
Open Research Online
The Open University’s repository of research publications
and other research outputs

Process modelling for information system description
Thesis
How to cite:

Stanczyk, Stefan K (1987). Process modelling for information system description. PhD thesis. The Open
University.

For guidance on citations see FAQs.

c© 1987 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

CDX 1 5 = 1 6 3 / 8 7

UNR£5TR!CT£D

P r o c e s s M o d e l l i n g f o r
I n f o r m a t i o n S y s t e m D e s c r i p t i o n

S t e f a n K. S t a n c z y k

Computing Discipline, Faculty of Mathematics
The Open University

Thesis submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer Science

Of SMbmission.-- AprM
D a te o f avm b: 15 owm \%7

Milton Keynes, April 1987

ProQ uest Number: 27775853

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

in the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 27775853

Published by ProQuest LLC (2020). Copyright of the Dissertation is held by the Author.

Ail Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106 - 1346

TO MY PARENTS

/ anTgreatly indebted to my supervisor, Dr Richard Maddison, for his
continous encouragement and support, and for the constructive criticism he
has provided over the last three years. I take it as a rare privilege to have been
directed by a scientist who has shared so much of his time and his knowledge.

I should like to express my sincere thanks to The Open University for the
research grant. I thank the Dean and the Members of the Mathematics Faculty
fo r the excellent working environment and stimulating atmosphere. In
particular, the seminars o f the Information Systems Research Group and
other, less formal meetings provided an excellent form o f learning and
broadening my experience. Mike Newton and Hugh Robinson were always
ready to provide guidance and to give o f their time to numerous discussions.

My deepest thanks to Urszula and Piotr who have always been understanding
and encouraging despite my rather late working hours.

ABSTRACT

My previous experiences and some preliminary studies of the relevant technical literature allowed me
to identify several reasons for which the current state of the database theory seemed unsatisfactory and
required further research. These reasons included: insufficient formalism of data semantics,
misinterpretation of NULL values, inconsistencies in the concept of the universal relation, certain
ambiguities in domain definition, and inadequate representation of facts and constraints.

The commonly accepted ’sequentiality’ principle in most of the current system design methodologies
imposes strong restrictions on the processes that a target system is composed of. They must be
algorithmic and must not be interrupted during execution; neither may they have any parallel
subprocesses as their own components. This principle-can no longer be considered acceptable. In very
many existing systems multiple processors perform many concurrent actions that can interact with
each other.

The overconcentration on data models is another disadvantage of the majority of system design
methods. Many techniques pay little (or no) attention to process definition. They assume that the
model of the Real World consists only of data elements and relationships among them. However, the
way the processes are related to each other (in terms of precedence relation) may have considerable
impact on the data model.

It has been assumed that the Real World is discretisable, i.e. it may be modelled by a structure of
objects. The word object is to be interpreted in a wide sense so it can mean anything within the
boundaries of this part of the Real World that is to be represented in the target system. An object
may then denote a fact or a physical or abstract entity, or relationships between any of these, or
relationships between relationships, or even a still more complex structure.

The fundamental hypothesis was formulated stating the necessity of considering the three aspects of
modelling - syntax, semantics and behaviour, and these to be considered integrally.

A syntactic representation of an object within a target system is called a construct A construct which
cannot be decomposed further (either syntactically or semantically) is defined to be an atom. Any
construct is a result of the following production rules: construct ::= atom I function construct;
function ::= atom I construct. This syntax forms a sentential notation.

The sentential notation allows for extensive use of denotational semantics. The meaning of a
construct may be defined as a function mapping from a set of syntactic constructs to the appropriate
semantic domains; these in turn appear to be sets of functions since a construct may have a meaning
in more than one class of objects. Because of its functional form the meaning of a construct may be
derived from the meaning of its components.

The issue of system behaviour needed further investigation and a revision of the conventional model
of computing. The sequentiality principle has been rejected, concurrency being regarded as a natural
property of processes. A postulate has been formulated that any potential parallelism should be
constructively used for data^rocess design and that the process structure would affect the data model.
An important distinction has been made between a process declaration - considered as a form of data
or an abstraction of knowledge - and a process application that corresponds to a physical action
performed by a processor, according to a specific process declaration. In principle, a process may be
applied to any construct - including its own representation - and it is a matter of semantics to state
whether or not it is sensible to do so. The process application mechanism has been explained in
terms of formal systems theory by introducing an abstract machine with two input and two output
types of channels.

The system behaviour has been described by defining a process calculus. It is based on logical and
functional properties of a discrete time model and provides a means to handle expressions composed
of process-variables connected by logical functors. Basic terms of the calculus are: constructs and
operations (equivalence, approximation, precedence, incidence, free-parallelism, strict-parallelism).
Certain properties of these operations (e.g. associativity or transitivity) allow for handling large
expressions. Rules for decomposing/integrating process applications, analogous in some sense to
those forming the basis for suuctured programming, have been derived.

CONTENTS

1. INTRODUCTION 6
1.1 Motivation and overview
1.2 Outline of the thesis andelaimed contribution

2. OBJECTIVES 21

3. BASIC A s s u m p tio n s a n d d e f i n i t i o n s 23

4. M o d e l o f S e m a n tic s 26

5. M o d e l OF T im e 37

6. MORPHOLOGY OF P r o c e s s A p p l ic a t io n as

7. R e l a t i o n s OF P r e c e d e n c e 53

8. Pr o c e s s Ca l c u l u s 66

9. T h e I m p a c t OF P r o c e s s S t r u c t u r e o n d a t a M o d e l ?6

10 . C o n c lu s io n s ss

R e f e r e n c e s 9s

T a b l e OF S y m bo ls los

A p p e n d ix

1 I n t r o d u c t io n

1.1 Motivation and overview

The core activity in information system development is undoubtedly modelling

the relevant part of the 'Real World'. It is probably the most creative and

interesting of all the stages in the development life-cycle. The analyst has to

produce an image that encapsulates the relevant knowledge about the real

world in a form that can be understood in sevrai environments - human and

computer. The work should include appropriate business strategy and

planning: the information system objectives fitting those of the organisation.

Many factors consfrain such work. People must specialise and form teams.

Top managers cannot afford the time to fully think out and effectively

communicate strategy, plans and objectives for-every system in detail, never

mind doing the relevant modelling. Human, technical and economic factors

constrain and conflict. Environmental pressures, inadequate techniques, tools

and training, and limited human comprehension both complicate and

challenge. Moreover, the very creation of the model, which becomes a new

part of the real world, makes itself - as a model of a previous state - partially

obsolete.

7

In modelling, people aim to produce a suitable, correct, complete and

consistent representation of a 'Real World' - a designated part of the real

world. They need this representation in a manageable notation. The notation

should fulfil many criteria: communicating clearly, seeming simple, relevant

and useful; yet precise, processable and printable.

One can hardly express the entire complexity of the Real World even in a natural

language. But observations and intellectual speculations have to be so expressed.

Human thinking is a derivative of human language {94].

'Language is called the garment o f thought; however, it should rather be,

language is the flesh-garment, the body of thought' T. Carlyle, Sartar Resartus

Natural language, however, fails the criteria. While rich and contextual - suiting the

Real World - it allows ambiguity and inaccuracy. It cannot be subjected to rigid rules

of mechanistic logic. So the modelling language must itself have rules about

representations, resulting in restrictions being imposed on the models created.

The process of transformation from the informal thoughts, words and actions of the

Real World to a formal form with restricted representation may prevent accuracy and

completeness.

Other restrictions are introduced deliberately by designers. Being interested only in

certain aspects of the Real World in their models, they disregard aspects that seem

unnecessary for the target system objectives. Furthermore, human factors and

business strategy generalisations for future flexibility cannot normally be adequately

represented.

The most general technique commonly used for modelling may be considered as

some kind of discretization. In this approach a continuous Real World is replaced

8

by a number of distinguishable objects. Lost properties of the continuum are

modelled by associations (e.g. relationships) between the objects. This otherwise

sensible engineering approach has led to inappropriate apportionment of resources.

Some types of objects, especially data types, were analysed in considerable depth;

methods of data analysis have been extensively developed.

People believed that the distinct information types and their relationships were so

inherent in the nature of the organisation and its business that data models would

outlive not just day-to-day and yearly operations but also changes of strategy.

But other types of object, especially process types, received less study. While

attempts to develop suitable methods for process analysis and design on the basis of

data analysis and design have succeeded, the alternative approach has mainly been

disregarded or unsuccessful. Although process modelling, analysis and design by

structured decomposition is well understood, the technique has limited applicability -

i.e. to discrete, algorithmic, non-interrupted, single-processor situations

programmable using sequencing, selections and repetitions. In other situations

analysts and designers flounder unskilful, haphazardly hoping for ingenuity.

Three types of objects are commonly used in models:

- data - things to be processed
- processes - things performing actions on data, whose definition

specifies how to process data

- processors - things to carry processing.

Most models allow objects to belong to classes, for example similar object

occurrences belong to a named object type. But the modelling rules normally say that

each object and equivalently for brevity each object type is a member of only one of

the classes: data, process, processor. Thus normally performing a process on

another process or on a processor (as opposed to carried out by a processor) is not

allowed in such modelling. This seems widely accepted despite the obvious

advantages in compilers and interpreters, in such languages as LISP and PROLOG,

and in more classical domains such as mathematical functions.

The separate treatment of the above types stems from a hypothesis that most of the

current system design methods are based on. The hypothesis states that the effect of

process structure may be omitted for data design. In other words, it has been

believed that relationships between data and processes are more or less of the

first-order type and a final design of a system might be achieved by applying linear

superposition. This approach can only be justified in the context of another

(presently widely accepted) 'sequentiality' principle - restricting any process within

the target system to being algorithmic, not being interrupted during execution and

not having any parallel subprocesses as its own components. Whereas the

sequentiality constraint simplifies system design techniques, it can no longer be

considered acceptable. In the Real World many processes happen concurrently. In

contemporary systems multiple processors may perform many concurrent actions

that can interact with each other. These facts should be both anticipated and used to

design the elements of the target system, allowing for their better cooperation.

Also, even in systems with a single processor, the structure and sequencing of

processes need not be the same as their Real-World equivalents. For example an

insurance company's computer system model should allow receipt of and initial

partial processing of a claim before the completion of the process of policy renewal

and premium payment clearance through banks, and generally wherever the

computer sequence may differ from the Real World sequence.

Despite the fact that data analysis techniques are well established and much research

effort has been undertaken to develop them, they still show a number of

weaknesses. Even the most mathematically sound normalisation and relational

approach does not seem to be fully satisfactory.

The insufficient formalism of data semantics is quite commonly recognised but there

10

are four other problems worth mentioning.

The first one, over-abstraction resulted from a simplistic use of the Universal

Relation concept and too mechanical application of a normalization procedure. All

the required attributes are just grouped into one relation with no regard as to their

meaning or proper domain definition. Mechanically applied normalization may

produce a number of formally correct relations that are then identified with -entity

types. The point is that these "entities" do not necessarily represent objects from the

-RoaL World. They may not possess certain properties required by the relation

structure. Hence NULL-values may be needed or some properties which their real

world equivalents do possess may not be recordable in that relation. In other words,

the relation contains separate groups of tuples, with each group representing some

object type. The objects differ from each other despite certain similarities.

IOBJECT-TYPE 1P

IOBJECT - n

lijjOBJECT-TYPE 2 1

OVER-ABSTRACT ION UNDER-ABSTRACT ION

Fig. 1.1

Consider for example a relation that describes bridges. Naturally, some attributes

(e.g. length, width, number of spans, capacity) are common for all types of bridges.

However, there are attributes applicable only to a particular types as all other types

do not have the relevant properties (e.g. cable characteristics apply only to the

11

suspended structures). A relation that contains all of these attributes would be an

over-abstraction, that is, it would be an attempt to represent all types by a single

entity.

The second problem may be called under-abstraction and so far as a single

processor environment is concerned it does not normally cause any further trouble.

The problem originates from normalization not being powerful enough to represent

and act on facts such as that two separate entity types R'(Id,X) and R”(Id,Y) are

being represented in one relation R(Id,X,Y) since neither of the functional

dependencies X—>Y and Y—>X hold in R. Consider for instance a relation:

Road_Section (Section-name, Administrative-parameters, Traffic-density).

This relation represents two different objects, namely organizational responsibility

for maintaining a number of road sections and a traffic space. Such situations are

semantically undesirable and may cause delays in processing retrievals and

maintenance routines.

Thirdly, an over-categorization may occur. This, in some sense, is a problem

complementary to those already mentioned. It stems again from too general

assumptions made at the meta-level and coiresponds to the well-known problem of

'false implication'in Artificial Intelligence:

X has_property Y :: x e X -> x has_property Y
birds fly :: penguin is_a bird -> penguin flies

The clue here lies, of course, in the fact that the statement 'X has_property Y' is not

always true. Actually, some elements x belonging to the category X do not have

such property, but this peculiarity has been conveniently omitted for the sake of

generality. It does not necessarily means that such modelling is erroneous as this

kind of speculation may very often be justified as being helpful in most cases. For

example a function may be called peculiar at a certain point, meaning that at that

12

point the function does not have some property otherwise considered general.

The usual technique of resolving this semantically undesirable situation is to

decompose X into two sub-categories X' and X", where:

X' = { x' : x' has_a_property Y}

X" = { x" : x" has_a_property ~Y}

Y is the complement of ~Y,

X' u X" = X, X' r> X" = 0

Sensible as it appears to be, continuous decomposition may lead to a combinatorial

explosion of categories, e.g. FLYING_BIRDS and NON-FLYING__BIRDS, each

of them being either S WIMMING_BIRDS or NON-SWIMMING__BIRDS, each of

them being either CARNIVORES or NON-CARNIVORES, and so on. The real

world does not have an inherent structure that implies the coirect hierarchy or other

smicture.

A fourth problem, infra-abstraction, arises from the rather serious criticism that the

relational notation cannot express certain types of facts and constraints. In particular,

relationships amongst elements coming from various (meta)levels of abstraction

cannot be expressed at all.

13

1.2 Outline of the thesis and claimed contribution

This thesis consists of ten chapters followed by the list of references and a table of

symbols used throughout this present work.

Chapter 2 introduces the 'integrality' hypothesis stating that an integral treatment of

the three aspects (i.e. syntax, semantics and behaviour) is needed in order to

describe an information system fully. The objectives of the research then follow.

Chapter 3 introduces the sentential notation - a simple structured language.

Linguistic expressions over this language are called constructs. They are meant to

represent objects from the Real World. Every relevant distinguishable part of the

Real World is said to be an object. Therefore facts, entities, relationships, rela

tionships between relationships, processes, boundaries and the like are all objects.

Correspondingly, the constructs are made uniform to the extent that their actual form

depends neither on their meaning nor on their behaviour. Moreover, it is tacitly

assumed that every object is representable as a process. Every construct not actually

acting (or being acted upon) is then a declaration (i.e. a static description of a

collection of properties), whereas every action performed in the system is a process

application. The properties of these actions are investigated in the subsequent

chapters without referring to the physical realisation (electronic, mechanical or

human) of processors.

The main purpose of introducing sentential notation was to devise a flexible device

for describing the Real World - a device close enough to a natural language but

without its disadvantages such as ambiguity and inaccuracy. Note that the sentential

notation can be seen as some sort of generalisation of the binary relation model

introduced by Abrial - but with a much more relaxed structure. Similar approaches

may be observed in Deep Structure Elementary Sentences or in Triple-Based Stores.

14

Abrial [1] assumes a basic structure composed of categories (such as PERSON) and

bi-directional access functions (e.g. IS-OF-SEX) that define links between pairs of

objects belonging to these categories. A hierarchy of structures can be built up

whenever more than two objects are to be associated. To complete the model, five

basic operations are introduced {update, erase,fecognize, access, test). Semantics

of data is carried by retrieval programs, i.e. programs that represent questions to the

data model.

