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A b stra c t

This thesis investigates tilings of the Euclidean Plane and their amalga
mations. For any tiling an amalgamation is a tiling produced by joining 
together tiles of the original tiling. This definition can be extended to cover 
any suitable adjacency structure, such as a graph.

The first chapter of the thesis reviews some of the basic concepts and 
results in the theory of tilings. Chapter 2 introduces amalgamations, both 
of tilings and of infinite graphs. Chapter 3 discusses tesseral arithmetic^ and 
shows how the theory of amalgamations can be used to produce addressing 
systems of the plane.

The second part of the thesis concentrates on classifying and enumerating 

amalgamators. In chapter 4, we list the possible types of amalgamation of 
each of the eleven Laves nets. In chapter 5 an algorithm to enumerate a 

particular class of amalgamations is developed, and the results of running 
this on a computer are presented. Chapter 6 contains some theoretical 
results about tiling hierarchies^ sequences of tilings produced by successive 
amalgamations.
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Part I

Tilings, A m algam ations and
Tesserals



C hapter 1

Tilings

We review some of the basic definitions and properties of tilings. For a very 
complete survey of the theory of tilings and patterns see [6]. We have not 
been able to discover a previous reference for the result given as theorem 1.19 
and its corollary.

1.1 Definitions

Throughout this thesis we shall be concerned solely with tilings of the Eu
clidean Plane, E^, although some of the ideas presented are capable of gen
eralisation to higher dimensional Euclidean space (and possibly other spaces 
too).

D efin ition  1.1 A  tiling o f the Euclidean plane is a set

^  — Ij 2 ,3 ,. . .}

o f closed topological discs called tiles, whose interiors are pairwise disjoint, 
and whose union covers the plane.

D efin itio n  1.2  I f T  is a tiling, and X  is any subset o f T ,  then we denote 
by [X] the region o /E ^  which is the union o f tiles belonging to X .  I f  [X] is 

itself a topological disc, then it is said to be a molecule of T . The set o f all 

molecules o fT  is denoted (T).  A molecule consisting o f n tiles o fT  will be 
called an n-molecule.



We now consider various conditions which can be placed on a tiling.

C o n d itio n  1 A tiling is locally finite i f  any bounded subset o f meets 

only finitely many tiles o f T .

C o n d itio n  2 A tiling is simply adjacent if the intersection o f any two tiles 

is a simplex (which in the case of a two-dimensional tiling may be a point, 

a line segment, or empty).

All the tilings we will consider wiU satisfy these two criteria unless oth

erwise stated. In particular, this implies that every molecule is the union of 

finitely many tiles of T.

D efin itio n  1.3 We define a vertex o fT  to be a point common to three or 

more tiles, and an edge of T  to be the closure of one o f the arcs into which 

the vertices partition the boundaries o f the tiles.

Hence if T  is simply adjacent, then an edge of T  is the intersection of two 

tiles; otherwise the intersection of two tiles will in general be a collection of 

edges and vertices.

D efin itio n  1.4 We define the edges and vertices of a tile t o f T  to be the 

edges and vertices o fT  contained in t. A tile with r edges is an r-tile.

C o n d itio n  3 A tiling T  is normal i f  there exist parameters u, U such that 
every tile contains a disc o f radius u, and is contained in a disc o f radius U.

C o n d itio n  4 A tiling T  is polygonal i f  all the tiles are polygons, so that all 

edges are polygonal arcs.

To avoid confusion we will speak where necessary of the sides and comers 

of a polygon. This is necessary as a tiling may well have different numbers 

of edges and sides: consider the tilings in figure 1.1 which are respectively 

tilings by dodecagons which are 4-tiles, and by quadrilaterals which are 

6-tiles.



F ig u re  1.1 “Latin cross” and “brick wall” tilings



C o n d itio n  5 A tiling T  is straight or proper i f  all edges are straight line 
segments.

C o n d itio n  6 A tiling T  is convex i f  all tiles are convex.

Clearly convex straight => polygonal.

C o n d itio n  7 A straight tiling is edge-to-edge i f  the intersection o f any two 
tiles is either empty, or a comer, or a side o f each.

In an edge-to-edge tiling an r-tile is always an r-gon, and vice-versa.

D efin ition  1.5 The 1-skeleton or net o f T , r ( r ) ,  is the graph fo i l e d  by 
the edges and vertices o f T : the degree o f a vertex is then its degree in this 
graph. The net o f a tiling will always be 3-connected.

D efin itio n  1.6  A tile t is said to be o /ty p e  vi.V2  Vj. i f  it is an r-tile
and i f  its vertices taken in cyclic order have degrees v\,V 2 , ..  .,Vr.

C o n d itio n  8 A normal tiling T  is homogeneous of type [vi.V2  if
each tile is o f type V1 .V2  Vr.

C o n d itio n  9 A tiling T  is monohedral i f  all tiles o fT  are congruent.

D efin ition  1.7 A vertex v o f T  is said to be 0/  type pi.p 2  Pq i f  it is
surrounded by a pi-tile, a p 2 -tile, . . . ,  a Pq-tile.

C o n d itio n  10 A tiling T  is semi-regular o f type (pi.p2  Pq) i f  each ver
tex is o f type p i.p 2  Pq.

R e m a rk  1.8  It is interesting to note that conditions 1,3-7,9 are metric 
conditions, whereas conditions 2,8,10 are combinatorial conditions.



1.2 Transformations o f tilings

1 .2 .1  C o m b in a to r i a l  m a p p in g s

We now define the concept of a (combinatorial) isomorphism between tilings. 
We choose to define this in terms of molecules, as this simplifies m atters 
later.

D efin itio n  1.9 L e t T , S  be tilings. Then a combinatorial isomorphism be
tween T  and S  is a bijection <f> ; (T) —* (S) which satisfies the following 
conditions:

f • ^ ir  (the restriction o f (f> to T )  is an adjacency preserving bijection 
between T  and S;

2. For any molecule [X] o f T,

E X]

Other definitions are possible: for example [6] gives the following:

D efin itio n  1.10 A combinatorial isomorphism between two tilings T  and S  
is an inclusion-preserving map between £{T)  and S{S),  where £{T)  denotes 
the set o f elements of T — the tiles, edges and vertices.

P ro p o s itio n  1.11  These definitions are equivalent, in the sense that they 
define mappings (T) —» (5) and £{T)  —*■ £{S^ which, when restricted to 
T  —* S  define the same class o f mappings.

P ro o f  (sketch): Any vertex in a tiling can be specified uniquely and 

unambiguously by the molecule consisting precisely of those tiles which meet 
at tha t vertex. An edge can similarly be specified by the two tiles in whose 

intersection it lies: if the tiling is not simply adjacent it is necessary to give 
the endpoints as well. It is thus possible to extend an isomorphism in the 
sense of 1.9 to act on the vertices and edges of a tiling, and conditions 1 and 

2 ensure tha t it is inclusion preserving. The converse follows by considering 
the edges and vertices lying in a particular molecule. □

An automorphism  of a tiling T  is an isomorphism (f> : {T) {T).



D efin itio n  1.12  A  symmetry o f a tiling is an isometry o f the plane which 
preserves T , in the sense that it maps tiles to T  to tiles o f T .

Clearly a symmetry of T  induces an automorphism of T: we call such an 
automorphism a symmetric automorphism or combinatorial symmetry. (In 
general, an isomorphism between two tilings which is induced by an isometry 
of the plane will be called a symmetric isomorphism.) If all the automor
phisms of a tiling are symmetric, then the tiling is said to be maximally 
symmetric.

The combinatorial symmetry and automorphism groups of T  will be 
denoted S (T ) and A{T)  respectively.

R e m a rk  1.13 The symmetry group o f a tiling must clearly be isomorphic 
to either a finite cyclic or dihedral group, or one o f the seven frieze groups, 
or one o f the seventeen plane crystallographic groups (see, e.g. [16]).

R e m a rk  1.14 We shall frequently speak o f an isomorphism <f> : T  —* S  
when in fact we mean the more general isomorphism defined above; similarly 

we may also confuse the symmetry group o f T  (which is a group o f affine 
transformations o f the plane) and the group o f combinatorial symmetries of 
T  (which is an infinite permutation group).

D efin itio n  1.15 I f  T  is a tiling on which the action o f E { T)  is transitive, 
then T  is said to be isohedral.

R e m a rk  1.16 From now on we shall be concerned mainly with isohedral 
tilings.

D efin itio n  1.17 Two molecules [X] and [T] o fT  are said to be equivalent 
under a subgroup G o f A{T)  there is an automorphism o f T  in G which 
maps [X] to [Y].

D efin itio n  1.18 I f T , S  are tilings, then a bijection <j> : T  S between T  
and S  which also satisfies

<̂ s(r)0-i = s(5).
is said to be compatible with the symmetry groups o f S  and T . A compatible 
isomorphism is called an isomerism.



1 .2 .2  T o p o lo g ic a l  m a p p in g s

If r ,  5  are tilings, let /  be a homeomorphism of the plane which takes T  to  
S. Then it is clear, from the continuity of / ,  tha t /  induces an isomorphism 
between T  and 5 , which we will denote / .

If 5  =  T, then /  will be called a topological symmetry of T , and in this 
case /  is an automorphism of T . The group of topological symmetries of T  
will be denoted H{T) ,  so tha t H{T)  < A{T).

Let E{T)  be the subgroup of H{T)  consisting of the isometries in H{T) .  

Then É{T)  =  S (T ), and in this case ^  is clearly a bijection between E{T)  
and S (T ). If /  is a homeomorphism from the plane of T  to the plane of S  
which is such that

f E (T) f - - ^  = E{S)

then /  is said to be a homeomerism.

There is a strong connection between topological and combinatorial map
pings of tilings: see statements 4.1.1 of [6], which states tha t for normal 
tilings, the concepts of topological and combinatorial equivalence coincide.

1 .2 .3  T r a n s f o r m a t io n s  o f  t h e  n e t  o f  a  t i l in g

The final type of transformation of a tiling which is of interest is the auto
morphism group of the net of the tiling, G{T).

Clearly, any automorphism of T  induces an automorphism of the graph 
r(T). The converse, however, is not necessarily true. Consider, for example, 
a tiling which includes the configuration shown in figure 1.2 Transposing v 
and w gives an automorphism of T{T)  which does not act on the tiles of T  
(consider what happens to the shaded tiles). Notices tha t in this case the 
tiling is not simply adjacent, since the two shaded tiles intersect at a pair of 
vertices, x  and z. In fact we have the following result.

T h e o re m  1.19 I f T  is a simply adjacent tiling, then G{T) acts on T , in 
the sense that i f  Vi,V2 , ..  .,Vn are the vertices o f a tile in T , then for any 

7  e  G (T ),7 (u i),7 (1/2) , . .  . , 7 (vn) are also the vertices o f a tile in T .



V and It; both have degree 3 

F ig u re  1.2



F ig u re  1.3

P ro o f; Let T  be as above. Suppose tha t there exists a 7  G G{T)  and 
vertices u i , . . . ,  of T  such tha t u i , . . . ,  are the vertices of a tile t ^  T,  
but 7 (v i) , .. . , 7 (i;n) are not.

Now, v i , . . . ,  Vn form a cycle in r(T), and hence so do 7 (^1) , . . .  , 7 (un): 
thus they also define a molecule of T.  A finite number of vertices lie inside 
this cycle (in r(T)), as we are assuming tha t Condition 1 holds, and they 
will be the images under 7  of vertices W i , . say.

Now, T{T)  is a plane graph, and so the Wj's are adjacent only to Vi’s and 
w /s . Hence there is some cycle C in T{T)  consisting of u /s  and w /s  such 
tha t all Vi's and wj's lie inside this cycle. The only way this could not be 
the case is if the subgraph induced by the u /s  and w /s  contained a bridge: 
this cannot be the case, however, as they are the vertices of the tiles making 
up a general tile, and hence this subgraph must be 2-edge-connected.

Some part of this cycle (see figure 1.3) must be of the form

one or more wj's
Vi, Wi. .T, ,WqJf

Since wj,  are not adjacent to any vertices outside C, this part of the

10



cycle must form part of the boundary of a tile, which is adjacent to t at 

both Vi and Vq, but not between them. So T  is not simply adjacent. □

C o ro lla ry  1.20  The net of  a simply adjacent tiling has only one normal 

plane embedding, up to equivalence. Equivalently, i f  a 3-connected infinite 

planar graph admits a normal plane embedding with no infinite face, then 

this embedding is unique up to isomorphism o f the tiling it induces.

P ro o f. Two embeddings of the graph will be related by a graph auto
morphism. But, from above, this is a tiling isomorphism. □

1.3 Classification of Tilings

The coarsest possib le classification of isohedral tilings is to classify them 

up to  isomorphism. It is easy to see that if two homogeneous tilings are 
of the same type, then they will be isomorphic, and it is well known that 
there are eleven possible types, corresponding to the eleven Laves nets. The 

eleven types are: [3% [3l6], [33.f], [32.4.3.4], [3.4.6.4], [3.6.3.6], [3.12.12], 
[4^], [4.6.12], [4.82], jg3ĵ  For a proof of this result see result 4 .3.1 of [6]. 

Two tilings which are isomorphic to the same Laves net are said to be of 
the same topological type.

In [5] Grünbaum and Shepherd classified all of the isohedral tilings of 
the plane up to isomerism. Their result was as follows:

T h e o re m  1.21  (G rü n b a u m  and S h ep h erd ) Up to isomerism there are 
93 types o f marked isohedral tiling o f the plane (that is tilings in which the 

tilings may be marked in some finitary way), 81 of which can be realised as 
unmarked types.

In fact, they defined two isohedral tilings to have the same isohedral 

type if and only if their incidence symbols differed trivially. In chapter 7 of 

[6] they show tha t this is equivalent to classi&ation up to  homeomerism (or 
isomerism).

