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ABSTRACT

Drop formation processes from a nozzle of diameter 
0.0602 cm in immiscible liquids were investigated 
experimentally and theoretically. Experimental data for 
drop sizes in prejetting and jetting regimes were 
obtained.

In the prejetting conditions for water into decane 
system, data for drop formation time, drop diameter and 
drop velocities were obtained at three different Weber 
numbers using still photography and high speed cine film 
photographic techniques. A model has been developed to 
account for a two stage drop formation process in the 
prejetting regime.

In the jetting regime three liquid pairs were 
employed with injection of dispersed phase from above and 
below the continuous phase to give a range of physical 
properties. Interfacial tension was varied from 3.1 to
27.5 mNm ^. The ratio of the continuous phase to the 
dispea^ed phase densities was varied from 0.73 to 1.36. 
The ratio of viscosities of the two phases was varied from 
0.063 to 15.7. The experimental data for minimum drop 
size, mean drop size, jetlength and jet diameter were 
obtained from still photography. Experimental data for 
wave length, wave period, wave amplitude of the fastest 
growing disturbance on the jet were obtained by 
stroboscopic and high speed photographic techniques.

A linear stability analysis for small scale
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hydrodynamics of the wave motion has been developed to 
predict the wave growth rate in the jetting regime. 
Patterns of drop formation and drop size variations in the 
intermediate regime were investigated and a
semi-theoretical correlation was obtaied to predict the 
drop size in the intermediate regime.
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CHAPTER 1 

INTRODUCTION

A knowledge of drop size and drop size distribution 
is of fundamental importance for an understanding of the 
heat and mass transfer characteristics in liquid-liquid 
systems. The heat and mass .transfer rates are directly 
proportional to the interfacial area created in 
liquid-liquid contactors. A wide variety of contacting 
equipment is used to bring immiscible liquid phases 
together. Essentially the purpose of all these devices is 
to disperse one phase as a drop within another phase. For 
an optimum design of a liquid-liquid contactor it is 
desirable to have a knowledge of the effect of such 
parameters like nozzle diameter,physical properties of the 
system and flow rate on the interfacial area created.

The present work concentrates on the drop formation 
from a nozzle in immiscible liquid systems. Experimental 
work has been carried out to understand the effect of flow 
rate through the nozzle, nozzle size and the physical 
properties of the two immiscible phases on the sizes of 
the drops produced.

When one liquid is injected into a second immiscible 
liquid through a nozzle a number of distinct regimes can 
be identified in the drop formation process. At a low 
flow rate through the nozzle drops form at the nozzle tip. 
As the flow rate increases, a certain critical flow rate 
is reached when a jet is formed with drops growing at the



end of this jet some distance away from the nozzle. At 
higher flow rates, the length of the jet increases and 
drops of various sizes break off from the end of the jet. 
At still higher flow rates the jet becomes unstable and
disintegrates at a number of points producing a wide range 
of drop sizes.

The different regimes of drop formation correspond 
to the changing influence of the forces acting on the jet 
and growing drops. Various theories have been put forward 
to explain the changing mechanism of drop formation.

In chapter 2, the main results of the previous
theories and the experimental findings on drop formation 
in liquid-liquid systems, are presented. In chapter 3, 
the experimental techniques were devised to obtain further 
data on the factors influencing drop size. This data is 
critically examined in the light of the existing theories 
in chapter 4. The experimental observations suggest that 
many of the assumptions are incorrect and need to be 
re-examined for a better understanding of the mechanism of 
drop formation.

In chapters 5 and 6 an attempt is made to incorporate 
the new experimental findings to achieve a better 
explanation of the different regimes of drop formation and 
extend the theories to provide a basis of predicting the 
drop size in the low flow rate regime. A new approach is
suggested for predicting drop sizes at low flow rates and
modifications to existing theories are presented to 
explain the distribution of drop size formed at higher



flow rates.
The objectives of the present work are to acquire 

further understanding of the fundamental mechanisms of 
drop formation from a nozzle in liquid-liquid systems and 
to provide more suitable methods of predicting the drop 
size and its variation with the flow rate through the 
nozzle based on the hydrodynamics of the jet and growing 
drops.



