
Open Research Online
The Open University’s repository of research publications
and other research outputs

Nostrum: Constraint Directed Diagnosis
Thesis
How to cite:

Nuttall, Simon (1990). Nostrum: Constraint Directed Diagnosis. PhD thesis. The Open University.

For guidance on citations see FAQs.

c© 1989 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

1

1

1

J

J

UMRESTRIcreJ}

] NOSTRUM:
1 Constraint Directed Diagnosis

Simon Nuttall

Thesis submitted in partial fulfillment of
requirements for Ph.D. in Artificial Intelligence.

HCRL Technical Report No. 62
May 1990

A bstract: This thesis describes the design, implementation and use of
NOSTRUM, a computer program that diagnoses faults in electrical and
mechanical devices. The diagnosis is driven from a model of the
components of the device. The model itself represents the operating
principles of the component parts of the device. By choosing to model the
operating principles on a constraint based system it is easy to predict the
consequences of infringement of those operating principles, and also to
back propagate from an observed symptom to a hypothesized fault.

NOSTRUM interacts with the user, proposing tests to perform on the
device and asking if the predicted consequences of a hypothesis are
observed. NOSTRUM allows experiential knowledge in the form of fault
models to be added to modify and speed up its search strategy.

A.t a general level NOSTRUM can perform diagnosis in novel situations,
pinpointing a break in the structure of the device whilst not necessarily
being able to describe the nature of that break.

Keywords: Fault Diagnosis, Constraint Propagation.

^ Mxhrr\icyàLOr\j t S^teti\éxiy

ProQ uest Number: 27758417

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

in the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 27758417

Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

Ail Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106 - 1346

]
]

1

]

n o str u m (nos'trsm) rr. IL., ours] 1. a
quack medicine 2. a pet scheme for
solving some problem

J

] .

]

]

]
]

].

]

] .

Contents

1. Introduction ...1
1.1. Motivation.. 2

1 .2 . Overview........... 3

1 .3. Organization..5
2. Capabilities of Existing Techniques...................................... 7

2 .1 . Representing Device Behaviour..7

2 .1 .1 . Diagnosing Multiple F aults .. 7

2 .1 .2 . Constraint Suspension... 13
2.1.3. Qualitative Diagnosis.. 19

2 .2 . Qualitative Reasoning... 21

2 .2 .1 . Confluence Based QR... 22

2 .2 .2 . Qualitative Process Theory... 26
2.2.3. Qualitative Simulation............................ 31

2.2.4. Helix - An example of the use of QSIM in diagnostics 33
2.2.5. Summary of Qualitative Techniques.......................................36

2.3. Knowledge based Diagnostic Strategies 37

2.3.1. CRIB.. 37

J 2.3.2. Meta Level Reasoning.. 40

-V 2.4. Summary of Diagnostic Methods.................................4L
3. Diagnosis: A Mixture of Skills.......................................46

3.1. The Skills..43

3.1.1. Fault Recognition.. 47

"I 3.1.2. Symptom recognition... 43

‘ 3.1.3. Tracing... ..

3.1.4. Hypothesize and T est..43

3.1.5. Repair Action... ; 52

J 3.2. The Diagnostic Process...54

6.2.1.1.1. Im plem entation... 107

6.2.1.2. Diagnostic Constraint Propagation........................... 109
6.2.1.2.1. Im plem entation... 109

6.2.2. Using Heuristic Knowledge.. 112

0

n

4. Roots of a Representation...5 8
4.1. Nostrum - Rationale ...59

4.1.1. How it works diagrams..60
4.2. Christmas Tree L ights.......................... 63

4.2.1. Constraint model of a light bulb.............. 64
4.2.2. Circuit Constraint Model........................ 67

4.2.3. The Switch Constraint Model............... .69
5. Using Nostrum to Diagnose Christmas Tree Lights ..71 , 1

5.1 . Defining the Device Structure .. 71

5.2. Transfer to a Frame Language..72

5.3. Production rules interpret circuit Structure..............................74

5.4. The Constraint Model is built...74

5.5. Initializing the Model..76
5.6. Describing the Symptom.............................. 78

5.7. The constraint model generates hypotheses..............................78
5.8. NOSTRUM requests the user to perform tests 82
5.9. A Repair action is suggested..86

6. Implementing NOSTRUM.............. 88
6.1. Circuit Buff....................................... 89

6 .1 .1 . Using Circuit Buff to Draw the Christmas Tree light set.. 90
6 .1 .2 . Defining your own icons.. 94

6.1.3. Behind the Scenes...96
6.1.4. Defining Constraints .. 97

6.1.5. Concoctions............................. 100

6 .2 . The Solder Knowledge Base..102

6 .2 .1 . Constraint Propagation in Solder.. 106
6 .2 .1 .1 . Causal Propagation... 106 L

D
0
0

D
D
U

7. Application of Nostrum to other domains..................114
"] 7.1. Diagnosing a Car Starting Mechanism....................................114

7.1.1. Case 1: Engine turns over weakly...119
7.1.2. Case 2: Engine Does not start.. 132

7.2. Doorlock.. 134
 ̂ ‘ 8. Conclusion...140

8.1. Sum m ary............. 141

 ̂ 8.2. Implication for Explanations... 141
8.3. Lim itations...142
8.4. Future Work.. 143

 ̂ 9. References.. 145

]
] .
1

]

]

]
1

1

]

1

Acknowledgements

Many people have had to put up with me during the production of this thesis.
The main sufferers are the members of the Gardiner Building at Walton Hall
and the residents of Tinkers Bridge.

But in particular I would like to mention:
J

Marc Eisenstadt for providing a ‘hackers paradise* at the Open University, and
his light handed approach to supervision.

John, Tim and Enrico for their guidance on the ‘AI style*.

Jitu and Arthur who were going through the same agony as myself during the
completion of this thesis.

Rae Sibbitt for making encouraging comments on earher draughts of this
thesis.

Hank Kahney and his sons for providing a wealth of displacement activities.

Tony Hasemer for many cups of tea!

John Watkins for sharing an interest in pool and old cars.

Tony Willoughby for several useful discussions regarding the content of the
thesis.

Clive Bailey who unwittingly taught me a lot about diesel engines and fault
diagnosis.

The members of KEG.

The other residents of the Gardiner Building for providing a link to the real
world.

Scientia for letting me use their machines in the final stages of preparation of
this thesis.

Maradona for knocking out England in the 1986 World Cup and enabling me to
win the Gardiner Building sweepstake.

This research was supported by a Science and Engineering Research Council
CASE award in collaboration with British Telecommunications PLC and The

I Open University. The work has been carried out within The Human Cognition
J . Research Laboratory, at Walton Hall, Milton Keynes.

I should also like to thank Sperry (now UNISYS) for providing an Explorer lisp
machine on which early work for this thesis was done. Bill Pilgrim provided
several interesting domains which got me started in the area of knowledge
engineering. *

I should also like to thank my cat Sushi for showing up and having kittens:.
Eric, Emma, Harry, Nelson, Peshwari, Tikka and Dansak.

]

1

]
]

Dedication

This thesis is dedicated to all the devices that have been thrown away that could have been repaired.

]

].

]

]

1

] ■

]

Chapter One

Introduction

Most faults are frustratingly simple, yet the study of fault diagnosis
is interesting because it challenges our understanding of the way
devices work. NOSTRUM is a computer program designed to perform
fault diagnosis on a range of electrical and mechanical devices. One of
the primary goals of NOSTRUM is to diagnose a device from an
understanding of the operating principles of its components and as such
the challenge is to find a representation of the behaviour of devices to
facilitate this.

Fault diagnosis has often been the driving force of research in
Artificial Intelligence. It fueled the MYCIN [Shortliffe 1976] project

which used approximately 500 production rules to diagnose illnesses in
the domain of bacterial infections. It was dissatisfaction with MYCIN’s
generality and applicability to other related domains that led
researchers into the area of model based reasoning. Several authors

[Bobrow 1984] devised various qualitative representations (see chapter 2)
"1 that simulated and envisioned the behaviour of physical systems whilst

at the same time being heralded as 'the way experts think'. Problems
^ with the loss of resolution in making qualitative approximations have
 ̂ ‘ obsessed researchers [Raiman 1986, Struss 1988, Kuipers and Chiu 1987,

and Willoughby 1989] and the original goals of diagnostic reasoning
have been lost.

In parallel to the evolution of model based reasoning other

researchers [Breuker and Weilinga 1985, Schreiber et al 1987, Kerâvnou
j Johnson 1986, Clancey 1985] have concentrated on the strategies

experts use to perform diagnosis. Much of this work has studied how

1.1. Motivation

NOSTRUM developed from my dissatisfaction with the way that
others had tried to build diagnostic systems. I did not want to follow the
shallow implementations of rule based systems because in order to

experts organize their knowledge and reorganize it in the light of
experience. Such systems aim to reinforce the psychological validity of
modelling using rule based systems by, for instance generating theories
of explanation. They also approach the problem of limited applicability of
expert systems by defining 'meta-rules' and 'meta-levels of reasoning'
in which goals and strategies of diagnosis can be used in different
domains.

Because of this history few diagnostic systems actually make use of a
'deeper model' to drive diagnosis, and those that do have largely heen
implemented in the well defined areas of digital electronics [DeKleer]
and Williams 1987, Davis 1984.], described in chapter 2. NOSTRUM is
unique in working from the symptom described by the user back along
the causal pathways in a device to find faults. Fundamental to the
operation of NOSTRUM is the model of the device. To achieve a model
that can both simulate the behaviour of the device and work back from a
symptom to find a fault NOSTRUM is novel in its use of the operating
principles of the components. These operating principles are
implemented with a constraint network. NOSTRUM views faults as

infringements of the operating principles rather than as specific
breakdowns. So rather than saying that a car's fan belt has snapped
NOSTRUM will say that the power link between the crankshaft pulley
and the cooling system has failed. NOSTRUM does allow associations
between faults like that just described and past experience, but by
offering diagnoses in this style is able to cover a wider range of cases.
For instance, in the preceding example, the fan-belt may not have
actually broken, and instead the pulley that drives the cooling system
may have started to slip on its spindle.

D

[

1

implement them all possible diagnoses have to he listed beforehand. By
doing that, one can only diagnose the device in those ways and it seems
that the program is not doing any work, just pattern matching. Systems
like that cannot cope with new situations or invent novel diagnoses.
However it appears that there should be a place for heuristic based
knowledge in a good diagnostic system. Such knowledge helps speed up
diagnosis.

Some diagnostic systems [eg. Helix see section 2.2.5] choose to ignore
the symptom description given to them and try to reproduce the faulty
behaviour of the device by systematically assuming each element in the
model is the cause of the fault. Such systems simply assume the device

J has 'gone wrong' and try to isolate the faulty part to a replaceable unit
somewhere in a structured description of the device. A lot can be learned
from the symptom description. On telling a car mechanic about a new

1 noise developing in the engine they will often ask questions like 'Does the
noise only appear at high revs?', 'Has the noise been getting gradually
worse?' or 'Does it only happen when you are in reverse gear?' and so
on. Subtle differences in the observed symptom greatly affect the way a
mechanic starts to look for faults.

NOSTRUM is a computer program designed to avoid these
deficiencies. By using a model of the device being diagnosed, NOSTRUM
can pin-point faults that may never have been suspected before. The

] model is sufficiently versatile that descriptions of the symptom help
direct Nostrums' search strategy.

' 1.2. Overview

J This thesis proposes that fault diagnosis in any domain and in novel
situations can be performed by analysing the operating principles of the

J components of the device. The operating principles of a component
define its behaviour, for instance they describe how a light bulb's J brightness increases with voltage, and that beyond a certain voltage the
bulb will fuse. The operating principles capture the physics of the

n

component and describe its interactions with other components. In
Nostrum the operating principles are modelled using a system of H
constraints and constraint propagation. This has three advantages for
doing fault diagnosis. Firstly the constraint mechanism can simulate 1
the device, enabling consequences of a hypothesized fault to be predicted
and compared with the real device. Secondly the constraint mechanism '
provides a means of following causal pathways from the manifestation
of the symptom towards the fault. Finally the constraint models form a
library of building blocks that can be connected together to represent the
behaviour of any device. _

Diagnosis of a device using NOSTRUM is a series of operations. _
1

Firstly the structure of the device is drawn in a graphical interface. The L
user draws icons from a palette that represents a library of components p
whose operating principles are known to NOSTRUM. The icons are
placed on the screen and connected together with links. Next NOSTRUM

uses pattern recognition rules to identify components and sub-systems of
the device for which it knows the operating principles. When these have
been identified NOSTRUM builds a constraint model of the device by
assembling known constraint models of the components. The final effort F
of the user is to set up the constraint model of the device to reflect the
state of the actual device. NOSTRUM then starts to do diagnosis from the
point at which there is an observed difference between the real and
modelled devices.

The search element of the diagnostic process is a local propagation
around the constraint network of the observed difference between the
actual device and the model. As the new values are proposed, by
NOSTRUM, for nodes in the constraint network that might explain the
difference, the effects of the new value can be explored. For instance if

NOSTRUM is trying to explain why a car won't start and it is testing the
idea that the petrol tank is empty then it will also expect that the fuel
gauge has a zero reading. In practice these avenues are followed up by

[

]

1

1
J

creating hypothetical worlds in which the node has the hypothesized
fault value.

By asking the user about observable or testable values Nostrum is
able to pick among the hypothetical situations those which can explain
the fault. Some predicted fault values may coincide with known failure
modes of certain devices, for instance, if a voltage is proposed to be zero
this can be explained by a flat battery. Such cases are suggested to the
user who may accept or reject the hypothesis. Rejected hypotheses cause
NOSTRUM to propagate further around the constraint network until an
explanation can be found or until propagation comes to an end.

Nostrum doesn't claim to always find the fault in a device. The cases
in which it can't are those in which the device has broken in such a way

that the structure of the device is radically changed. However it can

usually pin-point the location in the device where the fault has occurred.
For example it will be able to recognize that force isn't being transmitted
through a lever although it won't be able to explain as to why.

Nostrum requests the user to make measurements on the device.
However the tests it decides to ask the user to do depend upon how easy
they are to perform and how significantly the test will split the search
tree.

This thesis shows how Nostrum has been applied to three diagnostic
problems: A Christmas tree light set, a doorlock and the starting system
of a car.

1.3. Organization

Chapter 2 of this thesis describes work already done in the area of
fault diagnosis. Systems, highly algorithmic in nature, are described
that have been devised to do fault diagnosis in digital electronics. There

J are also examples of knowledge based systems that attempt to model the
inferences of an expert in making a diagnosis. I also discuss the

] introduction of qualitative representations of device behaviour.

]

]

n
J

J

In chapter 3 I begin to discuss some of the motivations behind the
design of NOSTRUM - what are the steps in a diagnosis and what H
demands those steps make on a representation of devices. This process
is continued in chapter 4 where examples of the representation are
given.

Chapter 5 describes in detail how NOSTRUM is used to diagnose a
simple set of Christmas tree lights. The implementation details and
explanations of NOSTRUM'S constraint propagation procedures are ' J
described in chapter 6. Chapter 7 describes how NOSTRUM can be
applied to other domains and Chapter 8 concludes.

D
D

D
0
n
u

D
D

]
] Chapter Two

Capabilities of Existing Techniques

In the coming sections I describe some of the representations and
techniques that have been used to model devices for diagnosis. To begin
with I review the work on functional representations of devices. The
examples used by workers in this area are usually taken from the
domain of digital electronics where the motivation is to diagnose faults
in VLSI chips. Section 2.2 describes approaches to qualitative modelling
of device behaviour. Finally I look at the efforts of various workers to
model the strategies experts use in diagnosis.

1
J 2.1. Representing Device Behaviour

Devices can be represented as a hierarchy of sub-devices. Each sub
device can be regarded as a black box which takes some inputs and
produces various outputs. Electronic devices are particularly amenable
to this type of modelling and some techniques are described below.

] 2.1.1. Diagnosing Multiple Faults

"■ DeKleer and Williams [1987] have shown how an Assumption Based
Truth Maintenance (ATMS) can be used to find multiple faults in

1 electronic devices. A functional model of the device is defined, consisting
of a set of constraints which define the behaviour of each part of the
device. A constraint is a mechanism used to compute the inputs and

outputs of a ’black box’ of known functionality. For instance Figure 2.1
shows a black box which adds the values at inputs A and B to produce
the sum at C.

Al
n

iThis phrase has different interpretations in different applications, see [Stefik

1981], where propagation refers to propagation of the constraint itself through a

planning network rather than propagation of actual values.

B

Figure 2.1. A simple two-input one output black box adder.

So for instance if the value at A is 3, and 4 at B then we expect the
value at C to be 7. Conversely if C is known to be 2 and A has the value 5
then B is expected to be -3. The behaviour of the constraint is to compute
the unknown value as soon as enough information is known at the other
ports. This is known as completing the constraint. Such constraints can
be linked together with 'wires’ so that values derived a t the constraints
are passed as inputs to others. This process is called constraint
propagation^.

Simulation of a target circuit is performed by propagating values
through the resulting network, but a record of which devices have been
used to derive the values is also maintained for each datum see Figure
2.2. (Note: Figures 2.2, 2.3 & 2.5 are screen snapshots produced by the
constraint propagation system Circuit Buff which is described in - C
chapter 6.) n

8
D
D

1

3 USER

2 USER

2 USER

3 USER

3 USER

M l
6 (M l)

Â1

12 (A1 M2 M l)

M2

6 (M2)

Â2

12 (A2 M3 M2)

M3

6 (M3)

Figure 2.2. A circuit modelled with constraints. The circuit consists of
three multipliers, M l-3 and two adders A1 and A2. Values on wires are shown
alongside the information used to derive them. For instance the output of A1
has the value 12 assuming that A l, Ml and M2 are all working.

]
In the circuit shown a value of 12 is predicted at both outputs, F and

G. However measurement on the real circuit might give the value 10 at
F. This fact is then asserted at wire F, noting that the fact has been
measured by the user. This causes a propagation of values around the
circuit according to the rules of constraint propagation to give the state
shown in Figure 2.3.

3 USER

2 USER

2 USER

3 USER

3 USER

M l

M 2

M3

4 (A l M 2), 6 (M l)

A l

10 USER, 12 (A l M 2 M l)

4 (A l M l) , 6 (M 2)

A2

10 (A2 A l M l M 3), 12 (A 2 M3 M 2)

6 (M 3)

Figure 2.3. The state of the circuit model after observation that F=10. Wires
are now shown with more than one potential value - depending on which sets of
assumptions are believed.

J

n

To generate these values the constraints have behaved as follows:
"The value at F is 10, this is in contradiction to the predicted value of 12 H

which assumes {Al Ml M2). So either Al is faulty or one of the inputs is wrong.

Assuming A l, and M2 are working then I predict a value of 10-6=4 at X.

This value is in conflict with the value 6 at the output to Ml, so either Ml is

broken or its inputs are wrong. The inputs to Ml are user-measured and so

have to be believed; constraint propagation down this channel halts.

Assuming A l, and Ml are working then as above I predict a value of 4 at Y. ' ” |

This value cannot be back propagated through M2 because its inputs are user

asserted, but the 4 on Y can propagate with the 6 at Z to predict a new value of 10

at G with assumptions (Al Ml A2 M3)."

The work of the constraint propagator is merely to produce the new
values and the assumptions associated with them. The ATMS generates
candidates by analysing which combinations of correctly functioning
devices lead to inconsistencies. For instance from the above discussion it
is apparent that not all of (Al Ml M2} can be working simultaneously as
this allows deduction that X=6 and X=4 (among other contradictions).
This constitutes a conflict set. Any superset of this will also be a conflict
and so the root set is often referred to as a minimum conflict set.

Diagnosis with the ATMS is an incremental process and the conflict sets
produced after various observations are used to produce candidates.
This is known as candidate generation:

"... any previous minimal candidate which does not explain the new

conflict is replaced by one or more superset candidates which are minimal

based on this new information. This is accomplished by replacing the old . C

minimal candidate with a set of new tentative minimal candidates each of

which contains the old candidate plus one assumption from the new conflict."

[DeKleer and Williams 1987 pi 04-105.] p

Before measurement that F=10 there were no known candidates and L
the minimal candidate was {}. Measurement produced the conflict set r
(Al Ml M2} and so according to the candidate generation mechanism

10

D
D
D

D

]

]

this leads to the minimal candidates (Al), (M2) and (M3). The candidate
space is shown in Figure 2.4.

(A1,A2,M1,M2.M3I

[A1.M1,M2.M31 (A2,M1,M2,M3I [A1,A2,M1.M21 [A1,A2,M1,M3I [A1,A2.M2.M3I

[M1,M2,M31 [A1,M1,M2I (A2,M1.M2I [Al,M 1.M 3l [A2,M1,M31 [A1,M2,M31 (A1,A2.M1J [A2.M2,M3I [A1.A2.M2] [A1.A2.M31

IM1,M2I [M1,M31 (A I.M Il

Cl &C2

Cl: < A 1 ,M 1,M 2>

C2: <A 1,A 2.M 1.M 3>

Figure 2.4. The candidate space after measurements. [DeKleer and
Williams 1987 p i05.]

G is then measured and 12 is observed. The circuit is shown again
Figure 2.5 after this value is asserted and constraint propagation has
taken place.

in

11

M l
3 USER

2 USER

2 USER

3 USER

3 USER

4 (A l A2 M 3), 4 (A l M 2), 6 (M l)

A l

M2
10 USER, 12 (A l M2 M l)

6 (A2 M 3), 4 (A l M l) , 6 (M2)

A2

M3

a

12 USER, 10 (A2 A l M l M 3), 12 (À2 M3 M2)

6 (A2 M 2), 8 (A2 A l M l) , 6 (M3)

Figure 2.5. The circuit after G=12 is observed.

This produces the new minimum conflict set {Al A2 Ml M3}.
Candidate generation produces the new candidates {Al}, {Ml}, {A2 M3}
and {M2 M3}. Thus we have the situation in which the ATMS is

predicting that multiple faults can occur; after all from the structure of

the circuit if M2 is outputting an erroneous value then something else
must be wrong to compensate for the difference between the values
measured at F and G.

Diagnosis continues by making successive measurements and
inserting them into the model until the candidates are reduced to one
set. DeKleer and Williams have developed à ’minimum entropy’ method
for determining the best measurement to make next. However this
method assumes that each measurement incurs equal cost which is not
practicable in many situations where components are sometimes
difficult to access or where special test equipment has to be used.

DeKleer and Williams claim that the candidate generation
mechanism eliminates the need for faults models because

"... if a component's behaviour is inconsistent with its model, then it must

be faulty. This results in a domain independent diagnostic technique."

[DeKleer and Williams page 112.]

Fault models are useful because they predict the presence of
symptoms other than the ones observed and can be used to find

12

n

n

D
Q
D

D

0

D

C
G

1
J

n
J

]

problems. Not all devices can simply be replaced. Take the case in which
an electronic gate is actually functioning properly, but that candidate
generation has pinpointed the gate as faulty because there is a short
circuit where the chip has been soldered to the printed circuit board.

Replacement wouldn't help. DeKleer and Williams would argue then
that the wires would have to be modelled too. Ultimately every aspect of
the physics of wires, and the structure of the circuit board would need a
representation. No, diagnosis is no good unless a reason can be given for
replacing a part. By having the reason we know how effective the action
we take can be, and the problem the action is supposed to address, then
if nothing happens at least the reason for the action can be examined to
see if there was some way in which the action could have missed a
probable cause of the problem. The ATMS is no doubt useful for

narrowing down the search but it is clear that other techniques have to
be used where tests cannot easily be made and where the device varies
its behaviour over time.

It is interesting to note that the constraints do not imply any form of
causality about the model. The act of back propagating from an

erroneous observed value is permitted because the output value could
only be achieved if the input was that predicted by the constraint
propagation. Some devices are multi-directional, ie they can transmit
signals either way through them so eg. an adder could work as a
sub tractor. This point illustrates an interesting deficiency among
modelling with constraints, because often when a device breaks its
output is merely a dead value, such that it is not possible to back

propagate to say what the inputs are. Ie. it is multi-valued in reverse.
Back propagation is then impossible unless you allow inputs to take
values from a range.

2.1.2. Constraint Suspension

Randy Davis [1984] has built a system that reasons diagnostically
from the structure and behaviour of a device. He sees that diagnosis can

13

0
n

only be done if there is knowledge of the causal pathways that make up Lj
the device. The most obvious causal pathways are the functional r
connections between modules of a device such as wires in an electronic
circuit. However physical adjacency of components is an important T
consideration because components can interact thermodynamically,
electromagnetically etc. in ways that haven't been anticipated by the p
designer. The structural organization of a device therefore has

important implications for the ways in which the device can fail. There ̂ ^
are other causal pathways through which modules can interact (eg.
water spraying at high pressure onto other components) but ^

representing them all is an impossible task. This raises the question of
complexity versus completeness because some diagnoses won't be []
possible unless all causal pathways are known.

To solve this problem Davis categorizes the types of failure that can
occur. Initially only faults in the functional description are considered.

These include adders giving a wrong result and loose wires on inputs to
components. If these types of fault don't produce a diagnosis then the r
next category of failures is considered. This second category allows for
small changes in the structure of the device, such as accidental links 1
between adjacent wires, commonly known as bridge faults. Again if no
diagnosis is possible further categories are taken into account. The Q
categories are taken in order from the following list:

• localized failure of function
• bridge faults
• unexpected direction p
• multiple point of failure
• interm ittent error \j
• assembly error *
• design error ̂ L

D
0

14

1u

]

The order of the categories can be gleaned from an expert, and will
vary between different circuits and devices. The contents of the list will
vary between different types of devices.

The consequences of these deliberations are manifested in the choice
of representation. A functional and structural hierarchy is chosen.
Functionally devices are represented by interconnected constraints or
black boxes. The representation is much like the series of commands
one would issue in order to construct the device.

The constraints are used to simulate the values of inputs and outputs
in a circuit. Davis is careful to distinguish between simulation and rules
which allow us to model the inferences we make about a device. That is
if there is an adder in a circuit the simulation rule predicts the value of
the output from the inputs, but given an output and an input we can

infer the other input by subtraction. The constraint network used has
two independent components, one for each type of inference. The
networks also keep track of dependencies, each slot keeping track of the
rule that mentions that particular node. This helps in doing

hypothetical reasoning and is fundamental to the discrepancy detection
approach to troubleshooting.

The traditional approach to troubleshooting digital circuitry is path-
sensitization. A suspected fault is forced to reveal itself by choosing a set
of input values such that the output depends only on the suspected unit's
functionality. If the output isn't what was anticipated, then the

suspected unit is faulty (probably). It may require a few sets of inputs
_ - output values to narrow the set of possible candidates down to the

suspected unit before one is sure about the condition of the suspected
- . ^nit. The algorithm that generates the tests is called the D-algorithm
-J [Roth 1966].

- Diagnosis though is not simply a matter of test generation - that
activity is reserved for verification of the way devices work. Diagnosis
means the generation of a set of candidate parts from some observed

15

nsymptoms. In response to these problems Davis's method uses LJ
Discrepancy Detection and Candidate Generation. n

Any difference between measured values and values inferred by the
simulation is a discrepancy. The dependency information carried by the f~
constraints enables a trace back along the causal pathways to produce a
list of candidates that can cause the discrepancy. - H

Candidate generation happens in three stages: i) First simulate the
circuit and collect the discrepancies, ii) use dependency information to T
collect possible candidates and iii) suspend the constraint of each
candidate in turn until a globally consistent state is achieved. []

When the constraint of a candidate is suspended, its simulation rules
are removed from the model. If the device was faulty the contradiction L.
caused by the conflict between the simulation rules and the observed ^
values will be removed yielding a consistent state. So if removing the U
simulation rules of a candidate produces a consistent state it is likely p
that the candidate was faulty. t J

Suspending the constraints of a component is tantamount to saying r
you have no idea what it is supposed to be doing, it could have failed
anyhow and so the method can detect any type of device failure. But, H
what if the fault is not a break in a component, but a change in the
structure of the device, as Davis puts it: P

Put simply, the virtue of the technique (candidate generation) is that it

reasons from the schematic; the serious flaw in the technique is that it reasons

from the schematic and the schematic might be wrong."