The4erm Triple-Based Stores {60] refers to a model of data for the storage of triples

of the form: <object predicate object> together with three basic operations insert,

delete and retrieve. It is an extension of the binary relationship model to include a

number of entities and relationships with predefined semantics (e.g. IS-A

relationship). Classes and relationships are viewed as entities at the meta-level. At

the top of the hierarchy is the most general class called thing; other classes with

predefined semantics are lower down with user defined classes lower still. Property

inheritance from class to subclass and inference and constraint rules {expressed in

clausal form) support semantics of data.

Nijssen [63] introduces a concept of Deep Structure Elementary Sentence as a

predicate {e.g.WORKS-FOR) with an ordered set of tuples each consisting of: the

kind of thing (e.g. EMPLOYEE), the kind of naming convention (e.g.

WITH-EMPLOYEE-NUMBER) and the name of the specific thing itself (e.g.

E8856). Nesting is included in these sentences which means that the entire sentences

can function as things.

The sentential notation generates wider classes of expressions and seems more

natural in describing the Real World. The sentential expressions have a functional

form and this makes it possible to apply a denotational style of semantics.

15

Chapter 4 outlines a model of semantics seen as a formal system linking up the

Universe of Discourse, a syntactic representation of that Universe and one or many

Environments of Comprehension (Eoc). The concept of Eoc for semantic description

is an original idea. More than one Eoc can be associated with the Universe of

Discourse, each of them reflecting a particular view held by a particular group of

people. Their views may or may not overlap (partially or totally) and hence their

corresponding Eoc may or may not be disjoint. All Eoc are, however, disjoint from

the Universe of Discourse and from its representation.

In the context of sentential notation the rigorous denotational approach seems more

appropriate than various less formal treatments of data semantics - such as, for

instance, semantic networks [73] or other approaches of a more descriptive

orientation [74, 77, 85, 95]. Here the meaning of a construct is associated with a

function mapping from a set of syntactic constructs to the appropriate semantic

domains. Eoc comprises all these domains.

The model of semantics devised in this work can be seen as an extension of

denotational semantics for programming languages [13, 88] to cover the issues of

modelling data and processes.

Chapter 5 presents a model of time used subsequently to investigate temporal

relationships between process applications. This model of time is, to some extent, a

synthesis of various concepts discussed in the relevant literature. For example,

Anderson {3,4] describes an axiomatic time model composed of completely ordered

set of indivisible time elements (each having a duration). Mappings of each element

and each pair of them into the positive real numbers are assumed, and so is

time-telling relation yielding a current time.

Schiel [76] considers time space as a (possibly complex) structure of intervals (i.e.

continuous and connex sequence of time points) and defines three primitives:

16

interval, before and after to build up an algebra of generalised intervals. Events

(widely understood to include operations, transactions and queries) trigger actions

within the system subject to the logical value of explicitly expressed predicates,

which being an integral part of an event, specify under what conditions (e.g. direct

or relative time reference) the event becomes true.

Similarly, Bubenko [20] considers a time model as a system composed of an infinite

set of time points (e.g. real numbers) and a finite, partially ordered set of time

interval types (such as second, day, month, year). A particular time interval belongs

to only one type. Both entities and events have explicitly recorded time references -

existence conditions and occurrence conditions respectively.

A rather mechanistic view is presented by Richter [72]. This model relies on

(possibly many) time originating devices - directly implemented in the system pulse

generators in the form of so-called clocks. Each generated pulse is considered a

point in time, while two consecutive pulses constitute a basic time interval. For a

particular system many rimes' can be designed - at least one system time and a

number of regional times. Petri Nets are envisaged to describe possible mappings

between system time and real time and, indeed, between regional times.

The formalism employed in this work differs in the sense that a more rigorous

mathematical apparatus was used. The fundamentals were generalised and

reformulated to give a cohesive homogeneous system, free from peculiarities of

specific time systems that arose from either a specific point of view (e.g. relative or

absolute view, time quantum versus time point view) or were consequences of a

particular operational framework. An attempt was made to define a general time

generic system in the form of relative time-frames, in much the same way as

cartesian space coordinates can be seen as inertial frames in the physical space.

Particular points worth noting are: separation of the time model as ^uch from a

naming convention (such as a calendar) which is a language per se with its own

17

syntax and semantics, precise definition of relationships between any two time

sub-systems and a generalisation of a time extracting function.

This work has primarily been oriented towards the problem of system behaviour,

behaviour being identified with actions in the system represented by process

applications. The formalism developed in this work and described in Chapters 6,7

and 8 is entirely original. It differs, to a degree, from all models previously known

to me that describe parallelism of processes [5, 17, 28, 48, 49]. In particular it

differs from that used in the theory of Communicating Sequential Processes (CSP)

(18, 35, 36, 37, 38, 39]. Although some concepts are similar a few fundamental

differences exist: they arose from the different orientation and area of applicability.

To begin with, CSP deals with communication as such in asynchronous parallelism.

Therefore, the accent is put there on possible cases of interference of otherwise

sequential processes.

Secondly, the orientation of CSP is clearly towards programming languages rather

than modelling objects that represent data or information about the Real World. As

such, CSP deals with various problems, as for instance buffering, monitoring, pipe,

protocols, and resource sharing which are outside the scope of my research.

Thirdly, in CSP the correspondence to (unquantified) time space is rather tentative

and no specific model of time is investigated in detail.

Finally, some primitive concepts are differently understood. For example an-event in

CSP is treated as an element of a process (that is a process may participate in an

event) and therefore a process is represented by a trace, i.e. a finite sequence of

events the process has engaged up to some moment in time. In the formalism

described in this research an event is a kind of fact that triggers (or is a result of) a

process application.

18

These circumstances (and perhaps the fact that CSP was not available in its present

form when this research started) made me to develop an alternative approach - surely

less comprehensive than CSP but perhaps more suitable for information system

analysis and design.

Chapter 6 explains in detail what exactly is meant by a process application. To do so

the idea of a Turing-machine (dealing with only one process at an instant) was

generalised to a form giving unlimited simultaneous processes. The abstract machine

with two types of channels ensures this and, moreover, it allows one to describe

self-modifying and self-regulating systems.

Chapter 7 investigates temporal relationships that may occur between any two

process applications - strict sequence, inverse sequence, partial sequence, strict

parallelism, free parallelism and mutual exclusiveness. These relationships are

formally defined with reference to the time model introduced in Chapter 5.

Properties of the above relationships are thoroughly considered in terms of predicate

calculus.

Chapter 8 defines process calculus, i.e. a formal system composed of sentential

expressions and logical and temporal operations. The rules for handling expressions

are formally proved and so is the theorem concerning precedential completeness. As

a consequence, the principle of stmctured process design is logically deduced.

Chapter 9 examines the impact of process structure on the relational data model. It

has been shown that, in general, the normalisation theory based on functional,

multivalued and join dependencies is not capable of detecting certain anomalies in

data model; these anomalies may occur due to rejection of immunity of the data

model from process structure. An access anomaly and a store anomaly are identified

and described. Furthermore, by considering basic precedence relations (sequence,

parallelism, mutual exclusiveness), two new dependencies - tangled process

19

dependence and/Zar process dependence are formally defined. Just as functional,

multivalued and join dependencies reflect static semantics of data, the process

dependencies reflect behavioural properties of process application. Finally it is

shown that normalised (BCNF) relations, for which the above dependencies hold,

must be decomposed further to avoid access and store anomalies.

Chapter 10 concludes this thesis by presenting a discussion of how, in my view, the

objectives were achieved and listing some suggestions for further research and

development.

To summarize, the claimed contribution to the field of information system

development include:

- identification of several weaknesses in present methodologies. These weak

nesses had not previously been pointed out in the form presented here.

- submission of a hypothesis of the integral treatment of the three aspects of

modelling - syntax, semantics and behaviour.

- generalisation of the binary relation model by introducing a sentential

notation that is more flexible than previous attempts in this field and that

generates a wider class of expressible facts.

- a complete and rigorous formulation of the model of time in the form of

interrelated time-frames with three primitive operations and independent from

any particular naming convention.

- recognition that time is an inseparable property of information about the

real world and making an appropriate provision in the sentential notation to

reflect this fact.

20

- introduction of a new model of semantics of data in the form of a system

linking up the Universe of Discourse, its formal syntactic representation and

one or many Environments of Comprehension.

- development of a model of parallelism of processes with several kinds of

temporal relationships. The model (based on a generalised abstract machine

capable of representing actions of multiple processes) comprises formal

proofs for various properties of these relationships such as associativity and

transitivity.

- development of process calculus with formally proven conversion rules

for process decomposition and integration and a formal proof of its

completeness.

- investigation of the impact of processes on the data model. In

consequence, access anomalies and process dependencies were identified and

two new 'normal forms' were suggested, orthogonal to those arising from

the concept of data dependence.

Other contribution, of a perhaps less formal nature, includes several arguments in

favour of constructive use of parallelism for system development rather than

constructing devices to protect the system against undesirable side-effects.

21

Ob je c t iv e s

The fundamental hypothesis we want to base our considerations on originates from

Artificial Intelligence studies on natural languages, i.e. on languages currently being

researched as most suitable to express the knowledge of a Real World [44, 59,95].

My hypothesis is that an information system (or for that matter any system or any

part thereof) may be fully described only when its three aspects: syntax, semantics

and behaviour (pragmatics) have been specified, and these have to be treated

integrally.

The following meaning of these 3 words has been taken from C. Morris [62] :

syntax-

semantics -

behaviour-

deals with the combination of signs without regard to their

specific signification or their relation to the environment in

which they occur

deals with the significance of signs in all modes o f signifying

deals with origins, uses and effects o f signs within the

environment in which they occur.

22

In this context, the objectives of this work are to:

develop a notation that is both suitable for the description of
information systems and is free from concurrency constraints

discover the rules governing decomposition (integration) of
processes within a target system

investigate possible effects of process design, being performed
integrally with data design, on the data model that represents
the Real World within the target system.

These objectives may be regarded as an attempt to extrapolate the principles of

structured design into the situation where processes are performed not necessarily

sequentially and processes may interact with each other at any point in time. In

particular, any process may have subprocesses as components, and these may or

may not be performed sequentially.

In this work we shall concentrate on the problem of system behaviour. The treatment

of syntactic and semantic issues will be limited to those aspects that are needed in

order to explain the problems of system behaviour.

23

B a s ic a s s u m p t io n s a n d D e f in it io n s

The assumption we start with is that the relevant part of the Real World is discreti

sable, i.e. may be modelled by a structure of objects. We do not distinguish

anything other than objects. The word object is to be interpreted in a wide sense so

it can mean anything within the boundaries of the part of the Real World tiiat is to be

represented in the target system (hence, in particular, a structure and a boundary

are objects too and so is a process, an event, an information flow and time). Thus

an object may denote a fact or a physical or abstract entity, or relationships between

any of these, or relationships between relationships, or any even still more complex

smicture.

The syntactic representation of an object within a target system is called a construct.

A construct that cannot be decomposed further (either syntactically or semantically)

is defined to be an atom. Any construct is a result of the following syntactic

production rules, written below in the BNF convention:

(3.1)- construct : := atom \ function | function construct

function ::= atom | (construct)

24

The first rule means that a construct is either an atom (not meaningfully

decomposable), or a function followed by a construct. The first alternative means

that every atom is a construct, while the second defines the left-side construct as the

effect of the function operating on the construct that follows it. This association to

the left is not significant, i.e. it does not matter that we have chosen functions to be

prefixes rather than suffixes.

At the level of conceptual modelling that is the whole syntax that was assumed. It

forms a sentential notation. We choose to call it sentential for its resemblance to

sentences in natural languages. Its structure has been based on that of the

lambda-notation [23].

The sentential notation has certain advantages: while simple yet powerful it allows

for denotational style of data semantics to be applied as the meaning of a construct

may be derived from the meaning of its components. It is not an original concept; in

fact Deep Structure Elementary Sentences {63], Binary Relationship Approach [1]

and Triple Stores [60] are all very similar to it. The difference however appears in

the wider class of expressions generated by the sentential notation, and in particular

in the fact that it explicitly allows for constructs such as atom atom and function

function.

The constructs within the target system may represent iouv kinds of objects:/«c/5,

events, process_declarations and process japplications. The definitions of these

objects appear below:

FACT: A formal representation of an assertion, rule, event, condition,
relationship or function. Facts can be either simple i.e. referring
to the same level terms, or generalised (i.e. fact-formulae)
containing terms from different (meta-) levels. Facts may b e .
connected by functions such as logical functors (and, or, not)
or associative connectives (e.g. is_a, is_of, has_a_property)

25
EVENT: A kind of fact within the system that causes an action , e.g. at an

event a process may start or finish or continue or be interrupted.
In general, we say that an event triggers a process application',
an event may trigger more than one process application and,
conversely, a particular process application may be triggered by
more than one event.

PROCESS_DECLARATION:
A static description that consists of facts specifying:
events that trigger the process application
constructs to be taken as inputs
constructs to be produced
production rules
events caused by process application
preconditions and postconditions
rules about parallelism

RROCESS_APPLICATION:
An action performed by a processor where a process is
activated in order to process a construct; at the moment of
activation the process declaration becomes a Control image’
for the processor to carry out the task.

We assume that all processors within the target system are universal, i.e. may

perform any process application appropriate for that system, unless specified

otherwise. We aim to understand the logic of these actions without reference to the

actual physical realisation of the processors.

Summarising the above definitions we may typically say that whenever at a time T

an event E occurs, a process P is applied on a construct C producing a construct C

and (Causing an event E%

26

41 MODEL OF Sem a n tic s

The main purpose of this work is to investigate the problem of system behaviour, each

system being modelled as a number of somehow structured processes that cooperate in

some way to process syntactic constructs. These constructs represent objects existing

in the Real World. Objects, in turn, may be physical or abstract entities, concepts or

phenomena, or processes themselves.

It must be stressed here again that the semantic aspects of system description are

presented in this work in a very much simplified form and only to the extent required

to understand better the behavioural issues. A more complete and precise treatment of

semantics would require further work which it would not have been possible for me to

research fully.

The formal representations of objects have been, to a great extent, made more uniform

by adopting simple syntactic rules (3.1). Therefore a suitable semantic apparatus needs

to be deployed to determine the meaning of a construct and to be able to distinguish

different constructs from each other, in view of their possibly similar form.

Below, a model of semantics (within the context of information systems) is outlined. It

is an original approach, though the influence of the Scott-^trachey style [88] appears.

Some connections to INFOLOG's philosophy [79, 82, 89] and the Montaque-like

treatment of semantics for natural languages [14, 59] also appear.

27

So far two separate structures - the part of the Real World that is of interest and the

corresponding formal model - have been distinguished. From now on we shall refer to

that part of the Real World as the Universe of Discourse (Uod). It contains all those

objects of interest 'that have been, are, or ever might be in the Real World' [33]. Thus

the Uod is assumed to be time-dependent. At a certain instant a particular object may or

may not be available', i.e. at that instant this object may or may not be an element of

the Uod.

The objects in the Uod are assumed to be of either of two kinds - atomic or composite.

Atomic means not meaningfully decomposable while composite means decomposable

into a number of other objects, each of which may again be either composite or atomic.

The set of all atomic objects is denoted by (u^). Similarly (u^) denotes the set of all

composite objects.

Among the atomic objects the veridicity set :

V =^concept of truth, concept of falsehood)

plays a particular role, which will be investigated later in this chapter.

Thus

U od = {u^} V (Ug)

<4.1) { U a } n { u j .) = 0

V c (u J

28

Correspondingly, there is a formal system of constructs. The set of all such

constructs, i.e. the model C is composed of both atomic constructs {c^} and

composite constructs {c^}. The production rules (3.1) can be regarded as criteria of

memebership. The subset of {c } corresponding to V in the Universe of Discourse is

called Bool = {true, false).

C = (Cg) V (Cg)

<4.2) (c j n (c j = 0

Boole (c.)

