully configurable matched filter is required. Product "A" is a
digital filter processor capable of having FIR filter
coefficients downloaded to it. It would perform the matched
filter function, but our implementation involves cascadableEPLDs.

When a signal representing the symbol for which the filter
IS configured is applied, the output will be the Autocorrelation
function for that symbol. If the Autocorrelation functions
(ACFs) of the symbols in a given document are known, successive
configuration of the filter with coefficients of candidate
*
G.A.King is with the Informatics Division, Southampton Institute of Higher Education. Dr.P.Picton is with the Open University.

184

symbols will produce at the filter output correlation functions
that may be compared with the original ACFs. Incorrect symbols
will produce Cross Correlation functions that may be rejected
because of statistical characteristics.
Creating ACFsVector signal processors are optimised to operate on arrays
in terms of vector add,vector multiply,re-ordered vector store,
with an ALU structured for fast execution of FFT butterflies.
This type of processor, a Peripheral Vector Processor has a
number of examples explained in a survey by Karplus[7].
Convolution and Correlation are related processes, and the well
known advantage of performing convolution in the frequency domain
(usually termed "fast convolution"), is obtained when performing
fast correlation.

The key point is that fast convolution can be used for fast
correlation if one term is stored in bit reversed order.
Typically array store instructions allow for this. The process
of frequency domain correlation is illustrated in fig.l and
listing 1. Proofs are available in Gonzalez and Wintz[8] and
also Zoran[9]. A short business letter such as CCITT facsimile
document 1 can have a library of ACFs generated in 2-4
milliseconds. The Vector Signal Processor known as product "B"
can achieve frequency domain correlation of arrays of 128 points
in around 500 microseconds.
Screening

To reduce the time taken to recognise a symbol a rough
comparison or screening stage is used. Three or four horizontal
slices are taken from the segmented character and a majority vote
system identifies likely candidates if, say, three out of four
slices compare within a set tolerance. For the library size used
in tests around 15% of the total were selected. Each was checked
using the main statistical matching technique. There is a trade
off between the screening and main techniques. If the screening
is rigorous the main technique need only be invoked for a very
few candidates. The faster the processing available for the main
technique the less demanding the screening needs to be. The VSP
is well suited to the array partial comparisons required for
screening. The work being undertaken suggests that a more
cursory screening than methods such as the height/width/internal
black run method suggested by Holt and Xydeas[3] is appropriate.
Statistical Matching

Comparisons are made between the correlation function that is output from the matched filter, and the ACFs of match
candidates arising from the screening stage. The essence is to
detect significant differences rather than those due to scanner
noise or other random effects. Kain[6] proposed several measures
of similarity, the most useful of which involves dividing the
standard deviation of each entity by its mean. It was thought
that this method was insufficiently consistent and an alternative
was derived from Harrison[10]. Each discrete correlation function is treated as a series of samples. The standard
deviation and the mean is calculated. From this the standard
error which would apply to a group of similar sets is
predicted. The standard error of the difference is then compared with the difference of the means. Put another way, the
difference of the means is compared with the spread of the means

185

theoretically predicted. A resulting match figure of merit is
obtained giving a simple criterion based on the normal
distribution. A figure of 5.0 indicates a 1 in 1000 probability
of a match, 2.5 shows a 99% confidence of mis-match. Similarly,
2.0 yields 68% mis-match level of confidence. Results achieved typically have figures of merit under 1.0 for recognition. Just
what value is used to accept a match may be defined to
accommodate permitted levels of distortion.
Overall Strategy

. The overall system is illustrated by flowchart 1, whilst the main matching technique is covered by flowchart 2.
Conclusions

Work so far has shown that implementation is feasible and
specialised architecture co-processors offer sufficiently fast operation for acceptable real time performance.

Future work will try to capitalise on the inherent
advantages of nth order correlations carried out in the frequency
domain in that they can remove the effects of translation and
scale variation. McLaughlin and Raviv[ll] describe a procedure
that is consistent with the use of a Vector Signal Processor.
Fourier Descriptors will be re-examined and addressed to changes of scale and rotations.
References

1. JOHNSEN, SEGEN, CASH Coding of two level pictures by
pattern matching and substitution. Bell System Technical Journal vol 62 No 8 1983.
2. WILCOX, SPITZ Automatic recognition and representation of
documents, Proc. Int Conf on Electronic Publishing Nice 1988, Ed. J.C. Van Vliet. '
3. HOLT, XYDEAS Recent developments in image data compressionfor digital facsimile, ICL Technical Journal May 1986.
4. ̂ BOYLE, THOMAS Computer Vision, Blackwell Scientific Publications 1988 ISBN 0-632-01577-2.
5. HORWITZ, SHELTON Pattern recognition using Autocorrelation Proc. IRE Jan 1961.

6. KAIN Autocorrelation Pattern Recognition, Correspondence Proc. IRE June 1961 pp 1085-1086.
7. KARPLUS Architectural and software issues in the design
and application of peripheral array processors. Computer vol 14 No. 9 pp 11-17.
8. GONZALEZ, WINTZ Digital image processing, Wesley 1982 ISBN 0-201-02596-5.
9. ZORAN Fast Convolution, Technical Note TN92045-0187.

186

10. HARRISON Statistics and reliability. Open University Press 1976 SEN 335 02509 9.
11. MCLAUGHLIN, RAVIV Nth order Autocorrelations in pattern
recognition. Information and Control 12, 121-142 1968.

gak 8/89

Figure 1.

o>

MllCtMd F l I t T Output

Cln

C.*.K»ng -4/S/M

Signal Input shift rsglstar

Control

Figure 2. 187

fT-

£c

ïir

P"
fcSl

18 S

APPLYING THE VECTOR SIGNAL PROCESSOR

G.A.King and P.D.Picton

1. Introduction
The Vector Signal Processor (VSP) is designed for use as a

co-processor and has a bus structure and timing regime suitable
for operation in a manner similar to microprocessor peripheralswith a DMA interface.

The architectural philosophy for the microword organisation has been approximately categorised as "horizontal" by Flynn[1]and is comprehensively described by Dasgupta[2].The main features of this structure are :-
1. It enables different resources (e.g. functional units, data paths) in the micromachine to be controlled

independently, i.e. A single microinstruction may specify concurrent operations.
2. It leads to relatively large microword lengths.
3. Programmers can exercise control of parallelism at machine operation level.

The characteristics of the VSP instruction set are
1. It operates at algorithm level - it is programmed at functional level.
2. Instructions are Vector orientated.
3. Instructions are slanted towards DSP problems

(e.g. FFT butterflies. Magnitude Squares)
Applications and choices

We have used the VSP in experiments concerned with pattern
matching and substitution,data compression of grey scale images,
image processing and manipulation with digital filters and
Fourier descriptors. These applications require the
implementation of FFT, Fast Cosine Transforms, Fast correlation, and Real or Complex vector multiplication.

The VSP is capable of tightly coupled co-processor action,
which infers shared memory and a DMA bus structure. Two running modes are possible. Master or Slave. The latter demands that the
host IS responsible for delivering instructions to the VSP's FIFO
instruction buffer. Up to 12 instructions can be queued. The
VSP FIFO and and its other internal registers are memory mapped.
As a Master device the VSP fetches and executes its own instructions once it has been "started" by the host.

Action is ̂ invoked by the host writing a start address into
the VSP's instruction base/start register.

Alternatively, a start can be initiated by a JUMP indirect
instruction being written to the instruction FIFO. The format of
G.A.King is with the Information Systems Division,Southampton

Institute of Higher Education. Dr. P.Picton is with the Open
University, Faculty of Technology,Electronics Discipline.

189

the JUMP instruction may be
JMPI RS:0,EI:0,MBA:START__ADDRESS;
This presumes the host has pre-loaded START_ADDRESS. In our

implementations the slave mode was rejected as too slow since it
relies on the host speed. In dedicated systems the host may be a
simple microcontroller. The master choice allows VSP programs to
run to completion, or until an interrupt is generated by an
instruction (EI:1).

The nature of VSP programs is best illustrated by example.
VSP program style

The programming effort for this processor may be compared by
considering the calculation of a Magnitude Squared Spectrum of
128 real valued time samples.

LD NMPT:12 8,RS: 0,MDF: 2,ZR: 1,MBA : 0 ;
FFT NMBT: 128,RS: 0,FPS: 64,LPS: 1;
MGSQ NMPT:128,RS:0,ADF:2;
ST NMPT:128,RS:0,RV:1,MDF:2,MBA:256;
The characteristics of the horizontal architecture is

evident. NMPT defines the number of points in the vector, MBA is
the memory base address of the array,MDF defines the data format-
2 is REAL data. For the FFT instructions NMBT is the number of
butterflies to be performed whilst FPS=first pass separation and
LPS=last pass separation of points for the butterflies which specifies the Cooley Tukey algorithm in this case. AS : 1 selects
fixed point arithmetic with automatic scaling by 0.5 at each
stage. A useful feature is that the Assembler allows global or
default values to be allocated to the fields.
Implementing the forward FCT

Assuming a normally ordered sample array of size N residing
at memory address MBA:SUB PICTURE, the first task is to comply with Makhouls algorithm Ey loading the array into the internal
memory of the VSP - even points first.

LD NMPT:N/2,MBS : 1,MSS : 2,RV: 0,MBA:SUB_PICTUREtl;
This selects every other point beginning with the second

point. Next, the odd points must be loaded in address reverse
order. The only load parameter capable of reversal arranges bit
reversal. This gives correct results for FFT algorithms, but not
for Makhouls FCT[3] . The remedy is to load the data,store it in
reverse order and load it again leading to the sequence :-

LD NMPT:N/2,MBS : 1,MSS : 2,RV: 0,MBA:SUB_PICTURE;
STB NMPT:N/2,MBS :N/2,MSS :N/2,MBAB: SCRATCH;LD NMPT:N/2,MBS :N/2,MSS :N/2,MBA: SCRATCH;It is necessary to perform the outstanding bit reversal for

the load operation concerned with the Sande-Tukey algorithm. An
FFT is followed by rotating the FFT by an exponential vector.

FFT NMBT:N,R:l,FPS:l,LPS:N/2,FSIZ:N,I:0,RS:l;
DEMO NMPT:N,ADF:3,RBA:0,RDA:496,VSIZ:32,RS:1;
ST NMPTiN,MBS:N,MSS:N,RS:0,MBA:RESULT;

190

The DEMO instruction effectively multiplies by 2exp(-j(Pi)k/2N) as specified in Makhouls paper.
Flow Control

#
STI NMPT:l,STR:5,EI:l,MBA:SCALE;

NOP NMPT:l;
NOP l^MPT:l;
NOP NMPT:1;
NOP NMPT:l;
JMPI MBA ; SWITCH__ADD ;

Implementing 2-D FFTs

The Scaling System

ig:ïSiKfiiPssfiiSi
191

the Maximum Scale Register (MSR) . The MSR is reset by LDSl
MD:0,UP:1. The replaced value of the MSR is retained in the Ole
MSR register by LDSM MD:0,UP:1.
Support Environment

The usual Assembler and Debugger are available but they are
only adequate by modern standards. There are no trace windows.
A library of interactive functions is supplied with the
development system which is IBM resident. These are written in "C". ̂ Whereas the Microsoft compiler is recommended, our
experience shows that Turbo C performs entirely satisfactorily.

A simulator program is available but cannot be commented upon as it has not been seen.
Conclusions

The signal processing performance of the VSP is very high
and have allowed real time solutions to some of our applications.
A distinct learning curve was necessary in order to cope with the
horizontal architecture and the slightly idiosyncratic floating point and scaling requirements.
References
1. Very High Speed computing systems. M.J.Flynn. Proc.IEEE 54, 1901-9, 1966.^
2. Computer Architecture- a modern synthesis.Subrata Dasgupta, Wiley,1989,vol 1.
3. A Fast Cosine Transform in one and two dimensions. J.Makhoul

IEEE Transactions on acoustics speech and signal processing.
Vol ASSP-33, No.6 December 1985 ppl532-1539.

4. Zoran Technical Notes TN92040-0187
TN92045-0187
TN92043-1087
TN94028-0187.

192

On Hardware for development of Signal Processing Software

G.A.King, Information Systems Division,Southampton Institute
of Higher Education

1.0 Introduction
Software for electronic signal processing can be created

with high level languages such as "C", and whilst adequate, the
problems associated with the speed necessary for real time
operations on, for example, video signals, cannot be solved this
way. An example might be a 512X512 pel FFT required in the inter
field period for TV. This performance needs parallelism, and the
software developer needs a sympathetic architecture. Courses
having to consider this kind of software must select a suitable
hardware platform for practical work. At S.I.H.E. the advent of
ESc courses in Industrial Systems Technology, and Engineering
with Business prompted some research into feasible platforms to
support computer vision initiatives that are part of advanced
robotics.
2.0 A Survey of the options

Such topics always generate the need for considerable
computing power. It is a natural consequence of the 2-D spatial
distribution of an image to map the pels into an array of
processors, one processor pel . This kind of thinking only
requires simple processors of the bit serial type, and the array

(1)
is classified according to Flynn as 5IMD (single instruction
multiple data stream).

The idea that an array of simple processors execute

193

simultaneously a broadcast sequence of instructions allows
I

segments of the image to be processed in parallel as described by
(2) (3)

Fountain , and Pass
Whilst SIMD is an appropriate technology for simple

processes performed by pel mapped bit processors, there are forms
of processing, mainly concerned with higher level functions that
are abstract in terms of the image data. Examples of the former
simple processes are image filtering and feature extraction. An
important type of higher level task is pattern recognition. The
SIMD structure is not well suited to this and the requirements

(1)
of higher level image tasks is MIMD as described by Flynn

Multiple instruction multiple data stream systems can be
organised in a number of different ways. A common memory can be
shared by a number of sophisticated processors, alternatively
each processor can have local memory and the image can be
distributed among them. In the latter case it becomes most
important that high speed communications, and a connectivity
scheme be implemented. Where memory is common high speed
communication is likely to be achieved by means of a parallel
bus, and the system is classified as "tightly coupled". The
distributed option is known as a "loosely coupled" system. The
advantages and problems associated with these choices are

(4)
discussed in Edwards

(4)
The conclusions reached by Edwards indicate that the

communications bottlenecks in MIMD systems have not produced
solutions where throughput is extremely high. Another problem
concerns the sharing of tasks by a master processor and the need
for a satisfactory synchronisation of task completion. Again

194

this proves a throughput constraint.
Conversely, 5IMD architectures have become widespread and

have good performance at the level of working discussed above.
Use in data compression for databases and for transmission

.schemes does infer the higher level of operation.
SIMD is not particularly suited to the application and MIMD

may not reach the performance criterion even though costs would
be high. This applies particularly when dedicated systems are
considered.

