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ABSTRACT

The extraction of knowledge from domain experts for the purpose of 
building expert systems has been found to be a difficult and a time- 
consuming enterprise. Researchers have therefore looked at the 

- possibility of automating this task of knowledge acquisition. The existing 
knowledge acquisition systems rely on either some task-specific 
knowledge or general techniques for knowledge elicitation for obtaining 
problem-solving expertise from domain experts. Generally, systems which 
employ task-specific knowledge produce better problem-solving expertise 
than those systems which use elicitation techniques. However, the scope 
of applicability of former systems is relatively narrow. This is the central 
problem addressed in this thesis: to design a knowledge acquisition system 
which can be applied over a wide range of tasks with the purpose of 
acquiring useful problem-solving knowledge.

The thesis presents a methodology and a system for knowledge acquisition 
called ASKE. The methodology prescribes that knowledge acquisition 
should start by defining the task and then use the developed task-model to 
acquire domain specific knowledge. ASKE is able to support this process by 
allowing the user to construct task-models and by being able to effectively 
use them for acquiring domain expertise. The advantage of progressing in 
this m anner is two-fold: firstly, it widens the scope of applicability of the 
knowledge acquisition system; and, secondly, it makes possible the 
construction of knowledge-bases that exhibit expert performance.

ASKE contains knowledge engineering expertise which it uses to help 
domain experts encode their problem-solving expertise directly into a 
knowledge-base. The system derives its power from the templates which 
encode knowledge. The templates serve a triple function: they
represent knowledge - their normal function; they encode expectations 
of the kind of knowledge that is to be acquired; and, they serve as a 

guide for how problem-solving knowledge may be organized so as to 
facilitate its encapsulation into a knowledge-base.
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Parts of Chapters I-VI have been published in Patel 1988,1989a and 1989b.

The quotes at the start of each C hapter are from  Feigenbaum  and 

McCorduck (1984).
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Alice said, "Would you tell 
me, please, which way I 
ought to go from here?"
"That depends a good deal on 
where you want to get to," 
said the Cat. "I don't know 
where...," said Alice. "Then it 
doesn't matter which way 
you go," said the Cat.

From Lewis Carroll's
A lice's Adventures in Wonderland



"The ultimate design goal for knowledge acquisition is to allow 
the expert to encode his own knowledge directly into the 
computer, removing the role of the knowledge engineer from  
the knowledge acquisition phase." (Weiss & Kulikowski,
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I N T R O D U C T I O N

Excellent performance requires knowing so much.

1.1 Knowledge is Power
The foundations of the new science of Artificial Intelligence (AI) were laid 

in the sum m er of 1956 at the Dartm outh Conference. Ten scientists, who 

were to lead this endeavour, convened to draft the directions that AI was 

to follow. The central goal of this new  field was to develop "smart" 

computer systems. In other words, the AI systems were expected to solve 

complex problems, which, if solved by humans, would be characterized as 

intelligent behaviour (Barr and Feigenbaum, 1981).

The initial work in AI, until about the m id 60*s, was guided by the basic 

tenet that intelligent behaviour is based on clever reasoning. The research 

efforts were thus aimed at discovering sm art problem-solving techniques, 

for example, finding general m ethods that could solve broad classes of 

problem s. These problem -solving m ethods were then im plem ented in 

general-purpose program s such as GPS (Newell and Simon, 1972). The 

general-purpose algorithm s were how ever found to be insufficient, on 

their own, in solving complex problem s. Furtherm ore, the program s 

show ed generality-performance tradeoffs: the more classes of problems a 

single program  could handle, the more poorly it seem ed to perform  on 

any individual problem.
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W hile the early research produced no breakthroughs, it pointed out the 

possible ingredients for producing intelligent systems. Besides general 

purpose techniques, the program s had to have more efficient ways for 

storing data and for searching the space of possible solutions. So, during 

the 70's, AI scientists concentrated on the techniques of representation 

(e.g., Minsky, 1975) - how to formulate the problem so that it would be easy 

to solve - and search (e.g., Knuth and Moore, 1975) - how  to cleverly 

control the search for a solution so it w ouldn 't take too long or use too 

much of the computer's memory capacity. Once again, the research failed 

to produce the expected results. The new techniques, supported by greater 

computing power, were not enough to solve real-world problems.

Though initial work started in m id 60's (e.g., Buchanan et al., 1969), it 

w asn 't until the late 70's^ that AI scientists accepted the fact that the 

problem-solving power of a program  comes as m uch from the knowledge 

it possesses as from the formalisms and inference schemes it employs. The 

conceptual breakthrough was m ade and can be quite sim ply stated: 

intelligence comes with knowledge.

The realization that knowledge is the key to intelligence has led to the 

subfield of Knowledge Engineering associated w ith the building of Expert 

Systems, which are computer programs designed to capture and utilize the 

expertise of a hum an expert in a narrow  dom ain (such as com puter 

configuration, m edical diagnosis, signal in terpretation , and w eather 

forecasting). In the 80's, expert systems have proliferated and AI has gone 

commercial. W ith the success of this new breed of com puter systems, 

know ledge engineering has been recognized as an im portant field of 

research. The new motto guiding the work in this area is "knowledge is 

power" (Feigenbaum and McCorduck, 1983). It changes the emphasis from

 ̂Knowledge based systems were for the first time introduced at the 5th Joint International 
Conference on Artificial Intelligence held in Cambridge, Massachussetts, in 1977.
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a search for general mechanisms of intelligence to the developm ent of 

techniques for knowledge acquisition and representation.

1.2 The "Bottleneck"
The DENDRAL project was the first AI enterprise which broke w ith the 

early trad ition  and identified the need for large volum es of special- 

purpose knowledge to perm it program s to work effectively in real-world 

domains. The acquisition of the problem-solving knowledge is however a 

non-triv ial task. For instance, from  his experience of bu ild ing  the 

DENDRAL system, Buchanan (1969:256) writes:

".. one of the greatest bottlenecks in our total system  of 
chemists, program m ers and program  has been eliciting and 
p rogram m ing  new  pieces of inform ation  abou t m ass 
spectrometry."

For effective performance, an expert system requires substantial domain- 

specific knowledge, the main source of which is a hum an expert. The 

process of transferring the problem -solving knowledge from a dom ain 

expert to a com puter program  is called Knowledge Acquisition (KA). 

Feigenbaum, a pioneer in expert system s, argues that KA is a major 

obstacle in the development of expert systems:

"... the power to enhance or am plify the performance of AI 
program s resides in the specific knowledge of the problem  
dom ain that can be brought to bear. This know ledge is 
currently acquired in a very painstaking way; individual 
computer scientists work with individual experts to explicate 
the experts' heuristics - to mine those jewels of knowledge 
out of their heads one by one. ... Right now the problem of 
knowledge acquisition is the critical bottleneck in artificial 
intelligence." (Feigenbaum and McCorduck, 1983:107)

The KA problem  reflects, in part, an inability  to achieve a direct 

interaction betw een the dom ain expert and know ledge-based system  

during  the process of system  developm ent. Typically, a know ledge
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engineer acts as an in term ediary , transla ting  the dom ain expert's 

know ledge into appropriate data structures that can be processed by 

com puter. This requires an expert to explain dom ain concepts to a 

knowledge engineer, and to describe explicitly a decision-making process 

of w hich s /h e  m ay not norm ally be conscious. C onsequently, the 

translation of knowledge into a form suitable for computer processing has 

proven costly and inefficient, thereby im peding the production  and 

dissem ination of functional systems.

1.3 Aim of this thesis
We need to remove the bottleneck. According to Buchanan (1969), there 
are three approaches open to us.

0  Educate the knowledge engineer in the domain of application.
0  Educate the domain expert in programming.
0  Replace the knowledge engineer with a program  designed to 

perform KA to the same level as h im /her.

It m ust be pointed out that there is also a fourth approach, w ith a lot of 

research in terest, w hich aims at developing tools, w hich provide 

autom ated help to the knowledge engineer at various stages of expert 
system development.

While the first two approaches are theoretically feasible, they are not very 

practical. For example, the first one suggests that the knowledge engineer 

become an expert which takes years of learning and experience. A 

characteristic of most hum an experts is that they do not have a lot of time 

to spare. So asking them  to learn to program , as the second approach 

requires, may not be such a good solution of the problem.

The third approach has the potential of minimising, if not removing, the 

bottleneck. Indeed, it is one of the dream s of the expert-system
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comm unity: to have knowledge-bases created and m aintained by the 

domain experts themselves rather than by knowledge engineers. Basically, 

the approach involves developing com puter program s which, w ithout 

the intervention of the knowledge engineer, could interact w ith domain 

experts to develop expert systems. In other words, the research aims at 

develop ing  an expert system  w hich contain the expertise of the 

knowledge engineer.

This thesis takes the third approach and is a contribution to the field of 

research w ith the ultim ate aim of rem oving the know ledge engineer 

from the expert system building cycle. The aim of this thesis is to present 

an autom atic system  for KA called ASKE (A utom atic System for 

Knowledge Engineering). ASKE has been designed w ith the objective of 

providing:

0  a system which can be used by domain experts to encode their
problem-solving expertise; and,

0  a system which can be used for developing prototype systems for
analysis tasks, i.e. any application task for which solutions can be 
enum erated.

The development of a system which can be used by hum ans is indeed an 

ambitious project. My aim, in this thesis, is not to address the hum an- 

computer interface issues per se, but to provide a methodology and a tool­

kit for automatic KA.

In the rem ainder of this Chapter, I will briefly describe the ASKE system. I 

will start w ith a look at previous works w ith the aim of locating the 

research presented in this thesis. The m ethodology and the general 

architecture of ASKE is presented next. This is followed by a scenario of 

how ASKE develops prototype systems.
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1.4 Previous Works
Research tow ards the rem oval of the KA bottleneck is concentrated 

m ainly in two directions, corresponding to the th ird  and the fourth 
approaches above, and involves the development of: 0  tools, called KA

systems, which interactively acquire knowledge directly from the domain 
experts; and 0  tools which assist the knowledge engineers at various

stages of KA. The second trend does not bear directly on the research 

presented in this thesis so I will confine the discussion to the mention of 

two of its more well-known exemplars. This will be followed by a brief 

introduction to Clancey’s (1985) model of heuristic classification which has 

strongly influenced research in KA systems. Finally, I will describe the 

m ain ideas underlying the research in KA systems, and show where the 

current work fits in.

The second research trend involves providing assistance to the knowledge 

engineer in the form of a KA methodology and some autom ated support 

during knowledge-base development. Two of the m ost influential works 

in this area are the KADS (Breuker and Wielinga, 1985) and the KEATS 

(Motta, et al., 1989a) m ethodologies for KA. The KADS m ethodology 

contains descriptions of techniques for data collection and data analysis 

some of which are supported by tools in the KADS system (Anjewierden, 

1987). The KEATS methodology is im bedded in the KEATS toolkit, which 

provides sem i-autom ated assistance at all stages of know ledge-base 

developm ent.

1.4.1 The Heuristic Classification Model

Clancey (1985) proposed a model of problem -solving which has been 

extensively used by researchers in KA. The model provides a precise set of 

terms and relations by which problem-solving tasks can be characterized. 
According to Clancey, there are two m ain types of problems: 0  those

whose solution space is known to the problem solver as a set of explicit
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alternatives, and problem  solving involves proving that one of them is 
best; and 0  those whose solution space in not known, and the problem

solving involves construction of a solution. The former is called heuristic 

classification problem solving and the latter constructive problem solving. 

ASKE uses heuristic classification model hence we will concentrate on it.

One of the main characteristics of the heuristic classification model is that 

all possible solutions of the problem can be specified a priori. The heuristic 

classification problem  solving involves the selection of one am ong a 

predeterm ined set of possibilities as the appropriate description of a 

situation. The inference structure of heuristic classification consists of data 

statements and solution features at various levels of abstractions and are 

m apped heuristically by different kinds of relations. This model has far 

reaching im plications for KA as it precisely describes the k ind  of 

know ledge th a t is necessary  for so lv ing  problem s by heuristic  

classification.

1.4.2 Automatic Knowledge Acquisition

Clancey's analysis of problem-solving types has had a strong impact on the 

designers of KA systems (i.e., tools which interactively acquire knowledge 

directly  from  the dom ain expert w ithou t the in terven tion  of the 

knowledge engineer). One of the insights has been that KA power can be 

resulted from specializing in a particular performance task to which the 

acquired knowledge will be applied. For example, McDermott (1988) has 

argued that task-specific knowledge in the form of well-specified roles in 

perform ing a specific class of tasks can provide an effective m ethod for 

acquiring particu lar kinds of know ledge. The role-lim iting m ethod 

provides a strategy for knowledge elicitation. This idea has been realized 

by a num ber of KA systems, such as MOLE (Eshelman and McDermott, 

1986) and SALT (Marcus et al., 1985). These systems specialize in some 

problem-solving method, an algorithm for applying dom ain knowledge to 

perform a task.
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Bylander and C handrasekaran (1987) have, in their notion of "generic 

tasks", proposed a similar approach to that of M cDermott’s role-limiting 

m ethod. A generic task, like Clancey's problem-solving m ethod, describes 

a problem. It consists of knowledge structures and inference strategies for 

dealing w ith the problem . Basically, a generic task is "an elem entary 

generic combination of a problem, representation, and inference strategy 

about concepts" (Bylander and C handrasekaran, 1987:235). The main 

difference between Clancey's heuristic classification and a generic task is 

that the former is a heterogeneous and the latter a homogeneous problem­

solving m ethod (Chandrasekaran, 1987).

W hile a KA system  can obtain pow er by specializing in a particular 

perform ance task, it does narrow  dow n its scope of applicability. For 

exam ple , M OLE's co v er-an d -d iffe ren tia te  m eth o d  of h eu ris tic  

classification restricts its range to diagnostic tasks only and SALT can only 

be used for design tasks. We have a problem. If our aim is to provide a 

facility for developing any knowledge system, the task-specific approach, 

as it stands, will be ineffective. This is the problem  addressed in this 

thesis, i.e., how to design a KA system so that it can have a wide scope of 

applicability. To make the project tractable, the range is set for analysis 

tasks, which can be solved by heuristic classification problem -solving 

method. The ASKE system is described in the following Section.

1.5 The System
ASKE contains knowledge engineering expertise which it uses to help 

dom ain experts encode their problem -solving expertise directly into a 

know ledge-base. The system  derives its pow er from  know ledge 

representation schemes called "templates". They provide a m eans for 

representing and acquiring dom ain knowledge. The problem -solving 

m ethod of heuristic classification (Clancey, 1985) is used as the basic 

inference mechanism.
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1.5.1 Knowledge Base

ASKE's knowledge base is made up of templates. These are structurally 

similar to frames (Minsky, 1975). A template is, however, more than just a 

data structure. Like a script (Schank and Abelson, 1977), it provides a 

conceptual structure for generating expectancies and guiding plans of 
actions. Tem plates serve various roles: 0  as a store for dom ain 

knowledge; 0  acquisition of domain knowledge ; and 0  as a guide to the 

domain experts in organizing their knowledge.

TEMPLATES KNOWLEDGE HELD USE

general meta-knowledge 
about other templates

select acquisition and 
reference templates

acquisition task-specific knowledge build task model

reference abstracted knowledge 
base

an exemplar for deve­
loping a task model for 
the new application

w orking new knowledge base as a future exemplar

Figure 1-1 Template Types

ASKE uses four types of templates: general, acquisition, reference and 

working. Figure 1-1 summarizes the role played by these templates in KA. 

The general tem plate contains inform ation about other tem plates. Its 

main function is to identify the application task and select acquisition and 

reference tem plates for further KA. The acquisition tem plate holds 

knowledge about task characteristics. It is used in the acquisition of the 

task model, the m ain concept categories describing the application task. 

The reference template consists of knowledge-base abstracted from ASKE- 

built applications. It acts as an exemplar for the acquisition of the task 

model. The working template is used for storing the new application.
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1.5.2 Inference Structure

ASKE uses the problem-solving m ethod of heuristic classification to drive 

the KA process. The m ain presupposition here is that a task can be 

represented as a classification problem: some solution object is selected 

from a set of enumerable candidates (e.g., diseases, components) on the 

basis of evidential considerations (e.g., symptoms, requirements). Like in 

the MOLE (Eshelman and M cDermott, 1986) and ETS (Boose, 1985) 

systems, the inference structure is hard-w ired into ASKE (it is implicitly 

recorded in the acquisition templates).

1.5.3 M ethodology

The m ethodology is based on the assum ption that the most difficult part 

for the experts, when trying to encode their problem -solving expertise 

into a computer program , is the initial organization of the knowledge so 

that it can be m apped into a target representation. The design of ASKE has 

been specifically guided by this issue: how to help the expert organize 

h is /h e r  dom ain know ledge, so th a t it is m ore conducive to the 

development of an expert system. The system provides the expert with an 

interface and a step-by-step procedure for encoding the knowledge.

The KA takes place in two stages, as shown in Figure 1-2. In the first stage, 

a task model (i.e., the main concept categories and the interrelationships 

betw een them  that the dom ain expert uses to perform  the task) of the 

domain is developed. This activity is guided by two bodies of knowledge: 
0  the know ledge of possible application tasks; and, 0  exem plars

abstracted from the knowledge-bases that were built using ASKE. The task 

types provide inform ation about the kind of knowledge that is to be 

obtained from the expert. For example, the m ain data  and solution 

categories for the new application. Often experts find it difficult to think in 

this top-dow n fashion. To assist them, an example of a similar, already 

built task model is presented.
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STAGE ONE TEMPLATES

Task Model
ACQUISITION

expectations

Exemplar ^   ^ r e f e r e n c e  ^

Dom ain
Knowledge

W ORKING

STAGE TWO

Figure 1-2 A two stage model for automatic knowledge acquisition

The Figure shows how the templates are used in KA. The general template, not 
shown here, contains information about the various templates in ASKE. This 
knowledge, which is built up at run-time, forms the basis for selecting the task 
type and the exemplar used for developing a task model.

In the second stage, the task model is used to guide the acquisition of the 

concept hierarchies and heuristic associations between hierarchies. Once 

again, the exemplar has a role to play. The knowledge of how  concept 

hierarchies were constructed in a similar dom ain can be very useful. For 

example, AIDS infections can be classified in terms of the site of infection 

or categorized by the type of agents. The expert can be aided in decision 

m aking from the knowledge of how  infections were categorized in a 

similar system which diagnosed infectious diseases.

At the end of stage two, ASKE generates an if-then rule for every heuristic 

association. The rules are quite simple in structure and not suitable for 

autom atic testing and evaluation. The expert is, hence, provided w ith 

facilities for editing the rules.

1.6 Scenario
To illustrate ASKE's processing of information, I will present a scenario of 

a hypothetical session. It concerns the acquisition of know ledge for 

interpreting settlem ent sites from an expert archaeologist. To sum m arize
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the archaeological reasoning involved, the archaeologist analyzes the 

evidence provided by material relics found at a site previously occupied by 

past cultures, and produces a plausible description of activities that took 

place in the site. Further conclusions m ay be draw n regarding  the 

population of the site, the trade contacts, period of occupation, social 

organization, etc.

1.6.1 Stage One

The goal of the first stage is to build a model for Interpreting settlement 

sites. This is achieved in three steps. Initially, ASKE interacts w ith the 

expert, guided by the general template, to identify the nature of the new 

application. On the basis of this, acquisition and reference tem plates are 

selected. The acquisition tem plate provides expectations of the kind of 

knowledge required in the new model. The reference tem plate acts as an 

exem plar. Finally, a m odel is developed. (This m odel is held in the 

working template).

Step One

(The following questions are generated from the general template.)
[1] W hat is the domain of your expertise?
=> archaeology

[2] W hat task will the new application perform? [Choose one 
from: selection, interpretation, diagnosis, debugging]
=> interpretation

[3] W hat is your area of specialization?
=> settlem ent site

Step Two

From [2] above, the acquisition template for the task of interpretation is
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selected. The reference template is selected from existing knowledge-bases 

in ASKE. The selection strategy is based on the closeness of the new 

application to previous cases. If more than one is found, the user is asked 

to choose from the list. In this case there is only one knowledge-base, that 

for interpreting burial sites from archaeological data, hence it is selected 

automatically.

Step Three

(The acquisition template provides the following questions. The 
statements in bracket comes from the reference template.)
[4] W hat are the main categories of observed data for interpreting 
settlement sites? (The main categories of observed data for 
interpreting burial sites were: artifacts, ecofacts, features.)
=> artifacts, features

[5] W hat are the main solution categories for interpreting 
settlement sites? (The main solution categories for interpreting 
burial sites were: hypotheses)
=> activities, site profile________

1.6.2 Stage Two

For the interpretation of settlem ent sites, the im portant facts are the 

different categories of observed data and solution. The actual expertise in 

interpreting sites lies in the ability to m ap data to interpretations. The 

rules therefore depict transformations from data to interpretation. These 

rules are of the form:

IF data and data and ....
THEN interpretation a n d  

The following dialogue shows how the model for interpreting settlem ent 

sites is used to interrogate the expert. (NOTE: Most of the interaction, from
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hereon, is through ASKE's graphical interface.)

(Obtain classification of different data types.)
[7\ W hat are the different types of artifacts ?
=> pottery, stone, metal
[8] W hat are the different types of features ?
=> pit, ditch, hearth

(Obtain classification of different solution types.)
[9] W hat are the different types of activities?
=> cooking, pottery-making, butchering, storage
[10] W hat are the different types of site profile?
=> exchange contacts, social status, occupation

(The attributes of all data types are obtained.)
[11] W hat are the im portant attributes of pottery that may 
contribute towards the interpretation of this settlement site?
=> (attribute) fabric

(possible values) coarse, fine
(attribute) decoration
(possible values) plain, ornam ented

(The relationship between data and solution is identified. This is 
used to automatically generate rules.)
[12] W hat can you conclude from the fabric of pottery?
=> (activity) cooking, storage

(site profile) exchange contacts
[13] W hat can you conclude from the decoration of pottery?
=> (activity) cooking

(site profile) exchange contacts, ritual practices

Next, ASKE generates a rule for every association between concepts. The 

concept from the data category is m ade the prem ise and the one from 

solution category the conclusion of the rule. For example, "Rulel" and 

"Rule2", below, are generated from [11], [12] and [13]. Both rules have the
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same premise but different conclusions.

R ulel
IF artifact is a pottery

fabric is (coarse, fine)
decoration is (plain, ornamented)

THEN activity is cooking

Rule2
IF artifact is a pottery

fabric is (coarse, fine)
decoration is (plain, ornamented)

THEN site profile is exchange contacts

The automatically generated rules are very general and further editing is 

required. The rules are, hence, displayed in the Rules Editor facility of 

ASKE. The expert is then asked to edit the rules. The following shows the 

edited version of the two rules.

R u lel
IF artifact is a pottery

fabric is coarse
decoration is plain

THEN activity is cooking

Rule2
IF artifact is a pottery

fabric is fine
decoration is ornam ented

THEN site profile is exchange contacts

The ASKE session ends when the rules are edited. These are then output 

to a file. Finally, ASKE creates a new  reference tem plate w hich will 

contain knowledge abstracted from the present session. This tem plate is 

stored for future sessions.
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1.7 Structure of the thesis
Chapter II presents a short resume of the expert system technology. Next, 

the process of knowledge engineering is described and some of the major 

problems in the traditional KA methods are pointed out. The advantages 

of autom ating the knowledge engineering process are presented.

Chapter III presents a classification of knowledge engineering tools. The 

ASKE system is categorized according to this scheme and some of the 

other systems w ithin the category are reviewed. Finally, a m odel for 

automatic KA is presented.

Chapter IV discusses the three main features of ASKE. The characteristics 

of analysis problem s, from which the task m odels are derived, are 

described. Next, a case for using previous examples to guide KA is 

presented. Finally, the representational scheme of templates is introduced.

Chapter V presents the ASKE system. The presentation is focussed on: the 

ASKE m ethodology for KA; how it is im plem ented; and, the various 

interface facilities p rovided for the user to encode h is /h e r  dom ain 

expertise.

Chapter VI presents an example of how  ASKE processes information. 

ASKE is used  for developing an initial p ro to type for in terp reting  

archaeological settlement sites from material remains.

Chapter VII presents a discussion of the ASKE system. The issues that 

arise from the research are discussed.

Chapter VIII presents the conclusion. A sum m ary is given as well as 

future research directions.



Chapter XT

EXPERT SYSTEMS 
AND KNOWLEDGE ENGINEERING

Knowledge is an artifact, w orthy of design.

2.1 What is an Expert System?
Expert systems are computer program s which solve problems by applying 

substantial knowledge of specific areas of expertise. They are basically "a 

high-level intelligent support for the hum an expert" (Feigenbaum and 

M cCorduck, 1983:86). This is because they do not have any general 

m echanism  for common sense reasoning, bu t contain know ledge of 

highly circumscribed domains. Expert system s thus act as "intelligent 

assistants" by providing quick solutions to problems which m ay or may 

not be definitive and the final decision rests with the user of the system.