The 93 isohedral types, presented as marked tilings, rather than shaped 
tilings, are listed in appendix A.

11



R e m a rk  1.22  We shall make heavy use o f this classification in the sequel: 
when we speak o f the isohedral type o f an isohedral tiling, we will mean the 
type as in the paper cited above.

One other method of classification of isohedral tilings is of interest; 
namely classification by henomeric type: the concept of henomerism was 

introduced by Grünbaum and Shepherd for the purpose of classifying pat
terns, and is defined as follows:

D efin itio n  1.23 Two tilings (patterns) are said to have the same pattern  
type, or to be henomeric, i f  they have the same symmetry group, the same 

induced subgroup (tile group), and the same set o f motif-transitive subgroups. 
The “m otifs” here are interpreted as tile interiors.

In the table below we classify the 93 isohedral tilings by pattern  type 
(using information given in [6]). Marked tilings are indicated by italics.

It is interesting to note how tilings with different topological types may 
still be of the same pattern type.

12



T ab le  1.1 Classification of isohedral tilings by pattern type
Pattern

type
Isohedral
type(s)

Symmetry
group

Tile
group

Topological
type(s)

01 1,41 p i cl [3“],[41
02 2,3,43,44 Pg cl [3®],[4 ]̂
03 42 pm cl [41
04 64 d l [41
05 22,45,83 cm cl (3^41,[41,[61
06 12,14,68 d l [31,[41
07 4,23,46,47,84 p2 cl [3 l,[3 3 .4 l,[4 l,[6 l
08 8,57 c2 [31,[41
09 5,6,25,27,51,52,53,86 Pgg cl [3 l,[33.4l,[3^4.3 .4],[4 l,[6 l
10 9,59 cl [31,[41
11 24,49,50,85 pmg cl [3 3 .4 l,[4 l,[6 l
12 58 c2 [41
13 13,15,66,69 d l [31,[41
14 48 pmm cl [41
15 65 d l [41
16 72 d2 [41
17 54,78 cmm cl [4 l,[4 .8 l
18 60 c2 [41
19 26,67,91 d l [3 3 .4 l,[4 l,[6 l
20 17,74 d2 [31,[41
21 7,33 p3 cl [3l,[3.6.3.6]
22 10 c3 [31
23 30,38 p31m cl [3.4.6.4],[3.12l
24 89 c3 [61
25 16,36 d l [3l,[3.6.3.6]
26 18 d3 [31
27 87 p3m l cl [61
28 35 d l [3.6.3.6]
29 19 d3 [31

13



Pattern
type

Isohedral
type(s)

Symmetry
group

Tile
group

Topological
type(s)

30 28,55,79 P4 cl [32.4.3.4],[41,[4.81
31 61 c2 [41
32 62 c4 [41
33 56,81 P4g cl [41,[4.81
34 63 c4 [41
35 29,71 d l [3».4.3.4],[4l
36 73 d2 [41
37 80 p4m cl [4.81
38 82 d l [4.81
39 70 d l [41
40 75 d2 [41
41 76 d4 [41
42 21,31,39,88 p6 cl [3^.6],[3.4.6.4],[3.12l,[6l
43 34 c2 [3.G.3.G]
44 90 c3 [61
45 11 c6 [31
46 77 p6m cl [4.6.12]
47 92 d l [61
48 32,40 d l [3.4.6.4],[3.12l
49 37 d2 [3.6.3.6]
50 93 d3 [61
51 20 d6 [31
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Chapter 2

A m algam ations and amalgam ators

We review the basic definitions of amalgamations and amalgamators, and 
present new work extending the theory to  “infinite trees” .

2.1 General am algam ations

D efin itio n  2.1  The most general definition o f an amalgamation A  o f a set 
S , is simply a partition o f S: in other words a subset o f the power set V S  
which satisfies

1. (2, a' G A, a 7̂  a' a n a' =  0;

2. (Jv4 =  ^ .

A n  amalgamator is then a bijection oc : S —̂ A, where A  is an amalga
mation o f S.

^  |a| > 1 for each a G A, then A, a  are said to be strict.

I f  fo r some integer k, \a\ =  A, Vo G A, then A, a  are said to be k-uniform. 
k is called the aperture. I f  k = 1 then A , a  are said to be trivial.

R e m a rk  2.2  Note that a non-trivial amalgamator can exist only i f  S  is in
finite. For a given amalgamation, A, an amalgamator a : S  A  (which, i f  
it exists, may not be unique) should be distinguished from the unique inclu
sion function, l : S  -* A  which maps each s £ S  to the unique a G A which 
contains s: this map is surjective but not injective, unless A is trivial.
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In itself, this definition is not very interesting. An amalgamation is so 
far simply a partition, and an amalgamator is is some sense the inverse of a 
surjection.

The theory becomes much more interesting if we impose some sort of 

structure on the set S  which can be inherited by an amalgamation of 5 , and 
impose further conditions on amalgamators. We can then try  to  classify 
amalgamations of 5 , and investigate the existence of amalgamators. If we 
require a  to be an isomorphism between S and its amalgamation then we 
can investigate hierarchies, {5, a (5 ) , a \ S ) , ...}  of amalgamations.

As an example, let {S,R)  be a relational structure with a single binary 
relation R  which is symmetric and non-refiexive. Denote by jR* the transitive 
extension of R. We say tha t a subset AT of 5" is connectedif

Vx,x' e x ,  x{R\xyx'

We will assume tha t 5  is infinite, but that for each s e  S,

W  {jc e S\ sRx}

is finite.

Now we define an amalgamation A of 5  to  be a partition of S  consisting 
of finite, connected sets.

We define a relation R* on A as follows:

Va, a' e A, aR*a' a'R*a 3s e a, s' e a' s.t. sR s'

This gives us a new relational structure {A, R*).
We also require an amalgamator a  to  satisfy the additional condition

y s ,s ' e S,a{s)R*a{s' )  ^  sR s'

Consider now the possible amalgamators on 5 . We have the following 
proposition:

P ro p o s itio n  2.3 I f  C is a connected component (maximal connected set) 
of S, and s ,s ' e C, then a(s) ,a(s ' )  will be members o f the same component 
o f A which, moreover, will be o f the same cardinality as C.

16



F ig u re  2.1  Infinite binary tree 

C o ro lla ry  2.4 The restriction o f a to any finite component has aperture 1.

Clearly the above could be rephrased more simply in the language of 

graph theory: our reason for talking in terms of relational structures is 
tha t the concept of amalgamations could possibly be applied to structures 

other than those with just a single binary symmetric non-reflexive relation. 

We now give a graph-theoretical example of a situation where there are no 
non-trivial amalgamators.

Consider the infinite binary tree in figure 2 .1. Two possible amalga
mations of this tree are shown in figure 2 .2 . In the first, at each level we 

am algamate any unamalgamated vertex with its “left hand” filial vertex. 
This gives us a ternary tree. In the second, we amalgamate with both filial 
vertices, giving a quaternary tree.

It easy to see, however, that in spite of its regularity, there are no non

trivial amalgamators on this tree, because identifying any two or more ver
tices gives a vertex of degree greater than three.

An interesting problem is to characterise those trees which do have non
trivial amalgamators—figure 2.3 shows one such tree.
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F ig u re  2.2  Two amalgamations of an infinite binary tree
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F ig u re  2.3 Tree with non-trivial amalgamators

We have the following theorem:

T h e o re m  2.5 Let G be an infinite, acyclic graph o f m inimum degree 6 > 2 . 
The G has no non-trivial uniform amalgamators.

P ro o f: Suppose tha t G has a non-trivial k-uniform amalgamator a , and 
let L be the corresponding inclusion function (see remark 2 .2). Let v e V{G)  

be a vertex of degree 6: we have |&-ia(u)| = k > 1. Lei H  be the induced 
subgraph on Because G is acyclic, we must have

^g (v) =  ^a(G)(a(v}}

=  # {edges joining vertices of H  to vertices o î G \ H }  (2 .1)

Now, since H  is connected, finite and acyclic, H  has m  = k - 1  edges. 
Also, by the handshaking lemma.

m =  ^  ^h {w )
wev{H)
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But from equation 2.1 above,

12 ^ h { w )  = 12 -  8 g { v )

weV{ H)  w£V{H)

Hence we have

k — 1 =

I.e.

12 ĝ (w ) = 2 k - 2  + 8g {v) 
w£V{H)

But, by assumption, J2wev{H) ^ g {w ) > 6k. Hence

2k — 2 -}■ ^Giy') ^  6k

from which we get

8 g { v )  > -  2) -f 2
> 2 ^ - 2  

> 6

since A: > 1 and 6 > 2. But this contradicts our original assumption tha t v 
is of minimum degree. □

If T is an infinite acyclic graph with no end-vertices, then it is possible 
to construct a uniform amalgamation of T  of any aperture k using a greedy 

algorithm: start at any vertex and amalgamate sets of k vertices. If T  has 
end-vertices this may fail: for example a vertex adjacent to r  end-vertices 
precludes the existence of amalgamations of aperture r  or less.

The following proposition demonstrates how to construct infinite acyclic 
graphs (not connected) which possess uniform amalgamators.

P ro p o s itio n  2.6  Let T  he an infinite acyclic graph with no end-vertices. 
Then for any k > 1 T  is a subgraph o f a graph G possessing a uniform  
k-amalgamator.

P ro o f. Construct a family G Z} of graphs as follows:
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(a) To ~  T;

(b) for i < 0 , Tt is a uniform /?-amalgamation of T̂ +% constructed as 
above;

(c) for i > 0 , Ti is constructed from T^_i by replacing each vertex of T» 
with k vertices as follows:

k ver+i

We now construct G by taking the disjoint union T{. It is clear 
tha t we can construct a A-amalgamator on G which maps T* to  T{^i. □

D efin itio n  2.7 I f  G is an infinite graph then an w-tall o f G is a one-way 
infinite path consisting entirely o f vertices o f degree 2. We say that G is a 
porcupine i f  every vertex is adjacent to an cj-tail.

T h e o re m  2.8  A porcupine has uniform k-amalgamators for all k > 1.

P ro o f. Let P  be a porcupine. Now P  can have at most one end-vertex; 

if it does have an end-vertex then it is a one-way infinite path, and the 
theorem is true. Suppose, then, tha t P  has no end-vertices, and let X  be 
the set of vertices which do not lie on an w-tail: we have 5 (x) > 2 for all 
X e  x .  We now define a A;-amalgamator a  as follows: for each x e X ,  set 

q ( x )  to be the vertex in the amalgamated graph obtained by amalgamating 
X with the first A: — 1 vertices of one of the w-tails to  which x is adjacent. 
The vertices not so far considered now form a set of one-way infinite paths, 

and it is clear how to extend a  to  the whole of P  in such a way tha t a (P )  
is isomorphic to P . □

It is n.ot known whether any connected graph adm itting A;-amalgamators 
for all k must be a porcupine.

An example of an infinite graph which does have non-trivial uniform 

amalgamators is the square lattice: see figure 2.4. In fact, the results of 
chapter 4 will show tha t the infinite graphs which are the duals of all the 
Laves nets except for [3.12^] have non-trivial uniform amalgamators.
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F ig u re  2.4 The infinite square lattice, and a 4-uniform amalgamation

2.2 A m algam ations o f Tilings

We now apply the definitions of the previous section to tilings of the plane. 
The definition of an amalgamation now becomes:

D efin itio n  2.9 Let T  be a tiling o f the plane. A n  amalgamation o fT  is a 
tiling S , each of whose tiles is a molecule o f T .  Hence S  C {T).

D efin itio n  2.10  I f  S  is an amalgamation o f T ,  and S  is isohedral, then we 
say that S  is an isohedral amalgamation o f T .

D efin itio n  2.11  I f  every tile o f S  is an n-tile o f T ,  then we say that the 
amalgamation is n-uniform, or that it is an n-amalgamation. Unless other

wise stated, all amalgamations we consider will be uniform amalgamations.

D efin itio n  2.12  I f  S  is an amalgamation o f T ,  and S  is isomorphic to T , 
then we say that S  is a iso-amalgamation o f T .

22



The thicker lines show the tiles o f the amalgamation 

F ig u re  2.5 Examples of iso-amalgamations

E x am p les: Figure 2.5 shows examples of these. If we have an iso-amalgamation 
5  of a tiling T, then clearly there is an isomorphism a : T  S .

D efin itio n  2.13 A n  amalgamator of a tiling T  is an isomorphism between 
T  and an amalgamation o f T .

R e m a rk  2.14 It will usually clear from the context when the amalgama
tions under discussion are iso-amalgamations.

A problem of notation arise with both amalgamations and amalgama

tors. W ith amalgamations we are usually content with showing a small area 
of the amalgamation and assuming an “obvious” extension to the rest of the 

tiling: more precise ways of specifying the amalgamation may be possible 
when, for example, we have a co-ordinate system defined on the tiling.

In the case of amalgamators, more information is needed, to  show how 
the tiles of the tiling T  are mapped onto those of a(!T) by the amalgamator 
a. In this case we mark a directed angle a on the tiling, together with its 

image b  (unless the two coincide). The fact tha t o l is an isomorphism means 
tha t this is sufficient to specify its action. It is im portant to note th a t two
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F ig u re  2.6  Two amalgamators having the same first level tiling

amalgamators a  and may be such tha t a{T)  and f i{T)  are congruent, 
whereas a^(T)  and are not: see, for example, figure 2 .6 , which also
illustrates the method of specifying amalgamators just described.

