
Open Research Online
The Open University’s repository of research publications
and other research outputs

ObLog: the combination of object-oriented and logic
programming
Thesis
How to cite:

Watkins, John (1990). ObLog: the combination of object-oriented and logic programming. MPhil thesis. The
Open University.

For guidance on citations see FAQs.

c© 1989 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

0
D
D
D
D
D

D
D
0
0
0
0
D
D
0

OBLOG : THE COMBINATION OF OBJECT-ORIENTED

AND LOGIC PROGRAMMING

John Watkins

A thesis submitted for the degree of Master of Philosophy,

October 1989

Computer Discipline

Faculty of Mathematics

The Open University

Milton Keynes MK7 6AA

U.K.

u

ProQ uest Number: 27758434

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

in the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 27758434

Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

Ail Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106 - 1346

D
0

UNRESTRICTED

LJ

A thesis submitted for the degree of Master of Philosophy,

October 1989

OBLOG : THE COMBINATION OF OBJECT-ORIENTED

AND LOGIC PROGRAMMING

D John Watkins

0
D
D
a
0
]

Computer Discipline

J Faculty of Mathematics

The Open University

J Milton Keynes MK7 6AA

-1 U.K.
J ■

]
]

I)afcc 15 November 1̂ 8 ^

0
DECLARATION

J The work in this thesis is original unless otherwise stated.

J I also declare that the work described in this thesis has not been submitted for

any other degree.

]
]
]
]
]

0
D ABSTRACT

Object-oriented programming has often been advocated as a means of

improving and enhancing the facilities provided by a given programming

environment. This thesis is concerned with an examination of the benefits of

providing object-oriented facilities in the Logic programming language - Prolog.

We consider these benefits from two different perspectives, specifically

1 examining what benefits Prolog can gain from objects, and conversely, what

0
0

D
D

D

D
0

]

benefits object-oriented programming can gain from Prolog.

A previously proposed model of object execution in Prolog was used as the

basis of this research. In implementing this proposal we have critically examined

"j how well the model supports the principles of object-oriented programming, and

in those areas which we consider deficient, identified alternatives for improvingnU the model which have subsequently been implemented for the purposes of

assessment.

J The name we have selected for our augmented system is ObLog, drawn

from Ob(jects) in (Pro)log. We critically examine the suitability of ObLog in

terms of object-oriented programming by implementing a series of example

applications based on a Block World specification.

J The thesis concludes by proposing some areas in which further research

might usefully be conducted.

]

D

D
D
D
0
0
D

D
D
L

0

ACKNOWLEDGEMENTS

I wish to thank my two supervisors Mr. Mike Newton and Mr. Bennedict

Heal for all their help and guidance during this research.0
D

I would also like to thank the other members of the Computing Discipline

J who have provided advice and encouragement.

Finally, I am grateful for the financial support provided by the Open

University, without which I would have been unable to study for this degree.

To Julie, thanks for all

the patience and support.

0 TABLE OF CONTENTS

0

1. Introduction 1

U 1.1 Badtground 1

1.2 Basic Object-oriented Principles 2

1.2.1 Objects 2

1 1.2.2 Messages 3

1.2.3 Inheritance 3

1.3 Objects and Frames 4

1.4 Structure of the Thesis 6

0
0
D

2. Review of Relevant Research 7

D
0
0

D

2.1 Development of Object Concepts 7

2.2 Hybrid Systems 11

2.3 Recent Prolog Object Research 13

] 3. Zaniolo’s Proposal 18

3.1 The Proposal 18

3.1.1 Objects 19

3.1.2 Messages 20

3.1.3 Inheritance 21

]
0

0 4. Implementing the Proposal 26

4.1 Object Definition and Validation 27

jj 4.1.1 Object Definition

D
Û

27

4.1.1.1 with and isa 28

4.1.1.2 Interactive Object Definition 29

4.1.1.3 Consult-like Option 30

4.1.2 Object Validation 28

|1 4.1.2.1 Referential Integrity 31

4.1.2.2 Cyclical Inheritance 32

4.1.2.3 Duplication of Object Identity 33

4.2 Encapsulation 35

4.2.1 The Assignment Problem 35

4.2.2 Encouraging Encapsulation 37

4.2.3 Enforcing Encapsulation 38

4.3 SELF 39

4.4 Inheritance 42

4.4.1 Ancestors 42

0
]
]
]

]
]
1

5. Block World ; An Application 44

5.1 Block World 44

5.2 Problem Specification 45

5.3 Object-Oriented Design and Implementation 47

5.4 Using the Block World System 48

J 5.5 Summary and Discussion 50

6. Discussion and Conclusions 53

6.1 Prolog and Objects 53

6.1.1 Program Structure 54

6.1.2 Knowledge Representation 54

6.1.3 Reusability and Extensibility 55

J 6.1.4 Object-oriented Design

D
0
Q
D
D
D
0
0
D
D

56

6.2 Objects and Prolog 57

6.2.1 Pattern Matching and Messages 57

6.2.2 Messages as "Predicates" 59

6.2.3 Back-tracking and Messages 59

6.2.4 Messages in Conjunction / Disjunction 60

6.3 General Object-Oriented Issues 61

6.3.1 Encapsulation 62

6.3.2 Inheritance 63

6.4 Future Work 64

6.4.1 An Object Debugger 64

6.4.2 An Object Compiler 65

7. References 67

D
D
D
0
u

0
0
0
D
D
D
0
LJ

0
Q
□

D

8. Appendides

A : obcode.pro - the message passing code

B : obutU.pro - the ObLog utility file

C : obassn.pro - the object assignment code

D : obintl.pro - relaxed encapsulation interface

E : obint2.pro - enforced encapsulation interface

F : geomeg.pro - the geometric example file

G : optionl.pro - KEE like implementation

H : option2.pro - SmallTalk like implementation

I : option3.pro - Mixed Initiative implementation

J : zcode.pro - Zaniolo's Message Passing Code

78

D

D

0
n

D
0

D

D
D

n

D

D

Chapter 1 Introduction

1.1 Background

Object-oriented programming has often been advocated as a means of improving

and enhancing the facilities provided by a given programming environment

([Rent82], [Cox84], [Stef86], for example). Established languages that have

benefited from the introduction of object concepts, as demonstrated by their

acceptance and use, include Simula [Birt73] - based on Algol, Objective-C

[Cox84] - based on C, C++ [Stro86] - also based on C, Object Pascal [Tesl85] -

based on Pascal, LOOPS [Bobr85] - based on Lisp, and KEE [Xnte87], also

J based on Lisp.

The areas which are claimed to benefit from object-oriented programming are

many and varied, and range from specification and design, through coding, and

on up to maintenance of applications (see [Booc86]). Those applications which

it is claimed are particularly suited to an object treatment include simulation and

modelling, graphics - and more specifically WIMP (Window, Icon, Mouse, Pop

up menu) systems, CAD (computer aided design), system programming and

artificial intelligence research (see [Stef86], [Gull85], [Nier85], and [Banc85],

for example).

The aim of this research was to investigate whether or not Logic Programming

[Hogg84], as represented by Prolog [Cloc81], could benefit from the

introduction of object-oriented facilities. A major goal of the work was to

provide the user with object facilities while presenting them with a programming

environment that appeared as similar to the original Prolog environment as

possible. Another requirement of the implementation was that it should be

n
"1
j written in standard (Edinburgh style [Bowe82]) Prolog, without the necessity of

0
D

0
D

D
D

0

having to alter the Prolog inteipreter.

Initially, the major motivation for this work was to generate a system with

which to investigate and familiarise ourselves with the object-oriented paradigm.

U This work was undertaken in parallel with a project conducted using a

commercial object-oriented system - KEE (the Knowledge Engineering

Environment [Watk86]), with aspects of the research in each area contributing to

the other.

J 12 Basic Object-Oriented Principles

Considering the fact that the object-oriented paradigm is well established, there is

surprisingly little agreement over exactly what features constitute an object

system [Stef86]. The situation is further confused by the existence of systems

that are essentially similar but subtly different from each other, such as Frames

J [Mins86] and Actors [Hewi73], which are discussed in section 1.3.

For the purposes of our work, we identify the basic features of an object-oriented

system as follows.

1.2.1 Objects

Objects are conceptually independent entities which include the properties of

process and information. In implementation terms, objects must incorporate both

the specification for their procedures (often termed - methods), as well as the

information representing their current state. An object's properties should be

encapsulated, that is the properties should only be accessible via a defined interface,

effectively insulating the end user from the implementation details of the object

D
J The effects of encapsulation are to minimise interdependency among objects

[Snyd86], which in turn promotes the programming concept of modularity,

allowing the independent development of objects, as well as enforcing the

principles of information hiding and data abstraction [Pasc86].

D
D

1.2.2 Messages

To invoke a process associated with an object, it is necessary to communicate this

requirement to the object. Such communication is expressed as sending the object

a message. Information contained within the message specifies the required

operation and any parameters required for its execution. Messages should be the

jj only interface allowed to an object ([Rent82], for example), hence enforcing the

0
D

D

]

concept of encapsulation.

P 123 Inheritance

^ Inheritance provides a mechanism by which the properties belonging to one

1 object may be shared by other objects. For example, when a set of objects share

some common methods or data a single object may be defined specifying the

J shared properties, which each object in the set can then inherit Thus inheritance

_ introduces economies of coding, and, since common information needs to be

-J recorded only once, helps to promote consistency ([Cox84], for example).

There are many interpretations of inheritance ([Gold83], [Fike85], [Lieb86], for
nI example), and it is possible for several different inheritance relationships between

objects to be supported. KEE ([Fike85]) can be seen as an example of an

U object-oriented system, supporting class, sub-class, and instance relationships

"1 between objects. A class object can be seen as a description of one or more

similar objects, containing the common properties of the objects belonging to
r
L

D
D
D

that class. An object representing a member of a class is termed an instance, and

0 is related to the class object via an instance relationship (often termed an isa

jj relationship). It is also possible for an object to exist that is not an instance of a

class object, but which represents a specialisation of the class object. Such an

y entity can itself be seen as a class object, and is related to the original class via a

^ sub-class relationship (often termed an ako - a kind of - relationship).

jj Many systems, such as Knowledge Craft [Cam87] and Actors [Lieb86] make no

distinction between class and instance, simply supporting isa relationships

jj between objects (see [Brac83] for a good discussion of isa networks).

D

D

12 Objects and Frames

In view of the confusion caused by the existence of similar but different systems

which claim to be object like, and the nomenclature they use, I will use the next

few paragraphs to state my own interpretation of the situation.

Fikes and Kehler [Fike85] use the terms object and frame interchangeably, whilst

Steel [Stee86a] makes a distinction between objects and message passing systems

(such as Actors - see next paragraph), and frame based systems.

Liebermann [Lieb81] claims that Actors are fundamentally objects, but exist in an

environment in which there is no explicit concept of class/sub-class/instance, but

only of peer objects or proxies as he terms them. This means that if an object is

unable to respond to a message, it is able to redirect the call to a peer object which

can respond appropriately.

u

D
D
[j My personal interpretation of these differences is as follows. An object and a

frame are essentially structurally identical. That is, both allow descriptions of

J entities in terms of their processes and data, both support the concept of

1 inheritance, and both support communication via messages. The only difference
J

between the two lies in the use they are put to.

D
The role of frames is typically in the area of knowledge representation for

J knowledge based systems, where they provide a means of representing

information drawn from a given domain. Inheritance in this role provides default

information allowing deductive reasoning, as well as a means of explicitly

”j indicating "real world" relationships within the knowledge base. In this role, the

objects are essentially passive entities on which some active agent, such as a

J theorem prover or inference engine, acts to derive a result or conclusion.

D
The role of objects is more that of programming entities, involved in the

”j description and implementation of processes. Inheritance in this role provides a

means of providing shared default behaviour, reducing the amount of coding

required, as well as allowing any changes to the code to be propagated

-1 throughout an application automatically. In this role, there is more dynamic

interaction between the objects, with objects sending and receiving messages to

jj initiate and conduct processing.

n
Li For the purposes of this thesis I consider objects and frames to be one and the

n same, using, as do Fikes and Kehler, the two terms interchangeably. I would

u

n

Li even go as far as to include Actor systems in my definition of objects, since the

proxy delegation mechanism effectively provides a means of sharing behaviour

which is superficially similar to inheritance.

]

J

D
D

D
D

n
L

1.4 Structure of thé Thesis

1 This thesis is structured in the following manner. Chapter 2 describes the early

development of object-oriented concepts, investigates the issues involved in

J combining paradigms, as well as examining recent research into object-oriented

programming and Prolog. Chapter 3 describes an object model proposed by

J Carlo Zaniolo [Zani84], which we adopted as the basis of our subsequent

1 research. In Chapter 4, we describe the implementation of Zaniolo's proposal and

examine how well the proposal supports object-oriented principles and describe

our solutions to those areas of the proposal we identify as deficient. Chapter 5

describes how our augmented system can be used to implement an example

application based on the Block World domain, which is used both to provide a

demonstration of the systems use, and to illustrate several of the topics discussed

in chapter 6. Chapter 6 contains a summary and discussion of the research, as

well as presenting some areas in which future work might be conducted. Chapter

7 contains a list of the references cited in this thesis.

L i

Chapter! Review Of Relevant Research

In this chapter we review research which we consider relevant to this work. We

J first examine the historical development of object-oriented concepts. Next, we

1 describe examples of tradition ̂programming languages that have been extended

to include object features. Finally, we describe the research into implementing

object-oriented features in Prolog.

D
U 2.1 Development of Object Concepts

Many early systems have demonstrated some characteristics that could be

jj considered to be object-oriented. SIMULA ([Birt73]), an ALGOL like language,

can be seen as an immediate ancestor of object-oriented programming. SIMULA

J was intended to be an extension of ALGOL 60, the implementation including

"1 ALGOL as a subset. From an object-oriented perspective, the important aspects

of the extension include the introduction of the class, sub-class and instance

concepts, as well as objects - programming entities which combined the

properties of data and process.

D

D

SIMULA was conceived as a language for developing simulation applications,

providing a simple means of describing real world entities and their properties in

terms of objects. In this way, the language promoted an object-oriented

programming style. In terms of its acceptance and use SIMULA is primarily a

European language, having had few American supporters. The decline in the

popularity of SIMULA is closely linked to that of ALGOL, which has been

largely superceded by languages such as Pascal and Ada.

n
u

n
J

1 Smalltalk [Gold83] was the first language to demonstrate an explicit awareness of

the concepts of object-oriented programming, including coining the term - "object

oriented". Smalltalk can still be seen to be the strongest, in the sense of being the

most complete and unified, example of the paradigm.

"1 Smalltalk evolved as the software portion of the Dynabook project [Kay72], an

early attempt to develop the personal computer. Smalltalk was based on an earlier

J language Kay had worked on - Flex, which in turn was heavily influenced by

SIMULA. The class concept of SIMULA dominated the design, with the

J language becoming completely based on the idea of class as the major structural

n unit, with instances of classes - the objects - making up the entities found in an

application. Subsequent work at the Xerox Palo Alto Research Centre led to the

development of a full Smalltalk implementation, which is now widely available

on many machines.

D Although Smalltalk has been used to generate many commercial applications,

from simulation packages to operating systems, it is not as popular or widely

used as many of the traditional languages - such as Pascal. Most criticisms of

Smalltalk are associated with the fact that the language is difficult to leam. This

problem is generally attributed to two main causes: the size and complexity of the

environment (with several thousand system objects [Kaeh86]), and the need for

novice programmers to adjust to object-oriented programming concepts. Some

U work ([Bom87], for example) indicates that people who leam Smalltalk as their

first programming language find little difficulty in coming to terms with the
n
[j object-oriented concepts other languages may provide.