Knowledge is the major factor in the performance of an expert system. It is 

held in the knowledge-base module of the expert system (Figure 2-1) and is 

typically represented in one of two main formalisms: production rules and 

structured objects (e.g., frames and semantic nets). Depending on whether 

rules or objects are used for codifying the problem-solving know-how of a 

hum an expert, the system is called rule-based (e.g., MYCIN) or model- 

based (e.g, INTERNIST), respectively. Of the two, rule-based expert systems 

are more in vogue. The KA research presented in this thesis is geared to 

produce knowledge-bases for rule-based expert systems only.



Expert Systems and Knowledge Engineering 18

2.1.1 Rule-Based Expert Systems

The m ethodology for m any contemporary expert systems is derived from 

the MYCIN system, which was developed at Stanford in the mid-1970's. It 

uses expert medical knowledge to diagnose and prescribe treatm ent for 

spinal m eningitis and bacterial infections of the blood. Two of the most 

im portant legacies of the MYCIN project were: a prototype for rule-based 

systems and an architecture for expert systems.

The guiding principle for rule-based systems is that "the knowledge critical 

for decision-making can he encoded in the form of highly m odular rules" 

(Weiss and Kulikowski, 1984:4). The dom ain knowledge of rule-based 

systems is represented as sets of rules that are checked against a collection 

of facts or knowledge about the current situation. Rules are expressed as 

IF-THEN statem ents. The IF part of the rule is usually referred to as 

prem ise or condition and the THEN p art as conclusion or action. 

Typically, knowledge in rule-based systems is represented as situation- 

action rules of the following form:

IF There is evidence that A and B and C are true,
THEN Conclude there is evidence that D is true (0.9).

Rules often have certainty factors, which numerically indicate the strength 

of the rule, associated w ith them. In the above rule, the num ber 0.9 

indicates that the evidence is strongly indicative (0.9 of 1) b u t not 

absolutely certain. C ertainty factors p rovides a m eans of d raw ing  

inferences from uncertain or incomplete data. The ability to reason under 

uncertainty is often cited as one of the m ain characteristics of expert 

systems distinguishing it from conventional programs.

In expert systems, the main sources of uncertainty are the use of abductive 

inference and the reasoning with missing or unreliable data. In abductive 

reasoning, one reasons from prem ise to conclusion: if P then  Q. The
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uncertainty in this is that there m ight be other premises w hen Q is true, 

for example: if Z then Q. However, w ithin a narrow ly defined problem 

area it is possible to specify all premises when a certain conclusion is true. 

For instance, w hen configuring a com puter, the com ponents either go 

together or they do not. In this case, there is no need for certainty factors.

A nother of the features th a t d istingu ishes expert system s from  

conventional com puter program s is th a t there is a rig id  separation 

betw een the problem -solving know ledge (i.e., know ledge-base) and 

m ethods for utilizing this knowledge (i.e, inference engine). In MYCIN, 

for instance, dom ain knowledge is encoded as rules. This knowledge is 

separated from the mechanism  of interpreting and applying the rules 

(Figure 2-1). MYCIN has provided a prototype for current expert systems.

RULE-BASED EXPERT SYSTEM

KNOWLEDGE BASE INFERENCE
ENGINE

RULESFACTS INTERPRETER

SCHEDULER

Figure 2-1 The structure of an expert system.

Two main elements of an expert system are; a knowledge-base consisting of facts 
(data) and rules that use those facts for decision making; and an inference 
engine consisting of a rules scheduler and interpreter which select and operate 
on the rules in the knowledge-base to produce solution/s of the problem. 
Another element of an expert system, not shown in the Figure, is that of user 
interface through which the user accesses the expert system.

The m ain advantage of separating knowledge and control in an expert 

system is that the same inference engine can be utilized to drive different
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knowledge-bases. An expert system stripped of its knowledge (i.e., an 

inference engine w ith a knowledge representation language) is called a 

"shell". One of the best examples of a shell is EMYCIN (Buchanan and 

Shortliffe, 1984), which was produced by rem oving specific dom ain 

knowledge from MYCIN. EMYCIN has been used to effectively drive the 

knowledge-base of several expert systems.

2.1.2 Knowledge-Base

The knowledge-base consists of facts (or data) and production rules which 

reason about the facts. A rule is expressed as a conditional statement with 

an antecedent (premise or condition) and a consequent (conclusion or 

action) component. The rule defines that if the antecedent condition can 

be satisfied, the consequent can be too. When the consequent is an action, 

the effect of satisfying the antecedent is to schedule the action for 

execution. When the consequent is a conclusion, the effect is to infer the 

conclusion. Facts, in contrast to rules, are static and  inactive. They 

represent concepts, properties and relations. These are utilized by the 
rules, as the following example shows.

Rulel FACTS
IF X is-an activity-area

the content of X is-a firepit activity-area
THEN activity of X is sleeping-room kiva

Rule2
content: squash
location: subterranean

IF X is-an activity-area plaza
the location of X is subterranean content: firepit

THEN activity of X is ritual location: ground

The facts knowledge-base consists of two activity-areas: kiva and plaza, 

which are described by two properties of content and location. The two 

rules infer the activity of an area from the given facts. X in the rule is a 

variable and could be substituted by either of the activity-areas. For
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example, if X is assigned the value "kiva", the result w ould be: "activity of 

kiva is ritual".

The know ledge of expert system s is norm ally derived from  hum an 

experts, rather than from other knowledge sources such as text books and 

manuals. Experts are people who are very good at solving specific types of 

problem s. Their skill usually  comes from  extensive experience, and 

detailed  specialized know ledge of the problem s they handle. The 

applications of expert system are now so extensive that an accurate list of 

domains of applications would be much too long to include here.

2.1.3 Inference Engine
The inference engine contains knowledge for deciding: |1] how  to apply 

the domain knowledge, and when and in w hat order to apply different 

pieces of dom ain knowledge. The first provides the global regime for 

controlling the behaviour of the system. This knowledge is dom ain- 

independent and tends to be hard-wired into the interpreter. At the global 

level of control the main decision is m ade regarding w hether the rules 

shou ld  be driven  backw ard or forw ard. In the backw ard  driven  

interpreter, the chaining starts from the conclusion to be established to 

satisfying the conditions necessary for its truth. In the forw ard driven 

system, the chaining progresses from the conditions that are known to be 

true towards the conclusions to be established.

The second control regime is explicitly coded into the scheduler, which 

controls the system behaviour at the local level. The knowledge at this 

level is dom ain-dependent and includes m ethods of conflict resolution 

(e.g., refractoriness, recency and specificity) which determine which and 

w hen rules are fired. These resolution mechanisms vary from system to 

system.
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2.2 The Knowledge Engineering Process
The term  knowledge engineering (KE) was coined in the mid-1970’s by 

Feigenbaum  (1977) and refers to "the process of m apping an expert's 

knowledge into a program 's knowledge-base" (Buchanan and Shortliffe, 

1984:5). The KE process consists of three stages: elicitation, formalization 

and implementation, as represented in Figure 2-2^.

Domain
Expert

elicitation
techniques

CKnowledge ^  
Engineer^^^^

pueblo
activity area
living room
plaza
butchering
hunting
spear

sta g e  1 
(e lic ita tio n )

2  " \
if___
then

if___
then

Stage 2 
(fo rm a liza tio n )

stage 3 
(implementation)

Figure 2-2 The Knowledge Engineering Process

Constructing an expert system involves selecting an appropriate problem, 
finding available expert(s), and possessing an appropriate system building 
tool. The next major task is KA, which involves elicitation, formalization and 
implementation of problem-solving knowledge.

W ithin the context of automatic KA, KE and KA are synonym ous, they 

connote the encoding of an expert's know ledge w ith in  a com puter

} Note that though the three stages are described as occurring in isolation from one another, 
in reality, they are carried out concurrently. For instance, a knowledge engineer while 
eliciting knowledge would also be thinking about formalization. Moreover, the 
representational scheme that is adopted is often strongly influenced by the knowledge 
engineer's favourite tool for building expert systems; although this depends on the choice of 
methodology used for expert system development.
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program. However, KE subsumes KA in the normal usage of the term (i.e., 

w hen m anual m ethods are em ployed). For instance, in the KEATS 

m ethodology , KE is characterized  as consisting  of "acquisition, 

representation, implementation and debugging of (a model of) the expert 

reasoning and phenomenology for a chosen target domain" (Motta, et al., 

1989a:298). The acquisition stage includes know ledge elicitation and 

interpretation of data.

The KEATS methodology is one of the m ost comprehensive description of 

the KE process, however, its applicability is restricted to semi-automatic 

(see Section 3.2 for definition) and m anual m ethods of KE. From the 

perspective of KA systems, and the one which this thesis presents, the KA 

process also includes representation and im plem entation stages. This is 

implicit in the design of KA systems: they interact directly w ith a domain 

expert to produce a prototype system. And their KA activity include the 

three stages depicted in Figure 2-2. In the rest of this subsection, I will 

briefly describe the three stages of KA.

2.2.1 Knowledge Elicitation

The elicitation stage involves extracting problem -solving expertise from 

the dom ain expert. This is rather a difficult stage of KA m ainly because 

there are no definite guide-lines for perform ing knowledge elicitation 

(Forsythe and Buchanan, 1988). W hat is available is an arsenal of 

techniques, for exam ple, interview ing, verbal protocol, and scaling 

m ethods. There has been som e research on the m apping  betw een 

techniques and types of know ledge (e.g.. Burton et al., 1987, 1988; 

Gammack and Young, 1985). For example. Burton et al., from their 

comparative study of techniques over experts, conclude that the laddered 

grid technique is particularly suitable for classification domains. However, 

they also note that "techniques are differentially suitable for different 

experts" (1988:89).
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In spite of a large num ber of techniques available for know ledge 

elicitation, knowledge engineers, to a large extent, use interviews and 

verbal protocols only. U nfortunately, neither of these techniques are 

structured  enough to be autom ated. Psychometric techniques such as 

repertory grid, on the other hand, have been autom ated (e.g.. Boose, 1985, 

Shaw and Gaines, 1987). I will briefly describe each of these techniques. 

(For a more comprehensive survey of techniques see: Neale, 1988; Burton 

and Shadbolt, 1987; and Welbank, 1983).

Interview s

In terv iew ing is the m ost com m only used  technique for acquiring 

problem-solving expertise from the dom ain expert. There are m any ways 

of structuring an interview, b u t they all suffer from the fact that the 

knowledge elicited m ay not be the same as that utilized in practice (e.g. 

W elbank 1983). Furtherm ore, depending on the way the questions are 

phrased, the interviewer may, quite unintentionally, introduce bias and 

error into the interviewing process (LaFrance, 1987). The attraction of this 

technique is that the knowledge engineer can have control over how  the 

session progresses, and the product of the session is norm ally an easily 

analysable transcript.

Protocol Analysis

The protocol analysis m ethod has the m erit of deriving a m uch more 

true-to-life task situation than the in terview  m ethod, bu t the final 

transcripts are much harder to analyse (Shadbolt and Burton, 1989). Like 

interviewing, there are a num ber of ways of performing protocol analysis. 

Typically, an expert is given a problem  and asked to solve it while 

thinking aloud. This is tape recorded, transcribed into protocols, and then 

analyzed - the final product is often production rules. The technique of 

verbal protocols is not w ithout problem s. For exam ple, N isbett and 

W ilson (1977) have argued that protocols reflect the subject's tacit
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knowledge about plausible causes for h is /h er responses. Thus, they have 

questioned the accuracy and consistency of verbal reports. Ericcson and 

Simon how ever suggest that "verbal reports, elicited w ith care and 

interpreted  w ith full understanding of the circumstances under which 

they w ere obtained, are a valuable and thoroughly reliable source of 

information about cognitive processes" (1980:247).

There are a num ber of other problems w ith the technique of protocol 

analysis besides their accuracy. For example,

"Protocol analyses share with the unstructured interview the 
problem  tha t they m ay deliver unstruc tu red  transcrip ts 
which are hard to analyse. Moreover, they focus on particular 
problem  cases and so the scope of the knowledge produced 
may be very restricted. It is difficult to derive general domain 
principles from a lim ited num ber of protocols." (Shadbolt 
and Burton, 1989:5)

Repertory Grid

Interviewing and verbal protocol techniques are seldom used in isolation. 

Quite often, knowledge engineers also use formal techniques derived 

from psychological testing. Repertory grid technique, devised by George 

Kelly w ith reference to his cognitive theory of personality, is one of the 

m ost popular. In the grid m ethod, first a list of elements (i.e., dom ain 

concepts) are obtained from the expert. Next, constructs, which indicate 

the dimensions upon which the sets of elements show  sim ilarities or 

differences, are elicited. Finally, each of the elements is rated along this 

dimension, usually on a numerical scale such as 1-5. The resultant grid is 

then used to derive rules. While grid  m ethod is particularly  good at 

eliciting domain concepts, it is not suitable for eliciting causal, procedural 

or strategic knowledge (e.g.. Boose, 1985; Gammack and Young, 1985). 

Furtherm ore, the technique can be dem anding on the expert if the 

num ber of elements to be compared gets too large.
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Automatic Knowledge Elicitation
KA systems perform  knowledge elicitation in one of two ways: [T] They

im plem ent a knowledge elicitation technique, for example, ETS (Boose, 
1985) uses repertory grid technique. They use the generic structure of

the task or dom ain to drive knowledge elicitation; for example, MOLE 
(Eshelman and McDermott, 1986) uses a heuristic classification model 
(Clancey, 1985) to elicit knowledge from domain experts.

2.2.2 Knowledge Formalization

The fo rm alization  stage includes dom ain  concep tua lization  and 

knowledge representation. At this stage, the raw  knowledge from the 

elicitation stage is given struc tu re  by m apping  it onto a suitable 

representational scheme; the concepts, sub-problems and control features 

are formalized into representations such as frames and rules. In MYCIN, 

for instance, the form alization stage involves m apping the facts into 

attribute-object-value triples. Consider the facts about the organism  

bacteriodes. It has three im portan t identifying features: gram  stain, 

m orphology and aerobicity with the values gramneg, rod and anaerobic 

respectively. This would be formalized as follows:

IF the gram stain of the organism is gramneg, and 0
the morphology of the organism is rod, and [2]
the aerobicity of the organism is anaerobic 

THEN there is suggestive evidence (.6) that the 
identity of the organism is bacteriodes

The conceptualization and representation stages are view ed here as 

intertwined: the raw  knowledge is given structure by m apping it directly 

on to  the chosen rep resen ta tiona l schem e. In the  non-au tom atic  

methodologies of KA, however, there is a fine line draw n between the two 

stages. Motta et al. (1989b:9), for example, argue:
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"At the dom ain conceptualization stage, the know ledge 
engineer attempts to impose a global structure upon the data 
collected so far in order to produce an abstract model of the 
problem in terms of taxonomic hierarchies, causal networks, 
tables, flow diagrams, or whatever organization s /h e  finds 
convenient for m odelling the dom ain and the problem ­
solving structure of the problem. The im portant elem ent 
th a t d iffe ren tia te s  th is level from  the  know ledge  
representation one is tha t the representation at this level 
doesn't need to be runable, but is m eant to be a semi-formal 
characterization of the structure of the task."

2.2.3 Im plem entation

At the im plem entation stage the knowledge from stage tw o is m apped 

into a representational formalism which is associated w ith the tool chosen 

for in^ lem en ting  the knowledge-base. It is however often the case that 

the representational scheme adopted in the previous stage is strongly 

influenced by the representational and reasoning facilities afforded by the 

im plem entation toolkit. For example, the above MYCIN rule is directly 

translated into a runable form:

PREMISE: ($and (same cntxt gram gramneg)
(same cntxt morph rod)
(same cntxt air anaerobic))

ACTION: (conclude cntxt identity bacteriodes tally .6)

In automatic KA, the implementation and formalization stages are closely 

related. They are best view ed as tw o levels, in ternal and external. 

Im plem entation is the data represented internally in the machine and 

hidden from the user. Formalization is the external representation of the 

same data, presented to the user.

2.3 Knowledge Engineering Methodologies
There are three m ain approaches to build ing knowledge-bases: rap id  

prototyping, knowledge-analysis and task-specific (W oodward, 1989). In
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rap id  prototyping, the know ledge engineer attem pts to im plem ent a 

prototype expert system as soon as sufficient knowledge is extracted. In the 

knowledge-analysis approach, the knowledge engineer only attem pts the 

first two stages of KA. The implementation stage is delayed until all of the 

expert knowledge is elicited. In the task-specific approach, models of task 

characteristics are used to drive the KA process.

2.3.1 Rapid Prototyping

For this approach, the process of KA is as depicted in Figure 2-2; the 

knowledge engineer w ould elicit knowledge, m ap this into a suitable 

representation scheme and implement a prototype system which is then 

tested and built upon. Usually, the final representational form alism  is 

selected prior to the elicitation procedures. The underlying assum ption for 

this approach is that know ledge-base construction is an inherently  

experimental process (Hayes-Roth et al., 1983).

2.3.2 Knowledge-analysis

The basic assum ption underlying this approach is that "knowledge is a 

m ulti-level phenom enon" (W oodw ard, 1989:155). Static know ledge, 

according to Brachman (1978) is represented at five different levels: 

linguistic, conceptual, epistem ological, logical and im plem entational. 

Breuker and W ielinga (1985) argue that knowledge should go through 

multi-level analysis for an effective knowledge-base. They have proposed 

a m ethodology, based on know ledge-analysis, for developing expert 

systems called KADS. The starting point of the KADS methodology is that 

there should be a fairly complete conceptual model of a future knowledge- 

based system before any serious effort towards design and implementation 

is spent. This conceptual model is represented at the epistemological level.

At the heart of the KADS approach is the notion of "Interpretation 

Model", a template structure which contains a generic task model:
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"An interpretation model is a generic model of the problem­
solving process for a class or prototype of task [e.g., diagnosis, 
m onitoring and planning]. It looks like a catalogue of task- 
specific ingredients from which selections can be m ade that 
appear to m atch the knowledge structures of the domain." 
(Breuker and Wielinga, 1987:31)

Interpretation  m odels provide expectations of the kind of knowledge 

required for solving application tasks. Their main role, however, is in the 

analysis of data.

2.3.3 Task-Specific

W hile the knowledge-analysis approach is characterized by analysis of 

knowledge at m ultiple levels, the task-specific approach relies on only 

single level analysis of the task. The underly ing  assum ption in this 

approach is that functional models of tasks and problem-solving methods 

can be used to guide KA. A problem-solving m ethod contains task-specific 

knowledge, such as the different roles knowledge plays in the task, and 

control knowledge which define the order in which subtasks have to be 

solved to perform  the task. The task-specific approach is exemplified in 

M cDermott's (1988) role-lim iting m ethod and Chandrasekaran 's (1987) 

generic tasks. These m ethods provide im provem ents on the rap id  

p ro to ty p in g  approach . Both advocate  th a t the  e lic ita tio n  and 

representation of knowledge is guided by the generic structure of the task 

which is initially identified. There are however a num ber of im portant 

differences between knowledge-analysis and task-specific approaches.

In the knowledge-analysis approach there is an em phasize placed on 

explicitly separating the different types of knowledge found in expertise. 

There are four m ain levels of knowledge: dom ain, task, inference and 

strategic (e.g., Breuker and Wielinga, 1985; Shadbolt and Burton, 1989). The 

dom ain and the task level knowledge are sometimes called declarative 

and p rocedural know ledge, respectively. D eclarative know ledge is 

"knowing that": the static aspects of knowledge such as facts about objects.
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events and their relations; procedural knowledge is "knowing how": how 

to find relevant facts and make inferences (Winograd, 1975). The inference 

level know ledge describes the overall system  behaviour, about how 

expertise is organized and used. The strategic knowledge describes the 

strategy used in problem-solving.

In the task-specific approach such a fine-grained distinction between the 

various know ledge types is no t m ade. The inference and strategic 

knowledge tend to be implicit in the system and used with some task level 

knowledge to drive the KA process.

The task-specific approach clearly identifies the importance of building 

KA tools specific to the task type. The emphasis is to limit the role of the 

expert to the provision of dom ain- or task-specific know ledge. The 

know ledge-analysis approach tends to involve the expert to a m uch 

greater degree so that the resulting knowledge-base reflects the benefits of 

the multi-level analysis of the knowledge. However, the emphasis is more 

on the analysis of know ledge to the extent that the im portance of 

knowledge elicitation is underm ined.

The knowledge-analysis approach provides a general KE methodology. 

The approach presum es that KA will be done by a knowledge engineer, 

with or w ithout some automated assistance. The task-specific approach, on 

the other hand, specifically addresses the question of how to automate the 

KA process. The methodology assumes that KA will be ultim ately carried 

out by a KA tool, w ithout the intervention of a knowledge engineer.

2.4 Problems in Knowledge Acquisition
Techniques for KA are still at an early stage of development. The process 

of transferring knowledge from an expert's head to a computer program  is 

still labour-intensive and time-consuming, m aking it the m ost expensive
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component of the construction of an expert system (Duda and Gaschnig, 

1981). The real problem seems to be the fact that there is no well defined 

m ethodology for doing KA. Guide-lines abound (e.g., Bobrow et al., 1986; 

Grover, 1983; Hayes-Roth et al., 1983), however they are just adhoc recipes 

for the knowledge engineer. The lack of any formal theory of knowledge- 

engineering has m eant that knowledge engineers have had to employ 

trial and error to build expert-level prototypes which take as long as 6-24 

man-m onths (McDermott, 1982; Smith and Baker, 1983). Besides the lack 

of methodology, further obstacles to KA stem from the agents involved in 

the process: the expert and the knowledge engineer.

2.4.1 Expert

Expert systems are founded on the premise that hum an expertise can be 

codified and replicated by rule-following machines. The elicitation of 

expertise is however a non-trivial task. The m ain reason for this is that 

hum an expertise lies in laid-down experience, gathered over a num ber of 

years. As an individual progresses from the status of a novice to that of an 

expert h is /h e r knowledge is built up incrementally^. Facts, once unrelated, 

get integrated through occurrence in the same episodes. W ith the increase 

in expertise at problem -solving, chunks of know ledge are integrated 

together into higher order chunks. An expert thus has m ore and better 

organized chunks of knowledge than a non-expert (e.g.. Chase and Simon, 

1973). This knowledge, however, cannot be easily extracted as has been so 

often claim ed to be. For exam ple, according to Feigenbaum  and 

McCorduck (1983) knowledge is some tangible in the heads of experts and 

can be mined. This is rather a misguided view because expert knowledge is 

so routinized that experts no longer know how they solve problems. The 

knowledge is tacit and is not available to conscious awareness (Johnson, 

1983).

 ̂For a discussion of how expertise is acquired see Section 4.3.1.
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The nature of the expert knowledge makes the task of KA difficult: experts 

find it difficult to describe exactly how they do w hat they do, especially 

w ith respect to their use of judgem ent, experience, and intuition (Duda 

and Gaschnig, 1981). Furthermore, some of the expertise is m ade up of 

unarticulated understanding of the world and task at hand (e. g., Collins et 

al., 1985), and it has never before explicitly acquired bu t obtained through 

experience (Berry, 1987). And even when knowledge is forthcoming, there 

is always the possibility that this knowledge m ay be incomplete or even 

incorrect (Gaines, 1987).

Very often, KA is carried out in a room, away from the dom ain expert's 

place of work. This is especially true w hen KA is done by a system. 

However, this can be a problem. For example, Godden and Baddeley (1975) 

found that recall is best in the environm ent in which inform ation is 

encoded. If the expert's performance varies w ith the context, it will be 

necessary to do KA in the expert's normal place of work.

A more serious problem than the context-dependency of m em ory is that 

of compiled knowledge. According to Anderson's (1987) m odel of skill 

acquisition, knowledge which was once represented explicitly through 

repeated use becomes "com piled-dpwn" to become implicit. A result of 

this is that the expert's perform ance becomes m ore efficient. For the 

knowledge engineer, however, eliciting expertise becomes difficult because 

the hum an, on becoming an expert, loses access to the problem -solving 
knowledge.

The personality  of the expert h im /h e rse lf  is a fu rther source of 

complication. The attitude of the domain expert towards the building of 

an expert system, for instance, can create problems (Burton and Shadbolt, 

1987). Obviously, an uncooperative expert can make the task of knowledge 

extraction very difficult.
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As poin ted  ou t earlier, expertise is m ade up  of different types of 

know ledge. Gammack and Young (1985) have argued tha t different 

techniques differentially  tap  d ifferent know ledge types. A form al 

evaluation of knowledge elicitation techniques by Burton et al. (1987) has 

revealed that the efficacy of each technique is also differentially related to 

experts' individual characteristics. For example, they found that over 50% 

of the variance in elicitation time for in terview ing technique was 

accounted for by personality factors.