Note that in the context of (3.1) we do not distinguish atoms from atomic functions. In

the model presented here we assume that an analyst may merge atoms representing

objects (such as JOHN or BOOK) and atomic functions (such as LIKES or HAS).

The question whether a particular construct plays the role of an object or a process will

be determined by its position in the relevant expression and by the rules of system

behaviour.

Every object (whether atomic or composite) has a description. The descriptions are

such that any two objects ^ e distinguished. A description itself is not an object from

the Uod , nor is it a construct from C . For instance an object ^ e Uod has a

description: 'Stefan Stanczyk, the author of these thesis'; the corresponding construct

in C may be of the form 'S. Stanczyk', Thus a description is said to define a subset of

all those objects of the Uod that conform to its essence.

29

In constructing a model for semantics we are looking for a correspondence between

formal syntactic constructs and appropriate objects from any UoD. We aim to associate

the meaning of a construct - or more precisely its abstraction - with a function that

yields a value from a specific semantic domain. The concept of identifying that

abstraction (rather than directly its value) with the meaning ensures that each construct

is given a stable meaning - free from a particular context and independent of the

particular U od instance.

The-set of all abstractions of these functions constitutes the Environment of

Comprehension (Eoc). Note that we do not require that for any given Universe of

Discourse a single unique Eoc should be associated with it. In general, one or many

E oc can be devised, each reflecting a particular view of the UoD. This is yet another

design decision to be made by the system analyst. Depending on circumstances,

various Eoc may or may not be disjoint with each other. Each E oc is, however,

disjoint with both UoD and C. It is an image of how a different group of people

understand various phenomena (believed to occur in the Real World objectively), quite

irrespective of the possibly different notations that they may use to record their

understandings. For instance the Environment of Comprehension of people having

knowledge of nuclear physics differs from that of those who do not have, if both

groups were to describe an atomic explosion. Similarly, the Eoc of system designers

possessing certain technical knowledge - e.g. of computer programming and

processing - is very different from the Eoc of those knowing only manual means of

processing.

The model of semantics requires an appropriate formal system to be devised. That is,

my aim is to develop and describe a system linking in some way the three concepts -

Uod, C and Eoc. Fig. 4.1 below illustrates this idea.

30

Veridicity'

Bool

a

Uod
Objects of the
Real World of
interest

Permissible syntactic constnicts

Absiractims representing meanings of constructs;
set of semantic domains

Fig. 4.1

The resemblance of this concept to the approach demonstrated in (33] for Information

Systems is deliberate. We aim to adopt the three basic principles stated there, but with

some amendments as explained below. These principles, translated into the termino

logy used here, may be expressed as follows, with square brackets round my changes.

'1. {C] is a formal system, the [Eoc] as a whole is not so

2. The behaviour of [C] is completely defined by behaviour rules and

constraints, which are established, directly or indirectly, by the (Eoc].

[C] on its own initiative never establishes rules for the [Eoc].

3. [C], being fully predictable, is unable to deviate from the rules or

constraints, [Eoc] can deviate from its rules. '

31

The parts printed in italics, will be rejected for the reason that, indeed, a formal system

for [Eoc] is being sought. More precisely, we are to limit our consideration to that pan

of the Environment of Comprehension that can feasibly be formalized - just as we did

by imposing certain restrictions (e.g. the discretization principle) on the Real World.

Those restrictions excluded some Real World's objects from the U od.

As we have said earlier, each U od consists of two kinds of objects - atomic and

composite. Similarly, C comprises two kinds of constructs, also termed atomic and

composite. Relationships among these kinds of objects (depicted by arrows in Fig.

4.2) are assumed to define the structure of E o c ; hence an analysis of these

relationships is needed.

ATOMIC ATOMIC
CONSTRUCT

COMPOSITE ----------------►►
COMPOSITE

OBJECT CONSTRUCT

Fig. 4.2

32

R e l a t io n s h ip s B e t w e e n O b je c t s a n d C o n s t r u c t s

There is a many-to-many relationship between atomic objects and atomic constructs

Rfibdtinmjhiqp : ATOMIC OBJECT MM ►► ATOMIC CONSTRUCT

This is the most fundamental type of relationship. It says that for every atomic object

there exist a corresponding atomic construct; more than one such construct may

represent a single atomic object (i.e. synonyms are allowed). Conversely, one atomic

construct may refer to many atomic objects. This property, questionable in many

formal systems, is just a direct observation coming from existing applications. In

various databases, for instance, a linguistic conshnct 'Smith' may denote a number of

people; similarly the formal cons&uct 'O' may refer to either the number zero or a

concept of falsehood. This observation stresses somehow the necessity of having

proper semantic definitions (the ambiguity itself is often referred to as the 'weak

semantic barrier').

There is a many-to-many relationship between atomic objects and composite constructs

fidationsh^ : ATOMIC OBJECT COMPOSITE CONSTRUCT

Some atomic objects do not have direct representation in the form of atomic constructs.

In such cases therefore a composition of atoms should be needed. This composition

may be formed in a number of ways, resulting in a number of semantically equivalent

constructs (i.e. 'different descriptions of the same thing'). The constructs may be

reducible to some canonical form (e.g. 00127 = 127), but in many cases this is

(intentionally!) not so. An illustration of the latter is the enumeration system where a

number has infinitely many numerals associated with it, as for instance IIOOI2 =

22 I3 = I2 I4 = ... = 25jq = ...

33

Conversely, a particular composite construct may denote different atomic objects

{'strong semantic barrier') depending on what interpretation (i.e. meaning) is applied

to that construct. Drawing an example again from number theory, a linguistic construct

10011001 produces 153 when simple binary evaluation is carried out; on the other

hand the function binary_coded_decimal will produce the denotation 99.

A many-to-many relationship between composite object and atomic construct exists:

Rehdtîmgh^ : COMPOSITE OBJECT ATOMIC CONSTRUCT

Very often composite objects are given an atomic representation in C, particularly in

situations where hierarchies or other structures are being made out of many atomic

objects. But a particular construct does not have to refer to a single composite object.

For instance, the construct Theory' may correspond to 'A coherent system of objects

that comprises description o f relevant phenomena , conceptualization techniques,

assumptions, criteria and mathematical formulae'. The same atomic construct may,

however, refer to 'an object having no direct relationship to practice'.

Again, a composite object may have many representations in C. For instance in

modelling roads an object

STRUCTUREjGeometric Shape, Construction, Traffic Capacity)

can be referred to as Section or Link or Element.

A relationship between composite object and composite construct exists:

Rfilatifmahip ; COMPOSITE OBJECT COMPOSITE CONSTRUCT

It follows from the above considerations that this is a many-to-many relationship.

34

The Environment of Comprehension contains semantic domains, that is sets of

functions that designate meanings for syntactic constructs. The semantic domain

comprising all meanings for atomic constructs (i.e. atoms and atomic functions) is

called B c Eoc.

The meanings of the most fundamental atoms - the primitives true and false, both

belonging to Bool, are defined as mappings (using RW for Real World):

(4.3) p.: true RW concept of truth

p: false RW concept of falsehood

The possible absU’actions of p do not necessarily have to be equivalent in the sense of

the axiom of extensionality. For instance these abstractions may take the following

form:

(4.4) XxXy.x for truth

Ixly.y for falsehood

But the Real World concept of veridicity may as well be expressed by the Aristotle's

phrase (2]:

To say o f what is that it is noti or of what is not that it is, is false,

while to say of what is that it is, or of what is not that it is not, is true'.

Hence in general, the meaning of an atomic construct is defined by:

(4.5) p: (c) -4 {Uod Bool)

35

The function p draws values from a set of functions {UoD -> Bool) ; this approach

guarantees a freedom of choice from many possible descriptions, only one of them to

be accepted in Eoc.

With respect to the denotational principle [88], saying that the meaning of a construct

must be obtainable from the meaning of its components, the meaning of a composite

construct may be defined as:

(4.6) Tj (construct atom) = T| (construct) p(atom)

Fig. 4.3 illustrates in some detail an example of a model of semantics suitable for

natural numbers.

OBJECTS ABSTRACTIONS CONSTRUCTS

UNIVERSE OF DISCOURSE

U od

atomic objects

ENVIRONMENT OF
COMPREHENSION

Eoc

<conccpt of tnith>
U X y . y<conccptof faIschood>

y y

'7 7 7 7 7 7 ,
NUMBERS X f Xx.x

NUMERALSX f X X .fx

10011001
NOTHING

SINGLETON

'one hundred and fifty five

FUNCTIONS

PROCESSES
ATOMIC
FUNCTIONS

ATOMIC
PROC minus

prcd̂
Xx Xy Xz.y(xyz)

prcvious-in-seq
recognizc-fiist

is-zero

MODEL

C

atomic constructs

Fig. 4.3

37

MODEL OF T im e

Temporal aspects of modelling are extremely important, particularly in a situation

where concurrency is considered as a natural property of certain classes of objects

and not merely an abstract mechanism to tackle problems of communication between

otherwise sequential processes. Therefore the issue of time modelling is given a

separate chapter.

There is an equivalence between temporal and spatial aspects. Any object in the Real

World may be referenced to by time-coordinates as well as space-coordinates.

Indeed, just as Cartesian coordinates locate an object in some physical space, so do

the time-coordinates in the time-space. The only difference stems from the ability of

an observer <or an object) located in the physical space to move in any direction,

whereas in the time-space we assume no such a movement by an inside-observer (or

an object) is feasible.

A similarity and an important distinction have to be noted concerning space and time.

Objects have some properties expressible in time units (e.g. BRIDGE #123

is_of_age 35 YEARS) and others in metric units (e.g. BRIDGE# 123 is of length

250 METRES).

38

The point is that time as a domain for attribute values needs no separate treatment

from any other domain, be they PERSON NAMES, PART NUMBERS or

TRAFFIC DENSIT Y. Generally time as a concept o f reference does however

require special attention.

In our considerations we shall be looking for an appropriate mechanism to express

both simple precedences and more complex functions required to locate an object in

time. The simple precedences state merely that something must have happened

before something else may take place; however an object's time-location may be

defined subject to information about other objects, e.g. their locations and the

relationships amongst them.

In our investigations time will be considered as a natural and universal attribute of

the Real World. We assume the fundamental axiom:

In the Real World to be modelled there exists

an unique and absolute time reference system.

A possible mathematical representation of the above axiom is that the universal time

T® is represented by a set Q of real numbers tj,t2, ... with a linear ordering and

a metric d that have the following properties:

for all tj, t2, tg e T® :

tj[^ tj reflexivity

(5.1) tj t2 and t2 t | implies tj = t2 anti-symmetry

tj t2 and t2 ^ tg implies t% ^ tg transitivity

for all tĵ , t2 e T° either tj t2 or t2 t^

39

fo r a ll t | , t2 , tg 6 :

d(tj,t2) >0 for t | ? t̂2

(5.2) d(ti,t2) = 0 f o r t i = t 2

d(tj,t2) = d(t2,t%)

d(t2,tg) < d(t2,t%) + d(t2,t3)

Tliis abstraction of the time system is rather precise and reflects well the nature of

human cognition of time. However, being continous it is too general for our

purposes. Also importantly, being independent from the coordinates of an

'inside-observer' does not allow for an object to be located relative to the observer's

own position. Nonetheless, we shall retain the^ontinous model of time as a base to

which any local time system can be referred to as shown below.

The notion of a local time system is central to our considerations. Analogously to the

cartesian space-coordinates, whenever the conditions require it the local time system

may be set up. Essentially it comprises the following elements:

- an infinite, countable set of time intervals

a relation totally ordering the above set

- a metric d‘ that defines the length of time

a precedence-preserving function relating a local time to

the global time or to another local time

a functional device CLOCK^

The formal definitions of these terms appear below.

40

Both the absolute time system and each local time system can usually be

approximated by discrete rational or integer values of time. A local time,

T* = { (tj^), ^ } consists of discrete indivisible time elements tjL All intervals are

made the same length which is the smallest possible unit of time within TL The

length of an interval, called the resolution is incomparably small with respect to the

duration of any activity that may take place within the scope of the local time

system. Every activity lasts an integer multiple of the smallest unit of time. The

resolution is a property pertinent to a particular time; in general the resolution in

different local time systems may be different.

The relation ^ is a linear ordering in {tĵ } :

for all t^ ,̂ t2% tĝ E { tĵ }

^ t reflexivity

<5.la) ^ t2 ̂ and t2 ̂ ^ implies t^̂ = t2 ̂ anti-symmetry

^ t2 ̂ and t2 ̂ ^ tĝ implies tj^ ^ tĝ transitivity

for all t j^ t2 ̂ € either tj^ ^ t2 ̂ or t2 ̂ ^ tj^

The metric function d* defines a distance between two time-intervals

for all tj\ tĵ \ tĵ € T*

(5.2a) d*(t j \ t0>O forjVk

d \y \ tĵ)̂ = 0 for j=k

d*(tj^ tĵ i) = tĵ)

d*(tj\ t|̂) < d:(tj\ t}̂)̂ + d*(t^\ tĵ)

41

(5.3) d \ t j \

for the sequence <... t^j.j, t ^ , t _ i, t \ , t \ ^ | , ...>

We may now say that any discrete local time is adequately represented by a set of

integers I, thus T* = {I, <} (see 5.1a).

The function e*J relates two local time systems T* and TJ to each other in the

following way. e*J maps time points in T* to equivalents in TJ. The origin of one

local time system, t̂ Q, will correspond to a particular value in the other, say tip

(5.4) eU :T *^T J

where: eH(0) = tip

There is, of course an element of choice in assigning a specific point tip that a

zero-point in T* maps into, though this matter is rather secondary. Far more

important is the issue how the location of tip in TJ is specified. This location is

normally given indirectly by an associated fact, or a combination of facts which have

occuned(or will occur) at that point in TJ.

So long as T* and TJ have the same resolution the function e*J is bijective and

continous, so both precedences and distances are preserved. More often though this

is not the case (as for instance when relating the universal time to a local time, with

T* = T®). We shall however require for the function e*J relating the local time to the

universal time to be precedence-preserving.

42

Formally, the function e’J may be defined as follows (see Fig. 5.1b). We are going

to map each discrete time point in T* into an corresponding interval in TJ. The

interval will be open at the lower (starting) end and closed at the upper (finishing)

end.

for two sequences:

T* = <..., t j,, •••>

^ •••» 4p« ‘̂îptfl’ 4p+2’*” ’ ■̂̂ q-1’ ■̂̂q’ ••• ^r-1 "'^s-1

e*J:

^\+2 (̂ ŝ

a)

- 00

“2 -1 0^1 ̂ 2^3

T«
+ 00

Fig.5.1

b)

" A
i**k+1

I
k+3

V

TJ

e ’i

V

43

Note, that e‘J is a function when regarded as a mapping to intervals, since every

element ty} e T* is mapped to exactly one open-closed interval in TJ. But it is a

mapping to-many in the sense that each t̂ ĵ maps to many points within that interval.

The mapping el* is not the reverse of e*J because the image under e*J is an interval, and

the domain of eJ* is a time point. Similarly if one converts an integer Farenheit

temperature to Celsius to the nearest integer, and then converts back, the result may

differ from the original.

The mapping as defined by (5.5) does preserve precedences but not necessarily

distances:

(5.6) for all t*j,, t̂ j e T ̂ and tip, tJq g TJ

(e*j(ty ^ t ip) and -> t̂ q)

implies (t^^ t̂ i iff tip ^ tjq)

(5.7) there is t*ĵ , t̂ i G T* and tip, tiq G TJ

(e*j(t̂ |,) tip) and e*i(t*i) tJq)

implies dl(t^j.,t^j) dj(tjp,tJq)

A functional device CLOCK* may be associated with every time system T*. It counts

the time intervals elapsed since the establishment of T* and may be thought of as a

mechanism giving the actual value of a function 'time_now\ Mathematically it may be

represented by a function with no arguments that returns a non-negative integer:

CLOCK*= {} -^+1

44

We define now three primitive functions succt (successor-time), predt (predecessor

time), and att (at-time). These are basic operations allowed on T and their role is quite

analogous to that in the theory of arithmetics. For notational convenience we omit the

superscripts indicating a particular time system.