[Davis 1984 p.369] 1
Of course the reason for this is that the behavioural description

allows only for one type of interaction pathway. There are many others, U
indeed problems never previously encountered often display previously ^
unimagined causal pathways. Accounting for all causal pathways is an U
infinite task, yet it is the only way that all faults can be explained p

L

16
G
[

Humans cope extremely well with new problems and Davis takes heed
from this.

The attempt to get round the problem involves sacrificing the
assumptions that have been made. If an attempt at trouble shooting
doesn't work with the behavioural description then the assumptions are
systematically dropped. The first one to go may be the assumption about
the schematic and the new model allows for bridge faults. If a
contradiction is still obtained then other assumptions have to be
dropped, such as the direction of signals through wires etc. The
assumptions represent categories o f failure and are linked to the
engineer's knowledge of what kind of things can go wrong. The order in
which the categories are embraced is dependent on the engineers notion
of what is more likely to go wrong at any point.

To demonstrate the diagnostic strategy Davis chooses a bridge fault.
A bridge fault is an unanticipated connection between two wires on a
circuit board, that happens due to bad solder joins or bent pins on some
chips. Consider again the multipliers and adders circuit shown in
Figure 2.2. When built the circuit board might appear as shown at left in
Figure 2.6.

]
1 CD

Figure 2.6. The circuit of Figure 2.2 as it may appear when constructed.
The multipliers are all contained in an integrated circuit whose pin layout is
reproduced on the right. The pin layout for each adder is shown on the right..

In this case the outputs at f and g are both giving the value 8 whereas
a 12 is expected. Tracing back along the functional pathways produces

17

G

0

the fault candidates: {A1 A2},{M1 M3),{M2},{M3 A1},{M1 A2) (see section
2.1.1 to find out how these sets are generated). Suppose we know that M2 T
cannot be the culprit and we are reluctant to believe that more than one
device can fail. How, then, can the results be explained? The fault could
be due to a bridge between wires C and Y (at left of Figure 2.6), the lower
value being dominant, and so Y would be 2 explaining the results.

Here the problem of a fault predicting simultaneous failures far
apart in the functional representation is explained by a simple bridge
between two wires adjacent in the structural representation.

Davis's own example represents more than one level of the structural
and functional hierarchies and it turns out that the fault he describes
can only be explained by looking for bridge faults in the second level
description.

The work of the Davis team is thorough when applied to Digital
diagnosis but I am sceptical if this is the way that experts diagnose that
type of circuit. To generate the candidates various sets of inputs have to
be chosen, much like the path-sensitization method. At present this
method is done by hand and even if it could be made into an algorithm I
doubt if it would have an application outside digital electronics. This is
because the method requires a wide variation of allowed input values
whereas in most other devices the input is fixed, - it is not useful to try
running a car on water to test if the fuel line is blocked!

Knowing when to allow for a new category of failure is unclear. In
the example I gave allowing multiple faults could explain the behaviour,
but persistence with a single fault assumption and taking into account
bridge faults also generates a feasible explanation. The diagnostic
reasoning described by Davis does not take into account the

consequences of the measurements. It forms no theories that suggest
tests to be made, and any test results that are observed aren't used to

change the current hypothesis, nor to generate a new category of failure.

18

[

[

[

] ■

2.1.3. Qualitative Diagnosis

Hunt [1989] and Price [1989] have built a computer system that
diagnoses mechanical devices. They have developed an object oriented
representation that models the components of a device and can simulate
its behaviour. The representation lists the components of the devices and
describes their initial positions. The behaviour of the components when
subjected to a force are defined by simple rule-like relations. Their
representation uses a qualitative model to describe the positions of
buttons, levers etc. and the strength offerees. Simulation of the device is
defined as propagation of an event through the device. Because of the
qualitative nature of their representation there can be more than one
successor to a state in accord with similar qualitative theories.

The basis of their diagnostic approach is a system of assumptions.

The assumptions are classified as structural, functional and device
related. Structural assumptions refer to the components of the device,
and provide such questions as: Are all the parts claimed to be present
really there? Functional assumptions question whether a part is really

- doing what it is supposed to do, and has not changed its behaviour.
J Finally device assumptions are assumptions on the whole device rather
" than assumptions associated with components or connections within

the device. A normal working device relies on all of the assumptions
being true. Any of these assumptions can be retracted and the resulting
changed device can still be simulated as a 'broken' device.

Diagnosis is in four stages. Firstly the diagnostician Acquires the
actual behaviour of the device. This means the program (which does not
appear to be named) obtains from the user what the device is supposed to—J y
do. In practice this is a list of the successive states of the device.

Secondly the program Generates the causal chain, this is a list of the
^ assumptions associated with every component or connection which had
J . some part to play in producing the actual behaviour. These are identified

from the intended behaviour by comparing the actual and intended

19

behaviours until they diverge. The assumptions on the causal chain are
added to a primary assumption list. The remaining assumptions are
put on a secondary assumption list.

The third step of the diagnostician is Candidate fault generation.
This step processes each assumption in the primary and secondary
assumption lists in turn. This is accomplished by instantiating a model . H
of the device with the assumption retracted and generating a state map
of the behaviour of the possible fault model using the qualitative
simulator. A behaviour matcher is used to compare the predicted and
actual behaviour.

Finally the diagnostician Lists all the candidate faults. All
behaviours that matched the observed or actual behaviours are displayed
to the user. nOne of the drawbacks of this approach is that it makes no attempt to U
study the described symptom. There is no mechanism in the

representation for working back from a symptom description towards
the cause of the fault. This in turns means that the qualitative
diagnostician has difficulty in generating explanations for its search
strategy.

The system restricts the numbers of assumptions that it considers
could have caused the failure to only those assumptions related to the

components that played a part in the intended behaviour. This attempt to
narrow the search space will be very effective if the device breaks early
on in its operation, eg after pressing the first lever. However sometimes
a fault won t manifest in a device until the device has been running for a ^
while, in which case nearly all the components of the device will have
been called upon to perform their duty. This will leave an enormous
amount of assumptions about the device each of which requires
instantiating a model with the assumption retracted. This would he
computationally expensive, and moreover is simply not the way a

20

y

human expert would tackle the problem. Some way of

compartmentalizing the behaviour could help reduce this search space.j
There doesn't appear to be any systematic way of generating the

assumptions about the components of the device. Finally there is no
mechanism for performing tests on the device, which would be another

" way of restricting the search space.

-j 2.2. Qualitative Reasoning

The basic reason for the deficiencies of expert systems outlined in the
I introduction lies in the lack of a representation of the 'commonsense

- J

knowledge' about the real world that people have. People can appreciate
that when a football is kicked it flies through the air, and how liquid
pours from one container into another. They have to confront events like
these every minute of the day, and so they have their own 'people
physics'. An attempt to model some of this 'people physics' is called
qualitative reasoning and takes the form of modelling parameters of a
system such as velocity, volume, temperature with qualitative values.
For instance the temperature of a substance could be modelled by
regions on a number line:-

• • • •
absolute MP BP Infinity
zero

So the temperature of a substance could have the values, 0, (0,MP),
MP, (MP,BP), BP, (BP, Infinity), infinity, where (x,y) means a value
somewhere between x and y. These are the qualitatively distinct values
of the parameter which identify the solid, liquid and gas phases of the
substance. The entire range of values a parameter can take is called the
quantity space of the parameter. To illustrate how qualitative values are
combined to be useful in equations I show below how the simplest
quantity space, {-,0,+} behaves under operations of addition and
multiplication:-

]

J

]
21

- 0 +

- - ?
- 0 +

? + +

- 0 +

+ 0 -

0 0 0
- 0 +

Figure 2.7. Tables showing operations of addition and multiplication over
the simple quantity space {-,0,+}. A ? indicates an ambiguous value which
could be -,0 or +.

In these tables question marks indicate the ambiguity that arises
from the addition of a positive, and a negative quantity. For instance this
might occur when modelling a tug-of-war game. One team pulls with a
force '+' and the other with a force Without extra information such
as the strength or weight of the teams it is difficult to predict the winner.
What is common in these instances is to carry on with all possible
outcomes and offer these as solutions to the problems. Later other
evidence may dismiss some of the proposed solutions.

Using this basic mathematics three principal approaches to
modelling qualitative reasoning in physical systems have been defined.

DeKleer and Brown use a confluence based approach, Forbus describes
his Qualitative Process theory and Kuipers has devised the QSIM
algorithm.

2.2.1. Confluence Based QR

The aim of DeKleer and Brown’s [1984] work is to 'derive function
from structure' for an arbitrary device. They adopt a reductionist
approach in which the behaviour of a device is assembled from the
known behaviour of subparts of that device. The example they use is a
pressure regulator as shown in Figure 2.8. This device can be viewed as
a pressure sensor and a valve working together (Figure 2.9).

c

[
r

[

c

[

- [

22

1

Inlet Load

o

]
Figure 2.8. The pressure regulator as discussed in DeKleer and Browns

paper. Q represents fluid flow, P is pressure and x is the width of the aperture
open to flow.

]

1

]

Valve

LoadInlet

Sensor

I Sump

Figure 2.9 A model of the pressure regulator showing the subparts and their
connections explicitly.

The behaviour of these subparts is defined by confluences. A

confluence is a qualitative differential equation which constrains certain
of the changing parameters of the device. For instance the confluence
for the pressure sensor is:

ax + ap = o.

]

This places a constraint between the pressure, P, and the position of
the valve piston, X. If the pressure increases (ie. 9P = +) then the ‘
position of the valve piston must close (9X = -) in order to keep the
constraint satisfied, and this is what happens in a working valve.

23

[

Similarly the confluence for the valve is written:

ap-aQ + ax = o,

where Q is the flow through the valve. - "j
In their paper DeKleer and Brown suggest that it is possible to

combine these confluences for the subparts to produce a confluence
defining the behaviour of the whole device. To do this it is necessary to

take account of the properties of the materials which link or interface
the subparts. Two conditions are important for liquids: the continuity
condition and the compatibility condition. The former is a version of 1
Kirchhoffs law applicable to liquids and says that any liquid entering a _

1 I 1
conduit must be matched by an equal amount of liquid flowing out of the U
other end. This can be thought of as conservation of matter. The

compatibility condition ensures that the pressure difference between two
points in a network of pipes must be the same irrespective of the path
between them. If it weren't, a flow would occur thereby evening out the
difference. T

Important too, is knowledge of the environment in which the device
is operating. In this case the device is connected to a pressurized load,
but the pressure regulator would work very differently if connected to a
vacuum.

In their paper they don't show how to derive overall behaviour from
the subparts, and in fact they admit most confluences come from an [_
adaptation of a conventional physical model or from a formalization of
one's commonsense understanding of the device. The model for the
pressure regulator has three states:

0
u

a
n

D
D

24

open: [A=Amax], [P]=0, aP=0,
Working: [0<A<Amax], [P]=[Q], aP+3A-3Q=:0,
Closed: [A]=0, [Q]=0, 9Q=0.

- Figure 2.10. In this figure, A represents the area available to flow, P the
pressure at the inlet side to the regulator, and Q the rate of flow of the liquid.

Parameter values determine which state is applicable at the time,
and should the values change, (constrained by the applicable
confluence), the device may change state and a new confluence will

1 determine behaviour. Thus there are two phases of modelling the device
with confluences: intrastate and interstate behaviour. Modelling

intrastate behaviour involves seeing how all parameters change should
one of them change. Modelling interstate behaviour determines the new

1 state of the device if one of the parameters steps outside the range
^ deflned for that state. For instance when heating a container of liquid,

J intrastate behaviour can determine that the temperature of the liquid
will rise (this may be called the heating state). When the liquid reaches

J boiling point the liquid will no longer heat up and the container will
begin to boil dry. A new confluence appropriate to the boiling state would
be needed to model this new state of affairs.

A state diagram represents the possible transitions which a device
can go through during operation. The state diagram for the pressure
regulator in which the mass of the piston has also been modelled is

"shown below (Figure 2.11). Modelling the mass of the piston introduces a
delay in the feedback of the pressure sensor and so oscillations may
ensue. This is seen as a circular route in the state diagram. Modelling
friction would show how these oscillations can decay, with an eventual
transition to a quiescent state.

DeKleer and Brown call their program ENVISION and the

prediction of the various states of the system is called an envisionment.

1

~!

]

J
25

V<0,F>0

V<0,F=0
V=0,F>0

V=0,F=0V>0,F>0

V=0,F<0

V>0,F=0

n

D
n

V<0,F<0

V>0,F<0

Figure 2.11. State diagram for the confluence model of the pressure
regulator in which the behaviour of the spring and the mass of the moving
piston have been accounted for. Circles represent momentary states and
squares are states that last for a period. F represents the force on the piston by
the spring, and v the velocity of the moving piston. The situation in which the
piston is closing whilst still under influence of the spring is captured in state 3.
Some of the states form a ring and this means that the piston could oscillate.

2.2.2. Qualitative Process Theory

Forbus [1984] centres his approach to supplying commonsense
reasoning on the notion of processes. Processes are activities such as
boiling, flying and collision which change the values of parameters of

the objects involved. Here too parameters are described qualitatively and
a process might stop when a parameter moves to the next value in its
quantity space.

A ball thrown into the air would have a velocity parameter with

quantity space {down z e r o u p }. When the ball is thrown up the initial
process is c l im b in g in which v has the value up, but is decreasing

0
D
D

n

26

n

u

0

0

n

n

]

1

eventually becoming z e r o . The climbing process becomes inactive and
the instantaneous process t u r n i n g takes over to describe the motion of
the ball at the peak of its flight. This process too becomes inactive as the
ball begins to drop. A process called f a l l i n g applies in which the
velocity is down and increasing in magnitude. The sequence of
processes, c l im b in g , t u r n in g , f a l l i n g is called a history.

Objects are represented in the QPT by individual-views which
describe the situation of an object. A contained liquid is represented
thus:

Individual View: Contained-Liquid(p)
Individuals:

con a container
sub a liquid

Preconditions:
Can-Contain-Substance(con,sub)

_ Quantity Conditions:
I A[in(sub,con)] > ZERO

Relations:
n There is p, a piece-of-stufF
J amount-of(p) = amount-of-in(sub,con)

made-oflp) = sub
^ container(p) = con

Figure 2.12. An individual view of a contained liquid, such as tea in a
n mug. A[X] means 'amount of X'.
L
^ Each individual view (IV) has four elements. The individuals are a
J collection of objects involved in the model. Preconditions specify relations
''I which must be satisfied for the IV to be relevant. Quantity conditions
J " specify values the individuals must have in order for this view to be

"I appropriate, and relations define various parameter aspects. It is
 ̂ important to note the difference between quantity conditions and

preconditions. QPT can only determine the fate of the parameters

specified in the quantity conditions. The preconditions are those that

describe the structure of the situation and cannot be handled by QPT - for
instance if someone breaks the mug then can-contain-substance(con)

27

J

n
would be violated and a different IV would be needed (if there was one).

The QPT algorithm can only identify when processes start and end due H
to one of the parameters in the quantity conditions moving outside the
specified range.

An important relation in QPT is qualitative proportionality. Denoted
ttq this relation links two parameters such as the level and volume of ̂ P.liquid in a container. The relation merely ties the two quantities together
- it doesn't say how they vary with respect to each other, just that if one " T
changes then so must the other. Two refinements are ttq+ and ttq., which

describe monotonically increasing and decreasing effects respectively. Q
Such relations represent causality in the process - the observed effects of ^
one variable changing due to another. Such relations are merely L
formalizations of observed effects.

To represent how things change Forbus describes processes which
act on the individuals. Like individual views, processes have p,
preconditions, quantity conditions and relations, but in addition each
one has a list of influences - what objects in the process are doing to ^
some of the parameters. Figure 2.13 is an example of the heat flow
process suited to a description of heating a saucepan on a stove. Q

]

D

n
L

Ü

[]

D

28

1

1

]

]

]

1

J

Process: Heat Flow
Individuals:

src an object, Has-Quantity(src, heat) ;Source.
dst an object, Has-Quantity(dst, heat) ;Destination.

J path a Heat-Path, Heat-Connection(path, src, dst)

"1 Preconditions:
_ Heat-Aligned(path)

_ Quantity Conditions:
I ‘ A[temperature(src)] > A[temperature(dst)]

Relations:
Let flow-rate be a quantify
A[flow-rate] > ZERO ;Temperature at source

;greater than at destination,
flow-rate ttq+ (temperature(src) - temperature(dst))

Influences:
I-(heat(src), A[flow-rate])
I+(heat(dst), A[flow-rate])

n Figure 2.13. A description of the Heat-flow process. A[x] refers to the
J amount of x, and I+(x,y), I-(x,y) are influences which tend to increase or

decrease parameter x with increasing y, and vice-versa.

Change in QPT arises out of direct or indirect influences. Direct
influences are only specified in processes such as the tendency to
increase the amount of heat at the destination in Figure 2.13. Indirect
influences come from parameters related by qualitative proportionality
to directly influenced quantities. For instance if I blow down a horn I

can only directly influence the speed of the air - the volume increase
results from the greater vibrating reed amplitude which is due to the
faster air flow.

Because parameters can change either as a result of a direct or
indirect influence they can move to a qualitatively distinct state (ie. move
to a different value in the quantity space) in which case the current

individual view is inappropriate or the current process instance doesn't
accurately reflect the state of affairs. When this happens the individual
views and process instances become inactive and new ones apply. This

is the case, for instance, when a liquid stops increasing in temperature
and begins to boil. Initially it is modelled by a process in which one of the

29

J

ri

n

D

influences describes the temperature of the liquid as rising, and when it
boils another process describes the influence as reducing the amount of H
liquid due to evaporation, but not increasing in temperature. Eventually
the individual view of the contained liquid would be inappropriate H
because the container would boil dry. Every such change in QPT occurs
as a result of a process, and new processes needed to describe a changed
situation are drawn from a process vocabulary. This process vocabulary
needs to be fully specified if complete modelling of a situation is to be
performed. QPT can't generate its own process description to describe
unanticipated states.

The way parameters change in QPT is via their Ds values. This is the
sign of the representation of the qualitative derivative of the parameter.
A value of 1, 0 or -1 means that the value is increasing, unchanging or
decreasing respectively. Limit analysis is the technique used to find U
what happens when one of the parameters moves to a different value in
the quantity space. It involves extrapolation of the behaviour of

parameters by examining their Ds values. A parameter whose value is P
increasing will eventually move to the next point in its quantity space,
and when this happens the current process instance may become Q
inactive, and new ones apply. This is the source of ambiguity in QPT
which can occur in 3 ways: Q

(i) Parameters can have more than one neighbour,
(ii) more than one process can become active, and j

(iii) more than one parameter can change at any one time. ^
The active processes at any time make up the process structure, and . J

process histories describe what is happening when. Processes interact ^
via shared parameters and the set of processes which can affect a , U

situation are called p-components.

Forbus would like QPT to become a language for behaviour' in which
processes are the primitives and p-components and encapsulated

histories are compound forms. P-components are two or more processes

n

n

□

Da
30

that can interact because they all have an influence on the same
1 parameter or parameters, as though all the processes in the p-
J

component were behaving as one new process. Encapsulated histories
summarize a behaviour over a period, in which there may have been

many processes and individuals involved. An encapsulated history is
! thus knowledge of a sequence of behaviour which can be used again if

the appropriate preconditions for it are met or the situation which led to
J ̂ its being exists again.

Encapsulated histories are used by humans to understand events like
J bouncing. When we picture a bounce we imagine objects moving

towards each other, colliding, and finally moving away. As our
J experience of bounces grows we leam to distinguish between different

types of bounce such as elastic, inelastic, absorption or collision. If we
need to explain what happened in a bounce we can unwrap the

J encapsulated history for 'bounce' to see how the outcome depends on the

individuals and preconditions involved. See [diSessa 1983 page 23] in
“I which she discusses how people learn these phenomenological

primitives or p-prims and how they are used to explain events.

1 Forbus's encapsulated histories are too specific to allow the flexible
analyses just described but represent an important step in this direction.
I think that similar techniques would be useful in describing commonly
encountered units or mechanisms in devices. Eg. an electrical circuit
requires a source of voltage, and a circuit loop, but does various things
according to what lies on that loop.

" 2.2.3. Qualitative Simulation

J Kuipers [1984] makes the same underlying algorithm, present in
both ENVISION and QPT, more explicit in his qualitative simulation

J (QSIM). The structural description of a physical situation is defined by
placing qualitative constraints between variables in the model to produce

] ^ qualitative differential equation (QDE). The qualitative constraints

]
n
J

a

include add, a qualitative version of addition which ties three variables
together: f

L

(add a b c) ; c is the qualitative sum of a and b. F

For example working with the simple quantity space {-,0,+} and
assuming a and b are known then c can be calculated from this table:

— — 0 0 0 + + +

0 + — 0 + — 0 +

r

[

c

— — 0 + ? + + _

Figure 2.14. Qualitative addition for simple quantity space. A ? indicates
the value is ambiguous and could be -, 0 or +.

In the table a ? indicates that the value could be -, 0 or + and in QSIM

all three values are used and so the reasoning splits three ways. Similar C
tables exist for the cases in which a and c, and b and c are known
allowing deduction of the third variable. In QSIM variable values are
usually represented as a pair like (+ in c) if the variable is “plus and p
increasing”. The second term refers to the way the variable is changing “ ^
over time and can also have the values s t d (steady), d e c (decreasing) p

and n i l (direction unknown). Qualitative constraints which use the
measure of change variable include M+, M- and d / d t . M+ and M- place a
monotonically increasing or decreasing constraint between two

variables and d / d t links one variable to the rate of change of the other,
eg. speed to distance.

In the QDE a minimum number of variables need be specified so that
the constraints can be used to fill out the other values, this is called
completing the state. Also specified in the QDE are the ranges of certain
variables for which the QDE is applicable. Simulation is performed by

seeing which variables are increasing or decreasing towards their next L
(landmark) value in the quantity space (also specified in the QDE). When ^

L
32 c

u

r'k—

L

1

]
1

a variable does move to the next value in the quantity space then other
variables may be affected due to the constraints within the QDE, or a
transition may occur and a new QDE apply. If two or more variables are
both heading towards a landmark value then there will be ambiguity
over the next state as it will be impossible to tell which will reach its
landmark first, and so reasoning has to be done with the three resulting

^ cases - one case where a variable reaches its landmark value before the
J ' other, vice versa and the case in which both landmarks are reached

simultaneously.

Kuipers algorithm, now at a sophisticated level of development, can
automatically generate its own landmark values for parameters when
the rate of change of a variable becomes zero. This has the advantage of
facilitating testing for oscillations in a system - one of the ways in which
QSIM can terminate.

Simulation is carried out until no more transitions can be found, a
quiescent state is reached or a cyclic oscillation identified.

2.2.4. Helix - An example of the use of QSIM in diagnostics.

H e l ix [H am ilton 1988] is a com puter program th a t rea so n s about

h elicop ter en g in es q u a lita tive ly . M odern h elicop ters req u ire m ore

p tech n o logy b ecau se o f th e m ove to s in g le-p ilo t operation , h en ce an

Automated cockpit’ that can perform some of the functions of a co-pilot
is needed. Its function is to monitor the state of the helicopter's 2 engines
from data about coolant pressure, engine torque, fuel consumption etc.

Hamilton complains that traditional algorithmic approaches are too
complex, and can't handle unanticipated situations. He has chosen an
AI approach to do robust status monitoring and diagnostics. Helix
reasons from a qualitative model of the power-train of a helicopter, and

J avoids fault models. Helix merges the ideas of constraint suspension
and Qualitative Reasoning.

T he f ir st step tow ards doing d iagn ostics w ith HELIX in vo lv es

^ a ssem b lin g a stru ctu ra l m odel o f a device on a grap h ica l in terface . T he

—i'

J

]

1

J

n
J r

]

33

n

building blocks are drawn from a library of component models which

include generic representations of some of the more common elements
of devices, such as control levers, gearboxes, pumps etc. The

connections between elements define confluences between variables. The
library contains primitive and compound models which are sets of
variables and confluences. Variables are 5-tuples of the form {material, ̂ H

IJ
attribute, direction, component, derivative). Confluences define

qualitative equations between the variables of the device. The resulting ̂ ^
model can be made into a primitive component and used as part of new

models. In this way a hierarchical decomposition of the qualitative j j
functionality of the device is built. n

A 'Model Instantiator' simplifies the confluences relating the LI
parameters of the system, removing confluences which have no _
terminals or refer to two or less variables. Resulting models are heavily U
simplified and optimised enabling coarse-grained reasoning to be done. p
When a fault is detected down a branch of the model hierarchy the ^
constraints are expanded in an attempt to isolate the fault still further, n
possibly going deeper inside the hierarchy.

When a fault occurs in a system modelled by HELIX all data about the Q
fault is presented. The fault will manifest itself as a discrepancy among
the highest level constraints (confluences). HELIX then systematically Q
suspends the constraints of a second level model. Most of the

suspensions still leave an inconsistent state. Those suspensions which j j
leave a consistent state imply that the suspended unit is faulty, and that

becomes the hypothesis. Next, a detailed model of the suspected unit is , Q
created along with high-level views of the devices with which it

T"!
interacts. Constraint suspension is repeated at this level. This process ̂ U
can produce more than one suspected device, but this analysis combined
with observations of the device over time will eliminate some of the. U
candidates. HELIX displays the diagnosis and offers advice, such as n

34

shutting down an engine or increasing throttle. Advice is assembled by
1 production rules taking the diagnosis and flight conditions as data.

Hamilton illustrates Helix working on the power-train of a
J helicopter. Two engines supply the required torque to turn the helicopter

blades. Each engine has fuel pumped to it by a compressor. The speed of
1 " the blades is monitored by a feedback system. More fuel is supplied if the

speed drops, and vice versa. He doesn't write down the model explicitly
so I produce a QSIM representation of the model below.1 .

- J

1
1

]

J

1

]

For each engine:
Torque aq+ Fuel-flow (1)

J Û) ccq- Tioad (2)

-r error = CO - ©set (3)

9/9t Fuel-flow = -error (4)
1 0) is the angular velocity of the engine (revs), Tioad is the torque the
I engine is trying to generate, ©set is the desired angular velocity and d/dt

"] Fuel-flow represents whether more or less fuel is supplied to the engine.
The torque at the blades is the sum of the torques from each engine:

Tblades — Tengl + Teng2 (5)

When the fuel pump in engine 1 fails the torque produced falls,
] burdening engine 2 with its load (5); The revs, fuel-flow and torque of

engine 1 thus drop (1). The constraints for engine 1 say that the fuel flow
J r should increase as the revs drop, (3) and (4), and a discrepancy from

normal behaviour is detected. The discrepancy makes it impossible to
_ ̂ complete the constraints as they are.

Helix now takes a second level mcfdel consisting of engine 1, engine 2,
transmission and flight controls. Constraints representing behaviour
are suspended in turn in each of these units. Only when the constraints

35

To be effective this method also relies on having lots of data available.
Often in qualitative descriptions of devices parameters are related to
each other via chains of constraints. If A aq+ B and B aq+ C then

suspending either constraint will have the same effect on C, and so
making it impossible to distinguish between a fault in A or B, if data for
B is not available.

It doesn t make sense to suspend some constraints which exist to
describe the physics of a situation. Examples include constraints

between pressure and volume or the relation of heat-flow to temperature
difference. These types of constraints are there to define the physics of
the world and cannot go wrong'.

2.2.5. Sununaiy of Qualitative Techniques

Many similarities can be drawn among the three Qualitative
Reasoning algorithms, as summarised in Figure 2.15 below. However
the differences are important. DeKleer and Brown try to build their

c
-n

in engine 1 are removed can a consistent state be achieved. Therefore the F
failure of engine 1 is the hypothesis.

Finally a model view of another cross-section of components is
performed, which isolates the suspected devices to 5 elements of the fuel H
system. Further data analysed four seconds later rejects some of these
elements. H

The workings of Helix are thus mainly a hierarchical modelling of
the structure of a device and sets of constrains defining the normal ̂ fj
behaviour. The diagnostic approach appears very naive. Simply
suspending constraints one-by-one is random guess-work, and by no [j
means can all faults be detected in this way. The method relies on
constraints being broken. Sometimes however when a device breaks it [j
can affect other parts of the device not necessarily associated with the
same branch of the functional hierarchy. Simple examples of this]

include the occasions when pieces of metal break loose and fall onto a p
circuit board bridging a contact. L

n

D

nu
Lj

36

]

1

]

3

confluences from known behaviour of the subparts, Forbus is interested
in the process going on and the individuals involved, whereas the
Kuipers algorithm is used to forecast events.