2.4.2 Knowledge Engineer

Because the required form at for expressing knowledge is complex and not 

easy to learn, busy experts m ay be unw illing to devote the time to 

m astering these techniques and find it easier and quicker to communicate 

w ith a knowledge engineer. The knowledge engineer's task is to explain 

the program 's fram ework to the expert and to translate the expert's 

problem-solving knowledge into the framework. However, the latter task 

requires the know ledge engineer to have a deep know ledge of the 

application dom ain. This adds precious time to the knowledge-base 

developm ent cycle.

The biggest problem  however is lack of communication betw een expert 

and knowledge engineer. Because the knowledge engineer is really a 

layman, the expert is forced to provide simplified explanations and in the 

process s /h e  leaves out relations or concepts which very often turn  out to 

be im portant for the performance of the program  (Buchanan, 1969). An 

added complication is that "both the expert and the program m er are 

sim ultaneously  developing representations of the dom ain th a t they 

believe are appropriate for the task and for the program  that performs that 

task" (Buchanan, 1979:418). The success of the project will therefore 

depend on the degree of concurrence between the two models.
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2.5 Automation of the Knowledge Engineering process
One trend in KA research is to eliminate the knowledge engineer and get 

the expert working directly with a shell. Shaw and Gaines (1987) identify 

several reasons to doubt that hum an labour is the appropriate solution for 

"the knowledge engineering problem". They suggest that using a hum an 

intermediary may be less effective:

"knowledge may be lost through the interm ediary and the 
expert's lack of knowledge of the technology may be less of a 
detrim ent than  the knowledge engineer's lack of dom ain 
knowledge" (111).

The autom ation of the know ledge engineering process involves the 

developm ent of a software tool which w ould enable dom ain experts to 

encode their expertise directly into the system. This w ould have the 

follow ing advantages over the trad itiona l practice of know ledge 

engineering.

The knowledge engineer is rem oved from the knowledge-base 

developm ent cycle. This eliminates all problem s related to the 
knowledge engineer.
The problems related to the expert's personality are eliminated. 

There is an im plicit assum ption that if the expert decides to 
develop an expert system then s /h e  will be self determ ined and 
m otivated.
The com m unication barrier is rem oved. The expert does not 

have any need to simplify h is /h e r  explanations assum ing the 
tool can understand h im /her.

In replacing a know ledge engineer w ith a KA tool one m akes tw o 

assum ptions. First, the dom ain expert is com puter literate. This is 

probably a safe assumption to make in the current era of microelectronic 

revolution. Second, the dom ain expert knows w hat expert system s are
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and the role they play in decision making. Norm ally, a knowledge 

engineer w ould brief the expert on the subject. However this is not such a 

crucial assumption as the basic principles of expert systems technology are 

not hard to grasp and can be understood in a m atter of hours.

By replacing the knowledge engineer, there will be an added onus on the 

system  developer to provide an "intelligent" interface to the system. 

Smith and Baker (1983), for example, have emphasized the importance of 

good interface for user acceptance. Their system for interpreting oil-well 

logs, Dipm eter Advisor, has 42% of the code devoted to interface. Kitto 

(1988), after examining the KNACK (Klinker et al., 1987) and AQUINAS 

(Boose and Bradshaw, 1987) tools, found that a knowledge engineer was 

required for an efficient use of the facilities provided by these systems.
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KNOWLEDGE ACQUISITION

In part, they were correct.

3.1 Introduction
Once it had been realized that KA was a major obstacle in expert system 

developm ent, researchers started looking tow ards autom ating the KA 

process. The search for autom ated solutions to the problem can be traced 

back to TEIRESIAS (Davis, 1979). TEIRESIAS was the first system  to 

conduct a dialogue with the expert in order to expand the knowledge-base. 

Since these initial efforts, a large variety of tools have been created which 

assist in the building of expert systems. Their position in the development 

cycle is depicted in Figure 3-1.

EXPERT
KNOWLEDGE

ENGINEER.

KNOWLEDGE
ENGINEERING

TOOL
KNOWLEDGE

BASE

Figure 3-1 Overview of Knowledge Engineering

Either an expert or a knowledge engineer uses a KE tool to create a knowledge­
base for the application.
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3.2 A Classification of Knowledge Engineering Tools
Autom atic aids to KA m ay be categorized by the degree to which the 

elicitation stage is automated. Accordingly, the KE tools can be divided 

into three groups of: KE environments, KE support-tools and KA systems. 

Figure 3-2 represents this classification.

KNOWLEDGE ENGINEERING TOOLS

KNOWLEDGE 
ENGINEERING 

ENVIRONMENTS 
(e.g., EMYCIN, KEE)

MACHINE
LEARNING
SYSTEMS

KNOWLEDGE
ACQUISITION

SYSTEMS

KNOWLEDGE 
ENGINEERING 

SUPPORT TOOLS 
(e.g., KEATS)

INTERACTIVE
SYSTEMS

INDUCTION KNOWLEDGE MODELLING TECHNIQUE
SYSTEMS DRIVEN APPROACH DRIVEN

(e.g., EXPERT-EASE) (e.g., MOLE) (e.g., ASKE) (e.g., ETS)

Figure 3-2 Classification of Knowledge Engineering Tools

There are three major classes of KE tools: environments, which do not play any 
role in knowledge elicitation; support-tools, which provide semi-automatic 
help to the knowledge engineer in encoding and analyzing data; and KA 
systems, which automatically elicit knowledge from domain experts.

Before going on to describe the various KE tools I w ould  like to 

summarise the level of refinement that is to be found in the three groups. 
The tool types are compared along four dimensions: the robustness of

im plem entation, i.e., w hether commercial or research; the tools 

contain some epistemological model which is used to guide KA; the 

interm ediate knowledge representation (KR) facilities provided; and 

the support for carrying out knowledge elicitation.



Knowledge Acquisition 38

Level of Refinem ent E nvironm ents Support-tools KA Systems
Im plem entation comm ercial 

(KEE, ART)

com m ercial
(KEATS)

research 
(MOLE, ASKE)

Epistemological
M odel

none som etim es
(task-specific)

yes

Interm ediate KR m any m any one
Elicitation none data analysis 

only
elicitation is 
autom ated

W hile bo th  KE Environm ents and Support-tools are available as 

commercial system s, KA system s are still a t the research stage of 

development. One of the main characteristics of KA systems is that carry 

out know ledge elicitation, which is guided by some epistem ological 

model. Epistemological models are used by Support-tools to provide 

facilities for data analysis, for example, analysing protocols. Environments 

contain no epistemological models and they do not normally provide any 

facility for knowledge elicitation. Most of the Environm ents, however, 

provide m ultiple schemes for representing know ledge (e.g., fram es, 

objects, rules). Support-tools often contain more than one KR formalism. 

KA system s are m ore restric tive , they tend  to have only one 

representational scheme.

3.2.1 Knowledge Engineering Environm ents

A KE environm ent provides the knowledge engineer w ith a workbench 

for implementing a knowledge-based system. Its facilities include one or 

m ore form alisms for knowledge representation and a knowledge-base 

editor. It serves a rather passive role in KA. The know ledge engineer 

elicits knowledge from the domain expert w ith virtually no help from the 

tool. The knowledge engineer then has to decide for h im /herself how  to 

encode the elicited knowledge. Basically, the KE environm ents provide



Knowledge Acquisition 39

knowledge encoding facilities bu t they do not explicitly prescribe any 

methodologies for carrying out the KA process.

W aterman(1986) categorizes these as either skeletal system s (more 

commonly known as "shells") or general purpose systems (also referred to 

as "program m ing environm ents" or "toolkits"). Shells (e.g., EMYCIN, 

ROSIE) offer a faster, cheaper development route but they constrain the 

designer in the lim ited formalisms they support. H ybrid toolkits (e.g., 

ART, KEE, Knowledge-Craft) offer the user a choice of know ledge 

representations and inference methods. The greater choice afforded by the 

toolkits however does not make KA any easier, bu t on the contrary, "they 

provide the knowledge engineer w ith a bewildering array of possibilities 

and little, if any, guidance under w hat circumstances which of these 

possibilities should be used" (Reichgelt and van Harmelen, 1986:2).

3.2.2 Knowledge Engineering Support-Tools

The KE support-tools go one step further than the previous class of tools: 

they contain m ost of the features of the environm ents and also provide 

semi-automatic help at the knowledge elicitation stage. This assistance is 

norm ally in the form of sem i-autom atic transcript analysis and  some 

autom atic  in terv iew ing. N orm ally , a support-too l w ill include a 

methodology for KA. However, the KA process is not autom ated and the 

m ain decisions about which and w hen to use a particular knowledge 

elicitation technique is left in the hands of the know ledge engineer. 

Furthermore, like environments, support-tools are quite complex to use.

An example of this class of tools is KEATS (Motta et al., 1989a,1989b), 

which is a toolkit that is based on a m ethodology for building expert 

system s. KEATS provides sem i-autom ated help to the know ledge
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engineer in data analysis and dom ain conceptualization. It contains a 

hypertext-based facility called Acquist, which allows the know ledge 

engineer to analyse transcripts and create conceptual m odels of the 

domain. KEATS does not, however, take an active role. All the decisions 

are taken by the knowledge engineer.

3.2.3 Knowledge Acquisition Systems

The knowledge acquisition systems are completely automatic. They elicit 

knowledge from a domain expert and generate a prototype. These systems 

typically interact w ith dom ain experts, organize the know ledge they 

acquire, and generate a knowledge-base. There are two major classes of 

systems within this group: Machine Learning (ML) and Interactive. The 

ML systems use techniques such as induction, analogy and case-based 

reasoning to learn new things. For the purpose of this thesis we will only 

look at the subclass of ML systems that use induction. The interactive 

systems use some kind of specialist knowledge and a methodology for KA.

3.2.3.1 Induction Systems

Induction systems use inductive learning techniques to extract knowledge 

from experts. Inductive learning connotes the use of inductive inference 

on specific instances to arrive at general descriptions (Michalski, 1983). 

Typically, an expert supplies a set of domain examples of different types of 

decisions, called a training set, together with the attributes which describes 

the exam ples, and  values s /h e  assigns to those attributes. From the 

training set, the system induces a set of rules, which are often constructed 

in the form of a decision tree. The rationale behind these systems is that 

experts pass on their knowledge to apprentices, through their ability to 

identify  key concepts of the dom ain and p resen t them  as tu torial 

examples. They are thus more geared to providing cases or examples of 

their decisions (Michie, 1986).
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For experts unaccustom ed to form alizing their expertise, the inductive 

m ethod of KA m ay be m ore convenient (Gruber and Cohen, 1987). 

Generally, induction is "a viable KA m ethod if the problem  dom ain is 

sufficiently simple and well-defined" (Michalski and Chilausky, 1980:79). 

The problem  with this m ethodology is that the expert needs to provide 

examples to cover all possible cases because an incomplete or inadequate 

set is likely to result in poor rules (Hart, 1986). Since experts cannot 

account for all they know, there can be no certain way of telling whether 

the supplied attributes constitute a sufficient set for the construction of a 

valid decision tree. Furthermore Quinlan, whose original ideas led to the 

creation of the EXPERT-EASE system, reports that "finding small but 

adequate sets of attributes for the chess end game king-rook king-knight 

problem s was a considerable task" (1982:201). If this was found to be a 

problem in such domains as chess that is well defined and understood, it 

is very likely to be a serious obstacle to the application of this methodology 

in real world problems.

3.2.3.2 Interactive Systems

Interactive systems extract knowledge by carrying out system -driven 

dialogue w ith a domain expert. They differ from inductive systems in that 

they do not have a learning algorithm, but rather, the interrogation of the 

expert is guided by some specialist knowledge. A num ber of interactive 

systems have been developed within the last 5 years. Most of these can be 

classified into three groups: technique, knowledge or m odelling based. I 

will describe these three subclasses of interactive systems and compare 
them along two dimensions: breadth - the scope of applicability of the

system; and depth - the quality of the knowledge base produced.

The above classification is, of course, not the m ost comprehensive one. It 

however serves the purpose of locating the ASKE system within the range 

of KE tools. Before we go on to a discussion of the various interactive
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system types it would be useful to compare these systems along the four 

knowledge-level dimensions: inference, strategic, task, and dom ain. A 

"know ledge-level" descrip tion  was p roposed  by N ew ell (1982) to 

differentiate the types of knowledge necessary for solving a problem from 

the symbols used to represent knowledge. Basically, the analysis of an 

application task at the knowledge-level consists of a specification of the 

behaviours necessary for solving a problem ; the symbol-level analysis 

consists of a specification of the computational mechanisms for modelling 

those behaviours. The comparison of systems on the four dimensions can 

provide useful insights on the kind of knowledge that they utilize for KA.

Knowledge Types ASKE KNACK PROTEGE OPAL MOLE ETS

Inference yes no no yes yes yes
Strategic no yes yes yes no no
Task yes yes yes yes yes no
D om ain yes yes yes yes no no

Technique-based KA systems

The characteristic of the technique-based system s is their use of 

psychological elicitation techniques as the basis for KA. Because of the 

domain- and task-independent nature of the techniques, systems based on 

them have a wide scope of applicability. The technique-based systems can 

be used to acquired knowledge for a wide variety of applications. These 

systems are said to have breadth. For example, ETS (Boose, 1985) and 

KITTEN (Shaw and Gaines, 1987) both use the repertory grid technique to 

acquire knowledge from an expert. A strength of these systems is that they 

can be used to acquire knowledge for solving any task for which solutions 

can be enum erated a priori.

By using a particular elicitation technique, a system also inherits all its



Knowledge Acquisition 43

limitations. The repertory grid m ethod, for example, is not very good at 

obtain ing  p rocedural know ledge. An expert system , for effective 

performance, m ust have both procedural and declarative knowledge. The 

knowledge bases produced by the repertory grid systems are, therefore, not 

deep.

Knowledge-based KA systems

The knowledge-based KA systems employ task-specific methodologies, 

and they derive their KA power from the use of task-specific knowledge. 

This know ledge is often in the form of a problem -solving m ethod, a 

procedure for solving an application task. The m ethod defines "the roles 

that the task-specific knowledge it requires m ust play and the forms in 

which that knowledge can be represented" (McDermott, 1988:228). For 

example, SALT (Marcus et al., 1985), a system for developing certain types 

of constructive tasks, knows that for a design specification it m ust have 

lists of constraints and fixes for constraint violations. It obtains this 

knowledge by using the problem-solving m ethod of propose-and-revise.

MOLE (Eshelman and McDermott, 1986) employs the problem -solving 

m ethod of cover-and-differentiate, which is suitable for certain types of 

diagnostic tasks. It starts w ith a set of sym ptoms supplied by the user. 

Then, it iteratively obtains candidates that cover or explain the symptoms 

and inform ation that will differentiate the candidates. Thus, MOLE 
assumes that: the user can pre-enum erate the hypotheses or solutions

that are to be selected; and, s /h e  can define the problem  in terms of 

covering know ledge. W ith such an approach, know ledge-based KA 

systems have succeeded in developing prototype perform ance systems. 

These KA systems are therefore said to have depth.

By relying on task-specific knowledge, however, knowledge-based systems 

are rather constrained in their scope of applicability. One of the reasons for
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this is that the knowledge tends to in a compiled form leaving very little 

room  for flexibility. The MOLE system, for example, can be used for 

diagnostic tasks only.

Model-based KA system

A model-based system is one which performs KA by eliciting a m odel of 

the dom ain which is then used to obtain problem-solving expertise from 

the domain expert. This approach to KA allows the incorporation of both 

the knowledge-analysis and task-specific methodologies of KE. A model 

not only allows the conceptualization of a problem at an abstract level, but 

also facilitates knowledge elicitation (Motta et al., 1989b). The modelling 

approach has been successfully applied in KNACK (Klinker, et al., 1987), 

which builds a model of its domain and then uses this to gather additional 

knowledge from the domain expert.

M usen (1988), in his PROTEGE and OPAL systems, provides one of the 

best examples of model-based approach to KA. His methodology explicitly 

separates the problems of creating m odels of application tasks from the 

encoding of the domain-specific knowledge. PROTEGE interacts w ith a 

knowledge engineer to build a task model, which is used to automatically 

generate KA systems like OPAL. Domain experts can then independently 

use PROTEGE-generated tools to develop performance systems.

A particu lar strength of the m odel-based approach is that it can be 

implemented to provide the system both breadth of scope and depth in the 

knowledge-base produced. This characteristic has been exploited in the 

ASKE system, which is described in the following chapters.

3.3 A Review of KA Systems
In this sub-section, I will present a review of five KA systems: ROGET 

(Bennet, 1985), ETS, MOLE, KNACK and PROTEGE-OPAL. These systems
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have been selected because they influenced the design of ASKE. The 

systems are described in terms of the following five points:

0  Description: a short statem ent about w hat the system 
does.
Category: the classification of the system in the tool tree 
depicted in Figure 3-2.
Scope: what types of problems the system tackles.

0  Strength: w hat is the main strength of the system 
[H Features: special features of the system.

3.3.1 ROGET

Description: ROGET helps a domain expert design a knowledge-base for 

an EMYCIN-based expert system. It conducts a dialogue with the expert to 

acquire the expert system's conceptual structure, a representation of the 

kinds of domain-specific inferences that the consultant will perform  and 

the facts that will support these inferences. Finally, ROGET converts each 

instance and fact into the EMYCIN's object-attribute-value representation, 

and the support relationships into rules.

Category: Knowledge-based interview system 

Scope: Diagnostic task

—len g th . ROGET contains a strong conceptual model of diagnosis, which 

it uses to obtain the conceptual structure of the new application.

—Matures. ROGET employs a set of dom ain-independent expectations, 

abstracted from the problem-solving organizations of existing diagnostic 

expert systems, to acquire the conceptual structure of the target consultant. 

The rationale for this is that the kinds of concepts that diagnostic systems 

employ and base their inferences upon are essentially the same.

3.3.2 Expertise Transfer System (ETS)

D escription: ETS employs the theory of personal construct psychology to 

elicit a dom ain expert's experiential know ledge. In particu lar, the 

repertory grid technique is used to elicit, analyse and refine knowledge. A
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typical session involves interactively constructing a rating grid of problem 

solutions and their traits. The rating grid is then transformed into rules. 

Category: Technique-based interview system 

Scope: Any classification task

Strength: Domain-independent strategy allows ETS to have a wide scope 

of applicability.

Features: ETS shows how a formal knowledge elicitation technique could 

be implemented into an automatic KA system to produce fast prototypes.

3.3.3 MOLE

Description: MOLE uses task-specific methodology to interactively acquire 

problem-solving knowledge from the dom ain expert. It understands the 

kinds of knowledge that are significant in diagnosis. This knowledge is in 

the form of the role-limiting (or problem-solving) m ethod of cover-and- 

differentiate.

Category: Knowledge-based interview system 

Scope: Diagnostic tasks

S tre n g th : W ith its task-specific m ethod, MOLE is able to acquire and 

produce diagnostic systems or prototypes.

F ea tu res: MOLE contains a perform ance com ponent which checks the 

knowledge-base for consistency. The perform ance system  provides a 

means of comparing MOLE's diagnosis with that of the expert's.

3.3.4 KNACK

D escrip tion : KNACK uses an acquire-and-present m ethod to generate 

shells, called WRINGERS, that evaluate designs and produce reports. It 

first acquires a model of the domain, the concepts and vocabulary that 

experts use in performing their task, and a sample report, a document that 

exemplifies the output a WRINGER is expected to produce. The domain 

model and the sample report is then integrated and used to elicit report 

outlines, phrases and run-time procedures for filling in reports.

Category: Model-based interview system
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S cope: Reporting tasks (e.g., w riting proposals and progress reports, 

documenting design decisions, and defining requirements for a product) 

Strength: It be used to develops expert systems which produce reports. 

F e a tu r e s : KNACK uses a num ber of know ledge roles, w hich are 

rep resen ted  as tem plates. "The know ledge role tem plates define 

im plem entation details for a piece of knowledge, and they define the 

optional parts of a piece of knowledge" (Klinker et al., 1987:75).

3.3.5 PROTEGE-OPAL

D escription: PROTEGE uses a skeletal-plan-refinement m ethod to build 

KA system s such as OPAL (M usen, 1988). A t the PROTEGE level, 

knowledge engineers work w ith domain experts to build models of tasks 

tha t can be solved using the m ethod of skeletal-plan-refinem ent. 

PROTEGE uses these task models to generate custom-tailored, graphical 

KA tools (e.g., OPAL) automatically. At the OPAL level, dom ain experts 

instantiate the task models to define new  applications. The individual 

tools then translate  the in stan tia ted  task m odels in to  functional 

knowledge-bases.

Category: Model-based interview system

Scope: Tasks that can be solved by skeletal-plan refinement

Strength: It uses model-based approach to produce KA systems, which can

be used to develop prototype performance systems.

Features: PROTEGE is unique in that its final product is not a knowledge­

base, but rather, another KA system. The m ain user of PROTEGE is the 

knowledge, however, PROTEGE-generated KA tool (e.g., OPAL) can be 

used by domain experts.
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3.4 A model for KA
From the previous review it is clear that:

Q  lor a system to have breadth of scope it m ust have task 

independent strategies; and
for depth in the knowledge-base the system requires task- 

specific knowledge.

PROBLEM
SOLVING

EXPERTISE

TASK
INDEPENDENT

STRATEGIES
acquire MODEL 

OF THE 
PROBLEM

obtain

Figure 3-3 A model for bridging the breadth-depth problem

Task-independent strategies such as problem-solving methods and knowledge 
elicitation techniques are first used to acquire some task-specific knowledge 
(e.g., task model). The system then acts as a knowledge-based KA system. It 
uses this knowledge as a guide for interacting with the domain expert to obtain 
domain-specific knowledge.

It is however possible to integrate the technique-based and knowledge- 

based KA strategies by adopting a modelling approach, as shown in Figure 

3-3. The w ider scope of applicability is afforded by the task-independent 

strategies which are employed to derive a m odel of the problem . This 

model provides the necessary task-specific knowledge for acquiring the 

problem-solving expertise from the dom ain expert.

The model depicted in Figure 3-3 is not far from the one used in KNACK 

and PROTEGE. In these systems, the task-independent strategies consist of 

the problem -solving m ethods of acquire-and-present and skeletal-plan- 

refinement, respectively. A neat solution w ould then be to m erge these
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two systems into one. The final system w ould look like Figure 3-4. The 

task-independent strategies are replaced by the two problem -solving 

methods, a simple inference strategy can be used to select an appropriate 

problem -solving method, which can then be used to acquired the task 

model of the problem.

N
acquire and

present

skeletal plan
refinement J

acquire TASK A obtain
MODEL I ^

PROBLEM
SOLVING

EXPERTISE

Figure 3-4 Merging KNACK and PROTEGE systems

KNACK uses acquire-and-present method to acquire a domain model. It then 
interviews the domain expert, guided by the model, to develop a prototype 
expert system. PROTEGE uses the problem-solving method of skeletal-plan- 
refinement to acquire a task model of the problem consisting of a graphical 
tool. This tool can be used by domain experts to build expert systems.

There is a serious flaw in the system depicted in Figure 3-4: the two 

problem -solving m ethods produce two incom patible m odels of the 

domain. This situation can be rectified by using a same-level description 

for different problem-solving strategies. This is the course of action taken 

in ASKE (see Figure 3-5). In its design, the modelling approach has been 

implemented to give it the power of knowledge-based KA systems and the 

scope of applicability  of technique-based KA system s. The task- 

independent strategies used are the task characteristics. For exam ple, 

diagnosis of an "object" is described by the association between "signs of 

m alfunction" it exhibits and "cause of m alfunction". Thus, problem ­

solving knowledge for diagnosis m ust contain descriptions of these three 

basic concepts.
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The level at which the task characteristics are described is m uch too 

general. To help in conceptualizing, an example task model of a similar 

problem  is presented. For example, in medical diagnosis, the expert is 

show n a previously built task m odel for diagnosis in m edicine. This 

m ethod of using previous cases to develop new applications has already 

been successfully employed in ROGET.

TASK-TYPES
PROBLEM
SOLVING

EXPERTISE

acquire obtainTASK
MODELPREVIOUS

CASES

Figure 3-5 ASKE's model for KA

ASKE contains general knowledge about various analysis tasks and a library of 
abstracted knowledge-bases. An appropriate task-type and a previous case are 
used to acquire the task model, which is then used as a guide for obtaining the 
problem-solving expertise from the domain expert. The first half of KA is 
carried out by question-answering. In the second half, graphical interface of 
mouse and menus is used.
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F U N D A M E N T A L  C O N C E P T S

One must even know first to be able to know more later.

4.1 Introduction
In ASKE, KA is viewed as a modelling activity and the system devotes its 

initial efforts to developing a task model for the problem. The framework 

for the model is derived from the characteristics of the application task. 

The expert is provided with a closely related task model, from a previous 

case, to help h im /h e r in filling-in the details. The two m ain features of 

the system  are, therefore, uniform ly described task types and use of 

previous cases (see Figure 3-5). W ith these features, ASKE is able to 

achieve a greater scope of applicability. The task model provides a means 

of creating rich knowledge-bases. ASKE's real strength, however, is in the 

representational scheme of templates. All knowledge that ASKE has or 

obtains, is represented in the template formalism.