It can happen tha t an amalgamation of a tiling can have symmetries 

which are not generic, in the sense tha t they do not arise from the sym
metries of the tiling itself: they are not restrictions of the symmetries of 
the tiling. These symmetries are known as spurious symmetries. Figure 2.7 

shows two examples of this. In the first case the amalgamation contains 

two inequivalent types of general tile. Here the spurious symmetries arise 
because the sides of the rectangular tiles are in the ratio 2 :1. In the second 
case the tiles of the amalgamation are all equivalent, and we have the situ
ation tha t an automorphism of the basic tiling has become a symmetry of 
the amalgamation.

We make the following definitions:
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F ig u re  2.7 Examples of spurious symmetries

25



A(-r)

F ig u re  2.8  Groups acting on a tiling and an amalgamation

D efin itio n  2.15 We denote by H ( T , S )  the group o f automorphisms o fT  
which act as automorphisms of S . Similarly, we denote by S(T’, S) the group 
of symmetries o f T  which act as symmetries o f S .

We abbreviate H ( T , a ( T ) )  and E(T, a ( r ) )  to  H [ T , a )  and E(T', a )  respec
tively.

By an abuse of notation, we can write:

H { T , a ) z ^ A { T ) n A ( a ( T ) )

E ( r , a )  =  S ( r ) n E ( a ( r ) )

The diagram in figure 2.8 makes clearer the relationship between the 
various groups, although this is not strictly a Venn diagram of sets, for the 

reasons noted above (Remark 1.14 etc.). The shaded areas show the two dif
ferent types of spurious symmetries noted above: note tha t there are also ar
eas which correspond to what might be called “spurious automorphisms”— 
these are rather trickier to imagine as it is less easy to  “see” whether an 
automorphism of oc(T) arises from an automorphism of T.
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The behaviour of these groups is fundamental to the study of amalga
mations.

D efin itio n  2.16 I f  S  is an isohedral amalgamation o f a tiling T  then S  is 
said to be strongly isohedral i / E ( r ,  5 ) acts transitively on S.

2.3 Tiling Hierarchies

Suppose tha t we have a tiling, T , and an amalgamator a  on T . It follows 
from the way tha t we have defined isomorphisms tha t we can apply ct suc
cessively to T , to obtain a series of tilings T, a{T),  a ^ (T ) ,. .. .  We then have 
the following definition:

D efin itio n  2.17 I f T  is a tiling, and a is an amalgamator on T , then the 
sequence T , a{T) ,  a \ T ) , . . .  o f tilings is called the tiling hierarchy generated 
by T  and a, and is denoted [T, a] or T (T , a).

D efin itio n  2.18 Two tiling hierarchies T { T , a )  and T{S ,P)  are said to be 
isomorphic (isomeric) i f  there is an isomorphism (isomerism) (j> such that 
(3 =  (f>a(i)~̂  .

The paper by Holroyd [11] gives a summary of definitions and results con
cerning tiling hierarchies. We will return to this subject when we come to 
discuss the classification of hierarchies.
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C hapter 3

Tesseral A ddressing System s

In this chapter we briefly survey the work which has been done on tesseral 
addressing—it was this work which originally motivated the study of amal
gamations of tilings.

3.1 Q uadtrees

R e m a rk  3.1 The word quadtree has become a rather vague term used to de

scribe a class o f hierarchical data structures which are based on the principal 
of recursively decomposing space. A full survey o f this field can be found in 
[22]. In this section we will be describing how a region quadtree can be used 
to analyse an image.

The problem of amalgamations of tilings originally arose in connection 
with a problem in the field of digital image processing.

A digitized image is divided up into cells, called picture elements or 
pixels, of sufficiently small size, and to each pixel we can then associate 

various attributes such as colour, intensity, etc. In the simplest case we 
would simply assign 1 or 0 , where 1 indicates tha t a pixel lies in a “region 
of interest” , where this could be a road, river, populated area etc. We now 

want to  analyse this image in some way: for example to trace the path of a 
road to  its intersection with another road.

This immediately raises the first problem, which is how we should divide 
up the picture area; in other words what shape should the pixels be? The
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most commonly used shape is, of course, the square (i.e. the Laves net of 
type [4^]). However the hexagonal tiling offers some advantages over this: 
for example each tile is adjacent at an edge to six rather than four tiles, 
and there is only one type of adjacency (at an edge) rather tha t the two 
(at an edge and at a corner) exhibited by the square tiling. On the other 
hand, it is not possible to subdivide a hexagon into smaller hexagons, which 
means tha t hierarchies are “one way” . Another possibility is to use a tiling 
of type [3®], but with square tiles: this is used in some colour televisions. 

Note tha t this does not overcome the problem of subdivision; if T is a type 

[3®] tiling by squares then subdividing the squares will not produce another 
[3®] tiling. In [2] a list of such criteria is presented, and various possibilities 
are considered.

Having chosen a tiling, we now consider how the data for an image is 
stored: there are three possibilities.

R a s te r  R e p re se n ta tio n . The information corresponding to the pixels is 
stored as a list, corresponding to some particular ordering of the pixels.

V ec to r R e p re se n ta tio n . We store a list of ordered pairs consisting of the 
address and the corresponding attribute.

H ie ra rc h ic a l R e p re se n ta tio n . This is the method described below, in 
which the image is divided into regions, which are in turn subdivided, 

continuing until we have extracted as much detail as possible.

The first task in the processing of an image by computer, then, known 
as segmentation, is to identify subsets of interest from the scanned image. 

Klinger and Dyer [3] describe how this may be carried out by successive 
regular decomposition of the picture, and we describe this process now.

Consider the “image” shown in figure 3.1. Notice tha t there is a large 

area of open land, which is basically uniform: we would not, therefore, 
be interested in storing details of every pixel of this area. On the other 
hand, there are areas with more detail which need to be analysed with more 
precision. To analyse this we represent the picture as spatial subsets of
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F ig u re  3.1 A sample “image”

different sizes, each of which we mark as “informative” or “uninformative” , 
so tha t we can discard pixels belonging to “uninformative” subsets.

Specifically, we start by considering the whole picture as a quadrant. 

There are basically two possibilities: either the area contains nothing of 
interest (for example it might be a large area of open land), or it contains 
detail which needs to be analysed further, in which case we subdivide the 
quadrant and repeat the analysis. We continue until either no quadrants 

require further subdivision, or the quadrant size becomes the same as the 
pixel size.

To make this clearer, we will analyse the “m ap” in figure 3 .1. We will 
assume, rather unrealistically, tha t the map is 8 pixels by 8 pixels.

Clearly the map contains detail of interest, so we subdivide the map, as 
in figure 3.2 . Notice tha t the top two quadrants contain no detail of interest. 

We do not, therefore, consider them further. The bottom  two quadrants do, 
so we subdivide them further: figure 3.3 We now subdivide once more in
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F ig u re  3.2 The first subdivision

F ig u re  3.3 The second subdivision 
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F ig u re  3.4 The third subdivision

those quadrants which contain detail of interest.

Figure 3.5 shows a binary array corresponding to the image, where pixels 
marked 1 lie in regions of interest.

This can also be represented by a binary tree (hence the term quadtree), 
as shown in figure 3.6.

This tree can now be stored on a computer: for example for each node 
we could store the co-ordinates of a suitable reference point (e.g. the top 
left hand corner), together with either a colour (black or white) or a set of 

pointers to  the filial nodes. A node which is not leaf is known as a grey node.

This representation has two advantages over raster and vector represen
tations. Firstly, large homogeneous areas are usually recognised (although 

the shape and orientation of the area will determine how much it is split 
up: this is another example of how different shapes of pixel may be more 

appropriate in a given situation), and secondly quadtrees provide an areal 
notion of locality, rather than a linear one: in the usual raster representa-
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F ig u re  3.5 Binary image corresponding to figure 3.1

a 0 • •

F ig u re  3.6 Quadtree corresponding to  figure 3.1
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tion, horizontally adjacent pixels will be adjacently stored while vertically 
adjacent pixels will be stored at addresses some distance apart. The hierar
chical nature of the quadtree representation makes the adjacency structure 
of the image much clearer.

3.2 Tesseral A ddressing

In [4] Gargantini proposed a method of representing a quadtree tha t did 
not involve the use of pointers to filial nodes, as had been used so far, but 
represented each node with a quaternary integer chosen to refiect the hier

archical structure of the quadtree. This was later termed tesseral addressing 
by other workers in the field.

To construct the tesseral address of a point in the image we proceed as 

follows. (The addressing system given here is a slightly modified version of 
tha t given by Gargantini, in tha t it covers NE rather tha t the SE quadrant 
of the plane. The significance of this becomes clear when negative tesseral 
addresses are considered.) For each subdivision of the image we encode the 
SW quadrant with the digit 0 , the SE quadrant with the digit 1, the NW 

quadrant with the digit 2 , and the NE quadrant with the digit 3 . Each pixel 

is then encoded with a weighted quaternary code .. .On-ittn-s • • -a2aiaoj 
where a* identifies the quadrant to  which the pixel belongs at the (n — t)th  
subdivision, where the image is of size 2” x 2^ pixels. Figure 3.7 shows the 
addresses of the pixels in our 8 x 8 image space.

We now have an address for each pixel in our region. To represent a 
larger quadrant consisting of 2^ pixels, we introduce a “joker” , X, which 
means “0 ,1,2 and 3” . Thus, to represent the square containing the pixels 

labelled 120,121,122,123, we would use the address 12X. We might also use 
the notation 1X2 to represent the pixels 102,112,122 and 132.

We can now represent a digitised image simply as a list of black pixels. 
For example the image considered would be represented by the list 02X, 010 , 
O il, lOX, 112, 113, 130, 131.
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F ig u re  3.7 Tesseral addresses

3.3 Tesserals and Am algam ators

It is clear tha t tesseral addressing systems and amalgamators are intimately 
related, and we now show how the theory of amalgamations can be used to 
put the above discussion on a firmer footing.

Firstly, we should reiterate that the square tiling with the corresponding 

“2 X 2” amalgamator is by no means the only possibility for constructing a 
tesseral addressing system. In [2] several further possibilities are illustrated. 
The primary requirement, however, is tha t the tessellation should possess 

a non-trivial uniform amalgamator, and this gives a practical reason for 
classifying all possible amalgamations of plane tessellations.

Secondly, it is intuitively clear tha t the addressing system described 
above could be expanded to cover the whole of the NE quadrant of the 
plane, but the “recipe” given does not give a rigorous way to  do this: to 
achieve this it is necessary to use amalgamations.

Consider first the addressing system shown in figure 3.7, but ignoring all
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0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

2 3 2 3 2 3 2 3

0 1 0 1 0 1 0 1

F ig u re  3.8 Atomic Addressing Pattern

but the right-most digit, uq—see figure 3 .8 .

It is clear how to extend this pattern to the whole NE quadrant (and in 
fact to the whole plane). Now by repeated applications of the amalgamator 

a  to this marked tiling, we can define the digits ai , a 2 , . . . .  This gives an 
infinite address for each tile: however since every tile in the NE quadrant 

is contained in an(<o) for some n, where to is the tile whose SW corner 
is the origin, we have ajt =  0 for A; > n. We can therefore assign a finite 
address to every point in the NE quadrant. This corresponds to the fact tha t 

any non-negative integer can be uniquely represented as GilO* where 

0 < Ot < 9, so any particular non-negative integer is expressed as a finite 
string of digits.

In general, let T  be a tiling of the plane which admits a non-trivial 
uniform strongly isohedral amalgamator a  with aperture s. An atomic ad

dressing pattern is a function (f>o : T  {0 , . . . , s  -  1} which satisfies the 
following conditions.
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1. For any tile t £ T ,  no two tiles in o:(t) have the same label.

2 . S (T ,a )  has a subgroup H  which acts regularly^ on a (T ) and is such 
th a t, for any 7  € i f ,  we have

M l i i ) )  = M i )  V< € T.

Following the example above, we use the amalgamator a  to “lift” the atomic 
addressing system as follows: for each k any tile t will lie in the image under 

Q*= of some tile f ,  say. We let the digit (from the right) of the address 

of t be <̂ o(̂ 0 - More precisely, for each k we define a function <j>k by

(f>k =  4>o o a ~ ^ .

We now define the address of a particular tile to be:

. . . . . . CL\OLq

where dj =  ^*(t). Notice tha t, as it stands, this is an infinite string: in 
practice this is not a problem, as we shall see.

There are two desirable properties we should like our addressing system 
to possess:

1. it should be unambiguous: i.e. no two tiles have the same address;

2 . it should be finitary: tha t is to  say, there is a constant c (which we 
can arrange to be 0) such tha t for any tile t there is an integer K  for 
which <})k{t) =  c for n \ \ k >  K.

There are various ways in which an addressing system can fail to have 

the properties: for example the system based on the Gargantini system is 
not finitary.

An example of an addressing system tha t is both unambiguous and fini
tary  is the addressing system for the [3®] tiling known as generalised balanced 
ternary^ or GBT: this is based on an amalgamation of aperture 7, and is 
illustrated in figure 3.9 This system is due to Lucas and is described in [17].

^The action of a group on a set is regular if it is transitive and the stabiliser of any 
point is trivial.
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F ig u re  3.9 Generalised Balanced Ternary system

Notice tha t in this case the underlying amalgamator has the property tha t, 
if to is the tile labelled 0 , we have

to Q ct{to) Ç a^{to) Ç . . .

and
oo

U "*(̂ 0) =
k=l

In contrast, the Gargantini addressing system is unambiguous, but not 
finitary: the plane is divided into four sectors, with 4>k{t) =  0 for ifc large 
enough in the NE quadrant, <l>k{t) =  1 for k large enough in the NW quad

ran t, with the SE and SW quadrants being similarly characterised by 2 and 
3 respectively.

If we introduce a rotation between levels, it is possible to  obtain a system 
which is unambiguous, but where the ‘ta il’ is cyclic.