Aspect DeKleer and Brown Forbus Kuipers
Theory Qualitative Physics

based on Confluences
Qualitative Process
Theory

Qualitative
Simulation

Qualitative
value

P = +
a ? = -

ACtemperature]
D[pressure]

(+ inc)

Qualitative
Equation

Confluence
eg. 3P+3X = 0

Influences in

process description
I+(level, flow)

Constraints

(m+ level volume)

Sources of
ambiguity

Constraints not
uniquely resolvable

More than one

successor in the

quantity space,
more than one

process active.
Competing variables

Variables compete to
reach landmark

values. Constraints
not uniquely

resolvable.

Capturing
Events

Envisionment Process history Qualitative Plots

Figure 2.15. Comparison of various aspects of three Qualitative Reasoning
approaches.

J

1J

2.3. Knowledge based Diagnostic Strategies

2.3.1. CRIB

Keravnou and Johnson [1986] have devised an approach to diagnosis
based on the competence of an expert. Their important emphasis is that
the difference between novice and expert diagnosticians is that although
the novices have knowledge about the 'patients' or devices being fixed,
this knowledge is poorly structured. Experience is the process of
structuring, and building links to other parts of this knowledge
[Feltovich et al 1984]. They dismiss most existing approaches to
diagnosis as purely algorithmic in nature and hence not having the

37

n
competence associated with human experts. They also believe it is l'
important to explicitly model the diagnostic strategy to produce better
explanations.

Their exemplar is based on diagnosing a computer system down to (1
the field replaceable parts, which are also the leaf nodes of the device ̂̂
hierarchy. The patient computer is described as a simple taxonomy of - Q

subunits. Associated with each machine unit are 3 groups or sets of

symptoms. The T (total) group represents all the symptoms that can ̂ f]
occur for the given subunit. The K (key) group are the symptoms whose
presence is sufficient to establish a fault for that subunit. Finally the S [j
(subgroup) is a subset of the K-group whose presence is necessary but
not sufficient to establish a fault in the subunit. 0

Diagnosis is a cycle of "test the faulty system and observe its result; ^
analyse the result and determine whether it is possible to: split the U
system into faulty and non-faulty components; test the faulty subsystem
and repeat" - TOAST! [Keravnou and Johnson 1986 p.89-90]. Diagnosis
begins from the initial hypothesis that the device is faulty (after an ^
observation "indicating divergence from proper functioning") and
involves successive refinements of this hypothesis down the device H
hierarchy until a field replaceable or repairable unit is encountered.

The process of hypothesis refinement is involved and is supposed to P
be the closest to a model of human competence. The observed symptoms

38

u(Os) of the faulty device will comprise an 8-group of one or more of the
subunits of the device taxonomy. If the Os constitute a K-group of some

n
subunit then this is strong evidence that that subunit is faulty, making it ^
the current hypothesis. However if the Os form only an 8-group (a subset
of the K-group) then this is less strong evidence for the hypothesis, and it ̂ L
becomes semi-activated. If there is no suggested refinement by this

process, yet some hypotheses have been semi-activated then an attempt L
to acquire additional symptom information is made. A hypothesis p

c

c

1

1

] ■

]

]

J

]

1

]

referring to a replaceable/repairable unit as being faulty can be directly
refuted or concluded through the observation of cure symptoms.

So this process which begins at the highest level of the device
taxonomy gradually works its way down, working with more and more

specific symptoms until a replaceable/repairable unit is encountered. If
a hypothesis refinement is dropped then diagnosis resumes from the
immediately more general hypothesis, mimicking the reluctance of an
engineer to completely abandon their current pursuit. This process of
hypothesis refinement is summarized in Figure 2.16.

concluded

X
cure symptom

observed
(induction)

assume necessary
consequences
(deduction)

subunit
strongly

suspected

complete match on S-group
(abduction)

action assesment

subunit
suspected

most strongly suggested subunit
with least expectation violations

(abduction)

/
partial match on S-group and

not too many unexpected
observations

hypothesis refiited or
no refinements possible
(induction)

current hypothesis
with subunits

competing hypothesis
activated or all paritally

matched S-groups refuted

] .

J

Figure 2.16. Hypothesis refinement in CRIB. [Adapted from Keravnou and
Johnson 1986 page 94.]

Keravnou and Johnson complete their analysis of fault diagnosis by
including in it a theory of what actions can be taken to cure the problem.

Sometimes the actions are designed to repair the device, but often they
are aimed at testing a hypothesis. The action chosen depends on its time
to perform and its discriminatory power:

1
39

I

"Select the action that yields the most mentioned symptoms unless there is

an S-group with one outstanding symptom only and the relevant action has a

shorter total time of performance."

[Keravnou and Johnson 1986 page 100.] H

In summary, the method is primarily a theory of competence.
However it introduces some interesting ideas for diagnosis. Firstly the
hierarchical representation is heavily used and serves to focus the
diagnostic strategy. This is important in large devices where focussing
on the relevant subsystems is essential for avoiding information

overload. Rules are used to decide whether to 'unpack' another level of
detail or search elsewhere in the device.

Hypotheses are entertained even when there is only a partial match
on the symptoms involved. This is helpful in diagnosis because it draws
to attention other things that may have gone wrong if the main
hjq)othesis proves to be incorrect. These secondary hypotheses are put on
hold and ranked by an ordering mechanism. This element provides for
graceful degradation of the expert system.

Keravnou and Johnson also expand on an element of diagnosis
previously overlooked or simplified by previous authors of diagnostic jJ
systems; that of the cost of a test. The cost of a test is built into their ~
competence model and helps decide whether to pursue a hypothesis Q
further or try a different one.

CRIB, however, remains a rule based system. Many rules are | j
required to diagnose each fault that the device can have, and to

ndistinguish between faults. Only known faults can be diagnosed. , 1̂
The device hierarchy used in CRIB is a strict one. There is no room

for allowing two subsystems to interact. This means that the choice of ̂ L
the representation of the device will be crucial. For instance Davis's
work (section 2.1.2) showed how a fault easily diagnosed in one . Lj
representation (structural hierarchy) requires more work in another
(functional hierarchy).

c

c

40
c

c

1

2.3.2. Meta Level Eeasonîng

J Genesereth and Smith [1981] demonstrate how production systems
could perform much better if somehow they could reason about what
strategies to use in solving a problem. This is called meta-level

^ , reasoning. Meta rules reason about the structure of the base-level or
problem solving rules and choose which base-level rules to apply in
solving a problem. For instance if a rule needs to find an MP whose

telephone number is a prime number, the rule may contain premises
1 which search through a list of MP's, telephone numbers and primes.

Because the list of MP's is the shortest this is the better list to search
J through first. The base rules are the rules which do the looking up of

facts. Meta-level rules arrange that the list of MP's telephone numbers
1 are searched through first.

The nature of the base-level rules can be explicitly represented (ie. by
J saying b e t t e r (r u l e l , r u le 2) .), but it is better if meta-level rules can

infer the appropriateness of a rule from the structure of the base level
rules. This enables the meta-level reasoner to decide to use one rule
before another, or even to re-order the premises in the base-level rules.
This is like having knowledge about knowledge.

^ With respect to doing a diagnosis having some form of meta
architecture would be very powerful. Often in diagnosis one reaches an

J impasse where a decision has to be made between taking something
apart to examine its innards or making a few simple measurements.

J The measurements might not yield any fruitful information, whereas
the other approach would tell you definitely whether the unit was faulty.

Some algorithms wouldn't know how to decide and typically might
choose the action that was highest in a stack of possibilities. A meta-

^ level approach could sift information such as cost of test, discriminatory
power, accessibility of units etc to decide what to do, and hence could

J naturally explain the decision much better.

]

]

1

4L

n
n

2.4. Suimnaiy of Diagnostic Methods.

Some of the diagnostic systems described in this chapter have been 1
typically algorithmic in nature and can only be applied to limited sets of
examples or to examples with unusual constraints. The others have
been too general in their approach leaving the computer to iterate
through many fault models until a behaviour is generated that agrees L J
with the observed behaviour of the real world device.

In the table of Figure 2.17 I comment on the applicability of each of
the diagnostic methods described to five domains. The domains listed in P
the table have the following characteristics:

• Christmas tree lights. This is a serial circuit. Bulbs are easy to test, Q
by visual inspection or with an Avometer™. If one element of the circuit
breaks the whole circuit fails. Other faults include short circuits or the ^
wrong bulbs being used.

• Digital circuit. This domain consists of large arrays of components. Q
Each component has a strict logical behaviour. Tests involve measuring
logical values, but can only be performed at selected points in the circuit U
because the logical gates are buried inside silicon chips. Some remedies
include replacement of the integrated circuit or programming the chip — Lj

to avoid the problem. ̂ ^

• Car. There are many independent subsystems that make up a car. ^
The domain is rich with rules of thumb coming from enthusiastic p
DIYers. There are ifiany tests available that range from the cheap and
easy, to comprehensive engine condition tests. p

• Medical domain. This too is a very rich domain in which there are
lots of tests and remedies that can be given to a patient. Each test has its
cost and requires trained staff to perform it. The subsytems of a human
body are much more interdependent than those of a car.

• Doorlock. This is an enclosed mechanism. Faults include jammed
components, broken springs etc. Not much point in opening up the lock jj
for inspection because the whole unit is cheap to replace. User can get a

c
42

c

u

Ü

Li

n

feel for the fault by the way the operating lever or key behaves and
2 various noises produced.

1 Some of the problems associated with the systems described in this
chapter stem from the fact that the approaches are geared towards

] certain domains. The coming chapter examines the process of diagnosis
and suggests that a variety of techniques should be used when trying to

J ‘ fix broken devices.

]

]

]

]

]

1

] .

]

j
43

c
n

il

lî
QO

Sw%-

II

^ 23

I"=1̂
> 0» * r 00

lili
î i i i

H
ç 5 <2A «2

i i l

« C
,5 ̂

11îiîi
S

ïlII
s.s3 o « (5

S:5“

o “

il
g g

I I
I I

es (S
f4

g
00 ,3 0)II

II iî

îK■S'S sE-t s « cJ g
ï #̂

 c

l'iîll

X I
IIBs 2
W

?g's

11
î i

il
î l l

l i t
« es

*î2 2lis
•C

J

Ifil
o a

ill

îll

CQ T3 ooO I a

l ’ic w
OW

j ! i i

H l i l i
o

fil

1■%
1i
II

a 2

îi
11

î l i
l î j

â G__ O41

i l
Ë a

I
•|.s
I î
cd es

HîiS S « o ^l | i

iil
« « 2 2

;
1,1

a
I
g* 3.5K Sa

•z i l l

il
Ii I i

ïl l i î ii
u a

î s é>

J l î
liî
il«-3 2

II

iilIli
I
II
î f

}l

II
.S g
a ailJa m

I I

II
a -S

•3 S. w s
a 3
Z -a

i l

O
g

C8IIL
l i i l

Iil
a s gIII

l îI
Figure 2.17. Applicability of a series of diagnostic methods to selected

domains.
c
r

44 c

n

] ■

J

Chapter Three

Diagnosis: A M ixture of Skills

1 ̂ The discussion in the previous chapter has highlighted the problems
with existing fault diagnosis systems and pointed to difficulties in

1 attempts to represent the behaviour of devices. In this chapter I describe
the skills essential for doing diagnosis of devices in a new situation and

n how those skills combine to form the diagnostic process in NOSTRUM.
Detailed literature describing the steps in fault diagnosis is rare. I

describe in the next section the steps I have identified during my own
experiences in repairing household gadgets, starting cars and in

J conversations with mechanics and marine engineers.

-j 3.1. The Skills

Effective diagnosis is a mixture of skills. In Figure 3.1 I have
1 categorized these skills into five phases with respect to fault diagnosis of

devices. The diagnostic phases listed there are the Tall back' steps that a
J diagnostician encountering a fault with that device would use. This is a

'failsafe' means of getting to the root of a problem. Someone who had
J worked on that type of device before would be acquainted with the

weaknesses of the device, characteristic signs that point directly to a
J " fault. This latter type of knowledge helps cut down the search tree
^ severely and can often lead straight to the fault. Experiential knowledge

J A. about a device can help counter some strongly-held beliefs about the
ways in which devices go wrong. For instance in most electrical devices
wire is never usually considered as a fallible component, but my own

experience with the type of wire used in headphones often leads me to
check that first.

45

n
Below I now explore each of these diagnostic phases and look for the

implications they have for a system trying to mimic the processes of a
human diagnostician.

Skill Description
Fault recognition Discovery of a problem. To make this

observation the diagnostician must have some
idea of what the device is supposed to be doing
and what it is not. Sometimes the fault is
something extra that the device is doing, such
as generating a grinding noise.

Symptom recognition Once a problem has been discovered it is
necessary to find where in the device the fault
manifests. This can be done in some cases by
following the expected sequence of operations
of the device until a discrepancy is detected.

Tracing After the fault has been located to some part of
the device it is necessary to trace back to find
its cause.

Hypothesize & Test During tracing many causal pathways will be
followed. At some points it will be necessary to
distinguish between possible causes by
making a test. The test chosen will depend on
how viable the hypothesis is and what test
equipment is available.

Repair Action When a hypothesis is confirmed the
diagnostician must choose the appropriate
repair action. If this fails to solve the problem
the assumptions underlying the tests that
suggested the hypothesis will be brought into
question.

Figure 3.1. The phases of a diagnosis.

3.1.1. Fault Recognition.

This stage occurs when the user of a piece of equipment first becomes
aware of the breakdown of a device. Sometimes this will be signalled by a

n
J

• n
n
J

u

1
J

L

r '
L j

c
46

[

1

warning light or buzzer, by the device simply not working, or doing
something that it is not supposed to. In order to spot this fault the user
has to be aware that the observed phenomenon is not expected, that is
they have to have some idea of how the device is supposed to behave. This
is the- minimum amount of knowledge required to be aware of a

] problem.

3.1.2. Symptom recognition

After a problem has been detected in a device the diagnostician must
^ find where in the device the fault manifests. If the fault has been

recognized by a warning light the user will know to which part of the
] device the light refers. For instance in a car engine the oil pressure

warning light will point to the amount of oil in the engine. If the fault
has been discovered because of an unusual noise generated by the device

^ the user may have to try and repeat the operation of the device until the
J source of the noise can be pinpointed. During this stage the user of a

device is using simple knowledge of the structure of the device or
associations between indicators and components to locate the fault.

^ 3.1.3. Tracing

Tracing the fault from its manifestation to cause requires a deeper
J understanding of the causal pathways of the device. The diagnostician

has to trace back, following wires, pipes or even routes of magnetic flux
to look for an explanation for the fault. The diagnostician who is
familiar with the device will be able to draw on past experience with it,
possibly recalling similar situations and hence being able to make
constructive guesses about how it may have failed. Ultimately if the
guesses fail the diagnostician will have to go back to first principles and
look for physical reasons for the observed device behaviour.

3.1.4. Hypothesize and Test

1

]

].

]

The process of tracing will eventually lead the diagnostician to what
may be the cause of the fault, or to a point in the device where one of

1 47

.J

. n
many different changes in the structure of the device could account for
the observed behaviour. To distinguish among them the diagnostician
can either suggest a test that needs to be made or predict the
consequences of hypothesized causes and match these against the
observed state of the device.

Tests have costs and benefits. A test may vary from a simple
observation, such as a humming sound, to removing a printed circuit
board from the device and sending it away for examination. The benefits ̂ 1
of a test are equally varied. They can eliminate whole sections of the
device, or simply confirm a suspicion. In practice a diagnostician
chooses a test on a brief evaluation of these costs and benefits.
Sometimes an attempt to repair the device is made by replacement of an
accessible and cheap component. Figure 3.2 shows the 'Testability
Ladder' used by NOSTRUM to assess from a pool of possible tests which
would be the simplest to perform. The ladder lists in increasing
difficulty the types of test a user can perform.

L

. Ü

, Li

L
C
r

48

Testability Ladder

]
BMO
0A
o+J
> 1-MrH
Ü

-H44
44-HTJ
Cna-H
CO(00MÜG

-H

I n f e r a b l e

M e a s u r a b l e

O b s e r v a b l e

O p e r a b l e

S o m e t h i n g s a r e d i f f i c u l t t o m e a s u r e b e c a u s e o f
i n a c c e s s i b i l i t y , h o w e v e r t h e i r s t a t u s m a y b e
i n f e r r e d f r o m b e h a v i o u r n o t a s s o c i a t e d w i t h t h e
c u r r e n t f a u l t . E g . i f m y d e s k l a m p g o e s o u t I c a n
i n f e r t h e c o n d i t i o n o f t h e f u s e b y c h a n g i n g t h e
l i g h t b u l b , w h i c h s a v e s m e h a v i n g t o h u n t f o r a
s c r e w d r i v e r t o o p e n t h e p l u g .

T e s t e q u i p m e n t i s o f t e n n e e d e d t o r e a d o f f
v o l t a g e s o r m e a s u r e h o w w e l l t h e d e v i c e h a s b e e n
c a l i b r a t e d .

O b s e r v a b l e p a r a m t e r s i n a d e v i c e i n c l u d e t h o s e f o r
w h i c h g a u g e s a n d i n d i c a t o r l a m p s h a v e b e e n f i t t e d .
T h e r e a r e o t h e r c l u e s t o d e v i c e b e h a v i o u r t h a t y o u
g e t f o r f r e e , e g . h u m m i n g n o i s e s .

P a r t o f t h e m e c h a n i s m w h i c h t h e u s e r c a n a d j u s t ,
e g . s w i t c h e s , a n d c o n t r o l k n o b s .

Figure 3.2. The Testability Ladder used by NOSTRUM to assess among
competing tests which would be the simplest for a user to perform.

]
1 .

For a computer system to be able to devise these tests it must also
contain knowledge about the components of the device at a 'black box'
level. For instance if the structure o^a machine can be modelled by a
chain of 'black boxes' in which each box supposedly works correctly if it
gets the right signal from the preceding box, then it is easy to do
diagnosis by applying 'divide and conquer' to the chain.

S w itch Engine Gearbox

B attery S ta r te r Clutch W heels

Figure 3.3. A chain of Black boxes with a faulty one somewhere along the
line.

49

n

Some devices have redundant linkages which allow them to be
operated from more than one source (eg. the 2 starting mechanisms of a
car as shown in Figure 3.4). When a fault occurs in this type of device
then components can be eliminated from diagnostic inquiry by operating
the device through an alternative route.^

' Muscle Power

Engine GearboxStarting Handle

Clutch W heelsSwitch

Battery Starter

Figure 3.4. The starter motor is suspected, but can be by-passed using the
starting handle.

This type of knowledge enables commonsense reasoning about the
structure of the device. The diagnostician can make use of this type of
knowledge to assist in generating tests and making them easier to
perform.

n
. J

n

n

n

c

D

^Note: if the starting handle is not available then another way to start the car is by

passing turning motion through the wheels, gearbox and clutch direct to the

crankshaft. A model of these parts will normally be designed only with transmission

in mind and hence the model must be flexible enough to allow passing torque either

way through the transmission. This could be done by making the clutch, gearbox and

differential members of a class of bi-directional devices.

50

r
L

[

c
[

These skills require the diagnostician to have familiarity with the
1 components of the device at both fine-grained and coarse-grained levels

of detail. The ability to abstract the behaviour of subunits of the device
will be essential if the diagnostician is able to focus on and manipulate
the suspected parts.

_ 3.1.5. Repair Action

When the diagnostician embarks on making a repair they are not
always confident that it will fix the device. They might be making the

1 repair as part of a test if the repair is typically easy to do, accessible or if

the replacement part is cheap. Sometimes though this is not the case
and the action taken was the result of an exhaustive investigation. When
this happens the steps that led to the repair action must be re-examined.
Were there any assumptions made about the device that should now be
reconsidered in light of the new information? Were any steps missed
out, could the action of replacement have damaged another part of the

device through clumsiness and indeed could the replacement part be
broken in the same way?

As an example of how an apparently infallible test steers the
diagnostician away from the real cause of a fault I describe a test for the
ignition system of a car:

A standard test to check whether a spark plug is firing is to remove
the suspect plug and lay it on the engine block. The ignition lead is
connected to it so that it is still in the circuit. The engine is turned over
using the starter motor and if the plug is working properly sparks are
seen. In one reported case however [The Courier 19??] this test was

^ carried out and verified the spark plug to be working. But the symptoms

remained when the plug was replaced. In desperation the owner fitted a
brand new set of plugs and the problem went away. Closer examination
of the original plug revealed a hairline fracture in the porcelain. Under
the high pressure inside the engine cylinders this crack was opening up
and allowing the spark to escape to earth without igniting the petrol.

]

]

1

]

51

n

In the above rather extreme example the diagnostician would have
had to have a remarkable insight into the physics of sparks in order to
revoke the results of the test. Knowledge of the limitations will help a
diagnostician suggest better tests and be wary of when not to pay too
much attention to them.

n
n
n

Previous
Experience

The amount of time spent in each of these five stages by a

diagnostician will depend greatly on the intricacies of the application.
Other sources of information can help sidestep some of these stages
altogether and some examples of this are listed in Figure 3.5.

Batch information If the device belongs to a batch that is known to suffer
certain weaknesses it can often be quicker to check these
first. Batches of a device can acquire a bad reputation
due to design faults or bad manufacture. The
diagnostician can go straight to the usually faulty
component and inspect it. Replacement is often made in
these cases without performing a full test on the repaired
device because of the extreme confidence in the
diagnosis.

As a diagnostician gains experience with a class of
devices they become aware of the more common
ailments and optimize the diagnostic strategy to cover
those cases first. The optimized strategy suggests short
cut tests that can discriminate between common cases.
Sometimes they may have even designed a specialist tool
or test equipment to aid the diagnosis.

Sometimes an experienced diagnostician familiar
with a device or class of devices can immediately
suggest a hypothesis after the briefest description of a
symptom. They often ask a highly specific question the
answer to which apparently lifts all doubt in their own
minds as to what has gone wrong. For example: a car
that cannot be put into gear would immediately suggest a
broken clutch, however if it is known that the car has
been standing for some time the clutch plate will have
become stuck to the flywheel. The simple solution is to
rock the car until the plate jolts free. In this example the
experienced mechanic would simply ask "How long has
the car been standing?" or if the vehicle is covered in
cob-webs this question need not be asked!

Figure 3.5. Some situations that help short cut diagnosis.

NOSTRUM is concerned with diagnosis in the absence of this
information. It is concerned with doing diagnosis on those occasions

Common symptoms

0

D

0

U

52

[

]

]

when the types of information in Figure 3.5 are not necessarily
available, ie. when the things that can go wrong cannot necessarily be
listed beforehand. This is not to say that the design of NOSTRUM shuns
such information, in fact its design has allowed for this information to
be incorporated or even learned in a naive way. NOSTRUM is interested
in the skills a diagnostician has to fall back on when working with a

new device and using principles about a device learned in the
classroom.

3.2. The Diagnostic Process

Figure 3.6 shows how the skills described in the previous section are
brought together to form the diagnostic method in NOSTRUM. As
described in chapter 4, NOSTRUM uses a model of the device being

diagnosed. The numbers in parentheses in the following paragraphs
correspond to the circled numbers in Figure 3.6.

(1) The model represents the operating principles of the
components involved and is able to simulate the behaviour of a
device. When a difference between NOSTRUM’S simulation
and the behaviour of the real world device emerges a fault is
recognized.
(2) NOSTRUM uses a description of the observed symptom and
the model to trace the causal pathways of the device.
(3) The models of the operating principles are used to generate
hypotheses about possible causes of the fault, suggesting new
values for parameters of the device.

n (4) NOSTRUM simulates the device with the newly proposed
values to try and build a picture of the device in the faulty state.

]

1

]

(5) Each of the faulty states produced by the hypotheses will
have values that can be checked.
(6) With reference to the 'Testability Ladder' the easiest test to
perform is chosen. The user is asked to perform the test and
return the result.

53

n

(7) The user response may prompt NOSTRUM to suggest a
repair action. If not, the user's measurement is treated as
another symptom and used to generate further hypotheses.
(8) If the proposed repair action still fails to produce a
diagnosis then the assumptions used to generate the
hypothesis are re-examined.

Figure 3.7 shows how the diagnostic process would look if - p
L J

experiential knowledge were incorporated into NOSTRUM.

In Chapter 4 I show how the skills and diagnostic process described
here are implemented in NOSTRUM.

u
D

1
__I

. 0

n
. L

54

L

[

c
[

Diagnostic P rocess in NOSTRUM

]

]

]

]

1

1

] .

1

Hypothesis-1

Test-1

Simulation
I

break ©

operating principles
experiential knowledge

Symptom

I
generate

Hypothesis-2 Hypothesis-n

Consequence-1 Consequence-2 Consequence-n

Test-2 Test-n

I
Reevaluate
assumptions

© Situational
Choose Test Knowledge
I I I (Testability

Y ▼ 1 Ladder)
Request information

@ Cure actions New symptoms

Still broken

©

©

Working!

Flow of Control

Injection of Knowledge

Figure 3.6. The diagnostic process in NOSTRUM. Circled figures refer to
paragraphs in the text.

55

Diagnostic P rocess modified through Experience

Consumables?

Simulation
I

break

Figure 3.7. The diagnostic process modified by experience gained after
working for some time with a device or class of devices.

56

0
n
u

Symptom
operating principles
experiential knowledge

generate

Previous
Experience

Batch
Statistics

Rarely

Hypothesis-1 Hypothesis-2 Hypothesis-n

Common
Symptom

Consequence-1 Consequence-2 Consequence-n

New test

Test-1 Test-2 Test-n

Situational
KnowledgeChoose Test

Reevaluate
assumptions Request information

Cure actions New symptoms
Plan B

Methods Flow of Control

Injection of Knowledge

Learned short cuts
Still broken Working!

ri

D
n

c

[

c
c
c

1
J

Chapter Four

Roots of a Representation

In chapter 2 we saw various methods of representing the behaviour
of devices. The techniques ranged from the limited usefulness of rule
based representations to qualitative analyses of the physical processes in
a device. In this chapter I propose a representation based on the
operating principles of the components of a device. The representation
succeeds in being able to mimic the behaviour of the device whilst
enabling the tracing of fault conditions back through the device to
previous states.

Chapter 3 classified diagnosis into 5 phases. The 5 phases suggest
features that a computer program trying to reproduce the process would
need. In the following table I relate the skills of chapter 3 to the features
of a computer program that would need to represent them.

1

]

Skin Required Feature
Fault recognition A notion of what the device is supposed to do.
Symptom recognition A familiarity with the structure of the device, where

the parts are.
Tracing A deeper understanding of the causal pathways

within the device, and an understanding of how
change in one part of the device causes change in
another part.

Hypothesize & Test Knowledge of how the causal pathways can
breakdown or be interfered with. The ability to predict
the consequences of a change in the structure of the
device. Knowledge of what can be tested.

Repair Action Knowledge about repairing/replacement parts.

57

n
4.1. Nostrum - Rationale

All devices are built from a set of components which can be
treated as black-boxes at varying levels of abstraction. For instance
washing machines and cars both use engines as a source of turning
power so a designer of such devices might say “...we could use an engine
here ...”. There are many sorts of these device units which can be viewed
at varying levels of abstraction and that can be connected together to r
make the device of your choice. Here are examples of how some units
are used together:

Clock activates an alarm.
Clock turns the heating on.
Motor is used to drive a car.
Motor winds cassette tape.
Light activates a switch.
Light helps us to see.
Ballcock shuts water off.
Pendulum regulates clock timing.
Spring stores energy in a childs toy.
Spring softens the ride along a bumpy road.
Spring shuts a door behind us.
Optical sensor finds right track on a Compact Disc.
Feedback mechanism regulates fridge temperature.

Figure 4.2. Examples of the use of components in devices.

The list shows devices used in different ways. In one a clock is
considered as a unit which activates something at a certain time. In
another a lever controls the accuracy of a clock. The list also shows how

the same component can be used in different ways in different devices;
but that it is always the same aspect of the component that gets used.
Take for instance the spring: it does indeed store energy but the energy

can be absorbed quickly and let out slowly (childs toy), absorbed quickly
and let out quickly (vehicle suspension) and absorbed slowly and let out

J
n

n

n

G
P
L

slowly (fire door). In each case there is the presence of a compressor f
(turning key, bump, push) and a release (moving toy, vehicle jumping ^
and door closing). Always it is the operating principle of a spring at

58
c

[

work (compress, store energy, release) but interacting with different
J things.