D
n
L

D

D

D
D
D

D

Another criticism of Smalltalk, and of object-oriented languages in general, is

that of poor execution speed (see [Watk89], for example). This is primarily due

to the computational overhead associated with supporting message passing and

inheritance. Although true of the earlier object-oriented languages, the more

recently developed languages, such as Eiffel (described below), demonstrate very

acceptable levels of performance.

Ada [Ada83] can be seen as an example of a new language which as part of its

design, includes object-oriented features. Ada’s generic packages enable an end

user to create class like objects, specifying both data and process. The user can

then subsequently define executable instances of these "templates". Ada

additionally provides the concept of a package, which can be used to extend the

language by generating new classes and instances, and of a task, which allows

the natural expression of concurrent objects and activities.

Ada has many (primarily defence oriented) applications in commercial and

military use, and due to its sponsorship by the United States Defense Department

seems set to become widely used and accepted by a large programming audience.

Eiffel [Meye88] can be seen as an example of one of the most recent purely

object-oriented languages. Eiffel is also a good example of how efficient

(especially in terms of execution speed) an object-oriented language can be.

-J The main design goals for Eiffel included (as one might expect from Meyer's

1 earlier work, see [Meye87]) software reusability and extensibility, portability,

and as mentioned above, a high degree of computational efficiency. This last

requirement was particularly important, since Eiffel was expected to be employed

commercially to implement medium to large scale applications.

1 In order to achieve these aims, Eiffel is based on the principles of object-oriented

design (see [Meye87], for example). Eiffel fully supports the object-oriented

concepts presented in chapter 1. Facilities are provided for creating objects with

the properties (or assertions as Meyer terms them) of state and process. Access to

J object properties is supported by means of messages. Class - sub-class - instance

“I relationships are supported, as well as the mechanism of multiple inheritance.

Eiffel runs under UNIX ([UNIX84]), and is currently supported on about twenty

different machine architectures. The Eiffel compiler generates C ([Rosl84]) as an

J intermediate language, providing both portability as well as high performance (in

terms of execution speed). Further, optimisation processes within the compiler

ensure that the 0 image of the source code is as efficient as possible - removing

unnecessary code, and optimising message calls to routines.

J The full Eiffel development environment provides a complete set of

"j object-oriented tools and facilities including object-oriented browsers, tracer, and

symbolic debugger. One of the most important facilities is the object library Eiffel

J provides which contains a large number of commonly used objects and their

properties which, following Eiffel's object-oriented philosophy, developers can

simply plug straight into their own applications.

10

2.2 Hybrid Systems

As mentioned in Chapter 1, many preexisting programming languages have been

extended to include object-oriented facilities. The success of these hybrid

systems can be gauged by their popularity and widespread use. Examples of such

systems include Flavors [Moon86], Loops [Bobr83], ObjectLisp [Dres85],

CommonLoops [Bobr86], KEE [Inte87], Objective-C [Cox84], and C++

[Stro86]. A common issue is why did these workers combine the existing

U language with objects in preference to simply developing a new object-oriented

language from first principles”.

D
D

D
D

r
L

Stefik and Bobrow [Bobr86] claim that merging an object system into an existing

programming language, in their case LISP, has a number of benefits. In the first

instance, the new hybrid system will have a ready made audience - the existing

LISP programmers who have already mastered the language. If, as Stefik and

Bobrow suggest, the hybrid system is upwardly compatible with its base

language, this also allows the "incremental conversion of programs from a

functional to an object-oriented style".

Another important point stressed in their paper is that of portability. If the hybrid

system is based on a standard implementation of a given language, this should

then also impart portability to the new system. For example, Stefik and Bobrow

claim that in developing the CommonLoops system [Bobr86] in Common Lisp,

and having made no alterations to the Lisp interpreter, their system is now

available on most commercially available Lisp workstations.

11

u

D

D
D

Steels [Stee86b] examines the issue of combining multiple paradigms from a

different perspective, that of knowledge representation in problem solving

[] systems. Steels states that there is no single universal knowledge representation

for solving all problems, but that different problems require different

representations. Steels' solution to this problem is to combine several

representation formalisms, including rule-based, logic and frame-based

programming, in a single unified system - KRS (the Knowledge Representation

^ System). The KRS system is described as providing a "glue" like mechanism

which allows the combination of knowledge represented in differing formalisms

to be used for the purposes of reasoning. Steels claims that KRS solves many of

the problems associated with the expression of knowledge and its representation,

and argues that the combination of existing formalisms is a more productive

J approach than attempting to develop a single all encompassing representation

language.

D
D

n

In the case of the language C++ ([Stro86]), the motivation for introducing

object-oriented extensions to the existing language - C ([Rosl84]), was based on

issues of computational efficiency.

The author of the language had a requirement to write event-driven simulations

which under normal circumstances Simula would have been employed to

implement. In this particular instance however there existed a requirement for

high execution speed, which Simula was considered unable to support.

12

D

Q

The adopted solution was to take C, an existing high performance language (in

terms of speed of execution), and introduce a set of object-oriented extensions to

provide the same functionality that Simula supported in terms of object features.

These features included the class concept with its property inheritance, plus the
"1
J means of creating instance objects based on these classes.

J Since C++ was based on C (see the appendix of [Orwe49] for one interpretation

n of the languages name), it retains a high degree of portability. Further advantages

which this approach provide (reiterating Bobrow and Stefik's claims) include the
n large body of existing C library routines, and the large numbers of C

programmers who would benefit from the availability of object-oriented facilities.

-n With the execution speed of C coupled with the facilities to generate

object-oriented applications, C++ has proved to be a powerful object-oriented

language. Since its origins in 1980, C++ has become increasingly popular with

both existing C programmers who find the object-oriented extensions of use in

J extending their programming repertoire, as well as for object-oriented

pj programmers who are unsatisfied with the execution speed of languages such as

Smalltalk and Simula.

23 Recent Prolog Object Research

In the previous section we have seen how object-oriented features have been

introduced into an existing language to correct some perceived deficiency of that

language. Specifically in terms of Prolog, we identify lack of program structureQ
U [HoggS4], as well as limited knowledge representation facilities [Stee86a] as

such deficiencies, and suggest that the introduction of object-oriented facilities

i would act to correct these deficiencies.

13

D

0
Several attempts have been made at incorporating object-oriented capabilities in

Prolog ([Shap83b], [Zani84], [Gull85], [Anje86], [Fuka86], [Mcca86], for

example). Booch [Booc86] states that some languages are better suited to the

J application of object-oriented concepts than others, and claims that the major

issue is how well a given language is able to embody and enforce the properties

J of an object. The following paragraphs critically examine how well the various

"j object models proposed by the above workers support the object paradigm.

Specifically, each is assessed in terms of the following criteria : support for

j J object features, how well the model enforces object concepts, and the role of

Prolog in the implementation.

D
[Shap83b] Shapiro and Takeuchi demonstrate in their paper that the basic

J operations of object-oriented programming - including the creation of objects,

message passing, class-superclass hierarchies - can be implemented in

Concurrent Prolog [Shap83a]. Their system is superficially similar to He wit's

Actor systems [Hewi77], with computation performed via the cooperation of

conceptually independent objects resident in the Prolog database. The suitability

J of the system is demonstrated by its use in simplifying the complexity of

0
0

D

0

]

programs defining communication networks and protocols for managing shared

resources.

Shapiro and Takeuchi's model of the object paradigm, especially in the definition

of their inheritance system, seems heavily dependent on the features provided by

Concurrent Prolog. Similarly, some aspects of their message passing mechanism

are also dependent on the underlying Prolog implementation (specifically their

14

D
D
D
D

D

0

]

"incomplete message" system). In view of this dependency, it is not immediately

obvious how this work can benefit the wider, more standard, Prolog community.

nJ [Zani84] Zaniolo describes in some detail a simple, implementation independent,

object-oriented Prolog system, providing clauses to support the definition and

U support of objects.

The aim of Zaniolo's work [Zani84] is to provide an object-oriented capability in

standard Prolog (using a DEC 10 syntax [Bowe82]), whose implementation did

not require alterations to be made to the Prolog interpreter. The result of this aim

is the generation of a Prolog environment in which object capabilities are

(optionally) available to the programmer.

Zaniolo's proposal supports the basic object-oriented features we have described

in Chapter 1 in terms of providing objects, a message passing system, and a

basic inheritance mechanism which supports simple "isa" relationships. These

features are provided by the definition of three Prolog infix operators - with, :

and isa, which are associated with object definition, messages and inheritance

respectively (these operators are fully described in chapter 3).

[GulI85] Gullichsen describes the development of an object-oriented system

which is intended to provide Smalltalk like features in a Prolog environment. The

^ aim of the work, according to Gullichsen, was two fold: to provide a tool with

which to explore the object-oriented paradigm, and to investigate how well logic

programming and object-oriented programming could be integrated.

15

n

Although Gullichsen's approach seems similar to that of Zaniolo, that is in terms

of the system not requiring any alteration of the interpreter and with the object

features being supported by Prolog clauses, the resulting system is very

J different. Gullichsen's work can be seen to be an object system that has used

Prolog as its implementation language, whereas Zaniolo's system can be seen as

a system which is essentially a Prolog environment in which object features are

provided. Consequently, Gullichsen's objects appear far removed from the

underlying Prolog.

0

0

0

In addition, Gullichsen's model appears to violate a fundamental tenet of

object-oriented programming by allowing object state to be accessed, and even

altered, outside of the strict interface of message passing. GuUichsen excuses this

breach of encapsulation on the grounds of "computational efficiency",

presumably for applications in which the extra processing required for a message

call might be considered too great.

[Anje86] Anjewierden's paper describes a series of extensions to Prolog intended

to provide object like facilities, which were subsequently used to implement a

programmable user interface to a computer graphics package.

Anjewierden readily admits in his paper that the system he describes does not

wholly support the object paradigm, but is based more on the message passing

features of objects, and their application to interfacing. This point is further

demonstrated by the lack of an inheritance mechanism. The system described is

16

D

D

0
0
0
D
0

Q

aimed more at encouraging an object-oriented style by defining a set of simple

predicates whose use emulates some of the features of object-oriented

programming. Encapsulation of Anjewierdens "objects" is achieved only through

the level of indirection the message passing predicates provide which hides the

clauses representing the object from the user.

jj [Mcca86] McCabe's work is essentially similar to that of Zaniolo, in that it

attempts to provide object-oriented facilities in Prolog without altering the

J interpreter. In much the same way, McCabe provides these facilities via the

definition of a set of infix operators, replacing Zaniolo's with operator with

J McCabe also uses this operator in message calls (in much the same way

Zaniolo does) as the separator between the object identifier and the specification

of the required action. Inheritance is provided not as in Zaniolo's proposal, that is

as individual assertions in the Prolog database, but as properties of the object,

with the relationships between objects specified via arguments to the object name.

After examining the previous work in combining object-oriented programming

and Prolog, we selected Zaniolo's proposal as the basis for our subsequent

research. In the next chapter we outline the reasons for our choice, as well as

describing the proposal in full and providing examples of its use.

17

J

0

0

0

D

Chapter 3 Zaniolo's Proposal

As mentioned in Chapter 1, our aim in this research was to investigate the

benefits of combining object-oriented programming and Prolog. After examining

the previous research in this area, we selected as the basis of our work a proposal

for object-oriented programming in Prolog by Carlo Zaniolo [Zani84].

Our reasons for selecting this proposal were based on our requirement for a

simple implementation which would require no alterations to be made to the

Prolog interpreter, and that was based on Edinburgh style Prolog [Bowe82].

The aim of this Chapter is to describe Zaniolo’s proposal. At this stage we make

no attempt to analyse the suitability of the proposal as an object system (this isnJ considered in chapter 4).

1 3.1 The Proposal

Zaniolo's proposal supports the basic object-oriented principles described in

Chapter 1 in terms of providing the capability of defining objects, a message

jj passing system, and an inheritance mechanism. These facilities are provided

respectively by means of three system defined Prolog infix operators - with, :

J and isa, which we describe in the following sections.

0

18

1
-j 3.1.1 Objects

0

0

0
0

0

0
Q

Objects and their associated properties are defined in a clause by means of the

operator - with as follows.

<object-id> with <property-list>.

n In this clause object-id is an arbitrary Prolog predicate with zero or more

arguments, and property-Iist is a Prolog list containing one or more Prolog terms

| j in clausal form. Each of these terms is either a Prolog fact - representing object

state, or a Prolog rule - representing an object method.

Before the proposed object system can use definitions of this form, the with

clauses must be converted to an augmented internal representation within the

Prolog database. In this process the facts and rules held in property-Iist are

stored as separate clauses, with the object name included as an argument in the

head of the clauses. The level of indirection between the with clauses and their

internal representation provides the objects with a degree of encapsulation. To

illustrate this mechanism consider the following example.

Given an object - regular_poiygon, with properties length of side (L),

number_of_sides (N), both facts representing the state of the object, and

perimeter (P), a method for calculating the perimeter of reguIar_poIygon, such

an object might appear in its with clause form as follows.

regular jx)lygon (NJL,) with [(number_of_sides (N)),
(length_of_side (L)),
(perimeter (?) P is N *L)].

19

D

0

0
0

0
3

In its internal representation such an object would appear as follows.

number_of_sides (regularjjolygon (NJL), N).
length_of_side (regularj)olygon (N,L), L).
perimeter (regular jpolygon (N,L), P) :• P is N * L.

3.1.2 Messages

The requirement to communicate with an object in order to invoke a method is

satisfied by means of the infix operator used as follows.

<object-id> : <target-property>.

U Such an expression can be entered as a goal, or incorporated as a clause in a rule

(including those contained within the property-Iist of a with clause). To

U illustrate the use of the message passing system, consider the following example,

based on the regular_polygon object defined earlier. If we wish to invoke the
u
u perimeter method of regular polygon, to find for example the perimeter of a

U regular polygon of length of side 10, and number of sides 6, we could enter the

following goal.

regularjwlygon (6,10) : perimeter (X).

This goal invokes the message passing code (defined by means of the : infix

operator), and by a process of decomposition and recomposition generates a

^ Prolog term of the same format as the internal representation of the target

property. This term is now invoked using a "call" to the interpreter, resulting in

20

0

D

B

0
B

B

]
B

Prolog instantiating X to 60, the result calculated by the perimeter method. To

illustrate this process, the Prolog term generated by the message passing code in

the above instance would appear as follows.

perimeter (regular jx)Iygon (6,10), X).

This term can now match against the internal representation of the specified

property allowing, in this case, the perimeter method to be invoked (see appendix

Q j for the full details of the message passing code Zaniolo presents in the

^ proposal).

3 .U Inheritance

The specific inheritance capability proposed by Zaniolo supports simple "isa"

relationships between objects, and is declared by means of the infix operator isa,

with a clause of the following form.

<sub-object> isa <super-object>.

The meaning of this clause is that sub-object is to inherit the properties of

super-object. These facts are held as assertions of the form - isa (<sub-object>,

<super-object>) - in the Prolog database. As might be expected, the isa

relationship is not symmetric. That is, inheritance of object properties is from

super-object to sub-object only. The relationship is however transitive, that is,

properties defined higher up in the isa lattice are inherited by all descendants

lower down the lattice. To illustrate how isa is used in the inheritance system,

consider the following clause.

21

n

n square (L) isa regular jx)Iygon (44L).

0

ü

]
3

The effect of this clause is to define an object called square, which is an example

of the object regular_polygon which has four sides. Having now estabhshed this

relationship, if we wish to find the perimeter of a square of length of side 10, we

can send square the following message.

square (10) : perimeter (X).