In the rest of the chapter, the three central elements of ASKE: templates, 

task-types and previous cases, are described. First, a rationale for the use of 

task types as task-dependent strategies is presented, follow ed by a 

description of the task characteristics of the various analysis tasks. Second, 

a case for the use of previous cases as exemplars is m ade. Third, the 

template scheme for knowledge representation is described, and various 

template types are introduced.
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4.2 Task characteristics as task-dependent strategies
ASKE’s expectations of how  problem -solving expertise is organized is 

based on Clancey’s (1985) notion of heuristic classification. His model of 

heuristic classification provides a precise set of terms and relations by 

which problem-solving tasks can be characterized. According to the model, 

the heuristic classification m ethod can be applied to solve those tasks for 

which all possible solutions of the problem  can be enum erated a priori. 

Classification involves the selection of one among a predeterm ined set of 

possibilities as the appropriate description of a situation.

data HEURISTIC ^ solution
abstraction MATCH abstraction

data
abstraction

refinement

DATA SOLUTION

Figure 4-1 Heuristic classification (From: Clancey, 1985:296)

The inference structure for heuristic classification (Figure 4-1) consists of 

the following components: data, data abstractions, solution abstractions 

and solution which are related  system atically by different k inds of 

relations and rules of inference. From the KA point of view, Clancey’s 

model identifies the im portant elements (pieces of knowledge) that make 

up the problem-solving expertise. Furthermore, by relating the heuristic 

classification to tasks, the model puts forward, implicitly, a specification 

for a generic tool for KA.
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According to Clancey (1985), the classification m ethod is suitable for 

solving analysis tasks, because it is possible to pre-enum erate their 

solutions. The main type of tasks w ithin this category, for which expert 

systems have been developed, are: debugging, diagnosis, interpretation 

and selection. This, however, does not imply that all diagnostic tasks, for 

example, can be solved by heuristic classification. For instance, in medical 

diagnosis only routine problem s, which are characterized by  unique 

m apping between disease and symptoms, are solvable by the classification 

m ethod (Pople, 1982). For non-routine medical diagnosis problem s, in 

which there is m ore than one disease explaining the sym ptom s, the 

problem solver has to formulate (or construct) a solution. Pople calls these 

problems "ill-structured". It would, therefore, be more accurate to say that 

the classification m ethod is suitable for solving structured problem s for 

which solutions can be explicitly enum erated and problem  descriptions 

can be m apped directly to solutions by pre-existing links.

In ASKE, the analysis tasks have been characterized in term s of the 

im portant concept categories, on the basis of Clancey's model, to provide 

task-dependent templates for task modelling. Typically, a task is described 
as having a data and a solution category. The system's role is to identify: g  

abstraction hierarchies for elements from which a solution is selected; g

abstraction hierarchies for the data that bear on the selection process; and 
131 the heuristics that link elem ents from  one hierarchy to those in 

another.

The reducing of the KA process to the identification of concept categories 

is no t w ithou t justification. M ost expert system s have know ledge 

organized in identifiable concept categories. Consider the dom ain of 

medicine, for which "more expert systems have been developed than for 

any other single problem  area" (W aterman, 1986:40). Medical systems 

typically consists of a category for observation (e.g., symptoms and test
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results) and a category for disease. For example,

"The knowledge-base underlying both INTERNIST systems 
is composed of two basic types of elements: disease entities 
and manifestations" (Pople, 1985:185).

This is entirely justifiable, because

"... medical diagnosis rests on the prem ise that there is a 
unique m apping (a function) from sets of m anifestations to 
disease entities" (Simon, 1985:76).

The rest of this section presents the details of the four analysis tasks.

4.2.1 Selection

Selection is the most basic of the analysis tasks. Selection systems, typically, 

identify an object from a set of objects on the basis of some criteria (Figure 

4-2). For instance. Demaid and Zucker (1988:292) define the m aterials 

selection problem  as "the need to choose a m aterial from  w hich to 

m anufacture an artifact". W hat is given is a set of m aterials w ith their 

specifications (e.g.. Material X: hydrolysis resistant, time im m ersed in 

w ater @100°C to give a 50% drop in tensile strength). The criteria for 

selecting is a list of material attributes which are required to enable the 

product to function successfully (e.g., ability to stand exposure to water at 

100°C for short times).

INITIAL SET 
OF DATA

SET OF THINGS 
TO SELECT FROM

Figure 4-2 Task characteristics for selection
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Examples

LOKE (Sorensen and Nordhus, 1987) selects drilling bits for oil exploration 

on the basis of geology of the area and the past performance of given bits 

in similar situations. LOKE thus has knowledge of different types of 

drilling bits and records of their performance capabilities under different 

operational conditions.

PERITUS (Swindells and Swindells, 1985) selects engineering materials. 

The user specifies h is /h e r  requirem ents for each of the general 

characteristics, such as weldability, corrosion resistance, fluidity, etc. On 

the basis of required characteristics, the system generates a short list of 

candidate materials.

4.2.2 Debugging

Expert systems that perform  debugging find remedies for malfunctions. 

Debugging tasks can be characterized as having "type of malfunction" and 

"object" as two data categories, and "remedial action" as a category of 

possible solutions (Figure 4-3). Often, debugging systems incorporate a 

diagnosis com ponent to uncover the cause(s) of m alfunction. For 

example, in medical expert systems the disorder is diagnosed and then a 

treatm ent is prescribed to rem edy it. Though the general problem  of 

debugging is quite difficult and requires designing rem edies and 

evaluating them by predicting their effectiveness, m any current debugging 

system s rely  on sim ple tables of associations betw een  types of 

malfunctions and particular remedies (Waterman, 1986).
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TYPE OF 
MALFUNCTION

OBJECT

REMEDIAL
ACTION

Figure 4-3 Task characteristics for debugging

Example

ACE (Vesonder et al., 1983) identifies trouble spots in telephone networks 

and debugs them by recommending appropriate repair and rehabilitative 

maintenance. ACE locates faulty telephone cables and it decides whether 

they need preventive maintenance and selects the type of m aintenance 

most likely to be effective.

4.2.3 Diagnosis

Diagnosis systems infer system m alfunctions from  observables. These 

system s typically  re la te  observed behav ioural irregu laritie s  w ith  

underlying causes by using a table of associations between behaviours and 

diagnoses (Figure 4-4).

SICNS OF 
MALFUNCTION

OBJECT

CAUSE OF 
MALFUNCTION

Figure 4-4 Task characteristics for diagnosis
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Bennett (1985:52) found, from his survey of diagnostic systems, that these 

systems "base their inferences on similar types of evidence... and they 

advise their users on a 'problem' of some sort (e.g., a bleeding disorder). 

Furthermore, some of the diagnostic systems are also concerned w ith 

recom m ending a 'repair' that w ould  rectify this problem  (e.g., an 

appropriate d rug  regimen)". Hence, we often find that diagnosis and 

debugging are performed successively, as shown in Figure 4-5.

SIGNS OF CAUSE OF
MALFUNCTION

>
MALFUNCTION

t

OBJECT REMEDIAL
W ACTION

Figure 4-5 Task characteristics for diagnosis and debugging

Examples

ABEL (Patil et al., 1981) diagnoses acid-base and electrolyte disorders in 

patients by applying knowledge about the diseases and the symptoms they 

produce. The system contains data about the patient as well as knowledge 

about the relations betw een various disease states. K now ledge is 

represented within a causal network, a type of semantic net specifying 

cause-effect relations between diseases and findings.

DART (Bennet and H ollander, 1981) diagnoses faults in com puter 

hardw are systems using information about the design of the device being 

diagnosed. The system  works directly from  inform ation about the 

in tended structure and expected behaviour of the device to help find 

design flaws in newly created devices.



Fundamental Concepts 58

4.2.4 Interpretation

Interpretation systems infer situation descriptions from observables. An 

in terpretation  system  explains observed data  by assigning to them  

symbolic meanings describing the situation or system state accounting for 

the data (Figure 4-6).

INTERMEDIATE INTERMEDIATE
LEVEL LEVEL

INTERPRETATION W DESCRIPTION

t i
DATA DESCRIPTION

Figure 4-6 Task characteristics of interpretation

Archaeological interpretation, for instance, involves going from initial 

propositions to term inal propositions or interpretations via a series of 

in te rm e d ia ry  p ro p o sitio n s  (G ard in , 1980). C a rd in 's  m odel of 

archaeological reasoning has been implemented in KIVA (Patel and Stutt, 

1989a), an expert system  for in terpreting  settlem ent sites. From  the 

distribution of objects found at an archaeological site, KIVA generates a 

description of the activities that took place w ithin each of the habitation 

areas within a site from the initial data.

Examples

CRYSALIS (Engelmore and Allan, 1979) infers the three-dim ensional 

structure of protein molecules from  x-ray crystallographic data. The 

knowledge-base consists of several layers of data and hypothesis w ith 

m appings between the two. The basic input data is the electron density 

map. This is abstracted at three levels: peak, skeletal and segment. The



Fundamental Concepts 59

hypothesis part of the knowledge-base consists of three layers: atomic, 

superatomic and stereotypic.

Dipm eter Advisor (Smith and Baker, 1983) infers subsurface geological 

structure from measurements of the conductivity of rock in and around a 

borehole as related to depth below the surface. From the basic data, the 

dipm eter expert makes inferences regarding the geological history of 

deposition, the composition and structure of the beds, and the optim um  

locations for future wells.

4.3 Previous Cases as Exemplars
Experience constructing expert systems reveals that the identification of 

the vocabulary of a problem  representation dom inates the early KA 

dialogues betw een knowledge engineers and experts. Identifying this 

terminological framework is an im portant prerequisite to the expression 

of the rules, m aking this activity a crucial first step in the design of an 

expert system prototype. But, Buchanan and Shortliffe (1984:150) caution:

"the most difficult aspect of KA is the initial one of helping 
the  expert conceptualize  and  s tru c tu re  the  dom ain  
knowledge for use in problem solving".

Historically, a knowledge engineer has helped the expert overcome these 

difficulties. Through lengthy discussions, the knowledge engineer helps 

develop a representation of the expertise, first by suggesting different 

expert system organizations and then encoding them  in an appropriate 

system-building tool. The knowledge engineer identifies the type of task 

the system is to perform and suggests the types of domain terms to include 

in the system, focusing the expert's attention on the essential elements of 

constructing an interactive consultation program.

The m anual m ethod of KA provides a good m odel for designing
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autom ated systems for KA. In ASKE, the knowledge of task characteristics 

is utilized as a guide of terms necessary for representing the problem. 

Previous cases are employed as exemplars; their function is to draw  the 

expert’s attention to the plausible elements for the new application. Before 

giving an example of how ASKE uses previous cases, I w ould like to look 

into the nature of expertise so a better case can be m ade for the usefulness 

of previous cases as exemplars.

4.3.1 The nature of expertise

The transition from the status of a novice to that of an expert is achieved 

through experience. Basically, expertise seems to be acquired in three more 

or less distinct stages (Fitts, 1964). In the first stage, an individual learns 

w hich actions to take in a given situation by either observation of 

performance or instructions. This is the cognitive stage of learning. The 

second stage is called the associative stage during which the relationships 

learned in the cognitive stage are practiced until the actions become fluent 

and accurate. In the third stage the relationships are compiled through 

repeated practice. This is the autonom ous stage where the individual's 

actions, as a result of overpractice, become automatic and are perform ed 

"without thinking" (Johnson, 1983).

At the end of the third stage of learning, the individual acquires the status 

of an expert which m eans that s /h e  is able to "perform the actions 

appropriately, proficiently, and effortlessly" (Musen, 1988:26). Besides 

enabling the individual to do a task m ore efficiently and accurately, 

experience plays another im portan t role: it enhancing the general 

problem -solving knowledge so that the skill can be applied to novel 

problem solving. For example,

"Individual experiences act as exemplars upon which to base 
later decisions. Analogies to previous cases guide and focus 
later decision making" (Kolodner and Simpson, 1986:100).
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Kolodner refers to the process by which knowledge from a previous case is 

transferred to a current one as similarity-triggered analogical reasoning. In 

this kind of reasoning, past cases are indexed and stored in order to 

facilitate later retrieval and use in solving new and similar problems. A 

case typically contains a description of the problem , som e of the 

interm ediate steps to the solution of the problem, and the solution itself. 
This form of reasoning aids in problem  classification in two ways: 

predicting additional features to be investigated; and, pointing out 

alternate or additional classification.

4.3.2 Using previous cases as exemplars

ROGET (Bennet 1985) was the first KA system to use previous cases to 

acquire knowledge from domain experts. It uses examples of the problem­

solving organizations of existing diagnostic expert systems to guide the 

expert in determ ining the problem task type of the new  application. A n 

extract from a ROGET session (Figure 4-7) shows how ROGET obtains the 

description of the task that the new diagnostic system, MYCIN75, will be 

performing. ROGET determines the problem  task type by providing the 

expert with examples of previous expert systems. The examples are simple 

phrases constructed from answers during previous ROGET sessions. They 

indicate to the expert the required format for answering the question.

4) Enter a simple phrase that describes the main task 
MYCIN75 will perform during a typical consultation, 
examples*

In CLOT80, the main task of the system was to 
diagnose the hematological disorders of a patient. 
In PUFF78, the main task of the system was to 
diagnose the pulm onary dysfunctions of a patient.

* * recommend what drugs to prescribe for the 
infectious diseases of a patient._________

Figure 4-7 ROGET dialogue showing use of previous cases
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ROGET uses pre-stored examples and the same ones are used everytime. 

Indeed, there is no need to vary examples as the target system is always a 

diagnostic one (because of the limited scope of the system). ASKE started 

with three example knowledge-bases: interpreting burial sites (archeology), 

diagnosing foot problem s (medicine) and selecting m arketing strategies 

(corporate planning). W ith every new  application, a new  exam ple is 

acquired (see Section 6.6 of how this is done). An example that will be used 

in the target application is selected at run-time, on the basis of closeness of 

the example to the target (see Section 6.2.4).

ASKE uses prev ious cases as exem plars for o rgan izing  the new  

knowledge-base. In the developm ent of a task m odel, the expert is 

provided w ith an example of a built system which is similar to the new 

one. Figure 4-8 represents a scenario of an ASKE session show ing the 

acquisition of a task model for diagnosing pressure sores in the domain of 

nursing. (The complete session is given in Appendix C.) The example of 

diagnosing foot problems is selected and used to guide the user (an expert 

nurse) in specifying the im portant concept categories for describing the 

task of diagnosing pressure sores.
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For problem-solving in analysis tasks, there are basically two 
categories of concepts: data and solution. The task of diagnosis 
involves inferring system malfunction from observables.

Data Types:
Signs of Malfunction 
Object (which is defective)

Solution Types:
Causes of Malfunction

ASKE was used to develop a knowledge-base in the domain of 
medicine for doing diagnosis of foot problems. The aim of this 
application was: diagnose foot problems from symptoms.

The Data types were:
symptoms (signs and symptoms of foot problems) 
patient (person with foot problem)

The Solution types were:
problems (the cause of foot problem)

W hat is the main category of data for the diagnosis of pressure 
sores?
=> patient.state 

Comments for patient.state
=> The physical, physiological and psychological condition of 
the pressure sore patient.

W hat is the object of diagnosis? [Type nil, if none]
=> pressure.sore.patient

Comments for patient.state 
=> Person prone to pressure sores.

W hat is the main category of solution when doing diagnosis of 
pressure, sores?
=> care.plans

Comments for care plans.
=> The course of treatment for pressure sore patients.

Figure 4-8 ASKE session showing use of previous cases
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4.4 Template scheme for representing knowledge
All knowledge that ASKE has, or acquires, is represented in one of four 

template types: general, acquisition, working and reference. A template is a 

framework for acquiring and representing problem-solving expertise. It is 

im plem ented in a fram e language. A fram e is a "data structure  for 

representing a stereotyped situation" (Minsky, 1975). A frame language 

consists of a netw ork of structured nodes connected by relations and 

organized into a hierarchy. Each node represents a concept that m ay be 

described by attributes (or slots) and values (or fillers) associated with the 

node. Nodes that are low in the hierarchy automatically inherit properties 

of higher-level nodes.

Structurally, a template is similar to a frame (Figure 4-9). It is described by 

attributes and values. Each attribute corresponds to a piece of information 

necessary for developing an expert system. ASKE's interaction w ith the 

expert is guided by the attributes: ASKE seeks to fill each of the attribute 

slots. The filler (or value) is either domain concepts, which are internally 

represented as frames, or other expertise related knowledge.

TEMPLATE

attributel: CONCEPT HIERACHY (frame structure) 
attribute!: EXPERTISE RELATED INFORMATION

Figure 4-9 Structure of a template

There are two characteristics of a template which distinguishes it from a 

frame. First, a template is not just a property list. The properties provide 

expectations of w hat and when to acquire dom ain knowledge from the 

expert. Hence, em bedded in the template structure is a m ethodology for
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knowledge acquisition.

The second difference between tem plates and frames is that while the 

latter are hierarchically arranged, the form er aren't. The four tem plate 

types are described at the same level, there is no inheritance mechanism 

betw een them. They each address a different stage of knowledge-base 

developm ent. In fact, the four tem plates, betw een them , provide the 

necessary and sufficient structure for specifying a knowledge-base.

4.4.1 General Template

The m ost basic template is referred to as a general template (GTEMP). It 

provides a description of the problem at the domain (or discipline) level. It 

contains personal details of the dom ain expert and general information 

about the new knowledge-base. The latter includes dom ain classification, 

which is used for selecting reference and acquisition templates for further 

KA, and information about the project, (e.g., the reason for building the 

system and who it is designed for).

An example of a GTEMP, for archaeology, is shown in Figure 4-10. The 

attributes (upper-case) specify the information categories required for a 

top-level description of the problem. O ur experience in developing an 

expert system  for in terp reting  settlem ent sites from  archaeological 

remains (Patel and Stutt, 1989a) suggest that these categories are im portant 

for understanding  the task application. Besides the details about the 

dom ain expert which is obviously useful to have, we need to classify the 

domain for a better understanding of the problem. This involves knowing 

the name of the domain (or discipline), the task type and the area of the 

application. Information about project aims and users of the target system 

is useful for latter stages of producing a usable performance system.
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General Template (GTEMP) ' i f  'fXT

EXPERT: Jitu

ADDRESS: HCRL, The Open University, Milton Keynes. 

TELEPHONE: 0908 652574 

DOMAIN: Archaeology 

TASK: Interpretation 

SPECIALIST AREA: Settlement.site 

TASK DESCRIPTION: Inferring activity areas in a 

settlement site from archaeological data 

PROJECT AIMS: Provide expertise on interpreting 

settlement sites to archaeologists 

USERS: Archaeologist

Figure 4-10 General Template for Archaeology

The user is prompted for values of the given attributes. These attributes are 
identified to serve an important role in knowledge-base development. For 
instance, the values of task and specialist areas are used for selecting 
acquisition and reference templates. The personal details are for reference 
purposes. The values for project aims and users are acquired because of their 
potential use in designing user-interfaces.

ASKE contains hand-crafted  know ledge-bases for the dom ains of 

Archaeology, Medicine and Strategic Planning. These knowledge-bases 

guide the automatic acquisition of new applications within these domains, 

and also in other dom ains. For each of these dom ains, ASKE has a 

GTEMP. N ew  ones are created for other domains at run-tim e. Basically, 

the different GTEMPs differ in the values of the attributes. The m ost 

im p o rtan t a ttribu tes are "task" and  "specialist area", they  ho ld  

inform ation on the dom ain classification which is used for accessing 

templates for further KA.

The m ost im portant function of the GTEMP is to acquire inform ation 

from the user for selecting acquisition and reference templates (see Section
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6.2.4 for descriptions of the selection procedures). These tem plates are 

needed to develop the model of the task.

4.4.2 Acquisition Template

In the modelling approach, the first step in KA is to build a task model, 

that is, a description of the m ain concept categories and how  they are 

related. ASKE does this w ith  the help of the acquisition tem plate 

(ATEMP). The ATEMP is the most basic tem plate for KA contains task- 

specific knowledge. An ATEMP provides expectations of the kind of 

knowledge that goes into a task model. A task model for analysis problems 

consists of two m ain concept categories: data and solution. The data 

category specify the m ain inpu t to the system. The solution category 

describes w hat will be output by the system. Each of the ATEMPs, hence, 

contains task-specific inform ation derived from  their characteristics 

(described in the previous section).

An ATEMP is selected on the basis of information, in GTEMP, on the task 

the new application will perform. The selection procedure maps the task- 

type to ATEMPs. This is possible as ASKE contains an ATEMP for every 

specified application task.

TASK TYPE DATA SOLUTION
Debugging Type of Malfunction 

Object
Remedial Action

Diagnosis Signs of Malfunction 
Object

Cause of Malfunction 
Remedial Action

Interpretation Data Solution
Selection Initial Data Selection

Figure 4-11 Concept categories for analysis tasks

An ATEMP for every task-type will have the identified concept categories as 
attributes. Diagnosis has an extra category for ’repair’. This will be utilized 
only if the diagnostic application will be expected to prescribe a remedy also.
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ASKE has ATEMPs for four application tasks: debugging, diagnosis, 

interpretation and selection. The characteristic of these tasks is that their 

solutions can be enum erated a priori. Furthermore, they can be solved by 

the problem -solving m ethod of heuristic classification. Thus, implicit in 

the ATEMPs is the reasoning strategy for solving the tasks. For example, 

the system manipulates the input (data) according to the rules of inference 

(obtained from the relationships between data and solution categories) to 

output the result (solution). Figure 4-11 summarizes the concept categories 

for these tasks.

Acquisition Template (ATEMP)

RTEMP: Burial.site.r 

WTEMP: Settlement.site 

DATA TYPES:

Artifacts (main archaeological data for inferring 

activities of an area or a room)

Features (geographical and geological features of the 

land, including how it has been modified by man) 

SOLUTION TYPES:

Activities (the kind of activities that took place in a 

given settlement site)

Site.profile (general characteristics of the settlement 

site as inferred from the distribution of artifacts 

and features)

Figure 4-12 ATEMP for archaeological interpretation

The attribute RTEMP is a pointer to the template which was used as an 
exemplar for developing the task model. The WTEMP attribute holds the 
name of the template which contains the new knowledge-base. DATA and 
SOLUTION types have two values each. These values are the main concept 
categories, which are used in the creation of a WTEMP for the application. In 
brackets, is a brief description of the concept.
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The concept categories are held as attributes of respective ATEMPs. The 

user is prom pted on the basis of the categories. For example, the ATEMP 

for interpretation has attributes for "data" and "solution". Figure 4-12 

shows an ATEMP for archaeological interpretation. The values for data 

and solution types provide a model for interpreting settlement sites.

The present im plem entation of ASKE does not allow the user to create 

new ATEMPs. The user hence can only develop applications for one of the 

four described problem types. However, in future extensions, flexibility in 

this direction is envisaged (see section 8.2.2).

4.4.3 Reference Template

In the specialist areas for which knowledge-bases have been developed, 

ASKE will have a reference tem plate (RTEMP). At the end of the KA 

session, ASKE abstracts im portant knowledge from the new  knowledge­

base and represents it in an RTEMP. RTEMPs, hence, are the previous 

cases which serve the role of exemplars in KA.

An RTEMP consists of an abstracted knowledge-base. This is automatically 

extracted from the current knowledge-base at the end of the session. The 

contents of an RTEMP include information for identifying the knowledge­

base (e.g., domain, task, specialist area) and the main concept categories 

describing the problem. Figure 4-13 shows an example of an RTEMP, from 

the domain of Archaeology, for interpreting Burial Sites. The domain, task 

and specialist attributes indicate where the RTEMP is derived from. The 

concept categories, with their comments (in brackets), describe a model for 

in terpreting Burial Sites. The RTEMP, hence, can be em ployed as an 

exemplar for related problems. Chapter VI describes how this RTEMP was 

used  in the developm ent of the know ledge-base for in te rp re ting  

Settlement Sites.
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Reference Template (RTEMP)

EXPERT: Jitu 

DOMAIN: Archaeology 

TASK: Interpretation 

SPECIALIST AREA: Burial.site

TASK DESCRIPTION : Infer habits of past cultures from 

from their burial remains 

DATATYPES:

Artifacts (any man-made object)

Ecofacts (any natural object - i.e., floral or faunal) 

Features (any archaeological data that is not an artifact 
or an ecofact)

SOLUTION TYPES:

Hypotheses (the plausible interpretations of burial sites)

Figure 4-13 An RTEMP for Burial.sites

The main data categories for interpreting Burial Sites are: artifacts, ecofacts 
and features. However, for inferring activities of a Settlement Sites, only 
artifacts and features are used. An example knowledge-base in a similar 
application area can thus aid in focussing attention of the important concepts 
necessary for describing the new application.