Sometimes a whole type of procedure can be abstracted out, such as
the notion of feedback which contains driving and measuring
components to keep another parameter under control.

If a device can be represented by connecting together known models
of the device units then the behaviour of a device could be understood in
terms of the behaviour of its components. Such a representation would
facilitate diagnosis of a device through propagation of observed
symptoms to faults in subdevices, and would enable the easy

representation of a wide range of devices. Thus to develop a system that
can do diagnosis it is important to build up a device vocabulary so that a
new device can be understood in terms of the interconnections of known
device units.

This argument is reinforced by books that try to explain how devices
work.

J 4.1.1. How it works diagrams

Figure 4.3 is taken from a popular science book called "How it
Works" [Graf and Whalen 1977]. The book explains how all sorts of

1 everyday devices work. Each device has two or three figures showing its
innards and some text explaining the sequence of events involved during
the operation of the device. The diagrams have arrows indicating which,
way wheels turn and the direction of the flow through pipes and around

J circuits. By relating the images in the diagrams to one's everyday
experiences of levers, flows and electricity it is possible to 'understand'
how the device works. My long-term aim is to equip a system with
sufficient understanding of these device units so that it can read these
diagrams and hence understand the way the device works.

If a vocabulary for device behaviour can be established so that by
J reading these diagrams the functionality can be understood, then it is a
-j short step to doing diagnosis. Fault models can be easily defined and

59

moreover the consequences of the fault will easily be visualized in the
device. For instance if a wheel cannot turn sufficiently for a slot to
enable a bar to drop then symptoms would be 'stuck wheel' and 'bar
won't drop'.

This paradigm calls for a very flexible representation that can

Jhandle all sorts of hypothetical faults and also a mechanism for - ^
assessing when hypotheses become too unfeasible.

0

0

D

■L

c

[

60

]

]

]

]

w »lifj.il

m i l »
Pifiii~ ÏO u c "3

îlHîl;
S

R m " %
i- : iî!H

4 \

Figure 4.3. A typical diagram taken from 'How it Works' [Graf and
Whalen 1977].

61

4.2. Christmas Tree Lights

To illustrate the type of reasoning described in section 4.1 and
chapter 3 ,1 use the deceptively simple example of a frugal set of
Christmas tree lights (Figure 4.4). At the highest level this can be
thought of as a simple circuit with a switch which when closed the
lights come on. However the number of ways in which this simple
system can go wrong is considerable.

L l L2 L3
SWl

B1

Figure 4.4. A Frugal Christmas tree light set.

The light set is composed of a switch, battery and three lights each

screwed into a socket. To understand this device is to understand how
each of these components interact. The behaviour of each component (or
device unit) has to have some associated knowledge, a description of
what it is supposed to do, how it does it and what it needs in order to do
it. This associated knowledge represents the operating principles of the
device unit. Figure 4.5 describes the operating principles of the
components of the Christmas tree light set.

n

n

0

n

D

n

r
L

L

62

u

]

]

]

Device Unit Operating Principles
Bulb For a bulb to be working its filament must be

intact and there must be a current flowing
through it. The stronger this current the
brighter the bulb and the greater the voltage
drop across it. A bulb's resistance depends on its
voltage rating and wattage.

Battery A battery provides an electro-motive force for a
circuit which decays as the battery loses its
charge.

Switch A switch has zero resistance when closed and
infinite resistance when open. Dirty contacts
present a high resistance when the switch is
closed, and if high voltages are used sparks can
jump the switch if it doesn't open enough.

Wires Wires conduct electricity with negligible
resistance.

Figure 4.5. Examples of Operating Principles for electrical components.

In NOSTRUM the operating principles of device units are modelled
using networks of constraints. In the next sections I described the
constraint models for a light bulb, a circuit and a switch.

4.2.1. Constraint model of a Kght bulb

The constraint model for a bulb is shown in Figure 4.6.

] .

63

n
. J

INTENDED -CURRENT M2

RESISTANCE

CURRENT

X

X

M l
WATTAGE

VOLTAGE-RATING

X
VOLTAGE-DROP

M3

BRIGHTNESS
COMPUTE -BRIGHTNESS

Figure 4.6. The constraint network representing the operating principles of
a light bulb.

The constraint network contains three multipliers Ml- 3 and a
brightness constraint C o m p u te -B r ig h tn e s s . The structure of the
constraint network is derived from two laws of electrical currents,
Ohm's Law and the Power law:

Ohm's Law: V=IR

Power Law: P=IV,

where P is the Power of the bulb, I is the current through it, V is the
voltage across it and R is its resistance.

Given the Wattage and Voltage Rating of a bulb it is possible to derive
the current that is intended to pass through the bulb using the Power
law:

W attage = V o l t a g e —R a t in g * I n te n d e d —c u r r e n t .

This relation is effected by the Ml constraint of Figure 4.6. The M2

constraint in that figure is an application of Ohm's law relating the
intended current to voltage rating and resistance of the bulb.

The M3 constraint in Figure 4.6 relates the voltage drop across the

bulb to its resistance and the actual current flowing through it. The final

constraint, C o m p u te -b r ig h t n e s s , makes use of another version of the

n

n

J

n

]

0
n

u

64

1
J

]

power law: P=I2R to infer the brightness of the bulb from its resistance
and the current flowing through it. Values are passed between the
constraints according to the rules of constraint propagation as described
in section 2.1.1.

Two important parameters of any light bulb are its Wattage and
Voltage. These are the two parameters that are specified when buying a
light bulb at a shop. In terms of how the bulb performs in a circuit
though, two other parameters are important: Resistance and Current.
Given the Wattage and Voltage rating of the bulb the constraint network
of Figure 4.6 can deduce the bulb's resistance, and the less important
parameter, in te n d e d -c u rre n t. Figure 4.7 shows the constraint
network for a light bulb with a power of 16W and voltage rating of 4V.

Figures 4.6 and 4.7 are in fact screen snapshots of Circuit Buff which
forms the graphical arm of NOSTRUM. Details of how Circuit Buff is
used and how the constraints are implemented are described in sections
6.1 and 6.2.1 respectively.

4.00

INTENDED -CURRENT

1.00

M2

RESISTANCE

CURRENT

X

X 16.00

M l
WATTAGE

 « 4.00
VOLTAGE-RATING

X
VOLTAGE-DROP

M3

* t 2
BRIGHTNESS

COMPUTE-BRIGHTNESS

Figure 4.7. The constraint network for a 16 Watt, 4 Volt light bulb.

The constraint mechanism therefore defines the behaviour of the
parameters of the light bulb according to the physics of electrical current

65

flow. The remaining parameters of the light bulb can only be determined
when the current through it is known. The value of the current is in
turn determined by the circuit of which the bulb forms part.

4.2.2. Circuit Constraint Model

A circuit is also an entity known to engineers, they understand that
for a circuit to exist there must be a loop for electrons to flow around, a
driving force, and that there will be something that needs driving (a
load). Thus the circuit is also considered as a device unit with its own set
of operating principles. The constraint network for a circuit is shown in
Figure 4.8.

n
j

n

n
J

L

D

C
G
0

0

c
r
L

[
66

n

3

QV
§
g
o

]

]
]

skk
U

CM

■O E-

to
H

K

■ I

iîc z

I I
.2 ■£ g s
i
11
l |■u 08
I i ̂C
1 1
•s»
O 0)

§ 5îf
A-g
^ «
■-C Ces
H034L»03tUD-ûCCISescC3o03034JPC03£gaSOo

ê.Q)
twOCk03"C4.3mO03Cs I U3'O4L»C0303C%'3c3s 3mQ03ôTCrC4>>3Eli_3U00'aS20303■Ss034Jos3 3Sb03•Sr, 3&4 1 a

67

The central element of Figure 4.8 is the constraint that represents
Ohm's law. It is simply a multiplier that takes the t o t a l - r e s i s t a n c e

(deduced from the adder constraint s u m - r e s i s t a n c e s) and v o l t a g e as
inputs to establish a value for the current in the circuit. The network

represents a template that can be used to describe any circuit that is
comprised of n elements. The series of adders A l, A2 . . . An compute
the voltages on the wires between the components.

4.2.3. The Switch Constraint Model

To demonstrate that the constraint system in NOSTRUM is not

purely restricted to numeric values I reproduce the constraint model for
a switch in Figure 4.9.

SWITCH

SWITCH-POSITION RESISTANCE

X

M l

CURRENT VOLTAGE-DROP

Figure 4.9. The constraint model of a switch.

The model features the switch constraint which has one input and
one output. The input is the state of the switch which can be open (off) or
CLOSED (on). When the input is open the output, which represents the
resistance of the switch, has the value i n f , meaning infinity. When the
input is CLOSED the output value is 0. The other constraint Ml is a
multiplier which computes the voltage drop across the switch.

68

n

]

[

. [

The constraint models described in this section have been designed to T
behave as 'building blocks' so that they can be used in many

combinations to define the structure of a range of devices. The following

[

[

section shows how they are combined to simulate the Christmas tree
light set.

]

69

n

n
jChapter Five

p

U sing Nostrum to D iagnose Christmas u
Tree Lights p

D

n
u

In this section I show how NOSTRUM diagnoses a Christmas tree
light set using the type of reasoning described in chapters 3 and 4.
Details of how NOSTRUM is implemented are reserved for a later
chapter.

The procedure for using NOSTRUM comprises several steps which
are summarized below:

(1) The structure of the Christmas Tree light set is defined
graphically.

(2) The structure is transferred to a frame language.
(3) Production rules identify the components of the circuit.
(4) Using known models of the operating principles of the

components a constraint model of the circuit is built. _

(5) The model is initialized to reflect the state of a working device.
(6) A symptom is given to the model, initiating diagnosis.
(7) The constraint model generates hypotheses.

(8) The user is prompted to make observations and measurements to
try and establish or condemn the hypotheses.

(9) Repair actions are suggested.

These steps are described in greater detail in the following sections.

5.1. Defining the Device Structure

The structure of the Christmas tree light set is defined using the L
graphical toolkit. Circuit Buff. Circuit Buff is a subsystem of NOSTRUM
that allows a user to define a series of icons that represent components

70

[

]

of devices. The icons can be positioned on the screen and connected
together through a mouse-and-menu interface. Details of using Circuit
Buff to construct diagrams of devices are described in section 6.1.

Figure 5.1 shows a screen snapshot of Circuit Buff after the structure
of the Christmas Tree light set has been defined.

1 5.2. Transfer to a Frame Language

1 A menu option in Circuit Buff copies the device structure into the
J ^ KEEtmi knowledge base SOLDER. The Solder Knowledge base forms the

second half of N0STRUM2.

The Solder knowledge base contains a hierarchy of objects or frames
^ [Minsky 1975] that define the characteristics and behaviour of classes of

device units. The structure of the Solder knowledge base is explained in
detail in section 6.2. The main object class in the Solder knowledge base
is called d e v i c e - u n i t . This object has several offspring which include
Lamp, B a t t e r y , S w itc h and Wire. These objects contain slots which can
be used to model their operating principles.

J Transferring the device from Circuit Buff instantiates its
components as children of the corresponding sub-class of d e v i c e - u n i t .

Icons in Circuit Buff now correspond to KEE frames, or KEE units with

iREE™ is a registered trademark of Intellicorp Ltd. Mountain View, Califorinia.

^Historical note: NOSTRUM is a computer program that has evolved during the

completion of this Ph.D. Originally the constraint propagation system was built

entirely using lisp f la v o r s and still forms part of Circuit Buff. This version allows

the user to draw constraint networks, define constraints and initiate propagation

through a mouse and menu interface. However for diagnosis, access to a hypothetical

worlds system was necessary. Such a system is provided by KEE. Consequently the

behaviour of the constraint propagator was also implemented using the KEE object

system. The differences in the representation between the two styles are described in

detail in chapter 6.

71

n

n

y

□U

'O
i
§

«
b

om
■J<üO

4.3
'â

u
6
1

tfl
c

o
'S
kges .

n
n
J

D

C

[

■i= %

#
s . t c O ""*

(f- Ç
p o ^

4J O
i: i 1 '^CQ R # :

i en ît;
C S i
a

«
L

r
L

U3 O
(U en

Ca
fe e
&

72
[

J

1
- J

the same names. The transfer process also copies the connectivity of the
n components to the c o n n e c t io n s slot in the KEE frames.

5.3. Production rules interpret circuit Structure.

To interpret the structure of the circuit a set of pattern matching rules
are then used. The purpose of the rules is to identify the circuit and its
elements so that a constraint model can be built. The rules are shown in
Figure 5.2. Four rules are used in forward chaining mode. At first only
the START-LOOKING rule can fire. It picks out the battery B1 and finds
the wire that is connected to its 'plus' terminal. The RHS (right hand
side or consequent) of this rule creates a new object B1-ONWARDS as a
child of the CIRCUIT-PART unit in the Solder knowledge base. This new
object is used alternately by the CARRY-on- looking- from- wire and
CARRY-ON-LOOKING-FROM-DEVICE rules. Each of these uses the
CURRENT—END slot of the B l —ONWARDS umt and the c o n n e c t io n s slot of
the wires and components to build up the route of the circuit.

So the rules move round the device starting from the battery Bl and
constructing a representation of the circuit in the B l - onwards unit.
When the rules come full circle back to B l the fourth rule i d e n t i f y -

LOOP fires. This rule establishes that the circuit forms a loop and
changes the parent of the Bl-ONWARDS unit from CIRCUIT-part to
CIRCUIT.

At this point the circmt and all its elements are indirect children of
the DEVICE-UNIT class in the SOLDER knowledge base. Using the
constraint models of the device units and their connectivity NOSTRUM
proceeds to build the constraint model for the whole device.

5.4. The Constraint Model is built

The final action of the production rules is to initiate construction of
the constraint model of the circuit. This is done by instantiating the
corresponding constraint model (as shown in section 4.2) for each
element of the circuit. The constraint models of the components are then

73

n
LJ

J

c

n; ; ; ■*- Package; K; Mode: LISP; Syntax: Coitunon-lisp -*-

/Rules for identifying circuit loops.
(defrule start-looking spot-circuits /The START-LOOKING rule in the SPOT-CIRCUITS ruleclass. . fl

“This rule gets the search off the ground by beginning at a battery.“
(if (?b is in battery) -if there is a battery

(the connections of ?b is ?c) /that is connected through its
(lisp (equal (car ?c) 'plus)) /'plus' terminal to
(?w is in wire) ,-a wire...
(lisp (equal (unit.name ?w) (cadr ?c)))
(?cp = (intern (format nil "-D-ONWARDS" (unit.name ?b))))

then (?cp is in circuit—part) /then identify a circuit part
(the start of ?cp is ?b) /that starts at the battery and
(the current-end of ?cp is ?w) /whose current end is the wire.
(the components of ?cp.is ?b) /Record the components encountered
(the components of ?cp is ?w) /so far.
(lisp (put.value ?cp 'route (list ?w ?b)))))

(defrule carry-on-looking-from-wire spot-circuits
Given that part of a circuit has already been found look for more of it•“
(if (?cp is in circuit—part) /If there is a circuit—part

(the current-end of ?cp is ?ce) /which currently ends at
(?ce is in wire) ;a wire.
(the connections of ?ce is ?c) /And the wire is also connected
(?cd = (unit (car ?c))) /to another component that
(cant.find (the components of ?cp is ?cd)) /hasn't yet been encountered

then (change.to (the current-end of ?cp is ?cd)) /then make the new component the
(the components of ?cp is ?cd) /current end, and record the encountered
(lisp (put.value ?cp 'route (cons ?cd (get.value ?cp 'route)))))) /device.

(defrule carry-on-looking-from-device spot-circuits pi
“Given that part of a circuit has already been found look for more of it.“ |
(if (?cp is in circuit—part) /XJf there is a circuit—part Lj

(the current—end of ?cp is ?ce) /which currently ends at
(?ce is in electric—device) /a component.
(the connections of ?ce is ?c) /And the component is also connected to | '
(?cd = (unit (cadr ?c))) /a wire that has't yet been encountered.

■ (cant.find (the components of ?cp is ?cd)) —
then (change.to (the current-end of ?cp is ?cd)) /Then add the new component to the

(the components of ?cp is ?cd) /current end of the circuit-part and record
(lisp (put.value ?cp 'route (cons ?cd (get.value ?cp 'route)))))) /the wire.

(defrule identify-loop spot-circuits
“When the last wire has been found claim that a circuit has been found.“
(if (?cp is in circuit-part) /If there is a circuit-part p

(the current—end of ?cp is ?ce) /whose current end is a wire.
(?ce is in wire) I_
(the connections of ?ce is ?c) /And the wire is connected to another
(?cd = (unit (car ?c))) /component
(?cd is in battery) /that is a battery.
(lisp (equal (cadr ?c) 'ground)) /And the connection is to the ground terminal.

then (change.to (?cp is in circuit)) /Then elevate the circuit-part to a circuit,
(lisp (unitmsg ?cp 'sort—out—components !)) /and construct a constraint model
(lisp (unitmsg ?cp 'model!)))) /of the circuit components using lisp code.

Figure 5.2. Production rules used in forward chaining mode in Solder to
recognize a Ciruit from the structural description defined by Circuit Buff.

74

connected together using the connectivity information in the B l-
ONWARDS unit. This process results in a complex network of constraints.
The constraint network is constructed within the SOLDER knowledge
base as a set of KEE units. A graphical representation of this constraint
network is reproduced in Circuit Buff as shown in Figure 5.4(a).

In Figure 5.4(a) the constraint models for the Switch (SWl) and the
Light Bulbs (LI, L2 & L3) have been compacted into 'black boxes'. The
black boxes have the same inner structure as the Switch and Bulb of
section 4.2, and the same number of external connections. In Circuit
Buff black boxes that represent more complex constraint networks are
referred to as concoctions, see section 6.1.5.

1
J 5.5. Initializiiig the Model

This step involves setting the known parameters of the circuit on the
constraint model. For the Christmas tree light set each bulb is 16W and
4V. To set these values in the constraint model the KEE interface is
used. The user clicks on the KEE unit representing the component (LI in

p
j this example) and chooses new- info ! from the resulting menu. The

user is then prompted for the parameter and value (NOSTRUM'S
^ prompts a p p ea r in t h i s f o n t , the user's responses appear in

this font):
S l o t : Wattage
N e w - v a lu e : 16

Clicking on LI again and choosing new- info ! allows the user to
specify the voltage:

S l o t : Voltage
N e w - v a lu e : 4

This process is repeated for each light bulb. Finally the voltage of the
n battery and the state of the switch are entered using a similar

procedure.

1

]

75

J

]

4.00 o 4.00 oVOLTAOE-RAnNO-Ll ̂OLTAOE-RAnNO-L2 VOLTAGE-ILAIINO-L3
16.00 o 16.00 o 16.00 oWATTAGE-Ll L1 WATTAOE-L2 WATTAGE-L3

' i 16.00
BUGHTNSSS-L2

i 16.00
BRIGHTNESS-L3

16.00
BRIGETNESS-Ll

OHMS-LAWSUM-RESISTANCES

SWl-POSITION

VOLTAOE-WIRE-6

_ 0.00
VOLTAOE-W mE-2

(a)

1
J

O u tp u t) F a c ts in ALL-SYSTEM S-GO W orldm _________
Primitive Facts:
(A WATTAGE OF L I IS 1 6 .0 0)
(A VOLTAGE-RATING OF L1 IS 4 .0 0)
(AN INTENDED-CURRENT DF L I IS 4 .0 0)
(A RESISTANCE DF L I IS 1 .0 0)
(A WATTAGE OF L2 IS 1 6 .0 0)
(A VOLTAGE-RATING OF L2 IS 4 .0 0)
(AN INTENDED-CURRENT DF L2 IS 4 .0 0)
(A RESISTANCE DF L2 IS 1 .0 0)
(A WATTAGE OF L3 IS 1 6 .0 0)
(A VOLTAGE-RATING OF L3 IS 4 .0 0)
(AN INTENDED-CURRENT DF L3 IS 4 .0 0)
(A RESISTANCE DF L3 IS 1 .0 0)
(A SWITCH-STATE DF S W l IS CLDSED)
(A RESISTANCE DF S W l IS 0 .0 0)
(A TOTAL-RESISTANCE OF Bl-ONW ARDS IS
(A VOLTAGE DF W IRE-6 IS 1 2 .0 0)
(A CURRENT DF Bl-ONW ARDS IS 4 .0 0)
(A VOLTAGE-DROP OF S W l IS 0 .0 0)
(A VOLTAGE DF W IRE-5 IS 1 2 .0 0)
(A BRIGHTNESS DF L I IS 1 6 .0 0)
(A VOLTAGE-DRDP DF L I IS 4 .0 0)
(A VOLTAGE DF W IRE-4 IS 8 .0 0)
(A BRIGHTNESS DF L2 IS 1 6 .0 0)
(A VDLTAGE-DROP DF L2 IS 4 .0 0)
(A VOLTAGE OF W IRE-3 IS 4 .0 0)
(A BRIGHTNESS DF L3 IS 1 6 .0 0)
(A VOLTAGE-DROP DF L3 IS 4 .0 0)
(A VOLTAGE DF W IRE-2 IS 0 .0 0)

Deduced Facts:
None

3 .0 0)

(b)
Figure 5.4. (a) The constraint network for the Christmas tree light set

showing initialized values, (b) The same facts in (a) as they appear in the a l l
ays terns-go hypothetical world of the Solder knowledge base.

76

n
0

n

The last value entered enables all the constraints to complete, leaving F

the network fully specified. This completed network is depicted in Figure
5.4(a). [

At this point the model represents the state of an actual working

Christmas tree light set. The values deduced by the constraint

propagation correspond to a user’s expectation of what the device should

be doing. So far all the values set by the user and derived by the

constraints are established as facts within the a l l- s y s te m s -g o

hypothetical world. These facts are shown in Figure 5.4 (b).

This stage corresponds to the circled 1 in Figure 3.6 on page 55.

5.6. Describing the Symptom

The initialization procedure of the previous section left all the lights

shining with a brightness of 16Watts (refer to Figure 5.4). In a broken p

Christmas tree light set this may not be so. For this example I assume

th a t bulb LI is observed not to be shining, ie. it has a brightness of zero.
To make this observation the user clicks on the LI unit in the KEE

knowledge base. From the resulting menu the o b s e r v e ! item is chosen. L

c

_ cThe user is then prompted for the parameter and observed value:

S l o t : BRIGHTNESS
New V a lu e : 0

Figure 5.5 shows an actual screen snapshot of this process. This
point corresponds to the circled 2 in Figure 3.6 on page 55.

5.7. The constraint model generates hypotheses

The new observation initiates more constraint propagation to propose

new values for param eters in the constraint network. The proposed

values will have different consequences for the circuit. To manage the

different scenarios NOSTRUM makes use of the KEE Worlds facility. T

KEE worlds represent a series of hypothetical scenarios in which •

different facts are assumed to hold. The worlds form a hierarchy: in

NOSTRUM the root of this hierarchy is called the ALL-SYSTEMS-GO

[

77
[

]

]

CO>? Il Slots*
m e m b e r :

o w n ;
BRIGHTNESS (local)
CIRCUIT (local)
CONNECTIONS (local)
CONTRADICT!
IN-A-WORKING-CIRCUIT
INTENDED-CURRENT (local)
INTERNAL-STRUCTURE-INTAC
KILL-ALL-INSTANCES!
KNOWN-FAILURE-MODES
MODEL!
NEW-DATUM!
NEW-INFO!
OBSERVATION!
DBSERVEL
OPERATING-PRINCIPLES
PORTS
REMOVE-DATA!
REMOVE-DATUM!
REPLACE-DATUM!

□ RESISTANCE (local)

Active Values >
Attach Image
Attributes >
Copy
Delete
Display >
Edit >
Method Commands^
Rename
Send Message
Values >

KEE Typescript Window
Argument SLOT : brightness
Argument VALUE : 0
^OPTIONAL argument QDIR [default (QUOTE -)]:

Couldn’t find any associated fault models for Ll-BRI
GHTMESS=0 but if the foil ouing predictions are obser
ved then I shall continue the search.
BRIGHTNESS of LI = 0
Are the above observed? (y/n)

Figure 5.5. Showing how the symptom observation that LI is off is described
to Nostrum, through the KEE interface to the Solder Knowledgebase.

world. In this world all devices are assumed to be working perfectly and

the facts in the world represent the parameters and values of a fully

functional device. Offspring of the root world inherit all the facts of the

78

n

parent world except for those that are explicitly overridden. Background

facts are true in all worlds. Background facts are facts that haven’t been

given a world dependency, such as the facts representing the structurê

of the device and class - subclass links.

When an observation is made about a value in the constraint model L
that is different to that expected NOSTRUM creates a child of the a l l - p

SYSTEMS-GO world. The child world inherits all of the facts of the ALL- ^

SYSTEMS-GO and contains the observation. This world is called T
' LOBSERVATiGN-unrj, where the unu is an arbitrary number generated̂ to

make sure the world has a unique name. The new world represents the

device in the observed state.

NOSTRUM then creates a child of the OBSERVAT lON-nnn world in ^
which it asserts the observation onto the relevant node in the constraint

network - in this case the B r i g h t n e s s slot of LI. The new world is

named after this assertion: L l - B r i g h t n e s s = 0 - n n n . Again the world

inherits all the facts of its parent, but the changed value and any

consequences of it derived from constraint propagation override the p
inherited facts. ^

There are no consequences for the observation that the brightness of

LI was zero because the original value (16W) wasn’t used to derive any

other values. So NOSTRUM simply produces the L l - B r i g h t n e s s = 0 - n n n

world as a child of the OBSERVATlON-nnn world with the new fact that

the brightness of LI is zero.

[

[

1 ■ r
The implication here is that NOSTRUM cannot deal with faults arising from a L

break in the structure of a device. This is not strictly true, for instance if a lever breaks ^

then force will not be propagated through it. Nostrum is capable of tracing that, L

isolating the parts of the device still working. Further discussion of this issue is

reserved for chapter 8, but the interested reader is referred to Davis 1984.

^Hackers note: Gensymed in lisp jargon.

79

[

[

[

D

n

r
L

]

]

Referring back to Figure 4.6, on page 64, which shows the constraint

network for a light bulb, it can be seen tha t the b r i g h t n e s s param eter is

related to the r e s i s t a n c e and c u r r e n t parameters through the *'^2

constraint. This constraint represents the equation B=I%, so in order

tha t the brightness B is zero either the current I or the resistance R

m ust be zero. To deduce these values the constraint fires backwards to

propose tha t either I=zero or R=0. Exactly how this is implemented is

explained in section 6.2.1. This point corresponds to the circled 3 of
Figure 3.6.

The values predicted for current and resistance are treated as

observations, and one world is created for each, this time as a child of

the L l - B r i g h t n e s s = 0 - n n n world (see Figure 5.6).

BI-ONWARDS-CURRENTmO-TS L1-RESISTANCEmO-13S

B1 -ONWARDS-TOTAL-\e S1STANCE =1NF W IRE -S-YOÙ'AGEsQ- 12S

SW l-R E SIS fA N C E *IN F -9i L2-RESISTANCE*INF-107 L3-RESISTANCE*INF'121

SW1-SWITCH-STATE-OPEN~10^

Figure 5.6 . Hypothetical worlds generated by the constraint mechanism to
explain why the brightness of L I is zero. The name of each world represents the
current hypothesis in that world.

]
In fact the constraint mechanism behaves like a depth first search

and all the consequences of the current being zero are explored before

those of the resistance being zero. So NOSTRUM first creates the B l-

ONWARDS-CURRENT=0-nnn world, representing a scenario in which the

80

u

D
]

D
D

ncircuit has no current flow. The consequences of this hypothesis are J

computed via causal constraint propagation within the world (for details

see section 6.2.1.1). The constraint propagation uses data dependencies L
to see which values were deduced from the previous value of the current.

This point corresponds to the circled 4 of Figure 3.6.