The effect of this goal is for Prolog, via the message passing code, to instantiate

X to 40 - the value calculated by the perimeter rule inherited from

regular__polygon. In the same manner, we can ask square how many sides it has,

that is, examine a fact representing the object’s state.

square (10) : number_of_sides (X).

The effect of this goal is for Prolog to instantiate X to 4.

To illustrate the transitive nature of the isa operator consider the following

example. We can define an instance of square in which the length of side is

specified to be of length 20 by the following clause.

sql isa square (20).

22

0

r-j We can now inspect the state of sql by sending a message to, for example, its

number of sides fact

D
sql : number of sides (X).

0̂
 As in the previous example, the effect of this clause is for Prolog to instantiate X

^ to 4 - a fact inherited from reguIar_polygon via square. Similarly, we can send

sql a message to calculate its perimeter in the following manner.

sql : perimeter (X).

The value of which is 80, calculated by the method defined in regular polygon.

Q

0

3

The inheritance system Zaniolo proposes, although not explicitly stated in the text

of the paper, appears to support multiple inheritance (as can be determined by

examining some of the examples he provides). That is, a sub-object may inherit

properties from many super-objects (providing there are no cycles generated in

the lattice). Given the situation where an object can inherit the same property

from more than one ancestor, it is important that some means of deciding which

ancestor has highest priority exist. Zaniolo's solution is for the property to be

inherited from the most recently created ancestor (as reflected by the order of the

isa assertions in the Prolog database).

To illustrate how multiple inheritance may be utilised in the context of the

inheritance system, consider the following example. Given an object - rectangle,

with properties Iength_of_base (LI), Iength_of_side (L2), both of which are

facts representing the state of the object, and area (A), a method for calculating
Li
1 23

ü
p
U

n

0

3
Q

]
3

the area of rectangle, such an object might appear in its with clause form as

follows.

U rectangle (LI,L2) with [(length_of_base (LI)),
(length_of_side (L2)),

J (area (A) A is LI * L2)].

Since a square is a special case of rectangle in which all the sides are the same

length, we may establish this relationship between the objects square and

rectangle by the following isa assertion.

square (L) isa rectangle (L,L).

Using the object sql defined earlier, we can now ask sql to calculate its area

by sending it the following message.

sql : area (X).

The result of this goal is for Prolog to instantiate X to 400 - the value calculated

by the area method defined in rectangle, which sql has inherited via square.

In addition to inheriting the area method, sql also inherits the facts -

length_of_side and length of base, whose values can be inspected by sending

sql a message of the following form.

sql : length_of_side (X).
or

sql ; length_of_base (X).

The effect of sending sql either of these messages is for Prolog to instantiate X

to 20.

24

n

nü

In the next chapter we describe our implementation of this proposal, identifying

the options available and the choices made in performing this task. We also

examine how well the proposal and its implementation supports the principles of

object-oriented programming, and describe our solutions to those areas we

identify as deficient.

]

25

nV
rS

U

0

Chapter 4 Implementing the Proposal

As stated previously, a major goal of the implementation was to provide the user with

object facilities, while presenting them with a programming environment that was as

similar (in terms of facilities and appearance) to the original Prolog environment as

possible. As mentioned in the introduction, to ensure portability our implementation

uses only standard (Edinburgh syntax - see [ClocSl]) Prolog, and involves no

alteration to the Prolog interpreter. The name we have given our system is ObLog,

drawn from Ob(jects) in (Pro)log.

■f

We have implemented Zaniolo's proposal and demonstrated that it works in several

Prolog environments, including Dec 10 Prolog [Bowe82], Quintus Prolog [Quin87] and

Prolog2 [ESI87a]. However, the proposal specifies only certain aspects of an object

system, leaving a number of issues which need to be considered in implementing a

complete system. In this chapter we describe and discuss the implementation of the

n proposal, identify those aspects of the proposal which fail to adequately support a

complete object-oriented system, and present our solutions to them.

3

B Specifically, this chapter is structured in the following manner. Section 4.1 examines

the various options available for the definition and validation of objects and their

Q properties. Section 4.2 discusses the concept of encapsulation, and examines how well

the proposal supports this important object-oriented topic. Section 4.3 discusses the

absence of the concept of SELF in Zaniolo's proposal, discuses its use in

object-oriented systems, and proposes one particular means of implementing SELF.

Finally, section 4.4 critically discusses Zaniolo's proposal for an inheritance

^ mechanism, examining how well, in terms of encapsulation this information is

protected.
3

26.

3
3

4.1 Object Definition and Validation

In this section we examine various aspects of object definition, including the

options available for the creation of objects, as well as the validation of these

definitions.

4.11 Object Definition

Our first task was to examine the options available for the definition of objects,

and their subsequent conversion to the underlying representation described in

jj chapter 3. Section 4.1.1.1 describes the facilities Zaniolo proposes in his paper

for object definition. In sections 4.1.1.2 and 4.1.1.3 we describe two further

J options for object definition that we have identified, involving respectively an

r~i interactive dialogue and a consult-like facility, and critically discuss their suitability

in view of the goals we have stated in the introduction to this chapter. All of the

I) described options have been implemented for the purposes of assessment.

(NB: It is important to reiterate that the with clause object definitions that Zaniolo

proposes are very different from their internal Prolog representation. As stated in

chapter 3, the with clause definitions must first be converted to their internal

representation before they can be utilised by the ObLog system. In ObLog, this

U function is implemented by means of an object definition processor, which when

passed the identity of an object and its properties specified in a with clause, or the

object identities specified in an isa clause, performs this process. The code for the

ObLog object definition processor can be found in the appendices).

3
3
3
3 27

0

b 4.1.1.1 with and isa

0
0

n

3

3
]

Zaniolo's paper proposes two options for creating objects: the with clause, and the

isa clause. Zaniolo proposes that with and isa are declared as Prolog operators. In

this instance, the result of such a declaration is for with and isa to be defined as

infix operators whose arguments are (in terms of Zaniolo's proposal), an object

identity and its property list, and the identities of a sub-object and super-object

respectively.

Once declared in this manner, with and isa can be subsequently defined as Prolog

predicates. The practical implication of this feature, is that with and isa clauses can

now be entered directly to the Prolog interpreter either interactively by the user, or

by means of embedded Prolog statements within Prolog predicates (or object

methods), with the result that their arguments (the object identity and property list

in the case of with, and the sub-object and super-object identities in the case of isa)

can be passed to the object definition processor for conversion to their internal

^ object representation. Although Zaniolo's paper does not explicitly propose this

_ use of with and isa, this is the pragmatic solution adopted in the early development
*̂ of the ObLog system.

3
In terms of their actual usage within ObLog, with and isa are typically used to

U enter ad hoc object definitions (during the prototyping of an application, for

example) directly to the interpreter. By necessity, such definitions will be

relatively short, since it may be difficult to enter the definition of a large or

complex object correctly using the simple editing facilities provided by the input

buffer of the Prolog interpreter. As stated previously, with and isa clauses may

J also be used within object methods, to dynamically introduce object definitions for

example.

28

0
u

Ü
n

a
Q
Q

J

Li

4.1.1.2 Interactive Object Définition

Commercial object-oriented packages such as KEE [Inte87] and Frame Engine

[ESI87b] typically provide some form of prompted dialogue facility for object

definition. Such a system has a number of advantages, including its ease of use by

naive users, the ability to check and validate object definitions as they are entered,

as well as ensuring the capture of all relevant object information in a structured and

logical manner.

Figure 4.1 provides one possible example of the dialogue that might be generated

by such an option in ObLog, which in this instance is used to define the

regular_poIygon object described in chapter 3.

In this example system prompts are displayed in plain bold text, user input is in

italic, and comments, which are ignored by the Prolog interpreter, are contained

within the symbols "/* - *P'.

3
3

?- definejobjecL

Enter Object Name : regular_polygon(NJL).

Enter Object State : numberjofjsides (N).
Enter Object State : length_of_side (L).
Enter Object State :

Enter Object Method : perimeter (P) P is N * L.
Enter Object Method :

Enter Object Name :

yes
?.

Figure 4.1 Dialogue Option Example

/* Invoke dialogue option

/* Prompt for object ID

/* number of sides fact
/* length of side fact
/* User eato-s "return" -
I* - for no more state
I* perimeter method
/* User mto-s "return" -
/* - for no more methods

/♦ User Oita'S "return" -
/* - for no more objects

♦/

♦/
*/
*/
*/
*f
*/
♦/

*/
*/

29

0
D
1'

In terms of usage, the dialogue option is similar to that of with. Its main use is in

U creating ad hoc object definitions, whose properties, and in particular - methods,

Q are relatively short. As mentioned in the introduction to this section, the dialogue

option is of particular use to naive ObLog users.

D
In view of the goals stated in the introduction to this chapter, this means of object

D definition may not be wholly appropriate - since no such dialogue facility is

[”) available in the standard Prolog environment. However, this form of facility is of

obvious use to users who may not be familiar with the ObLog system, and so

Q might be provided as a library routine, which the user could optionally load into

the system.

D
4.1.1.3 Consult-like Option

The process by which Prolog programs are typically created is achieved by editing

clauses into a file which is subsequently loaded into the Prolog workspace using

the Prolog primitive predicate - consult.

A consult-like facility which was capable of loading both standard Prolog clauses

|1 as well as object definitions into the ObLog system was identified as another

possible option for use in creating objects. Using this mechanism, a previously

edited source file containing object definitions in with and isa clause form would

be read into the Prolog workspace. Object definitions would be identified and

passed to the object definition processor for conversion to their internal

^ representation, whilst standard Prolog clauses would be loaded in the normal

Prolog manner.

3

u
3
3

3 30

G

n̂
 In terms of its usage, this option is typically employed to create larger scale,

Q preplanned ObLog programs which may contain complex objects and their

properties. It is not suitable for ad hoc object definition because of the

[jl edit-consult-execute cycle it must by necessity support.

G
G

G

G
G
G

J)

In view of the goals stated in the introduction to this chapter, this option appears to

be more appropriate than the interactive dialogue option because it provides a

familiar (to experienced Prolog users) means of creating and loading applications

into the Prolog environment.

4.1.2 Object Validation

A further issue to consider in this section is that of the validation of user

definitions of objects and their attributes. This validation encompasses referential

^ integrity (that is, ensuring that where a message is sent to an object, that object is

Ü defined), aspects of duplication of object identity or properties in object definition,

as well as checking for definitions generating cyclical inheritance problems. These

^ aspects of object validation are discussed in the following sections.

4.L2.1 Referential Integrity

The run time checking of referential integrity poses some problems in a Prolog

based system. If a message is sent to a non-existent object, then the call will fail in

a Prolog sense because it cannot be satisfied. If such an event occurs, the

^ interpreter will backtrack and attempt to find another solution, with the result that

such an error may not be detected, or may only be discovered when a given

31

R

D
0

D

J

program fails to perform as expected. It may be possible that a given ObLog

program is actually relying on such behaviour to achieve its aims (see section 6.2

for example), but conversely such an event may be due to user error when writing

the program - making a reference to a non existent object or property.

Rather than attempting to identify such a message call at run time, a better solution

Q is to perform the checking during the definition process. This is in fact the solution

selected in ObLog, and which is conducted in the object definition processor,

Q where all references to objects, whether from a consulted file or those which have

been entered interactively, are checked. References to non-existent objects are

detected and an appropriate error message is displayed to the user.

Problems concerning referential integrity must also be considered when using the

IJ, isa operator, since it is possible that one or both of the objects specified by such a

clause may be undefined. Since one of the roles we have identified for isa is thatnU of the creation of objects, as well as establishing stated relationships, we have

^ selected to automatically create both the undefined object(s) as well as the specified

relationship. Other options which might be implemented include only applying this

Q solution to undefined sub-objects, or explicitly informing the user of the

condition, and prompting them for information on how to proceed.

3
]

4.1.2.2 Cyclical Inheritance

J Another aspect of validation of isa clauses involves checking for cyclical

inheritance relationships. That is, where a sub-object is defined as being a

32

D
n
J super-object of one of its super-objects. To illustrate this point, consider the

following isa declarations.

a isa b.

Q b isa c.

c isa a.

D

Q

D

The effect of ObLog processing these statements would be to introduce a cycle in

to the inheritance hierarchy. Conceptually in object-oriented terms, such a situation

makes no sense.

ObLog validates all isa statements, preventing such relationships being

established, and in the above example would allow the first two statements to be

entered, but would prevent the third - displaying an error message to the user.

4.1.2 J Duplication of Object Identity

Q Zaniolo fails to identify the implications of attempting to enter an object definition

in its with clause form where a definition of the object specified already exists. In

J such an instance, ObLog will behave as if the clause was a request to add the

properties specified in the property list part of the with clause to those already

defined for the object To illustrate this point, consider the following two clauses.

mammal with [(blood temperature (warm))].

mammal with [(body covering (hair))].

The effect of ObLog processing these clauses would be to create the object

m am m al, possessing both the properties of blood temperature and

body covering, as defined in the property lists of the with clauses. This is a

33

n
U

n
n
L.

R
Li

R
n

R
R

R

]
R

pragmatic solution to support since not all of a given objects properties may have

been identified at its initial definition, and may require inclusion subsequently.

Another possible solution which has been considered (appropriate to the

interactive definition options) is to warn the user about subsequent attempts to add

Lj properties to a previously defined object - allowing them the option of continuing

or aborting the attempt (or in the case of a consulted file, to display such

information at the end of the consult process).

The attempt to redefine an existing object property is another case which needs to

be considered. For example, if we assume the above two properties for the

mammal object have already been defined, the following property (ignoring the

biological inaccuracy!) might also be entered.

mammal with [(body covering (scales))].

One possible interpretation of such a clause might be as an instruction to assign the

value scales to the existing property body covering. Since the role of with is that

of object definition, it seems logical to prevent its use as a means of assignment.

Further, attempting to alter the value of one of an object's properties has

implications in terms of the encapsulation of those properties, an area which is

more fully discussed in the next section (section 4.2), where specific mechanisms

for achieving this requirement are proposed.

Another interpretation might be that this clause, appearing after the previous clause

specifying the value of the body covering clause to be hair, is an error on the part

of the user. In such a situation the user should be informed of the error by an

34

0
n
J

U appropriate error message, and a prompt requesting how the system should

proceed being displayed.

D
3

4.2 Encapsulation

y One of the aims of encapsulation is to insulate the user from the necessity of being

aware of the internal representation of object properties. Zaniolo's proposal,
n . .
lJ which attempts to provide encapsulation by means of the level of indirection

U between the with clause object definitions and their internal representation,

provides one possible means of implementing such a mechanism.

G
Other internal representations achieving the same results are possible (see [Gull85]

and [Maca86], for example), but either fail to satisfy our previously stated

requirement of providing a familiar Prolog environment, or are essentially similar

to Zaniolo's proposal. In this section we focus on attempting to improve the

U encapsulation of Zaniolo's proposal, and present a number of solutions by which

n

3

n

3

3

such improvements can be achieved.

4.2.1 The Assignment Problem

As described in Chapter 3, Zaniolo proposed that the clauses representing an

object, both its state and methods, should be held as assertions in the Prolog

workspace. Once defined, Zaniolo does not propose any mechanism for changing

an object's state. If this typical requirement is to be supported, the only means of

altering an object's state is to be aware of the internal representation of the target

n attribute, and then to retract the clause representing its current state and assert a

replacement clause to represent its altered state.

35

0
3
n

3
nü
n
l!

D
0
D

u

To illustrate this problem consider the following example. Given an object called

counter, whose properties include current count - an integer value (initially zero)

representing object state, and increment count - a method for incrementing

current count, such an object might appear in its with form as follows.

n counter with [(current count (0)),
(incrementcount (Result) :

counter : current count (C),
Result is C + 1,
retract (current count (counter,C)),
assert (current count (counter,Result)))].