For a sequence

S - < ..., tj|^_j, tĵ , ..., tji ,̂ ..., t^, tn+ l’“*4p-i>tp,tp.|.j,...,> Ç T

<5.8) succt<tj^)-> t|^+2

succt (..., tp, tp^j] —> tp^ 2

<5.9) *succt (tĵ) -> [succt <tĵ), oo)

♦succt <..., tp, tp+j] -> {succt (tp+i), +oo)

<5.10) predt (tp)-^tp_i

predt {tĵ , t .̂ 2̂ * ••• >) ̂ ijc-l

(5.11) *predt (tp) ('oo , tp_ j]

♦predt [tĵ , tj^+i,...) -4 (-00 ,

(5.12)

45

att ({})—> undefined (bottom)

att (S') S', for any S' ç S

att (T) undefined (top)

with the interpretation:

"a construct being located by
this function never occurred"

fixed point

with the interpretation:
"a construct being located by
this function is valid throughout
the whole T"

Given two periods of time (t̂ , t^+i..... tp, tp+i) and (t^. t^+,...... t„.,, g the
function w itt (within-time) decides whether the first one wholly contains the second:

(5.13)
w it t ((tj,, t j ,^j , tp, tp+i)»(tm’ m̂+1» •••» n̂-1» * (̂^k —t ^ “t

false otherwise
w it t : T X T -> Bool

in any time system T* a notation L* for naming units of time is needed. Such a

notation will usually consists of a number of words (such as year, month, day), i.e.

terms used as names for some chosen time-units. There is, of course, a need for a

convention<a set of syntax rules) to form a name for an arbitrary unit of time. The

notation must also be supported by semantic rules that define the mapping L* ->T*

for any syntactically correct term from L*.

Consider as an example L* = CALENDAR* with a resolution, say h (for hour).

Though the actual syntax may vary from system to system, the 'values' commonly

allowed for are each of the form y:m:d:h where:

yel, me[l,2,...,12], de [1,2,...,31], h e[0,l,...,24].

46

The colons between the letters indicate that, semantically, the representation y:m:d:h

is a positional one, though due to some physical laws and tradition no common radix

(as in numerals for numbers) exists. The time may be evaluated to a unique point on

the Gregorian time-scale and, conversely, any point on that scale may be assigned a

unique value to the nearest hour. The representation of the value in the form

1986:12:25:10 may be regarded as a named atom.

In this work we shall not be considering any details of L*. We assume that there

exists some suitable convention for giving a name to a time reference and that such

reference is an atom in the sense of (3.1), having the meaning in c B. Our

concern is to provide functions that locate any construct produced by (3.1) in time

and that are able to express temporal relationships among these eonstructs.

The function which for any given construct extracts its time reference is called

when, defined as follows:

<5.14) when = It.construct : C —>T

when<E={ej,C2)) = when(cj[) n when(c2)

Of particular importance are three functions: before, after and during, whose

definitions appear below. Their role is to decide - for each ordered pair of

constructs taken from C - in what relations of temporal precedence a particular pair

ofeonstructs remains.

(5.15) before: CxC->Bool

before = Xc. iL succt(when(c')) predt(when(c"))

then TRUE else FALSE

47

which is a formal expression of the following observations

H when(c')-^ <tp tj^j, ... ,tĵ > and when(c")-^ <tj, tj^j, ...,tp

then succt(tj)̂ predt(tj)

(5.16) after : C x C ^ Bool

after = Xc. if succt(when(c")) predt(when(c'))

then TRUE else FALSE

(5.17) during: C x C —> Bool

during = Xc. if att(when(c")) witt att(when(c'))

then TRUE ê M FALSE

48

MORPHOLOGY OF PROCESS APPLICATION

So far some issues of representing a selected portion of knowledge about the Real

World have been considered. The sentential notation was defined to record this

knowledge - the objects of the Real World may now be represented by formal

constructs and these may be given meaning in a functional form. The means to locate

objects in a certain time-space were also provided.

However, the description of a target System is not yet complete. For, though the

discretisation of the Universe of Discourse may have been done suitably and all the

objects may have been properly defined, the notations so far lack an adequate means

of representing and explaining actions that may take place. Similarly the circum

stances (i.e. general rules that govern these actions) have yet to be described.

What we need now is an appropriate model capable of characterizing process

applications. Depending on certain conditions, some constructs are to be interpreted

as process declarations and will have to be activated whenever conducive

circumstances occur. Operationally it means that an idle processor will acquire a

specific process declaration which from that moment on will normally control its

action until the end of the application. The relevant constructs will be processed

yielding new constructs that describe new objects and new circumstances.

49

We aim to explain these phenomena without referring to any physical properties of

processors. In fact, we do not wish to analyse a processor as such at all. Instead, an

abstract mechanism will be used to explain the process application by considering the

observable results.

There are four preconditions that determine the model of the process application

mechanism:

— First, it must be rich enough to be compatible with the conventions for syntax,

semantics and time-referring - it must, of course, comply with the assumptions

already made. In particular, the model must be capable of explaining an application

of any X to any Y irrespective of what the actual interpretation of X and Y might

happen to be.

Second, the model must be conceptually consistent with the idea of parallelism.

This is where the concept of all processors being universal comes to use. We take a

view that any application may be carried out by any processor not actually engaged in

some other action.

Third, the model must allow for a description of a 'self-modifying' system, i.e.

a system whose objects may get changed due to its internal action rather than by

external <e.g. designer's) intervention.

Fourth, the concept of a 'central control' being compulsory in the traditional

model of computing has been rejected. The Real World has no equivalent. We are

actually looking for a 'self-regulating' model, where relevant objects of the system

are supposed to take the necessary action if and when the circumstances allow for. In

other words, a process application occurs 'automatically' as soon as the relevant

constructs become available. (The term 'relevant constructs' may also include

processors, resources, conditions and controls - not merely 'data').

50

It does not necessarily mean that the central control is ruled out. If needed, it may be

consciously implemented by the system designer but in such case the appropriate

constructs must be explicitly described in terms of syntax, semantics and behaviour.

The system control may, in fact, be a complex structure of processes (e.g. a hierarchy

or interconnected network), each part of it coordinating a specific part of the whole

Universe of Discourse.

An abstract machine employed to explain the process application is depicted in

Fig.6.1. It consists of two input channels and two output channels connected to a

'black-box' processor.

Fig. 6.1

Suppose that the event(s) triggering a particular process application have occurred; the

relevant information is immediately received by the first input channel, which selects

an appropriate process declaration and transmits that into the processor. The second

input channel is then ready to accept an appropriate construct for further processing.

After the processing has been done, the first output channel carries the resulting

events while the second one produces the construct. In both phases the actual channel

names - first and second - don't matter, as any of these actions might as well be

performed by either channel.

The actions described above are themselves process applications; they may be thought

of as micro-process applications. Their role, in fact, may be likened to that of

microprograms in computer architecture.

51

Henceforth the following sequence of operations defines a process application P:

(6.1) occur E = {ei,e2, e ^ } c C

get p : p G C

apply p : (E, c) (E', c’)

occur E '= (ei',e2% ...,e^ '}cC

The sequence (6.1) is assumed to be indivisible in the sense that it always transforms

initial events and constructs into some resulting events and constructs, irrespective of

whether or not the process application terminates successfully.

We say that a process application terminates successfully (succeeds) iff:

1. The original eonstruct c e C got processed and the result c' is consistent

with the rules of syntax and semantics, and

2. The resulting events E'g C and trigger at least one further process

application

Otherwise the application terminates unsuccessfully (fails), in which case we require

that the original construct remains unchanged, i.e. c'=c but E' ;& E.

While the 'all or nothing' approach to the constructs being processed is a safeguard

against potential inconsistencies, the full knowledge, i.e, that an unsuccessful attempt

to perform a process was made and that attempt failed due to certain known reasons,

is incorporated in E'.

52

A process application

(6.2) I : (E, c) ^ (E, c)

is called the identity process application. It has a distinctive property of not being

observable, i.e. the very fact that it has occurred cannot be detected.

A process application S that holds a construct for a period of time (e.g. to

synchronise the actions of other process applications) is defined as follows:

(6.3) S :(E, c)-»(E',c)

where E' = Xt.E(t+const)

is potentially of great importance as it unifies in a sense two traditionally different

notions - the concept of processing as different from the concept of store (in

particular, the often-used word 'memory' attracts static associations).

It is worth mentioning that both input and output channels are objects of the Real

World, and so are the acts of connecting and disconnecting them. As such, they are

of course represented by the appropriate constructs with all the necessities of syntactic

and semantic definitions.

Since, in principle, any construct may be subjected to some process application, so

may a construct representing any of the abovementioned connections. This facility

provides the means to describe a 'self-modifying' system whose subsequent actions

are governed by the results of the previous ones.

53

1 R e l a t i o n s o f p r e c e d e n c e f o r P r o c e s s A p p l ic a t io n s

In order to be able to express the mutual temporal relationships between any two

process applications we need to define basic operators that relate these applications

in terms of precedence. These operators together with their properties (such as

associativity, commutativity, or distributivity) will form the basis for a process

calculus.

The first issue to be considered is the axiom of extensionality, regarded as a

definition of equivalence of two process applications. We rephrase its Standard

formulation {23, 88] (as it applies to functions and sets) so as to be applicable here:

Whenever two process applications

Pi : (El, Cl) -> (E 'i,c 'i)

?2 : (22^%)-^»

having been triggered by the same events produce identical resulting constructs and

identical resulting events for all possible arguments drawn from the set of-constructs

the appropriate process declarations are defined on, they are said to be strictly

equivalent.

54

(7.1) P% eqv ?2 iff(Ei=E2 and ci=C2) implies (E'i= E'2 and c'i= c'2)

El E2 = Ei E2 = Ei

Fig.7.1

From the above definition it follows that strict equivalence is transitive:

(7.2) (?! eqv P2) and (?2 eqv P3) implies (P^ eqv P3)

Three other kinds of equivalence (weak equivalence or approximation) can be

defined. In these cases the equality restriction is limited to the corresponding

constructs only.

We say that P j approximates P2 subject to triggering events:

(7.3) Pi 1-aprx P2 iff(Ei=E2 and ci= C2)

implies (E'l ^ E'2 and c'i= c'2)

El E2 = Ei E2 4=Ei

1- m u

Fig. 7.2

Corespondingly, PI approximates P2 subject to resulting events:

(7.4) Pi r-aprx P2 iff (E i^ E2 and ci= C2)

implies (E'i= E'2 and c'i= c'2)

55

Hi E2 4= El

c . r - ^

E2 = E

Fig. 7.3

The weakest form of approximation is expressed by the formula:

(7.5) Pi w-aprx P2 iff (Ei;^ E2 and ci =C2

implies (E'l ^ E'2 and c'l = c'2)

El E? 4= El E2 4=Ei

V -ap ix

Fig.7.4

56

D e f in it io n o f St r ic t l y S e q u e n t ia l P r o c e ss Ap p l ic a t io n

Two process applications

Pi : (Eq, Cl) -4 (E'l, c'l) and P2 : (E2 , C2) (E'2 , c'2)

are said to be strictly sequential (Pi precedes P2 , Pi prec P2)

(7.6) (Pi >- P2) iff (before (E'l, E2) = true)

The strict sequence of process applications is transitive

(7.7) ((Pi > P2) and (P2 > P3)) implies (Pi > P3)

From (7.6) and (4.15) we have:

(Pi > P2) iff succt(when (El')) ^ predt(when(E2))

(P2 > P3) iff succt(when (E2')) ^ predt(when(E3))

The functions sucet and predt map to a specific time interval (5.8,

5.10), hence

<Pl > P2) iff t'l ^ t2 and

(P2 ^ P3) iff 12 ^ t3

Since t'2 ^ t'2 and the relation ^ is transitive (5.1a)

57

D é f in it io n o f t h e S t r ic t I n v e r s e S e q u e n c e

Two process applications

Pi* (E%, cj) —> (E'l, c'l) and ?2 : (E2, C2) —> (E'2, c'2)

are said to be strictly inversely sequential (?i follows ?2 or ? i fllw P2)

(7.8) P i -< P2 i f f a fte r (E i, E'2) = true

The definitions (7.7) and (7.8) are completely symmetrical. Therefore we have:

(7.7a) ((Pi < P2) a n d (P2 < P3)) im p lies (Pi < P3)

(7.9) (Pi >-P2) i f f ^ 2 -< Pi)

D e f in it io n o f S t r ic t P a r a l l e u s m

Two process applications

Pi: (El, Cl) -> (E'l, c 'l) and P2 : (E2, C2) -> (E'2, c'2)

are said to be strictly parallel (Pi II P2 or Pi pris P2)

(7 . 10) (P 1IIP2) i f f (d u r in g (E i,E 2) = true and d u rin g(E 'i,E '2) = true)

This definition means that both Pi and P2 must be done at the same time;

otherwise (P1IIP2) is inexecutable i.e. (P1IIP2) fails.

58

Strict parallelism is transitive

(7.11) ((P1IIP2) and (P2IIP3)) implies PjllPg)

From (7.11) and (4.17)

(P1IIP2) iff att(when(Ei) = att<when(E2)) and

<att(when(E'i)) = att(Avhen(E'2))

and

(P2IIP3) iff att(when(E2) = att<when(E3))and

(att<when(E'2)) = att(when<E'3))

Using the formula (4.12) we have diree possible alternatives, two of

them - bottom and top - are trivial (i.e.bottom for applications that never

occurred and top for applications lasting forever). The remaining case

will give:

(P1IIP2) iff ti = t2 and = t'2

(P2IIP3) iff t2 “ (3 and t'2 = t'3

and therefore t ̂={3 and t'l = t'3

It follows from the definition that strict parallelism is symmetric

(7.12) (P1IIP2) eqv (P2IIP1)

59

While in many cases some process applications will have to be performed in parallel,

the actual period of time needed to perform these may be different - the process

applications need to be synchronised.

For that reason, three weaker forms of strict parallelism have been introduced:

(7.13) (P% I: P2) iff during(Ei,E2) = true

(i.e. PI and P2 must start together)

(7.14) (Pi :l P2) iff during(E’i,E’2) = true

(i.e. PI and P2 must end at the same time)

(7.15) (Pi X P2) iff predt(when(E2)) predt(when(Ei) and

predt(when(E'i)) ^ predt(when(E'2)

(i.e. Pi must start later and finish earlier then P2)

It isperhaps easier to investigate these forms of parallelism by introducing the notion

of the partial sequence.

DEFINITION OF P a r t ia l S e q u e n c e

Two process applications

(Ep Cl) -4 (E'l, c'l) and P2 : (E2, C2) -> (E'2, c'2)

are said to be partially sequential (PI x P2 or PI sync P2)

(7.16) (Pi > - 5- P2) iff before(Ei,E2) = true and before(E2,E'i) = true

and succt(when (Ei')) <. predt(when(E2))

60

The definition (7.16) express the fact that ?2 must commence before terminates;

on the other hand it's too late to start P2 after Pj terminates.

Partial sequence may be considered as a most general form of a precedence-type

relation, from which all of {>-, -<, II, jf} may be deduced.