5.8. NOSTRUM requests the user to perform tests.

The names of the worlds generated by the search strategy represent

the shift of the current hypothesis. Currently this is implemented as a
depth first search through the constraint network. At each node

NOSTRUM calculates the consequences th a t the hypothesis would

imply. If there are any implications for observable or operable nodes f

then NOSTRUM and asks the user whether the predicted values are

observed. Figure 5.7 shows an example of this.in which the current H

hypothesis is tha t the resistance of the circuit is infinite. The

consequences of the hypothesis are displayed in the KEE Typescript

window, and the user is asked if the predictions are observed. This point
corresponds to the circled 5 of Figure 3.6. L

An answer of YES continues the search, because the observation p

backs up the current hypothesis. An answer of NO stops the current — L

hypothesis and forces NOSTRUM to continue its depth first search from F
a step higher in the tree, in search of a new hypothesis.

This questioning strategy is very ’dumb’, but originates from one of

the original goals of NOSTRUM which was to make a diagnostician that
could reason in a new situation, ie in the absence of experiential
knowledge.

I"
 ̂ L

[

81

r
L

1
J

1

1

J

]

]

KEEworlds B row ser^

A L L - S Y S T E M S - G O

I
O B S E R V A T IO N -?^

I
L l -B R I G H T N E S S = 0 -7 5

I
B î - O N W A R D S -C U R R E N T ̂ 0 -7B

I
B l - O N W A R D S - T O T A L - R E S l S T A N C E = l N F - 9 4

KEE Typescript: Window
Couldn't find any associated fault models for Bl-ONU
ARDS—TOTAL—RESISTANCE=INF but if the following predi
étions are observed then I shall continue the search

BRIGHTNESS of L3 = 0^BRIGHTNESS of L2 = 0.BRIGHTNESS
of LI = 0

Are the above observed? (y/n)

Figure 5.7. Screen snapshot morsel of the KEE interface to the Solder
knowledge base. The KEE worlds browser (top) shows the shift of the current
hypothesis, the most recent being at the bottom. Below this is the KEE typescript
window in which the user is being asked if the predicted consequences of the
current hypothesis are being observed.

82

■ D

n,

To make the questions asked by NOSTRUM more ’intelligent’ expert 1

knowledge about failure modes can be associated with nodes of the

constraint network. By doing this it is possible to take greater advantage]

of the symptom description to lead more directly to a fault. p.

To give an example: the symptom is ’flickering bulbs’. ’Expert’ L
knowledge, th a t flickering is associated with loose connections, is

available. In its search through the constraint network NOSTRUM

would come across hypotheses th a t suggested flickering battery voltage,

and flickering switch contacts. The expert would immediately dismiss

the flickering-battery idea because batteries are well-known for their fj

steady-state behaviour. The much more familiar symptom of dirty

switch’ contacts would attract the expert to the latter hypothesis. ^

A second example is tha t the battery could have the associated

knowledge tha t its charge decays slowly. If, when the lights go out, the

symptom describes a gradual dimming then the first hypothesis to come

to mind is likely to be ’flat battery’ rather than ’blown filament’. L

In this way experiential knowledge can be used to make different F

parts of the network sensitive to different symptoms. Detailed examples

of how the expert knowledge improves the search strategy are described f
in chapter 7. ~

Some heuristic knowledge has been incorporated into the Christmas J

tree light example. This knowledge is represented as simple

associations between known fault cases and faulty param eter values. A _

simple example is tha t a fused bulb has an infinite resistance. This fact p.

is represented by the simple association list: (R e s i s t a n c e i n f "F used - L

n

n

U
b u lb ") which is stored in a slot tha t represents the class of light bulbs

(for implementation details see section 6.2.2). Such knowledge enables

NOSTRUM to put forward fault hypotheses to the user, and a screen f
snapshot of the present example is shown in Figure 5.8.

83

1
J

]

]

1
] ■

1

1

1

]

1

]

]

1

]

1

unKEEwdrld^ Browser

A L L - S Y S T E M S - G O

I
O BSERVATION -?^

I
L 1 -B R IG H T N E S S ̂ 0 -?5

I
B l - O l ^ W A R D S - C V R K E m = 0 - 7 S

I
Bl-ONWARDS-TOTAL-RESISTÂNCE=:INF-S‘̂

S W 1 -R E S I S T A N C E = I N F -9 S L 2 - R E S I S T A N C E ^ I N F - 1 0 7

I
S W Î - S W I T C H -S T A T E ̂ OP E N - 204

ba.M Vi M I I l f [Ù V Æ a M M B M ___

Couldn't find any associated fault models for SUl-RE
SISTflNCE=INF but if the follouing predictions are ob
served then I shall continue the search.

L3 = 0,BRIGHTNESS of L2 = 0,BRIGHTNESSofBRIGHTNESS
of LI = 0

Are the above
ITCH-STATE of

observed? (y/n) y Are you sure that SU
#[Unit: SWl SOLDER] is CLOSED, I think

that it night be OPEN?y

L2 could have failed in these ways: (Fused bulb)
Is this likely, given the follouing expected consequ
ences BRIGHTNESS of L3 = 0,BRIGHTNESS of L2 = 0,BRIG
HTNESS of LI = 0? (y/n)

Figure 5.8. Nostrum suggests that the Light L2 has fused using experiential
knowledge. The typescript window shows a morsel of user dialogue with
NOSTRUM. The user has just confirmed that they are sure that the switch is
closed, after which NOSTRUM suggests a fused bulb.

84

5.9. A R epair action is suggested.]

When finally the user replies YES to one of the questions about the f]

predicted value for a node NOSTRUM has made a diagnosis. If the node

value can be restored by replacing a part, or by resetting a value, then H

hopefully the device is fixed. If not it is as though the user had replied

NO to the question regarding the value of the node, and so the constraint " ^

propagation continues. This point corresponds to the circled 8 of Figure
3.6. ' [

The process of diagnosing the Christmas tree light set as described in U
this chapter is summarized in Figure 5.9. D

n

D
n

D

D

n
LI

D

1

Christmas Tree Lights - an example.

]

]

1

Ll L2 L3

User draws the structure of

Parsed by
NOSTRUM
to produce
ddnscrainc
model.

swl

-► EZD—
L +

□ □

3

3

1

1

the device in Buff.
The components used to define the circuit
are supplied with a default set of testability
attributes. Switches and lanps are assumed to
be operable and observable respectively. These
can be changed, for instance a relay is a switch
that is activated by a solenoid.

sum-resistances
Model is made by piecing together
functional fragments that NOSTRUM
knows about. Eg. the lanp aind switch
fragments, which have their own
internal constraint model are
’plugged in' to the circuit model -
the current and resistance nodes are
connected together.

‘ 9ce. «.on,-

In this example the symptom is that L2 is not coming on.
From the operating principles of lanps they will be
on if their internal structure is still ok and they
are being powered by an appropriate current.

/
If the doctor has not thrown the
switch then L2 is not expected to
come on and so this trivial case
is accounted for by the model.

Hypothesis: The internal structure of L2 has
failed ie L2 has fused.
What are the expected synptoms?
Well .. expect a blackening of the bulb and
predicts (via constraint model) that the circuit
is not producing current. Also predicts a voltage
distribution around the circuit as shown below.

Hypothesis: Coitponent L2 of the
circuit is not receiving current.
The operating principles of circuits
suggest that either the component has
been shorted out of the circuit somehow,
or there is no current in the circuit.
Two more hypotheses are generated.

I
Hypothesis: No current in the circuit.
This could be caused by no voltages, or
some break in the circuit.

Propose battery test.
Short circuit hypothesis.
^ question is 'How drastic is the short?'
it could be just the component or the whole
circuit, for now lets assume it can only be
one component.
The constraint model predicts that Ll and L3
will be brighter, as shown below.

12

Hypothesis: circuit break.
This could be in the connections or any
components of the circuit. Circuit components
will be quizzed about their status. Lamps and
Switches are tested first because they are
observable, but if they are deemed ok then
the doctor will have to seek a voltmeter to
test the wires.

J
Figure 5.9. A summary of the diagnosis of the Christmas Tree light set.

J

] 86

Chapter Six lJ

D

Im plem enting NOSTRUM [

■0The previous chapter has described how NOSTRUM takes a

description of a device, models it and performs a diagnosis. This chapter ' [

explains the software implementation th a t facilitates this.

NOSTRUM is implemented on a Symbolics 3600 Lisp machine U

running KEE™1 (Knowledge Engineering Environment) but an early p

version was constructed on a Unisys Explorer. NOSTRUM is comprised ^
of several components which are summarized below: p

(1) A Graphical interface for defining device structure. This is called
Circuit Buff. P

(2) A hierarchy of objects representing device units. This is

implemented as the Solder knowledge base in KEE.

(3) Pattern recognition rules for identifying circuit components (This
was described in section 5.3). __ L

(4) A constraint propagation mechanism tha t drives the simulation p
and hypothesis generation procedures. L

[Note: Circuit Buff is not simply a front-end to KEE. The constraint p

propagation mechanism was originally implemented within Circuit

Buff. The need for a hypothetical worlds system necessitated duplicating T
the constraint propagator using the KEE object system.]

These systems are discussed in the following sections. f

L

u

iREE is a registered trademark of Intellicorp Ltd, Mountain View, California.

87

D
n

J
1

]

1

]

]

1

J

]
1

1
1
J

]

1

File Edit Circuits Buff ATMS

^ This i s t h e menu ba r

< This i s t h e nouse nodes menu

This i s th e e a s e l pane

This i s th e nouse c u r s o r >

Connand:
Connand:
Command:
Connand:
Connand:
Connand:
Connand:
Connand: T his i s th e L isp l i s t e n e r

Pcb Lisp 1

Figure 6.1. The various panes and menus of Circuit Buff.

6.1. Circuit BuJBf

Circuit Buff has two main functions in NOSTRUM. Firstly it is a

graphical tool for defining the structure of a device. Secondly it is used to

illustrate the constraint propagation mechanism th a t NOSTRUM uses
to do diagnosis.

In the following description of Circuit Buff I show how the user

constructs the Christmas tree light set using the mouse and menu

interface. Circuit Buff is driven by a 'three fingered' mouse and in the

next section left, middle and right clicks refer to a press and release of
the corresponding mouse button.

J
88

n

6.1.1. Using Circm t Buff to Draw the Christmas Tree light set

Figure 6.1 shows the screen layout of Circuit Buff. The screen of

Circuit Buff is split into several panes. At the top is the menu bar which

provides a series of menus for performing file operations and editing F

commands. The centre of the screen is dominated by the Easel pane.

This is where the structure of the device is drawn. To the left of the easel

pane is the Mouse Modes menu. This menu contains a series of icons ^

which are used to set the current mode of Circuit Buff. The available L

modes are summarized in Figure 6.2. Beneath the easel pane is a lisp n

listener whose presence is to aid in the debugging and development of
the tool.

To begin drawing the device the user chooses the 'New Component'

icon from the Mouse Modes menu. A menu of currently defined icons F
appears as shown in Figure 6.3.

The user selects a component from the menu and positions it on the F

easel pane by clicking on the left button of the mouse. The user is then

prompted for the name of the component in a pop-up window (Figure
6.4).

u

D

a

D

n
L

U

0

89
u

]

]

1
—1
J
]
1

]

1

]

J

V

%
t '

T
- i -

*

The Wire mode. Used for connecting wires between
the ports of components.

The Kill Mode. Used for removing icons and wires
from the display

New Component. Generates a new component of the
currently selected type.

■Choose a new component. Produces a pop-up menu
of available component types.

^Wire cutter mode. Cuts wires rather than kills
them. Useful if complicated wires need re-routing.

vText mode. Allows the user to write text on the
Easel pane. Useful for commenting on device
structures.

^Power Rails mode. Go into this mode if you need to
draw voltage busses. This is a hangover from
NOSTRUM'S beginnings as a graphical electronic tool.

iConcoct Mode. This mode allows the user to
represent a network of constraints using only one
icon. Click on a network in this mode and all
connected components become highlighted. Then
double-middle click, draw an icon and associate
its ports with wires in this network.

‘Switches circuit buff into an event driven
simulator mode. This mode is not documented
in this Thesis.

Figure 6.2. Expanded view of the Mouse Modes menu.

90

n

CHOOSE

D

0

n
U

•n
Figure 6.3. The pop up menu of currently defined component types. From

the top these are B e a m , S p r i n g , S w i t c h C o n s t r a i n t , L i g h t B u l b

C o n c o c t i o n , M u l t i i n p u t a d d e r . B a t t e r y , S w i t c h , L a m p , T w o i n p u t
c o n v e r t e r . R e s i s t o r , C a p a c i t o r , N P N t r a n s i s t o r . D i o d e and S i m p l e
C o n s t r a i n t .

u

91
L

J

1

J

]
n
J

]

]

]

]

]
J

]

File Edit Circuits Buff ATMS

m
SWITCH

Please n ane new SWITCH.
SWl

U N T I T L E D

Figure 6.4. Setting the new components' name.

The name is printed above the icon. While the mouse is over the icon

it becomes highlighted indicating th a t mouse clicks perform operations
on tha t icon. The orientation of the icon can be rotated through 90

degrees with a middle click, and repositioned with a double middle click.
The position of the icon’s name is moved with a double left click.

The user repeats this process until the desired icons appear on the

easel pane. Each icon has an associated set of ports. It is through these

ports tha t the components communicate to each other. In Circuit Buff
the ports are usually at the edges of the icon at the end of lines tha t

emanate from the graphic. Components are connected to each other

with wires which begin and end a t the ports. To start a wire the user

m ust first be in wire mode, which is accessed through the ’Wire Mode'

icon in the mouse modes menu. The mouse cursor changes to the image

of a soldering iron and the mouse who line displays the commands

available in this mode. The tip of the soldering iron is moved over one of

the ports of an icon which becomes highlighted. Left clicking then

creates a wire connected to the port. As the user moves the mouse the

end of the wire follows the tip of the mouse cursor with two orthogonal

lines. The wire can be made to bend around' other icons on the screen

92

r
L

by fixing 'kinks’ in it using the middle button. These kinks can be

removed by a double-left click. To fix the end of the wire the tip of the

mouse cursor is moved over the desired port and the user clicks on the

left mouse button. See Figure 6.5.

File Edit Circuits Buff ATMS

Ll L2SWl

B1

C H R I S T M A S - T R E B - L I G H T S

Figure 6.5. Drawing Wires in Circuit Buff.

Users’ mistakes are well accounted for in Circuit Buff. All operations

have a menu on the right button which gives the user the chance to abort

the current operation. There is also a ’kill mode’ in which the mouse

cursor changes to a skull and crossbones. In this mode any highlighted

object under the mouse is erased when the user left clicks on the mouse
button.

In this way the structure of the device is very quickly built up. The

next section describes how the user can define their own icons and how

constraint networks can be constructed with Circuit Buff.

6.1.2. Defining your own icons

If the icon representing the desired class of device component is not

present in the component types menu then new ones can be defined. To

do this the user chooses ’Create Component types’ from the ’Buff menu

in the menu bar. Buff then prompts the user for the device name and the

[

c
r
r

t

L

[
[

r
L

n

. [

c
r-
L
r
L

93 [

J

]

]
1

]
]
1
J

]
]
1

]

type of device to create. There are two types of devices: e le c t r o n ic -

d ev ices and b lack -b o x es. The electronic device type will simply

generate an icon with a set of ports. The black-box type is a more

powerful version of electronic-device tha t contains extra properties for

performing constraint propagation. If the user chooses the black-box

type they are also prompted for a list of the constraint completion

functions, these are explained in section 6.2.1.

When the name and type of component have been specified an icon
editing window appears. An example of this window is shown in Figure

6.6. The window presents a 32 by 32 grid in which each element

corresponds to a pixel of the icon. Pixels can be set or cleared using

mouse clicks. An actual size version of the icon appears to the right of
the grid.

The user can create ports for the icon by double left clicking on a grid

square and entering the port name. Ports appear as crosses within the
grid squares on the icon editor window.

C iicu its ATMS

ICON EDITOR

C H R I S T M A S - T R E E - L I G H T S

Figure 6.6. Showing how the icon editor is used to define a new icon in
Circuit Buff.

To finish editing the icon the user right clicks and chooses exit from

the menu. Circuit Buff then saves the newly defined icon and adds it to

94

n

the component types menu. The user can now proceed to use instances j j
of the icon in their circuits.

6.1.3. Behind the Scenes 0

As the user constructs a diagram in Circuit Buff they are really H

building up a set of lisp objects. Circuit Buff uses the Symbolics Flavors

system [Weinreb and Moon 1981] to represent these objects. A Flavor ̂ j j

defines a class of objects. Each object has a set of instance variables and

methods tha t define its character. The values of the instance variables " 0
define the current state of the object and the state can be changed by ^

sending messages to the object. Sending a message to the object causes LJ

one of the methods to be run. The methods are pieces of lisp code tha t n

can change the values of the instance variables, but also can run
arbritrary lisp code. H

In Circuit Buff all the component types inherit properties of the

e l e c t r o n i c - d e v i c e flavor. This flavor provides instance variables for Q

the name of the device, the ports of the device, the connections to wires,

the array tha t defines the icon and so on. The flavor also provides [

methods for moving the device around the screen, naming the device,
connecting it to wires etc. _ Ll

Each of the component types in Circuit Buff is a subclass of the

e l e c t r o n i c - d e v i c e flavor. The component types inherit all the

instance variables of the parent, but have their own unique icons and

ports. When the user defines a new component type in Circuit Buff

(section 6.1.2) they are creating a new subclass of e l e c t r o n i c - d e v i c e

and setting its icon and ports instance variables.

Wires have their own set of instance variables and methods because

they represent a quite distinct type of object. The hierarchy of the object

or flavor classes in Circuit Buff is shown in Figure 6.7. Each icon and U

wire created in Circuit Buff becomes an instance a t the right hand side p
of this hierarchy. Ll

n I
VJ

95 n

[

. u

u

u
r

]

]

] ■

3 -

3
n
J

3
]
3
3
n

Some of the component types tha t have a constraint behaviour inherit

extra instance variables and methods from the b b , and B la c k - B o x

flavors. A description of these flavors and the constraint propagation

mechanism in Circuit Buff is described in section 6.2.1.

Command: (sraph-seguenee ’{bb electronle-devlec wire))FLOORial
iMPUt-ADDER]

SOLEhOIDI
3-IMPUT-ADDERI
COMPARAT 0R|BLACK-BOX ItWERTERI
DtiCOCTIOfl-BLACK-BOK

LAMP-COMSTRAIMTSI
WITCH-COMSTRAINtI

OMCOCTIOM

DIODEI
lèOMCOCTIOM-COMCOCTIÔt̂

SUITCHI
BATTERVIlELECTROMIC-DEUICE
STARTER-MQTORI
ggsi'grefel
CRPACITORI
ICOMCDCTIQM-UIREI

Dynamic Lisp L istener 1

Figure 6.7. The hierarchy of Flavors in Circuit Buff. At the left of the figure
are three objects which form roots of the hierarchy. B B provides messages for
constraint propagation, E l e c t r o n i c - D e v i c e supplies methods for drawing,
and moving the icons as well as instance variables that list the connections of
the device and its rating. The w i r e flavor supplies messages for drawing
wires, connecting wires with electronic-devices and propagating constraint
values.

]
]

]

6.1.4. Defining Constraints

The component types that are subclasses of the b l a c k - b o x flavor

inherit methods for performing constraint propagation. In Circuit Buff

the icons represent constraints and the wires represent nodes of a
«

constraint network.

Node values are stored on the d a t a instance variable of wires and the

functions for deriving new node values are stored with the icon in the

fu n c t io n - m a p instance variable. To illustrate the constraint

96

propagation mechanism I use the simple example of an adder as shown
in Figure 6.8.

W 1
Â1

a

W 3

n

' n
Figure 6.8. A simple adder constraint.

The icon A1 is an instance of the B la c k - B o x flavor (see Figure 6.7), ̂ ^

which is connected to the three wires W l-3 through the ports a, b and c Q

respectively. The f u n c t io n - m a p instance variable of A1 contains three

function templates for finding the value at one of the ports when values Q

are known a t the other ports. These functions are assigned to lisp
variables by the following expressions: Q

(d e f v a r b b -c = a + b ' (+ a b))

(d e f v a r b b - a = c - b ' (- c b)) Q

(d e f v a r b b - b = c - a ' (- c a)) p.

The function templates are given names th a t reflect what they do, Ll

and are prefixed with ’b b - ' which stands for black-box. The user can p

define any lisp functions to be used by the constraint propagator, they ~ ^

are not restricted to ju st number functions. For instance the switch Q

constraint in the Christmas Tree light set uses symbol functions to map
between the switch state and the resistance of the switch: H

(d e f v a r b b - s w i t c h - r e s i s t a n c e - f r o m - s w i t c h - s t a t e n
' (c a s e s w i t c h - s t a t e , p

(c l o s e d 0) ^

(op en ' i n f)))

The constraint functions of a black box can be edited using the Circuit

Buff interface. To do this the user right clicks on the icon and chooses

Edit Properties from the pop-up menu. The resulting menu is shown in
Figure 6.9.

r

J

D
97

n

1 -

]
1
J

]

1

The properties o f Al
Constraint nap: (A B C)
Function nap: (BB-R=C-B BB-B=C-A BB-C=A+B)
String: "+"

Abort Done

"1 ̂ Figure 6.9. Pop up menu allowing the user to edit the functions of a black
J " box.

The only limit on the number of ports a black box may have is the

physical limit th a t will fit around the icon, and there is no distinction
between input and output ports.

To set values on the wires in Circuit Buff the user middle clicks on

the wire, and enters a value into the ensuing pop-up menu (Figure 6.10),

1 In this example the user has clicks on the wire W1 and enters the value

L 3. This procedure sends a message to the wire object telling it th a t there

is a new value and tha t the value is 3. The message forces the n e w -

d a tu m -o n -w ire method of the wire to run. This method informs each

b l a c k - b o x tha t is connected to the wire that a new value has been

received. This is implemented as another message: n e w - d a t u m - a t -

J p o r t . In this case only the adder A1 receives the message.

The n e w - d a t u m - a t - p o r t message forces the adder to check if there
is enough information at the ports to complete the constraint. There is

- enough information if all but one of the wires connected to a constraint

“ have values. At this point only the value for wi is specified and so
constraint propagation halts.

]

1

98

New datum on wire W1I
Mew datum v a l u e : 3
Rate of change of datum : -
Assumption: USER
Display propagation trace?: Yes No

Abort Done

n
J

n

Figure 6.10. The pop-up menu allowing the user to specify a value on a
wire. The second item in the menu prompts for the rate of change of the
observed value, this is an experimental feature of Circuit Buff which is not
discussed in this thesis. The value of the assumption option is used by the data
dependency records to guide constraint propagation (see sections 6.2.1.). The
final option allows the user to request a printed trace of the constraint
propagation, this is used for debugging.

The user then middle clicks on W2 and enters the value 4. As before

this procedure sends a message to the W2 object, which passes the value

on to A l . This time the constraint in A l can complete to derive a value for

W3 a t port c. To do this A l looks up the function for deducing the value at

port c from the values at a and b in the f u n c t io n - m a p . The values for a

and b are substituted in the function template and the resulting form is
evaluated. The result is then forwarded to W3 using the new—datum —o n —

w i r e message. As there are no other constraints attached to W3

constraint propagation comes to an end.

To summarize: Constraint propagation is implemented by message

passing. On receiving a value, a wire forwards the value to connected

black-boxes. For each port of the black-box the constraint tries to

complete. If it can, the new value is sent to the wire connected to the

port. In tu rn the wire forwards the new value to other black boxes. The

constraint propagation behaves in aTdepth-first manner.

6.1.5. Concoctions

Using the Circuit Buff interface networks of constraints can be

simply constructed. The behaviour of each element of the network is

0

D

[

Q

L

Ü

L

!Lj

99 n

]

1

]

specified by defining the function-m ap instance variable and the
function templates.

Networks of constraints can be condensed so tha t their behaviour is

represented by a single icon. In Circuit Buff such icons are referred to
as concoctions.

To make a concoction in Circuit Buff the desired constraint network

is drawn and the function templates defined. Using the concoction tool

the required elements of the network are selected and the icon editor

window appears. The user draws an icon th a t represents the network

and sets the ports. Finally the user has to associate the ports with some
of the wires of the constraint network.

J When this is done the concoction definition is saved to disk and the

icon is added to the component types menu. Now each time the user uses

the new icon they are really instantiating another copy of the original

constraint network. The concocted icon can be connected to other

components and constraints in the usual way, and concocted icons can

themselves be concocted. In this way the concoctions provide a method of
abstracting the details of component interactions away from the

] operation of the device. Circuit Buff allows the user to 'Zoom in' to focus

on the inner structure of a constraint network and the current values on
nodes.

Concoctions are implemented as flavors and appear in the object

hierarchy of Figure 6.7. The constraint networks which define the

operating principles of lamps and switches have been defined as

concoctions and also appear in Figure 5.4(a) on page 76.

]

]

]
1
J

100

n

6.2. The Solder Knowledge Base

The Solder Knowledge Base contains a similar hierarchy of objects to

the flavors of Circuit Buff, but by implementing it in KEE there is access

to a rule interpreter and a hypothetical worlds system. Figure 6.11

shows a graph of the solder knowledge base. Each element of the graph

is a KEE frame or object containing various slots. The slots of each object

are inherited (from left to right) to their offspring via the class - subclass

(solid lines) or class - instance (dashed lines) links.

ÏÏK
CIRCUIT-CONTROL

O u tp u t y The^ G rap h o f t h e SOLDER K now ledge B ase

CIRCUIT-PART

iONSTRAINT IIRCUIT ATTERY- — - — -B1

MODEL
:LECTRIC-DEVICE LAMP 4.2

*L3lOOE- nEVICE-UNIT
WITCH -SWl

W IR E-2

W IRE-3

-WIRE-4

-MEASURABLE W IRE-5

43BSERVABLE W IR E-6

ÆARRV-ON-LOOKING-FROM-DEVICE

-CARRY -ON -LOOKING -FROM - WIRE

4DENTIFY-L00P
-SPOT-CIRCUITS*RULES

TSTART-LOOKING

-LAMP-BRIGHTNESS

ORLD -OBSERVABLES 4 . AMP-DIMNESS

SEARCH 4.AM P-0NNESS

WATCH-COMPONENTS!

Figure 6.11. A graph of the Solder knowledge base in KEE. Solid lines
represent class-subclass links, dashed lines represent class-instance links.
The components of the Christmas Tree Light set are shown as leaf nodes
beneath d e v ic e -u n it .

■ n

•0

[

a
r '
u

L

101 c

]

When the structure of a device has been completely defined in Circuit

Buff a menu in that system allows the user to copy the lisp structures

created there into the Solder Knowledge Base. The objects are copied to

the corresponding classes, thus wires are instantiated as wire units,

lamps as lamp units etc. Figure 6.11 shows the solder knowledge base

with the components of the Christmas tree light set (Figure 4.4)

transferred in this manner.

J

]

]

]

]

]

îilBSnBZBB
U n tu L l l a knaw lK lfa b a ss SOLDER
CrM tad by KsiUi on Z-17-90
Modified by Radar on X-17-90 MilKZ:

Mombor Of; LAMP

Conrorcad LAMP.

Own slot) BnOHTNESS I t m L l
In ltu lta n n i OVERRIOE.VALUES
ComiMnf; "Thm in fb tied b z itb tn a n o f the la

ap ."
C w tM ln it t B)
TttiablU ty; OBSERVABLS
PaAws: UNKNOWN

Own slot: CIRCUIT from L l
/ndsrftoncsi OVERRtaE.VALUES
ValtttClasit CIRCUIT
Pafaan BI-ONWAROS

Own sloe CONNECTIONS from L l
foMrftancsi OVERRIOE.VALUES
C a rm vti "An »Ust of (<port> <wji«>) w ith

which the dovles oonnscts.*
Pafosji (a t WIRE-5),

(OUT W »E-4)

Own sloe CONTRAOICTI from NOOE
Inhêtltm ett METHOD
V a lttC lts t! METHOD
Ccmrrmi; "Send * m essate, you will be pro

ap tsd for th s slot and tha dlracti
on of ehanra you hava obsstvtd
which will bo ona of T or a.*

V t l w t NODE-CONTRADICT!

Own sloe M-A-WDRKINa-CKCUT from LAMP
In h u ltm e n OVERRIOE.VALUES
Caamanf.* "Dictatas th a t tha c ircu it o f th is 1

amp m ust ba passing c u rran t In a
I d a f a this bulb to shine."