In its internal representation the current count fact appears as follows.

current count (counter,0)

The knowledge of this structure must be employed by the user (in this case the

person creating the counter object) within the increment count method as the

J pattern for retracting the existing current count fact, and again as the means of

asserting the replacement, or incremented fact

This need for the user to be aware of the internal representation of the objects

compromises the encapsulation of the object properties, since the user may

n inspect or alter object state, via assert and retract, outside of the strict interface

of messages.

n

“ I 36

G
D

r
L

D

n
L

n

ü

0

4.2.2 Encouraging Encapsulation

A partial solution to the above problem is to create a uniform and simple means of

assigning values to object state which removes the need for the user to be aware of

the internal representation. This solution involves the definition of the infix

operator which is used as follows.

<object> : <state> := <new-value>.

The meaning of this clause is that the current value of the property <state>

(representing one of the "facts" contained in the objects property list) of <object>

becomes <new-value>. Using this solution, our earlier counter object might now

appear as follows.

counter with [(current count (0)),
^ (incrementcount (Result)

counter : current count (C),
n Result is C + 1,
^ counter : current count (C) := Result)].

With the introduction of this mechanism for assignment the user is never placed in

the position of having to know any details of the underlying object representation,

and so is less likely to adopt a style in which object properties are accessed outside

of message calls - hence encouraging encapsulation.

Although this mechanism helps to insulate the user from the underlying

representation, it is still possible for users to violate the encapsulation of an object

by means of assert and retract if the internal representation of object properties is

known.

37

423 Enforcing Encapsulation

To enforce the principle of encapsulation the implementation must prevent a user

from inspecting or altering object properties outside message calls. A simple

solution to this problem, which is particularly appropriate for use with the
1J dialogue definition option described earlier, is to generate a "transparent" interface

D

n
J

0

U

to the system using a meta-interpieter ([ClocSl], for example), in which it appears

to the user that they are communicating directly with the Prolog interpreter, but in

which any asserts or retracts dealing with object properties are prevented.

J Although suitable in respect of clauses entered interactively to the interpreter, this

solution fails to prevent violation of encapsulation via clauses embedded in object

L methods which have been consulted from a user edited file.

D A more generally applicable means of hiding objects and their properties (in teims

"j of all of the previously described definition options) is provided by the Prolog

primitive predicates - recorda and recordz (see [Bowe82]). These predicates are

J similar to assert, but allow the storage of terms in the Prolog workspace in such a

way that the terms can be inspected only by means of the recorded predicate, and

then only if a specific key value is included in the call. In a similar way, the key

must also be referred to if a term is to be removed from the database by the erase

predicate. The use of these predicates also prevents the user firom listing the object

clauses, and thus effectively hides them completely.

Both of the above options (meta-interpreter and recorda) have been implemented

and evaluated in conjunction with the assignment operator described in 4.2.1.

Since both options are suitable in respect of Zaniolo's proposal, our assessment

38

D

D

D
D

D
D

D

U

is based on the further requirements of encapsulation and the dynamic behaviour

of the objects. The first ("transparent interface") option does not appear wholly

appropriate because it fails to support complete encapsulation - object definitions

can be introduced both dynamically using assert and retract within object

methods via with clauses, as well as from within an uncontrolled file via the
1
J consult predicate. We have, therefore, selected the second option (that is, the

recorda option) for further development

4.3 SELF

In Zaniolo's proposal, a method which either examines or alters an object's state

jJ can only make reference to an object specified explicitly in the method at its

definition. To illustrate this problem consider the following example.

n Referring back to the counter object described previously, in Zaniolo's proposal

we can define an instance of this object, say counterl, by entering the following

statement.

counterl isa counter.

The effect of this statement is for ObLog to establish a definition for the new

object counterl, which will inherit the two properties of current count and

increment count from counter. We can now enter the following message call to

counterl to inspect the value of its current_count property.

counterl : current count (X).

The effect of this goal is for Prolog, via the message passing code, to instantiate X

to the value held in the current count property of counter, which is initially zero.

39

0

D

D

D

D

0
0

0
1

Similarly, if we define another instance of counter, say counterl, we could repeat

the above operations, and get the same results. In the same way, we can also

invoke the inherited increment count method of counterl by entering the

following goal.

counterl : increment count (X).

As expected, the effect of this goal is for Prolog, via the message passing code, to

U instantiate X to 1, the result calculated by the increment count method. If we

inspect the current count property of counterl we find, also as expected, the

J value to be 1. If however we examine the current count property of counterl, we

find that it also has a value of 1, when in fact we would expect a value of 0.

J This problem arises because both instances of counter inherit their current count

value from counter, which is the target object specified within its own

increment count method. This is a serious problem, since it severely limits the

scope of inherited properties.

One solution to this problem is to allow inherited methods to be able to direct their

results, when required, to the object the message was initially sent to, allowing in

our counter example the instances (counterl and counterl) to acquire their own

"local" value for the altered property that is independent of, and which replaces,

the inherited value.

40

The solution implemented in ObLog, is to bind a special variable, named SELF

J (see [Gold83], [Lieb86], for example), to the name of the initially invoked object,

y which can susequently be referred to in the object's methods. This is done

automatically by our augmented message passing code. In our solution, SELF

1 must always be included as the last argument in the head of a method when that

method is defined. Those methods that are expected to be inherited by other

objects are able to refer to SELF, allowing the results to be directed to the initially

invoked object. Consider the following example of how counter might appear

using SELF.

0

0
0

n

D

counter with [(current count (0)),
(incrementcount (ResuIt^ELF)

SELF : current count (C),
Result is C + 1,
SELF : current count (C) := Result)].

Using the new definition of counter, and given the fact that counter 1 has already

been defined via an isa assertion, we can now send the following message.

counterl : increment count (X).

The result of this goal is for counterl to acquire a local value for its current count

Li property of 1, the value calculated by the inherited increment count method. If we

now inspect the current count values for counter and counter! both will be found

to be 0.

41

D
4.4 Inheritance

Although Zaniolo’s proposed inheritance system (see 3.1.3) provides a

mechanism for allowing objects to inherit the properties of other objects, the

J proposed location of the isa network (specifying an object's ancestors as

P individually asserted facts in the Prolog database) is unsatisfactory because they

have no protection from being inadvertently altered by means of assert and retract.

0
Further, since information about an object's ancestors can be considered to be a

[] property of an object, it seems natural that the information should be held by the

object in the same way as other object properties, providing the inheritance

information with the same benefits of encapsulation that other object properties

enjoy. An additional benefit of this solution is that, an object's ancestors can now

be examined or altered via the uniform interface of message calls.

0
0

4.4.1 Ancestors

Li In the inheritance system we have developed, each object contains a property

1 called ancestors, whose single argument is a Prolog list, in which each element is

the name of one of that object's immediate ancestors (the list will be empty if the

J object has no ancestors). As an example, our counter object, which has no

ancestors, might appear in its with clause form as follows.

0
counter with [(ancestors ([])) ,

(current_count (0)),
(incrementcount (Result^SELF)

SELF : current count (C),
Result is C + 1,
SELF : current count (C) := Result)].

n • 42

0

0
0
0

D

D

We can now define an instance of our counter object - counterl by entering the

following object definition in its with form.

counterl with [(ancestors ([counter]))].

The effect of this clause is for counterl to inherit all the properties of counter. In

our implementation, as mentioned earlier, isa is responsible for establishing

inheritance relationships between objects. With the introduction of this inheritance

system, the role of isa is to now generate the appropriate ancestors fact for the

|j specified objects. Thus the user could enter the following.

counterl isa counter.

The effect of this clause is now entirely equivalent to the with clause form shown

above. Should either of the objects specified in an isa clause not be currently

defined, ObLog generates the objects and establishes the stated relationship.

For a more comprehensive example of our inheritance system see the "polygon

example" in the appendices.

In terms of its characteristics, our inheritance system is entirely equivalent to that

proposed by Zaniolo (as described in chapter 3). It supports multiple inheritance

^ (the ancestors property is a list, and can contain many members), the priority of

inheritance being governed by the order in which ancestors are added to the list

^ (see chapter 6 for a more detailed discussion of inheritance).

p 43

0

0̂
 Chapters Block World : An Application

In this chapter we present an example of how ObLog might be used to implement

a specific application. The example application selected for this exercise is the
n
U representation of a block world system (see [Wino85], [Wins77] and [Liet87] for

example). The motivation for presenting such an application is two fold: to

U demonstrate to the reader the structure and function of an ObLog program, and to

g provide the reader with familiar examples which will be used to illustrate the topics

discussed in Chapter 6 . "Discussion, Conclusions and Future Work".

The selection of block world as the example application is largely based on the

proven (in terms of its previous use) suitability of the domain for representation by

means of an object-oriented treatment.D
j This chapter is structured in the following manner. Section 5.1 describes the

background to the block world domain. Section 5.2 presents the formal

Q specification of the problem which is used as the basis of the subsequent

r-j implementation. Section 5.3 briefly examines the process of object-oriented

design, as applied to the block world domain. Section 5.4 presents an example of

J typical user interaction with the application. The chapter concludes with a

summary and discussion of the implementation, examining its suitability, as well

as discussing other possible implementation strategies that are available within

ObLog.

0

0
5.1 Block World

The program SHRDLU ([Wino72]) was developed as a means of investigating

reasoning in a simplified domain, but also encompassed aspects of robotics.

44

n

D

Q

Q

]

computer vision and natural language. The domain consisted of an environment

populated by simple regular geometric entities such as cubes, spheres and

pyramids. These entities could be arranged together in a variety of spatial

relationships which were constrained by certain simple rules which were meant to

reflect "real world" constraints, such as - "no block can be on top of a pyramid",

for example.

SHRDLU was implemented using a frame based representation developed in Lisp,

in which block world entities were represented by frames (or objects) within the

program. These objects possessed attributes such as on-top-of, colour, and size,

and could be manipulated by a robot entity, which was responsible for interacting

with the block world. This interaction was implemented by means of methods

attached to the robot object, and included processes such as placing one block on

top of another block, placing a block on the table, and describing the current state

of the block world.

0

5.2 Problem Specification

The following specification is of a simplified version of block world, and is not

intended to model the functionality of the original system, but is intended to

support a sufficient number of features to adequately demonstrate the use of

ObLog in implementing such a system.

"A block may be either a cube, a pyramid or a cylinder. A block is either on top of

the table or on top of another block. A free block is one which does not have

another block on top of it. The actions permitted in this block world, and which

are to be executed by means of a robot entity, are as follows.

45

n

Q
D
0
n

D

- Create and name a new free block - which is initially placed on the table.

- Place a free block on top of the table or on top of another free block.

- Delete an existing free block.

- Describe the current state of the block world.

The following restrictions should apply to the blocks:

- A pyramid may not have another block on top of it.

- A cylinder may only be on top of another cylinder or the table.

Initially, the block world will contain just four instances of the three block types -

two cubes (called cl and c2), a pyramid (pi) and a cylinder (cyll), all of which

will be on top of the table.

As a means of demonstrating the system, any implementation based on this

specification will be expected to execute the following steps.

- Describe the initial state of the block world.

- Attempt to place the cube cl on top of the pyramid pi

(an example of an illegal operation).

- Place the cube cl on top of cube c2.

- Place the pyramid pi on top of cube cl.

- Finally, describe the current state of the block world.

To execute each of these instructions an appropriate message should be sent to the

y robot entity. These instructions might be held in the form of an ObLog program

and executed sequentially, or could be entered individually by the user via the

U Prolog interpreter. For illustrative puiposes, the latter means of execution has been

selected for this example."

a
Ü 46

D
D

D
0
0
0
D
D

0
0
n
0
f]
0

53 Object-Oriented Design and Implementation

The process of object-oriented design is a well defined and established process

(see [Booc8 6], [Loom87] and [Thom8 8], for example), and will not be reviewed

here since it is beyond the scope of this thesis. Suffice it to say that we have

followed such a design process, resulting in the design diagram shown in Figure

5.1.

block_world_object

movable (yes)
on_iop_of (unknown)

block

suppons (one)
can_rest_on ([any])

robot

holding (nothing)
movable (no)

crcate_block
destroy _block (<ID>)
pick_up_block (<ID>)
put_block_on (<ID>)
describe_world

table cube

movable (no)
supports (many)

on_top_of(the_table)

pyramid

supports (none)
on_top_of(the_table)

thejable

cylinder

on_top_of(the_table)
can_rcst_on([tablc,

cylinder])

d7 Tobbie

Figure 5.1 Block World Design Diagram.

47

0

0

0

0
0
Q
Q

The design diagram shown in figure 5.1 is based on those presented in [Loom87],

and may be interpreted as follows. Objects are represented by rectangles. The top

compartment of an object rectangle contains the object name. The next

compartment contains the facts representing that objects state. The final

compartment contains the processes or methods the object possesses. Should an

object not have any state or methods, the respective compartment will be empty.

isa links are represented by the connecting lines, with the super-object above the

sub-object in the figures.

These design diagrams form the basis for the implementation of the ObLog block

world program presented in appendix g. Each of the entities presented in the

design diagram are represented by equivalent objects within the program.

The ObLog program illustrates many of the claimed advantages of object-oriented

programming. The one to one mapping between the "real world" entities and their

programming counterparts appears to be a natural and easily understood one.

Further, the code itself, arranged as a collection of distinct programming entities

and their properties, is easy to understand - leading to code that has proven

straightforward to modify and maintain.

5.4 Using the Block World System

In this section we examine how an end user might interact with the block world

program. As stated earlier, we have selected an interactive dialogue as the means

by which this interaction can be conducted, with the end user communicating with

the robot object by entering message calls directly to the Prolog interpreter.

48

0
The example dialogue presented in figure 5.2 is based on the test tasks specified in

section 5.2. In this example user input is in italic, and comments, which are

ignored by the Prolog interpreter, are contained within the symbols "/* - */". All

messages are directed to robbie, the robot object, to invoke the appropriate

method.

0
0
0
D
G
D

0

0
0

?- robbie : describejvorlcL

cl is a cube, and is on top of the table

c2 is a cube, and is on top of the table

pi is a pyramid, and is on top of the table

cll is a cylinder, and is on top of the table

the table is a table, and is on top of nothing

no

?- robbie : pick_up_block(cl).
yes

?" robbie : put_block_on (pi).
no

?- robbie : putJbIock_on (c2).
yes

?- robbie : pick_up_block(pl).
yes

?- robbie : putjblockjon (cl).
yes

?- robbie : describe_world.

cl is a cube, and is on top of c2

c2 is a cube, and is on top of the table

pi is a pyramid, and is on top of cl

cll is a cylinder, and is on top of the table

the table is a table, and is on top of nothing

no

/♦ Message to robbie to

/* invoke the describe world

/* method

/* Message to robbie to
/* pick up block cl

/♦ An illegal operation!

/* Message to robbie to put
/* c l on c2 - a legal operation

*/
*/
♦/

♦/
*/

*/

*/
♦/

Figure 5.2. Sample Block World Dialogue.

U 49

n

n

G
n

The first message invokes the describe world method, which is used to examine

the current state of the block world, and to present this information to the user.

The next user input is a message to robbie to pick up the block cl. Robbie is next

requested to perform an illegal operation - placing block c l (a cube) on top of

block p i (a pyramid). Because the value of the supports attribute of pyramid has

the value none, robbie is unable to satisfy this goal. The next message directs

robbie to place c l on top of block c2 (another cube). Robbie is able to satisfy this

goal. The next two messages direct robbie to pick up pi and place it on top of cl.

Finally, robbie is requested to describe the current state of the block world, in

^ which p i is now on top of cl, which is in turn on top of c2 .