It is also possible to obtain systems with finite or infinite ambiguity. 
Non-finitary systems always divide the plane up into a finite number of 
sectors: we conjecture tha t the number of sectors is always 1,2 ,3,4 or 6 .
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The behaviour of an addressing system resulting from an amalagamator 

can be described in terms of the number of origins th a t the amalgamator 
has.

D efin itio n  3.2 A n  origin of an amalagamator a  on a tiling T  is a tile to 
such that a(fo) contains to.

We now have the following:

P ro p o s itio n  3.3 For any origin to o f an amalgamator a  we have:

to Ç a(to) Ç a^(to) Ç . . .

We can now make the following definition:

D efin itio n  3.4  The sector o f an amalgamator a  corresponding to an origin 
to is the subset o f the plane defined by:

Sec{to) =  I J  a*(to)
k=l

For any normal tiling, the sectors of an amalgamator will be unbounded, 
so long as there is no tile for which a{t)  =  t.

We can now classify amalgamators into three basic types.

1. An amalgamator may have no origins. In this case it is said to  be
0-degenerate.

2 . An amalgamator may have finitely many origins.

3. An amalgamator may have infinitely many origins. In this case it is
said to be uj-degenerate.

Degenerate amalgamators are of less interest for producing addressing 
systems than non-degenerate ones. A 0-degenerate amalgamator will pro

duce non-finitary addressing systems: typically there will be a “cyclic” 
infinite tail to  each address: an example is shown in figure 3 .10. An w-
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F ig u re  3.11 Addressing system defined by w-degenerate amalgamator

40



degenerate amalgamator, on the other hand, will produce an addressing 
system with infinite ambiguity: an example is shown in figure 3 .11.

We conjecture tha t a non-degenerate uniform amalgamator on an isohe- 
dral tiling has either 1,2 ,3,4,6 or 12 origins.

In the examples above, the Gargantini system is based on a amalgamator 
with 4 origins, whereas the GBT system is based on an amalgamator with 
1 origin. It is clear tha t an amalagamator with n  origins will produce ad

dressing systems with at most 7i-fold ambiguity. However, since in practice 
it is only ever necessary to address a finite portion of the plane this may 
not always be a problem, particularly if the addressing system produced has 
other features which make it attractive.

Connected with the subject of origins of amalgamators is the subject 
of fixed points. In the same way as there are topological transformations 
corresponding to automorphisms of tilings, so there is corresponding to any 
isomorphism, including an amalgamation a , a topological transformation 
/  whose action on the elements of the tiling T  is the same as th a t of the 
amalgamator (clearly there will be infinitely many of these): th a t is to say 
/  =  a . If the inverse of this transformation is a contraction mapping on 
then it will have a fixed point xq, and xq will also be a fixed point of f  and 

will lie either inside a tile of T, or on an edge of T, or on a vertex of T . It 
is clear tha t any tile such tha t xq G i (recall tha t t is a closed set) will be 
an origin of à .

3.4 Tesseral A rithm etic

We now describe how it is possible to impose an arithmetic onto certain 
tesseral addressing systems, which is similar in some ways to ‘norm al’ arith 
metic. We also describe some of the work which has arisen out of this.

3 .4 .1  O n e - d im e n s io n a l  a r i t h m e t i c

Before moving on to the two dimensional case, we note tha t tha t when we 

express the integers ‘to base 6’ for some 6, we are in fact using a tesseral
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system, based on the obvious amalgamator of aperture b. This could be 

seen to  be the one dimensional analogue of the Gargantini system, and 
shares the problem of not uniquely addressing the whole number line (it has 
two origins)—we need to introduce the concept of negative numbers.

Notational systems for the integers which eliminate the need for neg
ative numbers have been devised. For example, a form of ternary nota

tion, with three symbols corresponding to 0 , -1 and 1, and based on the 

3-amalgamation under which 0 {—1, 0 , 1} is the one- dimensional ana
logue of the Generalised Balanced Ternary system described above. Each 

integer has a unique representation in this system, with no use of minus 
signs needed.

Another system which has been devised is the system of Colson Num
bers, named after John Colson FRS (1680-1760), who first proposed the idea 
in 1726. These use an amalgamator of aperture 10, using 4 , 3 , 2 , Î , 0 , 1, 2 , 
3, 4, 5 as digits, corresponding to - 4 ,  - 3 ,  - 2 ,  -1 ,0 ,1 ,2 ,3 ,4 ,  Srespectively^. 

These ten numbers constitute the image of 0 under the amalgamation which 
generates the Colson numbers. Once again the need for minus signs is elim
inated, and we have, for example, -1726 =  2334, and 1726 =  2334. The 

arithmetic of Colson numbers, which is a tesseral arithmetic, is developed 
by Morgan in [19].

Given the above, it is perhaps less surprising tha t we can develop an 
arithmetic on a discrete two-dimensional structure which shares with deci
mal arithmetic such features as a place-value system with carry digits.

3 .4 .2  A d d i t io n

From now on we will assume that the tilings under consideration are trans

lational: th a t is to say tha t the symmetry group has a transitive subgroup 

of type p i.  If we fix the origin to lie on one of the tiles, to, say of T , then the 
centroids of the tiles of such a tiling T  must form a two dimensional lattice 
which is closed under vector addition in (to see this let the p i  subgroup

Colson also had an additional digit, 6, representing -5: this introduces ambiguity as 
we have, for example, 25 =  15.
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+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 12 3 34 5 16 0
2 2 3 24 25 6 0 61
3 3 34 25 36 0 1 2
4 4 5 6 0 41 52 43
5 5 16 0 1 52 53 4
6 6 0 61 2 43 4 65

T ab le  3.1 Addition table for GBT

act on the centroid of a particular tile), and we can define an addition oper
ation on the tiles of T  which corresponds to vector addition on R^. In turn, 

we can carry this over to define an addition operation on the address strings 
which are the addresses of the tiles.

The simplest case to  consider is when the amalgamator a  has one origin 
to> which lies at the origin of the vector space. In this case, as we have seen, 
every tile is contained in a^(to) for some k, and so we can assign a finite 
address to each tile. This is true, for example in the case of the GBT system 
described above.

If a  has aperture s, we can take the s tiles lying in a(to) and construct 
an addition table: we show the table for the GBT system in table 3 .1.

Any two finite address strings can be added by using this table at every 
position, and treating the carry digits as one does in everyday addition. For 
example, to add 344 and 614:

3® 4^ 4 

6 1 4

2 1

This is possible because of the following three facts:

1. addition is commutative and associative;

2 . the atom whose address is (ikCLk-i.. ,a\ao is the same as

P • ̂ 1 p .^ .0,-f~ ' ' " 4" &iO clq 
k k-1
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’ + 0 1 2 3 i 2 3
0 0 1 2 3 1 2 3
1 1 10 3 12 0 23 2
2 3 20 21 i3 0 i
3 3 12 21 30 2 1 0
i i 0 i3 2 io 3 32
2 2 23 0 1 3 20 31
3 3 2 i 0 32 31 30

T ab le  3.2 Addition table for Gargantini addressing system

3. addition of digits obeys the same rules at each level: in other words if 
a + b = c then aO +  60 =  cO etc.

The first fact follows directly from the fact tha t addition is essentially vec
tor addition, but the second and third rely on the particular amalgamator 

chosen: namely it should possess at least one origin which receives the label 
0 , and lies at the origin for the addition operation.

If the amalgamator a  on which the addressing system is based has more 
than one origin, then the situation becomes slightly more complicated.

We need to introduce the concept of dotted digits, analagous to recurring 

decimal digits. A tile not in the NE quadrant of the Gargantini addressing 
space will have an address such as . . .  1111123. We will denote this by 123. 

We can now extend the addition table to  include dotted digits, as shown in 
table 3.2, and the place value addition continues to apply.

Introducing dotted digits also introduces a potential source of ambiguity, 
in tha t if an arbitrary mixture of dotted and undotted digits is allowed in 
an address, then each atomic tile has infinitely many addresses: e.g.

1 =  il =  111 =  1111 =  ... 

il =  io+ il =  loi

If we insist tha t only the leftmost digit is dotted, and tha t the shortest such 
expression is used, then we get uniqueness.
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X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5
3 0 3 6 2 5 1 4
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

T ab le  3.3 Multiplication table for GBT

3.5 M ultiplication

As defined above, tesseral addition has a natural geometric interpretation: 
adding one tile to another corresponds to translating the first by the vector 

corresponding to the displacement of the second from the origin (i.e. it cor
responds to vector addition). This corresponds to  real and complex addition 
in one and two dimensions respectively.

It is natural to ask whether we can define a multiplication on an address

ing system, which would have the corresponding geometrical interpretation 
of ‘rotation plus scaling’ (as in complex arithmetic).

In fact, for both the systems defined above this is possible, and the 
corresponding multiplication tables are given in tables 3.3 and 3 .4 . Notice 
tha t for the GBT system, no carry digits are generated.

The reason tha t it is possible to define these multiplication operations 
is tha t in each case the tile centroids can be arranged to form a sub- ring of 
the set of complex numbers: Z [l,\/32/2] and Z [l,t] respectively.

3 .5 .1  E x te n s io n  to  h ig h e r  d im e n s io n s

The question of whether tesseral arithmetic can be extended to higher di
mensions is considered in [26]. It is shown tha t, whereas a Gargantini type 

addressing system, with addition corresponding to vector addition, can be 
defined in any number of dimensions, the same is not true of multiplication:
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X 0 1 2 3 i 2 3
0 0 0 0 0 0 0 0
1 0 1 2 3 i 2 3
2 0 2 i i3 2 1 23
3 0 3 13 20 3 23 20
i 0 i 2 3 1 2 3
2 0 2 1 23 2 i 13
3 0 3 23 20 3 13 20

T ab le  3.4 Multiplication table for Garagantini system

once we go higher than two dimensions the only possible non-distorting 
multiplication is quaternion multiplication in 4 dimensions, and this is non- 
commutative. Multiplications can be defined in higher dimensions, but they 
will be distorting (angles are not preserved) or singular (all multiples of a 
single point lie in the same hyperplane).

3 .5 .2  R a d ix  s y s te m s

Suppose now tha t we allow multiplication to  be a distorting operation, and 

possibly non-commutative, but continue to  exist that it is associative, dis
tributive over addition, and non-singular (in other words if a and h are 
non-zero, then so is a x 6). We are now searching for divisor-free rings over 
the set of atomic tiles. However, we still require a place-value system to 
hold.

For an atomic tile a, denote by O^a the atom of o:(a) whose zero-level 
address is 0 . Then for a place value system to work we need the following 
condition to hold:

0«(a X 6) =  OaO X 6 =  a X 0^6 (3.1)

If a multiplicative identity c exists then this is equivalent to

Oa(e X a) =  OqC X a =  e X O^a 

where a, 6 are atomic tiles.

(3.2)
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D efin itio n  3.5 A  radix system on a tiling T  is a combination o f a non- 

degenerate addressing system, together with a divisor-free ring structure, 
sharing the same origin, labelled 0, and obeying condition 3.1 i f  no multi
plicative identity exists, or condition 3.2 i f  one does. In the latter case we 

assume that the addressing system is such that the multiplicative identity is 
labelled 1. The radix of the system is the element 10.

3.6 T he future o f tesseral addressing

We have seen that addressing images using quadtrees leads to  a represen

tation of the image which can preserve areal locality, and which can recog
nize large homogeneous areas, thus possibly reducing the storage required. 
Tesseral arithmetic was developed as a means of manipulating these stored 

images; it was hoped tha t the development of special hardware— “tesseral 

machines”—would speed up the processing of stored images. It is certainly 
the case tha t such a machine could implement transformations of the plane 
more efficiently than a conventional computer using cartesian addressing 
with two co-ordinates.

Holroyd, in [14], suggests a way of constructing a general integer linear 
transformation machine, which would be even more efficient. He concludes 
tha t tesseral arithmetic may not be the way forward, and may possibly 
remain only of theoretical interest.
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Part II

G enerating A m algam ations
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Introduction

This part of the thesis is devoted to classifying and enumerating amalgama
tions and amalgamators. The ultim ate goal would be to obtain, for each IH 

type of tiling) a list of the possible amalgamations and amalgamators, and 
to classify the possible tiling hierarchies up to isomerism.

The results presented here are only partial, however, and fall into two 
main categories: firstly generating strongly isohedral amalgamations, and 
secondly describing the groups acting at different levels of a tiling hierarchy, 
which is an approach towards the classification of tiling hierarchies.
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C hapter 4

Topological Classification of 
Am algam ations

In this chapter we consider the types of homogeneous uniform amalgama
tions of homogeneous tilings possible when tilings are classified simply by 
topological type.

There is a fundamental lemma which excludes particular amalgamations:

L em m a 4.1 The maximum vertex-degree (i.e. number o f tiles meeting at a 
vertex) o f any amalgamation o f a tiling is less than or equal to the maximum  
vertex-degree o f the tiling.

The proof of this lemma is obvious on considering what happens to a 
vertex on amalgamation.

We now go on to prove the following theorem:

T h e o re m  4.2 I f T  is a homogeneous tiling, then T  has homogeneous uni

form  amalgamations which are regular o f every type allowed by the maximum- 
degree lemma, except when T  has type [3.12^], when amalgamations o f types 
[4.8^], [3.12^] and [4.6.12] are not possible.

P ro o f: We prove this theorem by considering each Laves net in turn. 

The hexagonal tiling [3®] has maximum vertex-degree 3, and is the only 
type with this property. It follows tha t it only has amalgamations of type
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F ig u re  4.1

The square tiling [4 ]̂ has maximum vertex-degree 4, and thus the lemma 

excludes all types except for [3®], [4^], [3^A^] and [32.4.3.4]. The first two 
can be realised by the “brick wall” and “square” tilings repectively. For the 
second two, see figure 4.1.