SIMD arrays are largely designed to act as co-processors for
mainframes and minicomputers. This is evidenced by the survey

(5)
carried out by Kittler and Duff . This survey also identifies
MIMD difficulties having been solved by machines able to switch
classification. The complexity inherent in both these options
does not assist in developing systems for microprocessor hosts
working magnetic or optical disc technology at the PC workstation

I
level. Notwithstanding this discussion, .SIMD and MIMD platforms
would prove an expensive choice.
3.0 Affordable architectures
3.1 Peripheral Vector Processors

Rather than arrays of processors, with all their attendant
costs, the most promising alternative is a processor that is
optimised to operate on arrays. This could provide a cost
effective co-processor within a PC type host. The question posed
is can significant and satisfactory speeds be obtained?

This option, a Peripheral Vector Processor, is a notion that
existed for some time and a number have been designed. A survey

195

(ô)
by Karplus lists several examples. In general, these
processors are classified as Horizontal architectures since they
use uncommonly long microcode words with many fields. Each field
controls adders and multipliers in a way that makes resources
available in parallel. Another unusual feature of this type is
the fact that the Assembler instructions specify the microcode
level directly. Pipelining is used extensively during vector
operations and layouts specialised to certain operations are
common.
3.2 Digital Filter Processors

Convolution and Correlation are never far from mind in image
processing environments. The interesting thing is that an FIR
digital filter may easily perform spatial domain convolution by
virtue of its configuration. Digital Filter systems are
optimised to perform sum of products operations and some designs
are reconfigurable and flexible. These Digital Filter
Processors (DFPs) are based on the parallel operation of a
number of cells. Extra parallelism in terms of recursive

(8)
operation is described by Brumfitt
4.0 Conclusions

Both VSPs (Vector Signal Processors) and DFPs (Digital
Filter Processors) are commonly available as co-processor boards
for PC hosts and their performances are remarkably good. Each
option is supported by development software including
assemblers,simulators,debuggers and application program
libraries. Performance is adequate for applications in Machine
Vision, Telecommunications, Medical Imaging, Digital Video,
Electronic cameras and Military reconnaissance. Costs are around

196

fifteen hundred to two thousand pounds per host.

Ref erencGs

1. "Very High Speed computing systems". M.J.Flynn. Proc.IEEE
, 19{J 1 — 9 1 9 6 6 .

2. "A review of SIMD architectures" T .J .Fountain. Image
Processing System Architecture. Research Studies Press 1986.
3. "The GRID parallel computing system". S.Pass. Image
Processing System Architecture. Research Studies Press. 1986.
4. "A Review of MIMD Architecture for Image Processing".
M.D.Edwards. Image Processing System Architecture. Research
Studies Press. 1986.

5. "Image Processing System Architectures" Ed. J.Kittler,M.J.B.
Duff. Research Studies Press. 1986.
6. "Architectural and Software Issues in the Design and

i

Application of Peripheral Array Processors". W.J.Karplus.
Computer vol 14 No.9 pp 11-17.
7. "A Review of other Architectural Concepts. of Image
Processing".P.J.Brumfitt. Image Processing System Architectures.
Research Studies Press. 1986.

GAK/1/90

197

Vector Signal Processors and Digital Filters
in data compression for electronic publishing

G.A.King, Information Systems Division, Southampton Institute of
Higher Education.
P.D.Picton, Electronics Discipline,Technology Faculty, The Open
University.

Abstract
A pattern matching and substitution method is described for

textual symbol entities. The method uses a matched filter
classifier and compares its output with autocorrelation functions
derived by fast convolution using a vector signal processor. A
statistical method for match detection is suggested and
experimental results are given. A review of Fast Cosine
Transform algorithms for the transform coding of grey scale
images concludes that Makhouls algorithm is appropriate and
implementation details for the vector signal processor are
explained.

Introduction
The ideas developed in this paper find application in data

compression for facsimile transmission or for document databases
and processing which will be appropriate to new generations of
photocopiers or desktop publishing. The approach is to use
pattern matching and substitution for documents containing
textual symbols and the Fast Cosine Transform for grey scale
images. In each case the Vector Signal Processor is used for its

198

high performance fast convolution and for its applicability to
transform coding.

The basic algorithm for pattern matching and substitution
[1]is after the fashion of Johnson, Segen and Cash , and
[2]separately in a different context by Wilcox and Spitz

Textual data - Symbol Pattern Matching
The method assumes the use of document scanning, typewritten

symbols and that individual entities have been previously
segmented.

Once characters are isolated, their form is matched against
those already recognised. If a match occurs the 2-D pixel image
is not transmitted or stored. Instead a suitable short code is
substituted,typically a variable length type in order to approach
the source entropy and the result is data compression.

If a "no match" condition occurs the pixel image and the
code to be associated with it in future is transmitted or stored
for use in the data recovery phase. A small amount of negative
compression is incurred for a "no match" condition but in
practice this is more than compensated for by savings when
matches do occur.

Flowchart 1 provides an overview of the strategy. The key
process for successful application of these ideas is the pattern
matching method.

Most workers in this field have used template matching,
constructing an error pel map using weighted XOR to create a

[3]
match figure of merit as did Holt and Xydeas . Many of the
d^^^iculties with template matching arise from registration of

-199

segmented characters or anomolies due to very thin entities.
The bit maps for the two characters are combined by

means of exclusively ORing them together. This creates an
error pel map in which the error pels are weighted according
to the number of adjacent error pels that exist.

The weighted error pel map is then totalled in order to
generate a match figure of merit. A threshold for match is
defined and decisions may then be made.

The difficulties mentioned above, concerning thin entities
and registration can easily be seen to be exacerbated by
the weighting procedure. This may be explained by considering a
1 pixel wide vertical element such as a thin "i" or "1". Slight
mis-registration in an overlayed template could mean that no
pixels line up. Thus every error pel would have adjacent error
pels leading to a high total and "no match".

Holt and Xydeas have tried to compensate by further
customising, or increasing the conditionality of their
algorithms.

Other problems such as those reported by Boyle and[4]
Thomas concern the orientation of symbols.

Moving a template across a symbol and checking for best fit
amounts to spatial domain convolution. The computational
overhead has led to convolution being performed with very small
kernels. Specialised microprocessor architectures such as the
Vector Signal Processor give the potential of larger and much
faster convolution.

The discrepancies of the weighted XOR map prompted an

20u

investigation of an alternative scheme. Research into early
optical work revealed the notion of using matched filters for

[5]pattern recognition as suggested by Horowitz and Shelton , and
[6]

correspondence by Kain supports the idea by proposing
statistical measures of matches. The combination of a matched
filter classifier and a statistical procedure involving
correlation functions improves performance by creating
insensitivity to misregistration.

Matched Filters
A matched filter is characterised by having an impulse

response equal to the time reversed version of the signal
waveform to which it is matched. In the context of this
application, the filter is configured to an array generated from
the segmented symbol.

When the symbol for which the filter is configured is
applied, the output of the matched filter is the autocorrelation
function (ACF) for that symbol. Incorrect symbols will produce a
cross correlation function (CCF). The principle is illustrated
by figure 1. The main matching algorithm recognises which by
means of statistical methods.

This application calls for the need to match large numbers
of symbols and consequently the matched filter required must be
programmable. The impulse response must be capable of being
varied by writing control words to it.

Implementing the Matched Filter
[7]

Lynn discusses matched filters and demonstrates a

201

particularly appropriate technique which applies to the sampled
data system case. The assumption is that the signal is modelled
as two-variable with binary states. This will generate an
expression for the impulse response where the coefficients of the
terms will either be 0 or 1. Clearly, where the coefficient is 0
then that term may be neglected.

In order to arrive at a configuration for the filter the
[7]

following procedure was derived from Lynn , and
[8]

Blandford . Although for real segmented characters a much
longer string is involved, consider a fragment of the single
dimensional string representing a "slice" of the two dimensional
character array.

101110000101........
The time reversed version is :-

 101000011101

Assuming a digital filter, the z plane transfer function
will be :-

—2 —7 —8 —9 —11
H(z)=l+z +z +z +z +z

since H(z)=Y(z)/X(z) then :-
—2 —7 —8 —9

Y(z)=X(z)+X(z).z +X(z).z +X(z).z +X(z).z
This allows the recurrence formula to be written as :-

y(n)=x(n)+x(n-2)+x(n-7)+x(n-8)+x(n-9)+x(n-ll)
which may be implemented as a Finite Impulse Response (FIR)

filter of the non-recursive type. For the beginning of the
example sequence fragment the allocation of coefficients is :-

202

h(0)=l,h(l)=0,h(2)=l........... h(ll)=l

This system was committed to an electrically programmable
logic device (EPLD). The delay elements are implemented as a
shift register of D type flip flops and the multipliers could
simply take the form of two input AND functions because of the
basic two valued approach. The coefficient input to the
multipliers comes from a D-type PIPO (parallel in-parallel out)
register. This register connects via address decoding and glue
logic to the host processor synchronous bus. In this way the
host can store a "configuration" word in order to set up the
matched filter. The summation requirement is satisfied by
cascaded full adders and output logic. The concept is shown in
figure 2.

The problem with the two valued approach is that each
character cell of, say, 16X8 pels results in long strings e.g.
128 pels. Each pel needs a signal shift register bit and
consequently the logic units would need to be cascaded.

n-valued Model
An alternative approach involves treating each horizontal

slice of the character cell as a single sample value, and thus
each character would comprise of 16 samples. This will reduce
the string length but there will be a compensating increase in
the complexity of the multiplier circuits and the summation unit.

Using arbitrary coefficient values to illustrate, the
recurrence formula might appear :-

y (n)=252+79.x(n)+22.x(n-l)+121.x(n-2)........

203

The requirement is for at least a double precision (16 bit)
result, together with array multiply hardware similar to that

[9]described by Hayes

The Vector Signal Processor
The Zoran VSP is optimised to solve digital signal

processing problems and is an array processor having single
command execution of Fast Fourier Transforms,Digital filters,
matrix multiplies,polynomial expansion, peak detection and
thresholding. The ALU handles complex floating point variables
and can reach 37.5 Mflops. Other single instructions are; vector
add, vector subtract and load/store of arrays. Looping
constructs and subroutines are also supported.[10]

Taylor describes a variant VSP designated ZR34325 which
features an FIR instruction. This instruction has a field
specifying the number of taps in the desired filter and expects
an array in external memory to define the coefficients necessary.
This solution will not be as fast as a pure hardware
implementation but Taylor reveals results showing the ZR34325
capable of 32 tap filter action with an array of 128 real samples
in 382 microseconds. If this is a viable solution both the
Matched filter requirements and the Correlation needs can be
provided by the VSP.

Any application which can be fulfilled in the frequency
domain is very efficiently implemented and the processor has a
bus control regime which is compatible with operation as a co
processor in a PC type host. The VSP is a class of processor
described as a peripheral vector processor in a survey by

204

[11]Karplus

Generating Autocorrelation Functions
Flowchart 1 shows the overall pattern matching and

substitution process . It is implied that for each character
a set of full details will be created when it is encountered
for the first time. This set has the following constituents
: -

1. A bit reversed version of the character cell to be used
as configuration input to the matched filter.

2. An Autocorrelation function of the character cell sample
values.

3. A short code allocated to this symbol.

Since a large number of new symbols will have to be dealt
with in the early stages of textual processing it is advantageous
if the Autocorrelation functions can be generated quickly. The
need is for fast correlation. Fast correlation involves
translations into the frequency domain.

Time domain
convolution is ^ ' ^ 0 ^) • ^

and correlation is : -

The applicability to the task in hand is evident if h(n) is
the impulse response of the matched filter, m= 0 to n, x(n) is

205

the input sample sequence and y(n) is the output. N is a power of
2 greater than the length of the shorter sequence. If DFTs
(discrete Fourier Transforms) are used then the expressions
become :-
for convolution,

and for correlation, ^

J
Ô 7- £ ^ 0 ^) ^ — ^ C /-/

c [_ y£̂)j
l£ ̂C*̂)£l ̂I£

The key point is that fast convolution can be used for
correlation if H(k) is stored in bit reversed order. The array
store instructions for the VSP allow for this.

The process of frequency domain convolution is used to
create the library ACFs. This job is invoked when a segmented
character is not recognised as having been seen before at
reference 120 in flowcharts. .

Details of the programming are illustrated by figure 3
and listing 1. Proof of the method is available in Gonzalez

[12] [13]
and Wintz and Zoran . The listing shows the
characteristics of the horizontal architecture of the device,
since each instruction has uncommon length with many fields.

The Screening Stage
Before the main matching process proceeds, a rough

2 0 6

comparison or screening stage takes three horizontal slices
(top,centre and bottom) and one vertical slice in the centre of
the segmented symbol cell. A bitwise XOR of is performed with
the same slices of the set of library characters.

A majority vote algorithm notes that if three out of four
slices compare within the set tolerance to a library symbol,
then the item is regarded as a possible candidate and is tested
with the main matching technique.

Starting with a library of characters, each character was
screened against the complete set including itself. The results
are shown in table 1. The average number of characters
selected as "possibles" needing to be checked by the main
technique was 3.73, representing just under 15% of the library
size. In practice the library will contain a number of
differing "versions" of the same character and this is expected
to increase the number of "possibles". The screening stage did
not fail to select the correct character amongst the "possible"
subset.

There is a trade off between the screening and main
techniques. If the screening is rigorous the main technique
need only be invoked for a few candidates. The faster the
processing for the main technique, the less. demanding the
screening need be. Results support the view that screening
may be cursory when compared to more traditional pattern
matching. Certainly less exhaustive than the height/width/internal

[3]black run suggested by Holt and Xydeas

The Main Statistical Technique.

207

The essence of matching is to detect significant
[6]

differences. Kain proposed several measures of similarity,
the most useful is a figure derived by comparing the standard
deviation of the filter output and the library ACF and then
dividing by the mean for each sequence.

It was felt that a better measure could be devised. The
problem is the need to be able to determine whether the
difference between sample sequences is significant or whether it
arises from noise or other random effects. A method for doing

[14]
this is described by Harrison and originates in statistical

(15)
estimation techniques, such as those described in Chatfield
The mechanism is explained as follows

Two statistical measures are Standard Deviation, and the
Mean.

A set of samples will have values for these two
parameters. If there are several sets of samples then the
Standard Error of the Means is the Standard Deviation for the
set of means.