The central role of an RTEMP is to guide the dom ain expert in 

conceptualizing h is /h er problem-solving expertise in the form at required 

for know ledge-base developm ent. An RTEMP and an ATEMP are 

em ployed in the acquisition of the task m odel for the problem . The 

ATEMP provides expectations of w hat knowledge is required. However, 

because of the very abstract level of this knowledge, an example of a task 

model in a similar problem (i.e., RTEMP) is presented. For instance, to an 

archaeologist, 'data categories' would be more meaningful if supplied with 

an exam ple: 'd a ta  categories, in the dom ain of archaeology, for 

interpreting burial sites include artifacts, ecofacts and features'.
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4.4.4 W orking Tem plate

A w orking tem plate (WTEMP) is used for holding the new  knowledge­

base. Relative to other templates, a WTEMP describes the problem at the 

level of specialist area (i.e., the new application). Unlike GTEMP and 

ATEMP, a WTEMP does play a direct role in KA.

W orking Template (WTEMP)

ARTIFACTS:

Pottery (surface fabric shape decoration size) 

Stone (material edge size)

Metal (use material)

FEATURES:

Hearth

Floor (content size)

Ditch (use shape size)

ACTIVITIES:

Food.preparation 

Storage, area 

Pottery.making 

Metal.producing 

SITE.PROFILE:

Social.status 

Occupancy (period)

Exchange.contacts

Figure 4-14 A WTEMP for Settlement Sites

Each of the main concept categories, obtained by the ATEMP, are made into 
slots (or attributes) of the WTEMP. Each slot has a set of concepts as values 
each of which is represented as a frame. Each concept, furthermore, has 
attributes, shown in brackets. The attributes of the concepts are displayed in 
the WTEMP for information purposes; they are however held within the 
concept frame. For example, pottery (value) is an artifact (slot). Concept 
pottery has attributes: surface, fabric, shape, decoration and size.
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ASKE creates a new WTEMP for every application. The initial contents of 

the WTEMP is the task model. The concept categories obtained with the 

ATEMP provides the attributes for the WTEMP. For example. Figure 4-14 

depicts a WTEMP for "settlement sites" which was created from the 

ATEMP for interpretation (Figure 4-12). The values of these attributes are 

the concepts for the category designated by the attribute. Each concept is 

stored in a frame structure.

4.4.5 What’s in the template scheme

According to the Knowledge Principle (Lenat and Feigenbaum, 1987), a 

program  m ust have a great deal of task-specific knowledge in order to 

exhibit intelligent understanding and action at a high level of competence. 

This knowledge, however, cannot be obtained from nothing, one m ust 

start w ith some m inimum knowledge.

According to Schank and Abelson (1977), our knowledge of activities like 

going to a restaurant and attending lectures is organized around scripts. A 

script is a high level knowledge source describing a stereotyped sequence 

of actions. It p rov ides a conceptual fram ew ork, w hich generates 

expectancies, and guides plans for actions. For example, a restaurant script 

can be used in understand ing  a story on visiting a restaurant. The 

restaurant script will interpret and organize new information, it will fill in 

the gaps, and help us understand implications and presuppositions.

A template, like a script, contains prior knowledge structures, which are 

used to generate expectancies. These structures are acquired by abstracting 

and generalizing from experiences from  others. In term s of m em ory 

structure, therefore, tem plates are closer to MOPs (Schank 1982) than 

scripts, which consists of specific structures acquired from direct repeated 

experience. For example.
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"In script-based memory, w hat we know in a given situation 
comes from  w hat we have experienced in m ore or less 
identical situations. More general structures (templates and 
MOPs) allows us to m ake use of inform ation originally 
garnered from one situation to help us in a quite different 
situation. General knowledge structures save space and make 
information experienced in one situation available for use in 
another. One disadvantage of the script-based m ethod is its 
lack of usability in sim ilar bu t nonidentical situations." 
(Schank, 1982:9)

The template scheme provides a convenient way of representing general 

and task-specific knowledge. ASKE exploits this scheme for KA. The 

GTEMP and ATEMP contain general and task-specific know ledge, 

respectively, abstracted from our experiences at building expert systems. 

This knowledge provides expectations of w hat new knowledge to acquire. 

We use our past experiences in solving (or understanding) new situations. 

RTEMPs represent past cases which act as exemplars for new applications. 

Finally, the WTEMP is used for representing the new knowledge-base.

4.5 Summary
KA is difficult because experts rarely have an opportunity  to reflect on 

their th inking  processes to the extent and  form  requ ired  for the 

construction of an expert system. ASKE contains three features which help 

in facilitating the encoding of expert knowledge.

In tem plates, ASKE has a uniform  scheme for representing

various kinds of knowledge which are used for driving KA.
Task characteristics which provide expectations of the kind of

knowledge that goes into the task model of the problem.
[U Use of previous cases to help the expert focus h is /h e r attention

on the im portant concept categories required in the task model.



Chapter V 

THE A S K E  S Y S T E M

If none of the tools you normally use works, build a new one.

5.1 Introduction
ASKE is a model-based KA system. It is designed for use by domain experts 

for developing prototype expert systems. It is suitable for building systems 

which do analysis tasks, i.e., problem  types for which it is possible to 

enumerate all solutions a priori.

The system is built on the premise that the KA process can be quickened by 

helping the expert organize h is /h e r dom ain knowledge. This intuition is 

based on the experience we gained in building an expert system  for 

interpreting archaeological sites (Patel and Stutt, 1989a). The hardest aspect 

of the system development was the recognition of the im portant concept 

categories for the task and how these were inter-related. Once we had the 

model of the task, the knowledge elicitation became just a routine task.

The system is designed with the aim of providing the expert with an "easy 

to use" tool. Thus, a major part of the system  design consists of an 

interface for encoding knowledge. The aim of this chapter is to give an 

overview  of the ASKE system. I will first p resent the m ethodology 

implemented in ASKE, and then, describe the architecture of the system 

giving functional details of its various features.
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5.2 ASKE M ethodology
ASKE acquires problem-solving expertise from the dom ain expert in two 

stages. First, a model of the task the new application will be performing, is 

obtained. Second, this task model of the problem is used for guiding the 

expert in encoding h is /h e r dom ain expertise. Figure 5-1 illustrates how 

ASKE develops a prototype knowledge-base. The example is from the 

dom ain of archaeology and involves the developm ent of a knowledge­

base for in terpreting  settlem ent sites from  archaeological data. This 

knowledge-base was developed using ASKE, and the processing details are 

described in Chapter VI.

(GTEMP)
(Archaeology)

select

(RTEMP) 
(Burial Sites)

guide

(ATEM P)
(Interpretation)

expectationsWTEMP
task model

^p-s expertise y  

(Settlement Sites)

Ô  extract

(RTEMP) 
(Settlement Sites)

Figure 5-1 Stages in the development of an application w ith ASKE.

KA starts with GTEMP. From the information acquired, ASKE selects an 
ATEMP and an RTEMP. The former is employed to acquire the task model of 
the new application; the latter contains a task model of a similar application 
and is used to guide the user in building the new task model. The knowledge­
base is held in the WTEMP. At the end of the session, ASKE automatically 
abstracts useful information from the new knowledge-base and stores it in a 
newly created RTEMP, for later use.
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5.2.1 Stage One

In the first stage, the interaction between ASKE and the expert is via 

question-answering. The aim of this stage is to acquire the task model for 

the new  application. This is carried out in the following three steps.

The KA session starts w ith the problem  definition. This 

involves iden tify ing  the dom ain, the task and  the area of 

application. First, the GTEMP, which has the name of the domain 

(archaeology), is invoked. The dom ain expert is p rom pted  for 

domain classification and information about the project goals.

On the basis of the information in the GTEMP, ASKE selects an 

ATEMP (interpretation) and an RTEMP (burial sites). The ATEMP 

contains task-specific knowledge, and it provides expectations of the 

kind of knowledge required for the task model. The RTEMP holds 

an abstract knowledge-base in a related application. It is used as an 

exemplar for building the new task model.

[H The ATEMP and RTEMP are used to obtain the m ain concept 

categories, which define the task model. The domain expert is first 

told w hat knowledge is required, and then s /h e  is presented with 

an example task m odel in a related application. Finally, s /h e  is 

prom pted for the relevant knowledge on the basis of the ATEMP.

The task model is a general description of the application task, and 

it consists of the concept categories for describing the task and the 

relationships between them.

5.2.2 Stage Two

In the second stage, the expert encodes h is /h er domain expertise into the 

knowledge-base via a graphical interface. The task model is used in the 

acquisition of the facts and the rules part of the knowledge-base. This stage 

of KA is carried out in the following three steps.
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0  The task m odel is held in the WTEMP (settlement sites). The 

first objective is to acquire the concepts and their attributes for 

every concept category in the task model. Various facilities are 

provided to facilitate the encoding of the dom ain concepts. The 

concepts are stored in their respective hierarchies and form the facts 
part of the knowledge-base.

B  The next objective is to obtain the rules of inference. The rules 

describe the heuristic associations between concepts. The domain 

expert is asked to identify the relationships between concepts in 

categories. The actual direction of the relationship is 

inferred from the underly ing  heuristic classification problem ­
solving method.

@ Tor every heuristic  association betw een concepts, ASKE 

autom atically creates an if-then rule. The rules, at this stage, are 

quite simple and non-functional. To make the rules functional, the 

expert is asked to edit them. The final output is a set of rules which 

can be m apped directly into KEE or KEATS rule formalism.

At the end of the session, an RTEMP is created by abstracting information 

from the WTEMP (knowledge-base for interpreting settlem ent sites). The 
RTEMP will be stored for future use.

5.3 Overview of ASKE

The overall architecture of the system is as depicted in Figure 5-2. There 

are two interfaces to ASKE: Aske^ and Rulemaker. The interfaces are 

coordinated by the control unit, called Cerveau .̂ It has access to the set of 

templates, which form the basis for interrogating the expert.

 ̂To distinguish from the system (ASKE), the interface (Aske) is written in lower-case. 
The brain (in French).



The ASKE System 78

KEE
ASKE

cerveau 
(control unit)

aske
interface

rulemaker
interface

templates

Figure 5-2 Overview of ASKE

ASKE is implemented in KEE. It has two interfaces: Aske and Rulemaker. 
These interfaces contain various features which allow the encoding of domain 
knowledge. The movement between the interfaces is controlled by Cerveau, 
which also has access to the set of templates.

5.3.1 Im plem entation Details

ASKE is written in KEE^. and runs on Unisys Explorer^.

KEE is a knowledge engineering environm ent and provides facilities for 

representing and m anipulating knowledge about an application domain. 

It includes a fram e based representation language, a production rule 

system for reasoning about the knowledge held by the frame based system 

and a set of highly interactive user interface tools. ASKE uses KEE's frame 

language as the basic data structure on which the template scheme is built. 

ASKE's interfaces are written in KEE's Common W indows tool-kit.

5.3.2 Interfaces to ASKE

Aske is the m ain interface of ASKE (Figure 5-3). All interaction, between

1 Knowledge Engineering Environment (v 3.1) - © Intellicorp (1987) 
 ̂© Texas Instruments
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ASKE and user, until the stage of rule editing (second half of stage two) is 

carried out in the Aske Interface.

Figure 5-3
The im portant elements of the Aske Interface are: 6 icons (top left). 
Interaction W indow (left) and Notebook (top right). The Display W indow 
(DW) (bottom right) is used for displaying the current knowledge-base. At 
the start of the session, the top-level ASKE knowledge-base, askedata, is 
displayed.

By clicking on the icons appropriate action can be taken. A new session 
starts w hen the N ew  KB icon is clicked. Load KB loads a previous 
unfinished session. Save KB saves the current session into a file. Quit exits 
the session. Help provides docum entation on ASKE; and Rulem aker 
brings up  the Rulemaker interface for editing rules.

Stage one dialogue takes place in the Interaction W indow. This session 

involves question-answ ering and the user has little control over the 

interaction. Task modelling is the most difficult stage of KA and the user 

has to be talked through. However, in the second stage, interaction via 

graphics is introduced, providing the user w ith a greater freedom  in 

encoding h is /h e r  knowledge. Further details on the various graphical 

in p u t/o u tp u t facilities are given in Section 5.5.

An im portant component of the Aske Interface is the Notebook. It acts as 

an intermediate repository of knowledge: it provides the user access to the 

encoded dom ain know ledge, as well as a facility for inputing  new  

knowledge directly into the knowledge-base. Notebook is described in 

Section 5.4.

ASKE is based on the riile-based paradigm  and hence an interface for 

editing rules is provided in Rulemaker (Figure 5-4). The latter part of Stage 

two is carried out in the Rulemaker Interface. Section 5.6 presents the 

Rulemaker m odule of ASKE.
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Figure 5-4
The im portant elements of the Rulemaker Interface are: 5 icons (top left). 
Rule DW (left). Context DW (top right) and Class DW (bottom right). The 
Rule Editing W indow (not in the Figure) opens w hen the Rule DW is 
clicked.

Icons. Context, Class and Rule create a new: rule context, rule class and 
rule, respectively; Aske displays the Aske Interface.

In Context DW, activities.t is a rule context, and butchering.t a sub-class. 
The sub-classes are displayed in Class DW. This w indow provides facilities 
for rule m erging and rule creation. Leaf nodes in Class DW are the rules 
which, when clicked on, are displayed in Rule DW.

Rule Editing W indow is opened w hen Rule DW is clicked. The Rule 
Editing W indow buffer displays premise or conclusion w ith left or middle 
clicks, respectively. ___________________

5.3.3 Tem plates

A template is implemented as a frame. All templates are arranged in a tree 

structure w ith the root called templates (see DW in Figure 5-3). The 

templates shown in the Figure are stored in the askedata knowledge-base. 

W hen a new session starts, a new knowledge-base is created. Then, at 

different stages of the session, the four tem plate types are copied from 

askedata.

There are two functions which can be used to copy a tem plate from 
askedata to a new knowledge-base: 0  copy-tem pla te  copies the nam ed

tem plate (including all the values of the slots) from the askedata to the 
current knowledge-base; and, create-tem plate copies just the framework

(i.e., slot and valueclass but not the values of the slots) of the tem plate 

type. See Section 4.4 for details of the four template types.

5.3.4 Cerveau

C erveau is the control un it of ASKE. It coordinates the flow  of 

information between the user and the system and provides a general help 

facility. The m ovem ent of inform ation betw een the two interfaces of
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ASKE is facilitated by Cerveau. Its m ost im portant role is, however, in 

manipulating templates. It has access to the set of templates, and contains 

the algorithm for creating new ones.

The top-level function for creating a tem plate is m ak e -tem p la te  which 
takes two arguments: 0  the nam e of the tem plate, and the type of

template. Depending on the type of template, the nam ed template is either 

created or copied, as the following lisp code shows.

; if the template type is 
(case type

; gtemp, and a gtemp of the given name exists in askedata 
(gtemp (if (member name (get-descendants gtemp))

; then copy the gtemp into the new knowledge-base 
(copy-template name)

; else, create a new gtemp and call it 'name' 
(create-template name ’type)))

; atemp, copy the named atemp from askedata 
(atemp (copy-template name))

; rtemp or wtemp, create a new template of the given type 
((rtemp wtemp) (create-template name ’type)))______

5.4 Notebook

One of the reasons for developing KA systems is to make the encoding of 

knowledge easier for dom ain experts. They do not have to understand 

how knowledge is represented internally. Hence, domain knowledge m ust 

also be represented at an intermediate level at which it is meaningful to 

the user. In ASKE, the Notebook component provide such a facility. It 

allows the user to look up and to some extent modify the knowledge-base.
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The Notebook m odule contains a simple interpreter which translates the 

internally represented knowledge-base into a more readable form. The 

intermediate representation is accessed by a mouse click on one of the six 

rectangular windows, called pages, in the Notebook (see Figure 5-3). There 

are six pages: one each for the four template types. Central Concepts and 

Rules. These six pages provide respective pieces of information.

5.4.1 Templates and Rules Pages

The four template pages and the rules page, when clicked on, display their 

respective contents. For example, the general template page w ould present 

som ething like Figure 4-8. The present im plem entation does not allow 

the user to modify the displayed knowledge, however.

5.4.2 Central Concepts Page

The Central Concepts page allows the user access to the dom ain concepts. 

These concepts are displayed in the Central Concepts W indow (Figure 5- 

5), arranged hierarchically in a tree structure, w ith the central.concepts as 

the root node. Internally, the concepts are represented as frames. Details 

about implementation are given in Section 5.5.1.

Figure 5-5
W hen the Central Concepts page of the Notebook is clicked, the Central 
Concepts W indow (CCW) is displayed. CCW is a graphical interface to the 
dom ain concepts. The facilities include, adding and deleting of concepts 
and editing concept attributes. Instructions for in p u t/o u tp u t are displayed 
in the Interaction W indow.

The concepts are arranged hierarchically in a tree netw ork w ith central 
concepts as the level 0 node. A new session starts w ith level 0. At the end 
of the Stage One of KA, level 1 nodes (or concepts) are identified. These 
are the m ain concept categories for the application  task. For the 
in terpretation  of Settlement Sites application, w hich is developed in 
C hapter VI, the level 1 nodes are: activities, artifacts, fea tures  and 
site.profile.
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5.5 Other Features
There are two main objectives in the first half of stage two: [1] to obtain 

concept hierarchies, and identify relations between concepts. The user 

could be prom pted for information, however, such a m ethod w ould be 

tiresome and boring. Hence, a graphical interface has been introduced. The 

user is provided w ith m ouse and m enu driven facilities: Sketch-Pad and 

Relations W indow. The Sketch-Pad is a facility for inputing concepts and 

their attributes, the Relations W indow  is for encoding relationships 

between concepts.

5.5.1 Sketch Pad

One of the m ain reasons w hy KA has received so m uch attention is 

because the dom ain expert's problem-solving knowledge is not formally 

represented, bu t it is in a compiled form. The expert has to make a special 

effort to make this knowledge more explicit. And this is not so easy, as 

Berry (1987:145) points out:

'A s far as hum an experts are concerned they not only have 
difficulty describing w hat they do because their knowledge is 
no longer in declarative form, bu t because some aspects of 
their knowledge never have been represented explicitly. They 
have been learned through experience, rather than being 
picked up from one or more textbooks."

H ow  to acquire im plicit know ledge that has never previously  been 

explicitly represented is an open question. Elicitation of know ledge is 

how ever not the only problem. The dom ain expert needs to provide 

concept hierarchies as required for expert system development. This for 

example, how to distinguish and classify concepts and attributes. Consider 

a hypothetical example where two artifacts, metal and stone, have to be 

classified in terms of their uses: tool or weapon. There are two ways in 
which they can be organized: 0  the two artifacts are concepts and the uses 

are attributes; the two uses are concepts and the artifacts are attributes.
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Figure 5-6
Sketch-Pad, the centre w indow, is a facility for inputing data into the 
knowledge-base at the initial stages of knowledge encoding. Items are 
en tered  th rough  the In p u t W indow  (bottom  left) w hich are then 
transferred to the Sketch-Pad. Hence, at this stage, the user does not have 
to w orry about distinguishing between various items - w hether they be 
concepts or attributes. Once again, operating instructions are displayed in 
the Interaction W indow (left).

A left m ouse click on an item in the Sketch-Pad indicates it is a concept. 
This concept is transferred to the CCW; it is m ember concept of the one 
indicated by the user. A m iddle mouse click indicates that the item is an 
attribute.

Thus, the distinction between a concept and an attribute is not always clear 

and can be a source of migraine!

The Sketch-Pad, as the name suggests, is a sketching area in which the 

expert can input concepts w ithout worrying about where they should go in 

the hierarchy. All concepts are initially entered in the Sketch-Pad (Figure 

5-6). These are subsequently transferred to the CCW by means of mouse 

clicks and m enu selections. Note that only the concepts are displayed in 

the CCW, and attributes of concepts are only displayed when requested.

In the above example, if the user had decided to classify the items in terms 
of artifacts (i.e., case [^), they would be represented as follows:

OBJECT ATTRIBUTE POSSIBLE VALUES
metal
stone

use
use

tool, weapon 
tool, weapon

This is internally represented in a frame structure: every object is a frame 

and attributes its slots. The set of possible values is a facet of the slot, called 

valueclass. A  valueclass specifies w hat values a slot (or attribute) m ay 

have. Because concepts are im plem ented in the fram e language, the
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properties of the more general concepts are automatically inherited by the 

more specific ones. Thus, slots and their valueclass have to be specified 

only once for a hierarchy of concepts.

W hen an attribute is m oved to the CCW, the user is asked to supply 

possible values, as shown in Figure 5-7. First, the value type has to be 

identified. A value type defines the form at the valueclass of the slot will 

have. There are three possible types:

[T| numerical: attribute has a numerical value;
list of items: attribute takes one of a list of values - e.g., use can
have one of (tool weapon);

[3] anything: the value type is unknown.

The value type 0  suggests that the set of perm issible values for the 

attribute is any number. [2] is the most common value type; it takes a set of 

values, one or more of which can be the value of the attribute. The third 

value type suggests that value of the attribute is unknown.

Figure 5-7
Once an item  in the Sketch-Pad is identified to be an attribute, it is 
transferred to the CCW. Next, the user is prom pted for the value types for 
the attribute. For example, period item in Sketch-Pad was identified as an 
attribute of occupancy. The user is next asked to specify the value type 
period. There are 3 main options: numerical, list of items or unknown. If 
the second is selected, the user is asked to supply a list of possible values 
for the attribute.

5.5.2 Relations Window

The next step in KA, after obtaining the dom ain concepts, is to identify 

relationships between them. Two concepts are said to be related if one 

supports (or inferred-from) the other. For example, if the presence of 

butchering  is evidence of occupancy  of an area then the follow ing 

relationship exists between the two:
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butchering supports occupancy
(corollary: occupancy is inferred-from butchering).

The bi-directional nature of a relationship is represented in ASKE with 

two link types: supports and inferred-from. These links are implemented 

as slots of frames. Every concept has two slots: supports and inferred.from 

for recording the respective relationships. They take the nam e of the 

concepts to which the given concept is associated.

Figure 5-8
The Relations W indow is opened by double-clicking on the concept in the 
CCW. The associations between this concept to others is displayed in two 
w indow s: Supports Relationships and  Inferred-from  Relationships. 
Supports Relationships (top right) displays all concepts that the main 
concept (shown on left) supports. In the example, butchering is the main 
concept and it support occupancy. Inferred-from  Relationships (bottom 
right) displays concepts from which the m ain concept is inferred from. 
Thus, butchering is inferred-from three concepts: floor, metal and pit.

A new  relationship for butchering can be added by first clicking the left 
m ouse bu tton  w hen the cursor is on the Relations W indow . Then 
clicking on any concept in the CCW creates a link between the two._______

W hen a link is made, the names of the related concepts are added to the 

values of their inferred.from  and supports slots. The links are then 

displayed in the Relations W indow. The Relations W indow is consists of 

two halfs: the top one displays the supports relationship and the bottom 

one displays the inferred-from  relationship  (Figure 5-8). The user, 

however, does not need to know the link types nor is s /h e  required to

specify (in m ost cases) the direction of relationship. ASKE knows how  

concepts are related from its model of heuristic classification. The cases 

w here the m odel fails to determ ine direction of a relationship - for 

example, when two concepts from the same category are explicitly shown 

to be related, ASKE prom pts for it.
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This Stage of identifying the relationship between concepts is a crucial one: 

rules for problem -solving are derived from  them. ASKE does this 

autom atically . For exam ple, from  the above re la tionsh ip  betw een 

butchering and occupancy, the following rule is generated:

IF butchering 
THEN occupancy

Hence, the "supported" concept is m ade into the conclusion of the rule, 

and the "inferred-from" one into the prem ise. The attributes of the 

concepts, if any, would be conjoined to the concept clause.

5.6 Rulemaker
Once ru les are generated , ASKE sw itches to the Rulem aker. The 

Rulemaker interface was designed to make the task of rule editing easier 

for the user. KEE's rule system provides an extensive facility but is quite 

complex and requires weeks of training before one can do anything with it. 

Furthermore, for an initial prototype system, which ASKE helps develop, 

it is not necessary to have an in depth knowledge of the rule system. In the 

Rulemaker, an attem pt has been made to make rule editing simpler.

5.6.1 Contexts and Classes

Rules are arranged hierarchically in contexts and classes. A context 

contains sets of rules, arranged in a hierarchy of classes and sub-classes, 

which provide solutions to sub-problems. ASKE creates contexts out of the 

m ain concept categories, e.g., artifact.t is obtained from artifact category 

type. A set of rules with the same conclusion are arranged in classes, and 

class is named after the concept - e.g., butchering.t (Figure 5-9).

The need for contextual rep resen ta tion  of ru les comes from  our 

experience with building KIVA (Patel and Stutt, 1989a), an expert system 

for interpreting archaeological data. The KIVA rulebase is divided into
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five contexts corresponding to the five stages involved in solving the 

in te rp re ta tion  problem  (i.e., transform ing archaeological finds into 

description of past civilizations) in archaeology. Thus, contexts also relate 

to sub-tasks (or solutions to sub-problems) of the task addressed by the 

expert system.