V a tW i (PLUS CURRENT CIRCUIT)

Own Sloe INTENDED-CURRENT from L l
tnlurltcmcn OVERRIOE.VALUES
C enrtnliiti; (LI-X-SO 1),

(L1-X-29 1)
Pa/oas) UNKNOWN

Own slob MOOELI ftom LAMP
InMtItaneê: METHOD
PafoaClass. METHOD
Commtnh Tfanding ai maasaga buCda « modal of

a lamp."
P f foas; LAMF-MODBU

Oam sloe NEW-OATUMI from NODE
fiiXar franca.-METHOD
PafoaCIass; METHOD
Cammanf; T h is is tha mathod usad In tarnally b

y tha constra in t p ro p a g a ta . Its argu
m ant Is a da ta s tructura th a t contain
a Information th a t would atharwlaa b
• piomptad f a by tha naw-infOI m at
bod."

Pafoas: KODB-KEW-DATUMI

Own slab MEW-HOFOt tram NOOE
/nAarlfanca.’ METHOD
r t lv tC la tt! METHOD
Cammanf: T h is Is tha slot tha u s a should usa t

0 propagate r a l u a around tha eonstr
a ln t n a tw a k . Sand a massage, you wl
11 ba prompted f a a slot (which rape
asants ana of tha nadaa a f th a canstra
Inc natwork) a walua, th a w ay tha t
alue Is changing (Its qdlr w hich shou
Id ba ana of t s a •) and tha world."

Psrfnes; KODB-NEVP-INrOI

Own slob 085CRVATIWII from NODE
llü tttitm eê! METHOD
r a l tu c ia m METHOD
Cammant: T h is Is tha In ta n u l obaa vallon m at

had th a t talEM a n obsavatlom th a t h
as baan mada Into a da ta objaob"

Pafaasi KODE-OBSERVATIONI

Own slob OesERVEI ftom NODE
IM uiU tnct; MED KID
rataaClaatt METHOD
Cemmeaf; "Send a massage w han a n observation

about a node value Is obsnvad th a t
Is dlffbrant to th a t pradictad by th a
modal. Tha action will ba to raaka a n
aw w a ld containing th a obsavatlon
an d to propagate the value a o u n d t
ha n a tw a k In an attem pt to satisfy t
ha explanation.'

Pa/aas: NODB-OBSERVBI

Own slab RCMOVE-CATAI from NOOE
IiOmtitann; METHOD
ValaaClatt; METHOD
Cemmani; "Pops up a m enu a f d a ta to be removed from th a node (slot)

prompted f a . '
Pdfaas; NODB-REMOVS-DATAI

Own slob REMOVe-OATUMt from NOOE
faWfreeca.-METHOD
ValaaCtasi: METHOD
Palaas.- NODE-RRMOVR-DATUMI

O w n s la b REPLACE-OATUMI from NOIX
faAarffanaa) METHOD
ralaaClatf! METHOD
eammmL- "Sand a massage, you wUI ba pranptad f a th e datum m rap

lace and w h a t to replaça I t with."
ra b ttt: KODB-REPLACE-DATUMI

Own slob RESISTANCE from L l
M arltanca: OVERREIE.VALUES
Cammeaf.- T h a reslstanca of tha lamp In ohms.'
eanitratntt; (BI-orfW ADDS-aaa-SB D),

, (L1~*2«-32 R),
(L1-X-31 R>,
(L1-X-30 R)

Nadaa.- UNKNOWN
T u ta t i t i ty ; MEASURABLE
Pafaas) UNKNOWN

Oara sloe STATE from ELECTIRC-OEVICE
Inharttcmca; OVCRRnC.VALUCS
Camanaaf: T h a gaiu ra l absavab la s t a a of a device.'
P a le ts : UNKNOWN

Own slob VCLTAOE-OROP from L l
/aAariteacs.-DVERRIDE.VALUES
Camtxalnta; (L1-X-31 V),

(B1-ONWAROt><d>-ia B>
T aa iam tty ; MEASURABLE
P atau; UNKNOWN

Own slab VOLTAOE-AATINa from L i
IiOuitaacai OVERRE)C.VALUCS
Cammanti T h a voltage th a bulb Is daslgnad f a In vdts."
Caiutxalnttt (L1-X-30 V),

(L1-X-29 V)
rasfa»lflfy: OPERABLE
Psriaas: UNKNOWN

Own sloe WATTADE from L i
Wiaritanc*; OVERRIOE.VALUES

Figure 6.12. A detailed look at the slots in the KEE frame representing the
lamp unit Ll. Each slot represents an attribute of the object and each slot has
various facets such as Comment, Inheritance and Value. The values of the
Wattage and Voltage-Rating slots can be specified by the user. The
constraint model of each lamp places the constraints shown in Figure 5.3
between the corresponding slots of this unit and the current slot of the frame
representing the circuit. Each of the slots in this unit that forms a node in the
constraint network has a CONSTRAINTS facet showing the constraint KEE unit
to which it connects.

Components of the Christmas tree light set become indirect children

of the d e v i c e - u n i t class. These units contain slots that represent the

parameters of the components. Figure 6.12 shows the d e v i c e - u n i t for

the lamp instance L l. The slots B r i g h t n e s s , I n t e n d e d - C u r r e n t ,

R e s i s t a n c e , V o l t a g e -D ro p , V o l t a g e - R a t i n g and W a tta g e are the

102

n

parameters of the lamp that are used to represent its operating

principles. Notice th a t c u r re n t is absent from this list because it is a

param eter of the c i r c u i t device unit. The Ll unit also has a c i r c u i t

slot which represents the circuits to which it belongs. The value of this

slot is unknown when the device is copied from Circuit Buff, but is filled
out when the production rules identify a circuit.

Figure 6.12 also shows the co n n ec tio n s slot of L l. The value of this

slot is set when the device is copied from Circuit Buff. I t contains an

association list of the ports and wires to which the component connects.

This slot is used by the production rules to identify a circuit loop.

Section 5.3 described how the rules identify the circuit. The final

action of the rules is to build a constraint model of the circuit. This is
\ _

done by sending each component of the circuit a model !i message. Each

device unit inherits this message from its class definition, and appears C
as a slot in the frames.

□

1 Within KEE I have adopted the convention that all message names are terminated

with an exclamation mark. This distinguishes method slots from other slots in the

KEE units.

103

[1
1
_ J

n
n

n
J

. n

c

]

]

]

]

]

fm
CIRCUIT

O u tp u t) The G raph o f th e SOLDER K now ledqe Base^
•CONTROL

CIRCUIT-PART

P 1 - 0 N W A R D S -+ 4 .* -3 G

/ 3 1 - O N W A R D S - < # > - 1 7
t t

/ /3 1 -0 N W A R D S -< # > -1 8/ / /
///3 1 -0 N W A R D S -< # > -1 9/ // /

3 1-0N W A R 0S -< #> -20i' l l t
B1-0NW ARDS-0HMS-LAW -35/ / / / / /!;//// i . i - x - 2 9

t ' / / /W» V * -
, - L l - X - 3 1

t - y 1 - - - - L 1 - ^ 2 * - 3 2 CONSTRAINT#;::; - -LZ-x-zs
" L 2 - X - 2 GVvx' %

■ i . 2 - X - 2 7

' \ \ \ W ' t . 2 - ^ 2 * - 2 8

MODEL(

JODE- -DEVICE-UNIT

1 . 3 - X - 2 1

' 1 . 3 - X - 2 2\ \ \ \
\ \ \ i . 3 - X - 2 3

\ \ ' l . 3 - ^ 2 * - 2 4

V s W 1 - . / . - 3 3

5 W 1 - X - 3 4

IIRCUIT B 1 -O N W A R D S

A TTER Y -8 1

L E C T R lC -D E V IC E < r L A M P - ; L 2

'4.3
WITCH SW l

RULES

IN T E R F A C E -::
.--MEASURABLE

'''OBSERVABLE

,WIRE-2

'WIRE-3

I R E ^ j - - -WIRE-4

\ "'W IRE-5

''W IRE-G

. "C A R R Y -O N -L O O K IN Q -F R O M -D E V IC E

, t ' - - -C A R R Y -O N -L O O K IN G -F R O M -W IR E
S P O T -C IR C U IT S -^ : ^

SEARCH

WATCH

4DENTIFY-LOOP

•START-LOOKINQ

, 4 . AMP-BRIGHTNESS

rORLD -OBSERVABLES- -LAMP-DIMNESS

'''LA M P-O NN ESS

■COMPONENTS I

Figure 6.13. The Solder Knowledge base after the recognition rules Spot-*
Circuits have identified the circuit device unit Bl-Onwards, and modelled the
device units with the constraints. The constraints are shown as children of the
constraint KEE unit and correspond to the graphical representation of the
network shown in Figure 5.4(a).

104

The modelling process builds networks of constraints representing

the operating principles of the device components. The constraints are

built within the Solder knowledge base as children of the CONSTRAINT

class (see Figure 6.13). The constraints^ which appeared as 'black-box'

icons in Circuit Buff, are KEE units in Solder. The nodes of the

constraint network, which appeared as wires in Circuit Buff, are now

slots of the device units, and values on the wires become values in these

slots. The device units inherit the node behaviour from the node class.

Referring back to Figure 6.12, which showed the Solder representation of

L l, the parameters of the lamp have an extra facet called c o n s tr a in ts .

This facet contains an association list of the c o n s t r a in ts and p o r ts
connected to the parameter.

The constraints are given names which indicate where they are and

what they do. For instance L2-'"2*-21 is the brightness constraint of

lamp L2. The number a t the end is gensymed to make it into a distinct
symbol.

LJ

nJ

0

0

0

6.2.1. Constraint Propagation in Solder

There are two types of constraint propagation in Solder. One for

initializing the constraint network and the other for performing

diagnosis, these are referred to as causal and diagnostic propagation.

6.2.1.1. Causal Propagation.

Causal constraint propagation behaves in a very similar way to the

constraint propagation mechanism of Circuit Buff which was described

in section 6.1.4. Values are propagated through the constraints in a way

th a t mimics causal behaviour. For instance in the Ohm's law constraint

of the circuit the current can be deduced from the resistance and

voltage. This is because the voltage is a force which drives the current ^

against a resistance: the current can't cause the voltage of a batteiy.

However, the voltage drop across a component may be causally deduced Q

c

u

105 c

]

]

]

]

]

if the resistance and current are known, because the resistance does
cause a voltage drop.

No special mechanism has to be defined to allow the constraints to

work in this way. One only has to define the constraint networks so that

they represent causal change and then confine oneself to setting the

parameters of the network tha t can only be causally set in the real

world. Referring back to the Ohm's law example: its OK to set voltages

and resistances because batteries and components can be changed. But
a current can't be directly changed a t will.

6.2.1.1.1. Implementation

The causal constraint propagation procedure within Solder is the

same as tha t in Circuit Buff. However the values tha t nodes can take are

represented differently as described below.

The values of the nodes of the constraint network are simple lisp

structures. These structures are called d a ta . Each datum has several

slots and the four most important of these are listed in Figure 6.14.

1 Slot Description
J Name This slot holds the name of the datum. Its value is

usually a machine generated symbol.
J Value The value here is the value of the datum.

Constraint The value of this slot represents the constraint tha t was
used to derive the current value of the datum. If the
user set it then the value here is USER.

- “
Args The value of this slot is a list of other data tha t the

constraint used to derive the value.

Figure 6.14. The slots of the data lisp structure.

These slots define data dependencies tha t enable the derivation of a
datum to be traced.

Data on the nodes are set through the user interface by sending the

relevant IŒE unit a new- i n f o ! message. The method requires a slot, a

106

D
value and an informant. The informant is a description of who is setting

the value. If the value is being set by the user then this final argument is

simply USER. These arguments are used to create a datum, and the

datum is sent to the node using the new - datum ! message.

If the datum is acceptable to the node then the method forwards it to

the constraints that are attached to the slot. (Data are acceptable a t a

node if there are no other data already present.) The value is forwarded

by sending the relevant constraints the n e w - d a t u m - a t - p o r t ! message.

The n e w - d a t u m - a t - p o r t ! message takes the port and datum as

arguments and tries to complete the constraint for each of the other

ports. For each port tha t there is a completion then the wire connected at
tha t port is sent the n ew -datum ! message.

These procedures are summarized in boxes 6.1 and 6.2.

Box 6.2. Summary of the new -datum -at-port ! procedure of c o n s tr a in ts .
This forms part of the causal constraint propagation algorithm.

Procedure: N ew -D atum ! method of NODE

A rgum ents:
Do:

S l o t , and D atum

If the value of the datum is acceptable
Then (1) Set the value of the node to be the datum

(2) For each connected constraint, other
than the informant, send a n e w -d a tu m -

a t - p o r t ! message.

Box 6.1. Summary of the new-datum ! procedure of nodes. This forms part
of the causal constraint propagation algorithm.

Procedure: New-datum-at-port! method of CONSTRAINT
A rgum ents:

Do:
Port, Datum
For each of the other ports of the constraint look up
the appropriate function template and try to
complete.
If a value can be derived then create a datum and
send it to the node connected to the port using the
New-Datum! message.

n
n
U

0

c
D

U

c

107

]

The causal constraint propagation mechanism is used in NOSTRUM

to initialize the state of the device. The initialization is done within the

a l l - s y s t e m s - g o hypothetical world. Diagnostic constraint propagation

begins when a datum in the actual device is different to th a t predicted by

the causal constraint propagation. The next section describes this
procedure.

6.2.I.2. Diagnostic Constraint Propagation

Causal constraint propagation is used to initialize the state of the
device. This initialization process puts data on the nodes of the

constraint network within the a l l - s y s t e m s - g o hypothetical world.

Each of the data contains a record of the constraints and data tha t were

used to derive it. These records are used in the process of diagnostic

constraint propagation to work back through a network to find the cause
of a fault.

6.2.I.2.I. Implementation

In Solder, diagnostic constraint propagation is initiated by a user

through the o b se r v e ! message. The user clicks on the relevant d e v i c e -

u n i t and chooses o b se r v e ! from the menu. Nostrum then prompts for

the parameter (slot) and the observed value. When these have been

specified Nostrum creates a child world of the a l l - s y s t e m s - g o world.

The child world is called OBSERVATlON-nnn and inherits all the facts of

the a l l - s y s t e m s - g o world, but with an extra fact describing the

observation. The information describing the observation is made into a
datum and sent to the node using the o b s e r v a t io n ! message.

J In chapter 5, this is how NOSTRUM was told tha t the bulb L l had

zero brightness. I use tha t example again here to illustrate the
constraint propagation.

When a node receives the o b s e r v a t i o n ! message it creates a child of

J the current world. The new world is given a name describing the new

n value of the node. The child world inherits all the facts of the parent

]

108

n
world, except the fact describing the previous value of the node. This fact
is overridden by a fact representing the observation.

To find the consequences th a t the new value implies causal

propagation is run within the new world. The causal propagation looks

for data tha t were deduced from the old value of the node and overrides

them with data calculated from the observed value. When this is done

the world represents the state of the device as it expected to appear if the
node had tha t value.

In the example the brightness had been deduced from the values of

resistance and current, but no inferences had been deduced from the

value of the brightness. So in this case there are no immediate

consequences of establishing tha t the brightness is zero. C
Unless the node can provide an explanation for the observed value

constraint propagation continues. There is no immediate explanation

for why the brightness of Ll is zero and so the value is passed on to the

constraint that derived the previous value. This is implemented by

sending the constraint a new—o b s e rv a tio n —a t —p o r t ! message. H

The brightness constraint is represented by the three function

c

Jtemplates:

(d e f v a r bb-B =I^2R ' (* I I R))

(d e f v a r bb-I=V B /R ' (s q r t (/ B R))

(d e f v a r b b -R = B /l2 ' (/ B (* I I))

where B is the Brightness, R the resistance and I the current

through the bulb. Using the new observation and previous values of I

and R the constraints can complete to suggest values of 1=0 and R=0. To

suggest tha t I is zero the constraint must assume the original value of R f
holds, and vice versa.

When the constraint can complete it forwards the predicted values

(which are made into data) to the relevant nodes. This is done using the

OBSERVATION ! message again. The message will create worlds for each f

L

r"
L.

109

[

[

]

]

]

]

]

of the new data and predict their consequences within those worlds

using the causal propagation mechanism.

Only if the predicted value for the node can be explained by some

known failure mode will the constraint propagation come to a halt. This

might happen for instance when the mechanism suggests th a t R=0,
implying th a t the bulb has shorted out.

Boxes 6.3 and 6.4 summarize the o b s e r v a t io n ! and NEW-

OBSERVATION-AT-PORT! messages.

Procedure: O b s e r v a t io n ! method of NODE
A rgum ents:

Do:
S l o t , and Datum

Create a world as a child of the current world.
Give the world a name tha t describes the observation.
Predict the consequences of the observation within
the world by initiating causal constraint propagation.
Unless the observation constitutes a valid diagnosis
then forward the observed value to the constraint tha t
derived the previous value, using the n ew -
o b s e r v a t i o n - a t - p o r t ! message.

Box 6.3. Summary of the o b se r v a tio n ! procedure of nodes. This forms
part of the diagnostic constraint propagation algorithm.

J Procedure: N e w - o b s e r v a t i o n - a t - p o r t ! m ethod of CONSTRAINT

1 Argum ents: P o r t , Datum

J Do: For each of the other ports of the constraint look up
the appropriate function template and try to

complete.

"1
If a value can be derived then create a datum and
send it to the wire connected to the port, using the
OBSERVATION! message

Box 6.4. Summary of the n e w -o b se r v a tio n -a t-p o r t ! procedure of
c o n s tr a in t s . This forms part of the diagnostic constraint propagation
algorithm.

110

The diagnostic constraint propagation procedure generates a series

of worlds whose names reflect the shift of the current hypothesis. How

this propagation comes to an end is described in the following section.

6.2.2. Using Heuristic Knowledge

As the propagator works its way through the constraint network it

suggests various fault hypotheses. The hypotheses refer to values of

various parameters of the device. In the Solder Knowledge base it is

possible to associate heuristic knowledge with parameters of the device

units. At the end of chapter 5 (see Figure 5.8) an example was given of

how Nostrum put forward the hypothesis of a fused bulb. This is

implemented as a list by associating the known fault model with a

corresponding fault value in the k n o w n -f a u l t - m o d e l s slot of the device
unit class. The structure of the association list is defined by:

(<node-nam e> < f a u l t - v a l u e > < t e x t - s t r i n g >)

For the class of light bulbs these fault models are displayed in Figure
6.15.

The KNOWW-FAILURE-MODES Slot: o f th e L l Unit
Own slot: KNOWN-FAILURE-MODES from LAMP

Inheritance: OVERRIOE.VALUES
Vaines: (RESISTANCE 0 "Short circuited bulb"),

(RESISTANCE INF "Fused bulb")

Figure 6.15. The known fault models of the class of light bulbs.

If the constraint propagator tries to suggest a value for a node that

corresponds to a known fault model, then the associated text string is

displayed to the user. The user can refute or accept the hypothesis, as
was shown in Figure 5.8.

Currently the mechanism for representing this type of heuristic

knowledge is stricly limited to equating the hypothesised values with the

known fault values. However in future upgrades of NOSTRUM it is

0

]

n
• n
, n

D
n

[

n
U

n

[
r"L
r'
L

[
111

]

anticipated tha t comparisons between these values become possible in
-| order to cover a wider range of fault models.

J As an extra extension to this system a set of keywords could be

associated with the node names and values. Such a facility would allow\
NOSTRUM to ask even more discriminating questions in search of a

J f diagnosis. For example the keyworkd decays could be associated with a

v o lta g e attribute of the class ofbatterys. In this case when NOSTRUM

„ seeks a reason for a dim bulb from the battery device unit it can ask if the

bulb has been dimming. This would discriminate a wrong-valued bulb
from a failing battery.

Currently the presence of fault models within the constraint network
does not affect the search strategy. Nostrum simply performs a depth-

n first search and suggests fault models if they are found. This is a focus
of future work.

The following chapter shows how NOSTRUM is applied to other

domains and how heuristic knowledge could be used to improve the
search strategy.

]

] .

112

Chapter Seven

Application of Nostrum to other domains

In this chapter I describe how NOSTRUM'S methodology can be

applied to two other domains: the Starting mechanism of a car and a

simple doorlock. Most of the effort required to model each domain lies in

the definition of the operating principles and writing the function

templates. When these are done NOSTRUM'S diagnostic strategy does
the rest!

7.1. Diagnosing a Car Starting Mechanism.

In this section I describe the methodology tha t NOSTRUM uses to

diagnose a car tha t has difficulty starting. In the example I show how

the circuitry is modelled by constraints and tha t this leads to an initial

diagnostic network. Then it is shown how addition of experiential

knowledge can sensitize the network to speed up diagnosis.

To begin with NOSTRUM takes a schematic of the relevant parts of

the car. This is input to NOSTRUM via the graphical interface, Circuit
Buff, and is shown here in Figure 7.1.

n
n

D

113

D
Ü

C

c
[

c

]

STARTER
SO L E N O ID “ 2 3

]

]

S T A R T E R -M O T O R -19

R E L A Y -S W IT C H

LUCAS

HEADLIGHTS

H E A D L IG H T -S W IT C H

Figure 7.1. Schematic of the starting components of a car engine.

As for the Chistmas tree lights example a constraint network of the

Circuit is derived from this input. The constraint network is

constructed from library models of the components of the circuit and

knowledge of the connectivity. Figure 7.2 shows part of the resulting

constraint model, and the equivalent KEE knowledgebase is shown in
Figure 7.3.

The constraint network shown is a model of the headlight circuit and

the starter motor circuit. At the left of the diagram is the constraint node

representing the battery's voltage, in this case 12. Hanging off this node

are two adder constraints, Al-SM and A l-H , these compute the actual

voltage driving the Starter-Motor and Headlight circuits by subtracting

the voltage drop through the battery (caused by its internal resistance).

The voltage drop across the battery is calculated for the starter motor

circuit and headlight circuit by the Ml-SM and the Ml-H constraints

respectively. These constraints use the value of the internal resistance of

the battery, and the current in their respective circuits to make this

calculation. From here the headlight circuit is very similar to the

Christmas tree lights circuit, but with only one bulb. The starter motor
circuit requires further explanation.

114

File

V
Edit

SO LZN O m -SW RC H

SOLEMOIO-STATX

[- □ = = £

Circuits Buff
_o>20.00

TOBQUX-OENERATZD

+ I SM-TOBQUX-DirrEBENCX
_o 20.00

ATMS

1.00 _fxl-

.12 .00
I VOLTAGE

■a=:

&=■

■Q NETT-TORQOE
________olOO.OO

I - T O - X

120.00

TOEQUE-XEQUIRED

3El~ô̂ r lIABTEIl-MOIOB-aRCtnT-VOLTAOE

' H EA DLIGH T-SW nCH
? CLOSED 60.00

b e a d l i o h : H - v r
001—0 12.1 I H-VX

BKIOHTNESS

&

_o 12.00
HEADLIGHTS-CIECUIT-VOLTAOE

2.40
HEADLIGHTS-OHMS-LAW

BATTEEY-INTEEHAL-EESISTAHCE
HEADUGHTS-SUM-SESISTANCE

ST A R T IN G -C IR C U IT R Y -C O M S T R A IN T -N E T W O R K

Figure 7.2. The constraint model of the starting components of a car
engine.

The starter motor circuit contains the two constraints SM-SUM-

RESISTANCE and SM-OHMS-LAW. They derive the total resistance and the
current in the starter motor circuit from the resistance of its

components and the voltage coming from the battery. The solenoid is

modelled as a simple switch, but instead of being activated by a user [as

it was in the Christmas tree lights circuit] it is activated by another

circuit [the key switch circuit, which is not modelled here]. When the

solenoid operates it ’Clicks’ and closes the switch so tha t it offers no
resistance to the S tarter motor circuit.

]
n
J

0

L

G
0

0

G
ri
L

C
c

115

nn

]

]

]

T he G ra p h o f th e : CAR-MECHANIC K n o w le d q e B a s e
CIRCUIT-CONTROL
CIRCUIT-PART

^EAOLICHT-aRCUIT-OHMS-LAW-23Z
/ilEADLIGHT-aRCUIT-SUM-R-233

»ViiEADLIGHT-SWITCH-./.-226
/ / / .HEADLIGHT-SWITCH-X-227" ! '

!!• / ÜEADLIGHTS-X-228 .•/>.'/
!<,••• .HEADLIGHTS-X-229

< ' / / .HEADUGHTS-X-230
,'HEADLIGHTS-*2*-231
, -LUCAS-+-224

CONSTRAINT*!;---------- LUCAS-+-234
' ' -LUCAS-OHM-225

'X-UCAS-OHM-235

' 'RELAY-SWITGH-./.-236

''W \ ''RELAY-SWrrCH-X-237V%\\\
V.‘ V 'STARTER-CIRCUIT-OHMS-LAW-241

%\ \ \ ’STARTER-CIRCUIT-SUM-R-242

MODEL!
\ ’STARTER-MOTOR-19-T-TO-R-240

STARTER-MOTGR-19-X-238

-HEADLIGHT-aRCUIT
“''-STARTER-CIRCUIT

ÏATTERY -LUCAS

liAWf 21

jiAWÏ ZZ

JOOE- -OEVICE-UNIT

IRCUT-:

LECTRIC-DEVICE

RULES

NTERFACE-::'
, -MEASURABLE

‘-OBSERVABLE

/WIRE-IS
v%.WIRE-1G

IRE*^- WIRE-25

-WIRE-29

AMP -HEADLIGHTS

STARTER-MOTOR -STARTER-MOTOR-19

,-HEADUGHT-SWITCH
'-RELAY-SWITCH

WITCH-::"

\
-WIRE-31

XARRY-ON-LOOKING-FROM-DEVICE

''.''-IDENTFY-LOOP

'START-LOOKING
^ . -LAMP-BRIGHTNESS

ORLD-OBSERVABLES- -LAMP-DIMNESS
SEARCH ' ' -LAMP-ONNESS
WATCH-COMPONENTSI

Figure 7.3. The KEE knowledgebase representing the constraint model of
the Car Starting Circuit.

The starter motor itself is modelled by three constraints: SM-m i , t -

TO-R and SM-TORQUE-DIFFERENCE. The SM-Ml constraint is a multiplier

tha t simply relates the current to the torque-generated by the starter

motor by multiplying factor K. K is an arbitrary constant which I have

chosen to be 1. In a working starter motor more current is drawn from

the battery when the motor has to do more work. This happens because

116

the electrical impedance of the motor falls if resisted from turning due to

an increased load. In fact the mechanism is really a complex sequence

of magnetic and electrical interactions th a t take a few moments to come

to equilibrium. I have approximated this mechanism into the single

constraint t - t o -R [Torque to Resistance] and the behaviour of the

constraint is represented by two simple lisp functions, which are shown

below. The values used in the functions are the values used by the

currrent example, and it is defined as an error if other values are used.

n

Function to calculate resistance from torque-required:
(defvar bb-r=f[tr]

'(case tr
(0 1 2)
(10 1)
(100 0 .1)
(otherwise

(error "Unknown value for required torque."))))
Function to calculate torque-required from resistance.
(defvar bb-tr=g[r]

' (case r
(12 0)
(1 1 0)
(0 . 1 1 0 0)
(otherwise

(error "Unknown value for r in bb-tr=g[r]."))))
These functions simply return (where they can) the corresponding

value from the following table:

n

0

Torque Required Resistance
0 12

10 1
100 0.1

relation between the torque load of the starter motor and its internal resistance.
(Arbitrary units).

D

The SM-TORQUE-DIFFERENCE constraint derives the difference

between the torque produced by the starter motor and tha t required. This

value represents how vigourously the engine turns over when started.

In this example a value of 20 represents a healthy start and a value of 10
represents a weak start.

117

1

] •

]

1

]

The model is an approximation in many ways. Firstly the constraint

mechanism as it stands can only model instantaneous changes, but the

torque developed by a starter motor is the result of a complex sequence of

causal interactions. Secondly the starting torque of the engine will be

greater than when it is already moving because of the inertia of the

flywheel. Here the constraints are only used to model one-time

situations. Thirdly the relations between current and torque are made

up. I have just used the multiplier constraint to illustrate tha t the torque

generated increases as the current through the starter motor increases,

the actual relation will depend on the number of windings in the coil,

the shape of the arm ature and the material from which it is made.