P i S i

S 2

Fig. 7.5

This needs two synchronizing applications (synchronizers)

Sj : (E i,C i)-^ (E " i,c 'i)

^2 • (^2 "' ^2) ^2)

where E"i = Xt. E'j(t) and E'2 = ^t. E"2(t)

61

Thus we have

(7.17) P i X P2 eqv (P p - S i) II (82 >- P%)

For S2 = I we obtain

(7.13a) Pi I: P2 eqv (P p - Si) II P2

and for S1 = I

(7.14a) P i :l P2 eqv P i II (S2 >- P%)

Similarly, for two synchronizers

Rl : (Eq,ci) -4» (El, Cl) and

R2 : (E 'l, Cl) -4 (E"i, c'i)

Rl >- P1 > R2

the expression (7.15) gets transformed to

(7.15a) Pi X P2 eqv (Ri >- Pi >- R2) II P2

Note, that for att(when(E'i)) ^ att(when(E2)

(Pi x P 2) eqv (P p - P2)

while for

att(when(Ei)) = att(when(E2) and att(vvhen(E'i)) = att(when(E'2)

(Pi x P 2) eqv (Pill P%)

62

D e f in it io n o f F r e e P a r a l l e l is m

Two process applications

Pi : (El, Cl) ^ (E'l, c'l) and P2 : (E2, C2) -4 (E'2, c'2)

are said to be freely parallel (PiJl P2 or Pi prrl P2) if their execution can be done

in either order of precedence or concurrently:

(7 .18) PiJJ ?2 iff (P i IIP2 or P^ >- P2 o r P j -< P2)

LEMMA: Free parallelism is transitive.

(7.19) ((PiJJP2) and (P2lJP3)) implies (P jfPg)

From definition (7.18) we have:

P/IQ iff P>-Q or Q>-P or PIIQ

q J/R iff Q >- R or R>-Q or QIIR

pJ/r iff P >- R or R>-P or PIIR

'IT transitivity is to hold then the following formula (derived from 7.19 by removing

implication and then applying de Morgan's Law) has to be a tautology:

(7.19a) not(P>- Q or Q>-P or PIIQ) or

not(Q>-R or R>-Q or QIIR) or

(P > R or R>-P or PIIR) = true

We prove that (7.19a) is indeed a tautology by considering all possible cases,

bearing in mind that the logical value of disjunction is false only when all

components of that disjunction are false.

63

The following cases:

P >- Q and Q >-R and Q >- P and R >-Q

P II Q and QIIR

P >- Q and Q II R and Q >- P and R IIQ

PII Q and Q >- R and PIIQ and R >- Q

are all trivial since the relationships between P, Q and R determine the relationship

between P and R; corespondingly (7.19) gets reduced to either transitivity of

precedence (incidence) or to transitivity of strict parallelism.

The two remaining cases:

P >- Q and R>- Q and anti-symmetrically Q>- P and Q >- R

need further investigation as in neither case the temporal relationship between P and

R may be inferred. If P>-Q = true and R>-Q =true then (7.19a) may be

transformed to the form:

false or false or (P > R or R>-P or PIIR) = true

Since P>-Q and R>-Q are both true, the following holds:

P >- R or R>-P or PIIR or P _L R = true

By definition (7.21) the above formula gets transformed to:

P >- R or R>-P or PIIR or (P > R or R>-P and notPIIR)

=(PIIR or (P >-R or R>-P)) or (not PIIR and <P >-R or R>-P))=

PIIR or ((P >-R or R>-P) or ((P >-R or R>-P) and not PIIR))=

PIIR or P >-R or R>-P

which concludes the proof.

PR O O F END

64

From definition and formulae (7.9) and (7.12)

(7.20) (Pi/JP2) iff (P2JJPi)

D e f in it io n o f M u t u a l E x c l u siv e n e ss

Two process applications

Pj: (El, Cl) -4 (E 'l, c'l) and P2 : (E2, C2) -4 (E'2, c'2)

are said to be mutually exclusive (Pi 1 P2 or Pi clsh P2) if their execution can be

done in either order of precedence but not concurrently:

(7.21) P i J.P2 iff (P i > P2 or P i -< ^ 2) not(Pi IIP2)

It follows from (7.9) and (7.12) that mutual exclusiveness is symmetric

(7.22) (P 1 I P 2) iff (P2JLP1)

Û Mutual exclusiveness is not transitive

(7.25) ((Pi 1 P2) and (P2 1 P3)) not implies (Pi ± P3)

[Reductio ad absurdum]

From definition (7.21) we have

P 1 Q iff ((P >- Q or Q >- P)) and not(P II Q)

Q lR iff((Q >- R or R > -P)) and not(Q IIR)

65

P J. R iff ((P >- R or R > P)) and not(P II R)

If transitivity were to hold, we would deduce a contradiction as follows. The

formula

(((P>- Q or Q>-P)) and not(PIIQ)) and («Q >-R or R>-P)) and

not(Q IIR)) implies ((P>- R or R >-P)) and not<P IIR)

would have to be a tautology.

Suppose P >- Q is Urue; we therefore infer that Q >- P is false and so is PIIQ.

Similarly, if R >- Q is true, then both Q >- R and QIIR are false. Hence, the

above formula may be reduced to:

(((true or false) and true) and ((false or ttue) and true)

implies ((P >- R or R > -P)) and not(P IIR)

and consequently to

true implies ((P >- R or R>- P)) and not(P IIR)

From the assumptions P>-Q = true and R>-Q = true no temporal relationship

between P and R may be deducted. Thus for PIIR = true, which means that both

P >- R and R >- P are false, we obtain

true implies ((false or false) and false)

that is: true implies false, which is contradictory.

PROOF END

66

P r o c e s s C a lc u lu s

In the previous chapters various kinds of precedence relations were investigated.

The possible relationships between two process applications were identified, named

and formally defined on the basis of the time model introduced in Chapter 5. Some

important properties, such as reflexivity, symmetry and transitivity were also

considered in detail.

The outcome of those considerations is a notation whereby an -expression describing

(possibly complex) temporal relationships occurring amongst a number of process

applications may be formed.

We aim to turn this notation into a calculus - that is a formal system composed of

expressions and operations on them. The precise definition of what is meant by an

’expression’ will be given, and conversion rules will be developed. These rules will

allow the handling of large expressions - to reduce them to simpler forms whenever

possible, and to test them against any inconsistency that might occur.

67

(8.1) process_calculus= <{expression}, {logical_operator}, {precedence_rel} >

where:

logicaLoperator ::= and I or I not /^predicate calculus*/

precedence_rel::= prec I fllw I pris I prrl I sync I clsh

expression ::= term I expression logical_operator term

term ::= proc_app_var I term precedence_rel proc_app_var

proc_app_var::= application name I (expression)

The above syntax generates regular expressions. Two kinds are particularly

interesting:

(- r »)
r > -

R

and

■ >- . - >“ •
p , II - q)

and (P * 11/ or
1 1

q)

First, some convention concerning priorities of precedence relations and logical

operators needs to be stated. We assume that all of {>-, -<, II, JJ, JL} are equal in

priority but any precedence relation associates stronger than any logical operator; the

usual convention for the latter (i.e. not over and over or) still applies.

68

Thus, for instance

P >- Q and not R II L or Q 1 S

means

((? > Q) and (not(R II L))) or (Q1 S)

rather than for example

(P > (Q and notR)) II (L or Q) 1 S

The assumption concerning equal priorities of precedence relations causes the need for

brackets to avoid ambiguity for, unlike in the predicate calculus simple rules of

associativity are not available. Hence for instance:

(P IIQ)> -R ?tp ||(Q > -R)

(P>-Q)IIR ;6P>_{Q|| R)

(P IIQ)1R 9̂ PIKQJLR)

and so on.

The meaning of all possible cases is given below together with corresponding

graphical interpretation, with the time increasing to the right:

a)

P>-(fl>-R) (P>-Q)>-R

P >-Q>-R

b)

(P >- Q) -< R

P>- (Q-<R)

69

c)
(P-<Q)>-R

P-<(Q>- R)

d)

(PIIQ) Il R

PIIQIIR

P|| (Q ll R)

e)

(PIQ) Il R

Q

p

R

Q

R P K Q II R)

70

0

P >- (QlR)
P

Q

R

P

R
Q (P >- Q)1R

Second, we take as axioms the following formulae:

<8.2) (P or Q)>-R = (P>-R) or (Q>-R)

(P and Q) >- R = <P > -R) and (Q > -R)

(8.3) (PorQ) 1 R = <P1R) or (Q lR)

(P and Q)1 R = (P IR) and (Q lR)

(8.4) (PorC ^IIR = (PIIR) or (QIIR)

(8.5) (Pand Q)IIR = (PHR) and (QIIR)

Since the strict parallelism is both symmetric and transitive, the formula (8.5) may be

transformed to

(8.6) (P and Q) II R implies (PIIQ)

LEMMA: The following formulae are valid.

71

(8.7) (p J l Q) o r (p - II q) iff (p ((q)

1

Whenever substitutions are made, the following denotations hold: P >- Q = p,

Q >- P = q, P II Q = X, P 1 Q = y, p or q = t, so PjfQ = x or (p or q)).

Case (a)

(PJJQ or P >- Q) = x or p or q or p = x or p or q = p JJq

Case fb)

(p JJq or P II Q) = x or p or q or x = x or p or q = P jjQ

Case fc)

(PJJQ or P i . Q) = (x or p or q) or ((p or q) and n o tx)=

(x or t) or (not x and t) = x or (t or (t and not x)) =

X or t = x or p or q = p JJq

PROOF END

LEMMA: The following formulae are valid.

72

(8.8) (p n q) or ^ p

' >- • ' >- -

II ■ Q) i f f (P ■ II • q)
1 1

As previously, the following denotations hold: P >- Q = p, Q >- P = q, P II Q = x,

P J. Q = y , p or q = t, so p JJQ = x or (p or q)).

Case (a)

(P JJq and P > Q)=(x or p or q) and p =

p and (p or (x or q)) = p = P >- Q

Case (b)

<PIfQ and PIIQ) = (x or p or q) and x =

X and (x or (p or q) = x and (x or t) = t = PIIQ

Case (c)

(p JJq and PJLQ) = (x or p or q) and ((p or q) and not x)

(x or t) and (t and not x) = (x or t) and t) and notx =

t and notx = (p or q) and n o tx = P I Q

PROOF END

73

The central theorem in the process calculus here concerns its precedential completeness

The concept of precedential completeness is based on the notion of completeness

discussed in [19,40,91]. Here, this term denotes the fact that every expression which

can be formed in the notation of the calculus and is true in terms of precedence

relations, is a consequence of axioms these precedence relations are devised from. We

aim to prove that the calculus is complete by finding an invariant Inv(P,Q) that is

always true for any two process applications P and Q occurring in a time-space T.

LEM M A:

(8.9) Inv(P, Q) = not ((P>-Q) or (Q>-P) and not(PjjQ)) = true

not ((P>-Q) or (Q>-P) and not(PjfQ)) =

not ((P>-Q) or <Q>-P) and not((P>-Q) or (Q-< P) or (Pil(^) =

not((P>-(^ or (Q>-P) and (not ((P>-Q) or (Q-< P))) and not(PilQ)) =

not< false and not(PIIQ) = true

PR O O F_E N D

CONCLUSION: The set {>-, If) is precedentially complete and so is {>-, 11}

LEM M A:

(8.10) Inv(P, Q) = not ((PIIQ) and (Q 1 P)) = true

not ((PIIQ) and (Q1 P)) = not (PIIQ and (P>-Q or Q>-P) and not(PllQ) = true

PR O O F_E N D

C O N C L U S IO N : The set {11, J_} is precedentially complete.

74

LEM M A:

(8.11) Inv(P, Q) = not (not (P>-Q or Q>-P) and P 1 Q)= true

not (P>-Q or Q>-P) and P 1 Q =

not (P>-Q or Q>-P) and ((P>-Q or Q>-P) and not PIIQ) =

not <P>-Q or Q>-P) and (P>-Q or Q>-P) and not PIIQ = false

C O N C L U S IO N : The set {>-, 1 } is precedentially complete.

We conclude these investigations by formulating completeness theorem, which is in

fact a corollary stemming from the above lemmas.

COM PLETENESS THEOREM

Any two operators from the set ||, JL} form a precedentially complete set

Tliis theorem is of a particular importance, as it shows that whenever a precedence

relationship between two process applications is to be defined, at most two of the three

basic temporal relations<i.e. strict sequence, strict parallelism or mutual exclusiveness)

will suffice.

This theorem will also allow to infer the

IPmNCIDPLlE: O F STR U C TU m iEB F R O C E S S B ESEO N :

A process application P can be decomposed into two process (sub)applications Pj and

?2 whose mutual temporal relationship is expressed by one of the basic temporal

relation:

P = P j> -P 2 or Pj II P2 or Pj 1 P2

75

From the axiom of extensionality it follows that decomposition of a process application

can be done in many different ways. An interesting problem is to determine, given

syntax and semantics of all the constructs of a particular system, how to form an

optimal decomposition. This potentially important research problem needs however

further investigations - it requires, in the first place, the optimization criteria to be

formulated.

76

î* THE IMPACT OF PROCESS STRUCTURE ON DATA MODEL

This chapter discusses the consequence of not making the data model immune from

the process structure. This follows the thesis expressed in Chapters 1 and 2 that data

model should not t e designed in isolation from the processes that are to operate on

that data, especially if these processes are not sequential.

The principle of central control of coiporate information laid down the foundations

for database theory. The database characteristic features of data shared amongst

various applications, controlled redundancy and data independence are all derived

from this principle. Inevitably the development of database theory has centred

around the issues of store and processing economy. An optimal structure of sets of

data has been sought.

In the relational approach the initial structure is a set of tuples, each tuple consisting

of attributes. Any two tuples from this set must have the same structure, that is must

contain exactly the same kinds of attributes. Attributes within the set depend

somehow on each other; these relationships are the result of the semantics of the

data. They are called functional, multivalued and join dependencies.

77

Some structures attract certain undesirable properties - the so-called insertion,

deletion and update anomalies. The problem is then to find a structure that is free

from these anomalies, thus ensuring consistency of data in the database -

consistency threatened by some operational actions. The optimal structure must be

capable of carrying exactly the same information contents as the initial one. The

optimization criterion is that any possible increase of data volume due to structure

transformation is to be minimised.

A general solution that was found to that problem is called normalization. In the

relational theory it is a discrete finite algorithm producing a family of relations - all

derived from that initial set. The mechanism of transformation from one structure to

another is based on functional, multivalued and join dependencies; it ensures that the

’final relations are free from the anomalies.

No attention is paid to the efficiency of processing, or indeed to processing as such.

It has been assumed that an appropriate Data Sub-Language {DSL) should guarantee

executability of any process, be it retrieval, updating or restructuring. Moreover,

none of these processes is necessarily considered in appropriate detail when the data

model is being designed. The theory also assumes (as a consequence of the

■sequentiality' principle) that whenever consistency constraints are being threatened,

the processes performing updating or restructuring must have greater priority than

(or finish before) any interrogation.

In general - though the traditional trade-off 'storage structure versus process

complexity' was resolved by ignoring the latter - normalization theory yields

reasonably correct data models, provided that the following four conditions are

satisfied:

78

1. Updating is simple

Any change that may potentially occur to a database can be reflected in a

single expression in DSL (that is an expression composed of a single

insert/delete statement). It is, moreover considered that modifying a data

element in one relation will not necessitate any change in another. More

precisely this problem is usually left to an external intervention - mostly

human though sometimes with the use of a Data Dictionary Facility.

~ However, in many applications the logic of updating is often complex and

may require a number of relations to be updated [S6]. The usual remedy is to

design updating processes as indivisible transactions. Each transaction

supports all the necessary actions and for its whole duration no other access

to the relations concerned is permitted.

This solution, however, cannot be appreciated from a theoretical viewpoint.

Transaction design is not normally done at the conceptual level and, indeed,

is distinct from data modelling. In effect, large portions of databases are too

often locked denying access to interrogations which, by and large, are main

functions of any information system.

2. Restructuring is non-frequent

Each data model is believed by its designer and users to be stable, i.e.

independent to some extent over time. Therefore the period in between

subsequent restructurings (however complex they might be) is considered

long enough for operational purposes. During these periods the database is

then in a time-independent state. While this assumption may be taken as

appropriate for certain applications, it cannot be accepted for some others. A

road database that contains geometrical and technical information is an

example of a fairly stable system. The road network (i.e. a system of

connections that is a reference base for other information) does not change

79

very often, nor does a need for a new attribute appear too frequently. The

usual period between subsequent restructurings is long enough (say a year)

to accept the data model's stability.