5.6.2 ASKE Rules

For every pair of related concepts ASKE creates a rule, which carries the 

prefix  "tem p.rule". These ru les are sim ple in  s truc tu re  and need 

modifications. The Rulemaker has facilities for rule editing (described in 

the following section) and merging. Rules m erging m eans two or more 

rules are squashed into a single rule. All the premises are conjuncted to 

form  the prem ise of the new  rule. The sam e thing is done to the 

conclusions of the rules. The operation is carried out in the Class DW. For 

example, rules tem p.ruleSl, temp.rule32 and temp.rule33 w ere m erged 

and edited to produce temp.ruleâl as follows.

Tem p.ruleSl Temp.rule41
IF m etal.producing IF m etal.producing
THEN occupancy pottery.m aking

period (seasonal permanent) ditch
use boundary

Temp.rule32 size perim eter
IF pottery.making THEN occupancy
THEN occupancy period perm anent

period (seasonal permanent)

Temp.rule33
IF ditch

use (boundary sewage)
shape (circular linear)
size (site.perimeter )

THEN occupancy
period (seasonal permanent)
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5.6.3 Rules Editing W indow

The prem ise and conclusion of a rule can be edited in the Rule Editing 

W indow (left bottom  in Figure 5-9). The editor uses Zmacs and it is 

opened by clicking left (or middle) m ouse-button on the Rule DW. The 

editor will contain the premise (or conclusion) of the rule displayed in the 

Rule DW.

Figure 5-9
The prem ise and conclusion parts of a rule can be edited in the Rule 
Editing W indow (REW),which is displayed w ith a mouse click when the 
cursor is on the Rule DW. Depending on whether a left or m iddle mouse 
is clicked, the premise or conclusion, resp., is placed in REW buffer.

The example shows the conclusion items in the buffer. The buffer is a 
Zmacs editor. Basically, what is required of the user is to edit the value of 
the period attribute of the concept occupancy. However, new items can be 
added at this point. When editing is completed, the REW is removed by 
typing 'end' key. The modified rule is displayed in the Rule DW._________
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CImpter P I  

P R O C E S S IN G  IN A S K E

They say it works, whether you believe in it or not.

6.1 Introduction
In this chapter, I will illustrate how  ASKE processes information by going 

through the m ain steps in the development of a prototype system in the 

dom ain of archaeology. The scenario concerns the developm ent of a 

knowledge base for interpreting settlement sites.

6.1.1 Archaeology

Archaeology is concerned with explaining prehistoric social organizations. 

Typically, an archaeologist excavates a site, the finds^ and features^ are 

recorded, classified and interpreted. Of these, only the latter tw o are 

conducive to expert system  technology (Patel and Stutt, 1989b). The 

classification task is norm ally restricted to classifying artifacts. In the 

interpretation task, the social habits and the organization of past societies 

are inferred from the distribution of finds and features. For example. Hill 

(1970:19) writes, on interpreting prehistoric sites in southwest USA,

"Where different kinds of activities are carried ou t w ithin a 
community, one would expect to find different kinds of artifacts; 
and the presence of different artifacts in particular rooms or 
areas within an archaeological site should be usable as evidence

 ̂ Finds are archaeological objects, which may be either man-made or natural. The former 
type of finds are referred to as artifacts, and the latter as ecofacts.
 ̂Features refers to the various aspects of archaeological sites both man-made and natural 

(e.g., pits, ditches, walls).
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in inferring the activities of these rooms and areas - assum ing 
that one can identify the uses of the artifacts involved. In areas 
where food processing and cooking was done, for example, one 
m ight expect to find such item s as m ealing bins, m etates, 
m anos, firepits, fire-blackened pottery, charred bone rem ains, 
and a num ber of other things as well".

Figure 6-1 depicts the classification of the domain of archaeology. Two of 

the m ain areas for which archaeologists do interpretation are settlement 

and burial sites. The example we will be looking at is the interpretation of 

settlement sites (shaded area).

DOMAIN................ II,
(GTEMP)

TASK ................(|i„
(ATEMP)
SPECIALIZATION 
(WTEMP) .............. I""

(RTEMP) ...............Ill"

Template

Medicine NursingArchaeology

Interpretation Classification

Settlement Sites :

I
Settlement Sites 

(abridged)

Burial Sites

I
Burial Sites 
(abridged)

Figure 6-1 Templates for Archaeology, shown in the broader 
context of several domains to which ASKE has been applied

ASKE has ATEMPs for interpretation and classification (or selection), the two 
of the most important tasks carried out by Archaeologist. It also has a GTEMP 
for Archaeology, as it was used for developing a prototype system for 
interpreting Burial Sites. From this knowledge base, an RTEMP was abstracted 
(hence it is an abridged Burial Sites). The shaded area is the subject matter of 
this Chapter.

6.1.2 O verview

An ASKE session is divided into four parts (Figure 6-2). In the first part, 

the objective is to identify task characteristics. In the second part, the task 

model is built based on the ATEMP and guided by the RTEMP. In the 

third part, the task model is used as the basis for knowledge elicitation.
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The last part involves the user editing the automatically generated rules. 

At the end of the session, ASKE outputs interm ediate-level rules and 

creates a new RTEMP from the knowledge base.

TASK
MODELING

KNOWLEDGE
ELICITATION

RULES
EDITING

TASK
CHARACTERIZATION —  section 6.2

—  section 6.5

—  section 6.4

—  section 6.3

STAGE TWO
STAGE ONE

Figure 6-2 Inferencing in ASKE

The actual session is described with the help of screen snapshots of some 

of the more interesting dialogue between ASKE and the user. In the main 

text, a general description of the processing and some im plem entation 

details are presented.

6.2 Task Characterization
The aim of the task characterization stage of KA is to identify the task that 

the new system will be performing. The session includes an introduction 

to ASKE, elicitation of dom ain classification and project goals, and 

selection of templates for task modelling.

6.2.1 Starting a new  session

Clicking on the 'N ew KB' icon starts the session. First, the user is
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presented with a short tutorial on ASKE. The session proper begins with a 

set of questions to elicit user's personal details (Figure 6-3). This 

information is used as a reference for the knowledge base.

Figure 6-3
Stage one is completely system driven. The user is asked questions, which 
may be either multiple choice or those that require a typed answer. In the 
latter case, ASKE uses two types of prompts: "<anything>" or "<word>", 
which take as input a sentence or a word, respectively. Repeated prom pts 
are used for m ultiple replies. All stage one interactions take place in the 
Interaction W indow.

Personal Details. First, the personal details of the dom ain expert are 
obtained. These include the name, the address and the telephone number.

6.2.2 Obtaining the domain classification

Next on the agenda is the elicitation of the dom ain classification. This 
includes identifying: the domain of the new application; the task that

the system will be performing; and, the area of application.

Figure 6-4
Next, the domain classification is elicited. The classification is made up of 
the name of the domain, the task type of the problem and the specialist 
area of the new application.

Domain. The O u tpu t W indow  (bottom  right) show s the various 
GTEMPs of the domains in which knowledge bases have been developed. 
These dom ains are presented as choices to select from. The user is, 
however, allowed to build a system in a new domain, (e.g., by choosing 5).

D om ain

ASKE queries the user for the name of the domain (Figure 6-4). A choice 

of domains, about which ASKE knows, are presented to select from. From 

the selection, a GTEMP is identified as follows:
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IF domain exists
THEN use GTEMP of domain
ELSE create a new GTEMP.

As Archaeology is the domain of the new application, its GTEMP will be 

used for interrogating the domain expert. If the GTEMP did not exist, (i.e., 

when the domain is new), a new one is created. This is done by copying an 

empty GTEMP (i.e., w ithout values for slots) and giving it the name of the 

new domain.

Task Type

The next problem  is to identify the problem solving task the new system 

will be performing. As ASKE only knows about the four analysis tasks: 

debugging, diagnosis, interpretation and selection, these are presented as 

alternative choices to select from (Figure 6-5).

Figure 6-5
Task Type. ASKE provides facilities for developing system s for the 

fo llow ing four task  types: selection, debugg ing , d iagnosis, and 
interpretation. There is an ATEMP for each of these.

Specialist Area

It is now known that the new system is in the domain of Archaeology and 

it is for interpretation. To complete the dom ain classification, the name of 

the area of application (or specialist area) is needed.

Figure 6-6
[3] Specialist Area. The user is presented w ith the names of previously 
built knowledge-bases, if any, and prom pted for the new application area.
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6.2.3 Defining project goals

For knowledge base creation, it is not enough to acquire just the problem­

solving expertise. It is vitally im portant to know w hy the system is being 

developed and who will eventually use the system. The former provides 

the m otivation and justification for carrying out the project. The latter 

plays a role in designing user interface for the systems. Thus, the next set 

of questions are related to project goal definition (Figure 6-7). This 

information is stored in the knowledge-base and will be available to the 

systems developer for the implementation of the user interface.

Figure 6-7
Next, the user is prom pted for information on project goals. Three pieces 
of information are elicited within this category.

Task description. A statement about w hat the system will do.
[2] The project aim. Why is the system being built? W hat will be its role? 

Users. Who will use the system?

6.2.4 Selecting tem plates for the acquisition of task model

The next stage of KA, task modelling, is guided by ATEMP and RTEMP. 

The ATEMP will provide expectations of w hat these im portant concept 

categories are for the new  application. The RTEMP will assist by 

presenting an example of a task model in a similar application. These two 

tem plates are selected on the basis of inform ation in the dom ain 

classification.

Selecting an ATEMP

The ATEMP is selected on the basis of the task type - for every task type 

there is a corresponding ATEMP. ASKE has four ATEMPs for the four task 

types: debugging, diagnosis, in terpretation  and selection. Hence, in 

selecting the task type (in the dom ain classification stage) the user 

(indirectly) specifies the ATEMP.
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Selecting an RTEMP

The selection of an RTEMP, however, takes a slightly m ore complex 

procedure. ASKE matches the dom ain classification (i.e., domain, task- 

type and specialist area) of the new application to the list of RTEMPs in 

the know ledge base. The RTEMP w hich is closest to the required 

classification is selected. Basically, there are three possible matches:

0  IF domain, task-type and specialist area match
THEN pick specialist area template 

IF domain, task-type match
THEN pick different specialist area template 
ELSE ask user to pick a specialist area from the

set of all RTEMPs

Case 1: if a knowledge base, for the same application area, was developed 

previously, use its RTEMP.

Case 2: a new  application is being developed in a dom ain, in which a 

knowledge base in a different area, but for the same task has been built. 

The user is asked to select an RTEMP, w hich is closest to given 

application, from those that satisfy the condition, (if m ore than  one 

exists). Otherwise, s /h e  is informed about the selected RTEMP (Figure 6-8). 

Case 3: if the above two fail, the user is presented with a list of all RTEMP 

to choose from.

Figure 6-8
The selection of RTEMP is based on finding the closest one, in task and 
domain, to the new application. As there is only one RTEMP that satisfies 
the conditions, it is selected. The user is informed about this.
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The following lisp code shows how the above procedure for selecting the 

RTEMP is implemented in ASKE.

The GTEMP, ATEMP and WTEMP of the new application correspond to the 
domain, task-type and specialist area. Each of them is stored as a list, the 
first argument of which is a boolean and the second the name. The templates 
are accessed by typing the name with the prefix 'current'. For example, 
*current-atemp* has the value: (t interpretation). The boolean't' means that a 
knowledge base for interpretation exists. For the current session, gtemp and 
wtemp have the following values, respectively: (t archaeology) and (nil 
settlement.site).

; this function selects an RTEMP 
(defun find-rtemp ()

; print the introductory message 
(print-rtem p-inform ation)

; selection procedure
; if knowledge base exists, i.e., specialist area match 
(if (car *current-wtemp*)

; then find it, and output result 
(get-rtemp (cadr ’̂ current-atemp*))

; else, check if task-type match 
(leP^ ((task-type (cadr *current-atemp*))

; if it matches 
(s-areas (if (car *current-atemp*)

; list all RTEMPs for the task-type 
(get-s-areas-of-tasks task-type)

; else, list all RTEMPs in ASKE 
3  (get-all-s-areas)))

; if there is only one RTEMP 
(if ((= (length s-areas) 1)

; then, output the result 
(car s-areas))
; else, let user select the RTEMP 

 ___________ (ask-user "Pick an RTEMP" s-areas)))))

6.3 Obtaining the task model
The building of the task model is the most difficult stage of the entire KA 

process. At this stage, the expert is expected to lay down the main concept
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categories for the domain. Once the categories are identified, half the work 

tow ards the developm ent of the knowledge base is done. The problem 

stems essentially from the fact that the expert is forced to reorganize 

h is /h e r  dom ain knowledge so that it can be directly encoded into a 

computer program.

The task model for the problem is obtained in the following three steps.

0  The user is presented with a description of the task, that is, w hat the 

im portan t concept categories are and  how  they  are related . This 

inform ation is held in the ATEMP. For the present example, the main 

concept categories for interpretation are described (Figure 6-9).

Figure 6-9
The central aim of the task modelling stage is to obtain the main concept 
categories for the application. ASKE uses the ATEMP and the RTEMP, 
selected earlier, to elicit the task model. First, the user is presented with a 
brief (generic) description of the task of interpretation.______

A concrete example is presented to help the user relate to the relatively 

abstract description of the task presented before. Figure 6-10 shows w hat 

the m ain concept categories are in the knowledge base for Burial Sites 

(which is obtained from its RTEMP). This will be useful in focussing the 

atten tion  at the righ t level w hen provid ing  the m odel of the new  

application.

Figure 6-10
Next, a concrete example of a task model, from a related application area - 
Burial Sites, is presented. This example is obtained from the RTEMP.

1  ̂ The user is then prom pted for the main data (Figure 6-11) and solution 

(Figure 6-12) categories for the task. The information required is the name 

and a short description (or comment) of the concept.
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Fleure 6-11
Then, the user is p rom pted  for the m ain data  categories for the 
interpretation of Settlement Sites.

The data categories are: artifacts and features

The RTEMP for Burial Sites can be viewed by clicking on the vcfevcncc 
template page of the Notebook.

Figure 6-12
Finally, the solution categories are elicited.

The solution categories are: activities and site.profile.

(Note: If more than one descriptive words are used, they have to be joined 
together with a dot, e.g. site.profile. This is because KEE recognizes spaces 
as separators.)

Figure 6-13
At the end of the task m odelling stage, the user is presented w ith the
specified task model, which is displayed in the Main Concepts Categories
W indow (left). This w indow  allows further am endm ents to the the task 
m odel.

Note that ASKE knows that the basic relation between categories is: data 

support solution (or solution is inferred-from data). It, however, does not 

know if there are any causal relationships within concept categories. If 

there are, and it will be known later, the user will be prom pted for the 
direction of relationship.

6.4 Knowledge Elicitation
The knowledge elicitation stage has two main objectives. First, to acquire 

concepts in the various data and solution categories. Second, to identify 

the heuristic associations between concepts.

6.4.1 O btaining Domain Concepts

The elicitation of domain concepts is guided by the task model, which
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helps the expert focus on the relevant knowledge. The m ain concept 

categories are displayed in the Central Concepts W indow (CCW). Initially, 

items (concepts and attributes) are entered into the Sketch-Pad via the 

Input W indow (see Figure 6-14). The reason for including the Sketch-Pad 

facility is the im plicit assum ption that dom ain experts do not have 

formalized knowledge bases in their heads. In fact, a lot of experts build 

expert system s to formalize their experiential knowledge (e.g.. Baker, 

1986), and it is as good a reason as any for using the technology.

W hen the item s are entered into the Sketch-Pad, they are held in a 

tem porary buffer. They are only added to the knowledge base when they 

are m oved to the CCW. Moving of concepts and attributes is done via 

m ouse clicks and menus. For example, w hen the concept occupancy is 

moved from Sketch-Pad to CCW, the user specifies where the concept will 

go in the hierarchy. Occupancy is a site.profile. Now, two things happen.

E  ^  frame for occupancy is created in the knowledge-base. This 

frame (which takes the name of the concept) is linked to the parent 

of the concept (i.e., site.profile). Thus occupancy inherits all the 

attributes of site.profile. Occupancy also inherits the following four 

slots from the top-level concept central.concepts.

SLOTS POSSIBLE VALUES COMMENT
type data, solution the type of concept
inferred.
from

other concepts from which concepts is this one 
inferred

supports other concepts which concepts does this one 
support

t.rules temp.rules rules which contain this concept

E  The new concept name is added to the WTEMP as a value of the 

attribute, the main concept category which is the ancestor of the
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concept. Hence, occupancy  is added to the list of values for 

site.profile attribute of Settlement.Sites

The following lisp code shows how  the adding of a new concept to the 

knowledge base is implemented.

; This function adds the concept to the central concepts window 
; it takes two arguments: 1) the object to be transferred; and, 2) 
the
; the position in the concept hierarchy where it goes.
(defun add-concept-to-main-window (object parent)

; find the main concept category,
; which is the ancestor of the object 
(let ((ancestor (find-main-concept-category object)))

; create a new frame for the object 
; and link it to the parent node 
(create-a-concept object '^current-kb* parent)

; add the concept name to WTEMP 
(add-concept object ancestor (cadr ’̂ current-wtemp’̂ ))

; delete the object from the Sketch-Pad 
(delete-sp-object object)

; redisplay the windows 
(display-sketch-pad)
(display-main-concepts))) ______

Figure 6-14
In Stage two, a graphical interface is employed. Inform ation on mouse 
functionality is also displayed in the Mouse Documentation W indow.

Obtaining Domain Concepts
N ew  concepts and attributes are entered through the Inpu t W indow 
(bottom right) to the Sketch-Pad (middle). The CCW (top right) displays 
the concept h ierarchy. The roo t node is of the concepts tree is 
central.concepts. The first level nodes are the main concept categories. Left 
mouse click on an item in the Sketch-Pad specifies it as a concept, a middle 
one identifies it as an attribute. The concept or attribute is then m oved 
from the Sketch-Pad to CCW.
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The Sketch-Pad is rem oved w hen the user feels there are no more 

concepts to be added. However, subsequently, new knowledge can be 

added directly into the CCW, which can be opened, (if closed), by clicking 

on the central concepts page of the Notebook.

Figure 6-15
The Sketch-Pad is rem oved after 'enough' concepts and attributes have 
been entered. The CCW, however, stays. This is the m ain w indow  for 
knowledge elicitation. It can be opened by clicking on the central concepts 
page of the Notebook.

Besides entering new  concepts, the w indow  allows editing of concept 
attributes and identifying relations between concepts. W hen a concept is 
clicked on (with a right mouse click), a m enu for editing the concept's 
attributes is presented. The m enu allows three options: adding  a new 
attribute, delete an attribute and edit a given attribute.

Editing the attribute values. The user is first inform ed about w hat the 
possible values of the attribute are. S /h e  is prom pted for the new  value 
type and the possible values for the attribute.

Figure 6-16
A dding  a new  attribute. The user is inform ed about the reserved 
attributes, those that are system defined and cannot be used again. Then, 
s /h e  is told about the other attributes that the concept has.

First, the name of the new attribute is acquired. Followed by its valueclass, 
w hat possible values it can have.

Figure 6-17
Double clicking on a concept in the CCW opens the dual windows for the 
display of 'supports' (top left) and 'inferred-from' (bottom left) relations.

To identify the associations between butchering and other concepts, first 
butchering is selected (by double mouse click on the concept in CCW). 
Supports Relationships show s which concepts butchering  supports, 
Inferred-from Relationships shows the concepts from which butchering is 
inferred. A left mouse click on either of these brings up a w indow  with 
how to go about identifying a relationship.
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6.4.2 Identifying Relationships

After the concept categories have been obtained, the next task is to identify 

the associations betw een concepts. Double-clicking the m iddle mouse 

button on a concept in CCW opens up the Relations W indow, which is 

split in to  two halfs, top and bottom  displaying the "supports" and 

"inferred-from" relationships for the concept, respectively (Figure 6-17).

ASKE knows the relationship between data and solution categories the 

former supports the latter or the latter is inferred-from the former. But, if 

two concepts from the same m ain category are identified to be associated, 

the user is prom pted for the exact relationship between the two, as shown 

in Figure 6-18. The following shows how links are created in ASKE.

In every frame there four important attributes:
type - indicates whether the concept is data or solution category; 
inferred.from - from which concept is this one inferred; 
supports - which concept does this one support; 
t.rules - the rules which have this concept.

; This function identifies the relationship between concepts.
; It takes two arguments: 1) the main concept, which is in
; Relations Window, and 2) the concept in the CCW.
(defun make-a-relationship (conceptl concept2)

; find the 'type' of the two concepts 
(let ((forward-link (find-type-of-concept conceptl)) 

(backward-link (find-type-of-concept concept2)))

; if the concepts are of the same type 
(if (equal forward-link backward-link)

; find the direction of the link, and accordingly assign
; the type value to conceptl
(setq forward-link (prompt-for-link-direction)))

; if the type of conceptl is solution 
(if (equal forward-link 'solution)

; then assert that conceptl supports concept2 
(add-link-type conceptl conceptl)

; else assert that concept2 supports conceptl 
_______ (add-link-type conceptl conceptl))))
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While adding a link, ASKE also creates a tem porary rule. The rules are 

generated at link creation time, and not after all links are m ade, because 

the two tasks of link and rule making are associated. W hat happens at the 

tim e of concept linking is, given two concepts d and  Q w ith  the 

relationship: d supports O, the following values are added.

supports inferred-from tru le
a
Q

Q
a

tem p .ru le ll
tem p .ru le ll

tem p.ru lel2
IF a
THEN Q

A  new  ru le ’tem p .ru le l2 ’ is created w ith  d as prem ise and Q as 

conclusion. The rule, called association rule, is added to the 't.rules' slot of 

each concept. All this is carried out by the 'add-link-type' function.

ASKE generates temporary rules, which are held in a tree structure with the 
root node temp.rules. The rule has two slots: premise and conclusion. These slots 
take concepts as values. Rules with the same conclusion are clustered together 
in a class, which takes the name of the conclusion with a suffix '.t'.

; This function creates a link between concepts and builds a 
; temp rule. It takes two arguments: 1) the supporting concept;
; and 2) the supported concept.
(defun add-link-type (conceptl conceptl)

; add concept2 to the value of supports in conceptl 
(add-value conceptl 'supports conceptl)
; add conceptl to the value of inferred-from in concept2 
(add-value conceptl 'inferred-from conceptl)

; find the rule class; if none exists, create one 
(let* ((class (cond ((class-exists concept!))

(t (create-class concept!))))
; create a new rule in the rule class 
(rule (create-rule (gentemp "temp.rule") class)))

; add conceptl and concept2 to the premise and conclusion 
; slots of the new rule 
(add-value rule 'premise conceptl)
(add-value rule 'conclusion conceptl)

; add new rule to the value of t.rules in the two concepts 
(add-value (list conceptl conceptl) 't.rules rule)))
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Figure 6-18
ASKE knows that data categories concepts support concepts from the 
solution categories. (This inform ation is given in the ATEMP and is 
included in the task model.)

When two concepts from the same category are identified to be associated, 
ASKE asks for the nature of relationship. For example, butchering (which 
is an activity) and occupancy (which is a site.profile) are related. They are 
from the same category, solution of which both activities and site.profile 
are members. The user is prom pted for the direction of relationship.

Butchering supports occupancy.______

6.4.3 Querying about Unaccounted Concepts

The user can quit from the relationship identification stage at any time. 

ASKE outputs a status message informing the user of the concepts whose 

associational links haven’t been identified (Figure 6-19). The user can 

either go back to the previous stage or proceed to the rule-editing stage.

Figure 6-19
After the user quits from the relationship identifying stage (which is done 
by closing the CCW), ASKE searches the list of dom ain concepts for any 
unrelated concepts: those for which no associations have been identified. 
The user is informed about the unidentified concepts, if any.

Ditch, from the data category is still unattached.
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The processing for this stage is carried out by the following lisp functions.

; This function looks for any unattached concept. 
(defun find-unfilled-concepts ()

; get all concepts in data and solution category 
(leF^ ((data (get-all-concepts-in-data-category))

(soln (get-all-concepts-in-solution-category))

; find unrelated concepts 
(u-data (find-unrelated-concepts data)) 
(u-soln (find-unrelated-concepts soln)))

; if there are any concepts unaccounted for 
(w hen (or u-data u-soln)

/ inform the user about them 
(if u-data (inform-user u-data))
(if u-soln (inform-user u-soln)))))

; This function recursively checks unrelated concepts. It takes 
; one argument, a list of concepts.
(defun find-unrelated-concepts (c-list)

; continue checking the list until it is empty 
(when c-list

; check if any rules are created for the concept 
(if (get-value (car c-list) ’t.rules)

; if not, go to the next concept 
(find-unrelated-concepts (cdr c-list))

; if yes, store the concept; and continue checking 
(cons (car c-list) (find-unrelated-concepts (cdr c-list)))))

6.5 Rules Editing
The rules generated at the previous stage (i.e., associational rules) are 

displayed in the Rulemaker for editing (See Appendix A for the complete 

list of ASKE generated rules for this session). Rules are arranged in tree 

structure w ith  the ’tem p.rules' as the root rule. The rest of the rule 

hierarchy is organized in contexts, classes and associational rules.
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An association rule was created with a single concept each in the premise 

and the conclusion. At the editing stage, the various slots of the concepts 

are conjuncted with the concept. The user is required to edit the values as 

well as merge various rules.