To demonstrate the diagnostic capabilities of this constraint network

two examples are given. The first case deals with a car engine tha t only

turns over slowly when the key is turned, and the second addresses the
case in which there is no engine tu rn over.

7.1.1. Case 1: Engine turns over weakly.

In order to demonstrate this case the constraint network must be

initialized to reflect the initial state of the working device. Figure 7.5

shows this initialization. The circuit is initialized by sending n ew -in fo !

messages to the relevant nodes. Below is a list of the nodes and
assumptions used to set these values.

Node Value A ssum ption

-J ^
Voltage 12 user

Battery-internal resistance 0 user (good battery)

J Solenoid-state closed user (solenoid working)

1 headlight-switch closed user
,j H-W (headlight wattage) 60 user

H-VR (voltage rating) 12 user
torque-required 100 user

motor-K 1 user (arbitrary parameter)

118

n

F ile E dit C ircu its B uff ATMS

t.oa

T -T O -»

120.00

BXADLIOBTS

•V I

Figure 7.5. The Starting Circuit constraint network initialized for starting
the car.

As usual diagnosis begins with a symptom. In this case the car isn 't

starting, and the would-be driver has noticed tha t the engine is only

turning over weakly under the starter motor. To initiate diagnosis the

user makes the observation tha t the n e t t - t o r q u e of the engine is 10.

This is done by sending the o b s e r v e ! message to the n e t t - t o r q u e node

of the starter motor and results in the dialogue tha t begins in Figure 7.6.

In Figure 7.6 the user is firstly prompted for the n o d e (slot) and

o b s e r v e d v a l u e , which are entered. This is followd by 5 requests for the

optional arguments th a t the o b s e r v e ! method takes. The first of these,

QDIR (Qualitative DIRection), is a future extension to NOSTRUM that is

designed to represent the direction in which the value is observed to be

changing. A minus sign indicates a steady or unchanging value. The

qualitative rate of change system in NOSTRUM is still experimental and
is not discussed further here.

■n

G

0

u

[

119

n
j

1
j

n
J

L i n e
0

10

15

20

25

KEE T ypescrip t Window»
Argument: SLOT : nett-torque
Argument VALUE: 10
&OPTIONAL argument QDIR [default (QUOTE -)]: -
&OPTIONAL argument ASSUMPTION [default (QUOTE USER)]: user
&OPTIONAL argument ARGS [default NIL]: nil
&OPTIONAL argument WORLD [default (QUOTE ALL—SYSTEMS—GO)]: al1—systems—go
&OPTIONAL argument VERBAL [default «NARRATE-PROPAGATION?*]: t

The NETT-TORQUE of S[Unit; STARTER-MOTOR-19 CAR-MECHANIC] received an obser
vation 10.00 in world #[World: OBSERVATION-479].
The data on this node is: (20.00).
Creating a new world in which STflRTER-nOTOR-19-NETT-TORQUE = 10.
Predicting consequences
Replacing 20.00 with 10.00 on node tt[Unit: STARTER-MOTOR-19 CAR-MECHANIC]
NETT-TORQUE

For target port TR of STARTER-M0T0R-19-DIFF-239
.. data is (100.00)
Seeing if 100.00 depends on 20.00
No the datum 100.00 didn’t depend on 20.00 and so was not replaced.
For target port TG of STARTER-M0T0R-19-DIFF-239

data is (120.00)
Seeing if 120.00 depends on 20.00
No the datum 120.00 didn't depend on 20.00 and so was not replaced.done.
The o b s e r v a b le c o n s e ç u e n c e s a r e : NETT-TORQUE o f STRRTER-NOTOR-19 - IQ
Couldn’t find any associated fault models for STARTER-M0T0R-19-NETT-T0RQUE=
10 but if the following predictions are observed then I shall continue the
search.
NETT-TORQUE of STARTER-MOTOR-19 = 10
Are the above observed? (y/n)

Figure 7.6. Specifying the symptom of a weakly turning engine.

]

]

]

The assum ption argument represents the justification for the

observed value, often this is a constraint name, but here the value is set
by the user. The next argument, a rg s , requests which data in

conjunction with the assumpton have been used to drive the observed

value. The world argument requests the hypothetical world from which
to begin diagnosis. Finally the user is requested if they want trace

information of the kind shown in the rest of Figure 7.6.

After all the arguments have been entered Nostrum begins to print

details of its constraint propagation. Firstly (lines 8 & 9 of Figure 7.6) an

observation world is created as a child of the a l l —s y s t e m s —go world, in

which the observaton is placed. Using diagnostic constraint propagation

the observation is fed onto the node causing the creation of the s t a r t e r -

m o f o r - 1 9 - n e t t - t o r q u e = 1 0 - n n n world. Then using causal propagation
the consequences of the observation are predicted.

But since no data are derived from the old value there are no

consequences. (The old value of 20 was derived from the user-set value of

120

D
100 for the torque-required and the value of 120 computed by the circuit
initialization.)

The observable consequences are printed (line 23) and the user is

requested if they are observed (Hnes 24-28). As there are no observable

consequences the user m ust choose "y" in order to continue the search.
Line

0

10

15

20

25

30

35

40

45

50

KEE Typescript Window
Mooting observation 10.00 for port NT of STARTER-M0T0R-19-DIFF-239.
Trying completion of (? 10.00 120.00).
Dispatching completion of comb (? 10.00 120.00) to target port TRof STARTS
R-MOTOR-19-DIFF-239 for acceptance.
The TORQUE-REQUIRED of «[Unit; STARTER-MOTOR-19 CAR-MECHANIC] received an o
bservation 110.00 in world «[World: STARTER-MOTOR-19-NETT-TORQUE=10-480].
The data on this node is: (100.00).
Creating a new world in which STflRTER-nOTOR-19-TORQUE-REQUIRED = 118.0.
CAN’T MAKE (TORQUE-GENERATED «[Unit: STARTER-MOTOR-19 CAR-MECHANIC]), 120.0
an assumption eus depends on 110.00

Predicting consequences
Replacing 100.00 with 110.00 on node «[Unit: STARTER-MOTOR-19 CAR-MECHANIC]
TORQUE-REQUIRED
For target port R of STARTER-MOTOR-19-T-TO-R-240
.. data is (0.10)
Seeing if 0.10 depends on 100.00
Data 0.10 depends on the datum being replaced: 100.00
The state is (NEW 110.00)
Couldn’t complete (NEW 110.0) = (R TR) for function (CASE TR (0 12) (10 1)
(100 0.1) (OTHERWISE (ERROR Unknown value for required torque.))), please s
upply value: ()

. which completes to NILdone.
The o b s e r v a b le c o n s e ç u e n c e s a r e : NETT-TORQUE o f STRRTER-NOTOR-19 = IQ
Node is user set, stopping propagation.
Trying completion of (100.00 10.00 7).
Dispatching completion of comb (100.00 10.00 ?) to target port TGof STARTE
R-MOT OR-19-DIFF-239 for acceptance.
The TORQUE-GENERATED of «[Unit: STARTER-MOTOR-19 CAR-MECHANIC] received an
observation 110.00 in world «[World: STRRTER-MOTOR-19-NETT-TORQUE=10-480].
The data on this node is: (120.00).
Creating a new world in which STflRTER-n0T0R-19-T0RQUE-GEHERflTE0 = 110.
Making the value on (TORQUE-REQUIRED «[Unit: STARTER-MOTOR-19 CAR-MECHANIC]
), 100 an assumption.
Predicting consequences
Replacing 120.00 with 110.00 on node «[Unit: STARTER-MOTOR-19 CAR-MECHANIC]
TORQUE-GENERATED
For target port I of STARTER-M0T0R-19-X-238
.. data is (120.00)
Seeing if 120.00 depends on 120.00
No the datum 120.00 didn’t depend on 120.00 and so was not replaced.
For target port K of STARTER-M0T0R-19-X-238

data is (1.00)
Seeing if 1. 00 depends on 120.00
No the datum 1.00 didn’t depend on 120.00 and so was not replaced.done.
The o b s e r v a b le c o n s e ç u e n c e s a r e : TORQUE-GENERRTED o f STRRTER-NOTOR-19 = 1 IQ
, NETT-TORQUE o f STRRTER-NOTOR-19 - IQ
Couldn’t find any associated fault models for ST ART ER-MOT OR-19-TORQUE-GENER
ATED=110 but if the following oredictions are observed then I shall continu e the search.
TORQUE-GENERATED of STARTER-MOTOR-19 = 110,NETT-TORQUE of STARTER-MOTOR-19
Are the above observed? (y/n)

Figure 7.7. Continuation of the diagnostic trace initiated in Figure 7.6.

Diagnostic propagation begins by trying to assert tha t the torque

generated by the starter motor is 110 and creates a new world in which

consequences of the hypothesis can be predicted (refer to Fig 7.7 in the

0

G

[
D
rL

u

L

121

[

[

n

1J following discussion). As part of the predicting consequences process

the data connected to the constraint must be made into assumptions,

J since they have been used to derive the hypothesized value. This is done

by setting a slot in the structure tha t represents the datum. At lines 8 & 9

of Figure 7.7 Nostrum explains that the value of 120 for the t o r q u e -

f g e n e r a t e d cannot be made into an assumption because it depended

(was derived from) the value of 110 for the node being replaced, t o r q u e

r e q u i r e d .

To predict consequences Nostrum replaces the previous values with

the hypothesized values within the new world according to the rules of

causal propagation. This is done in lines 11 & 12 of Figure 7.7 where the

hypothesized value of 110 replaces the old value of 100 for the torque-

required of starter-motor-19. (Even though Nostrum knows tha t this is a

^ user assrted value it firstly predicts the conseqeunces to see if there are

changes tha t the user may not be aware of.) This value is then

propagated to the T-to-R constraint at line 13 where the data for the

n r e s i s t a n c e R (currently 0.1 Ohms) has been derived from the old value

of 100 for the t o r q u e r e q u ir e d . The constraint tries to complete, but it

doesn't have a value for R that corresponds to a required torque of 110

(see Figure 7.3). As it can't complete the user is explained as to why at

J lines 18 &19 and asked to supply a value at line 20. For this example I

have entered the emply list or n i l value which stops causal propagation

along this arm. This also concludes Nostrum's prediction of

consequences for t o r q u e - r e q u i r e d and propagation stops. Diagnostic

propagation now takes over for the other node of the S M -to rq u e -

d i f f e r e n c e constraint in which a value of 110 is suggested for the
t o r q u e - g e n e r a t e d by the starter motor.

1 Again the values tha t were used to derive the hypothesized value are

made into assumptions (lines 31 & 32), and the consequences predicted

(lines 33-43). During the prediction of consequences any nodes whose

value are replaced are tested to see if they are observable parameters. If

]

J 122

n
j ’

they are, then the replacement value is noted and printed back to the

user after the rest of the consequences have been predicted (lines 44-45 &

49-50). If it is not known whether a node has observable consequences

the user is requested for this information via a pop-up menu (see Figure
7.81.

What is the testability of VOLTAGE-DROP of LI? b
Operable
Observable
Measurable
Inferable

Figure 7.8. The pop-up menu that appears when Nostrum wants to know the
testability of a node.

The prediction of consequences goes on until no more values are

found tha t depend on the newly hypothesized value (line 43). This done

the user is asked to confrim the absence or presence of the observed

consequences, (line 51) and any hypothesized fault models. Here the

user chooses "y" to continue the diagnostic propagation, and the trace
continues in Figure 7.9.

G
D

0
n

G
G
nL

riU

c
123 [

Line
0

1

1

1J
1

1

]

10

15

20

25

30

35

40

45

50

KEE’T ypescnpr Window •
Passing observation 110.00 on to «[Unit: STARTER-M0T0R-19-X-238 CflR-ilECHRNI C] .
Mooting observation 110.00 for port TG of STARTER-M0T0R-19-X-238.
Trying completion of (? 1.00 110.00).
Dispatching completion of comb (7 1.00 110.00) to target port lof STARTER
-MOTOR-19-X-238 for acceptance.
The CURRENT of «[Unit: STARTER-CIRCUIT CAR-MECHANIC] received an observâtio
n 110.00 in world «[World: STARTER-MOTOR-19-TORQUE-GENERATED=110-486].
The data on this node is: (120.00).
Creating a new world in which STARTER-CIRCUIT-CURRENT = 110.
Making the value on (MOTOR-K «[Unit: STARTER-MOTOR-19 CAR-MECHANIC]), 1 an
assumption.
Predicting consequences
Replacing 120.00 with 110.00 on node «[Unit: STARTER-CIRCUIT CAR-MECHANIC]
CURRENT
For target port R of STARTER-CIRCUIT-OHMS-LAW-241
.. data is (0.10)
Seeing if 0.10 depends on 120.00
No the datum 0.10 didn’t depend on 120.00 and so was not replaced.
For target port V of STARTER-CIRCUIT-OHMS-LAW-241
.. data is (12.00)
Seeing if 12.00 depends on 120.00
No the datum 12.00 didn’t depend on 120.00 and so was not replaced.
For target port R of RELRY-SWITCH-X-237

data is (0.00)
Seeing if 0.00 depends on 120.00
No the datum 0.00 didn’t depend on 120.00 and so was not replaced.
For target port V of RELRY-SWITCH-X-237
.. data is (0.00)
Seeing if 0.00 depends on 120.00
Data 0.00 depends on the datum being replaced: 120.00
The state is (0.00 110.00 NEW)

. which completes to 0.00
BUT because the value is the sane I’m not going to propagate it.
For target port IR of LUCRS-OHM-235

data is (0.00)
Seeing if 0.00 depends on 120.00
No the datum 0.00 didn’t depend on 120.00 and so was not replaced.
For target port UD of LUCAS-OHM-235

data is (0.00)
Seeing if 0.00 depends on 120.00
No the datum 0.00 didn’t depend on 120.00 and so was not replaced.done.
The o b s e r v a b le c o n s e ç u e n c e s a r e : TORQUE-GENERRTED o f STRRTER-NOTOR-19 = 1 1 0
, NETT-TORQUE o f STRRTER-NOTOR-19 = 1 0
Couldn’t find any associated fault models for STRRTER-CIRCUIT-CURRENT=110 b
ut if the following predictions are observed then I shall continue the sear
ch.
TORQUE-GENERRTED of STARTER-MOTOR-19 = 110,NETT-TORQUE of STARTER-MOTOR-19
= 10
Are the above observed? (y/n)

Figure 7.9. The diagnostic trace continued from Figure 7.7.

]

]

Figure 7.9 continues the trace output from Figure 7.7. At line 0 it

begins by accepting the hypothesis that the value of the torque generated

is 110 and passes it on to the connected constraint s ta r te r -m o to r -1 9 -

x-238. This causes a completion of the constraint to hypothesize a value

of 110 Amps for the current in the starter motor circuit, (line 9 of Figure

7.9). The new value prompts prediction of consequences (lines 12-41) but

there are no new ones in this case. The already deduced consequences

] 124

D

are the repeated in lines 42 & 43 (and again in lines 47 & 48) and the user
is prompted whether to continue the search.

The reduced current can be explained by an increased resistive input

to the circuit which is where the trace is rejoined in Figure 7.10.

n

Line
0

10

15

20

25

30

KEE T ypescrip t Window
Passing observation 110.00 on to «[Unit: STflRTER-CIRCUIT-0Hf1S-LflU-241 CflR-M ECHANIC].
Mooting observation 110.00 for port I of STARTER-CIRCUIT-OHMS-LAW-241. Trying completion of (110.00 ? 12.00).
Dispatching completion of comb (110.00 ? 12.00) to target port Rof STARTER
-CIRCUIT-OHMS-LRW-241 for acceptance.
The TOTAL-RESISTRNCE of «[Unit: STRRTER-CIRCUIT CAR-MECHANIC] received an o
bservation 0.11 in world «[World: STARTER-CIRCUIT-CURRENT=110-490].
The data on this node is: (0.10).
Creating a new world in which STHRTER-CIRCUIT-TOTfiL-RESISTflHCE = 6/55.
Making the value on (VOLTAGE «[Unit: STRRTER-CIRCUIT CAR-MECHANIC]), 12 an
assumption.
Predicting consequences
Replacing 0.10 with 0.11 on node «[Unit: STARTER-CIRCUIT CAR-MECHANIC]T OT RL-RESIST ANCE
For target port A of STRRTER-CIRCUIT-SUM-R-242
.. data is (0.10)
Seeing if 0.10 depends on 0.10
No the datum 0.10 didn’t depend on 0.10 and so was not replaced.
For target port B of STRRTER-CIRCUIT-SUM-R-242
.. data is (0.00)
Seeing if 0.00 depends on 0.10
No the datum 0.00 didn’t depend on 0.10 and so was not replaced.
For target port C of STRRTER-CIRCUIT-SUM-R-242
.. data is (0.00)
Seeing if 0.00 depends on 0.10
No the datum 0.00 didn’t depend on 0.10 and so was not replaced.done.
The o b s e r v a b le c o n s e ç u e n c e s a r e : TORQUE-GENERRTED o f STRRTER-NOTOR-19 = 1 1 8
, NETT-TORQUE o f STRRTER-NOTOR-19 = 1 8
Couldn’t find any associated fault models for STRRTER-CIRCUIT-TOTAL-RESISTA
NCE=6/55 but if the following predictions are observed then I shall continu e the search.
TORQUE-GENERATED of STARTER-MOTOR-19 = 110,NETT-TORQUE of STRRTER-MOTOR-19
Are the above observed? (y/n)

Figure 7.10. The diagnostic trace continued from Figure 7.9.

Lines 0-4 of Figure 7.10 explain tha t the new current of 110 amps is

passed to the SM-Ohms-law constraint (refer to Figure 7.5). This

generates a new hypothesis tha t the total resistance has the reduced

value of 6/55 (=0.10909...) as opposed to 0.1. No new observable

consequences are deduced from this, but the search is continued in
Figure 7.11.

In order to explain the increased resistance diagnostic propagation

poles each of the nodes feeding the sm-sum-resistance constraint.

The first of these is the node that represents the resistance of the starter

motor. Therefore a new value is hypothesized for it, as displayed at line 9

of Figure 7.11. As usual the consequences are predicted. However note

D
n
n

D

D

D

D

L

L

D

125 [

n
J

J

J

1

1

tha t a t line 20-21 the prediction comes prematurely to a halt because the

causal propagation tries to assert a value for a node tha t contains an

assumed datum, ie. a loop has been detected - and broken. Diagnostic

propagation still persists in trying to assert a value on the node, but

because the constraint can't complete the user is allowed to enter a null
value, stopping the propagation.

Again no new consequences are predicted from this hypothesis, and

the propagation down this arm comes to a halt. The trace is resumed

again in Figure 7.12 in which the second feeder to sm -su m -res is tan ce
is poled.

KEB T ypescrip t Window
0 Passing observation 0.11 on to «[Unit: STfiRTER-CIRCUIT-SUM-R-242 CflR-MECH

AMIC]«
Mooting observation 0.11 for port D of STARTER-CIRCUIT-SUM-R-242.
Trying completion of (7 0.00 0.00 0.11).
Dispatching completion of comb (? 0.00 0.00 0.11) to target port Aof
STARTER-CIRCUIT-SUM-R-242 for acceptance.
The RESISTANCE of «[Unit; STARTER-MOTOR-19 CAR-MECHANIC] received an observ
ation 0.11 in world «[World: STARTER-CIRCUIT-T0TAL-RESISTANCE=6/55-495]. The data on this node is: (0,10).
Creating a new world in which STARTER-MOTOR-19-RESISTAHCE = 6/55.
Making the value on (RESISTANCE «[Unit: RELAY-SWITCH CAR-MECHANIC]), 0 an a
ssumption.
Making the value on (INTERNAL-RESISTANCE «[Unit: LUCAS CAR-MECHANIC]), 0 an assumption.
Predicting consequences
Replacing 0.10 with 0.11 on node «[Unit: STARTER-MOTOR-19 CAR-MECHANIC]
RESISTANCE
For target port TR of STARTER-MOTOR-19-T-TO-R-240
.. data is (100.00)
Seeing if 100.00 depends on 0.10
Cannot replace the value at TR of STARTER-MOTOR-19-T-TO-R-240 because it is
an assumption.done.

The o b s e r v a b le c o n s e ç u e n c e s a r e : TORQUE-GENERRTED o f STRRTER-NOTOR-19 = 1 1 B
, NETT-TORQUE o f STRRTER-NOTOR-19 = 1 8
Couldn’t find any associated fault models for STARTER-M0T0R-19-RESISTRNCE=6
/55 but if the following predictions are observed then I shall continue the
search.
TORQUE-GENERRTED of STARTER-MOTOR-19 = 110, NETT-TORQUE of STARTER-MOTOR-19
= 10
Are the above observed? (y/n)
Passing observation 0.11 on to «[Unit: STARTER-MOTOR-19-T-TO-R-240 CAR-ME CHANIC].
Mooting observation 0.11 for port R of STARTER-MOTOR-19-T-TO-R-240.
Trying completion of (0.11 ?).
Dispatching completion of comb (0.11 ?) to target port TRof STARTER-MOTOR
“19-T-TO-R-240 for acceptance.
Couldn’t complete (6/55 NEW) = (R TR) for function (CASE R (12 0) (1 10) (0
.1 100) (OTHERWISE (ERROR Unknown value for r in bb-tr=g[tr].))), please su pply value: ()

10

15

20

25

30

35

]
Figure 7.11. Continuation of the Diagnostic Trace.

]

1J 126

Line
0

10

15

20

25

30

35

10

15

KEE Typescript Window
Trying completion of (0.10 ? 0.00 0.11).
Dispatching completion of comb (0.10 ? 0.00 0.11) to target port Bof
STARTER-CIRCUIT-SUM-R-242 for acceptance.
The RESISTANCE of «[Unit: RELAY-SWITCH CAR-MECHANIC] received an observatio
n 0.01 in world «[World: STARTER-CIRCUIT-T0TAL-RESISTANCE=6/55-495].
The data on this node is: (0.00).
Creating a new world in which RELflY-SUITCH-RESISTflHCE = 0.009098908.
Making the value on (RESISTANCE «[Unit; STARTER-MOTOR-19 CAR-MECHANIC]), 0.
1 an assumption.
Making the value on (INTERNAL-RESISTANCE «[Unit: LUCAS CAR-MECHANIC]), 0 an
assumption.

Predicting consequences
Replacing 0.00 with 0.01 on node «[Unit: RELAY-SWITCH CAR-MECHANIC] RES
ISTANCE
For target port I of RELAY-SWITCH-X-237
.. data is (110.00)
Seeing if 110.00 depends on 0.00
I ofRELAY-SWITCH-X-237 is the HYPOTHESIS
For target port V of RELAY-SWITCH-X-237
.. data is (0.00)
Seeing if 0.00 depends on 0.00
Data 0.00 depends on the datum being replaced: 0.00
The state is (0.01 110.00 NEW)
...which completes to 1.00
Replacing 0.00 with 1.00 on node «[Unit: RELAY-SWITCH CAR-MECHANIC] VOL TAGE—DROP
For target port SWITCH-STATE of RELAY-SWITCH-./.-236
.. data is (CLOSED)
Seeing if CLOSED depends on 0.00
No the datum CLOSED didn’t depend on 0.00 and so was not replaced.done.
The o b s e r v a b le c o n s e q u e n c e s a r e : TORQUE-GENERRTED o f STRRTER-NOTOR-19 = 1 I B
, NETT-TORQUE o f STRRTER-NOTOR-19 = 1 8
Couldn’t find any associated fault models for RELAY-SWITCH-RESISTANCE=0.009
090908 but if the following predictions are observed then I shall continue
the search.
TORQUE-GENERATED of STARTER-MOTOR-19 = 110, NETT-TORQUE of STARTER-MOTOR-19
= 10
Are the above observed? (y/n)
Passing observation 0.01 on to «[Unit: RELAY-SWITCH-./.-236 CAR-MECHANIC]
Mooting observation 0.01 for port RESISTANCE of RELAY-SWITCH-./.-236.
Trying completion of (? 0.01).
Dispatching completion of comb (? 0.01) to target port SWITCH-STATEof REL
AY-SWITCH-./.-236 for acceptance.
Couldn’t complete (NEW 0.009090908) = (SWITCH-STATE RESISTANCE) for functio
n (CASE RESISTANCE (0 ’CLOSED) (INF ’OPEN)), please supply value: ()

Figure 7.12. The diagnostic trace continued.

Next the solenoid switch (connected to port B of sm-sum-resistance

(Figure 7.5 and line 1-2 of Figure 7.12) is poled as a potential cause of the

extra resistance. The diagnostic propagation tries to suggest tha t the

relay switch has faulted to give a resistance of 0.00909... Ohms (line 6 of

Figure 7.12). No new predictions are derived from this hypothesis, and

the user artificially brings the constraint propagation to a halt when

Nostrum tries to complete the constraint for the switch position (lines 41-
46 of Figure 7.12).

Figure 7.13 picks up the search as Nostrum returns to pole the final
port of the sm -sum -re istance constraint.

[

0

D

n

L

[

127

Line
0

1

J

J
1
J

10

15

20

25

30

35

40

45

50

55

60

65

70

75

0.11) to target port Cof

KEE T ypescnpt Window-
Trying completion of (0.10 0.00 7 0.11).
Dispatching completion of comb (0.10 0.00 ?
STARTER-CIRCUIT-SUM-R-242 for acceptance.
The IMTERMAL-RESISTANCE of «[Unit: LUCAS CAR-MECHANIC] received an observât
ion 0.01 in world «[World: STARTER-CIRCUIT-T0TAL-RESISTANCE=6/55-573].
The data on this node is: (0.00).
Creating a new world in which LUCflS-INTERHflL-RESISTflHCE = 8.009098908.
Making the value on (RESISTANCE «[Unit: STARTER-MOTOR-19 CAR-MECHANIC]), 0.
1 an assumption.
Making the value on (RESISTANCE «[Unit: RELAY-SWITCH CAR-MECHANIC]), 0 an a
ssumption.
Predicting consequences
Replacing 0.00 with 0.01 on node «[Unit; LUCAS CAR-MECHANIC] INTERNAL-R
ESISTANCE
For target port I

data is
of LUCAS-OHM-235

(1 1 0 . 00)
Seeing if 110.00 depends on 0.00
ofLUCAS-OHM-235 is the HYPOTHESIS

For target port VD of LUCAS-OHM-235
data is (0.00)

Seeing if 0.00 depends on 0.00
Data 0.00 depends on the datum being replaced: 0.00
The state is (110.00 0.01 NEW)

which completes to 1.00
Replacing 0.00 with 1.00 on node «[Unit; LUCAS CAR-MECHANIC] VOLTAGE-DR
OP-SM
For target port CV of LUCAS-+-234

data is (12.00)
Seeing if 12.00 depends on 0.00
Cannot replace the value at CV of LUCAS—+—234 because it is an assumption.
For target port BV of LUCAS-+-234

data is (12.00)
Seeing if 12.00 depends on 0.00
No the datum 12.00 didn’t depend on
For target port A of HEADLIGHT-CIRCUIT

data is (2.40)
Seeing if 2.40 depends on 0.00
No the datum 2.40 didn’t depend on ___ __
For target port B of HEADLIGHT-CIRCUIT-SUM-R-233

data is (0.00)
Seeing if 0.00 depends on 0.00
No the datum 0.00 didn’t depend on 0.00 and so was not replaced.
For target port D of HEADLIGHT-CIRCUIT-SUM-R-233

data is (2.40)
Seeing if 2.40 depends on 0.00
Data 2.40 depends on the datum being replaced; 0.00
The state is (2.40 0.00 0.01 NEW)

which completes to 2.41
Replacing 2.40 with 2.41 on node «[Unit: HEADLIGHT-CIRCUIT CAR-MECHANIC
] TOTAL-RESISTANCE
For target port I of HEADLIGHT-CIRCUIT-OHMS-LAU-232 data is (5.00)
Seeing if 5.00 depends on 2.40
Data 5.00 depends on the datum being replaced; 2.40
The state is (NEW 2.41 12.00)

which completes to 4.98

0.00 and so was not replaced.
-SUM-R-233

0.00 and so was not replaced.