A traffic control system is, however, a different case. It is a quasi real-time

system where both the values of attributes and the attributes themselves may

have to be modified to reflect the actual traffic conditions.

~ In general, restructuring is seen as a sort of 'house-keeping' process (and

concerned with physical rather than logical aspects of a database) whose

impact on the conceptual data model may be ignored.

3. The size of data is manageable

This condition express a belief that the database, quite irrespective of its

structure is small enough for any processing to be done in a reasonably short

period of time. Again, the details of such processing are rarely taken into

account at the phase of conceptual data modelling.

In most more advanced applications this condition will sooner or later be

violated. Files will inevitably grow in size (particularly in those databases

with so-called historical data) and get restructured many times over, until

dieir inertia will necessitate a total reconstruction.

There is no simple solution to this problem. This issue is often referred to as

'database tuning' - an activity based on performance statistics and practical

experience rather than on some formal theory that is applicable at the level of

conceptual design.

80

4. Data model is independent from processing

Behind this condition there is an implicit assumption that all processes (at

least conceptually) are performed sequentially. That is, if two processes

require access to a particular relation one of them must wait.

At the conceptual level no processing is considered as being influential

enough to revise the data model. However, designers (perhaps uncons

ciously) realise the possible influences of, say, a particular type of a query

that may frequently be asked by the database users. They apply various

programming techniques (e.g. secondary indexing, relation ordering) to

repair in a practical way faults in the data model; the faults which could have

been avoided if the designers were able to use theoretically sound means at

the level of conceptual modelling.

The objective of this chapter is to investigate the effects which may occur if the hy

pothesis that the data model is immune from process structure is rejected. I aim to

achieve this objective by considering in some detail the impact of three basic

precedence relations <prec, pris, clsh) occurring between two process applications

on the constructs these applications act upon. The concept of access and store

anomalies {quite analogously <o update anomalies) is introduced. Later in this

chapter the notion of two kinds of process dependence will also be introduced to

explain some possible transformations of a relational data model to the more suitable

(but still relational) form that reflects better the relevant process structure.

Access anomaly refers to a situation where a process application P is denied an

access to a (large) set of construct C due to another action, i.e. process application Q

which, having a higher priority than P, occurs at the same time. P requires an access

to Cj while Q performs an action on C2', both and C2 are subsets of C, but is

disjoint with C2.

81

Store anomaly describes a situation where two process applications P and Q

temporally connected by any of {prec, pris, clsh} require an access to one and the

same construct c in its original form. Both P and Q, whatever their precedence

relationship, process c producing Cp and Cq respectively.

The access anomaly is considered as an undesirable property of a particular data

smicture since it causes unnecessary delays in processing.The store anomaly is also

considered undesirable as it may lead to an uneconomical use of store.

In the previous chapters the relations of precedence and their properties, and the

process calculus were all devised and considered purely in terms of temporal

relationships. In fact, no reference was made to the actual constructs the relevant

process applications were supposed to act upon. The only assumption was that the

appropriate constructs (i.e. events, process declarations and constructs to be pro

cessed) were available whenever conducive circumstances made processors to take

necessary actions.

We now consider two process applications:

P* ^Pp’̂ p) (P p>̂ p)

Q: (Eq,Cq)-> (E'^,c'q)

assuming that either c'p = Cq or Cp = Cq may occur whatever temporal relationship

between P and Q holds.

Without loss of generality (due to the completeness theorem) the following three

cases are considered: P prec Q, P pris Q and P clsh Q.

82

C A S E 1: P prec Q

C A S E 2 : P p r is Q

c'p Cq c'q

a) c'p = Cq The result of P is taken by Q as input.

A traditional pattern of sequential processing. No
anomaly occurs and no re-design is needed.

b) Cp = Cq Both P and Q are to process the same construct

producing perhaps different results.
Store anomaly occurs so re-design is needed. Two
possible solutions appear:

1. Multiple copies of Cp, which may prove un

economic if a large number of process appli
cations are involved. Also, this isconti*adictoiy
to the principle of data consistency.

2. All process declarations that are to be applied

on Cp must contain a sub-construct (either pre

condition or post-condition) to restore the ori

ginal form of Cp before passing it to the process

applications that follow.

Cp c'p

Q
C'r

a) c'p = Cq Contradiction

b) Cp = Cq If Cp is an atom then store anomaly occurs. So, if

parallelism is to be retained then multiple copies of Cp

must be kept. Otherwise (i.e. if for some reason the
designer does not want multiple copies) the process
application must be executed in either of the forms:

P prec Q or P fllw Q or P clsh Q.

C A S E 3 : P c lsh Q

83

Non atomic constructs may be decomposed. If Cp can

be decomposed into Cpp and Cp̂ such that P operates

exclusively on Cpp and Q operates exclusively on Cp̂ ,

and both Cpp and Cpq are meaningful, then access

anomaly for Cp occurs and re-design is needed.

If such decomposition is impossible then, as pre
viously, P pris Q is inexecutable.

Cq

Q
Cq c'p

a) c'p = Cq By definition (7.21)

(P clsh <5) = (P precQ) or {Q prec P) and not (P pris Q)

A strictly non-deterministic approach requires that at any
instant of time either of the two sequences P prec Q and
Q prec P would have to be executable. This however
leads to a contradiction since the sequence Q prec P, i.e.

(c'p c'q) >-<Cp -> c'p) is a nonsense.

Taking a deterministic view, the application (P clsh Q)
would be restricted to (P prec Q) which corresponds to
the Case la.

b)Cp = Cq This is equivalent to Case lb with two possible

sequences:

(Cp c p) >- (Cp —> c q)

(Cp c 'q) > - (Cp c 'p)

In both cases store anomaly occurs.

84

In the relational data model, as mentioned earlier, normalization - a technique based

on the notion of functional dependence - ensures that the final family of relations is

free from undesirable properties, that is from update anomalies.

We aim to show that these normalized relations may still possess some other

properties, i.e. access anomalies, that are considered harmful. They cannot be

removed on the grounds of normalization theory. For, though some relations may

need to be decomposed, neither functional nor multivalued nor join depen- dencies

provide sufficient mechanism for such decomposition. Therefore two other kinds of

dependence must be defined.

Suppose we have a relation R composed of three attributes - X, A and B. We

assume that R is in Boyce-Codd Normal Form (BCNF) and that X is the primary

non-composite key in R. Therefore two functional dependencies X A and X —> B

hold for R and no other dependence holds for R.

We say that a tangled process dependence holds for R iff the following conditions

are satisfied:

1. there is process application P: (Ep, <X,A)) -> (E'p,<X,A'))

2. there is process application Q: (Eq, (X,B)) (E'q,(X,B'))

3. the temporal relationship between P and Q is of the form P prec Q or

Q prec P or P clsh Q at every instant of time.

Clearly, if a tangled process dependence holds for R an access anomaly occurs

whenever P and Q become operationally active. The attributes A and B are called

process-independent with respect to the process applications P and Q. To remove the

access anomaly it is sufficient to decompose R into two of its projections: Rj(X,A)

and R2(X,B); R is the equi-join of these.

85

As an example consider a relation from a road database (Fig. 9.1 shows a fictitious

possible instance of this relation):

TRAFFIC-SPACE (SECTIONJD, TRAFFIC_DENSITY, ACCIDENT_RATIO).

From a phenomenological viewpoint of a traffic engineer this relation represents a

correct and coherent model of a Real World entity that describes driving conditions

on a number of road sections. SECTION_ID identifies uniquely every particular

road section that carries a certain amount of traffic (TRAFFIC_DENSITY, in

vehicles per day) and has certain level of danger measured by ACCIDENT_RATIO

(in number of vehicles per mile per year). The last two data items are indeed very

closely related in any sort of analytical job for traffic engineering though no

functional dependence between these two can be found.

S E C T IO N _ID T R A F F I C -D E N S IT Y ACCIDENT__RATIO

M 1J1 - M 1 J 2 7 0 0 0 0 2 .8

M 1 J 2 - M 1 J 3 7 5 0 0 0 1 .8

M 1 J 3 - A 1 B 5 3 8 3 5 0 0 0 2 . 5

M 2 5 J 2 4 - A 1 0 8 1 B 5 1 3 5 0 0 0 3 .2

Fig. 9.1

However, from an operational point of view the above design needs to be improved,

considering processes likely to be applied on this relation. Let's consider, for

instance, two of them - UPDATE TRAFFIC and UPDATE ACCIDENT. In

practice, the traffic density values are modified at certain intervals (say two years)

that normally differ from those at which the accident data get updated. Also, these

two processes are carried out separately and by different group of people. It is,

therefore, unreasonable to have the whole relation locked during the execution of

either updating, preventing any access to the attributes unaffected.

86

Hence, the more convenient model would consist of two relations:

TRAFFIC (SECTIONJD,DENSITY) and ACCIDENT (SECTIONJD, RATIO).

We next define the other kind of process dependence. Let R denote a relation com

posed of attributes X, Y and A. As previously, we assume that R is in BCNF and X

is the primary non-composite key in R. Only one functional dependence X -> A

exists. The attribute Y plays the role of a secondary index so, for instance R could

be inverted with respect to Y. The attribute A denotes a particular kind of, say,

technical data whose nature is irrelevant to this consideration.

This relation can then be seen as an union of its restrictions:

R(X,Y,A) = Ri(X,[Y=yi],A) u R2((X,[Y=y2],A) u . . .u R ^ (X,[Y=yJ,A)

The denotation tY=yj] is used to record the fact that all tuples in the relation Rj have

the same value (a constant ŷ [) for the attribute Y.

We say that a flat process dependence holds for R iff:
1. for i = 1,2,..., n there is process application

P |: <Epp<X,[Y=yi],A))-><E'pp<X,[Y=yi],A'))

2. for any i,k = 1,2, ... ,n
either P| prec Pĵ or P^ prec Pj or Pj clsh Pĵ

at any instance of time

if a flat process dependence holds for R then an access anomaly occurs whenever Pj

and Pjj. become active. The obvious way of dealing with the access anomaly here is

to split the relation R into a family of its restrictions as shown above.

An example offered here (Fig.9.2 shows a schema of a possible instance) is drawn

again from a road database:

SECTION-GEOM (SECTIONJD, REGIGN_NG, geometrical data)

87

This relation contains some geometrical information (such as width, length,

permissible height of vehicles) about road sections uniquely identified by

SECTIONJD; each section is located within certain maintenance area identified by

REGION NO.

SECTION_ID REGION_NO geometrical data
: A1- A13 01
: A1 - B25 01
:B27-X12 01

02
02

02

24
24

24

Fig. 9.2

Region 1

Region 2

Region 24

Usually, updating the values of geometrical data lies within the responsibilities of

regional road authorities. Also, not all queries involve necessarily the whole relation.

Hence maintaining all data within one relation seems uneconomic, cumbersome and

causing delays in processing.

The problem has strong quantitative bias as the real-life databases may (and do)

comprise as many as hundreds of this kinds of relation and the volume of each may

exceed tens of megabytes.

Note that tangled process dependence may be seen as a way of detecting

under-abstraction while flat process dependence corresponds to a specific case of

over-abstraction (see Chapter 1).

88

IL ® C o n c l u s io n s

In Chapter 1 1 discussed several reasons why the 'State-of-the-Art' of system design

theories seemed to me quite unsatisfactory. These reasons of dissatisfaction arose

both from some theoretical considerations and from my practical experience. For,

when designing systems, I had many times found myself in situations where either

no theory provided a mechanism to devise a solution to a particular problem, or for a

particular devised solution no theoretical justification existed.

These were essentially the motives to undertake the present research. Its objectives

were formulated with the intention to eliminate some of the existing drawbacks,

particularly those that were results of concurrency constraints. Let's recall these

objectives here:

to develop a notation that is both suitable for the description of
information systems and is free from concurrency constraints

to discover the rules governing decomposition (integration) of
processes within a target system

to investigate possible effects o f process design, being performed
integrally with data design, onto the data model that represents
the Real World within the target system.

89

I hope the results presented in this work justify the claim that the objectives were

achieved. I should also like to discuss some supporting issues.

A theory whose task is to explain the act of modelling the Real World must provide a

device to express any model in a way that is comprehensible by people and machine

processable in the environment in which this model is to be implemented. At the

same time the model must be isomorphic to the relevant part of the Real World, that

is the constructs and actions occurring in the model must be in one-to-one

correspondence with the objects and their behaviour in the Real World.

Real World

Informal

Conceptual Model
Informal

Transformaiion

ICM

Fig. 10.1

Informal

Transformaiion

Computerisable
Conceptual Model

COM

■Strictly speaking, developers create typically two models - an Informal Conceptual

Model (ICM) and a Computerisable Conceptual Model <CCM) though very often

they may not even realize this fact.

While transformation of the ICM (ultimately seeming coherent, consistent and

complete) into the CCM may be seen as a fairly rigorous exercise, the transformation

from the informal thoughts, words and actions of the Real World to a systematic

form of ICM is not. This transformation, itself unspecifiable and inexact as done by

humans, is disturbed even further by the influence of some questions deeply rooted

90

in people's minds: the questions which they are quite unable to separate themselves

from while doing this transformation, despite, perhaps, their awareness that these

would have to be considered either later or at least separately.

Among others, there are matters related to the choice of strategy and reasons for

which the system is being created and to the choice of subset (i.e. which

phenomena, objects and actions are to be included in the model). These are, of

course, valid questions to be answered. But neither the relevant solutions nor the

actual method to find them should affect the way the Real World is modelled. For

example the von Neumann model of computing affects system analysis to the extent

that actions are very often modelled as sequential irrespective of (or contrary to) their

actual behaviour in the Real World.

These were, then, the conditions that suggested the fundamental hypothesis

concerning the necessity of integral treatment of the three aspects of modelling -

syntax, semantics and behaviour.

The sentential notation arose from this hypothesis. It is a device allowing one to

describe the objects of the Real World in a simple structured language. Expressions

in that language (i.e. constructs) have been made uniform in a sense that all

constructs are ueated in the same way irrespective of their interpretation. Hence it is

not possible on the grounds of syntactic analysis alone to detect whether, for

instance, a particular construct belongs to a class of processes or to aelass of data.

Nor can one deduce from the syntax whether a construct represents a class, i.e.

named type of similar UoD objects or represent a single UoD object. Indeed, one and

the Same construct may be given a number of different interpretations depending on

circumstances. For example at time tj an expression is to be taken as a description of

a process to be carried out by a processor, while at time it will be a construct

subjected to a processing. A customer may be a process, an entity, or a source or a

sink of information flow.

91

The model of semantics was built as a system of correspondences between the

Universe of Discourse, the model of that Universe (recorded as a system of

constructs) and the Environment of Comprehension (Eoc). The notion of the

Environment of Comprehension is potentially of great importance. The analyst can

construct models of semantics containing more than one Eoc to reflect the situations

where the Real World (or some parts thereof) are being conceived differently by

different groups of people.

Of all the concepts behavioural issues were given the most extensive consideration,

forming the main part of this thesis. The central question in describing the behaviour

of a system is how the occurrences of its components (i.e. widely understood

processes) are related in terms of precedence. While ignoring the exact timing of

these occurrences would have made the theory simpler, the precise definitions of

temporal relationships require some sort of quantification. Similarly, in order to

prove certain relationships between these temporal relationships a quantified time

space was required.

In consequence, the time model was devised in the form of a cartesian-like time

space consisting of: a set of time-intervals with a linear ordering and a metric that

defines the length of time (i.e. a distance between two time intervals). In recognition

of the fact that the objects in the Real World may be temporally referenced to in more

than just one time system, and indeed relatively to each other, the notions of global

and local time systems related to each other through -the precedence preserving

function were introduced. Each time system is additionally equipped with a

functional device CLOCK giving at every instant o f time the 'age' o f that system since

its establishment.