D
G

0
0 5.5 Summary and Discussion

The block world program demonstrates that ObLog is capable of supporting a

Pj frame or object based approach to a block world implementation.

D Further, the implementation appears to support several of the claimed benefits of

object-oriented programming. These benefits include the direct mapping between

entities drawn from the application domain and their programming counterparts,

jj and the understandability of the program code, resulting in a program that is easy

to modify and maintain (see [Watk8 8], for example). Additionally, the program

J provides a high degree of flexibility, with new instances of the existing block

types created using a single isa statement, complete with default attributes

inherited from their super-objects.Q
0

This particular implementation of block world must be seen as only one of several

possible means of implementing the specification.

50

0

D
In this implementation the objects representing the block entities perform a passive

J role, simply acting as a means of representing the state of the block world, while

an active agent - the robot, manipulates this representation. In this sense, the

D implementation is similar to the sort of application that might be expected from a

frame based system, such as KEE for example, in which the objects representing

the blocks perform the role of a knowledge representation structure, while the

J separate robot object holds the methods responsible for manipulating this

0

0

0

knowledge representation.

Another possible implementation might be based on a more purist object-oriented

model, such as that provided by Smalltalk for example. In such an

1 implementation, the objects themselves would possess both the information

representing their state, as well as the methods responsible for their own

J manipulation. Thus to achieve a required operation, such as placing one block on

another, the user might send the object to be moved a message specifying the

target object on which to place itself, which might appear as follows.

^ cl : put block on (c2).

0
In this instance, the meaning of the above message is that the object c l should

U place itself on top of the object c2 .

D
These two options, the KEE like and Smalltalk like implementations, can be seen

J as extreme examples of a range of possible object-oriented implementation

strategies. A further option which is open to ObLog users is that of a mixed

D initiative implementation, using both objects and simple Prolog predicates. This

n option might be attractive to naive ObLog users, allowing a degree of flexibility

0 51

]
0
0

not provided in a purely object-oriented environment or in a non object-oriented

Prolog environment. One possible example of such a mixed initiative might

"7 involve using passive objects to represent the block world entities, while

manipulation of these objects could be achieved by means of simple Prolog

predicates.

0
D

D

0
0
0
0

0
Û
D
D

Examples of both the Smalltalk and Mixed Initiative implementations, including

design diagrams, example dialogue, and code, are presented in appendices h, and i

respectively.

52

c
D
0
0
n

D

D
D

D
D
D

Chapter 6 . Discussion, Conclusions and Future Work

As we have stated previously, one of the major motivations for this work was to

investigate the benefits of combining objects and logic programming, as

represented by Prolog. In this chapter we consider these benefits from two

different perspectives, specifically we examine what benefits Prolog can gain

from object-oriented programming, and conversely, what benefits objects can

gain from Prolog.

This chapter is structured in the following manner. Section 6.1 discusses those

“j areas in which Prolog can benefit from the introduction of object-oriented

programming. Section 6.2 examines the areas in which object-oriented

programming can benefit from Prolog. Section 6.3 presents a discussion of two

more general object-oriented topics - encapsulation and inheritance, as related to

J ' this research. Finally, section 6.4 describes some areas in which further research

■j might usefully be conducted.

6.1 Prolog and Objects

We identify four main areas in which Prolog can benefit from the introduction of

object-oriented facilities:

- The introduction of structure in Prolog programs,

- The enhancement of Prolog's knowledge representation facilities,

- The reusability and extensibility of Prolog objects, and

- The availability of a well defined design methodology.

53

n
n

n

0

D
0

D

ü

6.1.1 Program Structure

Lack of program structure is a well recognised problem with Prolog programs

”7 (see [Hogg84] and [Davi89], for example). This is primarily due to Prolog's

reliance on the predicate as its main means of structuring programs.

n
Modules ([Clar84], for example) have been proposed as a means of structuring

Prolog programs at a fairly high level, but are not straightforward to use,

“I requiring extra user declarations specifying precisely how communication

between modules is to take place, as well as storage as separate files which need

J to be loaded together to generate an application. A further important problem with

modules is that there is currently no standard, with several proposals for module

based systems (see also [Szer82], [Chik84] and [Okee87], for example), with

widespread disagreement over precisely how they should be implemented.

Objects provide a means of factoring the Prolog database into easily identifiable

programming units, whose properties are aggregated in one location. This allows

programs to be more easily understood, resulting in code that is easily debugged

or altered. This point is illustrated by an examination of the block world program

presented in Chapter 5 (also see appendices g to i), as well as the geometric

example outlined in Chapter 3 (see appendix f).

6.1.2 Knowledge Representation

Early workers in artificial intelligence believed that a single unique formalism

could be found to represent all possible forms of knowledge. Since the beginning

of the nineteen-eighties a consensus has developed that there is no unique

representation suitable for all purposes, but that each representation has its strong

J and weak points (see [Stee8 6 a], for example).

54

n
J

D

n

D

D
D
D

D
U

Several workers ([Liet8 6], [Mcde87], for example) have claimed that the

knowledge representation facilities provided by logic programming are

1 insufficient for problem solving in certain domains. Most criticisms of Prolog are

based on the difficulties of representing diverse knowledge given the lack of

organisation facilities provided in the Prolog database.

Frame systems ([Mins8 6], [Wino85]) provide a means of introducing such

-1 organisation. Such systems allow related information from the problem domain to

be grouped into conceptually distinct entities - termed frames. Frames themselves

can be further organised into an inheritance network, allowing information to be

shared amongst related frames.

-j The combination of Prolog and frames represents a potentially powerful

knowledge representation system. The declarative nature of Prolog combined

1 with the structure of frames provides a representation which is capable of use in a

wider range of problem domains than that covered by logic or frames

individually. Additionally, Prolog's backward chaining theorem prover is

P, available for use as an inference engine (see [Alty84], for example) for problem

^ solving against the composite knowledge representation (see [Newt8 8] for a

1 discussion of combining logic and frames for knowledge representation).

6.13 Reusability and Extensibility

Another area Prolog can benefit from the introduction of objects is that of the

reusability of objects and their properties ([Cox84], [Booc8 6] and [Meye87] for

example). Meyer claims that because object properties are encapsulated, and

hence accessible only via a strictly defined interface, objects are an appropriate
n
I means of storing software library routines.

55

D
Meyer presents the following example. Given the fact that a programmer has a

frequent requirement for storing and retrieving data from a complex data

structure, it is possible for the programmer to construct an object which both

contains the data structure, as well as the methods necessary to access its

contents. In this way, any given program that might need to use such an object is

insulated from having to be aware of exactly how the data structure is
1
J implemented, or how to access it. The object can subsequently be held in a

D
D

P library, and called from any application that requires such an object

J Extensibility is another area in which objects can be of benefit. If we have a

requirement for an object which is similar to, but different in some respect, from
n
}_ our data stmcture example, it is a relatively simple process to create a sub-class of

the object in which we can introduce the required changes. Another solution to

this problem, which is appropriate for the situation in which we want to introduce

some new property, is to generate a new class object containing the property, and

then create an object which inherits from both the library object and the newly

created one.

n

D
D

D

Meyer has demonstrated the success of this approach with the development of the

object-oriented language Eiffel [Meye8 8], in which the concepts of reusability and

extensibility are key elements of the language.

6.1.4 Object-oriented Design

The process of object-oriented design is a well defined and widely used design

"I methodology (see [Booc8 6], [Loom87], [Thom8 8] for example). Essentially, the

process relies on the direct mapping between the real world entities and their

programming counterparts, resulting in the design process generating a satisfying

model of reality. Booch claims that this leads to improved maintainability and

L

u
56

n

D

nJ

0
0

Q
D

understandability for large applications.

-1 The introduction of objects into Prolog makes the object-oriented design process,

with all of its claimed benefits, optionally available to the programmer. That

J ObLog is capable of supporting such a methodology is demonstrated by the use

of object-oriented design in the implementation of the block world example

presented in chapter 5.

62 Objects and Prolog

In this section we examine the benefits that objects can gain from Prolog.

Specifically, we identify four main areas in which objects can benefit from the

features of Prolog:

- Pattern matching,

- Messages as "predicates",

"j - Back-tracking, and

- Messages in conjunction / disjunction.

Each of these features is discussed in the following sections. To illustrate how

ObLog makes use of these features, we will use a series of examples which are

based on the block world application described in chapter 5.

J 62.1 Pattern Matching in Messages

ObLog's message passing system supports the logic programming concept of

unification ([Brat8 6], [Ster8 6], for example). Messages may be entered in which

certain of the message components are uninstantiated, for which the Prolog

interpreter will attempt to find a match. Specifically, of the three components of

L

1 57

D
0
0

0

D

0
0

0
D

an ObLog message call (that is, target object, target property, and arguments of

the property) the target property is the only component that must be instantiated.

The fact that we can send messages in which the target object identity is

uninstantiated provides a powerful extension to the object message passing

concept, allowing us to issue a "broadcast message" to which any object, with the

property specified in the message, can respond. For example, in our block world

J application, if we wish to place one block on another block, c l on c2 for

example, we must first establish whether c2 already has another block on top of

1 it. Such a requirement might be expressed as follows.

X : on top of (c2).

This goal can be interpreted as - is there any object in the database that has the

jj property on top of, whose value is c2. The result of this goal would be for the

Prolog interpreter to find the identity of the first object in the Prolog database

having the required property.

As described above, we may also enter a message in which the value of the target

U property is uninstantiated. We have already seen instances of where just the value

is uninstantiated, for example where we use a message call to inspect object state,

or expect a result to be returned by a method (see 3.1.2). A more powerful use of

this feature is in combination with an uninstantiated object identifier. For

example, with our previous example (any object on top of c2) we might now

J want to find "any object on top of any other object". Such a requirement might be

expressed as follows.

X ; on top of (Y).

58

0
0
0
0
Q
D

0
Q
D

D
0
0
0

n

The result of this goal would be for the Prolog interpreter, via the message

passing code, to instantiate X to the identity of an object having the property

on top of, whose value is (instantiated to) Y,

6 2 2 Messages as "Predicates”

If we enter a message all of whose components are instantiated, such a message

can be viewed as a predicate (in the traditional computing sense, that is as a

J process that returns either true or false). To illustrate this point, we might wish to

discover whether it was true that cube c l was on top of cube c2. Such a

requirement would be expressed as follows.

c l : on top of (c2).

The result of entering such a message would be either for the goal to succeed, if it

were true that the on top of property of c l was c2 , or to fail, if the

on top of of property of c l was not c2 .

This feature is of particular use in an object-oriented system because it allows the

testing of such propositions in a relatively simple and easily understood manner

(as compared with a procedural language based implementation, where some

form of explicit test might be required).

62.3 Back-tracking and Messages

ObLog supports the concept of back-tracking, both in terms of Prolog clauses

held within object methods, as well as in message calls. Support for the former

59

case is necessary in view of our aim of providing the end user with a familiar

Prolog programming environment Why ObLog should support the latter case is

less obvious since in a typical object system, if for some reason a message fails to

achieve its objective, no attempt is made by the system automatically to re-satisfy

jj that goal.

0

nJ In the first instance, Prolog provides this feature by utilising the interpreter’s

normal behaviour. However, it is still possible for a programmer to simulate the

behaviour of traditional object messages by means of Prolog's "cut" mechanism,

which can be used to inhibit backtracking. Zaniolo's original proposal does not

support backtracking in messages because of the way he structures his message

passing code. The paper gives no indication of whether or not this was a

deliberate design decision.

0
0
0
0
0
0

To illustrate how we can use backtracking within message calls, consider the

following example. If we want to find all objects with a given property we can

enter a broadcast message (6 .2 .1), and generate all solutions by causing the goal

to fail and backtrack. In our block world example we might wish to find the

identity of all the blocks that are currently on top of the table. Such a requirement

might be expressed as follows.

J X : on_top_of (the table).

0 The result of this goal would be for the Prolog interpreter, via the message

passing code, to instantiate X to the identity of an object having the required

property. If we now cause the goal to fail, Prolog will attempt to generate another

solution to the goal, finding other blocks (if any others exist) with the property

on top of (the table). This is in fact the technique employed by the

60

0

describe world method (invoked in the block world example) to examine and

report the on top of facts of all the blocks that are currently defined.

62.4 Messages in Conjunction / Disjunction

As a consequence of ObLog supporting backtracking in message calls, it also

supports conjunction in message calls. To illustrate how we might use this feature

(combined with the features described above), consider the following example. If

P we wish to find aU those objects having a combination of properties, for example

blocks that are on top of the table, and which have the property supports (one),

jj we might enter the following.

J X : on top of (the table), X : supports (one).

nU The result of this conjunction would be for the Prolog interpreter, via the message

Q passing code, to instantiate X to the identity of an object having both required

properties. If we now cause this goal to fail, Prolog will attempt to generate

[J another solution to the goal.

J In the same way, ObLog also supports the use of disjunction in message calls,

jj For example, we might wish to identify all those blocks that were either on top of

the table or were on top of another block, c l for example. Such a requirement

might be expressed as follows.

X : on top of (the table) ; X : on top of (cl).

The result of this disjunction would be for the Prolog interpreter, via the message

n passing code, to instantiate X to the identity of an object having either of the

specified properties.

D
Û

0
61

0
0
0
0
0
D

D
n

6 J General Object Oriented Issues

In this section two more general object-oriented issues which we identify as being

relevant within the scope of this work are discussed: the encapsulation of object

properties, and the choice of inheritance mechanism.

62.1 Encapsulation

In his proposal, Zaniolo does not specifically address the problem of

encapsulation. The proposal achieves some degree of information hiding by

means of the message passing code which provides a level of indirection between

the object structure the user perceives (the with declarations) and their internal

representation. For reasons discussed earlier (see section 4.2), it is probable that

the structure of this internal representation will become known by anyone using

the system, making object properties accessible outside of the strict interface of

messages. In chapter 4 we describe our solution to this problem, which ensures

that object properties can only be accessed via messages.

While presenting the need for encapsulation, it may be noted that Gullichen

[Gull85] appears to encourage users of his BiggerTalk system to violate

encapsulation by providing a means of directly accessing instance variables

outside of his message passing system. Gullichen argues that such a facility may

be necessary "where computational efficiency is critical". In other words, where

the overhead created by the extra message code might slow an application down

too much or use up too much memory. Both are areas in which ObLog's

performance can be made to suffer - depending on the application involved, and

so Gullichen's approach is seductively attractive. However, I would argue that

GuUichen's "computational efficiency" is an issue which in a perfect world of fast

processors and plentiful memory should not affect decisions about

Q 62

D
p encapsulation. On the other hand, it could be argued that this is a question of

-J programming style, and that the means of accessing object state directly should be

0 provided, but that, like GOTO in procedural languages, its use should be

discouraged. In ObLog's case, we have introduced an assignment operator (see

section 4.2) as a means of encouraging users not to violate encapsulation, by

providing a mechanism to hide the internal representation from the user.

D
D

0

0

0

0
0

]

6 3 2 Inheritance

In this section we examine the various options that are available for implementing

inheritance in object-oriented systems, and critically discuss the use of the simple

isa inheritance scheme employed in ObLog.

pj In many object-oriented systems, a clear distinction exists between class -

sub-class and class - instance relationships, both in the way they are represented

jj and interpreted. The primary reason for this dichotomy is to ensure that the user is

made explicitly aware of the conceptual differences between class objects and

their instances, constraining the user in his use of the objects (see [Inte87], for

example).