If a series of sample values is not significantly different
then its mean will be within the Standard Error predicted.
If two sets of samples are possessed, one selected set should
have its mean and standard deviation calculated . Knowing the
number of samples it is possible to predict the Standard Error
which would apply to a group of similar sets. The same procedure
may be repeated for the other set and then the Standard Error
of the difference of the means must be calculated.

The actual difference between the two means is then

208

compared with the Standard Error of the difference.

The results are interpreted as follows :-

If two sets of data differ only by random effects, then
their means have a 68% chance of falling within a range defined
by the standard error of the difference of those means. Other
probabilities follow the normal distribution, so that there will
be a 99.73% probability of being within three times the standard
error of the difference. When viewed in the inverse sense this
means that a symbol differing by three standard deviations has
less than 1% probability of being the symbol compared for.

The pre-requisite for the method to be viable is the ability
to calculate the standard error of the difference, starting
with two sample sequences. Flowchart 3 defines the necessary
steps.The final match figure of merit is obtained by dividing the
difference of the two sample means by the standard error of the
difference. Low values (<1) indicate a high level of confidence
in the match. Figure demonstrates the method for two sampled
waveforms. The resulting figure of merit (modulus of r),
being 2.544 indicates a very low match probability.

The nature of these calculations is such that the VSP is not
well suited and the host 80386 was used.

Programming the VSP
Array processing instructions have fields denoted MBA,MBS

and MSS. MBA is the memory base address for the array, MBS
specifies the number of elements to be transferred to internal
memory for processing, whilst MSS is the memory step size. The

209

assembler instruction fields :-
NMPT:32,MBS:4,MSS:16,MBA:2000H;

involve an array at external memory 2000 hex, consisting of 32
elements, being split into two groups of 16, and only the first 4
elements of each are to be accessed for processing.

This is obviously very powerful in the context of the
problem and allows the screening algorithm to be implemented on
the VSP. FFTs and IFFTs are achieved with a single instruction
and examples can be seen in listing 1. When using the VSP for
frequency domain correlation arrays of 128 points can be
correlated in 500 microseconds. Although the full system has not
yet been integrated, calculations using CCITT document number 1
indicate that the necessary ACFs can be generated in 2-4
milliseconds for a short business letter. The slowest operation
is the statistical matching process.

Experiments and Results
Kains method and that developed from Harrison were the

subject of a comparative study. Complying with the original
experiments by Kain, only the alphabetic character set was used.

ACFs were generated for each symbol and then stored in a
library. Each symbol to be recognised was screened against all
the rest in order to determine which, according to the screening
algorithm, were candidates for the main matching technique. The
results are shown in table 1. CCFs were generated for each
candidate using a matched filter set up for the original subject
symbol.

If the original subject symbol was "a", then the screening

210

selected"a,g,q". The correlation functions derived were
"ag","aq", and "aa". This last ideally being the same as the ACF
from the library. The correlation function "aa" should yield the
highest match probability, i.e. the lowest numerical output from
the statistical match routine. The statistical process would
have,as inputs :-

(1) The ACF of "a"
(2) The correlation functions "ag","aq","aa" in turn.
The outputs for a representative series from the tests are

shown in table 2. In the table an entry such as "bw"
means that the ACF for character "b" was compared with the cross
correlation of "b" and "w" (the output that would have resulted
from "w" being applied to the matched filter configured for "b").

The results in the column relating to the method due to
Ns-irrison were derived as shown in figure ^ . The table does not
list the result of "bb","ww","ff" etc since in all cases this

yisld 0. Zero means a "perfect" match. The results
entitled method due to Kain is derived by comparing the

standard deviation of the matched filter output to that of the
library ACF and then dividing by the mean. This was the best of

techniques suggested in Kains original research and the
figures are provided to allow a comparison.

Table entries with numerical elements in their names such as
"i2" or "e5" refer to symbol variations due to corruption, noise
or other distortions. In the experimental work symbol patterns
such variations were added to the ACF library. Table entries in
this class were al,il,bl,el. Symbols containing greater

211

distortion were matched against these in order to evaluate the
relative tolerance of the two statistical match methods in cases
of "same character but corrupted".

Although Kain reported 87% correct recognition in
his original work there was a serious problem in
differentiating between "i" and "j". This is confirmed by table
2 entry "ij". Note that the new match procedure has no difficulty
and clearly rejects this case, although in an integrated system
as proposed the problem would not arise because the screening
process only selects "i" and "1" for further matching.

The figures for "ij" infer that the probability that
they match is that associated with being 6.76 standard
deviations from the mean in a Gaussian distribution. Kains
match procedure generates 0.74, an indecisive value.

For the purposes of experiment it was decided to set the
match figure of merit at 1.6. Outputs from the match procedure
having values less than this would be declared the "same" symbol.
This threshold is adjustable but 1.6 represents 3 or 4
uncompensated error pels. The threshold would normally be
selected to define the acceptable distortion provided the match
procedure is sufficiently discriminating and consistent. The
method due to Kain produced poor results in this respect. Where
"b" was the subject, screening suggested w,f,k,m,p,b and Kains
method gives probable matches with "k" and "p" as well as "b".
The new method has no such problem. Other examples are provided,
but it is clear that the new method is much more consistent and
discriminating. Table entries I1I2,B1B2,and E1E5 were for
symbols differing only by small amounts of random noise. Entries

212

A1A2/E1E2, and E1E4 all involved seriously distorted characters.
With the font used only "x" and "c" have yielded possible

false match decisions and this has now been eliminated by
the addition of vertical slicing at the screening stage.

Grey scale images - The Fast Cosine Transform

The performance of the Principal Component Transform is
approached by the Cosine Transform when the original data is
strongly correlated as is usually the case with image data.

The purpose of transform coding is to map the signal into a
transform space in order to make the samples more independent or
uncorrelated. This allows a data compression to be achieved by
the quantising stage. The assumption is that the image has been
digitised and split into sub-pictures.

The Vector Signal Processor is designed for array operations
and for the Fast Fourier Transform, but the decision to use the
Cosine Transform prompted the investigation into which of several
fast discrete options are most appropriate.

(16)
Alaul Hague proposes a 2-D algorithm working directly on

2-D data sets. The method involves the partitioning of matrices
and the subsequent regrouping of submatrices. For large arrays
the computational and floating point overheads are great.

(17)
Ghanbari and Pearson suggest a Fast Cosine

Transform (FCT) algorithm based on Hadamard sparse matrices. The
bonus being that coefficients assume only 1,0,-1 states, allowing
relatively simple hardware implementations. Since the VSP is
quite happy with floating point operations this is an unnecessary

213

limitation.
(18) (19)

Byeong Gi Lee and Makhoul describe FCT
implementation based on the Fast Fourier Transform (FFT). Both
of these methods are use on a procedure which re-orders the
input data.

The development choice was Makhouls algorithm, which is
defined by figure 5“.

If the input data sequence is x(n), then the re-ordered data
v(n) is derived as follows :-

/ O ^ ^ 0 ^ ' J
a.

^ in /

Where ^ £] indicates " the integer part of". This means
that the re-ordered sequence is obtained by taking the even
points in x(n) in order, followed by the odd points in reverse
order. The method then calls for the DFT of v(n) to yield v(k).
This may be executed as an FFT. The final step is to multiply
the array v(k) by SL 2 Al .

VSP implementation of the FCT
Assuming a normally ordered array of samples of size N

residing at memory base address (MBA), MBA:SUBPICTURE, the first
task is to load the array into the internal memory of the VSP
system - even points first.

LD NMPT:N/2,MBS : 1,MSS : 2,RV: 0,MBA:SUBPICTURE+1;
This instruction loads half the number of points selecting

214

every other point beginning with point 2 , normal order. Next the
odd points must be loaded in reverse address order. The RV field
is capable of prescribing bit reverse operations on addresses or
data, but what is required here is a re-ordering which can be
achieved by loading in normal order, storing backward, and then
loading again in normal order. The bit reversal operations are
provided for certain FFT operations and is not appropriate to
Makhouls algorithm. The instruction sequence needed is :-

LD NMPT:N/2,MBS : 1,MSS : 2,RV: 0,MBA: SUBPICTURE;
STB NMPT:N/2,MBS :N/2,MSS:N/2,MBAB:SCRATCH+N/2;
LD NMPT:N/2,MBS :N/2,MSS :N/2,MBA: SCRATCH;
The STB instruction stores data arrays whilst decrementing

the memory base address. MBAB defines the base address when
storing backward. The results are that data is loaded into VSP
memory as follows:x(2),x(4),x(6),..x(n/2),..,x(7),x(5),x(3),x(l).

It is necessary to have precalculated 2exp(-j k/2N) for
0 :èk ;^(N/2) . This task is best done by the VSP and to
this end the instruction set provides a special instruction.

The DEMO instruction multiplies a complex vector in internal
memory by a series of complex coefficients generated from a look
up table which contains 256 Cosine values ranging from 0 to 90
degrees. After multiplying each element of the specified Cosine
vector with corresponding array in internal RAM, the products are
placed in internal RAM also.

There are a number of microword control fields unique to the
DEMO instruction. These are :-

RBA - ROM base address

215

This parameter defines the starting angle of the Cosine
vector, and is set to lOx the value in degrees, i.e. to start at
90 degrees RBA=900. The internal look up table contains 1024
discrete values and this makes only some values for RBA legal.
The rule is :-

If "i" is the angle, 1*3600/1024, where 0>=i<1024

RDA - ROM decrement address.
This address is used to define the incremental angles for

successive Cosine coefficients. As with RBA the parameter is
specified as lOx the required value in degrees. Legal values
belong to the set ;

(i+l)*1800/512, 0>=i>=511.

VSIZ - Vector size
Specifies the number of samples beginning with RBA to be

addressed from the internal look up table. After this value the
look up table address reverts to the RBA value. Legal values are
4,8,16,32,128 points.

The sequence of instructions required is as follows
FFT
DEMO (multiply by 2exp(-j k/2N)
ST (leave result back in external memory)

The inverse FCT developed by Makhoul requires that the input
data be first complex conjugated,rotated by the MODLT instruction
and then inverse FFTed. The MODLT instruction is exactly
analogous to the DEMO instruction except that the frequency is

216

translated up in frequency instead of down. Complex conjugation
is specifically provided by the CMCN VSP instruction. The CMCN
is not required for the forward transform and so the inverse
transform takes about 1 0% longer to execute.

Quantising
A spatial domain array and its transformation by the FCT are

shown in figure 6 ^jand
Merely transforming into the frequency domain does not

generate a compression of itself. As can be seen from figure
the transformation has produced strong compression potential with
all the high valued coefficients bunched together followed by a
long run of similarly valued ones. This long run consists of
zero or near zero valued coefficients which may be allocated
zero.

These contribute very little and may be ignored or
compressed because of their redundancy. Zero valuing small but
non-zero coefficients will create some small distortion when the
data is reconstituted. The amount of distortion acceptable for a
given system will determine what coefficients must be considered
significant, and which may be zeroed. The allocation of bits to
coefficients either zonally, i.e. only allocating significant
values to a particular portion of the frequency spectrum
- in this case equivalently low pass filtering, or by threshold
i.e. zeroing all values below a given amplitude, is a function of
quantising.

Whichever quantising equivalent scheme is chosen, the
result is that a Run length or Huffman scheme can provide

217

FCT yes
Fourier Descrip yes
Hotelling no
Screening yes
Statistical
Matching no

0.95mS
0.04mS

0.03mS

16X16 2-D
16, 1-D rotate

per 16X16 cell

References
[1] Johnson,O.,Segen,J.,Cash,G.L.,"Coding of two level pictures
by pattern matching and substitution". Bell System Technical
Journal , Vol 62 No .8 pp2513-2520, October 1983.
[2] Wilcox,L.D.,Spitz,L., "Automatic recognition and
representation of documents",Document manipulation and typography
, Proc Int. Conf on electronic publishing, Nice (France) April
20-22 , Ed J.Van Vliet. 1988.
[3] Holt,M.J.J.,Xydeas,C.S., "Recent developments in image data
compression for digital facsimile", ICL Technical Journal May
ppl23-146,1986.
[4] Boyle,R.D.,Thomas,R.C., "Computer Vision", Blackwell
Scientific 1988.
[5] Horowitz,L.P.,Shelton,G.L., "Pattern recognition using
autocorrelation", Shelton G.L., Proc IRE 49 ppl75-185,1961.
[6] Kain,R.Y., "Autocorrelation pattern recognition",Proc IRE 49
pp 1085-1086,1961.
[7] Lynn,P.A.,"An introduction to the analysis and processing of
signals", Methuen, 1983

218

[8] Blandford,D.K.,"The Digital Filter Analyser", Addison
Wesley, 1988.

3/P
[9] Hayes ^"Computer Architecture and Organisation" , AY6.-0^
[10] Taylor,D.M.,"Single commands for complex DSP functions".
Electronic Product Design,pp31-37, November 1987.
[11] Karplus,W.J.,"Architectural software issues in the design
and application of peripheral array processors",Computer,
No.l4,ppll-17,1981.
[12] Gonzalez,R.C.,Wintz,P.,"Digital Image Processing", Addison
Wesley 1982.
[13] Zoran,"Fast Convolution", Technical Note TN 92045-0187.
[14] Harrison,R.D.,"Statistics and Reliability", Open University,
1976.
[15] Chatfield,C.,"Statistics for Technology", Chapman and Hall,
1978.
[16] Alaul Hague,M.,"A two dimensional fast cosine
transform",IEEE transactions on acoustics,speech and signal
processing,Vol ASSP-33,No.6,ppl532-1539,1985.
[17] Ghanbari,M.,Pearson,D.E.,"Fast cosine transform
implementation fir television signals",lEE Proc. Voll29 Pt F No.l
pp59-68,1982.
[18] Byeong Gi Lee,"FCT- a fast cosine transform",IEEE
Proc,pp28A.3.1-28A.3.4,1984.
[19] Makhoul, J., "A fast cosine transform in one and two
dimensions", lEE transactions on acoustics, speech, and signal
processing, Vol ASSP-28,No.l,pp27-34,1980.