The introduction of the time model in the form of a metric space does not necessarily

mean that the location of each object in time must be precise. It does however mean

that, whenever necessary, the time-distance between two objects must be

92

computable. Every construct, whatever its possible interpretation, is assumed to

have a time reference. No assumption was made as to the form of this reference. It

can be a subcomponent of that construct directly giving time coordinates, though

that need not be the case. The time reference may take a more complex form, e.g. a

function whose value depends on the meaning of that construct or its relationship to

some other constructs. With respect to this, a function to extract the time reference of

any given construct was introduced.

In line with the concept of uniform representation of objects in the Real World, it

was tacitly assumed that every object is representable as a process. So long as we

describe static properties of such objects, the constructs representing them are called

process declarations. According to their role in specific situations they may also be

called facts or events to refer mnemonically to their particular meaning. The idea is

quite similar to some experiments in X-calculus to ban free variables (or even

variables altogether) by introducing so-called operators. An interesting consequence

of this approach is that we can explicitly unify the concept of storing with the

concept of processing. Hence, for instance, a construct 'Store number 45 as value

for AGE' would be appropriate rather than 'AGE becomes 45'.

All actions in the system are represented by process application. The important point

is that, in principle, any process may be applied to any construct, including its own

representation. This was done in order to incorporate self-modifying systems, i.e.

systems whose objects may get changed due to its internal actions. Furthermore, the

notion of 'self-regulating'systems has been recognized. The objects of the system

are supposed to take necessary actions if and when the conducive circumstances

happen. This is a consequence of questioning the concept of 'central control' as

being somehow/ora majeure.

In terms of the theory proposed here the 'control' in a system is yet another process

application (one or many), possibly designed in the form of complex structure of

93

processes. These notions constitute, in my view, an attractive enhancement of the

von Neumann model of computing.

Furthermore, process applications cooperate with each other passing processed

constructs and other information. Their interconnections (also processes) may get

changed by the system internally. The concept of Turing machine does not cover the

mechanism of application of multiple processes. I needed something else. So instead

I specified an abstract machine with two types of channel (each capable of

transmitting all sorts of constructs) to handle data and control messages.

Investigation of different forms of precedence and parallelism, their properties and

the relationships among them laid down the foundations for a process calculus. A

complete set of operations on sentential expressions makes it possible to consider the

actual temporal relationships occurring among the objects in the Real World. The

calculus also provide the means to decompose and integrate process applications.

Thus concurrency and other forms of precedence relations can be used for system

design. In this sense the theory presented here seems to be a useful extension to the

traditional (i.e. restricted to sequential processing) structured techniques.

The question to what extent parallelism and other forms of temporal relationships

among processes should affect the data model emerged quite naturally.

Investigations carried out within the framework of the relational theory proved that,

indeed, the effects of process structure onto the data model were substantial.

Central to the relational model are notions of functional, multivalued and join

dependencies. They reflect the semantics of the data and provide a mechanism to

transform the initial model to a form free from insert, delete and update anomalies.

However, the provision for non-sequential processing exposed some other

anomalies that the above dependencies do not detect. Namely, access anomaly and

94

store anomaly may occur in otherwise properly normalized relations. Both of these

anomalies are undesirable since they may lead to an unnecessary delay in processing

or to an uneconomical use of storage.

Analogously to data dependencies, the concept of process dependence offers a way

to resolve the above problem. The tangled process dependence occurs when a single

relation describes two (or more) entities and independent (though not necessarily

concurrent) access is required to both of them. In other words, this happens when a

relation contains two (or more) groups of access-independent attributes that are

identified by a common primary key. The flat process dependence refers to a

situation where a relation is an union of otherwise independently processed sub

relations.

Both the tangled and the flat process dependencies are derivable on semantic

grounds by considering the process of abstracting the data, that is creating entity

types. The fact that these dependencies can be obtained from either semantic or

behavioural considerations underlines the soundness of the initial hypothesis

concerning the three aspects of modelling to be 'treated integrally'.

F ur t h e r R esea r ch Po ssibilities

The theoretical foundations of modelling parallelism <and other forms of temporal

relationships) occurring among processes in information systems have, I hope, been

investigated sufficiently in this work. Whereas the theory seems to me settled (to

some extent at least), there are issues that require further theoretical research. There

is also scope for more practical development. Below, the directions for further

research are outlined in the following four areas: theoretical research, optimal

decomposition, software engineering and computer-aided system development.

95

Theoretical research

As mentioned earlier, the semantic aspects of system description were

presented in this work in a simplified form. Therefore a more complete

and precise treatment of this subject is desirable. In particular the

explicit formulae of semantic functions for common constructs (e.g.

process applications such as insert, delete, update, retrieve) need further

investigation, so the model of semantics (objects-abstractions-constructs)

may be made more precise for a typical information system.

Another issue worth consideration is semantics and behaviour of recursive

process appHcations. A concept of parallelism of facts may also be investi

gated, particularly in the context of store anomaly.

Optimal decomposition

From Chapter 8 it follows that decomposition of a process application into

a number of sub-components interconnected by temporal relationships can

be done in many different ways. Therefore the question of whether an

optimal decomposition exists and, if so, how can it be done, is of some

importance. This problem requires, of course, the optimization criteria to

be formulated first.

Software Engineering

A purely theoretical approach was taken in this work to analyse and explain

the matters concerning parallelism and process modelling for information

system description. However, if the results obtained here are to be used in

practice of system analysis and design, they will have to be translated into

the practitioners' language. That is, in order to become a part of

software engineering, the theory will have to be made practicable, in much

96

the same way as theoretical works on structured programming were turned

into practical methods such as JSP.

Second, no method in any kind of engineering is fully appreciated unless it

contains a suitable graphical notation capable of recording design decisions

and of presenting the results of its actions. Therefore it would be advisable

to develop this sort of graphical notation capable of expressing dynamics

of system behaviour. Adaptation of Petri Nets [70] seems to be a possible

way for achieving this goal.

Computer-Aided System Development

A description of a life-project in terms of sentential notation may be a

complex one - so much so that the system designer will not comprehend it

easily. For this reason, an appropriate software package should be used to

maintain the knowledge about the project. This software should also be

able to detect inconsistencies, omissions and eirors that might have

occurred in the description. An example of this approach is PSL/PSA [29].

It consists of a general Problem Statement Language (PSL) for describing

systems, a database for maintaining the knowledge about the system and a

number of procedures {Problem Statement Analyser) to extract this

knowledge from the database. The PSL is a general object-property-

relationship language that intended to be a tool for describing the

characteristics of any system. But it does not support more complicated

forms of temporal relationships such as parallelism or mutual

exclusiveness. For example it does not allow any bbject' to be viewed

both as an entity and as a process, nor allow a relationship to be viewed as

an entity. Therefore extensions to PSL/PSA covering these issues would

substantially enhance its applicability.

97

Producing an application package on the basis of a general theory helps in better

understanding of how the theory works. Quite often it also causes amendments to be

made in theoretical formulae. Most artefacts evolve by gradual improvement:

theories sometimes are developed similarly. At some early stage of this present

research I attempted to apply the concept of a computer-aided approach to the theory

itself. A PROLOG program was written whose task was to check the correctness

and consistency of the formulae and corresponding proofs concerning relationships

between precedence, parallelism and mutual exclusiveness. Although I do not

consider the program itself (a simple procedure for predicate calculus based on the

Wang algorithm) as having any particular cognitive value of any academic standing,

it led me to certain general conclusions - for instance the distinction between free

parallelism and fixed parallelism and the need for a quantified time space.

Undertaking this research I hoped and expected that its results might enhance the

theories of system analysis and design and might lead to improved methods and

techniques. I believe that, to a modest extent, this goal has been achieved. But

having said so I could not resist quoting this passage from G. Spencer Brown’s

'Laws of form ' [19]:

... and so on, and so on you will eventually construct the universe, in

every detail and potentiality, as you know it now; but then, again, what you

will construct will not be all, for by the time you will have reached what

now is, the universe will have expanded into a new order to contain what

will then be

98
R e fe r e n c e s

[1]. J. R. Abrial
Data Semantics, Database Management, Klimbie & Koffeman (eds).
North Holland, IFIP Working Conference on Database Management, 1974

[2]. Aristotle
Methaphysica, r7 , 27, Works, Vol. 8,
English translation by W.D. Ross, Oxford 1908

[3]. T.L. Anderson
Modelling Events and Processes at the Conceptual Level,
Proc. ICOD-2, Cambridge, pp. 273-297,1983

[4]. T.L. Anderson
Modelling Time at the Conceptual Level,
Improving Database Usability and Responsiveness, P. Scheuermannfed),
Academic Press, pp. 151-168,1982

[5]. G. R. Andrews
Concepts and Notations for Concurrent Programming,
Computing Surveys, Vol. 15, No.l, pp. 3-43, 1983

C6]. V. de Antonelis, A. di Leva
DATAID-1: A Database design Methodology,
Information Systems, Vol. 10, No.2, pp. 181-195,1985

17]. V. de Antonelis, A. di Leva
A Case Study o f Database Design Using the Dataid Approach,
Information Systems, Vol. 10, No.3, pp. 339-359,1985

{8]. C W . Bachman
The Impact of Structured Data Throughout Computer-Based Information
Systems, Information Processing 80, S.H. Lavington<ed),
North Holland, pp. 383-394, IFIP 1980

f9]. J. Backus
Can Programming Be Liberated from the von Neumann Style? A Functional
Style andlts Algebra o f Programs, CACM, Vol.21, No.8, pp. 613-641, 1978

[10]. C. Beeri, P.A. Bernstein, N. Goodmann
A Sophisticate's Introduction to Database Normalization Theory, Proc. of 4th
Conf. on Very Large Databases, pp. 113-124, West Berlin, Germany, 1978

{11]. A. Berztsiss
A Conceptual Model Based on Events and Functions,
Syslab Report No.35, May 1985

[12]. A. Berztsiss
The Set-Function Approach to Conceptual Modelling,
Syslab Report No.36, July 1985

[13]. D. Bjprner, C.B. Jones
Formal Specification and Software Development,
Prentice Hall International, 1982

[14]. A.L. Bossi, C. Ghezzi
Using FP as a Query Language for Relational Databases,
Comput. Lang., Vol.9, No.l, pp. 25-37, 1984

99

[15]. A. Borgida, S. Greenspan, J. Mylopoulos
Knowledge Representation as the Basis for Requirements Specification,
IEEE Computer, pp.82-90, April 1985

[16]. D. S. Bowers
A Database Architecture for Aggregate-Incomplete Data,
The Computer Journal, Vol.27, No.4, pp. 294-300, 1984

[17]. E. Brinksma
A Tutorial on LOTOS, (unpublished)

[18]. S.D. Brookes, C.A.R. Hoare, A.W. Roscoe
A Theory o f Communicating Sequential Processes,
Journal of the ACM, Vol.31, No.3, pp. 560-590,1983

[19]. G.S. Brown
Laws of Form, Pitman, 1969

[20]. J. ATBubenko (Jr)
Information Modelling in the Context of System Development,
Information Processing 80, S.H. Lavington(ed), North Holland, IFIP 1980

[21]. E. Chamiak, D. McDermott
Introduction to Artificial Intelligence, Addison-Wesley, 1985

[22]. P.P.S. Chen
The Entity-Relationship Model - Toward a Unified View of Data,
ACM TODS, Vol.l, No.l, 1976

[23]. A. Church
The Calculi o f lambda-conversion, Princeton University Press,
ftinceton, 1941

[24]. E.F. Codd
A Relational Model of Data for Large Shared Data Banks,
CACM, Vol.l3, No.6, pp. 377-387,1970

[25]. E. F. Codd
Extending the Database Relational Model to Capture More Meaning,
CACM, Vol.4, No.4, pp. 397-434,1979

[26]. G.J. Date
An Introduction to Database Systems,
Vol. I and II, Addison-Wesley, IV edition, 1986

[27]. C. Delobel
An Overview of the Relational Data Theory, Information Processing 80,
S.H. Lavington{ed), pp. 413-425, North Holland, IFIP 1980

[28]. E.W. Dljkstra
Cooperating Sequential Processes,
Programming Languages, NATO Advanced Study Institute, F. Genuys(ed),
Academic Press, pp. 43-112, 1968

[29]. DEC-T810: Information System Development,
PSL/PSA User Course, Highfield Park, September, 1984

[30]. A.L. Furtado, T.S.E. Maibaum
An Informal Approach to Formal (Algebraic) Specifications,
The Computer Journal, Vol.28, No.l, pp. 59-67, 1985

100

[31]. G. Gardarin, E. Gelenbe
New Applications of Data Bases, Academic Press, 1984

[32]. M.A. Gray
Implementing Unknown and Imprecise Values in Databases,
Proc. of BNCOD-1, pp. 146-158, Pentech Press, Cambridge, July, 1981

[33]. J.J. van Griethuysen
Concepts and Terminology for the Conceptual Schema and the Information Base,
ISO TC97/SC5AVG3 - N695, 1982

[34]. R.Haux, U. Eckert
Nondeterministic Dependencies in Relations: An Extension of the Concept
of Functional Dependency, Information Systems, Vol. 10, No.2, pp. 139-148, 1985

[35]. C.A.R. Hoare
Communicating Sequential Processes, CACM, Vol.21, No.8, pp. 666-677,1978

[36]. C.A.R. Hoare
A Calculus o f Total Correctness for Communicating Processes,
Oxford University Computing Laboratory, PRG-23, April 1981

£37]. C.A.R. Hoare
A Model for Communicating Sequential Processes,
Oxford University Computing Laboratory, PRG-22, June 1981

{38]. C.A.R. Hoare
Notes on Communicating Sequential Processes,
Oxford University Computing Laboratory, PRG-33, August 1983

{39]. C.A.R. Hoare
Communicating Sequential Processes, Prentice Hall International, 1985

{40]. D.R. Hofstadter
-G0del, Escher, Bach: An Eternal Golden Braid, The Harvester Press Ltd., 1979

{41]. R. Hull, C.K. Yad
The Format Model: A Theory of Database Organization,
Journal of the ACM, Vol.31, No.3, pp. 518-537,1984

{42]. W. Kent
Data and Reality, North Holland, 1978

[43]. W. Kent
Consequences o f Assuming a Universal Relation,
ACM TODS, Vol.6, No.4, pp. 539-556, 1981

[44]. S. Khosla, T.S.E. Maibaum, M. Sadler
Database Specification,
Proc. of IFIP TC2 Working Conference on Database Semantics,
Hassell, Belgium,January 1985

[45]. R. King, D. McLeod
The Event Database Specification Model, Improving Database Usability and
Responsiveness, pp. 299-320, P. Scheuermann(ed), Academic Press, 1982

[46]. A. Kobsa
Knowledge Representation: A Survey of Its Mechanisms: A Sketch o f Its
Semantics, Cybernetics and Systems, Vol. 15, Nos. 1-2, pp. 41-89, 1984

101

[47]. K. Kuratowski, A. Mostowski
Set Theory, PWN, Warsaw, 1968

[48]. L. Lamport
The Mutual Exclusion Problem - Parti: A theory of Interprocess Communication,
Journal of the ACM, Vol.33, No.2, pp. 313-326, 1986

[49]. L. Lamport
The Mutual Exclusion Problem - Part II: Statement and Solution,
Journal of the ACM, Vol.33, No.2, pp. 327-348, 1986

[50]. U.W. Lipeck, H-D. Ehrich, M. Gogolla
Specifying Admissibility of Dynamic Database Behaviour Using Temporal Logic,
IFIP WG8.1 Conf. on Inf. Systems: Theoretical and Formal Aspects, pp. 145-157,
North Holland, 1985

[51]. T, Imielinski, W.Lipski (Jr)
Incomplete Information in Relational Databases,
Journal of the ACM, Vol.31, No.4, pp. 761-791,1984

[52]. B.E. Jacobs
On Database Logic, Journal of the ACM, Vol.29, No.2, pp. 310-322,1982

[53]. R. Johnson
Integrating Data and Metadata to Create aBmart Database,
Thames Polytechnic <un-published)