Tilings [3®.4̂ ] and [3^.4.3.4] have amalgamations of the same types, for 
they both amalgamate to [4 ]̂ (see figure 4.2) and hence to the other types; 
once again the lemma excludes all other types.

We now consider tiling type [6®]. It is obvious how to amalgamate 6 
tiles to get [3®]; by amalgamating pairs of tiles one gets type [4^], from 

which by previous results one can get [3^.4^] and [32,4,3,4]. Figure 4.3 
shows amalgamations of types [3'*.6], [3.6.3.6], [6®], and [3.4.6.4]. All other 
types are excluded by the lemma.

Figure 4.4 shows amalgamations of types [3' .̂6], [3.4.6.4] and [3.6.3.6] to 
type [6®]: it follows tha t these tilings have amalgamations of all types not 
excluded by the maximum degree lemma.
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F ig u re  4.2

F ig u re  4.3
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Type [4.8^] has obvious 4-amalgamations to  types [4^], [3®] and [4.8^], 
and once again by previous results it has amalgamations to all types not 
excluded by the lemma.

Now consider type [3.12^]. There is an obvious 3-amalgamation to [6®], 
and hence to all types except [4.8^], [3.12^] and [4.6.12]. Amalgamations of 
types [3.12^] and [4.6.12] are excluded as follows. Consider a vertex of type 

12 in a uniform, non-trivial amalgamation of a [3.12^] tiling. It must have 
arisen from a vertex of degree 12 in the original tiling. But there are only 

six tiles adjacent to the tiles surrounding a vertex of degree 12 and therefore 

available for amalgamation with them. But even a 2-amalgamation would 
require the existence of 12 such tiles. Hence an amalgamation of a [3.12^] 
tiling cannot contain a vertex of degree 12.

If one now considers a vertex of degree 8, it is clearly possible to join 
four pairs of tiles to create a vertex of degree 8, and so it appears tha t 

a 2-amalgamation with vertices of degree 8 might be possible (although it 
is easy to see tha t the tiles will not all have the same shape). Consider, 
however, the hexagon surrounding a vertex of order 12 which becomes a 

vertex of order 8. Only 16 of the 18 tiles in this hexagon will be used in such 
an amalgamation and so this too is impossible (although the two remaining 

tiles may possibly amalgamate with corresponding tiles in other hexagons 
in a 2-amalgamation, the new 2-molecules will lack vertices of degree 8, and 
so the amalgamation will not be homogeneous).

Finally, consider type [4.6.12]. An obvious 2-amalgamation to type [6®] 
gives amalgamations to all types except [4.8^], [3.12^], and [4.6.12]. Amal
gamations of these types are shown in figure 4.5
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C hapter 5

G eneration o f strongly isohedral 
am algam ations

In this chapter we will consider an algorithm for the generation of strongly 
isohedral amalgamations of an isohedral tiling, and show how this can be 

implemented on a computer to produce strongly isohedral tilings of a trans
lational tiling. The algorithms are due to Holroyd [13,12].

5.1 T he basic algorithm

Recall tha t if S  is an isohedral amalgamation of a tiling T  then S is said to 
be strongly isohedral ï î  2 (T , 5 ), the group of symmetries of T  which act as 
symmetries of S, acts transitively on S.

D efin itio n  5.1 A subgroup F  o f A[T)  is said to act effectively (or semi- 
regularly) on T  i f  the stabiliser o f each tile under the action o f F  is the 

identity. I f  F  is both effective and transitive on T, then F  is said to act 
regularly on T.

T h e o re m  5.2 L e tT  be an isohedral tiling, and let F  be a subgroup ofH{T)  

(or the corresponding group o f permutations: see remark I . I 4  above) which 
is effective on T , and which partitions T  into n orbits. Then:

1 . any n-tile o fT  consisting o f exactly one tile from each F -orbit gener

ates, by the action o f F, a strongly isohedral amalgamation o f T  on 
which F  acts regularly;
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2 . every strongly isohedral amalgamation o f T  on which F  acts regularly 
arises in this way.

P ro o f:

1. Let f  be an n-tile constructed as described. The every tile of T  is the 

image of one of the tiles making up t' under some element of F\ but 

since F  acts effectively, no two F-images of t' can coincide or overlap. 
Thus the F-images of t' form a strongly isohedral amalgamation of T  
on which F  acts regularly.

2. Let T ' be a strongly isohedral amalgamation of T  on which F  acts 
regularly. Then any tile t' G T ' must consist of at least one tile from 
each F-orbit. Since F  acts transitively on each F-orbit of T , and 
regularly on T ', t' cannot contain more than one tile from each F- 
orbit, and is therefore as in the construction of part 1. □

T h e o re m  5.3 For every isohedral tiling T , there is at least one subgroup F  
of Ti{T) that acts regularly on T .

P ro o f: The method of proof is to examine the list of isohedral types 
and give a corresponding type which describes a regularly acting subgroup. 
Types 1-7, 21-25, 27-28, 30-31, 33, 38-39, 41-56, 77-81, 83-88 have sym
metry groups which are themselves regular. Types 8, 10-12, 14, 17-20, 57, 
62, 64, 68, 72, 74, 76 have transitive subgroups of type p i. Corresponding 
groups for the remaining isohedral types are given in table 5.1.

D efin itio n  5.4 A set S  o f tiles o fT  is said to be edge-connected if, for any 

two elements s , t  e  S , there is a string Si,S2, . . . , of  elements o f S ,  each 
Si being adjacent to S{^i along an edge, such that s = si and t = Sk.

T h e o re m  5.5 With the notation o f theorem 5.2, let S  be an edge-connected 
set o f m  tiles from different F -orbits, where m  < n. Then S  can be extended 
to an n-tile consisting o f a tile from each F-orbit.
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Isohedral type Regular subgroup
9 2
13 3
15 2
16 7
26 22
29 28
32 31
34 33
35 33
36 33
37 33
40 39
58 43
59 44
60 45
61 55
63 52
65 48
66 47
67 46
69 46
70 48
71 51
73 44
75 45
82 79
89 87
90 88
91 84
92 87
93 88

T ab le  5.1 Proof of theorem 5.3
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P ro o f: The union of all F-images of S  cannot cover the whole of E^, 
so there must be some F-image of S  which is adjacent along a tile edge 
to a tile in an F-orbit not represented in S . By transitivity within each 
orbit, this must be true of S  itself. Thus we may extend S  by steps to an 
edge-connected set S i of n tiles, one from each F-orbit.

It remains to show tha t S i is a topological disc. Suppose it is not. Let 

S 2 be the smallest topological disc containing (it will be a union of tiles). 
The tiles of S 2  \  S i belong to F-images of S i tha t are disjoint from «Si ; but 

each of these images is edge-connected, and must also contain tiles not in 
«S2 \«Si. This is a contradiction. □

Theorems 5.2, 5.3, 5.5 allow us, for each 72. > 2, to generate every strongly 
isohedral n-amalgamation of T , as follows.

1. Select a fixed tile uq E T.

2. For every effective subgroup F  of E(T) which partitions the tiles into 
n  orbits (there are only finitely many of these), and for every n-tile t' 

containing u q  which can be constructed as in theorem 5.2 from tha t 
partition into orbits, apply F  to  t' to obtain a tiling.

This algorithm will generate each strongly isohedral amalgamation of 
T  exactly once for each subgroup of S (T ) which acts regularly on that 
amalgamation.

5.2 Translational Tilings

We now restrict our attention to tilings of the plane which are translational, 

in other words those whose symmetry groups have a transitive subgroup of 
type p i. Such tilings will always have topological type [4 ]̂ or [3®]. As we 
have seen, it is only on these tilings tha t we can define addressing systems 
which admit a tesseral arithmetic.

In this section we will consider the problem of generating translational 
amalgamations of tilings which have symmetry group of type p i.  To ob

tain the corresponding list for a tiling with a larger symmetry group it is 
necessary to eliminate molecules equivalent under tha t group.
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We now consider in detail how to apply the algorithm to a translational 

tiling T  to  determine all possible molecular tiles of size s.
Firstly we fix an origin at the centroid of some tile to. The centroids of 

the tiles lie on a lattice generated by two vectors, which we use as a basis, 

so tha t the centroids of the tiles are precisely the points {(n, m )|n ,m  G Z}. 
From now on we will identify a tile by the coordinates of its centroid, so 

tha t to is the tile (0,0).

The next step is to  list all of the subgroups of S (T ) of type p i. Any 
element g of such a subgroup H  can be represented with respect to the 

lattices defined above by a column vector w{g) with integer coordinates: g is 
the map p p +  v(^). If F  =  { f i ,f2} is an integral basis for H,  then let 

A (F ) be the 2 x 2  m atrix whose columns are f i , f 2- A  then specifies H,  but 
A  is not unique: if A i , A 2 are two such matrices then

A i = A2L

where L G GL(2,Z) (see [25]). This gives an equivalence relation on the 
set of 2 X 2 integer matrices: we need to produce one element from each 
equivalence class. From theorem A I of [12] we obtain the following: each 
equivalence class contains precisely one m atrix of the form

where Q < t  < q. For the purposes of this section we will say tha t a m atrix 
in the above form is in normal form.

Since |E(T) : H\ = \A\, we only need to list all normal matrices with 
pq = s in order to get the required enumeration of subgroups, and this is 
straightforward.

The next step is to  attach orbit labels to the tiles of T. We need to label 
all points within such a distance of to tha t we can form all s-tiles containing 

to and consisting of one point from each orbit. The set of tiles contained in 
the same orbit as to, which we call the 0-orbit is the set

{A(FT)X|X is a column vector with integer entries}
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It is sufficient to  let the entries of X  run from —s to s. Once we have 

determined the 0-orbit as far out as necessary we determine the other orbits 
by picking an unlabelled tile (r, s), say, and forming the set Orb(to) +  (r, 5).

In order to  describe the adjacency structure of the lattice of centroids, 
we define the set of adjacency vectors of the lattice as follows. Let v be 
the degree of the adjacency graph of the lattice, i.e. the number of points 

adjacent to any point. Then there will be v vectors, d i ,  d 2 , . . . ,  dy such tha t 
for any point P , the points adjacent to P  will be precisely the translates of 
P  by the vectors dj.

Now we can construct all connected molecules m  containing to and com
prising one tile from each orbit as follows. We start the process with the 

molecule containing the single tile to* Suppose tha t we have constructed a 
/j-molecule (k < 5). We add each of the adjacency vectors in turn  to  each 
tile in the molecule. If the resulting tile lies in an orbit not already repre

sented, then we can add it to the A-molecule to  get a molecule of size k 1, 
Proceeding in this way we can build up all possible 5-molecules.

It only remains to eliminate translational duplicates from the list, and 
to  determine the adjacency structure of the amalgamation generated by the 
molecule: this process is explained below. Note tha t since the amalgamation 
will itself be a translational tiling, it will have topological type [4 ]̂ or [3®], 
and so it suffices to determine the number of adjacent tiles in order to 
determine the adjacency structure.

5.3 Im plem entation

The algorithm was programmed in PASCAL and run on the DECSYSTEM- 
20 at the Open University, and on the IBM 3084 at the University of Cam
bridge. The code is reproduced in appendix A.

We now describe the program section by section.
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5.3.1 D eclarations

The constant s is the size of molecule we are generating; o f f s e t  and a rra y s  iz e  

are declared for convenience later on. The constant valency  will be equal 
to 4 for the [4**] tiling, and 6 for the [3®] tiling.

In order the reduce the space used, we will declare all numbers to lie in 
the range 0. .63, so tha t they need a maximum of 6 bits of memory. The 

program uses as its workspace an square array of size 4 * 5 + 1: this is the 
type windowsize. The variable o ffs e t is used to ensure tha t all indices 

are positive. The program works with linked lists of molecules: thus the 
type m olecule is in fact a record, consisting of a variable of type t i l e s e t  
(representing a set of tiles) together with a pointer, of type l in k ,  which 
points to another variable of type molecule.

The variable p o in ts  is the program’s workspace: this represents an array 

of tiles centred at the origin, and the entries will correspond to the orbit to 
which the tile belongs. The variable ad jvecs will contain the adjacency 
vectors of the tiling under consideration: notice tha t since no assumption is 

made about the orthogonality of the coordinate system used, it is possible 

to represent the hexagonal tiling in the same way as the square tiling as 
long as we change the adjacency vectors; this means tha t the program is 
virtually identical in each case.

We now describe the procedures of the program in the order they are 

called by the main section of the program (at the end of the code). This 
starts by setting up the adjacency vectors, and the initial values of p, q and 

t ,  which are the parameters of the subgroup as described in the previous 
section.

5 .3 .2  z e r o a r r a y  

Resets the array p o in ts .
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5.3 .3  zero_orbit

This procedure determines the zero orbit of the subgroup under considera
tion. This is done by calculating

for z, y lying in the interval [-25,2s] and setting the corresponding entries 
in p o in ts  to  1 (the orbit is stored as A: +  1).

5.3 .4  o th e ro rb i ts

Determines the remaining orbits, as described in comment.

5.3 .5  p r in to r b i t s  

Prints out the array points.

5 .3 .6  i n i t l i s t

The molecules generated are placed in a linked list: this is to save space. 

The molecules are generated by successively producing molecules of size 
1 ,2 ,3 ,... ,s, and the use of a list structure means tha t space no longer required 

can be recovered. The structure of the list is as shown in figure 5.1. This 
procedure initialises the pointers, and sets the molecules to  which they point 
to  “zero” .