In other systems only a single inheritance mechanism is supported. The Actors

system ([Hewi73], [Lieb8 6]) makes no distinction between class - sub-class and

class - instance relationships, supporting what is essentially an isa link between

objects. Similarly, in the knowledge representation language supported by

Knowledge Craft ([Cam8 6]) - CRL (the Carnegie Representation Language), isa

is again the only me^s of representing relationships. In both cases (Actors and

CRL) it is the responsibility of the user to distinguish between objects used as

classes and instances.

63

n

D

0
0
0
0
0

0
0

D

0

Like Actors and CRL, relationships between objects in ObLog are represented by

isa links. Initially, the choice of inheritance mechanism was based on that

described in Zaniolo's proposal. After examining how well isa was able to

support the definitions of relationships between objects we were satisfied with

isa's performance. We claim that the distinction between class and instance

objects is one which the individual user must make, essentially becoming an issue

of programming style, rather than one which the system should force on the user.

6.4 Future Work

In this section we propose some further work which we consider appropriate to

the research so far. This extra work is mainly aimed at enhancing the object

facilities ObLog provides, specifically in terms of debugging and compiling.

6.4.1 An Object Debugger

J From experience of developing applications within ObLog, it has become obvious

that the existing Prolog debugger (see [Bowe82], for example) requires some

enhancements to support objects. Tracing in particular (based on the "Byrd Box"

model - [Byrd80]) can present problems, since not only does the debugger trace

the code you are interested in, but also traces the execution of the message

passing code, whose operation should ideally be transparent to the user.

Making changes to the debugger seems to conflict with one of our stated aims of

portability. This problem could be avoided by generating a meta-interpreter

([Cloc81], [Eise87]) supporting an object debugger, which might be optionally

loaded into the Prolog database when required.

64

D
D

0

The actual design and use of an object debugger appears to be a major task in its

own right, and would involve a great deal of research into a wide range of topics

from psychological issues - such as conceptual models of object execution, to

more basic implementation issues - such as considering how and where it might

jj be appropriate to implement "spy points" in an object-oriented program (See

[Bray87] and [Eise8 8] for a good discussion of debugger requirements).

0
-7 A further topic related to debugging is the provision of an "Object Browser"

facility to allow the user to display and inspect the properties of specified objects,

jj These facilities, typically provided by commercial object-oriented systems, allow

the underlying object representation to be hidden from the user, displaying the

object properties in a simple and easily understood manner.0

0
6.4.2 An Object Compiler

Depending on the particular application, it is often the case that ObLog's

performance, compared with an equivalent Prolog solution which does not use

objects, is relatively slow and memory intensive. This problem of performance is

caused primarily by the computational overhead generated by the message passing

jj code. Since an equivalent non-object-oriented Prolog program is likely to be more

efficient, in certain circumstances it would be desirable to convert an ObLog

jj program to an equivalent non-object or non-message based Prolog representation.

D
0

0
The proposed system would take a source file containing the object based

application and process it to generate a file containing a (non object-oriented)

Prolog representation, which the user could subsequently run. It might be
n
^ possible (for those Prolog implementations which support the process) to make

use of the Prolog compiler ([Bowe82]) to generate a final version of the

0 65

D

D

D

0
0
0
0
0

application which would run even faster than the native Prolog. Further, it might

also be possible (as in Eiffel [Meye8 8]) to introduce an optimisation phase within

the compilation process which might for instance detect and remove unused

routines or message calls (as the optimising tool provided by Eiffel does).

As with the standard Prolog compiler, compilation would only be appropriate for

those applications which the user had identified as being in a final form, that is,

those applications not requiring further development or testing. This is because

the user will be unable to employ the debugger facilities should any problems

arise in the compiled application (see [Bowe82]).

66

0

D
0
D
D
0

D

0

7. REFERENCES

[Ada83]
"Reference Manual for the Ada Programming Language"
ANSI/MBL-STD-18 15A, 1983.

[Alty84]
Alty, J.L. and Coombs, M.J.,

Q "Expert Systems - Concepts and Examples",
National Computing Centre Limited Publications, 1984.

D
0
D

[Banc85]
^ Bancilhon, P.,

[Anje8 6]
Anjewierden, A.,
"How About a Prolog Object?",
Joumee dEtudes Languages Orientes Objets, Pages 167-176, AFCET, Paris, 1986.

"A Logic-Programming/Obj ect-Oriented Cocktail",
MCC Technical Report, Number DB-021-85,1985.

[Birt73]
Birtwistle, G.M., Dahl, 0-J, Myhrhaug, B. and Nygaard, K.,

p "Simula Begin",
J Van Nostrand Reinhold, New York, 1973.

[[Bobr83]
Bobrow, D.G. and Stefik, M.,

J "The Loops Manual"
Intelligent Systems Laboratory, Xerox Corporation, 1983.

Û

67

n
u

n

0
D

D
0
D
0
D

Q

u

0

[Bobr85]
Bobrow, D.G., et al,
"CommonLoops: Merging Common Lisp and Object-Oriented Programming"
Xerox Palo Alto Research Centre: Intelligent Systems Laboratory Series ISL-85-8, Aug.
1985.

[Bobr8 6]
Bobrow, D.G., et al,
"CommonLoops Merging Common Lisp and Object-Oriented Programming"
OOPSLA ' 8 6 Proceedings, Page 17-29, ACM, Sept. 1986.

[Booc8 6]
Booch, G.,
"Object-Oriented Development",
IEEE Transactions on Software Engineering, Pages 211-221, Vol. SE-12, Feb. 1986.

[Bom87]
Boming, A. and O'Shea, T.,
"Deltatalk: an Empirically and Aesthetically Motivated Simplification of the -
SmallTalk-80 Language",
Procedings of ECOOP '87, AFCET, Paris, June 1987.

nU [Bowe82]
Bowen, D.L., et al,

Q "DECsystem-10 Prolog U ser's Manual",
Department of Artificial Inteligence, University of Edinburgh, 1982.

[Brac83]
Brachman, R.,
"What IS-A is and isn't: -
An Analysis of Taxanomic Links in Semantic Networks",
Computer 16, Pages 30-36,1983.

68

0
D
D
0

D
D

D
D

ü

D

[Brat86]
Bratko, I.,
"Prolog Programming for Artificial Intelligence",
Addison-Wesley Publishing, 1986.

[) [ByrdSO]
Byrd, L.,

J "Understanding the Control Flow of Prolog Programs",
Proc. of the Logic Programming Workshop, Debrecen, Hungary, 1980.

[Cam87]
"Knowledge Craft User Manual",
Carnegie Group Inc., Station Square, Pitsburgh, USA, 1987.

J [Chik84]
Chikayama, T.,

D
0
D
0

[Cloc81]
"1 Clocksin, W.F. and Mellish, C.S.,

"Programming in Prolog",
Springer - Verlag, 1981.

"ESP Reference Manual",
ICOT Technical Report: TR-044,1984.

[Clar84]
Claik, K.L. and McCabe, E.G.,
"micro-PROLOG: Programming in Logic",
Prentice-Hall International, 1984.

[Cox84]
Cox, Brad.J.,
"Message/Object Programming: -
An Evolutionary Change in Programming Technology",
IEEE Software, Vol.l, No.l, Pages 50-61, Jan. 1984.

69

D

0

D

D

[Davi89]
Davison, A.,
"Design Issues for Logic Programming-based Object-Oriented Languages",
Imperial College, Dept of Computing Technical Report 89/9,1989.

[Dres85]
Drescher,
"ObjectLISP User Manual"
LMI, 1000 Massachusetts Avenue, Cambridge, MA 02138,1985.

L [Eise88]
Eisenstadt, M., and Brayshaw, M.,
"The transparent Prolog Machine:
An Execution Model and Graphical Debugger for Logic Programming",
Journal of Logic Programming, Vol.5, No.4, Pages 277-342, 1988.

[ESI87a]
Expert Systems International,
"Prolog2 - Documentation",
ESI, 9 West Way, Oxford. 1987.

J [ESI87b]
Expert Systems International,

J "Frame Engine - Documentation",
ESI, 9 West Way, Oxford. 1987.

[Fike85]
"I Fikes, R. and Kehler, T.,

"The Role of Frame-Based Representation in Reasoning",
p Communications of the ACM, Vol28, No.9, Sept. 1985.
u

[Fuka86]
J Fukunaga, K. and Hirose, S.,

"An Experience with a Prolog-based Object-Oriented Language",
n OOPSLA '86 Proceedings, Pages 224-231, ACM, Sept. 1986.

70

-1 [Gold83]
J Goldberg, A., Robson, D. and Ingalls, D.,
p "SmallTalk-80: the Language and its Implementation",
U Addison-Wesley, Reading, Massachusetts, 1983.

Q [Gull85]
GuUichsen, E.,

n "BiggerTalk: Object-Oriented Prolog",
MCC Technical Report, Number: STP-125-85, Dec. 1985.

0
D

[Haye85]
Hayes, P.J.,
"The Logic of Frames"
Readings in Knowledge Representation, Ed. Brachman, R.J., and

Q Levesque, H.J., Morgan Kaufmann Publishers, Inc., 1985.

n [Hewi73]
Hewit, C., et al.

D
D

r

D

J

"A Universal, Modular Actor Formalism For Artificial Inteligence",
Proc. of the 3rd International Joint Conference on Artificial Intelligence, 1973.

[Hewi77]
Hewit, C.,
"Viewing Control Structures as Patterns of Passing Messages",
Artificial Intelligence 8,1977.

[Hogg84]
Hogger, C.J.,
"Introduction to Logic Programming",
APIC Studies in Data Processing No.21, Academic Press Inc, 1984.

[INTE87]
"I
J "KEE : The Knowledge Engineering Environment - Documentation (3.0)",

IntelliCorp Ltd., El Camino Real, Mountain View, California, USA.

71

n
L

n [Kaeh86]
U Kaehler, T. and Patterson, D.,
-| "A Taste Of Smalltalk"
J W.W.Norton and (publishing) Company Inc., New York, 1986.

] [Kay72]
Kay, A. and Goldberg, A.,
"Personal Dynamic Media",
Computer, March 1977.

^ [Lieb81]
p Lieberman, H.,
J "A Preview of Act 1",

D
MIT AI Laboratory AI Memo No.625, June 1981.

[Lieb86]
Liebermann, H.,
"Delegation and Inheritance: -
Two Mechanisms for Sharing Knowledge in Object-Oriented Systems",
Joumee dEtudes Languages Orientes Objets, Pages 79-89, AFCET, Paris, 1986.

nJ [Liet86]
Lieth, P.,
"Fundemental Errors in Legal Logic Programming"
The Computer Journal, Vol.29, No.6,1986.

[Leit87]
1 Leith, P.,

"A Programmed, Skeleton Formal Specification Method: The OUFDM"
p The Computer Journal, Vol.30, No.4,1987.

[Loom87]
J Loomis, M.E.S., Shah, A.V. and Rumbaugh, J.E.,

"An Object Modeling Technique for Conceptual Design",
J Procedings of ECOOP '87, Pages 325-335, AFCET, Paris, June 1987.

a 72

D
0
D

0
D

0

Ü

0

[Mcca86]
Maccabe, F.G.,
"Logic and Objects",
Imperial College, Dept of Computing Technical Report 86/9,1986.

J [Mcde87]
McDermott, D.,

D "A Critique of Pure Reason"
Computational Intelligence, 1987

[Meye87]
p Meyer, B.,
J "Reusability: The Case for Object-Oriented Design",
^ IEEE Software, Pages 50-64, March 1987.

[Meye88]
J Meyer, B.,

"Object-Oriented Software Construction",
Prentice Hall, 1988.

[Mins86]
Minsky, M.,
"A Frame Work for Representing Knowledge",
The Society of Mind, New York: Simon and Schuster, 1986.

J [Moon86]
Moon, D. and Keene, S.,

n "New Flavours"
L OOPSLA '86 Proceedings, ACM, Sept. 1986.

[Newt88]
Newton, M.A. and Watkins, I.E.,
"The Combination of Logic and Objects for Knowledge Representation"
The Journal of Object-Oriented Programming, Pages 7-10, Vol.1, N o.4,1988.

73

D
0 [Nier85]

Nierstrasz, O.M.,
U "An Object-Oriented System",

Office Automation, Ed. Tsichritzis, D., Springer-Verlag, 1985

n

D
D

[Okee87]
O'Keefe, R.A.,
"Elementary Module System for DEC-10 Prolog"

1 Modules in Prolog, British Standards Institution, IST/5/15-Prolog, 1987.u
D [Orwe49]

Orwell, George,
"1984"

J Seeker and Warburg, London, 1949.

D
D

0
0
D
0
0

jj [Pasc86]
Pascoe, G.A.,
"Elements of Object-Oriented Programming"
BYTE Magazine, August 1986.

[Quin86]
Quintus Prolog User Manual,
Artificial Intelligence Ltd, April 1986.

J [Rent82]
Rentsch, T.,
"Object-Oriented Programming",
SIGPLAN Notices, Pages 51-57, Vol. 17, No.9, Sept 1982.

[Rosl84]
Rosier, L.,
"The Evolution of C - Past and Future",
AT&T Bell Laboratories Technical Journal, Vol.63, No.8 - Part 2, Oct. 1984.

74

0
0
D
D

0
D
0
D
0
0

D

[Shap83a]
Shapiro, E.Y.,
"A subset of Concurrent Prolog and its Interpreter",
ICOT Technical Report, TR-003,1983.

[Shap83b]
Shapiro, E.Y. and Takeuchi, A.,
"Object-Oriented Programming in Concurrent Prolog",
New Generation Computing 1, Pages 25-48,1983.

[Snyd86]
Snyder, A.,
"Encapsulation and Inhreritance in Object-Oriented Programming Languages",
OOPSLA '86 Proceedings, Pages 38-45, ACM, Sept. 1986.

[Stee84]
Steel, G.L., Jr,
"Common Lisp the Language",
Digital Press, Digital Equipument Corporation, 1984.

[Stee86a]
Steels, L.,
"AI and Programming Languages"
lb IP '86, Elsevier Science Publishers B.V (Holland), IFIP, 1986.

J [Stee86b]
Steels, L.,
"Knowledge Representation System (KRS) Tutorial"
AI-Lab Tutorial, Vrije Universiteit Brussel, October, 1986.

[Stef86]
Stefik, M,, and Bobrow, D.G.,
"Object-Oriented Programming: Themes and Variations",
AI Magazine, Page 40-62, Vol.6, No.4, Winter 1986.

75

0

0
0
J

0
0
0

[Tesl85]
n Tesler, L.,

0

0

[Ster86]
Sterling, L. and Shapiro, E.Y.,
"The Art of Prolog"
The MIT Press, Cambridge Massachusetts, 1986.

[Stro86]
Stroustrup, B.,
"The C++ Programming Language",
Addison-Wesley, 1986

[Szer82]
Szeridi, P.,
"Module Concepts for PROLOG",
SZKI Collection of Logic Programming Papers, Budapest, Hungary.

"Object Pascal Report"
Structured Languages World, 1985.

[Thom88]
Thomas, P., Robbinson, H.M. and Emms, J.,
"Abstract Data Types : Their Specification, Representation and Use"
Oxford University Press, 1988.

J [Warr77]
Warren, D.H.D.,
"Implementing Prolog - Compiling Logic Programs 1 and 2",
DAI Research Reports 39 and 40, University of Edinburgh, 1977.

[Watk86]
Watkins, I.E. and Newton, M.A.,
"KEE : The Knowledge Engineering Environment"
Open University, Computing Discipline, Technical Report 86/20,1986

76

D
D
D
0
0

0
0
D

0

0

a

[Watk88]
Watkins, J.E. and Newton, M.A.,
"Implementing Objects in Prolog"
OOPS!, ISSN 0952-4533, BCS, March 1988.