{54]. R.N. Maddison (ed)
Information Systems Methodologies, BCS Monographs in Informatics,
Wiley Heyden, 1983

[55]. R.N. Maddison (ed)
Information System Development: A Flexible Framework,
BCS, ISAD WP Journal of Development, 1984

{56]. R.N. Maddison (ed)
Information Systems Methodologies, Inf. State-of-the-Art Report, Vol. 13, 3, 1985

{57]. T.S.E. Maibaum
Database Instances, Abstract Data Types and Database Specification,
The Computer Journal, Vol.28, No2, pp. 154-161, 1985

{58]. D. Maier, J.D. Ulimann, M.Y. Vardi
On the Foundations of the Universal Relation Model,
ACM TODS, Vol.9, No.2, pp. 283-308, 1984

[59]. M.G. Main, D.B. Benson
Denotational Semantics for "Natural" Language Question-Answering Programs,
American Journal of Computational Linguistics, Vol.9, No.l, pp. 11-21, 1983

{60]. N.J. Martin
The Construction of Interfaces to Triple Based Databases,
Research Report NJM/01/84, Birkbeck College, University of London, 1984

[61]. W.J. Milne
A Framework for the Investigation of a Spatial Database,
The Computer Journal, Vol.24., No.l, pp. 52-55, 1981

[62]. C. Morris
Signs, Language and Behaviour, G. Brazil lier, New York, 1946

102
[63]. G.M. Nijssen

From databases towards knowledge bases, pp. 115 - 131,

[64]. G.M. Nijssen
On Experience with Lxirge Scale Teaching and Use of Fact-Based
Conceptual Schemas in Industry and University,
Proc. of IFIP TC2 Working Conference on Database Semantics,
Hasselt, Belgium,January 1985

[65]. T.W. Olle, H.G. Sol, A.A. Verrijn-Stuart (eds)
Information Systems Design Methodologies: A Comparative Review,
Proc. of the IFIP TC.8 Conference (CRIS), North Holland, 1982

[66]. T.W. d ie , J.G. Sol, C.J. TuIIy (eds)
Information Systems Design Methodologies: A Feature Analysis,
Proc. of the IFIP WG 8.1 Conference (CRIS 2), North Holland, 1983

[67]. L. Orman
Design Criteria for Functional Databases,
Information Systems, Vol. 10, No.2, pp. 207-217, 1985

[6 8]. L. Orman
A Familial Specification Language for Database Application System,
Computer Languages, Vol.8, No.3/4,1983

[69]. OU- M352 : Computer Based Information Systems,
The Open University Press, 1980

[70]. J.L. Peterson
Petri Nets, Computing Surveys, Vol.9, No.3, pp. 223-252,1977

[71]. A.Ramon
Information Derivability Analysis in Logical Information Systems,
CACM, Vol.26, No.l 1, pp. 933-938,1983

[72]. G. Richter
Clocks and their Use for Time Modelling,
BFIP WG8.1 Conf. on Inf. Systems: Theoretical and Formal Aspects,
pp. 49-66, North Holland, 1985

[73]. G.D. Ritchie, F.K. Hanna
Semantic Networks - A General Definition and a Survey,
Information Technology: Research and Development (1983), 2, pp. 187-231

[74]. H. Robinson, M. Newton
The Capture o f Meaning and the Relational Data Model,
Technical Report 85/13, Computing Discipline, The Open University

[75]. N. Roussopoulos, R.T. Yeh
An Adaptable Methodology for Database Design, IEEE Computer, May 1984

[76]. U. Schiel
Time Dimension in Information Systems,
IFIP WG8.1 Conf. on Inf. Systems: Theoretical and Formal Aspects,
pp. 67-76, North Holland, 1985

[77]. H.A. Schmid, J.R. Svenson
On the Semantics of the Relational Data Model,
Proc. ACM SIGMOD Conf. on Management of Data, pp.211-223,
San Jose, California, May 1975

103

[78]. M.E. Senko
Information Systems: Records, Relations, Sets, Entities and Things,
Information Systems, Vol.l, pp. 3-13, 1975

[79]. A. Semadas
Logical Procedure Definition for Information System Specifications,
PhD Thesis, University of London (LSE), 1980

[80]. A. Semadas
SYSTEMATICS: Its Syntax and Semantics as a Query Language (1},
The Computer Journal, Vol.24, No.l, 1981

[81]. A. Semadas
SYSTEMATICS: Its Syntax and Semantics as a Query Language (2),
The Computer Journal, Vol.24, No.2, 1981

[82]. C. Semadas, A. Semadas
Conceptual Modelling Abstraction Mechanisms as Parametrised Theories in
Institutions, INFOLOG PR20, August 1984

[83]. M.J.R. Shave
Entities, Functions and Binary Relations: Steps to a Conceptual Schema,
The Computer Journal, Vol.24, No.l, pp. 42-46,1981

[84]. A. Solvberg, C.H. Kung
On Structural and Behavioural Modelling of Reality,
Proc. of IFIP TC2 Working Conference on Database Semantics,
Hasselt, Belgium, January 1985

{85]. R.K. Stamper
Towards a Semantic Normal Form, Database Architecture,
Bracci & Nijssen (eds), pp. 317-339, North Holland, SRC/SSRC 1979

[8 6]. S.K. Stanczyk
A Relational Database Project for the Motorway Information System,
MSc Thesis, University College London, 1980

[87]. S.K. Stanczyk, R.N. Maddison
Modelling Parallel Processes for Databases,
Technic^ Report 87/2, Computing Discipline, The Open University

[8 8]. J. Stoy
The Scott-Strachey Approach to Programming Language Theory,
MIT Press, Cambridge, Massachussetts, 1977

[89]. B. Sundgren
Conceptual Foundations of the Infological Approach to Databases,
Database Management, Klimbie & Koffeman(eds), North Holland,
IFIP Working Conference on Database Management, 1974

[90]. P.S.G. Swinson, F.C.N. Pereira, A. BijI
A Fact Dependency System for the Logic Programmer,
Computer Aided Design, Vol.l5, No.4, pp. 235-243, 1983

[91]. A. Tarski
Logic, Semantics, Methamathematics,
Oxford University Press, 1956

[92]. J.D. Ullmann
Principles of Database Systems, Pitman, 1983

104

[93]. M. Vetter, R.N. Maddison
Database Design Methodology, Prentice Hall International, 1981

[94]. A. Waldron
Principles of Language and Mind, Routledge & Kegan Paul, 1985

[95]. H.K.T. Wong, J. Mylopoulos
Two Views of Data Semantics: A Survey of Data Models in Artificial Intelligence
and Database Management, Informatics, Vol.l5, No.3, pp. 344-383, 1977

Ta b l e OF SYMBOLS

PREDICATE CALCULUS

there is
for all
not
and
or
implies
iff ~

existential quantifier
universal quantifier
negation
conjunction
disjunction
implication
equivalence

SETS AND FUNCTIONS

G set membership

V union

n intersection

inclusion

inclusion or equality

complement

empty set

Cartesian product

such that

maps into

linear ordering in time space

< , t̂ ĵ , > sequence such that ... t̂ ̂ ~t^^k+2 ~t

RELATIONSHIP TYPES

{)

-------►

— — ►►

one-to-one
one-to-many
many-to-many

PROCESS CALCULUS

SYMBOL SYNTACTIC

EQUIVALENT

GRAPHICAL

EQUIVALENT

EXAMPLE

OF USE

> - prec Q
precedes P >- Q, P prec Q

fiîw Q follows Q -< P, Q fllw P

sync
Q

overlaps P >:-Q, P sync Q

pris Q strictly parallel P II Q, P pris Q

JJ prri freely parallel P JJ Q, P prrI Q

1 cish clashes P ± Q, P cIsh Q

I: strt Q o r Q start together P I : Q, P strt Q

endt
Q.

P

Q
or p end together P : IQ, P endt Q

>< witn Q within Q >< P, Q witn P

APPENDIX

The aim of this appendix is to demonstrate how some major concepts and notational

devices developed in this thesis can be applied to describe a real system. As an object of

this demonstration I have chosen a limited part of an existing Road Database (RDB)

containing information on some 100,000 km of road network.

For the sake of clarity only a very small part of RDB will be considered - a complete

description would have unnecessarily complicated the matter. In any case such des

cription is a serious task on its own and considerably exceeds the scope of this appendix.

Nonetheless, some details on the system as a whole are presented below to facilitate the

understanding of problems considered.

CoiKîq)tudly, the RDB contains three classes of information:

• the topology of the road network

• characteristics of road segments

• characteristics of various environmental objects related somehow to

the road segments

The genial layout of data stored in the RDB is presented in Fig. Al. The road network is

modelled by a graph whose nodes represent certain defined points (such as junctions),

physically existing on the network. These nodes, in fact, may themselves be complex

objects (e.g. multilevel junctions) but this aspect is omitted here. The arcs of the graph

represent road segments, i.e. road stretches connecting two nodes.

bridge

1

\ Environmental Object ÆO)

NODES ARCS

Code Time-space coordinates Nodel Node2 Timt

A Ĉa XAiZAjIa) A 1 Wl
B Ç^,Yb,2̂ ,IA) A B

B 2
• B 3 W

N Ç ^ ,Y n ,2̂ ,IîsD A N WN
N 4
N B

ROAD CHARACTERISTICS

Segment Technical details

A-1
A-B
B-2
B-3

details A-1
detailsA-B
detailsB-2
detailsB-3

Time-coordinate

t(detailsA-l)
t(detaiIsA-B)
t(detaiIsB-2)
t(detailsB-3)

A-N
N-4
N-B

detailsA-N
detailsN-4
detailsN-B

t(d e ta ilsA -N)
t(detailsN4)
t(detaiIsN.B)

ENVIRONMENTAL OBJECTS

Object

Bridge
EO

Location

SA
(sB.dB)

Technical Details

details
details

Time-coordinate

t(sA)
t(sB.dB)

F ig . Al

I ll

This system of arcs and nodes has been designed for the sake of unambiguous

identification of any point, stretch or area being of interest to any information system

concerning roads and traffic, irrespectively of whether or not that system uses at present

the information stored in the database.

Each road segment is described by a (large) number of attributes representing horizontal

and vertical alignment, technical and structural details, and traffic flow and traffic

accidents."

Environmental objects include bridges, viaducts, ferry berths and other, more complex

entities such as service areas, telecommunication lines and electricity lines. The important

fact is that although some of these objects are not maintained by the road administration

they, nevertheless, have a considerable impact on the traffic space and capacity of the

roads.

Virtually all data items are - to a lesser or greater extent - dependent on time, with a

different degree of volatility. For instance, the traffic conditions on a particular road

segment may change within hours while structural parameters remain stable over a longer

period of time. As a general rule, however, no information held in the database should

ever be destroyed, even if the corresponding object in the Real World ceases to exist.

The system serves as a sole source of information to three distinctive categories of users:

• specific sub-systems based on established processing algorithms (eg traffic

analysis, shortest path routes)

• various kinds of professionals (engineering, management, researchers,

planners) implementing new or ad-hoc algorithms

• casual users such as politicians, authorities and general public

IV

OBJECTS CONSTRUCTS

POINT (x,y,z,t)NODE

ARC(N0 D E i.N 0 DE2,t)SEGMENT

segment is a link
between two nodes

Node is a point on the road where
ROAD STRUCTURE changes

Node is a point on the road where the\
value o f TRAFFIC FLOW changes j

Eoc of construction engineerEoc of traffic engineer

Node is a point on the road where
an ACCESS ROAD exists

Eoc of network planner

Fig. A2

Apart from typical (and therefore fairly simple) database interrogations two other kinds of

user-oriented processing are of particular importance. The first one is a so-called complex

transformation. It occurs most frequently whenever a user (typically a sub-system)

requires some sort of an abstraction of the total content of the database. Examples are:

producing a road sub-network that fulfils certain criteria and drawing maps in a scale

different from that which is a base for network topology. The second kind of processing

includes combinatorial retrievals. These are characterised by little input/output but

involving sometimes the whole database to be accessed.

However, the most important activity (and, indeed, the primary objective of the system)

is the maintenance of data. Data collection in this case is extremely expensive and very

often involves sophisticated equipment. Updating routines, in turn, are invariably

complex and resource consuming. Thus, they need to be considered with a great care

and designed very efficiently. A particular updating is therefore described in this

appendix to illustrate the usefulness of some findings of this thesis.

In the RDB one global time and a number of local time systems exist Quite naturally, the

universal time (described fry the Gregorian time scale) has been selected as the system

time (T°). The local time systems include:

• system updating time T established at the beginning of system operation

resolution (T®) = resolution (T)

topology updating time with resolution 3 months

complex rt'ansformation time, resolution 6 months

combinatorial retrievals time, resolution 1 day

source-destination traffic measurements, resolution 1 hour

automatic traffic survey, resolution 1 second

The data model for the RDB requires the semantics of its elements to be established.

Fig.A2 presents an attempt to define the meaning of two basic entities - NODE and

SEGMENT within the framework of the semantic system, suggested in Chapter 4. The

VI

structure depicted in Fig A2 was m eant to expose the fact that the Environm ents o f

Com prehension o f three different groups o f users overlap only partially having different

descriptions for one o f the basic concepts o f the RDB - the concept o f node. All three

groups agree though in description o f a road segment.

Let's consider now a particular kind of an updating routine that necessitates changes in all

constructs depicted in Fig.Al. Suppose initially there was just AB; then a new node N

together with two connections N-4 and N-B was built; and at the same time the 'old'

connection N-B ceased to exist. The RDB needs to be updated and the following

processes must be executed:

Pj: insert 'new' node N to NODES

•P2: change time-coordinate for the 'old' arc AB in ARCS

P3: insert 'new' arcs AN, NB, N4 to ARCS

P4: change time coordinates for details of AB in ROAD CHARACTERISTICS

P5: insert details on AN, NB, N4 to ROAD CHARACTERISTICS

Pg: modify information about the Environmental Objects

Since the RDB is continually operational, an independent process Q requiring access to

information on AB may be expected at any time.

The processes Pi, P2 and P4 are atomic, but P3 , P5 and P^ can be decomposed as

follows. The process P3 is a collection of the following sub-processes:

P3 = P3 .AN n P3 .NB II P3 .N4

where P3 .XY means 'insert tuple representing segment XY into ARCS'.

vu

Similarly, the process P5 consists of:

Pg = P5.AN II P5.NB II P5.N4

where P5.XY means 'insert details on segment X Y into ROAD CHARACTERISTICS'.

Finally, the process of Pg is composed of:

Pô = (Pô.COPY II P6.NEW-TIME) > “ Pô.NEW-LOC > ~ Pô.MOD-TIME

where

P6 ;C0 PY = retain those details about EO except the details to be changed

î^ôJÆW-TIME = create new time coordinates for the changed part of

the EO-duplicate

PôJÆW-LOC = modify the above duplicate to refer the EO to

the 'new' segment NB

P6.M0D-TIME = modify time reference in EO-original to mark

it as now being a 'historical' value

Typically the sequence of processes is: (Pi > P3 > P5 > P^ > P4 >- P2) JL Q

which after substitutions yields the following expression to analyse:

(Pi > (P3.AN II P3.NB II P3.N4) > (P5.AN II P5.NB II P5.N4) > (Pô.COPY

PÔJÆW-TIME) > - P0.NEW-LOC > - Pô.MOD-TIME) > - P4 >- P2) -P Q

For instance, some possible decompositions of Q may be worth considering since

the following conditions are reasonable: P3 ,n4 IIQ, P 5 .N 4 IIQ and P^ IIQ.

On current computer systems using sequential processes in a conventional

programming languages the strict parallelism, such as this between the parts of Pg,

cannot be implemented. In practice one might do Pg.COPY by duplicating the comp

lete details about EO, and then adjusting the copy. Thus after copying, one does

P0 .NEW-TIME by assignment statements which ovewrite the now-obsolete details.

Vlll

while retaining the unchanged details in the copy. To avoid the clash with Q some

form of record locking is required.