219

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6a
Figure 6b
Flowchart
Flowchart
Flowchart
Listing 1
Table 1
Table 2
Table 3

"Matched filter context"
"Matched filter system"
"Fast Convolution data flow"
"Main statistical matching technique"
"Makhouls FCT algorithm"
"Spatial domain signal"
"Result of FCT on (a) above"

1 "Pattern matching and substitution overview"
2 "Full pattern matching and substitution algorithm"
3 "Statistical matching algorithm"

"VSP fast convolution program"
"Screening results"
"Matching figures of merit"
"VSP applicability conclusions"

220

Figure 1

11101010 ... Matched
FiIter

mbol pixel
tr Ing

0010101 0.0

Reverse Impulse
response -for
candidate

flCF 1-f
match
otherwise
CCF

221

n z r
o ^ ^
D o
-K
M ° “

UD
P z r

D
r~t- —
M “
o -K
D

O
B

ID
UD
M °
in
r -t-
ID

CO
■X

iQ
(Z
m
NJ

X

D
I

X

D
I

hJ

X

D
I

CO

222

CD
JZicCD3
"-<
oo3Q
Oorj<2.cchO3

X

X"

225

' ?

0 n 31 31-h 0 P P-
M 3 3

rt 0 Q a
3 C
0 H rt it
0 3 3

3 ft 0 0 -k n ro 30 0 rt 0
0 m Ifl Q 0
3 rt rt rt 1 II 0 3
W 3 0 0 < ^
0 3 3 w 3 ^ X

Q 0. rt 0 X
3 0 0 Q 0
0 3 3 0 3 1rt • Q a < ^ 1
p- (U0 0 0 X ^ m m

3 3 . .
0 3 3 ülNl
-k 0 0 W ÜI

3 3
ft
3 0 p-
0 -h 3

0 (t 0
ft 3 a
0 0 n
3 3
Q Q
0 P n
3 -k D
û -k 0

0 0
0 3
3 0
3 3
0 n
3 0
011
rt
Jm
Q
M-
-i-k0
1m
D00
ft0
ft
J0
û
M-
-k-k0
10
D
D0

MI___ I

J Q

I il
(0 3
rt 0
Q 0
(D 3
< ^

< ̂

0

3

ÜIÜ1

0 3 rt 0
Q 0
0 3
< ^

I1
ru

01 Ü1

m Nj 0) 01
mm

o

3

enüi

r
H-
CJ
30
3K
>
n
31

0
c
rtU
Crt

•k *k
p 3H 0ft 30
3 3 0
rt 0
3 0
Q

2 2 A

o

Kg
?£.ÇO 05

ri

Oi

-I M
•O

"D
Q.

CL

s:< w

llÊ
O
o TD
<

225

226

SDS

10

It has been seen before

Examinepattern

Send/Storeshortcode
Send/Store full details +ass5gn/send short code

Pattern matching and substition basic ideaG . A . K i n g _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
Kindra Vi.Bshs VERSION15-Sep-89 iO: 17:

227

researc

10
start

Similar candidates \ N in library /

100

Entityidentified

130 120

130

Segment entities in image

Pull up ACFs and Matched filters

Encode and store or communicate

Apply new entity to Matched Filters

Compare outputs to ACFs

Read in new entity from image

Store full details or communicate full details

Create new library entity Calculate ACF Generate Matched Filter

Process for Data compression using Autocorrelation and Matched Filters G.A,King Kindra VI.Aresearc VERSION 728-Seo-88 14:19:
22b

stats
dO
start

end

Find the standard deviations of the sets

Find the mean of each sample ' and hence the difference of means

Compare the ratio of the standard error of the difference to the difference in means

Find the standard error by dividing the standard deviation by the sq. root of the number of items in the sample

Find the standard error of the difference by taking the sq. root of the sum of the squares of the standard errors

Method for testing the significance of differences between sample sets_____ G.A.King ver 1.01 Kindra VI.Bstats VERSION A02-May-89 09:18:
229

Tab le 1

Character Selected by screening

a a,g ,q
b b ,-f jk ,m ;p ,u
c c,e,s,v,x
d d ,s
e e , c , 0 ; V ; X
-f -f ,b ,k ,m ,n ,p ,u ,u
g g,a
h h ,r
I i ,1
J J ,z
k k jb ,-f ,m ,n ,p ,a ,u
1 1 , i
m m ,b ,-f ,k ,u
n n,-f ,k ,p , u
0 0 ,e
P p ,b ,-f ,k ,m ,n ,UL ,u
q q,a
r r ,h
s s,c,d,v,x
t t
u a , - f , k , n , p
V u,c,e,s,x
u u , b , - f , k , m , p
X X ; C , e , s , v
X X
z

230

Table 2

Match -figures of merit

Subject symbol Method derived from Method due to
and comparisons Harrison Kaln
b

bu 18.10 9.80
bf 16.33 1.90
bk 13.80 0.97
bm 10.61 4.74
bp 7.94 0.45

u
uf 40.26 • 0.86
uk 34.03 1.86um 6.15 0.52up 28.10 0.10

f
fk 1.89 0.52
fm 17.50 4.24
fn 5.91 0.41
Tp 5.38 1.26
fu 6.52 0.32fu 21.91 5.69

1
i j 6.76 0.74

j
jz 7.83 3.42

X
xc 0.53 1.34xs 1.71 2.24
X V 2.11 0.87
xe 4.38 2.57

al
a2 3.34 0.81

11
12 0.34 1.20

bl
b2 0.75 0.14

el
eS 0.68 0.97
e4 11.63 0.16
e2 6.97 2.21

231

VSP 34161 Assembler, VI.3 Tue Jan 01 00:50:17 1980
Input File: convoi.VSP Output File: convoi.HEX
LOG OBJ

0000 0040
0001 0000

0000 0010
0001 A170
0002 OFFF

0003 0000
0004 E050
0005 0300
0006 9406

LINE
1
2
3
4
5
6
7
8
9

10

13
14

40
41
42

43

SOURCE
/* Fast Correlation for VSP */
/* Cooley-Tukey Algorithm for X(N)and H(N) R:0 *
/* Sande-Tukey for IFFT R:1,FPS: 1,LPS: 64 */
/* Fixed divide by 2 scaling-each pass AS:1 */
/* G.A.King Data Compression version 1.00 11/10/

11 /* SET UP INSTRUCTION FIELD DEFAULT VALUES */
12

DEFAULT EI:0,INTRP:0,RV:0,ZR:0,ZP:0,MBS:128,MSS:
15 DEFAULT OR:0,CN:0,MDF:3,RS:0;
16
17 DEFAULT AS : 0,FSIZ:128,FFT.RBA:0,ADF:3,SB:0,LN:1;18
19
2 0 /* OTHER DECLARATIONS */
21

equ SCRATCH=0xFFF,XN=0x200;
equ N=128,HZ=0x300,F=0x400,SCALE=OxFFC;

22
23
24
25
2 6 M: dw 64;
27
28 PROGSTART: dw 0;
29
3 0 equ OUT=0x500;
31
32
33

org 0
34 /* SET UP SINGLE RAM SECTION MODE */35
36 LDSM NMPT:1,MD:1,UP:0,MBA:SCRATCH;

37
38 /* COMPUTATION OF H(Z) STORED AS H(N-K)39

AND STORED AS H(Z) AS THE TWO ELEMENTS FOR AU
LD NMPT:N,MDF:2,ZR:1,MBA:HZ;

44 FFT NMBT:N,R:0,FPS: 64,LPS:1,1:0;

232:

0007
0008
0009
OOOA
OOOB
OOOC
OOOD
OOOE

OOOF
0010
0011

0012
0013
0014
0015
0016
0017

0018
0019
OOIA

OOIB
OOlC
OOID

00300020
0800
E068
FBFF
0800
E060
0500

0010
A270
OFFC

0000
E040
0400
1006
E068
0500

9406
8180
0023

0811
4050
OFFC

OOIE OBFO
OOIF E020
0020 0500
0021 COOO
0022 0000

45
46 STB NMPT:N,MBAB:F;

47
48 ST NMPT:N,MBA:0x500;

49
50 /* RESET SCALE REGISTER POINTER AND MAX SCALE RE51
52 LDSM NMPT:1,MD:0,UP:1,MBA:SCALE;

53
54 /* PERFORM VECTOR MULTIPLICATION */
55
56 LD NMPT:N,MDF:2,MBA:F;

57
58 MLTC NMPT:N,SH:l,MBA:0x500;

59
60 /* NOW PERFORM INVERSE FFT */
61
62 FFT NMBT:N,R:l,FPS:1,LPS:64,1:1;

63
64 /* STORE THE SCALE REGISTER IN EXTERNAL MEMORY *
65
66 STI NMPT:1,STR:5,El: 1,MBA:SCALE;

67
68 /* STORE THE ACF IN EXTERNAL MEMORY */
69
70 /* REMEMBERING TO EXCLUDE INCORRECT RESULTS OF C
71
72 /* number of valid points is N-M-1 */
73
74 ST NMPT:63,MDF:l,MBA:OUT;

75
76 HLT;
77
78 end;
79

233

S Y M B O L TYPE SEG VALUE/SIZE
F C 0x0400
H Z C 0X0300

C 0X0000
C 0X0080

O U T C 0X0500
PROGSTART C 0X0001
S C A L E C OxOFFC
SCRATCH C OxOFFF
X N C 0x0200

ASSEMBLY COMPLETE
CODE SIZE: 25H, 37D

79 LINES READ
0 WARNINGS DETECTED
0 ERRORS DETECTED

234

APPENDIX B

Vector Signal Processor

Programs

235

VSP 34161 Assembler, VI.3
Input File: fft256.VSP

Tue Jan 01 01:11:36 1980
Output File: fft256.HEX

LOG OBJ

0000 0010
0001 A170
0002 0079

0003
0004
0005
0006
0007
0008
0009
OOOA
OOOB
OOOC

0400
0460
03E8
9206
0070
0020
0408
0460
03EA
920E

LINE SOURCE
X
2
3 /*4 256 point FFT
5 G.A. King 7/89
6 The importance of the scaling operation is
7 emphasised
8 */9

10 org 0;
11
12 DEFAULT EI:0, MDF:3, ZR:0, INTRP:0, ZP:0, AD:0,
13 DEFAULT AS:0, R:0, FSIZ:128, FFT.RBA:0, ADF:3;
14
15 DEFAULT FFT.I:0;
16
17
18 /*Two RAM sections necessary for this size of FF
19 */20 LDSM NMPT:1, RS:0, MD:1, UP:0, MBA:MODEADD;

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

/

*/

First stage of the 256 point FFT. Six passes
eight pass FFT to be performed. Operations o
sections alternately to take advantage of par

DEFAULT MBS:1, MSS:4, FPS:32, LPS:1;

/* With MBS:1 and MSS:4 every fourth complex loc
is addressed.
With FPS:32 and LPS:1 the data in each butter
thirty two points apart for the first pass an
for the last pass.

*/
LD NMPT:64, RS:0, MBA:IN;

41 FFT NMBT:64, RS:0;

42 LD NMPT:64, RS:1, MBA:IN+2;

43 FFT NMBT:64, RS:1;
OOOD 0070

236

OOOE
OOOF
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
OOIA
OOIB
OOlC
OOID
OOIE
OOIF
0020
0021
0022
0023
0024
0025
0026

0027
0028
0029

002A
002B
002C

0020
OCOO
0460
03E8
0400
0460
03EC
9206
0070
0020
0C08
0460
03EA
0408
0460
03EE
920E
0070
0020
OCOO
0460
03EC
0C08
0460
03EE

0818
4150
0077

0010
A270
0077

44 ST NMPT:64, RS:0, MBA:IN;

45 LD NMPT:64, RS:0, MBA:IN+4;

46 FFT NMBT:64, RS:0;

47 ST NMPT:64, RS:1, MBA:IN+2;

48 LD NMPT:64, RS:1, MBA:IN+6;

49 FFT NMBT:64, RS:1;

50 ST NMPT:64, RS:0, MBA:IN+4;

51 ST NMPT:64, RS:1, MBA:IN+6;

52
53 /*
54
55
56
57
58
59
60 V
61
62 STI NMPT:1, RS:1, STR:5, MBA:SCALE;

After each FFT a four bit scale factor is sto
the sixteen bit scale register. After each st
register needs to be saved. These scale value
used to normalize the data before the second
Save the Scale Register.

63
64 /* Load Scale RAM with previously stored scale v
65
66 LDSM NMPT:1, RS:0, MD:0, UP:1, MBA:SCALE;

Second stage of the 256 point FFT. The final
of the eight pass FFT will be performed. Befo
transformed the data will be normalized using
values from the first stage of the FFT.

67
68 /*
69
70
71
72
73 */
74
75 DEFAULT MBS:64, MSS:64, FPS: 2, LPS:1, SCLVL:4,
76 SCLBL:1, SB:1;
77
78 /*
79 With MBS: 64 and MSS: 64 a 64 point block of co

237

002D
002E
002F
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
003A
003B
003C
003D
003E
003F
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
004A
004B
004C
004D
004E
004F
0050
0051
0052

0053
0054
0055

0056
0057
0058

0400
D460
03E8
5C06
0281
9206
0170
0020
0408
D460
0468
5C0E
0281
OCOO
D460
07E9
920E
0170
0420
0400
D460
04E8
5C06
0281
0C08
D460
0869
9206
0170
0220
0408
D460
0568
5C0E
0281
920E
0170
0620

0818
4150
0077

0010
A270
0077

80 memory is addressed.
81 With FPS:2 and LPS:1 the data in each butterf
82 two points apart for the first pass, and adja
83 last.
84 V
85
86 LD NMPT:64, RS:0, MBA:IN;

RS : 0 ;
RS:0, RBA:0;

RS:1, MBA:IN+128;

RS : 1 ;
RS:0, MBA:TEMP;

RS:1, RBA:56;

RS:0, MBA:IN+256;

RS : 0 ;
RS:1, MBA:TEMP+128;

RS:0, RBA:28;

RS:1, MBA:IN+384;

RS : 1 ;
RS:1, RBA:84;

87 SCL NMPT:64
88 FFT NMBT:64

89 LD NMPT:64

90 SCL NMPT:64
91 ST NMPT:64

92 FFT NMBT:64

93 LD NMPT:64

94 SCL NMPT:64
95 ST NMPT:64

96 FFT NMBT:64

97 LD NMPT:64

98 SCL NMPT:64
99 FFT NMBT:64

100
101 /* Save the Scale Register */
102
103 STI NMPT:1, RS:1, STR:5, MBA:SCALE;

104
105 /* Load Scale RAM with previously stored scale v
106
107 LDSM NMPT:1, RS:0, MD:0, UP:1, MBA:SCALE;

108

238

0059
005A
005B
005C
005D
005E
005F
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
006A
006B
006C
006D
006E
006F
0070
0071
0072

0073
0074

5C06
0211
OCOO
0560
03EA
5C0E
0219
0400
D460
07E9
0C08
0560
03EE
5C06
0201
0408
D460
0869
5C0E
0209
OCOO
0560
03E8
0C08
0560
03EC

6818
6811

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

137
138
139
140
141
142
143
144
145
146
147
148
149

/

*/

The data must now be normalized
using the scale values from the second staae
and then bit-reversed.