Replacing
] CURRENT
For target port

data is
Seeing if

5.00 with 4.98 on node «[Unit: HEADLIGHT-CIRCUIT CAR-MECHANIC
R of HEADLIGHTS-''2»-231

(2.40)
2.40 depends on 5.00

No the datum 2.40 didn’t depend on 5.00 and so was not replaced.
For target port B of HEADLIGHTS-''2*-231

data is (60.00)
Seeing if 60.00 depends on 5.00
Data 60.00 depends on the datum being replaced: 5.00
The state is (4.98 2.40 NEW)

which completes to 59.55
Replacing 60.00 with 59.55 on node «[Unit: HEADLIGHTS CAR-MECHANIC] BRIGH
For target port R of HEADLIGHTS-X-230

data is (2.40)
Seeing if 2.40 depends on 5.00
No the datum 2.40 didn’t depend on
For target port V of HEADLIGHTS-X-230

data is (12.00)
Seeing if 12.00 depends on 5.00

5.00 and so was not replaced.

Figure 7.13(a). The trace continued.

J 128

n

Line

80

85

90

95

too

105

110

115

KEE T ypescrip t Window
Data 12.00 depends on the datum being replaced: 5.00
The state is (2.40 4.98 MEW)
... which completes to 11.95
Replacing 12.00 with 11.95 on node «[Unit: HEADLIGHTS CAR-MECHAMIC] VOLTA
GE—DROP
For target port R of HEADLIGHT-SUITCH-X-227
.. data is (0.80)
Seeing if 0.00 depends on 5.00
No the datum 0.00 didn’t depend on 5.00 and so was not replaced.
For target port V of HEADLIGHT-SWITCH-X-227
.. data is (0.00)
Seeing if 0.00 depends on 5.00
Data 0.00 depends on the datum being replaced; 5.00
The state is (.0.00 4.98 NEW)
... which completes to 0.00
BUT because the value is the same I’m not going to propagate it.
For target port IR of LUCAS-OHM-225
.. data is (0.01)
Seeing if 0.01 depends on 5.00
IR ofLUCAS-OHM-225 is the HYPOTHESIS
For target port VD of LUCAS-OHM-225

data is (0.00)
Seeing if 0.00 depends on 5.00
No the datum 0.00 didn’t depend on 5.00 and so was not replaced.
For target port V of HEADLIGHT-CIRCUIT-OHMS-LAW-232 data is (12.00)

2.40 and so was not replaced.
Seeing if 12.00 depends on 2.40
No the datum 12.00 didn’t depend on
For target port I of LUCAS-OHM-225

data is (4.98)
Seeing if 4.98 depends on 0.00
No the datum 4.98 didn’t depend on 0.00 and so was not replaced.
For target port VD of LUCAS-OHM-225

data is (0.00)
Seeing if 0.00 depends on 0.00
Data 0.00 depends on the datum being replaced; 0.00
The state is (NIL 0.01 NEW)done.
The o b s e r v a b le c o n se q u e n c e s a r e : BRIGHTNESS o f HERDLIGHTS - 59.5^8Q 23,T0RQ U
E-GENERRTED o f STRRTER-NOTOR-19 = 110^ NETT-TORQUE o f STRRTER-NOTOR-19 = IB Are the above observed? (y/n)

Figure 7.13(b). The Trace continued.

Port C of SM-Sum-Resistance is then poled (lines 0-2) of Figure 7.13.

This node represents the internal resistance of the battery. The value on

this node was initialized to zero on the assumption th a t it was a good

battery. A new world is created (line 6) in which the battery has positive

resistance and the consequences predicted as before. Many node values

depend on this assumption as a detailed examination of the trace shows.

During the trace many pop-up menus like tha t in Figure 7.8 appear to

ask about the testability of nodes. The only new nodes tha t are observable

are the headlights brightness and the position of the headlight switch,

the other nodes are either measurable or inferable. Figure 7.14 shows

the constraint network at this stage, after all the consequences have
been predicted within the

I u c a s - i n t e r n a l - r e s i s t a n c e = 0 . 0 0 9 0 0 9 0 9 0 9 0 8 - n n n world. A

G
G

G
G

G
G

[

L
[

[
129 [

]

]

]

]

summary of the worlds generated during this diagnosis is displayed in
Figure 7.15.

F ile E dit C ircuits B uff ATMS

■0---J 0.00
T -T O -»

110.00

M I-5 M

B X A O tlG H TS

aTh L1!1|T]—'
12.00

itA R T lN G -C lR C U lT R Y -C O N S T R A m T -N B T W O R K :

Figure 7.14. Constraint network for the starting circuitry of a car, showing
the predicted values in th e lu c a s - in te r n a l-r e s is ta n c e = 0 .0 0 9 0 0 9 0 9 0 9 0 8 -
nnn world.

It is lines 114-116 of Figure 7.13 (b) that really show Nostrum's power.

They are suggesting tha t if the hypothesis for a weakly starting car is a

discharged battery then this can be tested by seeing if the headlights are

shining normally. This test is one commonly used by car mechanics, but

has been derived by Nostrum using models of operating principles, and
knowledge of what parts can easily be tested.

130

Âit-sririMS-oo
I
I

O»SXK7AfJ0i9-U»

STÀXrXk-MOTOÂ-]f*}fnT’rO»QVX̂t0̂i94

xTAxrzK~Marox-tf-7ôuz~XEQViJtxD*UQj>-uf 5TiWrzji-woroJt-»-rdS3fcrr-cwrjurrz).//tf-2w
STJuœeKiiicü̂ ûuziiT-iu-uf

STÀxrzx<jKair I
-TOTU-,iistsTincr̂ /ss-m

sTAxriK-MaT0X-n̂sjsrinex-*/st-*e4 xxur-smTcz-jtXî Viex̂MKKM-tn LVcix-tNTXXitJLL-3u/stiTJMex̂MKt«»ot.tu

Figure 7.15. The hypothetical worlds generated by Nostrum to try and
explain a weakly starting engine.

7.1.2. Case 2: Engine Does not start

In this example I show how a different fault in the same constraint

network leads Nostrum to blame another part of the car engine. The

constraint network is initialized as before (Figure 7.5) to represent the

expected behaviour of the car engine. In this case the symptom is tha t

the starter motor fails to do anything when the ignition switch is turned.

On the constraint network this symptom is transformed into an

observation tha t there is no torque generated by the starter motor.

n

D

U

L

u

131

K E E v /o rld y B ro v /s e r*

ALL-SYSTEMS-GO

OBSERVATIQN-57

ST ARTER-MOTOR-19-TORQU E-GEN ERATED=0-S8

STARTER-CIRCUIT-CURRENT:^-S1

STARTER-CIRCUIT-TQTAL-RESISTANCE:rINF-65

STARTER-M OTOR-19-RESISTANCE^INF-6i RELAY-SW lTCH-RESISTANCE=lNF-73

RE LAY-SW ITCH-SW ITCH-ST ATE mQP E N -7 S

Figure 7.16. The Hypothetical worlds generated in order to diagnose an
imobile starter motor.

]

]

File Edit Circuits Buff
VI
g
m
0̂

T
4-

I

ATMS

SO LIN O ID -SW ITC H

OPEN

SOLENOID-STATE 0 ---J 0.00

r -B

1.00 o—Pn~ TOKQUX-OENEXATED

S M -K l I + I S M -T O R Q U E -D irrZ E E N C E

■0=-

H 3 = r
A l- H I__I- 0 = -

100.00
NETT-TORQUE

piao-Qo
TORQUE-REQUIRED

3E]—5Î 0
IN E

STARTER -M OTOR -CIRCUIT-VOLTAG E

SM-OHMS-LAW
SM-SUM-RESISTANCE

' HEADLIGHT-SWITCH
? CLOSED HEADUGHTSj H -% gg

Ĵ VR
_ _ _ o « 0 .0 0
BRIGHTNESS

BATTERY-INTERNAL-RESISTANCE

&

HEADLIGHTS-CIRCUIT-VOLTAGE

HEADLIGHTS -O H M S-LA W

HEADUGHTS-SUM-RESUTANCE

STnRTING-CIRCUITRY-CONSTRfllMT-NETUORK

Figure 7.17. The constraint network of the car starter circut showing the
values in the r e la y -sw itc h -s ta te = o p e n -7 8 world.

The user therefore sends an observe ! message to the starter-motor

unit with arguments slot: torque-generated, and value: 0. This

132

results in the generation of the hypothetical worlds shown in Figure

7.16. Figure 7.17 shows the constraint network as it appears in the

re la y -s w itc h -s ta te = o p e n “ 78 world.

To generate this hypothesis Nostrum asks fewer questions about the

testability of nodes, because those questions were already answered in
Case 1. However because of the depth first nature of Nostrum's search

strategy there are still many questions asked of the user similar to those

described in the figures of Case 1. A better strategy for Nostrum would

be to wade into several hypothetical worlds first, looking for predicted

values th a t correspond to known fault models. In this way the constraint

network would become 'sensitized' to different symptoms. Ie. a torque

generated = 0 symptom would map directly to an open switch, and a

weak start would map directly to a flat battery.

Future work with Nostrum will aim to link the deep (model bahviour)
and shallow (experiential) knowledge.

7.2. Doorlock

I use the same doorlock example previously used by [Hunt and Price

1989] to show how NOSTRUM can be applied to a mechanical domain.

Figure 7.18 shows the structure of the doorlock.

nJ
D

Spring

Lever
Catch

PivotCasing

Figure 7.18. An x-ray view of a simple doorlock. The catch is released by
pressing on the lever.

Central to the operation of the lock is the lever. The constraint model

of the type of lever used in the doorlock is shown in Figure 7.19. There

133

[

c
[

are three types or orders of lever depending on the relative positions of

the pivot, applied force and load. For a description of these the reader is

referred to Meccano Mechanisms Set Instructions 1971.

1

]

]

J

F O R C E -L O A D

X

A 2 M l

W E IG H T -L O A D

Y -L O A D

F O R C E -A P P L IE D

A l
W E IG H T -A P P L IE D

A L P H A

Y -A P P L IE D
B E A M -1

Figure 7.19. The constraint model of a lever.

To emphasize the symbolic capabilities of the constraint propagator

within Nostrum I use in this example qualitative values to represent the

operation of the device. The example also shows the difficulties of

modelling devices which do not come to an instantaneous equilibrium.

The lever constraint model contains 4 constraints, and can be

considered as two parts: one part propagates the force in the lever from
one side to the other (the top half of Figure 7.19), and the other part

propagates the relative height of either side of the lever (the single

constraint a t the bottom of Figure 7.19). Each side of a lever can have a

force applied to it and a weight attached, this results in a resultant force

on the arm of the lever. The adder constraints A l, and A2 are used to

sum these forces. The multiplier constrains the resultant forces on the

arms, and the ratio of the lengths of the arms a l p h a . A lp h a is also used

by the inverse-multiplier (beam-1 in Figure 7.19) to constrain the heights

of either side of the lever. For A l, which constrains f o r c e - a p p l i e d ,

w e i g h t - a p p l i e d and r e s u l t a n t - a p p l i e d the behaviour of the
constraint is defined by:

(s e t f b b - r e s u l t a n t - a p p l i e d = f o r c e - a p p l i e d + w e i g h t - a p p l i e d

' (c a s e w e i g h t - a p p l i e d

(0 f o r c e - a p p l i e d)))

134

This function simply lets the value of f o r c e - a p p l i e d pass through

the constraint to the r e s u l t a n t - a p p l i e d node, it can do this because

the weights applied in this example are zero. There are similar inverse

functions, and an equivalent set for A2.

The multiplier M l constrains the two resultant forces and the ratio of

the two arm lengths. In this example the ratio is assumed to be 1.

(s e t f b b - r e s u l t a n t - l o a d = r a t i o * r e s u l t a n t - a p p l i e d

' (c a s e r a t i o

(1 (c a s e r e s u l t a n t - a p p l i e d

(push-down ’p u s h -u p)

(p u s h -u p ’p u s h - d o w n)))))

The constraint b e a m - l behaves like a multiplier and one of its
functions is given below:

(s e t f b b - y - l o a d = - y - a p p l i e d / r a t i o

’ (c a s e r a t i o

(1 (c a s e y - a p p l i e d

(down ’up)

(up ’d o w n)))))

The full constraint network for the doorlock is given in Figure 7.20,
with the lever compressed into a concoction.

S P R IN G -1

cr>-
P U S H -U P l e v e r - 12

: T
F O R C E -A P P L IE D

P U S H -D O W N

H O O K E -CO N STA N T
1.00

LOCK

Y -A P P L IE D
D O W N

Y -PO SIT IO N
U P

A LPH A
1.00

S L ID E R -13

CATCH -X -PO SIT IO N
O P E N

<->
RESISTANCE -FO R C E

0.00

+

A 12o
D O O R -PR ESSU RE

PUSH
FORCE-ON-LATCH

+

Figure 7.20. The complete constraint network for the doorlock.

0

D

D

0

135

[

c
c
c

] ■

]

The constraint for the spring is a simple version of hookes law:

(s e t f b b - f = k * x

' (c a s e k (1 (c a s e x (up 'p u sh -u p)

(down ' p u s h - d o w n))))) .

J The catch mechanism is implemented as three simple constraints.

The first of these is the lock constraint. When the load side of the lever is

up the lock provides no resistance to the catch, and when the load side is

down it provides a resistance R to the movement of the catch.♦
The catch itself is implemented as a simple slider, and is a

constraint between two nodes: c a t c h - x - p o s i t i o n and f o r c e - o n -

l a t c h . If the f o r c e - o n - l a t c h is + the c a t c h - x - p o s i t i o n is open, and

if it is z e r o the catch remains c l o s e d . The adder A12 constrains the

resistive force provided by the lock, the force on the latch and’the

pressure on the door. The behaviour of this adder is defined by its
-| constraint function:
J (s e t f f o r c e - o n - l a t c h = d o o r - p r e s s u r e - r e s i s t a n c e - f o r c e

' (c a s e (l i s t r e s i s t a n c e —f o r c e d o o r —p r e s s u r e)

((0 0) 0)
J ((0 push) '+)

((0 s h o v e) '+)

((r 0) 0)

((r push) 0)

((r s h o v e) ' +))))

^ This constraint essentially says the door will open if the lock is open,

- ̂ given the slightest push, but if the lock is closed then it requires a s h o v e

to open the door.

Figure 7.20 shows the constraint network initialized in the case

where the lever has been pressed, the catch released, and the door

opens. Figure 7.21 shows the worlds generated by Nostrum when the
observed symptom is tha t the door is still closed.

]

1 136

K ÉEv/orids B row ser*

ALL-SYSTEMS-GO

OBSERVATJON-2Q6

CATCH~22-X-POSITlON^LOSED-20T

CATCH -22-RESU LTANT-FO RCE m0-209

CATCH-22-RESISTANCE-FQRCE=R-2ît CATCH-22-AP?hÏÈL-FORCE^~2n

LEVER-12-Y~Lo AD»DOWN-2Î4

LEVER-12-FORCE-LOAD ~P USH-DOWN-21T

LEVER~12-RESÜLTANT-LOAD=PUSH-DOWN-223

LEVER-12-RESULTANT-APPLIED=P USE-UP -230

LEV ER-Î2-W EIGHT-AP PLI ED mO-233 LEVER-12-FORCE-APPLIED^P USH-UP -23$

Figure 7.21. Showing worlds generated to explain why the door won't open7,,21
when the catch is pressed.

n

Figure 7.22 shows the constraint network as it appears in the lever-
12-y-load=down-214 world. In this world the hypothesis is tha t the

load side of the lever is still down, and so the catch is still locked. This

can be tested by looking at the observable value of the y—applied node,
the model predicts tha t it should be up.

■D

D

:

u

D

137

[

[

[

S P R I N G - 1

]

]

]

PU SH -U P l e v e r -1 2

--------- ZZZT f ~
FO R C E-A PPLIE D

PU SH -D O W N

HOOKE -CONSTANT
1.00

LOCK

Y -A PPL IE D
UP

Y -POSITION
D O W N

ALPHA
1.00

SL ID E R -13

CATCH-X -POSITIO N
CLOSED

<->
RESISTANCE -FO RCE

R

A12
DOOR-PRESSURE

PUSH
FO R C E-O N -LA TC H

0.00

Figure 7.22. Doorlock model in the lev er -1 2 -y -lo a d = d o w n -2 1 4 world.

This example demonstrates how the constraint system can behave in

an almost rule-like way. The lisp functions used in the constraints

mostly comprised case statements tha t can be likened to if-then rules.

The diagnostic tree produced by the example is not very satisfactory

when compared to how an expert would work with a doorlock. The

model requires instantaneous changes in the values of param eters, but

the use of a doorlock requires feedback: as you press on the catch you

increase the pressure until the doorlock 'gives', then you push the door.

The trace produced by Nostrum in this example is simply a set of

questions asking "are you sure tha t node x has value y" and as such

does not constitute intelligent diagnosis. A useful extension to Nostrum

would be to combine the ideas of qualitative reasoning with the

constraint propagation mechanism, this would allow Nostrum to

suggest things like "Press the catch harder". To do this extension would

involve adding a quantity space to each node, and allowing the

constraints to produce more than one result when ambiguities arise.

138

n

Chapter Eight

Conclusion

Chapter 3 identified 5 skills needed to do diagnosis in the absence of

experiential knowledge for a particular device. This thesis has shown

tha t the demands such skills make are met if constraints are used to

model the operating principles of the components of the device. This
mapping is summarized in Figure 8.1

SkiU Nostrum ’s solution
Fault recognition Corresponds to the difference between

behaviours expected (defined by
initialization of the constraints) and
observed.

Symptom recognition This is done using the connectivity of the
components defined by the structural
description of Circuit Buff.

Tracing Provided for by the causal pathways defined
by the models of the operating principles.

Hypothesize and test. The constraints can be used in a diagnostic
propagation to proffer values for other nodes
in the constraint network. Causal
propagation of these new values can lead to
easy to perform tests.

Repair Action NOSTRUM identifies nodes of the
constraint network tha t can explain the
observed behaviour and suggests
replacement or repair.

Figure 8.1. Aspects of NOSTRUM that cater for the required skills of fault
diagnosis.

n
D
D

• D
D

D

D

139

r
L

[

[

[

8.1. Summary

In this thesis I have showed how existing approaches to diagnosis

have failed to use an effective model or understanding of their domain to

find the causes of faults. NOSTRUM is the only system tha t uses a device

model in conjunction with a symptom description to work backwards

towards a fault, a t all times predicting the consequences of proposed

failures and comparing them with the real world device. The failure of

other diagnostic systems is in not having a representation of devices tha t

models the behaviour of the components. Using constraints provides

NOSTRUM with such a model that allows propagation back from a
symptom, and forward from proposed faults.

The example describing faults occuring within a car engine showed

J how Nostrum can use its knowledge of the structure of a device to

suggest easy-to-perfbrm tests tha t can confirm or deny its hypotheses.

J Also shown in tha t example was how the addition of experiential

knowledge might be used by a search algorithm to improve the order in
which Nostrum asks its questions.

8.2. Implication for Explanations

Much of the defence for the weak implementations of some early

rule-based diagnostic systems has been the claim of a need for

explanations. These systems have often tagged an explanation system

on to the diagnostic system as a separate module. I believe tha t a true

explanation of a diagnosis should be related to the actual inference steps

th a t were used in making tha t diagnosis. Because NOSTRUM diagnoses

from the symptom and directs its hypotheses according to comparisons

between the predictions and the real world device it can justify its

hypotheses as genuine attempts to find a cause. In fact the diagnostic

strategy in NOSTRUM is can be viewed as finding an explanation for the
observed symptom.

]

J

]

140

nJ
n

8 .3 . Limitations U

NOSTRUM has used a system of constraints to model the way devices J

work. The power of the constraints lies in the definition of the functions

and their inverses. The current implementation of the constraints

system only allows single values to be propagated, and doesn't make any

attem pt to restrict the range of values tha t a node can take. For instance, L

in many applications the resistance of a device cannot be a negative

number, so it would be useful to restrict the value at such a node to be a ̂ L

positive real. By doing this any hypothesis tha t tried to suggest a n
negative value would be rejected. ^

It is not easy to define inverse functions for constraints in some F

cases. Some functions may be what mathematicians call 'one to many'

in which many input values can give the same output value. Inverting

such functions causes problems because how do you know which is the
real input value? One possible option is to take all values and generate
hypothetical worlds for each.

The constraint system can currently simulate the operation of a C

device over successive states, however each of those states m ust be

equilibrium or unchanging states. This presents NOSTRUM with - L

difficulties in modelling concepts such as Alternating Current^ and

motion. Modelling forces in mechanical devices is a particular problem

because they imply acceleration, and as levers etc give way under the

force the force lessens. These are familiar problems in discussions of

causality and the reader is referred to [Iwasaki and Simon 1986 (a & b),
DeKleer and Brown 1986, and Morgan 1988].

^Should the user choose an appropriate representation and mathematical model,

symbols representing the amplitude and phase of alternating current could be

propagated through the constraint network

[

D

141

0
c
c

]

1

8.4. Future Work

n o s t r u m 's strength lies in the representation and variety of its
device units. Currently only a handful of device units have been

represented and implemented. Future work will seek to expand this
num ber.

As the discussion of chapter 3 highlighted, an expert's knowledge

becomes rapidly modified and reorganized with experience. NOSTRUM

has only made modest attempts to incorporate this learning procedure

by remembering which tests it asked the user to make, but tha t couldn't

be performed. The learning procedure would require NOSTRUM to

diagnose many devices and build up some kind of picture of how often
various hypotheses were successful.

When an engineer uses a piece of test equipment on a device they are

changing the structure of tha t device. NOSTRUM should be able to adapt
its model of the device to take account of the test equipment and

consequently realize tha t it is just as prone to failure as any other parts
of the equipment.

The examples of this thesis have been small domains. In larger

systems the constraint network for a device would be truly enormous. To

be useful in such a domain NOSTRUM would need an effective way of

abstracting the behaviour of subunits. The concoctions of Circuit Buff

were an original attem pt to do this. In a real abstraction the behaviour of

the sub-unit is viewed at a meta-level from the behaviour of the parts.

Even the language used to describe the lower level components is

different, for instance one considers the power-output and frequency

response characteristics when buying an amplifier, and yet a t the

component level the designers will have considered concepts such as
voltage gain, feedback and phase etc.

By definition abstraction loses some of the details of a device. When

abstracting away the workings of a car engine one usually forgets about

the effects of timing and carburation on engine performance, whilst

142

n
nretaining the knowledge of how pressing the accelerator can make the j

engine tu rn faster. Thus an abstraction mechanism only retains the

features of a device subpart tha t are relevant to interaction with other L
subparts. p.

Development of such an abstraction mechanism isn’t too many steps L

away, and as already mentioned the concoction mechanism was an

early attem pt to do this. However the concoctions still use the constraint

network used to define them to predict node values. I believe tha t when

an expert abstracts a subpart of a device they use a new model of the

behaviour tha t mimics at a more general level the behaviour of the

detailed constraint model.

D
D

D

[

D

r
L

[

143

1

]

]

References

1 Bobrow, D.G. 1984 Qualitative Reasoning about Physical Systems

Noth-Holland, also as Artificial Intelligence 24 1984.

Breaker, J.A. and Weilinga, B.J. (1985) KADS: structured knowledge

acquisition for expert systems. Proceedings o f Fifth International

workshop on expert systems and their applications, Avignon, France.

Clancey, W.J. (1985) Heuristic Classification Ar^i/ïci’aZ Intelligence
27,pp289-350.

Davis R. Diagnostic Reasoning Based on Structure and Behaviour,

Artificial Intelligence 24 (1984) pp.347-410.

DeKleer, J and Brown J .8.,Qualitative Physics Based on

Confluences, Artificial Intelligence 24 (1984) pp.7-84.

DeKleer, K. and Brown J.S., Theories of Causal Ordering, Artificial
Intelligence 29 (1986) pp. 33-61.

DeKleer, J.; Williams, B.C., Diagnosing Multiple Faults, Artificial
Intelligence 32 (1987) pp.97-130.

diSessa, Andrea A., Phenomenology and the Evolution of Intuition in

Mental Models, Dedre Centner and ^Ibert L. Stevens Eds. Lawrence
Erlbaum Associates, 1983.

Feltovich, P.J.; Johnson, P.E.; Moller, J.H.; Swanson, D.B.; (1984)

LCS: the role and develpment of medical knowledge in diagnostic

144

c
expertise. In Readings in Medical Artificial Intelligence: the first

decadeiClBiicey and Shortliffe, eds), pp.275-319. Addison-Wesley.

Florentin J.J., KEE Software Review. Expert Systems 4(2), May 1987.

Forbus K.D. Qualitative Process Theory, Artificial Intelligence 24
(1984)pp.85-168.

Genesereth Michael R., and Smith David E., Meta-Level

Architecture, Stanford Heuristic Programming Project Memo HPP-81-6,
Stanford University, May 1981.

Graf, Rudolf F., Whalen, George J. and the editors of Popular

Science. (1977) How it Works: Illustrated. Sphere Books Ltd. London.

Hamilton, T.P., HELIX: A helicopter diagnostic system based on

qualitative physics. Artificial Intelligence in Engineering 3(3) (1988)
pp.141-150.

■0

D
Hunt, J. (1989) A Qualitative Diagnostician for Mechanical Devices,

in Engineering Applications of Artificial Intelligence (in press). J

rIwasaki, Y. and Simon, H.A., Causality in Device Behaviour, L
Artificial Intelligence 29 (1986a) pp. 3-32.

Iwasaki, Y. and Simon, H.A., Theories of Causal Ordering: Reply to

DeKleer and Brown, Artificial Intelligence 29 (1986b) pp. 63-72.

Keravnou, E.T. and Johnson L. Competent Expert Systems: A case

study in Fault Diagnosis (1986) Kogan Page Ltd, London.

D
D
[

145

1_J

Kuipers B. Commonsense Reasoning about Causality: Deriving

J Behaviour from Structure, Artificial Intelligence 24 (1984) pp.l 69-204.

Kuipers, Benjamin and Chiu, Charles. Taming Intractible

Branching In Qualitative Simulation. (1987) in IJCAI 87 Proceedings of

J ̂ the Tenth Internation Joint Conference on Artificial Intelligence,
ppl079-1085.

-t.

Meccano Mechanisms Set Instructions, (1971) Meccano Tri-ang Ltd.,
Binns Road, Liverpool L I3 IDA England.

Minsky, M.L., (1975). A Framework for Representing Knowledge, pp

211-280 in The Psychology o f Computer Vision, ed P.H.Winston,
J

]

V

]

McGraw Hill.

Morgan, A.J. 1988 The Qualitative Behvaiour of Dynamic Physical

J Systems. PhD Dissertation Wolfson College, Cambridge.

Price, C. J. (1989) Developing a Qualtitative Representation of

Mechanical Devices for use in Diagnosis in Engineering Applications of
Artificial Intelligence 1(2).

Raiman 0 . (1986) Order of Magnitude Reasoning. Proceedings of the

Fifth National Conference on Artificial Intelligence (AAAI-86), p p .l00-4.

Roth, J.P., Diagnosis of automata failures: A calculus and a method,
IBM J. Res. Develop. 10 (1966) 278-291.

Schreiber, G., Bredeweg, B., Davoodi, M., Wielinga, B. 1987 Towards

a Design Methodology for KBS. VF Mmo 97 November 1987, Department

of Social Science Informatics, University of Amsterdam.

146

Stefîk, M.J., Planning with Constraints (MOLGEN: P art 1), Artificial

n
J

n
Shortliffe, E. H. (1976) Computer-Based Medical Consultations:

M YCIN. New York: Elsevier. J

]
ZnZeZZZgence 16(2) (1981)111-140. r

' L
Struss, P. Mathematical Aspects of Qualitative Reasoning in ' J

International Journal o f Artificial Intelligence in Engineering (1988)

Weinreb, D. and Moon, D. The Lisp Machine Manual, 1981.

Weld, D.S. (1988) Choices for Comparative Analysis: DQ Analysis or ^

Exaggeration? Artificial Intelligence in Engingeering 3(3) p.l74. L

Willoughby A. A., Making Qualitative Reasoning more Quantitative,

in Proce 9th International workshop on Expert Systems and their

Applications, Specialized Conference on 2nd Generation Expert

Systems, Avignon, France. June 1989 ppll7-127. F

0

D

*

147

last
I -■

]

]
]

a #
* 11?

m

1
J