5.3 .7  expand

The procedure expands a molecule by one tile. The adjacency vectors are 

used to determine the tiles adjacent to the molecule. In each case, if the tile 

found is in an orbit not so far represented in the tile, then the tile so formed 
is added to  the list. In this way the molecules are built up one stage at a 
time.
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F ig u re  5.1 Structure of list used in program

-top

4
- 4 ^

► k - moleoi/es

fVMeîJlt
]  1

h e a r ,
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5.3 .8  a d d l is t

This procedure adds the molecules formed to the list. The molecules are 
ordered so tha t molecules which have already been formed are not added to 
the list.

5.3 .9  d u p lic a te s  an d  checkdups

The procedures eliminate translational copies of the molecules.

5 .3 .10  p r i n t l i s t  an d  f in d s tru c t

The procedure p r i n t l i s t  prints out the molecules which have been found, 
counting them at the same time. The procedure f in d s t r u c t  is used to 
determine the adjacency structure of the amalgamation resulting from the 

molecule. This is only necessary when considering type [4^], as all amalga
mations of a tiling of type [3®] will also be of this type. It works by counting 
the number of molecules adjacent to the molecule in the list.

5.3.11 nextnorm

This produces the “next” normal matrix with the specified value of s.

5.4 R esults

5 .4 .1  E n u m e r a t iv e  R e s u lts

The following tables present the enumerative results from the program. 

They show the number of molecules arising for each possible set of values of 
p, q and t for the values of s shown.
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5 .4 .2 S q u a r e  L a t t i c e

3 =  3

iv,q) (1,3) (3,1)
t
0 1 1
1 0
2 0

3 =  4

(p.?) (1,4) (2,2) (4,1)
t
0 1 1 1
1 2 0
2 2
3 0

3 =  5

(p,g) (1,5) (5,1)
t
0 1 1
1 0
2 1
3 1
4 0
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5 =  6

(1,6) (2,3) (3,2) (6,1)

5

5 =  8

CP,9) (1,8) (2,4) (4,2) (8,1)
t

0 1 13 13 1
1 14 8 0
2 6 8
3 8 6
4 14
5 6
6 8
7 0
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5.4.3 H exagonal L attice

5 =  3

(p>ç) (1,3) (3,1)
t

0 4 4
1 5
2 4

5 =  4

(1,4) (2,2) (4,1)
t

0 8 11 8
1 10 10
2 10
3 8

5 =  5

(p>g) (1,5) (5,1)
t

0 16 16
1 21
2 21
3 21
4 16

6 8



5 =  6

(p.?) (1,6) (2,3)
t

0 32 47
1 47
2

3
4

5

5 =  7

(P>?) (1,7) (7,1)
t

0 64 64
1 85
2 96
3 85
4 96
5 85
6 64

5 =  8

47
47
42

32
42
47
47
42
32

(P,9) (1,8) (2,4) (4,2) (8A)
t

0 128 198 198 128
1 198 196 170
2 198 196
3 170 198
4 198
5 196
6 170
7 128
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5 .4 .4  S q u a r e  L a t t i c e  w i th  n o  c h e c k in g  fo r  a d ja c e n c y  s t r u c 
t u r e

For 3 < 5 < 8 the program was run on a square lattice, but without checking 
tha t the adjacency stucture of the amalgamation generated was of type [4'*]. 

This produces all possible strongly isohedral translational amalgamations of 
the [4̂ *] tiling.

5 =  3

(p ,g ) (1,3) (3,1)
t

0 1 1
1 4
2 4

5 =  4

(1,4) (2,2) (4,1)
t

0 1 5 1
1 6 8
2 6
3 8

5 =  5

(1,5) (5,1)
t

0 1 1
1 16
2 13
3 13
4 16
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5 =  6

(Pr9) (1,6) (2,3)
t

0 1 17
1 18
2
3

4
5

5 = 7

(1,7) (7,1)
t

0 1 1
1 64
2 44
3 44
4 44
5 44
6 64

5 =  8

17
23
23

1
32
23

18
23
32

(p,ç) (1,8) (2,4) (4J) (8,1)
t

0 1 53 53 1
1 54 80 128
2 84 80
3 80 84
4 54
5 84
6 80
7 128
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5.4.5 S um m ary  tab le

The table below gives the total number of molecules generated for each value 
of s in each of the three cases listed above.

5 =

Square lattice 
Hexagonal lattice 
Square, no check

8
2 7 4 32 18 106

17 65 111 504 639 2670

10 35 60 228 306 1044

5.5 M olecule Enum eration

5 .5 .1  T h e o r e t ic a l  R e s u l t s

In this section we present some theoretical enumerative results on molecule 
enumeration.

Firstly, note tha t both in these results, and in the numerical results, we 

are counting molecules which generate a strongly isohedral amalgamation of 
a tiling which has p i as symmetry group, and on which p i is effective; the 
tiles of the tiling have trivial symmetry group and stabiliser. The molecules 

generated by a subgroup of the symmetry group of the tiling are the edge- 
connected orbit transversals of that subgroup.

The first result gives a crude upper bound on the number of possible 
molecules of size a of a tiling by tiles with v edges.

T h e o re m  5.6 I f  is the number o f possible s-molecules, counted up to 
equivalence, o f a tiling by tiles with v edges, then

J J  [A;(u -  2 )-f 2].
&=i

P ro o f. Imagine building up an 5-molecule in stages; at each stage we 
add a tile to  the existing partial molecule. At each stage we increase the 

number of edges of the partial molecule, and hence the number of candidate 
tiles to be added, by at most v — 2 . Hence

My^g < v{v + { v - 2 )){v + 2 { v - 2 ) ) . . . { v - \ - { s - 2 ) { v - 2 ))
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=  v{2v — 2)(3‘ü — 4)(4r — 6 ) . . .  ((5 — l)v  — 2(s — 2))

=  Ï l [ ^ v - 2 ( A ; - 1)]
fc=l

= JJ [̂ (7; -  2) + 2]
k=l

However, even after eliminating translational duplicates, each possible mol
ecule will be produced more than once in this way. Given an 5-molecule, 

consider the number of ways of deleting tiles successively, so tha t at each 
stage we still have a molecule. Each distinct sequence of deletions corre

sponds to a distinct way of building up the 5-molecule. Clearly at each 
stage except the final one there are two possible tiles which can be deleted; 
hence each molecule is produced at least 2®~̂  times, and the result follows. 

In particular we have

•^4,3 =  n  +  1) =  5!
k=i

■^6,5 =  I I  2(2& +  1) <  (2 5  -  1)!
k=l

□
The upper bound presented above is crude because it takes no account 

of the action of the symmetry groups. In one or two special cases we can 
get exact formulae for the number of molecules.

In each of the three cases below, we consider the molecules generated by 
the action of a subgroup If of the symmetry group of a translationêd tiling 

T  whose tiles have trivial symmetry group.

T h e o re m  5.7 If  If  has matrix o f the form  (  ̂ j or
y 0 1 J

is o f type [4 ]̂ then there is precisely one molecule possible.

P ro o f. The orbits of H  in these cases are infinite horizontal or vertical 
strips; it is clear tha t the only possible edge-connected orbit transversal is a 
strip of 5 tiles. All such strips are translationally equivalent. □
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1 Z 3 *  • S- l s

2 3 *  ' '  -  • s 1

3 '  . -  - s 1 2

"  -  - s 1 2 3

6 1 z 3 4

F ig u re  5.2

T h e o re m  5.8 I f  H  has matrix o f the form and T  is o f type [4 ]̂

then there are 2̂ * possible molecules, all o f which, however, give rise to 
amalgamations o f type [3®].

P ro o f. The orbits of H  in this case form diagonal strips (see figure 5 .2). 

This means tha t every molecule has a unique “top left” tile; in other words 
the leftmost tile in the topmost horizontal strip of the tile is also the topmost 
tile of the leftmost vertical strip of the tile. W ithout loss of generality we 
can choose this tile to be in the orbit labelled 1. Imagine building up the 

molecule tile by tile, always maintaining connectedness. It is clear th a t there 
will always be two possible choices of tile to  add, those to the right and 
below the tile last added. Hence there are 2('"^) possible molecules. Since, 
however, at each vertex two tiles belong to  the same orbit, no amalgamation 

by one of these molecules could contain a vertex of degree 4 , and hence there 
are no amalgamations of type [4^]. □

T h e o re m  5.9 I f  H  has matrix o f the form and T
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& ) 2 3 4-

F ig u re  5.3

is o f type [3®] then there are possible molecules.

P ro o f. The orbits again form diagonal strips (see figure 5 .3), and the 
same argument as in the previous proof applies. □

5 .5 .2  L a r g e r  s y m m e t r y  g r o u p s

We reiterate tha t the results above are limited in the sense that they asssume 
tha t the underlying tiling T  has symmetry group p i. As such they can 
be used to derive all molecules of any translational tiling which give rise 
to translational amalgamations, by eliminating those molecules which are 
equivalent under the symmetry group of the tiling (the amount of work 
required would be reduced by only considering one representative of each 
conjugacy class of effective subgroups).

In order to enumerate molecules of a non-translational tiling, and/or 
those which give rise to non-translational amalgamations, it would be nec
essary to generate all conjugacy classes of effective subgroups, and not just 
those of type p i.
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5.5.3 R ela ted  w ork

One area clearly related to the work described here is the enumeration of 
polyominoes, although most authors seem to  allow polyominoes to contain 
“holes” . See, for example, [21,18,15,20]. The algorithm described by Re- 

delmeier in [21] bears some resemblance to the one described here, in tha t 

it builds up polyominoes tile by tile, storing the partial polyominoes in a 
linked list. Another paper of interest is [1], in which it is shown th a t every 
hexomino tiles the plane, and tha t of the 35 hexominoes, 24 tile the plane 
translationally.

Another related area is the enumeration of carbon compounds, since 
these can be seen as polyominoes with a particular structure. Work in this 
field is described in [10,7,8,9].

In neither of the above cases is the action of the effective subgroup impor

tan t. One question of interest in which it is im portant involves the concept 
of a perfect colouring (see [23] and elsewhere).

A k-colouringof a tiling is a map % : T  -* { 1 ,2 ,.. . , / :} . A coloured tiling, 
T  is a pair (T, %), where % is a colouring of T. A colour symmetry of f  is 

a pair 7  =  (7 ,^), where 7  G 2 (T ), 6 G S{k),  the perm utation group on 
{1, 2 , . . . , / :} ,  and 7  and 6 are compatible in the sense tha t for any tile t £ T ,

^ (x (0 ) =  X(^(<))'

We say tha t 7  and 6 are associated with 7  (and with each other): if every 
element 7  G 2 (T ) is associated with a colour symmetry 7  we say tha t the 
colouring is perfect

Clearly every labelling by subgroup orbits produced above is a colouring 
of the underlying tiling: the question then arises as to when tha t colouring is 
perfect. The answer for the regular translational tilings follows from results
8.7.1 and 8.7.2 of [6], and is as follows:

T h e o re m  5.10 I f  T  is the Laves net o f type [4 ]̂ then the translational

subgroups o f E (T) with matrices I  ̂  ̂ I or f  ̂ I induce perfect
\  0 n I \ 0  n I
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colourings o f T . I f  T  is the Laves net o f type [3®] then the corresponding
(  n q \  (  3n 0

matrices are I I or I
y 0 n J  y 0 n

See [24] for further results about perfect colourings of isohedral tilings.

5.6 Enum erating am algam ations

The amalgamations resulting from the molecules given above all lie in dis

tinct symmetric isomorphism classes of tilings. However, since they all have 
symmetry group p i and tile group c l, they are of isohedral type 1 or 41, 
according as they are of topological type [3®] or [4^̂ ].

By considering different underlying tilings T  we can generate all possible 
translational, strongly isohedral, amalgamations. Once again, by consider

ing one representative of each conjugacy class of effective subgroups, and 
eliminating molecules equivalent under E ( r ) ,  we will obtain precisely one 

representative of each symmetric isomorphism class of amalgamations. It 

is not immediately clear how to proceed to a coarser classification of these 
amalgamations (e.g. up to  isomerism): one possibility might be by the use 
of the incidence symbols devised by Griinbaum and Shepherd (see [6]).

5.7 Enum erating am algam ators

We now consider how the above algorithm enables us to  enumerate amal
gamators of a tiling T. More particularly, we can derive from the lists of 
molecules generated above all affine amalgamators of T , where an affine 

amalgamator a  of a translational tiling T  is an amalgamator such th a t a (T ) 
is also translational.

We will say tha t two amalgamators o iT  are equivalent if there is a 
symmetry 7  G S (T ) with =  7 - 107 .

We have already noted tha t the tiles of T  lie on a lattice with origin to, 
generated by two vectors, which we have taken as our basis. Suppose now
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tha t mo is a molecule, generated by the effective p i subgroup H  of S (T ), 
which generates an amalgamation of T  which is isomorphic to T.

Now, mo contains to, by construction. The images of to under H , in 
other words the orbit of H  containing to, also lie on a lattice with origin 

to, generated by the vectors f i , f 2 , the columns of the normal m atrix A { H )  
of H.  For the moment, identify a molecule of the amalgamation by the co
ordinate of the (unique) image of to which it contains. Then we can define 
a map from T  to its amalgamation by

(  2/ )  ^  + y f2 .

This map is an isomorphism, and hence is an amalgamator a.

Now let M(mo) be the m atrix whose columns are the position vectors 
of the constituent atomic tiles of mo. Then a  is precisely the map

P  ^  M(mo) +  A { H ) P

for any integer column vector P , representing a tile of t.
Notice also tha t if X  is any integer column vector, and [X] is the 2 X 5  

m atrix ( X .. .X ), then

P  ^  M(mo) +  [X] -f A { H ) P

is also an amalgamator. Furthermore, any afline amalgamator of T  arises 
this way. Hence the algorithm above gives us a way of generating, for each 
aperture 5, a finite set M  of m atrix pairs (M , A ) such that

= {(M + [X], A) : (M , A) G AT, X G Z^}

represents the set of all affine amalgamators of T  of aperture 5 .