DEFAULT LD.MBS:64, LD.MSS:64, ST.MBS:1, ST.MSS:4
ST.RV:1, SCLVL:1;

/ '

*/

For LD MBS:64 and MSS:64, so a 64 point block
contiguous memory is loaded.
For ST MBS:1 and MSS:4, so every fourth compl
stored.
With SCLVL:1 each point is scaled by the nibb
first word of Scale RAM which is pointed at b

SCL NMPT:64, RS:0, SCLBL:4;
ST NMPT:64, RS:0, MBA:IN+2;

129 SCL NMPT:64, RS:1, SCLBL:8;
13 0 LD NMPT:64, RS:0, MBA:TEMP;

131 ST NMPT:64, RS:1, MBA:IN+6;

132 SCL NMPT:64, RS:0, SCLBL:1;
133 LD NMPT:64, RS:1, MBA:TEMP+128 ;

134 SCL NMPT:64, RS:1, SCLBL:2;
135 ST NMPT:64, RS:0, MBA:IN;

136 ST NMPT:64, RS:1, MBA:IN+4;

NOP NMPT:1, RS:1;
NOP NMPT:1, RS:0, EI:1;

/* The second NOP will interrupt when t
has gone idle. Two NOP's in differ

sections will insure that the second
not overlap with previous instructio
NOP's are required for the B-steppin
VSP161, because it cannot be guarant
the chip is completely idle when the

. interrupt occurs. This will be corre
the C-stepping. */

239

0075 COOO
0076 0000

0077 0000
0078 0001
0079 4070

03E8 0000

07E9 0000

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

HLT;

/ '

*/

The following assembler pseudo-ops define th
spaces for the program.
SCALE is the address at which the scale regi
be saved.

MODEADD is the address at which the value to
mode register

up for the operation of the program is store
IN is the address at which the input data wi
stored. So this address will be known the 1
counter of the assembler is set to 1000.

TEMP is an address where some of the interme
results will be stored.

The output will be stored at IN.

SCALE: dw 0;
LENGTH: dw 1;
MODEADD: dw 0x4070;
org 1000;
IN: dw 0 ;
org $ + 1024;
TEMP: dw 0;
end ;

S Y M B O L TYPE SEG VALUE/SIZE
I N C 0X03E8
LENGTH C 0x0078
MODEADD C 0x0079
SCALE C 0x0077
T E M P C 0X07E9

AT

ASSEMBLY COMPLETE
CODE SIZE: 7CH,

186 LINES READ
0 WARNINGS DETECTED
0 ERRORS DETECTED

124D

240

VSP 34161 Assembler,
Input File: fct.VSP
LOG

0000
0001
0002

0003
0004
0005

0006
0007
0008
0009
OOOA
OOOB

OOOC
OOOD
OOOE

OOOF
0010
0011
0012
0013
0014

0015
0016

OBJ

0080
0040
03E8

0880
6840
04B0

0080
0040
03E9
0880
6848
FB4 0

0100
8D50
04B0

908E
8198
0009
510E
DCC8
OOIB

0900
8040

LINE
1
2
3
4
5
6
7
8
9

10
11
12
13
14

15
16
17
18

19
20
21
22

24
25
26
27
28

29
30
31
32

34
35
36
37

VI.3 Tue Jan 01 01:00:41 1980
Output File: fct.HEX

SOURCE
/* Forward FCT kernel 16 point Makhouls Algorith
/* Assumed image data at location subimage*/
/* reorder is a data buffer used for the purpose
/* G.A.King 28/2/90 */
/* single row processing of a 16X16 subimage*/
/* host to provide loop construct*/
DEFAULT MDF:2;
equ SUBIMAGE=10 0 0,RE0RDER=12 0 0,RESULT=14 0 0 ;
/* Load the 16 point array into VSP internal mem
/* even points first*/
LD NMPT: 8,MBS : 1,MSS : 2,MBA: SUBIMAGE ;

/* Store consecutively*/
ST NMPT: 8,MBS : 8,MSS : 8,MBA:REORDER;

/* Read in the odd points and reverse order*/
LD NMPT:8,MBS:1,MSS:2,MBA:SUBIMAGE+1;

23 STB NMPT:8,MBS:8,MSS:8,MBAB:RE0RDER+15;

/* Perform outstanding bit reversal to comply*/
/* Sande-Tukey FFT algorithm*/
LD NMPT : 16, MBS: 16, MSS: 16, RV:1,ZR:1, MBA: REORDER;

/* Take FFT and apply exponential vector*/
FFT NMBT: 16,R:1,FPS: 1,LPS: 8,FSIZ: 16,1 : 0,RS: 1;

33 DEMO NMPT:16,ADF:3,RBA:0,RDA:496,VSIZ:3 2,RS: 1;

/* Send output to results array*/
ST NMPT : 16, MBS : 16, MSS : 16, RS : 0, MBA : RESULT ;

241

0017 0578
38

0018 COOO 39
0019 0000

40

S Y M B O L TYPE SEG VALUE/SIZE AT
REORDER CONSTANT C
RESULT CONSTANT C
SUBIMAGE CONSTANT C

0X04B0
0x0578
0X03E8

ASSEMBLY COMPLETE
CODE SIZE: lAH,

40 LINES READ
0 WARNINGS DETECTED
0 ERRORS DETECTED

26D

242

VSP 34161 Assembler, VI.3 Tue Jan 01 01:12:19 1980
Input File: mulcon.VSP Output File: mulcon.HEX
LOG OBJ

0000 4870

0000 0010
0001 A170
0002 0000

0003
0004
0005

0080
6860
0200

LINE
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38
39

0006
0007

1886
6850

40
41
42
43
44
45
46
47

SOURCE
/* Vector multiply-Assumes spatial domain refere
/* describing a graphics entity are complex numb
/* transformed into the frequency domain by FFT-
/* constant will produce a scaling so that when
/* is increased or decreased in size-Multiplying
/* in the frequency domain will cause rotation i
/* after IFFT */
/* G.A.King VSP Research version 1.00 1/89 */
/* SET UP INSTRUCTION FIELD DEFAULT VALUES */
DEFAULT EI:0,INTRP:0,RV:0,ZR:0,ZP:0,MBS:8,MSS:8,
/* OTHER DECLARATIONS */
equ IN_ARRAY=0X200, OUT_ARRAY=0X1000, CON_VAL=OX4 0
SCRATCH:dw 0x4870;
org 0
/* SET UP RAM AS A SINGLE BLOCK */
/* NUMBER OF POINTS 1, LOAD ONLY SCALE REG, NO UP
LDSM NMPT:1,MD:1,UP: 0,MBA: SCRATCH;

/* TRANSFER ARRAY FROM EXTERNAL TO INTERNAL RAM
/* NUMBER OF POINTS 8,MEMORY DATA FORMAT COMPLEX
LD NMPT: 8,MDF: 3,MBA:IN_ARRAY;

/* DO VECTOR MULTIPLY -COMPLEX VECTOR BY A CONST
/* NUMBER OF POINTS 8,ARITH DATA FORMAT- ALL SAV
/* OPERAND IN EXTERNAL MEMORY */
MLTR NMPT : 8, ADF : 3 , CN : 1, MBA : CON_VAL ;

243

0008 0400

0009
OOOA
OOOB

0880
6860
1000

OOOC COOO
OOOD 0000

48
49 /* STORE RESULTS BACK INTO EXTERNAL MEMORY */
50
51 /*NUMBER OF POINTS 8, MEM DATA FORMAT COMPLEX */
52
53 ST NMPT:8,MDF:3,MBA:OUT_ARRAY;

54
55 HLT;
56
57 end;
58
59
60

S Y M B O L TYPE SEG VALUE/SIZE A T
CON_VAL CONSTANT C
IN_ARRAY CONSTANT C
OUT_ARRAY CONSTANT C
SCRATCH LABEL C

0x0400
0x0200
0x1000
0x0000

ASSEMBLY COMPLETE
CODE SIZE: FH,

60 LINES READ
0 WARNINGS DETECTED
0 ERRORS DETECTED

15D

244

VSP 34161 Assembler, VI.3
Input File: ifftl28.VSP
LOG

0000
0001
0002

0003
0004
0005
0006
0007
0008
0009
OOOA
OOOB
OOOC
OOOD
OOOE

OBJ

0010
A170
OOOF

0000
F860
04E8
9406
0030
0022
0801
F960
03EA
6811
COOO
0000

LINE
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35

OOOF 4870

38
39
40
41
42
43

Tue Jan 01 01:04:52 1980
Output File: ifftl28.HEX

SOURCE

/* 128 Point inverse FFT
G.A.King 6/89

Set value of Location Counter to 0. FFT progr
loaded at this location.

*/
org 0;
DEFAULT RS:0, EI:0, INTRP:0, ZP:0, AD:0, AS:0, F

FSIZ:128, RV:0, R:0, MDF:3, ZR:0;
/ -

*/

inverse FFT set FFT.1:1.
Set up the Mode Register so that the chip has
section

LDSM NMPT:1, RS:0, MD:1, UP:0, MBA:MODEADD;

/ 128 point IFFT.
The input data for this FFT should be stored
1000 in the memory space of the VSP. The outp
stored at location 1256.

*/
DEFAULT MBS:128, MSS:128, FPS:64, LPS: 1;

LD NMPT:128, MBA:IN;

36 FFT NMBT:128, R:0, 1:1;

37 ST NMPT:128, RV:1, MBA:OUT, EI:1;

NOP NMPT:l, RS:0, EI:1;
HLT;

MODEADD: dw 0x4870;

245

44 org 1256;
45

04E8 0000 46 IN: dw 0 ;
47
48 org $ - 255
49

03EA 0000 50 OUT: dw 0;
51

S Y M B O L TYPE SEG VALUE/SIZE AT
I N LABEL C
MODEADD LABEL C
O U T LABEL C

0x04E8
OxOOOF
0X03EA

ASSEMBLY COMPLETE
CODE SIZE: 12H,

51 LINES READ
0 WARNINGS DETECTED
0 ERRORS DETECTED

18D

246

APPENDIX C

Vector Signal Processor

Instruction Set

247

I THE ZR34161 VSP INSTRUCTION SET

s ch:;^:rr briefly describes the VS? instruction set. Each instruction is covered
vidua’.Iy in one of the sections of this chapter. In the instruction descriptions, fixed
are shown as 0 or 1, variable fields are labeled with the appropriate instruction field

le, and D O N'T CARE bits are left blank. Each word of multiple-word instructions
numbered from 0 to 2 when all three words are used. The bits in each word arc
-.bered from 0 (rightmoslleast significant bit) to 15 (leftmost/most significant bit).

ds that are common to a majority of the instructions are listed in Section 3.1. Fields
are unique to a specific instruction are described in the same section as the

ruction.

e: All instructions which affect the accumulators clear the old accumulate values at
start of instruction execurion.

more detailed information about the VSP instruction set, refer to the publications
d in the preface.

COMMON INSTRUCTION FIELDS
1 section lists instruction fields that are common to a large number of instructions,
fields are listed alphabetically for quick reference. You should refer to this section

leeded when these fields are included in instruction descriptions throughout this

F Arithmetic Data Format
This field specifies which part of the operation result is stored in internal RAM.
Valid values are:

0 No change; the result goes only to the accumulators.
1 Imaginary part only stored.
2 Real part only stored. 3
3 Complete result is stored.

Constant.
This field specifies whether a constant or a vector operand from external memory
is to be combined with the complex vector in internal RAM. Valid values are:

0 External memory contains a vector operand.
1 External memory contains a constant operand.

Enable Interrupt.
El specifies whether an interrupt is to be generated. \'alid values are:

0 No interrupt is generated: only the status bit will be set.
1 An interrupt is generated at the end of instruction execution.

«tt-M -1.3-06S7

a.srembler User Manual VSP Instruction Set

Reverse data ordering.
RV specifics whether data is to be bit-reversed after being loaded into VSP
internal RAM. Valid values are:

VSP Instruction Set VSP .A^embler User Manual

MBAMemory Base Address.
This field defines the starting address of the-data in external memory. Valid
values are:

0 Dau in normal order.
1 Bit-reverse order one level.
2 Data within blocks of size MBS in normal order, blocks in bit-reverse order.
3 Data within blocks of size MBS in bit-reverse order, blocks in normal order.

Note: If RV = 01 or 10, NMPT must be a power of two. I f RV » 10 or 11, MBS
is used for both memory segmentation and reversing — use caution. I f RV is used
for reversing only, set MSS = MBS - 1 or MBS >» NMPT.

Shift
Valid values are:

0 Result is not right-shifted.
1 Result is right-shifted one bit (scaled down by 2) to avoid overflow.

MEMORY INSTRUCTIONS

ary instructions move data between external VSP memory and internal VSP
)iy or registers. All memory instructions are three words in length. The VSP
ïiy instructions are:

LD (Load)
LDSM (Load Scale/Mode Register)
ST (Store)
S n (Store Information)
STB (Store Baclrward)

LD (Load)
loves data existing in external memory to internal VSP R A M LD is a three-word
ction.

Any 16-bit address between 0 and OxFFFF (0 and 65535).

MBS Memory Block Size.
The number of real, imaginary or complex data points to be loaded before a slop
occurs. Also see RV and MSS below. MBS must be a power of two. Valid
values are:

1,2 ,4 ,8 ,16,32,64 and 128.

MDFMemory Data Format for accessing VSP external memory.
Valid values are:

0 Not used.
1 Imaginary only.
2 Real only.
3 Complex; firirt part real, second part imaginary.

MSS Memory Step Size.
MSS defines the number of points specified in MBS plus the number of points to
be skipped. MSS must be a power of two. See MBS above and RV below. Valid
values are:

2,4,8 ,16 ,32,64,128 and 256.

N’M PT Number of Points.
NMPT defines the number of points (samples) of real, imaginary or complex data.
Valid NMPT values are:

Any integer between 1 and 128.

1 0 1 0 1 0 1 0 1 tMPT 1RS 11 INTRP |E I 1

K5S t KSS 11 RV 1 1 HDF IZR IZP 1 1 0 1

KSA 1

I t 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ollowir.g fields are defined in Section 3.1: NMPT, RS, El, MBS, MSS, RV, MDF,

ollowing fields are unique to the LD instruction:

qp Interpolation.