[Watk89]
Watkins, J.E, Pitman, A.A. and Knapp, B.M.,

J "Integration of Object-Oriented Programming and Knowledge Based Systems for
Concurrent Simulation Applications"
MilComp '89 Conference Proceedings, Pages 17-25, Microwave Publishers Ltd., 1989.

[Wino72]
Winograd, T.,
"Understanding Natural Language",
New York : Academic Press, 1972.

1 [Wino85]
Winograd, T.,

n "Frame Representations and the Declarative/Procedural Controversy"
Readings in Knowledge Representation, Ed. Brachman, R.J., and
Levesque, H.J., Morgan Kaufmann Publishers, Inc., 1985.

[Wins77]
j j Winston, P.H.,

"Artificial Intelligence"
jJ Addison-Wesley Publishing Company, 1977.

[Zani84]
Zaniolo, C.,
"Object-Oriented Programming in Prolog",
IEEE International Symposium on Logic Programming, Pages 265-270, 1984.

77

]

D
0
0
D
D
0
0
0
D
0
0
0
0

0
0

APPENDIX A

OBCODEJRO - THE MESSAGE PASSING CODE

/* FILE : OBCODE.PRO Appendix a */

0
0

This file contains the code defining the m essage passing
code for the ObLog object Prolog system.

J.E.Watkins -1986

Except for BIP's and predicates native to this file, predicates
n found in this file are commented with the name of the file in

which that predicate may be found.

L

0

0

0

]

/* FILE : OBCODE.PRO Appendix a */

/*

The m essage passing code, specified by the infix opperator
has two c lauses. The first deals with the c a se where the
object name is uninstantiated, and corresponds to an
"Broadcast Message", where the object ID is uninststantiated.

The second deals with the case where the object name in a
m essa g e call is instantiated. In either c lau se the target
property or the target value may be uninstantiated.

*/

P Object : Property
[j var(Object),

inspect(predecessors(Object,_,_)), /* obint */
n find_all_ancestors(O bject,A ncestors),
U m em ber(An_object,Ancestors),

Property =.. [ID|Arguments],
y add_to_tail(O bject,Argum ents,New_Argum ents),

Augmented_Property =.. [ID,An_object|New_Arguments],
n testit(Augmented_Property), /* obint* */
Ü invoke(Augmented_Property). /* obint* */

Q
Object : Property

n nonvar(Object),
U inspect(predecessors(Object,__,_J), /* obint* */
^ find_all_ancestors(O bject, A ncestors),
Ij member(An_object, Ancestors),

Property =.. [ID|Arguments],
n add_to_tail(Object, Arguments, New__Arguments),
U Augmented_Property =.. [ID,An_object|New_Arguments],

testit(Augmented_Property), /* obint* */

invoke(Augmented_Property). /* obint* */

****************** ^ — J 1.1 *********************e n d

n

0

ü

0

/* FILE : OBCODE.PRO Appendix a */

U "find_alL ancestors(+any_object,-that__objects_ancestors)" .

n This predicate is used to generate a list of the ancestors of a
named object by inspection of the "ancestors" properties of

n objects. The named object is included as the first element of
U the list so generated. The predicate is non-resatifiable.

/

find_all_ancestors(Object, Ancestors)
f_a_a(Object,[],Ancestors), I.

f_a_a([],List,Result) reverse(List,Result).
f_a_a([H|T],Growing_list,Result)

inspect(pred ecessors(H ,A n cestor_ list ,_)) ,
add_themJn(Ancestor_list,T,New_list), /* obutil */
add_to_head(H ,G row ingJist,N ew _G row ing_list),
f_a_a(N ew _l 1st, New_G rowing_list, Result).

f_a_a(H,[],Result) f_a_a([H],Q,Result).

add_them_in([], Result, Result).
add_them_in([H|T],GrowingJist,Result)

not(member(H,Growing_list)),
add_to_tail(H ,G row ing_list,N ew _G row ing_list),
add_them _in(T ,New_G row ingJist, Result).

add_them Jn([_ |T],G rowingJist,Result)
add_them Jn(T,G row ing_list, Result).

end "find all ancestors" ************/

* * * * * * * * * * * * * * _ _ f ; I . ^ ^ ^ ̂ * * * * * * * * * * * * *end file ob c o d e .p ro

n

0
Q

APPENDIX B

OBUTIL JRO - THE OBLOG UTILITY FILE

U

D

n
J

Q
jJ /* FILE : OBUTIL.PRO A ppendix b */

0
D

D

This file contains the utility predicates used by the
ObLog object Prolog system, as well as

the definition of the opertors
with, isa, and :

J.E.Watkins - 1986

/0
P The following operator declarations are used as "syntactic
y sugar" for the ObLog system.

All three operators are define as infix operators of priority
750 (relative to with the native Prolog operators).

0
0
0
D
[?- op(750,xfy,[with,isa,:]).

"with" is used in object definition.

"isa" is used to define relationships between objects.

":" is used as a separator in m essage calls.

/

n

0

D

D

0
]

/* FILE : OBUTILPRO Appendix b */

consultJle(+object__file_name_and_extension).

This predicate is used to read into the workspace definitions
of objects held in a (previously edited) file. These objects
can be specified in their "with" c lause form, or as "isa"
declarations.

* *

Q consult_file(File)
seeing(lnput),

n see(F ile) ,
U repeat,
P read(Term),
jJ process(Term),

seen,
n see(lnput).

process(Term)
process(X with Y)
process(X isa Y)
process(Term)

- eof(Term), I.
- process_object(X with Y), fail.
- create_relationship(X,Y), fail.
- assert(Term), fail.

eof(end__of_file).

en d c o n su l t file * * * * * * * * * * * * * * *

0
ü

0
D
D
0
0

0

0

D
0

/* FILE : OBUTILPRO Appendix b */

object-definition-processor

The following predicates are used to translate the "with"
form of an object definition into its internal form, and

U represents the system s "object definition processor".

* **y

process_object(Object_id with Propertyjist)
process_propertyJist(Object_id,PropertyJist),

(inspect(predecessors(ObjectJd,_,J);
store_a(predecessors(Object_id,D,J)),

y store_z(with_props(ObjectJd,Propertyjist)), I.

process_property_list(_ ,[]).
process_propertyJist(ObjectJd,[':-'(Head,Body)|Rest_props]) :

Head =.. [Funktor|ArgumentJist],
New__Head =.. [Funktor,ObjectJd|ArgumentJist],

store_a(:-(New_Head,Body)),
process_propertyJist(ObjectJd,Rest_props).

process_propertyJist(O bjectJd ,[Fact|R est_props])
Fact =.. [Funktor|ArgumentJist],

addJoJail(_self_arg,A rgum entJist,N ew _Argum entJist),
New_Fact =.. [Funktor,ObjectJd|New_ArgumentJist],

store__a(New_Fact),
process_propertyJist(ObjectJd,Rest__props).

end definition p rocessor

D

Q
D
D

D
D
D
D

ü

ri

/* FILE : OBUTILPRO Appendix b */

dialogue object definition option

The following code represents one possible implementation
of a dialogue definition mechanism, which allows the user to
define an object interactively from within the Prolog
environment by invoking the appropriate predicate.

(J "define_object" can be called with one argument - an object
definition (ie. X with Y), or with no arguments - causing a

y prompted dialogue with the user to be initiated.

/

define_object(Term)
check_with(Term), process_object(Term).

define_object
repeat,

nl,
write('Enter new object with property(s) or "quit" : '),
ttyflush ,
read(Term),
check_with(Term),

(Term=quit;
(process_object(Term), fail)).

check__with(Term) check_with__01 (Term),

check_with_01 (X with [H|T])
check_w ith_01 (quit)
check_w ith_01 (Term)

- nonvar(X).
- write('Bye'), nl.
- write(Term),

writeC is syntactically wrong!'),
nl, fail.

end d ia logue definition * * * * * * * * * * * *

Q

/* FILE : OBUTIL.PRO Appendix b */

/ * * * * * * * * * * * * * * * * *

D
D
D
0
n
U The following predicates are used to create and destroy

relationships b etw een objects . T h e se relationships are
iJ represented by the values of the ancestors property of the

objects.

0
0
0

- Where on e or both of the argum ents are
1 uninstantiated Prolog will find a match, displaying a

relationship. In this case "isa" can be made to fail -
Q generating Other solutions.

n create_relationsh ip(+sub_object_ id ,+super_object_ id).
This predicate creates the stated relationship between

ij sub_object and super_object.

destroy_relationsh ip(+sub_object_ id ,+super_object_ id).
n This predicate destroys the stated relationship.

D '
n Sub_Object isa Super_Object

Sub_Object : predecessors(A ncestorJist),
m em ber(Super_O bject,Ancestor_list).

'isa" can be used in several ways.

- Where both its arguments are instantiated "isa'
cau ses the specified relationship to be established.

Sub_Object isa Super_Object
nonvar(Sub_Object), nonvar(Super__Object),
create__relationship(Sub_Object,Super_Object)

u

D

0
D
D
0
0
0
0

D

0

/* RLE : OBUTILPRO Appendix b */

create_relationship(Sub_Object,Super_Object)
not (Sub_Object = Super_Object),
not (Sub_Object : predecessors(List),

member(Super_Object,List)),
create_object([Sub_Object,Super_Object]),
Sub_Object : predecessors(A ncestJ ist),
Sub_Object =.. L|Args1],
Super_Object [Super_0bjectJd|Args2],
process_argum ents(Args1 ,Args2,New_Args),
NewSupObject [Super_ObjectJd|New_Args],
add_to_head(NewSupO bject,Ancest_list,New__Ancest_list),
rem ove(predecessors(Sub_O bject,A ncest_ iist ,_)) ,
store_a(predecessors(Sub_O bject,New__AncestJist,_)), !.

create_object([]).
create_object([Head_Object| Rest])

Head_Ob]ect : predecessors(_),
create_object(R est) .

create_ob]ect([Head_Object|Rest])
Head_Object =.. [Head_Ob]ectJd|J, nl,
write(’OOPS IS CREATING THE NEW OBJECT : '),
write(Head_Ob]ect J d) ,
store_a(predecessors(H ead_O bject,[],_)),
create_ob]ect(R est) .

create_object(Ob]ect) create_object([Ob]ect]).

process_argum ents(List1 ,L ist2 ,R esu ltJ ist)
p_a(Llst1 ,List2,[],ResultJist), I.

P__a([],[],Result, Result),
n p_a([H|T1],[H|T2],Growing J is t , Result)

ad d JoJa il(H ,G row in g_ lis t ,N ew _G ro w in g _ lis t) ,
rj p_a(T1 ,T2,New_Growing J i s t , Result).
U P_a([],[H|T],Growing J i s t , Result)

ad d JoJa il(H ,G row in g_ lis t ,N ew _G ro w in g _ lis t) ,
Q p_a([],T,New_Growing_list,Result).

0

]
]
]
]
]
]
J

/* FILE : OBUTILPRO Appendix b */

D
u

D
Q
0
n
J destroy_relationship(Sub_Object,Super_Obje'ct)

rem ove(p redecessors(Su b_O bject ,A n cestorJ is t ,_)) ,
1 exc ise(Su per_O bject,A n cestor_Iist ,N ew _A ncestor_ list) ,

store_a(p red ecessors(S u b _O b ject,N ew _A n cestorJ ist ,_)) .

en d r e la t io n sh ip s ************* ̂

/* FILE : OBUTIL.PRO Appendix b */

0

Ü

J

/

* * * * *

n The following predicates are responsible for examining the
^ properties (both own and inherited) of objects.

0
display__all_properties(ObjectJd)

n find_a ll_properties(O bject_ id ,R esu lt_ list) ,
^ sh ow _all_properties(O b ject_ id ,R esu lt_ list) .

Q find_all_properties(O bject_id,Result_list)
find _a ll_an cestors(O b ject_ id ,A n cestor_ list) ,

"J m ak e_resu lt(A ncestor_ list ,[] ,R esu lt_ list) .
J j

^ make_result([],Result,Result).
jJ make_result([H|T],Growing J i s t , Result)

inspect(w ith_props(H ,Prop_list)),
add J o J a i l([H , Prop J i s t] , Growing_list,New__Growing_l 1st),
make_result(T,New_Growing_list, Result).

show _all_properties(O bjectJd,Property_list)
nl, write(THE OBJECT '), write(ObjectJd),
writer HAS THE FOLLOWING PROPERTIES :-'), nl, nl,
s_a_p(Property_list).

s_a_p([]).
s_a_p([[ObjectJd,Property_list]|T])

disp lay_an_ancestor(O bject_id ,Property_list),
s_a_p(T).

y display_an_ancestor(_,[]) nl.
display_an_ancestor(ObjectJd,[(:-(X,_))|T])

1 write(X), write(' {METHOD} FROM '),
J write(ObjectJd), nl,

d isp lay_an_ancestor(O bjectJd ,T).
display_an_ancestor(ObjectJd,[H|T])

write(H), write(' {FACT} FROM '),
1 write(Object_id), nl,
i d isp lay_an_ancestor(O bjectJd ,T).

/ * * * * * * * * * * * * * * * * — — - j * * * * * * * * * * * * *end object exam ination

D
n

0
0
D
D
0

0
Q
n

0

/* FILE : OBUTILPRO Appendix b */

The following predicates are system primatives.

reverse(L,L1) reverse_concatenate(L,[],L1),

reverse__concatenate([X|L1],L2,L3)
jj reverse_concatenate(L1 ,[X|L2],L3).

revers e_co ncate n ate ([], L, L).

member(X,[X|J).
member(X,[_|List]) member(X,List),

add_to_head(X,List,[X|List]) !.0
D add_to_tail(X,List1 .Result)

reverse(List1 ,List2),
Q add_to_head(X,List2,List3),

reverse(List3, Result),

append(A,B,C) append_01(A,B,C), I.

append_01(D,R,R).
append_01([X|L1],L2,[X|L3]) append__01(L1,L2,L3).

excise(X,List,Result) excise_01 (X,List,[],Result),

excise_01 Result,Result).
excise_01 (X,[X|Rest_ofJist],Growing_list, Result)

l] excise__01 (X ,R est_of_list,G row ing_list,R esult).
excise_01 (X,[H|T],GrowingJist,Result)

add_to_tail(H ,G row ing_list,N ew _list),
excise_01 (X ,I ,N e w jis t ,R e su lt) .

* * * * * * * * * * * * * * —. . — * ^ — - ; .-1-, ^ ^ * * * * * * * * * * * * * * *e n d s y s t e m p r im a t iv e s

n
n

n /* FILE : OBUTIL.PRO A ppendix b V

L)

D

n
J

]
1

* ******

with clause object definition

The following co d e represents the m ean s by which object
definitions can be entered directly by m eans of the with operator.
These definitions can be either entered interactively to the Prolog
interpreter, be read in from an edited file (by means of consult_file,
or can appear as clauses within object methods.

D
D Object with Propertyjist

check_with(Object with Propertyjist),
process_object(Object with Propertyjist),

/

* * * * * * * * * * * * * * * M « * * * * * * * * * * * * * * *end with definition

end of file obutii.pro

D
D
D
0
D
D
0

D
0
nD
G

1

APPENDIX C

OBASSN.PRO - THE OBLOG ASSIGNMENT CODE

D
0

n
J
n

D

/* FILE : OBASSN.PRO Appendix c */

This file contains the code to implement assignment
for ObLog, the object Prolog system.

J J.E.Watkins-1986.

* *

This is the infix operator used to denote assignment.