Rules Merging

Figure 6-20 shows how  the various rules, whose conclusion is the activity 

of storage.area are m erged. M erger of rules is accom plished by the 

following function.

; This function merges a given set of rules into one. It takes two 
; argument: 1) rules to be merged; and 2) the replacement rule. 
(defun merge-rules (setof-rules new-rule)

; go through the list of rules till it is empty 
(when setof-rules

; get the first rule in the list 
(let* ((rule (car setof-rules))

(other-rules (cdr setof-rules)) ; rest of the rules 
(prem (get-value rule 'premise)) ; get premise 
(cone (get-value rule ’conclusion))) ; and conclusion

; add the premise and conclusion of the rule to the resp.
; slots of the new rule; add only if value doesn't exist 
(add-new-value new-rule 'premise prem) 
(add-new-value new-rule 'conclusion cone)

; delete the rule and the corresponding links from 
; its premise and conclusion concepts 
(remove-rule rule)

; recurse with the rest of the rules 
 (merge-rules other-rules new-rule))))

Editing the Premise and the Conclusion

The m erged rule, temp.rule48, is displayed in the Rule Display W indow. 

The prem ise and conclusion can be edited, individually , in the Rule 

Editing Window. Basically, w hat is displayed in the Rule Editor is a list of 

concepts. A concept list consists of the concept as the first item and its
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attributes m aking up  rest of the list. For exam ple, the prem ise of 

temp.rule48, displayed in the buffer of Rule Editing W indow (Figure 6-21) 

consists of a list of 3 lists:

( ( (floor)
(content features)
(size (small m edium  large)) )

( (pottery) )
(surface (blackened not.blackened)) 
(size (small m edium  large))
(shape (circular cylindrical oblong))
(fabric (fine coarse)) ) -----2

( (pit)
(use (storage refuse posthole)) ) ) -----3

The task at hand is to delete attributes and values which do not play a role 

in reasoning. This is accomplished w ith the 'rubout' key and the mouse 

cursor. At the end of editing, the Rule Editing W indow is rem oved and 

the contents of the buffer displayed in the Rule Display Window. The rule 

is finally stored in an intermediate form:

Temp.rule48
IF

The content of FLOOR is (POTTERY PIT) 
The size of FLOOR is SMALL 
The size of POTTERY is LARGE 
The fabric of POTTERY is COARSE 
The decoration of POTTERY is PLAIN 
The use of PIT is STORAGE 

THEN
activities is STORAGE.AREA

Interm ediate-level Rules

From the present session, 12 interm ediate rules were generated. These 

include 7 for inferring the activity of an area and 5 for inferring 

site.profile. These are given in Appendix B.
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Figure 6-20
From the associations between concepts, ASKE autom atically generates 
rules. These rules are organized in hierarchies of contexts, classes and 
rules. The root node of the rules tree is tem p.rules. The contexts are 
obtained from the main concept categories. Fîence, there are four contexts: 
activities.t, artifacts.t, features.t and site.profile.t.

The rules that ASKE creates are very simple: from  'm etal supports 
metal.producing' is created 'if metal then metal.producing'. All the rules 
w ith the same conclusion are clustered together into classes. There are 
eight m ain classes and they correspond to the concepts of the solution 
type.

Rules w ithin classes can be m erged to produce a complex rule. For 
exam ple, tem p.rule24, tem p.rule25 and tem p.rule26 are m erged into 
temp.rule48. ___

Figure 6-21
Temp.rule48 is displayed in the Rule Display W indow. Its prem ise and 
conclusion can now  be edited. By clicking the left mouse button when the 
cursor is on the w indow , the Rule Editing W indow is opened w ith the 
prem ise placed in its buffer; (middle button puts the conclusion in the 
buffer).

6.6 Creating an RTEMP
The last thing that ASKE does, is automatically create an RTEMP from the 

knowledge base. The RTEMP takes the name of the WTEMP with a suffix 

'.R'. Figure 6-22 shows the new RTEMP created from the Settlement Sites 

knowledge-base.

Figure 6-22
At the end of the ASKE session, a new  RTEMP is created by abstracting 
inform ation from the current knowledge-base. This is displayed in the 
Aske Interface in the Interaction Window.
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D I S C U S S I O N

By examining the processes of your own expertise you risk 
becoming like the centipede who got tangled up in her own legs 
and stopped dead when she tried to figure out how she moved a 
hundred legs in harmony.

7.1 Introduction
In this Chapter, I w ould like to bring ou t in the open some of the 

assumptions guiding the design of ASKE. I will start the discussion with a 

look at the tem plate approach to KA, as it is at the heart of the 

methodology presented in ASKE. W hat is the template approach? Is it any 

good? W hat advantage has ASKE got over other KA systems? I will then 

go on to discuss the notion of KA as a m odelling activity. Is it justified? 

W hat are the methodological implications of this?

M any of the KA systems, including ASKE, use the m odel of heuristic 

classification as the paradigm  for developing expert systems. The main 

question here is relating the scope of the model. How generic is a tool if it 

can work for only a circumscribed area? I will try to answer some of these 

questions. Finally, I will argue that the m ethodology for automatic KA is 

more than just an intelligent interface. Why is ASKE not just an interface 

to KEE? W hat role are intelligent interfaces to play in the design of KA 

systems? A description of the limitations of the ASKE approach to KA and 

research that requires to be done is presented in the following Chapter.
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7.2 Template driven KA
The first question, and probably the m ost im portant one, is: w hat is a 

template? W ith respect to the structure, one can say that a template is a 

frame. But, templates do not have any mechanism for inheritance, which 

is one of the characteristic features of frames. This is essentially because 

such a feature is not required for the kind of task that tem plates are 

utilised for. Templates play a num ber of roles in ASKE. They direct 

interviewing (e.g., GTEMP and ATEMP); they help the dom ain expert in 

focussing attention at the right level for concept identification (e.g., 

RTEMP); they provide a structure for representing dom ain knowledge 

(e.g., WTEMP).

How good is the template approach? How does it help in KA? To answer 

these questions we will have to look at w hat has been achieved by ASKE.

7.2.1 W hat ASKE started w ith

Initially, ASKE contained three hand-crafted knowledge bases: selection of 

Software M arketing strategies (Corporate Planning), in terpretation  of 

Burial Sites (Archaeology), and diagnosis of Foot Problems (Medicine). 

Hence, ASKE started with the following templates:

GTEMP WTEMP RTEMP
Corporate.Planning
Archaeology
M edicine

Software.M arketing
Burial.Sites
Foot.Problems

Software.M arketing.R
Burial.Sites.R
Foot.Problems.R

F urth e rm o re , ASKE has four ATEMPs: debu g g in g , d iag n o sis , 

interpretation and selection. These ATEMPs, along with the GTEMPs and 

WTEMPs, were hand-crafted. The RTEMPs were generated automatically 

from the knowledge bases.
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7.2.2 W hat has been achieved

The manually acquired knowledge bases have been successfully applied in 

the automatic acquisition of four new knowledge bases, two of which are 

in new domains. The application areas (WTEMP) are as follows:

GTEMP WTEMP ATEMP RTEMP USED
Archaeology
Medicine
M otor.M echanics
N ursing

Settlement.Sites
Aids.Infections
Engines
Pressure.Sore

Interpretation
Diagnosis
Diagnosis
Diagnosis

Burial.Sites.R
Foot.Problems.R
Aids.Infections.R
Aids.Infections.R

By comparing w hat ASKE initially started with and w hat it has achieved, 

we can say that the approach works. The main advantage of the template 

approach is that the system is able to build knowledge-bases in completely 

new domains. ASKE does this by utilizing the existing tem plates as case 

examples for acquiring new templates from the domain experts.

It m ust be pointed out that in the acquisition of all these knowledge bases 

I was, either directly or indirectly (i.e., I sat next to the domain expert), the 

user of ASKE. In the latter case, it was necessary because the interface was 

not 100% crash-proof (see Section 7.5 for m ore on the Interface). 

Furtherm ore, in all instances, the knowledge was obtained, using the 

m ethodology, from  an "academic" expert, w hose dom ain know ledge 

tends to be logically structured (Shadbolt and Burton, 1989). According to 

Shadbolt and  Burton, there are three types of experts: academ ic, 

practitioner and  sam urai, who m ay perform  differently in the KA 

situation. It is hence hard to predict how  successful ASKE will be in 

acquiring knowledge from the other two types of experts, who tend to be 

m uch more interested in performance than in the application of theory. 

An academic expert as a knowledge source is, however, not such a big 

limitation since m any of the well known expert systems (e.g., DENDRAL, 

MYCIN and ONCOCIN) were built using academic experts.
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7.2.3 Com parison w ith  other systems

W hat advantage has ASKE got over other systems? So far, no knowledge- 

based KA system has been able to achieve the scope of applicability of the 

technique-based KA systems. For instance, MOLE can only be used in 

diagnostic applications; ETS can be applied to analysis tasks. Both systems, 

like ASKE, work w ithin the heuristic classification paradigm  (see Section 

7.4 for more on this). With the template approach, ASKE has achieved the 

breadth of scope of the technique-based KA systems. It can be used to 

develop systems for any analysis task, theoretically. In practice, ASKE has 

ATEMPs for the four task types, but future extensions (see Section 8.2.2) to 

ASKE will allow more flexibility in creating new ATEMPs.

The designers of both KNACK and PROTEGE, the other model-based KA 

systems, argue that their systems can be applied to different tasks. Neither 

has dem onstrated this, however. One possible reason for this is that they 

are lim ited by their problem -solving m ethods of acquire-and-present 

(KNACK) and skeletal-p lan-refinem ent (PROTEGE). Both of these 

m ethods are very specific. The advantage of having such strong problem ­

solving m ethods is that they facilitate the recognition of concepts for 

correct problem  definition. And this is im portant, as Kitto (1988:14-7) 

points out:

”A common source of confusion for most dom ain experts is 
creating the conceptual model. Experts are unsure of which 
term s in their dom ains constitu te concepts  w hich are 
charac t e r i s t i c s ,  and  w hich  are specific  exam ples 
(instantiations) of characteristics.”

The limitation of powerful problem-solving m ethods is that they have a 

rather narrow  scope of applicability. However, by using a more general 

problem -solving m ethod, like heuristic classification, one loses the 

advantage of the specialist methods. There is no provision for identifying 

im portant concept categories required for the problem  definition. ASKE



D iscussion 141

solves this problem  by using previous cases (i.e., RTEMPs), which with 

the ATEMPs, are used to provide the domain expert with the kind of help 

that would be available in the more specific problem-solving methods.

7.3 KA is a modelling activity
ASKE is founded on the tenet that KA is a modelling activity. The idea 

that KA is a modelling enterprise is in vogue with researchers working in 

the field (e.g., M otta et al., 1989b; M usen, 1988; W ielinga and Breuker, 

1986). It is also consistent with the general view that "knowledge bases 

contain models of systems in the world" (Clancey, 1989:10). There are two 

main questions that need to be answered: W hat is the justification for 

doing so? W hat are the m ethodological im plications of adopting this 

approach? I will start with the second question first.

The basic idea underlying the view that KA is a modelling activity is that 

the model of the task developed in the initial stages of KA can be used to 

elicit problem -solving knowledge. Im plicit in this perspective is the 

notion that KA can be carried out in a top-dow n fashion (Motta, et. al., 

1989b). The main implication for the designers of KA systems is that the 

system should start with some knowledge or strategies for form ulating an 

initial m odel of the application. Thus, unlike the bottom -up approach 

where KA is carried out with just the knowledge of different elicitation 

techniques, the emphasis is now on the use of task-specific knowledge. 

Indeed, this is the thrust behind the task-specific and knowledge analysis 

methodologies of knowledge engineering. The aim of the former is to use 

role-limiting m ethods (McDermott, 1988) or generic tasks (Bylander and 

Chandrasekaran, 1987), while the latter employs in terpretation m odels 

(Wielinga and Breuker, 1986) for KA.

According to Chandrasekaran (1987), "knowledge systems should be built 

out of building blocks, each of which is appropriate for a basic type of
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problem solving" (1183). The building block (or generic task) uses forms of 

knowledge and control strategies that are characteristic of it. In ASKE, the 

task-specific knowledge is hard-wired into the ATEMPs.

7.3.1 Task and Interpretation models

The notion of task model in ASKE is akin to that of interpretation model 

in KADS (Breuker and W ielinga, 1985); it describes the m eta-level 

structure of a generic task. Also, both task and in terpretation models 

support top-down KA. At the start of a KA session, the model that best fits 

the problem area is chosen from a library of models (task or interpretation) 

and applied to it. One of the main differences between the two is the real 

purpose they serve. The task m odel helps the expert focus h is /h e r  

attention on the concepts that are im portant for describing the task. This 

approach is identical to that prescribed by the task-specific methodology. 

The interpretation model plays a role in the knowledge analysis stage. It 

provides guide-lines for interpreting data:

"an interpretation model is a kind of catalogue of types of 
ingredients the knowledge engineer can look for in the data, 
and thus functions as an organizer that provides coherence 
to these data" (Wielinga and Breuker, 1986:22).

A more significant difference between the task and interpretation model 

is that while the former is automatically selected, the selection of the latter 

is in the hands of the knowledge engineer.

7.3.2 Applicability of models

The view that knowledge bases are models endorses the fact that they are 

based on assum ptions and prone to failure. As a result the designer of a 

system employing models to drive KA has an onus to determine its range 

of applicability. This is indeed a non-trivial task, as experience suggests.
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"Clever shortcuts and elegant form alities are w orthless 
unless the experts can fit their own knowledge into the 
framework provided by the designer. Only when a program 's 
vocabulary is 'natural' to experts can they help refine and 
augm en t the know ledge base to b ring  the system 's 
performance up to their own level of expertise" (Buchanan,
1982).

When models are used as an acquisition tool, there is a great potential for 

a m ism atch betw een the m odel and the problem  it is supposed  to 

represent. This does not, how ever, render the m odelling approach 

fruitless because "the use of pre-existing m odels, even inadequate ones, 

can lead to dram atic improvements in the time required for performing 

KA and building a prototypical system" (Motta et al., 1989a:317). Therefore, 

the main justification for the modelling approach is that it facilitates KA.

7.4 Heuristic Classification Paradigm
Clancey (1985) analyzed a num ber of expert systems and found that these 

program s exhibited a similar pattern of reasoning:

"These program s proceed through easily identifiable phases 
of data abstraction, heuristic m apping only a hierarchy of pre­
enum erated solutions, and refinement w ithin this hierarchy.
In short, these program s relate  concepts in d ifferen t 
classification hierarchies by non-hierarchical, uncertain  
inferences. We call this combination of reasoning heuristic 
classification" (290).

The heuristic classification m odel has been used by a num ber of KA 

systems (including ASKE) as the basic m ethod of problem-solving. The 

model has been argued to be applicable to solving analysis tasks, which are 

characterized by the fact that all their possible sets of solutions can be 

specified a priori. As mentioned earlier (Section 4.2), the applicability of 

the model is restricted to "structured" problems only. A further restriction 

is that the task should not be time-critical, i.e., the solution of the problem 

should not vary with time. When a solution does vary w ith time, a third
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factor is introduced to the pre-existing link between problem  description 

and solution. However, the heuristic classification model does not cater 

for the time element. Therefore, tasks such as m onitoring which are 

usually time-critical will not be solvable by the classification m ethod. 

Given these lim itations of the scope of the model, the m ain question is: 

how generic is a tool based on the heuristic classification model?

7.4.1 Heuristic Classification and KA Systems

Boose (1988) has shown that there is a possible association between tasks 

and problem -solving methods. Figure 7-1 shows the m apping between 

analysis tasks and heuristic classification. There is a sim ilar m apping 

between heuristic construction and synthesis tasks.

HEURISTIC CLASSIFICATION

ASKE
ETSMOLE

ANALYSIS

DIAGNOSIS SELECTION

DEBUGGING INTERPRETATION

Figure 7-1 KA systems linking analysis tasks and 
heuristic classification (from Boose, 1988)

The Figure shows that there is a possible m apping betw een problem ­

solving m ethods and application tasks, and the association is manifested 

in the KA tools. The three systems: ETS, MOLE and ASKE, use the 

heuristic classification problem-solving method. In all three systems, the 

m ethod is hard-wired into the system. Figure 7-2 summarises the essential
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differences between these systems. In ETS the classification m ethod plays a 

rather secondary role to the repertory grid methodology. The knowledge 

elicitation stage is carried out using the repertory grid technique. It is only 

at the latter stages of generating rules that know ledge is organized 

according to the model specifications.

ETS MOLE ASKE

Technique for
knowledge
elicitation

Repertory grid 
method

Cover-and- 
differentiate, 
which is based 
on the heuristic 
classification 
model

Based on the 
heuristic 
classification 
model

Type of knowledge 
to elicit

Implicit in the grid 
method

Implicit in the 
above technique

Explicit in the 
ATEMPs

Breadth Selection 
and simple 
classification tasks

Diagnositic tasks Analysis tasks

Figure 7-2 How ASKE differs from ETS and MOLE.

In MOLE, the classification model is used as the general problem-solving 

m ethod on which more specific m ethod, called role-limiting m ethod, is 

based. A role-lim iting m ethod "defines the roles that the task-specific 

knowledge it requires m ust play and the forms in which that knowledge 

can be represented" (McDermott, 1988:228). Essentially, a role-lim iting 

m ethod consists of a repetitive cycle of procedures for identifying and 

processing required knowledge. Thus, MOLE utilizes the pow er of the 

classification model to a greater extent and more effectively than ETS. The 

elicitation stage is driven by the role-limiting method, which is based on 

the classification model. However, the range of applicability of MOLE is 

quite narrow: it can be used for diagnostic tasks only.
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In ASKE the classification model is implicit in the ATEMP. To make the 

system more general, the use of a more specific problem-solving methods 

was avoided. Instead, the classification model is used directly to carry out 

knowledge elicitation. The kind of knowledge to be elicited is separated 

from the elicitation technique and represented explicitly in the ATEMPs. 

This way, the full scope of the classification model has been achieved in 

ASKE. Relative to other KA system s, ASKE has a greater scope of 

applicability (or breadth). But still, w ith the inference structure implicit in 

the design, the system is limited. W ith further extensions, (about which 

m ore is said in the next Chapter), it will be possible to make the 

classification problem-solving m ethod explicit.

7.4.2 Problem-Solving Methods and Generic Tasks

C handrasekaran (1987) suggests that KA should not be considered in 

isolation, but rather should be conceived of as an adjunct to some specified 

problem-solving task. The task is referred to as generic task, which is "an 

elem entary  generic com bination of a problem , represen tation , and 

inference stra tegy  about concepts" (Bylander and  C handrasekaran , 

1987:235). In generic tasks, they have attem pted to identify the modules of 

problem -solving needed to address a given set of task dem ands. In so, 

generic tasks appear more like problem-solving methods: they are more 

descriptive of the problem-solver than the application task (W oodward, 

1989). Com pared to heuristic classification, generic tasks are elementary 

problem-solving methods closely associated to application tasks. Heuristic 

classification, on the other hand, is linked to application tasks by KA tools.

7.5 Intelligent interfaces
One of the im portant factors in m anual KA is the effectiveness of the 

know ledge engineer in com m unicating w ith the dom ain expert. On 

autom ating the task, the communication factor is not rem oved, bu t it is 

displaced. The issue of m an-m achine interface has acquired a new  

meaning. In designing ASKE, it was evident that interface issues are tied
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in with the KA methodology. For example, the second stage of KA relies 

on the use of m ouse and m enus for encoding knowledge. The main

reason for this is because "the question-and-answ er style of entry is

extremely tedious, cumbersome and time-consuming" (Kitto, 1988:14-3).

In this final section, I will try  to answer two critical questions: W hy is 

ASKE not just an intelligent interface? W here do intelligent interfaces 

figure in in the design of KA systems?

7.5.1 ASKE is more than an intelligent interface to KEE 

At first glance, ASKE looks like a front-end to KEE. And, this is not 

entirely an incorrect perception. ASKE does provide a facility for encoding 

knowledge directly into KEE. However, ASKE is designed as a stand-alone 

system. It is a KA system and it produces intermediate rules which can be 

tran sla ted  in to  KEE or KEATS rules. Because the tem plates are 

im plem ented in fram e-language, ASKE can use any environm ent with 
this facility.

A nother characteristic which distinguishes ASKE from an intelligent 

interface is that it is goal driven. Em bedded in the ASKE system  is a 

m ethodology for KA and the interface is just a facility for interacting with 
the program.

7.5.2 Intelligent interfaces and KA systems

Intelligent interfaces are necessary if the system is going to be used for real 

applications. Indeed, this is true for computer systems in  general.

"For a high-performance com puter program  to capture the 
sustained, widespread attention of working scientists, it m ust 
contain a large num ber of features that make it easy and 
p leasan t to use. These features are com m only term ed 
hum an engineering aspects’ of a program . In very rare 

instances, a program  will be so useful that it will be widely 
a d o p te d  even w ith o u t p ro p e r a tten tio n  to  h u m an  
engineering. But the general principle seems to be tha t
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program s that are only understandable to program m ers are 
used only by programmers, if at all" (Buchanan, 1979).

The implication for a KA system, however good its methodology m ay be, 

is that w ithout a good interface there is very little chance of it succeeding 

outside of the place of its development. For instance, both KNACK and 

AQUINAS were found difficult to use w hen field tested . Both tools 

required "much progress in the developm ent of intelligent interfaces to 

improve usability by a domain expert" (Kitto, 1988).

In ASKE, a lot of effort has gone into designing the interface. For example, 

the Sketch-Pad, the Central-Concepts W indow, and the Relations W indow 

were designed to facilitate the encoding of dom ain concepts and their 

relations. The Notebook facility provides a quick access to the knowledge­

base. The Rulemaker Interface was designed for creating and editing rules. 

In spite of these facilities, ASKE is not easy to use. More work is needed, 

especially in the way of documentation and help facilities.
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C O N C L U S I O N

Some people will believe they were better off in the good old days.

8.1 Recap
In this concluding Chapter I would like to summarize the work presented 

in this thesis. I will contain myself to answering the following questions: 

W hat was the main goal of this thesis? W hat has been achieved? W hat 

has not been accomplished? Finally, I present suggestions for future 

research.

8.1.1 Project Aims: Revisited

The main purpose behind the research in automatic KA is to provide tools 

that either supplem ent or replace the knowledge engineer in developing 

expert systems. The present work is a contribution to the latter. It is rather 

an ambitious objective and to make it more tractable, the m ain goal of this 

research was limited to: the design of a tool that could be used by domain 

experts to develop prototype systems for analysis tasks.

Analysis of the performance of existing KA systems have shown that there 

is a tradeoff between the scope of applicability (or breadth) and quality of 

knowledge bases developed (or depth). Knowledge-based KA systems score 

on depth but lose out on breadth; technique-based KA systems do better on 

breadth  and perform  poorly on depth. The aim of the thesis was to 

provide a methodology and an implemented tool which will cut through
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the breadth-depth problem.

8.1.2 W hat has been accomplished.

A two-stage model of KA was implemented in a computer program , called 

ASKE. In the first stage, ASKE performs like a technique-based KA system 

to produce a model of the application task. In the second stage, this task 

model provides the driving force for KA; thus it acts in the fashion of a 

knowledge-based KA system.

ASKE derives its pow er for KA from the know ledge representation 

schem e of tem plates. Four types of tem plates are u tilized  for the 

acquisition and representation of problem-solving expertise:

E  GTEMP, the general tem plate, is used for the acquisition of

general problem  knowledge such as the dom ain classification 
and project goals.

E  ATEMP, the acquisition  tem plate , contains task-specific
inform ation which is utilized in the acquisition of the task 
model from the domain expert, 

m WTEMP, the w orking tem plate, is used for representing the 
domain knowledge, 

g  RTEMP, the reference template, is an abstracted knowledge base,
derived from the WTEMP and used as a guide in the acquisition 
of the task model.

These tem plates facilitates the encoding and retrieving of knowledge. 

They hold generic knowledge about tasks which allows ASKE to target the 

interview on im portant aspects of the problem.

The tem plate approach has been used, to date, in the developm ent of 

initial pro to type systems in the dom ains of Archaeology, Corporate 

Planning, Medicine, Motor Mechanics and Nursing. From the progress so 

far, ASKE seems to have achieved the goal of wide scope of applicability: it 

is suitable for developing prototype systems which solve analysis tasks.