RS RAM Section number.
This parameter is used with the NhfS parameter in the mode register to execute
arithmetic and I/O instructions concurrently. Valid values are:

0 Section 0; intenyd memory addresses 0 to 63 when NMS ■ 0.
0 Section 0; internal memory addresses 0 to 127 when NMS - 1.
1 Section 1; internal memory addresses 64 to 127 when NMS « 0.

Note: RS can be 1 only if NM S-0 (specifying two RAM sections). I f an ALU
instruction operates with RS«0, a memory instruction with RS-1 can operate in
parallel with the ALU instruction (or vice versa).

23t6341t-M-1.3-06S7

248

’ AvsctnbliT User Manual VSP Instruction Set

following fields are defined in Section 3.1: NMPT. RS, El and MBA.

following fields are unique to the LDSM instruction:

Update.
Active only if MD = 0.

0 No update, scale register pointer not reset.
1 Old maximum scale register updated from the current scale register, scale

register pointer reset.

' Mode.

0 Only the scale registers and scale RAM are loaded.
1 Only the mode register is loaded.

3 ST (Store)
moves data from the VSP internal RAM to external memory. ST is a three-word

.+— +— +— +— +— +— +.__4.J3+— +— +— +— ♦— +— +— +
I 0 1 0 I 0 I 1 1 KXPT 1RS I lE I I

K3S I KSS I RV I I HSr I 0 I 0 I I 0 I

rtsA I

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

fields in the ST instruction have the same definitions and use as in the LD instruction,
ir descriptions are contained in Section 3.1.

4 STB (Store Backward)
: moves data from the internal VSP RAM to external memory in a manner similar to
ST instruction. However, with .STB the memory base address is decremented, not
rmented as with ST. In other respects STB is similar to ST.

is a three-word instruction.

1 0 1 0 11 0 1 1 1 J.’KPT 1RS 1 IE :

K 3S 11 KSS 1 RV 1 1 KT'E 1

htE.AS

1 1 1

14 13 12 11 10

following fields are defined in Section 3.1: NMPT, RS, El, MBS, MSS, RV and

following fields are unique to the STB instruction:

Mtl-M-1.3-06S7

VSP Instruction Set VSP Assembler User Manual

The number of zeros to be added after each data point read from external
memory. Valid values are:

0 No zeros added.
1 One zero added (NMPT must be even).
2 Two zeros added (NMPT must be divisible by three).
3 Three zeros added (NMPT must be divisible by four).

When using the INTRP parameter, NMPT includes the zeros to be added by
INTRP. If zero padding is specified (ZP-1), the constraints on NMPT above do
not apply. If the data is complex, a real zero and an imaginary zero are added for
each zero added by INTRP.

ZR Zero Fill.
This field is used to zero that portion of internal memory masked off the MDF
field. One of the two M DF bits must be zero for ZR to have any effect.

0 Internal memory unaffected, j
1 Real part filled with zeros (with MDF=OI).
I Imaginary part filled with zeros (with M DF-10).

I f MDF - 11,ZR must be zero.

ZP Zero Padding.
This field allows the VSP to read a vector from external memory and pad zeros
onto the end of the vector. When Z P -I, NMPT must be equal to the length of the
external vector plus the number of zeros to pad. Valid values are:

0 No zero padding to end of vector.
1 NMPT/2 or (NMPT l)/2 points from memory, the rest zeros.

3.2.2 LDSM (Load Scale/ldodo Registers)
LDSM moves data from external memory to the VSP's 64-nibble scale RAM or to the
mode register, as determined by the M D bit in the instruction. It resets the maximum
scale register, resets the pointer to the scale register, and updates the old maximum scale
register if M D -0 and U P -I. This ensures that the next scale factor u-ill be written to the
least significant nibble and causes maximum scale accumulation to be restarted.

LDSM is a three-word instruction.

I 0 I 0 I 0 I 0 I 0 I lOtPT 1RS I 0 I 0 |E I |

I 1 I 0 I 1 I Itrp IKD I 0 I 1 I 1 I 1 I 0 I 1 0 1

I KEA 1

15 1 4 ' 13 12 11 10 9 8 7 £ 5 4 3 2 1 0

ZR63411-M-1.3-0587

.Assembler User Manual VSP Instruction Set

.Arrangement of the list of registers above. N'alid values are:

0 Registers 2 and 3 are interchanged.
1 The order above stands unchanged.

ALU/EXTERNAL MEMORY INSTRUCTIONS

section covers the four ALU instrucu'ons that operate on two data vectors. One of
ectors must already exist in the internal VSP memoiy, and the other must exist in
nal memory. When these instructions are used, it is not possible for concurrent
and b'O operations to be perfo.-med because these instructions require the use of

the BIU and the EU. All instructions in this section are three words in length:

ADDR (Vector Add Real)
ADDC (Vector Add Complex)
MLTR (Vector Multiply Real Accumulate)
MLTC (Vector Muluply Complex Accumulate)

ADDR (Vector Add Real) j
R adds a real vector in external memory to both the real and imaginary parts of a
'lex vector in internal RAM and stores the result in internal RAM. External memory
ins unchanged.

R is a three-word instruction.

t o i l 1 0 1 1 1 tOtPT 1RS 11 M E |E I

rs s 1 KSS 11 RV 1 1 1 1 0 l a i

KBA

ISH 11 1 0

14 13 12 11 10 9 8 7 £ 5 4 3 2 1 0

elds contained in the ADDR instruction are defined in Section 3.1.

: ADDC (Vector Add Complex)
C adds a complex vector in external memory to a complex vector in internal RAM
Iding real parts to real pans and imaginary parts to imaginary pans. The sum is
1 in internal RANI. External memory remains unchanged.

C is a three-word instruction.

I 0 I 1 I 0 I 0 I
nas I KSS I

134PT 1RS I 1 I 1 lE I I

I I 1 I 1 ICH ISH I 1 0 1

KSA I

24 13 12 11 10 9 8 7 E 5 4 3 2 1 0

elds contained in the ADDC instruction are defined in Section 3.1.

tIt-M 1.3-0687

249

VSP Instruction Set VSP Assembler User Manual

MB.AB Memory Base Address Baclrward.
The base address to use when storing baclrward. This address will store the
imaginary part of the first data point.

3.2.5 STI (Store Information Registers)
STI moves the contents of specified information registers within the VSP to external
memory.

STI is a three-word instruction.

1RS lE I II 0 I 0 I 0 I 0 I 1 I KXFT

I STR I I OR I 0 I 1 I 0 I 1 I 0 I I 0 I

I _ K5R I

15 14 13 12 11 10 9 8 7 £ 5 4 3 2 1 0

The following fields are defined in Section 3.1: RS, E l and MBA.

The following fields are unique to the STI instruco'on:

N’M PT Number of information registers to be read.
Note that the range is different from the one used in earlier instructions. Values
can be 1 through 8 decimal.

STR Starting Register.
The place in the foUowing list where the count of NMPT registers starts.

Register
Number

Maximum Value
of NMPT

1 Real Accumulator, LSB 8
2 Real Accumulator, MSB 7
3 Imaginary Accumulator, LSB , 6
4 Imaginary Accumulator, MSB 5
5 Seale Register 4
6 Maximum Scale Register 3
7 Status Register 2
8 Next Fetch Address 1

There is an implied relation between NMPT (which defines the number of
registers to store) and STR (which defines the register with which to begin the
storage). This relationship is shown in the table above. For instance, i f storage
begins with register number five (scale register), the maximum number of
registers that can be stored is four.

OR Order.

2346341 !-M-1.3-OS87

' A-XScmuicr L'scr ..lanuai « ar instruction oci

ir.sruciions covered in this section are:

ACCR (Accumulate Real)
ACGl (Accumulate Imaginary)
ABS (Absolute Value)
CMLT (Cross Multiply)
CMCN (Complex Conjugate)
MGSQ (Magnitude Square)
DEMO (Demodulate)
MODLT (Modulate)
SCL (Scale)
SCLT (Scale Literal)
F IT (Fast Fourier Transform)

1 ACCR (Accumulate Real)
IR accumulates the real pan of the internal vector and stores the result in the real
mulator. Internal memoiy is not changed.

'.R is a one-word instruction.

I 0 I 1 I 0 I 0 I - KXPT 1RS 1 0 I 0 |E I I
+ ♦ ♦ ♦ + + + + + +-+-—+ + + +

14 13 12 11 10 9 8 7 fi 5 4 3 2 1 0

lelds conmined in the ACCR instruction are defined in Section 3.1.

ÎACÇI (Accumulate Imaginary)
1 accumulates the imaginary part of the internal vector and stores the result in the
inary accumulator. Internal memory is not changed.

I is a one-word instruction.

+— +— +— +— +— +— +— +— +— +— +— +— +— +— +— +
I 1 I 1 I 0 |_ 1 I KKPT 1RS I 0 I 0 |E I I

14 13 12 11 10 9 8 7 S 5 4 3 2 1 0

elds contained in the ACCI instruction are defined in Section 3.1.

1 ABS (Absolute Value)
causes selected parts of the internal vector to be replaced by their absolute values,
specifies whether only the real part, only the imaginary part, or both parts will be
ccd.

is a one-word instruction.

I 1 I 1 I 1 I 1 I »St?T 1RS I #13? lE I I
4 — +— t —

14 13 12 I I 10 9 B 7 € 5 4 3 2 1 0

elds contained in the ABS instruction are defined in Section 3.1.

VSP Instruction Set VSP Assembler User M anual

3.3.3 MLTR (Vector Multiply Real Accumulate)
MLTR multiplies a complex vector in internal RAM by a real vector in external memoiy.
External memoiy remains unchanged. The product is stored in internal RAM and added
to the values in the real and imaginary accumulators.

MLTR is a three-word instruction.

I 0 I 0 I 0 I 1 I 1 I
I K5S I KSS

I34PT IF.S I #r>r lE I I

I I 1 I 0 ICil I 0 I 1 0 1

I KBA I
4—-+-----+-------+------+-------+-—+-----4--------4------4-------4------4-—4-------4-----34— 4-------4

15 14 13 12 11 10 9 8 7 £ 5 4 3 2 1 0

All fields contained in the MLTR instruction are defined in Section 3.1.

3.3.4 MLTC (Vector Multiply Complex Accumulate)
MLTC multiplies a complex vector in internal RAM by a complex vector in external
memory. External memory remains unchanged. The product is stored in internal RAM
and the sum of the products is stored in the real and imaginary accumulators.

MLTC is a three-word instruction.

I 0 I 0 I 0 I 1 I 0 I I.YJ>T 1RS I AD? I E l I

I KBS I KSS I I I 1 I 1 l a i ISH I 1 0 1

I KBA I

15 14 13 12 11 10 9 8 7 £ 5 4 3 2 1 0

All fields contained in the MLTC instruction are defined in Section 3.1.

3.4 INTERNAL ALU INSTRUCTIONS

There are eleven instructions that cany out arithmetic operations within the VSP using its
internal registers and memory. Because the BIU is not used when these instructions are
executed, they may be executed concurrently with memory LD/STT instructions if
different R j ^ sections tft being used by the ALU and memory instructions.
Instructions in this section vary in length from one to three words.

ZR£341t-M-I.3-0«S7

.Avicmbler User Manual VSP Instruction Set

O is a three-word instruction.

1 1 1 0 1 1 1 0 1 lOtPT IF.S 1 AD? IE l

F iA 1 ISH 1 1 0

F.SA 1 1 1 r s i z 1 1 1 1

14 13 12 11 10 9 8 7 £ 5 4 3 2 1 0

ollowing fields are unique to the DEMO instruction:

ROM Base Address
This parameter defines the starting angle of the cosine vector. It is specified as 10
times the desired value in degrees; for example, to get a starting angle of 45°, set
RB.A-450. Allowed values of RBA range between 0 and 3600, corresponding to
07 - 3607. Since the internal lookup table includes only 1024 distinct angles over
the range 0» - 3607, not all values of RBA between 0 and 3600 are allowed. To
ensure that the specified value corresponds exactly to one of the allowed angles,
choose RBA to be one of the values in the set

/•3600/1024, where 0 S i < 1024.

VSP Instruction Set VSP Assembler User Manual

3.4.4 CMLT (Cross Multiply Accumulate)
CMLT multiplies the real part of the internal vector by the imaginary part The result is
stored in the real part The sum of these products also goes to the real accumulator. ADF
must be 0 or 2. If ADF is 0, only the real accumulator is changed.

CMLT is a one-word instruction.

I 1 I 1 I 1 I 1 I 1 I KK?T 1RS I #J3? |E I I

15 14 13 12 11 10 9 8 7 £ 5 4 3 2 1 0

All fields contained in the CMLT instruction are defined in Section 3.1.

3.4.5 CMCN (Complex Conjugale)
C.MCN replaces the complex internal vector with its complex conjugate. ADF must be 3.

CMCN is a one-word instruction. CMCN may be used as a NOP instrjction by setting
ADF-0 and NM FT-1. See the descripdon of the NOP instruction in Section 3.5.3 for
more details. '

ROM Decrement Address
This address is used to define the incremental angles for successive cosine
coefficients, thereby determining the amount of frequency translation. The
DEMO instruction will automatically generate all quadrants of the sinusoid, even
though the ROM contains only the first quadrant values. Like RBA, this
parameter is specified as 10 times the desired value in degrees. To make the
DEMO pcribrm a downconversion, RDA should be in the range 0 £ RDA i 1800.
Again, not all angles in this range are allowed due to the finite resolution of the
cosine table. Legal values belong to the set

(i4 l)M 800 .'512 ,0£ i<511 .

, Vector Size
Specifies the number of samples beginning with RBA to be addressed from the
internal sine/cosine LUT, after which the LUT address rolls back to the RBA
value.

Logical
4 points
8 points
16 points
32 points
128 points

ollowing fields are defined in Section 3.1: N’MPT, RS, ADF. El and SH.

;tl-M-1.3-C6S7

Literal
ooo
001 . .
010
oil
100

I 0 I 1 I 1 I 0 I 1 I
15 14 13 12 11 10 9

KKPT 1RS I AS? |E I I

All fields contained in the CMCN instruction are defined in Section 3.1.

3.4.6 MGSQ (Magnitude Square Accumulate)
MGSQ calculates the square of the magnitude of the internal vector. The result is scaled
down by two to prevent overflow and is written into the real part of the internal memory.
The sum of the magnitude square elements is stored in the real accumulator. ADF must
be 0 or 2. I f ADF is 0, only the real accumulator is updated.

MGSQ is a one-word instruction.

I 1 I 0 I 1 I 1 I 1 I KKPT 1RS I AD? I E l I

15 14 13 12 11 10 9 8 7 f 5 4 3 2 1 0

All fields contained in the hIGSQ instruction are defined in Section 3.1.