* *

?- op(755,xfy,[:=]),

1 Object : Property := New_Value
-J Property =.. [ID,Current_Value],
P Object =.. [Object_Name|Object_Arguments],
J uninstantiate(Object_Name,Object_Arguments,Un_Object),

X =.. [ID,Un_Object,_,J, (remove(X); true),
1 Y =.. [ID,Un_Object,New_Value,J, store_z(Y).

uninstantiate(Obj,[],Obj).
uninstantiate(Obj, [A], Result)
uninstantiate(Obj, [A, B], Result)
uninstantiate(Obj,[A, B,C], Result)

- Result =.. [Obj,B].
- Result =.. [Obj,C,D].
- Result =.. [Obj,D,E,F].

^******************* end "— ******************* y

f * * * * * * * * * * * * * * end file ob assn .p ro ***************^

]
1

-, APPENDIX D

-J 0BINT1.PR0-RELAXED ENCAPSULATION INTERFACE

n
u

0

]

a

0

ü
0

0

FILE : 0BINT1.PR0 Appendix d */

/

This file acts to maintain a standard interface to the ObLog
ij object system, obinti u ses assert and retract to store and

remove object properties (obint2 u ses record, recorded and
n erase).

* *

store_a(Term) asserta(Term),

store_z(Term) assert(Term).

remove(Term) retract(Term),

inspect(Term) call(Term),

testit(X) clause(X,_Y).

invoke(X) X.

end file ob in ti.p ro ****************

0
0
0
0
0
0
0
D
0
0

0
0

APPENDIX E

0BINT2 J>RO - ENFORCED ENCAPSULATION INTERFACE

n-J
n
J FILE : 0BINT2.PR0 Appendix e */

nu
0

/

This file acts to maintain a standard interface to ObLog the
Prolog object system. This interface file makes use of the
BIP's recorda, record, erase and recorded.

0
0
0
0
0

* *

store_a(Term) recorda(oops,Term,_).

store_z(Term) recordz(oops,Term,_).

remove(Term) recorded(oops,Term,Ref), erase(Ref),

inspect(Term) recorded(oops,Term,_).

D
testit(X)

invoke(X)

recorded(oops,X,_); /* either a fact, */
recorded(oops,(X;-Y),_). /* or a method. */

(recorded(oops,X,_)); (recorded(oops,(X:-Y),_),
assert(X Y),
call(X),
retract(X Y));
((retract(X Y); true), fail).

0 f * * * * * * * * * * * * * * en d file o b in t2 .p ro ***************

0

J

]

APPENDIX F

GEOMEGJPRO - THE GEOMETRIC EXAMPLE FILE

0

0
0

n

Û

/* FILE : GEOMEG.PRO Appendix f */

This file represents an implementation of the
geometric example described in chapter 3.

* *

regular_polygon(N,L) with [(ancestors([polygon(N)])),
(length_of_side(L)),
(perimeter(P,SELF) P is N * L)].

polygon(N) with [(ancestors([])),
(number_of_sides(N))].

0
0
0

rectangle(L1 ,L2) with [(ancestors([polygon(4)])),
j j (length_of_base(L1)),

(length_of_height(L2)),
n (area(A.SELF) A is L1 * 12)].

1
J square(L) with [(ancestors([regular_polygon(4,L),

rectangle(L,L)]))].

The following represent instance declarations

sq1 isa square(10). /* sq1 I s a square of side 10 V
sq2 isa square(5).

rcl isa rectangle(5,20).
rc2 isa rectangle(4,25).

/************* ^ ************end file geom eg.pro

0

0

0

]
]
1

APPENDIX G

OPTIONURO - KEE LIKE IMPLEMENTATION

b l o c k w o r l d o b j e c t

movable (yes)
on_top_of (unknown)

block robot

supports (one)
can_rest_on ([any])

holding (nothing)
movable (no)

create_block
destroy_block (<ID>)
pick_up_block (<ID>)
put_block_on (<ID>)
describe world

pyramidcube cylindertable
movable (no)
supports (many)

on_top_of(the_table) supports (none)
on_top_of(the_table)

on_top_of(the_table)
can_rest_on([table,

cylinder])

thejable robbie

Design Diagram for the KEE like Implementation

Q

n

Q

0

robbie : describe_worhL
cl is a cube, and is on top of the table
c2 is a cube, and is on top of the table /* method
pi is a pyramid, and is on top of the table
d l isa cylinder, and is on top of thetable
the table is a table, and is on top of nothing
no

/* Message to robbie to */
/* invoke the describe world */

*/

?- robbie : pickjupjblock (cl).
yes

/* Message to robbie to */
/* pick up block c l */

0
?- robbie : putjblockjon (pi).

no

?- robbie : putjblockjon (c2).
yes

/* An illegal operation! */

/* Message to robbie to put */
/* cl on c2 - a legal operation */

0

?- robbie : pickjupjblock (pi).
yes

?- robbie : putjblockjon (cl).
yes

?- robbie : describe_world.
cl is a cube, and is on top of c2
c2 is a cube, and is on top of the table
pi is a pyramid, and is on top of cl
d l is a cylinder, and is on top of the table
the table is a table, and is on top of nothing
no

Sample Dialogue for the KEE like Implementation

u

0

0

0
D

/* FILE : 0PTI0N1.PR0 Appendix g */

This file is an implementation of
the Kee like option of the
block world - chapter 5)

block_world_object with [(m ovable(yes)),
(on_top_of(nothing))].

block with [(ancestors([block_world_object])),
(supports(unknown)),
(can_rest__on([any]))].

table with [(ancestors([bl.ock])),
(movable(no)),
(supports(many))].

pyramid with [(ancestors([block])),
(supports(none)),
(on_top__of(the_table))].

cylinder with [(ancestors([block])),
(can_rest_on([cylinder,table])),
(supports(one)),
(on_top__of(the_table))].

cube with [(ancestors([block])),
(supports(one)),
(on_top_of(the_table))].

/* FILE : 0PTI0N1.PRO Appendix g */

0

0
0

3

robot with [(ancestors([block_world__object])),
(holding(nothing)),
(movable(no)),

(pick_up_block(Target,SELF)
SELF : holding(nothing),
SELF : move_test(Target),
SELF : free_test(Target),
SELF : holdingU := Block,
Target : on_top_of(__) := nothing.
Target : movable(_J := no,
nl, writefl Am Now Holding '),
write(Block), nl)).

(put_block_on(Target,SELF)
n not (SELF : holding(nothing)),
J SELF : holding(Block),

SELF : supp_test(Target),
ij SELF : cpat_test(Target,Block),

SELF : more_test(Target),
p Block : on_top_of(_) := Target,
U Block : movable(_j := yes,

SELF : holding(Block) := nothing),

0
(move_test(Target,SELF) I,

Q Target : movable(yes)),

(free_test(Target,SELF) !,
\] not (X : on_top_of(Target))),

(supp_test(Target,SELF) I,
not (Target : supports(none))),

 ̂ (cpat_test(Target,Block,SELF) I,
Block : can_rest_on(List),
Target isa Block_type,
(member(any,List);

member(Block_type,List))),

u
n

D

3

3

3

/* FILE : 0PTI0N1.PR0 Appendix g */

(more_test(Target,SELF)
(Target : supports(many));
(Target : supports(one),

not (X : 0 n_top_of(Target)))) ;
(!, fail)).

(describe_world(SELF)
SELF : holding(Block),
nl, write('l Am Holding '), write(Block),
I
X isa block, Y isa X, Y : on_top_of(Z),
nl, write(Y), write(' Is A '), write(X),
writeC, And Is On Top Of '), write(Z),
fail)].

/* end object robot */

/*** The following represent instance declarations

robbie isa robot.

the_table isa table.

c1 isa cube.
c2 isa cube.

M p1 isa pyramid.

cl1 isa cylinder.

* * * * * * * * * * * . f : : . 4 — * * * * * * * * * * * ,end file optionl .pro

c

0

Q

0

n

0

Q

3

APPENDIX H

0PTI0N2JR0 - SMALLTALK LIKE IMPLEMENTATION

c

0

0
0
a

on_top_of (nothing)
supports (one)
can_rest_on ([any])
movable (yes)

create_bIock
destroy_block (<ID>)
put_bIock_on (<ID>)
describe world

table cube pyramid

movable (no)
supports (many)

on_top_of (the_table) supports (none)
on_top_of(the_table)

me table

cylinder

on_top_of(the_table)
can_rest_on([table,

cylinder])

Design Diagram for the SmallTalk like Implementation

]

0

0
0

0
0

thejable : describe_world
cl is a cube, and is on top of the table
c2 is a cube, and is on top of the table
plis a pyramid, and is on top of thetable
d l is a cylinder, and is on top of the table
no

?- cl : putjblockjon (pl).
no

/♦Messageto the table to */
/* invoke the describe world ♦/
/* method! ♦/

/* Message to c l to put itself ♦/
/* on pl- an illegal move! */

D
0
Q

?- cl : putjblockjon (c2).
yes

?- p l : putjblockjon (cl).
yes

/♦ Message to c l to put itself */
/* on c2 - a legal move! */

/♦ Message to pl to put itself */
/* on c l - which is on c2 */

0

?- p l : describe jvorld.
cl is a cube, and is on top of c2
c2 is a cube, and is on top of the table
pl is a pyramid, and is on top of cl
d l is a cylinder, and is on top of the table
the table is a table, and is on top of nothing
no

Sample dialogue for the SmallTalk like Implementation

/* FILE : 0PTI0N2.PR0 Appendix h */

0

0
0

This file is an implementation of
the SmallTalk like option of the

block world - chapter 5.

/

0

block with [(movable(yes)), /* These c lauses */
(on_top_of(nothing)), /* represent */
(supports(one)), /* object state */
(can_rest_on([any])),

(put_block_on(Target,SELF)
SELF : move__test(SELF),
SELF : supp_test(Target),
SELF : freeJest(SELF),
SELF : cpat_test(Target),
SELF : more_test(Target),
SELF : on_top_of(_) := Target),

(move_test{Target,SELF) I,
Target : movable(yes)),

(supp_test(Target,SELF) I,
not (Target : supports(none))),

(free_test(Target,SELF) I,
not (X : on_top_of(Target))),

3 (cpat_test(Target,SELF) I,
SELF : can_rest__on(List),

J Target isa Block_type,
(member(any.List);

member(Block_type,List))),

J

n\

0

0
0

B
J

3

/* FILE : 0PTI0N2.PR0 Appendix h */

(moreJest(Target,SELF) !,
J (Target : supports(many));

(Target : supports(one),
not (X : on_top__of(Target))));

(!, fail)),

n (describe_world(SELF)
X isa block, Y isa X, Y : on_top_of(Z),
nl, write(Y), write(' is a '), write(X),
writeC, and is on top of '), write(Z),
fail)]. /* end block */

0

n /* FILE : 0PTI0N2.PR0 Appendix h */

D
n /*** The following represent sub-c lasses of block ***/

D
0

0
0
Q

B
B
B
1

table with [(ancestors([block])),
(movable(no)),
(supports(many))].

pyramid with [(ancestors([block])),
(supports(none)),
(on_top_of(the_table))].

cylinder with [(ancestors([block])),
(can_rest_on([cylinder,table])),
(on_top_of(the_table))].

cube with [(ancestors([block])),
(on_top_of(the_table))].

/*** The following represent instance declarations

the_table isa table.

c1 isa cube.
c2 isa cube.

p1 isa pyramid.

cl1 isa cylinder.

e n d file o p t io n 2 .p r o

c

0
0
0

ü
0

0
D
Q

B
3
3
1

APPENDIX I

0PTI0N3.PR0 - MIXED INITIATIVE IMPLEMENTATION

D

0

Q
0
D
0

Q

U
0

thejable

movable (no)
supports (many)

table

supports (none)
on_top_of(the_tabIe)

pyramid

on_top_of (the_table)

cube

on_top_of(the_tabIe)
can_rest_on([table,

cylinder])

cylinder

on_top_of (nothing)
supports (one)
can_rest_on ([any])
movable (yes)

block

] Design Diagram for the Mixed Initiative Implementation

n J
n

3
0
3
]
0
0
3
D

?- describe_worîd,
c l is a cube, and is on top of the table
c2 is a cube, and is on top of the table
p lis a pyramid, and is on top of thetable
d l is a cylinder, and is on top of the table
the table is a table, and is on top of nothing
no

/* Goal to invoke the */
/* describe world predicate */

?- putjblock _on(cl,pl).
no

?- putjblockjon (cl,c2).
yes

?- putjblockjon (plyCl).
yes

/* Goal to put block c l on - */
/* block p l - Dlegal! */

/* Goal to put block c l on - */
/* block c2 */

/* Goal to put block p l - */
/* on block c2 */

Li

3
3
3
]
]
]

?- describe_worid,
c l is a cube, and is on top of c2
c2 is a cube, and is on top of the table
pl is a pyramid, and is on top of c l
d l is a cylinder, and is on top of the table
the table is a table, and is on top of nothing
no

Sample Dialogue for the Mixed Initiative Implementation

D
u

1 /* FILE : 0P T I0N 3.P R 0 A ppendix I */

D

D
0
Q
n

This file is an implementation of the
mixed initiative option of the

block world - chapter 5.

/

block with [(movable(yes)), /* These c lauses */
(on_top_of(nothing)), /* represent */
(supports(one)), I* object state */
(can_rest_on([any]))].

/*** The following represent su b-c lasses of block ***/

table with [(ancestors([block])),
(movable(no)),
(supports(many))].

pyramid with [(ancestors([block])),
(supports(none)),
(on_top__of(the_table))].

cylinder with [(ancestors([block])),
[J (can_rest_on([cylinder,table])),

(on_top_of(the_table))].

Q
1
u

]
]

J

cube with [(ancestors([block])),
(on_top_of(the_table))].

/*** The following represent instance declarations

the_table isa table.

c1 isa cube.
c2 isa cube.

p1 isa pyramid.

cl1 isa cylinder.

0

"j /‘ FILE : 0PTI0N3.PR0 Appendix I */

0

D
n

D

D
D

* *

The following represents the "external agent" which acts to
inspect or alter the knowledge representation defined above.

* /

^ put_block_on(Block,Target)
p. m ove_test(B lock),
J supp_test(Target),

free_test(B lock),
cpat_test(B lock,Target),
m ore_test(Target),
Block : on_top_of(_) := Target.

move_test(Block) I, Block : movable(yes).

supp_test(Target) I, not(Target : supports(none)).

Q free_test(Block) I, not (X : on_top_of(Block)),

cpat_test(Block,Target) I,
Block : can_rest_on(List),

^ Target isa Block_type,
jj (member(any,List); member(Block_type,List))

P more__test(Target) !,
Ll Target : supports(many);

(Target : supports(one),
J not (X : on_top__of(Target)));

(I. fail).

describe_world
X isa block, Y isa X, Y : on__top_of(Z),
nl, write(Y), write(' is a '), write(X),

n writeC, and is on top of '), write(Z), fail.

1 /*************** e n d file o p t i o n s . p r o ***************/

D
n
J

n

n
J

0
0
n APPENDIX J

ZCODE.PRO - ZANIOLO'S MESSAGE PASSING CODED
D
D

D
n
J

0

u

n
_j

D
]

/* FILE : ZCODE.PRO Appendix j */

D
D

U

D

/

“ j This file contains the m essa g e passing code for Carlo
J Zaniolo's proposed Prolog object system . This code is not

used in ObLog, but is replaced by m essa g e code which
"] supports backtracking in m essage calls.

/

“1 Object : Property
J inspect(predecessors(Object,

find_all_ancestors (Object, A ncestors),1 m em ber(An_object,Ancestors),
Property =.. [ID|Arguments],

n add_to_tail(Object,Arguments,New__Arguments),
J Augmented__Property =.. [ID,An__object|New_Arguments],

testit(Augmented_Property),
n invoke(Augmented_Property).

D
*̂ ***************** ©nd ******************** *̂

/************** f: 1,̂ ^ ************* Iend file zcode.pro