Conclusion 1 5 1

On the breadth factor, the performance of other KA systems (e.g., MOLE, 

ETS, KNACK and PROTEGE) is not comparable to that of ASKE. For 

example, MOLE can only be used for diagnostic tasks. The main test for 

ASKE w ould be to compare it w ith a technique-based KA system (i.e., 

ETS). For this, ETS was rationally reconstructed and the program  was 

called FETS (Figure out ETS). W hen FETS was applied to interpretation 

task it perform ed poorly. FETS could not handle different levels of 

knowledge (i.e., interm ediate steps) necessary for describing the task of 

interpretation. ASKE, however, does work for the interpretation task.

On the dep th  factor, ASKE's in term ediate-level ru les w ere m ore 

expressive than the FETS generated rules. This was m ainly because the 

constructs in FETS are bipolar. For example, the construct "age" can have 

only two values: old or not-old. It would be a problem to have more than 

two values for "age" (e.g., child, young adult, m iddle age, old age) or even 

num erical values.

ASKE's performance on the depth factor is however not com parable to 

that of MOLE. The m ain reason for this is that MOLE consists of a 

perform ance com ponent w hich allow s it to p ro d u ce  functional 

knowledge-bases. ASKE only produces intermediate-level rules therefore 

a proper evaluation of the system is not possible. The issue of depth has 

not been solved; but I have suggestions about how to solve it, in Section 

8.2.1.

8.1.3 The problem  areas

There are a num ber of problem areas, in ASKE, which can do with further 

work:

• ASKE uses a very sim ple m odel of task, based on two or three 

characteristics. This is because the task characteristics are constrained by 

the heuristic classification model. The ATEMPs, which use these task
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characteristics as a guide are therefore limited in scope. One possible 

solution is to make the task characteristics independent of the heuristic 

classification model, which is made explicit.

• All the ATEMPs that ASKE has were initially defined and ASKE does

not allow the creation of new  ones. In the following section I will

describe how this problem may be solved.

• The representation  of the problem  types is only geared for the

acquisition of shallow dom ain knowledge. It is not clear how  the

tem plate approach w ould succeed in acquiring know ledge about 

reasoning from first principles.

• ASKE does no t handle m ultiple tasks, except for diagnosis and 

debugging. Thus, if a problem  requires both  in terp reta tion  and 

diagnosis, the expert is forced to separate the task into two. But, even 

then, there is no facility for merging two knowledge bases.

8.2 Future Research
I w ould like to describe some of the proposed extensions to ASKE and 

suggest directions for further research which would go towards taking KA 

systems outside of research establishments.

8.2.1 Performance Com ponent

ASKE has, as yet, not been used for building large applications. But, from 

its performance at building small prototypes, ASKE is predicted to work as 

well in bigger applications provided the proposed application is for 

solving analysis tasks. In its present state, ASKE is best not used for 

developing large knowledge-bases, for the system does not carry out 

consistency checking of the rule base.

The final o u tp u t of ASKE is interm ediate-level rules. The system
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however needs to produce functional knowledge-bases. For this purpose, 

further extension in the form of a performance system is proposed. This 

w ould enable ASKE to check consistency of the knowledge-base and 

provide feed-back to the user.

8.2.2 Meta-Knowledge

ASKE does not contain any knowledge about itself. It knows about the 

various templates but the inferencing is a simplistic one. By using m eta­

knowledge, it should be possible to increase the functionality of the 

system. Essentially, the m eta-know ledge will consist of strategy for 

acquiring the kind of know ledge that is hard-w ired  in to  ASKE, for 

example, the inference structure and task characteristics. Particularly, 

ASKE would be able to do the following.

g  Creation of new ATEMPs. In the present implementation, the ATEMPs 

are hand-crafted. It is possible to encode the principles of creating 

ATEMPs into com puter language w hich can be stored  as m eta­

know ledge and used in generating new  ATEMPs. W ith this new  

ability, the system will however have to acquire the ATEMPs separate 

from the knowledge-bases as the expertise encoded in the two comes 

from different experts. For the ATEMPs, the expert is an experienced 

knowledge engineer. The ATEMPs autom atically acquired from the 

know ledge engineer can then be used in autom atic acquisition of 

knowledge from domain experts.

g  Extending the scope of the system to cover synthesis tasks. ASKE can 

only handle analysis tasks because it used the problem-solving method 

of heuristic classification. This is implicit in the ATEMPs. However, by 

m aking heuristic classification explicit, it is possible to m odify the 

p rob lem -so lv ing  m ethod  and  m ake the in ference  s tru c tu re  

independent of the system  architecture. By doing so it w ould  be 

possible to actually acquire the inference structure, that will be used for
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KA, acquired interactively from "expert" knowledge engineers.

From the above discussion it is clear that the expertise of the knowledge 

engineer is needed in the developm ent of KA systems. The relation 

between KA systems and knowledge engineers will however will be akin 

to that between a domain expert and an expert system. The expert system 

is not intended to replace the dom ain expert bu t to act as an intelligent 

assistant.

8.2.3 Problem-Solving M ethods and Application Tasks 

The m apping between heuristic classification and analysis task is not a 

robust one. One of the reasons is that the task types are described at a very 

general level. For instance, there is an epistemological difference between 

medical diagnosis and electronic diagnosis (Clancey, 1985). Furthermore, 

Chandrasekaran (1987) has argued that heuristic classification is a generic 

category m ade up  of m any elementary problem -solving methods. More 

research is needed here to identify the exact relationship between problem­

solving methods and application tasks.
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The following rules were generated automatically by ASKE.

Rules for Knowledge Base : SETTLEMENT-SITE 
Author : Jitu 
Created 13-10-89

Temp, rule 6 
IF

The use of PIT is (STORAGE REFUSE POSTHOLE) 
THEN

activities is BUTCHERING

Temp, rule 7 
IF

The use of METAL is (WEAPON TOOL ORNAMENT) 
The material of METAL is (IRON BRONZE GOLD) 

THEN
activities is BUTCHERING

Temp, rule 8 
IF

The size of FLOOR is (SMALL MEDIUM LARGE) 
The content of FLOOR is FEATURES 

THEN
activities is BUTCHERING

Temp, rule 9 
IF

The size of FLOOR is (SMALL MEDIUM LARGE) 
The content of FLOOR is FEATURES 

THEN
activities if FOOD.PREPARATION

Temp, rule 10 
IF

features is HEARTH 
THEN

activities is FOOD.PREPARATION
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Temp, rule 11 
IF

The surface of POTTERY is (BLACKENED NOT.BLACKENED)
The size of POTTERY is (SMALL MEDIUM LARGE)
The shape of POTTERY is (CIRCULAR CYLINDRICAL OBLONG)
The fabric of POTTERY is (FINE COARSE)
The decoration of POTTERY is

(PLAIN NATURE.DRAWING OTHER.MARKINGS)
THEN

activities is FOOD.PREPARATION

Temp, rule 12 
IF

The use of METAL is (WEAPON TOOL ORNAMENT) 
The material of METAL is (IRON BRONZE GOLD) 

THEN
activities is FOOD.PREPARATION

Temp, rule 13 
IF

The edge of STONE is (SHARP SERRATED BLUNT) 
The material of STONE is (CHIPPED GROUND) 

THEN
activities is FOOD.PREPARATION

Temp, rule 14 
IF

The use of PIT is (STORAGE REFUSE POSTHOLE) 
THEN

activities is FOOD.PREPARATION

Temp, rule 15 
IF

The size of FLOOR is (SMALL MEDIUM LARGE) 
The content of FLOOR is FEATURES 

THEN
activities is METAL.PRODUCING

Temp, rule 16 
IF

features is HEARTH 
THEN

activities is METAL.PRODUCING
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Temp, rule 17 
IF

The use of METAL is (WEAPON TOOL ORNAMENT)
The material of METAL is (IRON BRONZE GOLD)

THEN
activities is METAL.PRODUCING

Temp, rule 18 
IF

The edge of STONE is (SHARP SERRATED BLUNT) 
The material is STONE is (CHIPPED GROUND) 

THEN
activities is METAL.PRODUCING

Temp, rule 19 
IF

The size of FLOOR is (SMALL MEDIUM LARGE) 
The content of FLOOR is FEATURES

THEN
activities is POTTERY.MAKING

Temp, rule 20 
IF

The edge of STONE is (SHARP SERRATED BLUNT) 
The material of STONE is (CHIPPED GROUND) 

THEN
activities is POTTERY.MAKING

Temp, rule 21 
IF

The surface of POTTERY is (BLACKENED NOT BLACKENED)
The size of POTTERY is (SMALL MEDIUM LARGE)
The shape of POTTERY is (CIRCULAR CYLINDRICAL OBLONG)
The fabric of POTTERY is (FINE COARSE)
The decoration of POTTERY is

(PLAIN NATURE.DRAWING OTHER.MARKINGS)
THEN

activities is POTTERY.MAKING
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Temp, rule 22 
IF

features is HEARTH 
THEN

activities is POTTERY.MAKING

Temp, rule 23 
IF

The use of PIT is (STORAGE REFUSE POSTHOLE) 
THEN

activities is POTTERY.MAKING

Temp, rule 24 
IF

The size of FLOOR is (SMALL MEDIUM LARGE) 
The content of FLOOR is FEATURES 

THEN
activities is STORAGE.AREA

Temp, rule 25 
IF

The surface of POTTERY is (BLACKENED NOT.BLACKENED)
The size of POTTERY is (SMALL MEDIUM LARGE)
The shape of POTTERY is (CIRCULAR CYLINDRICAL OBLONG)
The fabric of POTTERY is (FINE COARSE)
The decoration of POTTERY is

(PLAIN NATURE.DRAWINGS OTHER. MARKINGS)
THEN

activities is STORAGE.AREA

Temp, rule 26 
IF

The use of PIT is (STORAGE REFUSE POSTHOLE) 
THEN

activities is STORAGE.AREA

Temp, rule 27 
IF

The use of METAL is (WEAPON TOOL ORNAMENT) 
The material of METAL is (IRON BRONZE GOLD) 

THEN
Site.profile is EXCHANGE.CONTACTS
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Temp, rule 28 
IF

The surface of POTTERY is (BLACKENED NOT.BLACKENED)
The size of POTTERY is (SMALL MEDIUM LARGE)
The shape of POTTERY is (CIRCULAR CYLINDRICAL OBLONG)
The fabric of POTTERY is (FINE COARSE)
The decoration of POTTERY is

(PLAIN NATURE.DRAWINGS OTHER.MARKINGS)
THEN

site.profile is EXCHANGE.CONTACTS.

Temp, rule 29 
IF

The use of METAL is (WEAPON TOOL ORNAMENT) 
The material of METAL is (IRON BRONZE GOLD) 

THEN
site.profile is SOCIAL.STATUS

Temp, rule 30 
IF

activities is BUTCHERING 
THEN

The period of OCCUPANCY is (PERMANENT SEASONAL)

Temp, rule 31 
IF

activities is METAL.PRODUCING 
THEN

The period of OCCUPANCY is (PERMANENT SEASONAL)

Temp, rule 32 
IF

activities is POTTERY.MAKING 
THEN

The period of OCCUPANCY is (PERMANENT SEASONAL)

Temp, rule 33 
IF

The use of DITCH is (DRAINAGE BOUNDARY)
The size of DITCH is (SITE.PERIMETER AREA.PERIMETER) 
The shape of DITCH is (CIRCULAR ELONGATED)

THEN
The period of OCCUPANCY is (PERMANENT SEASONAL)
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The final output of the session.

Rules for Knowledge Base : SETTLEMENT-SITE

Author : Jitu 
Created : 13-10-89

Temp, rule 27 
IF

The use of METAL is ORNAMENT 
The material of METAL is GOLD 

THEN
site.profile is EXCHANGE.CONTACTS

Temp, rule 28 
IF

The surface of POTTERY is NOT.BLACKENED 
The fabric of POTTERY is FINE 
The decoration of POTTERY is NATURE.DRAWINGS 

THEN
site.profile is EXCHANGE.CONTACTS

Temp, rule 29 
IF

The use of METAL is (WEAPON ORNAMENT) 
The material of METAL is (BRONZE GOLD) 

THEN
site.profile is SOCIAL.STATUS

Temp, rule 30 
IF

activities is BUTCHERING 
THEN

The period of OCCUPANCY is SEASONAL
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Temp, rule 34 
IF

The content of FLOOR is (METAL PIT)
The size of FLOOR is MEDIUM 
The use of METAL is TOOL 
The material of METAL is IRON 
The use of PIT is REFUSE 

THEN
activities is BUTCHERING

Temp, rule 36 
IF

The content of FLOOR is (POTTERY METAL HEARTH) 
The size of FLOOR is LARGE 
The surface of POTTERY is BLACKENED 
The shape of POTTERY is COARSE 
The decoration of POTTERY is PLAIN 
The use of METAL is IRON 
features is HEARTH 

THEN
activities is FOOD.PREPARATION

Temp, rule 37 
IF

The content of FLOOR is (PIT STONE) 
The size of FLOOR is MEDIUM 
The use of PIT is STORAGE 
The edge of STONE is BLUNT 
The material of STONE is GROUND 

THEN
activities is FOOD.PREPARATION.

Temp, rule 38 
IF

The content of FLOOR is (HEARTH METAL STONE) 
The size of FLOOR is LARGE 
features is HEARTH
The material of METAL is (IRON BRONZE)
The edge of STONE is BLUNT 
The material of STONE is GROUND 

THEN
activities is METAL.PRODUCING
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Temp, rule 41 
IF

activities is METAL.PRODUCING 
activities is POTTERY.MAKING 
The use of DITCH is BOUNDARY 
The size of DITCH is SITE.PERIMETER 

THEN
The period of OCCUPANCY is PERMANENT

Temp, rule 43 
IF

The content of FLOOR is (STONE POTTERY) 
The size of FLOOR is MEDIUM 
The edge of STONE is GROUND 
The surface of POTTERY is BLACKENED 

THEN
activities is POTTERY.MAKING

Temp, rule 47 
IF

The content of FLOOR is (HEARTH PIT POTTERY) 
The size of FLOOR is LARGE 
features is HEARTH 
The use of PIT is REFUSE 
The surface of POTTERY is BLACKENED 

THEN
activities is POTTERY.MAKING

Temp, rule 48 
IF

The content of FLOOR is (POTTERY PIT) 
The size of FLOOR is SMALL 
The size of POTTERY is LARGE 
The fabric of POTTERY is COARSE 
The decoration of POTTERY is PLAIN 
The use of PIT is STORAGE 

THEN
activities is STORAGE.AREA
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A daily chore for the nursing profession is diagnosing and treating patient 

problem s. One of such problem s is pressure sores. Identifying at-risk 

pressure sore patients and draw ing-up effective care plans to prevent the 

occurrence of the problem  requires expertise. The follow ing session 

develops an initial knowledge-base for diagnosing pressure sores.

Stage One: Task Characterization

• Domain: Nursing
Nursing is a new domain hence ASKE creates a GTEMP for it.

• Task-type: Diagnosis
The ATEMP for diagnosis is selected.

• Specialist area: Pressure Sores
A WTEMP for Pressure Sores is created.

• Project Goals
The goal of the new application is to diagnose and draw-up care plans 
for pressure sore patients. The system will be used by nurses.

• RTEMP: Foot Problems (Medical diagnosis)
The user selects the RTEMP to use from the set of diagnostic systems 
that ASKE knows about.
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Stage Two: Task Modeling

• W hat knowledge is required for a diagnostic system.
The user is presented with information about the classification model 
for diagnostic systems.

• An example is shown.
The selected RTEMP is presented as an exemplar.

• Obtaining the main data categories.
The user is prom pted for the main concept categories of data for the 
diagnosis of pressure sores.

• Obtaining the main solution categories.
The user is prom pted for the main concept categories of solution for 
the diagnosis of pressure sores.

• The specified concept categories for the new application are presented 
for any last m inute amendments.
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Stage Three: Knowledge Elicitation

• Obtain domain concepts.
The Sketch-Pad facility is provided for entering new concepts and their 
attributes. All domain concepts are displayed in the Central Concepts 
W indow, which also has facilities for entering and editing concepts 
and attributes.

• Identifying relationships between concepts.
The Relations W indow displays the 'supports' (top) and 'inferred- 
from' (bottom) relationships of any given concept with other concepts. 
The w indow  also provides facility for defining new associations. If this 
stage is quit before all concept relationships have been identified, the 
user is informed about the unaccounted concepts.
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On the basis of the identified relationships betw een concepts, ASKE 

automatically generates rules (also called association rules). The following 

rules were generated from this session.

Rules for Knowledge Base : PRESSURE-SORES 
A uthor : Jitu 
Created : 13-10-89

Temp, rule 52 
IF

The sex of PRESSURE.SORE.PATIENT is (MALE FEMALE)
The age of PRESSURE.SORE.PATIENT is (<50 50-60 60-70 70-80 >80)
The medical.history of PRESSURE.SORE.PATIENT is

(SERIOUS ILLNESS NO.ILLNESS)
The medical.condition of PRESSURE .SORE .PATIENT is

(PAIN HYPOXIA TOXAEMIA)
The medical treatm ent of PRESSURE.SORE.PATIENT is (DRUGS WOUNDS) 

THEN
care.plans is MEDICATION

Temp, rule 53 
IF

patient.state is LOW.ACTIVITY 
THEN

care.plans is MEDICATION

Temp, rule 54 
IF

The reddened.area is SKIN.CONDITION is
(NORMAL MODERATE CHRONIC) 

The breaks.in.skin of SKIN.CONDITION is
(NORMAL MODERATE CHRONIC)

THEN
care.plans is MEDICATION

Temp, rule 55 
IF

The kind of INCONTINENCE is (URINE DOUBLE) 
THEN

care.plans is MEDICATION
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Temp, rule 56 
IF

The reddened.area is SKIN.CONDITION is
(NORMAL MODERATE CHRONIC)

The breaks.in.skin of SKIN.CONDITION is
(NORMAL MODERATE CHRONIC)

THEN
care.plans is MOBILIZATION

Temp, rule 57 
IF

patienLstate is LOW.ACTIVITY 
THEN

care.plans is MOBILIZATION

Temp, rule 58 
IF

The sex of PRESSURE.SORE.PATIENT is (MALE FEMALE)
The age of PRESSURE.SORE.PATIENT is (<50 50-60 60-70 70-80 >80)
The medical.history of PRESSURE.SORE.PATIENT is

(SERIOUS ILLNESS NO.ILLNESS)
The medical, condition of PRESSURE .SORE .PATIENT is

(PAIN HYPOXIA TOXAEMIA)
The medical treatm ent of PRESSURE.SORE.PATIENT is (DRUGS WOUNDS) 

THEN
care.plans is MOBILIZATION

Temp, rule 59 
IF

The kind of MALNUTRITION is
(MALNUTRITION DEHYDRATION WEIGHT.ABNORMALITY)

THEN
care.plans is NUTRITION

Temp, rule 60 
IF

The kind of INCONTINENCE is (URINE DOUBLE) 
THEN

care.plans is NUTRITION
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Temp, rule 61 
IF

The sex of PRESSURE.SORE.PATIENT is (MALE FEMALE)
The age of PRESSURE.SORE.PATIENT is (<50 50-60 60-70 70-80 >80)
The medical.history of PRESSURE.SORE.PATIENT is

(SERIOUS ILLNESS NO.ILLNESS)
The medical.condition of PRESSURE .SORE .PATIENT is

(PAIN HYPOXIA TOXAEMIA)
The medical treatm ent of PRESSURE.SORE.PATIENT is (DRUGS WOUNDS) 

THEN
care.plans is NUTRITION

Temp, rule 62 
IF

The reddened.area is SKIN.CONDITION is
(NORMAL MODERATE CHRONIC) 

The breaks.in.skin of SKIN.CONDITION is
(NORMAL MODERATE CHRONIC)

THEN
care.plans is PHYSIOTHERAPY

Temp, rule 63 
IF

The sex of PRESSURE.SORE.PATIENT is (MALE FEMALE)
The age of PRESSURE.SORE.PATIENT is (<50 50-60 60-70 70-80 >80)
The medical.history of PRESSURE.SORE.PATIENT is

(SERIOUS ILLNESS NO.ILLNESS)
The medical.condition of PRESSURE .SORE .PATIENT is

(PAIN HYPOXIA TOXAEMIA)
The medical treatm ent of PRESSURE.SORE.PATIENT is (DRUGS WOUNDS) 

THEN
care.plans is PHYSIOTHERAPY

Temp, rule 64 
IF

The source of IMMOBILITY is (PARALYSIS COMA EQUIPMENT/SPLINTAGE) 
THEN

care.plans is PHYSIOTHERAPY

Temp, rule 65 
IF

The kind of MALNUTRITION is
(MALNUTRITION DEHYDRATION WEIGHT.ABNORMALITY)

THEN
care.plans is PHYSIOTHERAPY



APPENDIX C 194

Stage Four: Rules Editing

ASKE generated  association rules are displayed in the Rulem aker 

Interface and the user is invited to edit them. Editing of rules involves:

• Merging rules.
Two or more association rules are merged into a single complex rule.

• Editing premise and conclusion of the rule.
The premise and conclusion of a rule can be edited in the Rule Editing 
W indow, which offers Zmacs editing facility.
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At the end of the present session the following edited rules are output.

Rules for Knowledge Base : PRESSURE-SORES 
A uthor : Jitu 
Created : 13-10-89

Temp, rule 69 
IF

The medical.history of PRESSURE.SORE.PATIENT is NO.ILLNESS 
The medical.history of PRESSURE.SORE.PATIENT is WOUNDS 
The reddened.area of SKIN.CONDITION is MODERATE 
The breaks.in.skin of SKIN.CONDITION is (NORMAL MODERATE) 

THEN
care.plans is PHYSIOTHERAPY

Temp, rule 70 
IF

The age of PRESSURE.SORE.PATIENT is <50 
The medical.history of PRESSURE.SORE.PATIENT is NO.ILLNESS 
The medical.condition of PRESSURE.SORE.PATIENT is PAIN 
The source of IMMOBILITY is EQUIPMENT/SPLINTAGE 

THEN
care.plans is PHYSIOTHERAPY

Temp, rule 71 
IF

The age of PRESSURE.SORE.PATIENT is <50 
The medical, treatm ent of PRESSURE .SORE .PATIENT is DRUGS 
The kind of MALNUTRITION is WEIGHT.ABNORMALITY 

THEN
care.plans is PHYSIOTHERAPY

Temp, rule 73 
IF

The medical.history of PRESSURE.SORE.PATIENT is NO.ILLNESS 
The medical.condition of PRESSURE .SORE .PATIENT is

(HYPOXIA TOXAEMIA)
The kind of MALNUTRITION is MALNUTRITION 

THEN
care.plans is NUTRITION
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Temp, rule 74 
IF

The medical.history of PRESSURE.SORE.PATIENT is SERIOUS.ILLNESS 
The medical.treatment of PRESSURE .SORE .PATIENT is DRUGS 
The kind of INCONTINENCE is (URINE DOUBLE)

THEN
care.plans is NUTRITION

Temp, rule 76 
IF

The age of PRESSURE.SORE.PATIENT is (<50 50-60)
The medical.history of PRESSURE .SORE .PATIENT is SERIOUS ILLNESS 
The medical.condition of PRESSURE .SORE .PATIENT is

(HYPOXIA TOXAEMIA)
The medical.treatment of PRESSURE.SORE.PATIENT is DRUGS 
The reddened.area of SKIN.CONDITION is NORMAL 
The breaks.in.skin of SKIN.CONDITION is NORMAL 

THEN
care.plans is MOBILIZATION

Temp, rule 77 
IF

The age of PRESSURE .SORE .PATIENT is <50
The medical.history of PRESSURE.SORE.PATIENT is SERIOUS.ILLNESS 
The medical.treatment of PRESSURE.SORE.PATIENT is DRUGS 
patienLstate is LOW.ACTIVITY 

THEN
care.plans is MOBILIZATION

Temp, rule 80 
IF

The age of PRESSURE.SORE.PATIENT is <50
The medical.history of PRESSURE .SORE.PATIENT is SERIOUS.ILLNESS 
The medical.condition of PRESSURE.SORE.PATIENT is PAIN 
The medical.treatment of PRESSURE.SORE.PATIENT is DRUGS 
patienLstate is LOW.ACTIVITY 

THEN
care.plans is MEDICATION
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Temp, rule 81 
IF

The medical.condition of PRESSURE.SORE.PATIENT is PAIN 
The medical.treatment of PRESSURE .SORE .PATIENT is DRUGS 
The reddened.area of SKIN.CONDITION is CHRONIC 
The breaks.in.skin of SKIN.CONDITION is (NORMAL MODERATE) 

THEN
care.plans is MEDICATION

Temp, rule 82 
IF

The medical.history of PRESSURE.SORE.PATIENT is SERIOUS.ILLNESS 
The medical.treatment of PRESSURE .SORE .PATIENT is DRUGS 
The kind of INCONTINENCE is (URINE DOUBLE)

THEN
care.plans is MEDICATION

Finally, ASKE creates a new RTEMP for the application. The content of 

the RTEMP are abstracted from the current knowledge-base.
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