3.4.7 DEMO (Demodulate)
DEMO multiplies a complex vector in internal memory by a series of complex
coefficients generated from a lookup table which contains 256 cosine values ranging
from 00 to 90o. Thus, this instruction corresponds to a heterodyning operation in a
product demodulator. After multiplying each element of the specified cosine vector with
the corresponding element in internal RAM, the products are placed in the internal RAM
and the products are summed into the real and imaginary accumulators.

2R6341I-M-1.3-0687

l’Assi’inbli-r L'sît Manual VSP Instruction Set

. is a two-word insaucuon.

I 1 I 0 I a I 1 I 1,-KPT 1RS I fSsr tE i I

I 0 Is a I SCI.VL I SCLBL I ILN |

14 13 12 11 10 9 e 7 £ 5 4 3 2 1 0

following fields arc defined in Section 3.1: NMPT, RS, ADF and El.

following fields are unique to the SCL instruction:

SubtmcL
Source of the content of the scale factor.

0 Use the factor in scale RAM.
1 Use the old maximum scale register value minus the scale RAM value.

.11L Scale Block Length
SCLBL is the number of points in VSP RAM to have the same scale factor.
Valid values are:

1,2 ,4 ,8 , 16 and 32.

,\ ’L Scale Vector Length.
Valid values are:

1,2,4, 6,16,32 and 64.

I f the scale vector length is 1, SCLBL defines which of the first four Scale RAM
nibbles to use.

Word Length of Instruction.

0 Three-word instruction.
1 Two-word instruction.

10 SCLT (Scale Literal)
T scales the internal vector by a constant defined by the SHF parameter. SCLT is a
word instruction.

I 1 I 0 I 1 I 1 I rtftPT 1RS I t S T I E l I

I 1 IS 3 I I SK? I ILN I

14 13 12 71 10 9 B 7 £ 5 4 3 2 1 0

following fields are defined in Section 3.1 : NMPT, RS, ADF and El.

VSP Instruction Set VSP Assembler User Manual

3.4.8 MODLT (Modulate)
This instruction is exactly analogous to DEMO, but the signal is translated up in
frequency rather than down.

The parameters are the same as DEMO, except RDA has been replaced by RIA. lUA is
the ROM Increment Address, and should be in the range 0 < - RIA < 1800. Legal values
for RIA belong to the set

j*l£00/512 ,0£iS511.

MODLT is a three-word instruction.

I 0 I 1 I 0 I 1 I 0 I »K?T 1RS I « F |E I I

I R IA I tSK I I 0 I

I REA 1 1 1 F S IZ I 1 L I I

15 14 13 12 11 10 9 B 7 £ 5 4 3 2 1 0

The following fields are defined in Section 3.1 : NhfPT, RS, ADF, E l and SH.

3.4.9 SCL (Scale)
SCL scales an internal complex vector down in magnitude by performing an integral
number of right-shifts on the data samples of the vector operand. The number of bits of
right-shifting performed is determined by elements of a scale vector (in VSP scale
RAM).

For a full description of the VSP Scale RAM, refer to the VSP User's Manual.

Each rubble in the scale vector is a scaling factor from 0 to IS representing the number of
right-shifts — divide-by-twos •• to apply to the elements of the internal vector.

The length of the scale vector is specified in the instruction setup. Also specified is the
number of successive points in the internal vector to be scaled by the same scaling factor.
When the scale vector length is shorter than the operand length, the scale vector starts
over at its begirming to process the remainder of the operand. I f the scale vector is only
one nibble in length, the instruction allows specification of which nibble out of the first
four in the Scale RAM is used in the instruction execution.

SCL also sums the scaled results into both the real and imaginary accumulators.

The content of each nibble of the scale vector is the number of right-shifts (divide-by-
twos) performed on the operand vector:

0 No effect
1 Divide by 2.
15 Divide by 32,768 (2**15).

ZR£341t-M-1.3-0£S7

A.sscmbler User Manual VSP Instruction Set

No:e that R occurs a second time in the instruction parameters. Its second
app-earance is as the last parameter in the third word.

First Pass Separation.
The separation of the two sample points in the first butterfly pass. Valid values
arc;

1,2,4, 8,16. 32 and 64.

Last Pass Separation.
The separation of the two sample points in the last butterfly pass. ValTd values
are:

1 ,2 ,4 ,8 , 16,32 and 64.

ROM Base Address.
The offset address (representing angles from 0 up to, but not including, 1800) of
the first coefficient to be used in the FFT in each pass. In each successive pass,
RBA is right-shifted one bit. RBA is specified as 10 times the desired angle in
degrees. For example, to specify an initial coefficient of 4 5 0 , set RBA-450.

FFT Size.
The number of points used in each FFT when the instruction is used to calculate
more than one FFT. The total number of points is the produet of the number of
FFTs and FSIZ. Valid values are:

8,16,32,64 and 128.

Automatic Scale.
Chooses the type of scaling to perform in conjunction with the FFT calculations.

0 Block floating operation. Scaling will be performed manually with the scale
■ instruction.

1 Fixed divide-by-two each pass.

Note that it is possible to experience an overflow when AS is set to 1.

Inverse.

0 Forward FFT.
1 Inverse FFT.

CONTROL INSTRUCTIONS

ection describes the three instructions that control program flow in the VSP. They
1 length from one to three words. The three instructions are:

IMPI (Jump Indirect)
ULT(Hali)
NOP (No Operation)

VSP Instruction Set VSP Assembler User Manual

251

The following fields are unique to the SCLT instruction:

SHF ShifL
The number of right-shifts to apply to each vector elemer.L Valid values are:

Any value from 0 to 15.

SB - SubtracL
Source of the content of the scale factor.

0 Use the SHF parameter as defined in the instruction for the number of right-
shifts.

1 Use the old scale RAM value minus the SHF value as the number of right-
shifts to perform.

3.4.11 FFT -T h e Fast Fourier Transform Instruction
FFT executes a Fast Fourier Transform or an Inverse Fast Fourier Transform on data
stored internally in the VSP RAM. For a full description of this powerful and flexible
instruction, refer to the VSP User Manual.

I 1 I 0 I 0 I 1 I 0 I KKBT 1RS I 1 I 1 IE l I

I R I 0 I 0 I 0 I 0 I 0 I 0 I FPS I LPS I ' I 0 I

I 0 I REA I F S IZ IAS I I I R I

15 14 13 12 11 10 9 B 7 £ 5 4 3 2 1 0

The following fields are defined in Section 3.1: RS and EL

The following fields arc unique to the FFT instruction:

N M B T Number of Butterflies Per Pass.
The number of butterflies (NMBT) is a value describing the number of data
points to be operated on (twice the number of butterfly operations). Valid values
are:

Any integer between 2 and 128.

R Reverse.
Order of the data in Htemal memory.

0 Normal order.
1 Bit-reversed order.

When R is set to I , FPS should be 1, LPS should be greater than 1, and RBA
should be 0.

23l£341t-M-1.3-0687

' Assembler User M anual VSP Instruction Set

I 1 I 1 I 0 I 1 I 1RS t 0 0 |E I I k’SP Instruction Set

14 J3 72 11 10 9 B 7 e 5 4 3

fields in the NOP instruction are defined in Section 3.1.

VSP .Assembler User Manual

3.5.1 JMPI (Jump IndlrecI)
JMPI is the main program flow control instruction within the VSP. JMPI causes the VSP
to load a new instruction fetch address located at the memory base address defined by
hîBA in the instruction word. JMPI is executed by the BIU.

.Notice that MBA is not the address where the VSP begins fetching subsequent
mstrucbons. Rather, the data in location MBA is the address of the next instruction. For
example, if location 15 holds the data 72, then the instruction

JM PI MBA:15;

would cause the next instruction to be fetched from location 72.

JMPI is a three-word instruction.

I O | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 tits 1 0 1 0 |E I

I 0 I 0 I 1 I l l | p i l | l | l | 0 | 1 0

I “'I
15 14 13 12 11 10 9 8 .7 £ 5 4 3 2 1 0

All the fields in the JMPI instruction are defined in Section 3.1.

3.5.2 HLT (Halt)
I ^ T stops the VSP bus-interface unit from fetching any more instructions. It is used as
the last mstrucuon in a program or when it is desired to halt instruction fetch. ALU
mstrucdons executmg or queued in the instruction FIFO when a HLT instruction is

are not affected. ALU instructions will complete and provide status to the host
as defined in the particular ALU instruction. HLT has no meaning in the slave mode.

HLT is a two-word instruction, where all but the first five bits are DON’T CARE.

I 1 I 1 I 0 I 0 I 0 I

« lt-M -t.3-06S7

15 14 13 12 11 10 9 B 7 £ 5 4 3 2 1 0

3.5.3 NOP (No Operation)
NOP is a one-word null instniction that has no effect on the execution of other
instructions, nor on registers (except the status registers, which are updated) or memory.
NOP is implemented as a CMCN mstruction with ADF:0. Note that the execution time
of the NOP instruction is à function of the NMPT parameter defined in the instruction.
This allows variable-length NOP instructions for applications requiring predictable
delays. It is sometimes useful to insert NOPs in a program to resers e space for later use
or to time operations for real-time applications.

ZR634I1-M-I.3-05B7

252

APPENDIX D

Morse Compression

Program

Documentation

253

cM

s yizm>1m-< m mc m c M-d
Ç O
i f

-254

un iicnci ttH<n_cn'.i(n tlLtljiOliUSL'iisp. ‘Arevll LOi:G ClkHjlUUIlT riLf5i:e rxLiüiro ü!i.n rtR >c7Rjtis
f i i E « r - . i n

r.iwT C‘i;n_ncT<-rLS •f:t!ip rn,.n 5i:eWUH/IIC. Criin CÜCE r-irx'CT •lül LtFT. TOP. RIGHT. DûTTOM lüT Rm:. (ùfiE. ALÎREAa ALTfORE
:.M.v:r hagh *

C iu l l v r iR G lG l
r / .T O i c o d e

i ! i i ; i i i i _ r ,o .E 0 Linn l'.APiT.ii
EIR.'ET l'K .I •

cmj.ii vrinnlQ] ijriMEiltR Ciun COGE
M IT LENGTH

ri WI T DTfT ynr.o_T i.nLE
M‘iy

Ame _AR9Y

EXITSUCCESS

EXIT

/fJLESIIE < 190KB

EXIT

EXIT

OPEN FILE XARGV

IMIT^TRINO (STRING)NON TEXT FILE MESSAGE

DISPLAY FILE TOO
LARGE MESSAGE

DISPLAY FILE HOT
FOUND MESSAGE.

DEFI IE AND DISPLAY MAIN KINDOY

FILESIZE - SIZE OF FILE ARGV

ALLOCATE ANO SET TO 0
MEMORY FOR «STRINO,

:et filepointer to start of file

DISPLAY tod MANY OR
TOO FEM PARAMETERS

MESSAGE.

NUM_WCflOS - MAKEJIICTIONARY (FSTH. CNDROJTABLE, STRING)

MOnO_pHAR_COUNT - GET CHAR COUNT ,(HUHJjIBSS. chT)ro_table)

Mlndro VI.B C0IÇ5 VERSION 13 05-Jun-SD 08:30:

255

MAIN

T1

:HAn COUNT = COMPRESS 1ARG\̂ . STRING. GKOROJ-ABLE. NUM_WORDS)

SHON_COMP_PAT
(FILESIZE, CHAR_COUNT + V.'ORD_CHAR_COUNT)

0RIG_FILE_5IZE V L> CHAR_COUNT
Y

ERROR VAL = WRITE_FILE
(STRING, ARGV. CHAR_COUNT)

(e r r g r_Vj(iL == 0^-
Y

SUCCESS MESSAGE

(END)

DISPLAY FILE CANNOT
BE COMPRESSED MESSAGE.

C Z eH lZ D

CANNOT WRITE FILE MESSAGE.

Kindra V3.B
comp 16 VERSION 13
06-Jun-90 08: 31: d J

256

73

m
mO)

r~
m

C7c>m

o

PO

om

X

mpq ho r* ex m
M

PU p

M 5
(/>

I
CDC•n

257

f il e rpUiSIô:iEO CHAH rtn t-TEXr_STRIHG "ir-i.CT DicT >DiCTiC'UAny i!ii ir.iri_E!irnYS MO CHARS VORL'I LEM01H
FLAG>.F!Eir.u[0 cum cLOU’Î ML'MjlliAnS = 1 . ÏLPRr, nvlJMFlKOOOl

n '.icno iL'i

[QMPBESS
FP.IIO_§Ii3î»G.QÎÇIîeLlAnYJjyHJHIBYS

START

C - EOT CHARACTER

EMCODE

(RETLTÎM WHJIHARS))

r—
SET FLAG

NO.CHARS - READJ^ILE
IFF. TEXT_BUF)

{ n d j ^tars == o)

SET XCPH -
TEXTBUF

KTOQJ.ENGTH - GETJfORD
ICPR. NUM_CHARS. K*OnD_B!Jn

{WRDJ.EHGTH == 1)

N

C - REAO.DICTIQNARY
(HDRO J U F . CDICTIONARY, NUH_ENTRYS)

= o;---

Y

SET FLAG INCREMENT *CPR BY VORDJ.ENGTH
NO CHARS - NO_CHARS -

NOROJ.ENSTH

(flag SET y i-

(wonD_LENGTH — 0 ^

Y

CLEAR FLAG

■^NDJJTARS — O)

ENCODE

DECREMENT KORDJLENGTH
DECREMENT NO_CHARS

C - *CPR
INCREMENT »CPR

tU $ ENCODE
" I---------

STRICT DICT
DECLARED ON MAIN

MODULE COHPRESS 1

COMPRESSES THE TEXT F ILE GIVEN BY THE F ILE POINTER FP. THE
COMPRESSED TEXT IS STORED TO TEXTJSTHING. RETURNS THE NUMBER
DF CHARACTERS THAT HAVE BEEN STORED TO TEXT STRING.

K in d ra V I .B
coup 17 VERSION
05-Jun-90 08:32:

258

F IL E VFHAHD
U î l- . I fü lE D CHAR vB U F
I i n COUMTEFÎ
!.i!i-:;i:i!!E D i;:HA.n c

BEAO_FILE

FHAND^_BUF

c START J

C = NEXT CHARACTER FROM FILE.

COUNTER == 4096 OR C == EOF)
N

C RETURN (COUNTER)) (c == CR CHARACTER ^
N

KBUF = C
INCREMENT xBUF

INCREMENT COUNTER

MODULE READ_FILE 1.1
READS CHARACTERS INTO A BUFFER. RETURNS THE NUMBER OF
CHARACTERS THAT HAVE BEEN READ INTO THE BUFFER.