It remains now to act on S  with S (T ), to produce one member of each 
equivalence class of amalgamators.

Any symmetry 7  G E(T) can be represented by a pair (S, Z), where S 
is an integer matrix representing a rotation or reflection and Z is an integer 
column vector representing a translation (since we are assuming tha t T  is 
one of the Laves nets [4 ]̂ or [3®], E(T) contains no glide reflections).
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Now, suppose tha t P  is an integer column vector representing the atom 

p, and tha t (M , A ) G S.  Then 7 “ ^(p) is represented by the column vector 
S~^P  — S “ ^Z. The molecule is represented by the m atrix

A [ S - i p - S - i Z ]  +  M

and thus jct'y~^{p) by the m atrix

5A [5“ i p  -  S-'^Z] +  5M  +  [Z]

= SAS-^[P] + ( S M- h  ( S A S - ^  -  I)[Z]).

It follows tha t the m atrix pair representing 7 0 7 “  ̂ is

(SM  +  (S A S - i -  I)[Z], S A S -l)

So the set of equivalence classes of amalgamators is given by:

.  { { , S M  +  ( S A S - .  -  D I Z l ,
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Chapter 6

Classification o f am algam ators by 
sequence

In this chapter we define various numerical sequences which could be used to 
classify amalgamators and the resulting tiling hierarchies, summarise what 
is know so far about their behaviour, and indicate possible directions for 
further investigation.

6.1 Tiling Hierarchies

In chapter 2 we introduced the concept of an amalgamation of a tiling T, 
and defined the concept of a tiling hierarchy arising from an amalgamator
a. We also defined the groups H{T, a ) ,  and S (T ,a ) , consisting of those au

tomorphisms and symmetries respectively of T  which act as automorphisms 
and symmetries of a (T ).

Suppose now tha t T  is a tiling, and a  is an amalgamator on T.  Then 
T { T , a )  is the tiling hierarchy generated by T  and a; i.e. the sequence of 
tilings {T, a ( r ) , a ^ ( r ) , ...} . We refer to T  as the base level tiling, and to 
a^{T)  as the level tiling.

D efin itio n  6.1  I f T { T , a )  is a tiling hierarchy, let j  and k  be integers with 

0  <  j  <  k  and let (j) be an automorphism o f ol̂ { T ) .  The tiles o f a^ (T)  are 
molecules o f oc^{T), and so we can consider the restriction of(f> to this tiling, 

which we will denote This is an isomorphism from  a^{T)  to
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some tiling S  which is an amalgamation o f aP{T) (and hence o fT  itself).

I f  it is actually the case that S  =  so that (f>\}. is an automorphism
of ct^(T), then (f is said to act at level k.

Conversely, i f  *0 is an automorphism o f ol̂ {T),  and also ^  =  (f>\k for  
some automorphism <j) o f ol̂ {T),  then *0 is said to extend to  level j .

I f  L is a subgroup o f A{a^{T))  each o f whose elements acts at level k, 
then we denote the corresponding subgroup o f A{a^{T))  by L\k.

R e m a rk  6 .2  I f  T {T , a ) ,  j,k,(/> are as above then, since a.^ o a~^ is the 

identity automorphism on a^{T),  (j>o o a~^ is well-defined and equal to

D efin itio n  6.3 A n automorphism of a^[T)  which extends to each o f the 
lower levels is said to be an hierarchical automorphism.

Similarly, a symmetry o f a^{T)  which extends to each o f the lower levels 
is said to be an hierarchical symmetry.

We denote the hierarchical automorphism and symmetry groups of a^(T)  

by Hk(T,a)  and Sfc(T,a) respectively (we may shorten these to Hk,  E t 
where no confusion can be caused).

D efin itio n  6.4 The k^^ level tiling o f a tiling hierarchy T { T , a )  is said 

to be hierarchically transitive /respectzvc/y hierarchically isohedral/  i f  Hk 
(respectively Hk) o.cts transitively on the level tiling.

If a group acts transitively on the tiles of a tiling, then the tiling must 
be isohedral, and the action of the group must be equivalent to the action 

of one of the 93 IH types. If we adopt the convention tha t the IH type of a 

group which is not transitive is 0 , then we can make the following definitions.

D efin itio n  6.5 The numeral corresponding to the IH  type equivalent to the 

action o f Hk (respectively Hk) is called the hierarchical algebraic type /re- 

hierarchical isohedral type/ of a^{T),  denoted by hk (respectively

O k ) -

The simple isohedral type o f a^(T)  is its isohedral type considered with
out reference to the lower level tilings; it is denoted Sk.
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D efin itio n  6 .6  For a given tiling hierarchy T [ T , a )  we define the following 
three sequences: the hierarchical algebraic sequence

h(fT, a )  =  {ho, h i, hg ,..

the hierarchical isohedral sequence

d (T ,a )  =  {<7o,tri,a2,...};

and the simple isohedral sequence

s ( r , 0:) =  {so, 51,52,. .

D efin itio n  6.7 Given two non-zero IH  types n, m  we say that n  dominates 
m , and write n y  m  i f  a group whose action is o f type n contains a subgroup 

whose action is o f type m. We also adopt the convention that 0  :< n  Vn, 0 < 
n < 93.

R e m a rk  6 .8  The arrangement o f the 93 IH  types has the consequence that

n y  m  n > m.

6.2 Properties o f th e sequences

We firstly summarise the results presented in [11].

T h e o re m  6.9 1 . h(T, a )  is determined by the isomorphism class o f T{T ,  a).

2 . a{T ,a)  is determined by the isomerism class o f T { T , a ) .

T h e o re m  6 .10  1 . d is dominated by both h and s.

2 . I f  T  is maximally symmetric then cr = h.

T h e o re m  6.11

ho y  hi y  h 2 y  h^ 

hk = hs Vh > 3
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This last theorem implies tha t the hierarchical algebraic sequence settles 

down very quickly. The same is not true of the two isohedral sequences: 
indeed the existence of spurious symmetries implies tha t the simple isohe
dral sequence is not necessarily determined by the isomerism class of the

hierarchy, but may depend on particular geometric properties of the base 
tiles, such as the relative lengths of their sides.

It is, however, possible to determine the ultim ate behaviour of the hier
archical algebraic sequence: we have the following theorem.

T h e o re m  6 .12  For any tiling hierarchy T { T , a )  the hierarchical isohedral 
sequence à ( T , a )  is eventually either constant or periodic.

P ro o f. Firstly we define the groups R i , L i  as follows:

Ri  = {(f> £ A{T)  : a(f) = if)a for some Tp G A{T)}

L i = {'ip £ A{T)  : a(p =  -ipa for some (p G A(T)}.

We can define an isomorphism A : P i —> Li as follows:

(p ^  "ip a<p =  'ipa.

Lemmas 1 and 2 of [11] state tha t Lk is the group of automorphisms of T  
which act at all levels up to and including k, and tha t

Lk\k = Hk = a^RkoT^

from which is follows tha t the action of Rk on T  is of the same IH type as 
the action of Hk on a^(T).

Now, for any positive integer k, we denote the domain of A* by Rk,  and 

set Lk =  X^{Rk)‘ Finally, set R q = L q = A{T).
Assume tha t T{T,ct )  is actually hierarchically isohedral, so tha t

(Tfc > 0 Vfc > 0 .

Then it is certainly hierarchically transitive. It follows that

Rk = R 3  VA: > 3.
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Let k > 3. Now, from Lemma 1 of [11], we know th a t Lk is the group 

of automorphisms of T tha t act at all levels up to and including level k, 

so th a t Lk\k is simply Hk, the hierarchical automorphism group of a^{T).  
Furthermore, Lk H H(T)  is the group of symmetries of T tha t act at all levels 
up to  and including level k,  so tha t

the hierarchical symmetry group of a*(T).
Thus, Hk is a subgroup of L*.. Since, for the moment, we are assuming 

tha t Hk is transitive on o:^(T), the index of Hk in Lk must divide the order 

of the stabiliser in Lk of a tile, which means it must be 1,2,3,4,6,8 or 12. 
It follows tha t there only are finitely many possibilities for Hk, for each k. 

Now, Hk = A“ *(Sfc) is a subgroup of Rk,  which (from above) is equal to  P 3. 
Hence there are only a finite number of possibilities for Hk for all k >  3.

Now it follows tha t for some A; > 3 and / > 1 we have Ê* =  Hk+i- By 
considering the hierarchies T { T , a )  and T{a^{T) ,a)  it is easy to  see tha t 
Hk+i — Hk+i+i, and so we get periodicity.

Now consider the case when tjp =  0 for some value of p. Either Ok = 
0 VA: > p, in which case d  is eventually constant, or there is an integer q 
such tha t (Tq =  0 , but cTq+j > 0 . W ithout loss of generality, we can assume 
th a t g > 2 , so tha t, as above, there are only a finite number of possibilities 

for Sq+i. If d is not eventually zero, then we must have k , l  such tha t 

Hk =  Êfc+/, and periodicity follows as above. □.

6.3 Enum eration o f sequences

Since the hierarchical algebraic and isohedral sequences of a tiling hierarchy 
are determined by, respectively, the isomorphism and isomerism classes of 
th a t hierarchy, theoretical results about the behaviour of these sequences 
would be of value in obtaining enumerative results about tiling hierarchies. 

There is still a long way to go in this field, in particular in trying to  get 

some hold on the behaviour of the simple isohedral sequence. We finish this
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chapter with two results from [11] which give specific results about possible 

values of h (which, since it is completely determined by its first four values, 
is probably the most tractable of the three sequences to  deal with).

T h e o re m  6.13 I f  T  is a tiling such that A{T)  is o f type 2 1 , 26, 76, 7 7 , 
82, or 93, then there is a strict amalgamator a  on T  such that every term  

o f h{T,ot) is equal to ho{T,a) .  This is not the case i f  A{T)  is o f type 2 0 , 
29, 32, 37 or 4 0 . Indeed, i f  A{T)  is o f type 4 0 , then T  posesses no strict 

amalgamators. (These IH  types are in fact the IH  types o f the Laves nets, 
i.e. the maximally symmetric types o f the eleven topological types.)

This theorem is proved using argument similar to those in chapter 4.

T h e o re m  6.14 There exist tiling hierarchies with the following hierarchical 
algebraic sequences:

1. { 20, 11, 11, 11, . . . }

2. {20 ,17 ,17 ,17 ,...}

3. {20 ,18,18,18,...}

.^ .{29 ,27 ,27 ,27 ,...}

5. {29 ,28,28,28,...}

6 . {32 ,30,30,30,...}

7. {32 ,31,31,31,...}

8 . {37 ,34,34,34,...}

There do not exist tiling hierarchies with the following hierarchical 
algebraic sequences:

9. {20 ,19,19,19,...}

10. {37 ,35,35,35,...}

11. {37 ,36 ,36 ,36 ,...}

The results establishes “the best we can do” in the way o f preserving 
symmetry i f  A{T)  is o f type 2 0 , 29, 32 or 37.
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A ppendix A

A table of the 93 marked isohedral tilings

The classification is tha t given in [5].

For each isohedral type, the incidence symbol, symmetry group and tile 
stabiliser are given, together with a marked tiling of tha t type. The mark 
chosen is based on an asymmetric L, such tha t the short edge of the L always 
lies along the edge which corresponds to the letter a in the tile symbol.

For types 20 , 21, 26, 29, 32, 37, 40, 76, 77, 82 and 93 which include the 
apropriate Laves tiling, no markings have been given.

The following isohedral types have no unmarked representations: 19, 35, 
48, 60, 63, 65, 70, 75, 80, 87, 89, 92.
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P3D

P4-

o(1

loo



•fopolcjg'tctx-l . A’

XH
■bpe inci demce.

p31rvt 1 L \ r  j \  'y ^L V
1 \  Y

L \ /
)a -b -c t+ c 4 ] / / V . r/  J

r A  
L /  A

e. \ j A I \  Y l  1
L V I 1L \ /

X .. . . . r A r A
L /

/ " T  A /

pC

3>a.
JiOfw.

c i 1

IO»



-fopolcg*»cot^ . 6 . 3 .  £ j

X H
type incidence. m̂<ncJ-0) r̂oû  
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L a -C » ]
P33

n [a+b+c+.^ a" t"c“3

6+a"^c;+l

ia.(



- f o p o l C 0 »Oo<-t '  C ^ 3

Xf«
•bps incielence. .̂ rv>ia«s-< C^oLtlliacf

gm [*»&+*+ , W -]
pSf m,

<3

*̂ 0

p<o

/ \ / \ /

[ a i  + b - ; a r ]

C*VMVl

(JLl

I CUL



-fopotogicoU  ̂ ]
XH
•bpc in c i olcr>c.e.

cJ-oiji l /s e -r - nncxrke<Q

p6iw

Cf 2 a Cl a  3

fCr^

dZ

t r 3



A ppendix B

Source code for am algam ation generating  
program

This appendix contains the Pascal source code for the computer program 
used in chapter 5 for generating strongly isohedral amalgamations of trans
lational tilings.
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(* <R.WINGATE>M0LGN4 .PAS.4, 27-F*b-87 14:59:41, Edit by R.WINGATE *) 
PROGRAM Bolgen(output);

(* This program generates, for each translational subgroup •)
(* of index s of the overall symme.try group, all molecules *)
(* whose amalgamited structure is isomorphic to the original. *)

CONST
s *  8; (* index of subgroup *}
offset ■ 16; (* 2 * s :  to make all indices positive *)
arraysise ■ 33; (* 4 * s + 1 *)
valency ■ 4; (* i.e. number of adjacency vectors *)