Kindra VI.BCOMPB VERSION 2
09-May-90 i i: 13:

259

cn.-n WAnc-cicn i-.ir/.Cr [MAnj)ETA.lL3 C_CDDE
T1

COyvEBI
GhaRaçîER̂.Cj:K]E

a" <• CHARAHEn <• '2

CHARACTER

>• <• CHARACTER <■

^NUL < CHARACTER <
OR

• {• <• character <• DEL

'CHARACTER

EXIT

LEASE (CHARACTER. CJCOOE)

C CnDE->SIZE - 4
C_COO£->COOE - 5

C_CQDE->SI2E - 0
C_CODE->CODE - 0

cj:oce->si2E - &
C_COOE->COOE - 13

C CDDE->3I2E - 6
C_CC-t£->CODE - 62

OTHERS (CHARACTER. CJXOE)

C CQ0E->SI2E • 4
C_f.DOE->COC£ - 15

C CDDE->SI2E
C_CDDE-iCCiDE

Cj:0DE->Sr2E ■ 6
C_CODE->COOE • 63

C_CDDE->ST2E - 5
C_CCHC->CÛliE • CHARACTER - >

C_CQDE->SI2E - 7
C_TOOE->COOE - CHARACTER - 128

STR'JCT CHARJETATLB
DECLARED ON MATH

MODULE CONVERT 1.2

CONVERTS THE CHARACTER'S ASCII VALUE INTO IT 'S CODES.
THE CODES ARE STORED TO THE STRUCTURE C CODE. THESE
COOES ARE : - THE NUMBER OF BITS IN THE CHARACTER'S
COKVERTEO CODE ANO THE CHARACTER'S CONVERTEO COOE.

Kindra V I .B
CO-PS VERSION 2
OS-Hay-SO 12:29:

260

w.'l-.iüîjeû CHf..n c
I.'UM
TCIIPlîAGK
CHAHACTER

1 g:iED CHAH FAR xG TniMG !l;l hjL:

ILJSEBIJIHAB

G_PQS_S1B1NG_NUH

(START ^

SH3FT VAL - 9 - (POS + HUM)

CHARACIER - «STRING

(SHIFTJVAL < O y

-
Y

TEMP - C CHARACTER - IHSERTJITS (POS. i m CHARACTER. C)

SHIFT TEMP RIGHT (SHIFTJ/AL * -i) BITS

CHARACTER - CHARAcflER OR TEMP

«STRING - CHARACTER INCREMENT «STRING

MASK = 12 TO PO'iVER OF
(SHIFT_VAL * - D) -1

C - C AND MASK CHARACTER - «STRING

CHARACTER =]NSERT_BITS (1.SHIFT_VAL*-1.CHARACTER.C)

«STRING = CHARACTER POS = POS t HUM

(RETURN IPOS))

«STRING - CHARACTER

(RETURN (SHIFTJfAL))

MODULE INBERTJTHAR I *3
INSERTS THE CHARACTER C. INTO THE LOCATION POINTED TO BY STRING AT A BIT POSITION GIVEN BY POS. THE NUM3ER OF BITS TO INSERT IS GIVEN BY NUM. RETURNS THE BIT POSITION THAT THE NEXT CHARACTER IS TO BE INSERTED AT. IF THE hUMBER OF BITS IS TOO GREAT TO FIT IN THE ONE LOCATION POINTED TO BY STRING, WILL INSERT THE SURPLUS INTO THE NEXT LOCATION POINTED TO BY STRING AND RETURN A NEGATIVE INI VALUE THAT REPRESENTS THE POSITION OF THE LAST BIT INSERTED.

Kindra VI.Bcomp2 VERSION09-May-90 12: A2:

261

com

ocn

i
Sil
O I

ël
i

CO

zCE

LUCO
CO

o

%

to

g

5
CE

LU
CE
CE

B
tu
X

■<lU

irtu:
55
< I UtoS

2 0<

dJ
' 262

Si5l
h ll
t—I
O I

SI

J
4>-iil
O IJ
O Ia
C C Iii

SE■<z

I
il

h-ien
II
ce

w

I I .

cc

r S

1-

r - i Ci: (_)
L u C il : =

e n i r
îT i, « c

I I— c e 3 :
ÜTi C_1 1— o
1X •-<
C , 1:3 ü - l o

lU J

n - H
-1 cr. H - O'J
3:1 -
o L .1

myi. .

oin
o r u

o

o

s

id
X z UJ*-<en
%-:
0 QC

§! X LUZk-

1
LU en
L U w o

o z

> -O L -

o i ^ L U 1-4 en

558
= D Z OSSa:
-5o
n ° sa LU ■<S f̂ o

»-

z
<
z
z

u o
a C3
h—O •C
3 _JOC u1— lU
en o

263

gi
i

I
i

o

_J
2a

en,
gLU

OC

s
o g oc

Q
CL

LU

U
5
CL

L?
tn

lU

g

ta

tn

oc 9K

!i

«s
i I•O Ic
t?

cooc
o c c w

o ' ï u j en
X X U J

l U O t - O
o Q 2 > - tn

ii|i
<x _ *
t n i L CLLL
M O o u

5=0J-0
<tiug

lacoH -S L
X C L t i . ^
t - i U J l U Û
CClJÜ_iÜLl

25=S
h - l - U - L U

g“S=g
o m tn c n o
^ CE CE 3

L U Z L U _
M M <=3 o

t n z M < o

siïïi:
ÜJCQ <£ Q CL

5 “ l M
C E M X
U3 o § •£ CC
•i: O it: L> _J OX'-'CEX"̂3: % 5 Z
o r-« CJ> o »—* dJ

264

CO'/)

O C)

si3
I
*<1

JOI

UJ

cr

o

u
in
oc
LU
I—o
« I M

i:
'i'âi

LU -C

::<o

ima

265

s
ys,
I
o

§
i,
I

I
Is
op

s p
É 1

55

266

5Ml
ffiiii

iioil
1!

JUl
é

3c/5121

tnin
t- z :

O l - I Mi l
ID Z UO cn 11/ oz

(JL o
LTi

CULO
M UUfvj

X
CD

LU

if
H- I
CO to
LOCO

Z CO

CO .

“i!-
Z MSg
to
ID Ito -C
m O

267

APPENDIX B

Design details

Matched Filter implementation

as

Altera EPLD 1200 series device

268

C I

iq-;f

I_H

CI

•}Ki) F IL

PblrëcliSSfcÜ.
I__

™«kSEÿ3i!i!f#S:

'V i.

269

G. A. King S.I.H.E. S.C.2.
May 1989
1.80 A
EF-1210
Prog. Matched Filter
LogiCaps Schematic Capture Ver 1.8
OPTIONS: TURBO = ON, SECURITY = OFF
PART: EP1210
INPUTS:

hn4, hnO, hri2, hnl, clock, xn
OUTPUTS:

ou tx2j outx1j outxO
NETWORK:
74194,,,,..032029,VCC,,,..032045,. 047039, . . 047037, . . 047035, . . 047033; % SYiS

. .04706'74374(..032060,..032062,..832864,..032866,,,,,,..032045,,,,,,..047066
.047062,..047060) % SYM 2 %
..165035
..168025
..134025
..074038
..074051
..074064
..074073
..022031
..032045
..032060
..032062
..032864
. .032029
..155015
..032066
..148014
. . 158036-
..158034
..174015
..132013
. .177080,
..180070
..146070
..167060
..160059
..170081
..170079
..186060
..144058
..187127

0R(..158034,.
NOT(..158034)

.158036)

.047033,
047035,
047037,

AND(..047039,
INP(xn) % SYM
INP(clock)

NOT (.
AND (.
AND (.
AND (.

158036) % SYM 3 %
% SYM 4 %
% SYM 5 %
.047060) % SYM 6 %
.047062) % SYM 7 %
.047064) % SYM 8 %
.047066) % SYM 9 %
10 %

SYM 11 %
INP(hnl) % SYM 12 %
INP(hr,2) % SYM 13 %
INP(hn3) % SYM 14 %
NOT(..022031) % SYM 15 %
OR(..148014,GND) % SYM 16 %
INP (hr,4) % SYM 18 %
AND(..132013,..134025) % SYM 20 %
AND(..874051,..074033) % SYM 21 %
AND(GND,..148014) % SYM 22 %
AND(..155015,..168025) % SYM 23 %
OR(..074038,..074051) % SYM 24 %
OR(..170079,..170031) % SYM 25 %
NOT(..170079) % SYM 26 %
NOT(..170081) % SYM 27 %
OR(..160059,..160061) % SYM 28 %
AND(..144058,..146070) % SYM 29 %
AND(..074078,..074064) % SYM 30 %
AND(..160061,..160059) % SYM 31 %
AND(..179059,..180070) % SYM 32 %
OR(..074064,..074078) % SYM 33 %
N0T(s2) % SYM 36 %

outx2 = CONF(..114165,VCC) % SYM 37 %
..150115 = 0R(..157114,..157116) % SYM 38 %
outxl = CO!MF(. . 113133, VCC) % SYM 39 %
outx0 = CONF(..150115,VCC) % SYM 40 %
..176150
..176162
..113133
..131139
..171122
..157116
..114165
..157114 ..148155
..132162
s2 = NOCF
..182150
..179059
..160061

% SYM 41 %
% SYM 42 %
131139). % SYM 43 % '
,.182162) % SYM 44 %
.187127) % SYM 45 %

AND(..148155,s2) % SYM 46 %
AND(..176150... 132162,s2) % SYM 47
OR(..171122,..131139) % SYM 48 % AND(..176150,..176162) % SYM 49 %

% SYM 50 %
51 %
% SYM 52 %
% SYM 53 %
% SYM 54 %

NOT(..132150)
NOT(..182162)
QR(..157116,.
AND(..187127,
AND(..182150,

NOCF(..177080)
, .186060) % SYM
NOCF(..174015)
NOCF(..167060)
NOCF(..165035)

END$

27 0

OUTPUTS
. FdBck

MATCH.rpt

Name Pin Resource MCell PTerms ! Group ! C 1 ea r ! OE Group
ou’bx0 1 0 CÜNF 26 3/ 8 ! 1 ! VCC
ou bx 1 1 1 CONF 25 2/ 6 1 1 ̂ - I VCC
outx2 9 CONF 28 1/ 4 ! 1 I - I VCC

REGISTERS**
Name

0047033
.0047035
.0047037
.0047039
.0047060
.0047062
u 0047064
.. 0047066
.. 0 60061
.0179059
.0132150

1 .0132162

('INPUTS**
Macs G

"’in Resource MCeli PTerms
FdBck
Group

(9)
(16)
(19)
(13)
(17)
(22)
(23)

(15)
(14)
(12)
(13)

COIF ! . 27- 5/10 :. 1 ; --

MORF 20 1/12 1 7G 1 .0M001N1 -

NORF 17 1/ 8 ! 7G ! .0M001N1 -

MORF 18 1/ 8 ! 7G 1 .0M001N1 -

NORF 19. 1/ 4 7G i .0M001N1 -

NORF 11 1/ 8 ! 8G 1 GND -

NORF 10 1/ 4 • ! 8G Î GND -

NORF 16 1/ 8 5G ! GND --

NORF . 15 1/ 8 .! . 5G 1 GND
COIF! • ■ 21 1/4: •1 3 - 1 ■ - -

COIF! . 22 5/10 ! 3 ! - -

COIF ! 24 4/ 6 3 1 ~ -

COIF! 23 3/ 8. 3 ! ~ -

Clear ÜE Group

P i i-i R e s o u r c e M C ell P T e r- rn s

'ART
/23/

FdBck
I Group

: 1 oc k 1 CKR •—* I —
hnl INP , - : —hn2 4 INP — ■ — !
ill": 3 3 INP ■ — 1 ~hn4 2 IMP - -- - ! -xn 6 INP _ — 1 . -

:ED RESOURC::ES**
FdBck

N a m e P i n Resource MCell 'PTerms 1 Group
- 21 MCELL 12 8 ! 8G- 24 MCELL 9 : 12 I 8G- 25 MCELL 8 4 ■ 1 2

26 MCELL 7 . 10 1 2- 27 MCELL 6 8 ! 2.... MCELL 5 6 1 2
- 29 MCELL 4 6 4
- 30 MCELL 3 8 ! 4
-- 31 MCELL 2 10 1 4- 32 MCELL 1 4 ! 4-• - MCELL 13 8 . ! 6Gf

"
MCELL 14 8 ■ 1 6G

UTILI ZATION**
iMacroCel1

Input Pin
-’T. :..:s

s (57%)
S (100%)
ed 27%

271

Clear OE Group

Clear ' OE Group
GMB
GND

Macrocel; Interconnection Cross Reference
FEEDBACK 3: M M M ;v| M M M M M M M M M !4 M1 1 1 1 1 1 1 2 2 2 2 20 1 5 6 7 S 9 0 . 1 2 3 4 5 6 7 o.0047062 . NORF 0Ml#-> :f:
.0047060 " NORF 0Mll->
.0047066 NORF #M15-> :}:.3047064 NORF 0M16-> " " “ - . - :{■: :{: . :{;
.0047035 NORF #M17-> *
.0047037 . NORF 0M18-> . - * :K.0047039 . NORF 0M19-> ••f: •i:.0047033 “ NORF 0M2®--> . « - •u u . n

.0160061 COIF 0M21-> X.0179059 . COIF #M22-> X XY 0182162 . COIF #M23-> X .X "f10182150 • COIF 0M24 - !> X X . “ " - .
F-itx 1 .. CONF 0M25-> X Xi-utxC . „ „« CONF #M26-> X X
|2 ------ COIF #M27-> X X ...
U..itx2 . . „; " COlvF #M2S-> i

(23)

(19)
(15)
(17)
(16)
(15)
(14)
(13)
(12)
(ail
0 1 0
(9)
ÿS

I -. 4 INP $2 -> *
INP 03 “ !> •

n2 ___________ INP (%4 ■i-
P-̂........ INP (3.5 ~>
h INP (3.6 ... - ••f: " " " • " »
) o o s o

lit 0 0 0 0 0 0 0 .0 0 0 0 u u 2 u! 0 0 0 0 . 0 0 0 0 , 1 1 1 1 t t t4 4 4 4 4 4 4 4 6 7 8 8 X7 7 7 7 7 7 7 7 0 9 2 2 1 0 20 2i 0 0 iZi 0 0 0 0 0 1 16 6 6 6 3 3 3 3 6 5 6 52 0 6 5 7 9 3 1 9 2 0

272