TYPE
orbnum ■ 0..63; (* to save space *)
window m ARRAY[0..arraysise,0..arraysise1 OF orbnum; 
tile m ARRAY(l..2J OF 0 . .arraysise; 
vector » ARRAYC1..21 OF integer; 
link » "molecule;
tileset « ARRAY[1..s ) OF tile; (* i.e. a molecule *) 
molecule ■> RECORD

next : link; 
data : tileset;

END;
vecs ■ ARRAY[1..6,1..2) OF integer;

VAR
points : window; (* we record the orbits here *) 
n,p,q,t : integer; 
top,middle,rear : link;
i,j : integer; (♦ loop variables if necessary *) 
adjvec : vecs; (* adjacency vectors *)

PROCEDURE teroarray(VAR points : window);
(* zeros the array *)
VAR
x,y : integer;

BEGIN (* zeroarray *)
FOR x:»0 TO 4*5+1 DO

FOR y:»0 TO 4*s+l DO points[x,y]:*0 
END; (* zeroarray *)

PROCEDURE zero__orbit(p,q,t : integer;
VAR points : window);

(* calculates the zero orbit of the subgroup determined by *)
(* p,q,t by determining images of the origin under elements *)
(* of the subgroup. *)
VAR
x»y»xl/yl,*li*,ylio : integer;

BEGIN (* zero_orbit *) 
xlim := 2*s; 
ylim := 2*s;
FOR x := -xlim TO xlim DO

FOR y := -ylim TO ylim DO

y "



BEGIN
xl p*x + t*y; 
yl :■ q*y;IP (abs(xl) <■ offset) AND (abs(yl) <- offset)
THEN points{xl+offset,yl+offset1 :»l;

END; (* for •)
END; (* zero orbit *)

PROCEDURE nextpoint(VAR x,y : integer);
{* Subroutine used by otherorbits to cycle through points •)

BEGIN (* nextpoint *)
y y  + 1;
IP y>s THEN 

BEGIN
y ;■ 0;
X :■ x+1;

END (* if *)
END; (* nextpoint •)

PROCEDURE otherorbits(VAR points : window);
(* Determines the other orbits ( I . . . S - 1 ,  labelled 2..s) #s *)
(* follows; find a point hear the origin that isn't in an *)
(* orbit we have already determined - so it must be in *)
(* another orbit. Now we can determine the displacement *)
(* between this new orbit and the zero orbit, and so we can *)
(* determine as much of the new one as we need. •)

VAR
x,y,xl,yl,orbit : integer;

BEGIN (* otherorbits *) 
orbit := I;
X :» 0; 
y := 0;
WHILE orbit < s DO

BEGIN . ^ ,WHILE points Ix+offset,y+offset1 > 0 DO nextpoint(x,y); 
orbit := orbit + 1;
FOR xl := -offset TO offset DO

FOR yl := -offset TO offset DO
IF points[xl+offset,yl+offset] = 1 THEN

IF (abs(xl + X) <= offset) AND (abs(yl + y) <» offset) 
THEN points[xl+x+offset,yl+y+offset] := orbit

END; (* while *)
END; (* otherorbits *)

PROCEDURE printorbits(points : window);
(* prints out the orbits. •)

VAR
integer ;

BEGIN (* printorbits •) 
writeln;
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writeln('Orbits...'); 
writeln;
FOR y:« offset DOWNTO 0 DO 

BEGIN
FOR x;» -offset TO -1 DO

write( points[x+offset,y+offset] : 3 ); 
write(' I');
FOR x:> 0 TO offset DO

write( points[x+offset,y+offset1 : 3 ); 
writeln 

END; (* for *)
FOR i:=-3*offset TO 3*(offset+2) DO write('-'); 
writeln;
FOR y:» -1 DOWNTO -offset DO 

BEGIN
FOR x;« -offset TO -1 DO

write( points[x+offset,y+offset] : 3 ); 
write(' I');
FOR x :b 0 TO offset DO

write* points Ix+offset,y+offset] ; 3 ); 
writeln 

END; (* for *) 
writeln 

END; (• printorbits *)
PROCEDURE nextnorm(index ; integer;

VAR p,q,t : integer);
(• Determines the 'next' normal matrix after [pt/Oq], or *) 
(* sets p=q=0 if there are no more.
BEGIN (* nextnorm *)
IF t < p-1 THEN 

t := t + 1
ELSE

IF p < index THEN 
BEGIN

REPEAT
p:= p + 1 

UNTIL index MOD p = 0; 
q := index DIV p ; 
t :» 0

ELSE
END
BEGIN

P := 0; 
q := 0; 
t := 0;

END; (* ELSE *)
END; (* nextnorm *)

FUNCTION lessthan(a,b : tileset) : boolean;
(* Provides a total ordering of molecules (lexicographical) *)
VAR
flag,done : boolean; 
i,j : integer;

asm



BEGIN
flag false; 
done :B false;
FOR i:«l TO 8 DO

for j:«l to 2 DO
IF (NOT done) THEN

IF atl, jJObli, jl THEN 
BEGIN

done:"true; 
flag:Ba[1,j]<b[i, j ] ;

END;
Ies8than:>flag;

END;

FUNCTION equal(a,b ; tileset) : boolean;
(* true if molecules a,b, are equal *)

VAR
i,j ; integer; 
flag : boolean;

BEGIN
flag :« true;
FOR i:"1 TO 8 DO FOR j:«l TO 2 DO

IF a(i, jIob[i, jl THEN flag;»FALSE; 
equal ;■ flag;

END;

PROCEDURE findstruct(mol : tileset;
VAR count ; integer;
VAR vectors ; vecs);

(* Determines the structure which the molecule mol has when *)
(* tessellated as follows: ma)ce a copy of 'points' and set *)
(* those entries corresponding to mol to zero. Now use the *)
(* adjacency vectors of the underlying grid to find point *)
(* adjacent to the molecule: when we find one whose entry is *)
(* still non-zero we Jcnow that we have found an atom in a *)
(* molecule adjacent to mol. Since we can find which orbit *)
(* this molecule is in we can go on to determine the whole *)
(* molecule and 'blank it out'. *)

VAR
atoms : window;
i,j,k : integer;
newtile : tile;
orb : orbnum;

BEGIN
atoms := points; 
count := 0;
FOR i := 1 TO s  DO atoms(mol[i,ll,mol(i,211 :=0;
FOR i:=1 TO valency DO 

FOR j:=1 TO s DO 
BEGIN

newtile[1]:=mol[j,I]+adjvec{i ,11 ; 
newtilei21:=mol(j,21+adjvecti,21 ; 
orb : ssatoas ( newtile [ 11 ,newtile [ 2 11 ;
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IF o r b o O  THEN 
BEGIN

count:>count+I;
vectors[count,11:»newtile[Il-»ol ( orb,11; 
vectors[count,2]:"newtile[2 j-mol(orb,2 j; 
FOR k:>l TO s DO

etoBs[Bol[k,l1+vectors[count,!],
Bol[k,21+vectors[count,211:«0;

END;
END;

END;

PROCEDURE printlist;
(* prints those molecules with correct emalgamted structure *)

VAR 
p : link;
currmol : tileset; 
i,count,adjno ; integer; 
vectors : vecs;

BEGIN
writeln;
writeIn('Molecules....'); 
writeln; 
p ;» top; 
count :» 0;
WHILE p<> NIL DO 

BEGIN
currmol  :> p " . data ; 
f i n d s t r u c t ( cu r r m o l , a d j n o , v e c t o r s ) ; 
IF ad jno Bva le nc y  THEN 

BEGIN
co unt:= count + 1;
FOR i :=1 TO s DO 

BEGIN
write('(',currmol(i ,11-of(set : 1

',currmol[i,21-offset ; 1,') ');
IF i O S  THEN

write(' ; ')
ELSE

writeln
END;

[write('. a . V. ' ' s : ' ) ; 
f o r  i : = 1  t o  va le nc y  do 
be g in
w r i t e ( ' ( ' , v e c t o r s [ i ,11 : 1,  
' ,  ' , v e c t o r s [ i , 2 1  : 1 , ' )  ' ) ;  
i f  i o v a l e n c y  then w r i t e  ( ' ; 
end; }

END; 
p := p " . n e x t ;

END;
w r i t e l n ;
w r i t e l n ( co u n t  : I , '  m o le c u l es  c o u n t e d ' ) ;  
w r i t e l n ;

END;

) else writeln;
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PROCEDURE Initlist;
(* initialises the list of molecules *)

VAR
i : integer; 
p : link;

BEGIN 
new(p); 
top ;» p; 
middle :> NIL; 
rear :» NIL;
top".data[1,11 :« offset; 
top".data(1,2] ;« offset;
FOR i:«2 TO s DO 

BEGIN
top".data(i,l] :■ 0; 
top".dataIi,2 I ;■ 0;

END;
top".next :■ NIL;

END;
PROCEDURE addlist(nevnol : tileset);

(* Puts newBol in its place *)
VAR
place,p ; link ; 
i : integer; 
placed : boolean;

BEGIN
p := middle ; 
placed := false;
IF p=NIL THEN 

BEGIN
new(p);
p".data := newmol; 
p".next := NIL; 
middle := p; 
rear :=p; 
placed:=>true;

END;
IF (NOT placed) AND lessthan(newmol,p " .data) THEN 

BEGIN
place:=p; 
new(p );
p".data := newmol; 
p".next := middle; 
middle :=p; 
placed :» true;

END;
IF (NOT placed) AND equal(newmol,p".data) THEN 

placed:=true;
WHILE NOT placed DO 

BEGIN
IF p".next=NIL THEN 

BEGIN



place :» p; 
new(p);
p".data newmol; 
p".next :■ NIL; 
place*.next ;« p; 
rear :« p; 
placed :■ true 

END (* If *)
ELSE

IP lessthan(p*.next*.data,newmol) THEN 
p : " P * .next

ELSE
BEGIN

IP NOT equal(newmol, p".next*.data) THEN 
BEGIN

place:"p; 
new(p);
p*.data :■ newmol; 
p*.next :■ place*.next; 
place*.next :■ p;

END; (* if *) 
placed :■ true;

END; (• else *)
END; (* while *)

END;
PROCEDURE expand; (* expand mol. at top *)

(* 'Expands' the molecule at the top of the list: i.e. finds *)
(* all molecules with one more tile in them which can be *)
(* obtained by sticking one more tile on to the existing *)
(* molecule. Cf. findstruct for method. *)
VAR
currmol.newmol : tileset; 
i,j,k : integer; 
scratch : link; 
neworb : orbnum; 
newtile : tile;

BEGIN
scratch := top; 
currmol := top*.data ;
top := top*.next; (* take next mol. from list *) 
dispose(scratch); (* free list entry *)
FOR i := 1 TO s DO

FOR j:= 1 TO valency DO 
BEGIN

IF (currmol(i,ll<>0) AND (currmolIi,2J<>0) THEN 
BEGIN

newtile[l] := currmolIi,1]+adjvec(j ,1J; 
newtile i 2 j := currmol(i ,2J+adjvecIj,2J; 
neworb := points(newtile[11,newtile{2]];
IF (currmol[neworb,1]=0) AND (currmol[neworb,2]sO) 
THEN

BEGIN
FOR k:=l TO s DO

IF kaneworb THEN
newmol[k]:«newtile

ELSE
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ntwBoI(k]:«currBol[k];
(* newmol now contains data to be added: 
now we scan the list
for the correct place to put it *)

addlist(newmol) ;
END;

END;
END;

END;

PROCEDURE checkdups(p : link);
(* Determines the translates of the molecule pointed to by p *)
(* and removes them from the list. *)
VAR
cur rent,translate : tileset; 
displacement : vector; 
ttile : tile; 
q,r : link; 
i,j : integer;

BEGIN 
current:=p*.data;
FOR i:»2 TO 8 DO 

BEGIN
d i s p l a c e m e n t {11 :« c u r r e n t ( 1 , 1 J - c u r r e n t [ i  , 1] ; 
d i s p l a c e m e n t ( 2 J : «cur r e n t ( 1 , 2 ( - c u r r e n t ( i ,2 j ;
FOR j;«l TO s DO 

BEGIN
ttile(1]:«cur rent(j ,11+displacement(1J; 
ttile[21 :«current(j ,2 j+displacement{2 j; 
translate(points(ttile(l],ttile(2]]j:«ttile;

END;
q:=p;
WHILE NOT equal(translate, q*.next*.data) DO q:=q*.next; 
r:=q*.next;
q*.next;«q*.next *.next;
dispose(r);

END;
END;

PROCEDURE duplicates;

(* eliminates translational equivalents. *)

VAR
p:link;

BEGIN
p:=top;
REPEAT

BEGIN
checkdups(p); 
p;=p *.next

END
UNTIL p=NIL;

END;
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BEGIN (* testit *)
adjvec[l,l] - 1 ;
adjvec[l,2] » 0 ;
adjveci 2,1J « 0 ;
adjvec{2,2] - 1;
adjveci 3,1j » -1
adjveci3,2] - 0;
adjveci<,lj » 0 ;
adjveci4,2I ■ -1 ;
p :« 1 ; 
q :■ s; 
t : » 0 ;
WHILE p <> 0 DO 
BEGIN

zeroarray(points); 
zero_orbit(p,q,t.points); 
otheForbits(points) ; 
writeln;
writeln('Subgroup H, A(H) = ( ' » P  : 3,t 
writeln( ' ( ' , 0 : 3 ,q
printorbits(points); 
initlist;
FOR n:=l TO s-1 DO 

BEGIN
WHILE topONIL DO expand;
top:=middle;
middle :«NIL;
rear:=NIL;

END; 
duplicates; 
printlist; 
nextnor«(s,p,q,t)

END; (* while *)
END.
(* testit *)
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) ; 
) ;