CHAPTER 2

LITERATURE SURVEY

2.1 INTRODUCTION

It has been an area of interest of many previous 
workers to be able to predict the drop size in 
liquid-liquid systems. Various attempts have been made by 
many workers to develop a theoretical or semi-theoretical 
basis to predict the diameter of the drops under various 
flow conditions. In most of the cases experimental drop 
size data were presented in the form of various empirical 
correlations of Sauter mean drop diameter. The mean drop 
diameter was then related to a number of dimensionless 
groups.

When a liquid issues from a nozzle into a second 
immiscible fluid, the liquid forms itself into discrete 
drops. The size of these drops depends on the densities 
and viscosities of the liquid and the surrounding fluid; 
the interfacial tension between the two fluids, the size 
of the nozzle and the velocity of liquid as it leaves the 
nozzle. The variation of the drop size as the velocity 
through the nozzle increases is shown in the typical curve 
as given in Figure 1.

Various distinct regimes can be identified on the 
basis of the flow rate of the injected liquid through the
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nozzle. The drop formation mechanism is different for the 
different regimes.

At low flow rates, drops form at the nozzle tip and
detach at, or close to, the nozzle tip. This is the
prejetting regime. The point of detachment of the drops
keeps moving away from the nozzle tip as the flow rate
increases, leaving a small residual volume of liquid at
the nozzle tip which acts as a seed for the growth of the
next drop. Eventually, a flow rate is reached where drops
no longer form at the nozzle but instead grow at the end
of a short continuous cylindrical column, known asajet.

th0The liquid velocity at this point is known as^jetting 
velocity, U^. With a further increase in the liquid 
velocity, drop formation occurs through the breakup of the 
liquid jet. This is the jetting regime.

On the basis of regularities in drop formation 
pattern and variation in the jet length, the jetting 
regime itself can be distinguished into two distinct sub 
regimes. In the early jetting regime where the flow rate 
is moderate, the jet breaks-up into drops showing regular 
patterns or families of drop sizes. The families contain 
different combinations of large and small drops with the 
proportion of small drops increasing with liquid velocity 
through the nozzle. Thus the mean drop size tends to 
decrease. In the early jetting regime it has been 
observed experimentally that the jet length increases 
slowly with the flow rate. Further increase in the 
velocity causes a more rapid increase in the jet length



and the drop families become more extensive.
Experimentally it has been observed that in the region 
where the jet length increases rapidly with the liquid 
velocity, the extended families contain only two sizes of 
drops, a small drop and a large drop. The proportion of 
large drops to small drops varies with velocity. The 
ratio reduces as the velocity increases until a point is 
reached where the formation of large drops almost 
completely disappears and the mean drop size reaches a 
minimum value. This condition occurs at a critical 
velocity denoted by U^, which can be seen in Figure 1 and 
serves to mark the end of the early jetting regime with a 
minimum in the drop size and a maximum in the jet length. 
Beyond this critical velocity asymmetric waves start to 
appear on the jet. The jet reduces its length and 
acquires a sinuous shape. The drops are formed 
irregularly, thrown off by 'whipping' actions at the end 
of the jet. The mean drop size increases during this late 
jetting regime. Finally at very high flow rates the jet 
retreats back to the nozzle and the breakup process 
becomes more random with the fluid atomizing at the nozzle 
tip.

It is clear that the prediction of the drop sizes 
formed by the injection through the nozzle needs to 
account for various flow regimes encountered as the liquid 
flow rate through the nozzle increases.

At low velocities in the pre-jetting regime single 
drops are formed at, or in the close vicinity of the



nozzle tip. In this regime, as shown in Figure 1 from A 
to B, drop sizes change very little with increasing 
velocity. Theories of drop formation in the prejetting 
regime rely on a static force balance where buoyancy and 
surface tension forces are considered to be the principal 
governing forces in determining the drop size.

In the jetting regime where the drops are formed at 
the end of a liquid jet, previous workers have adopted 
different approaches based on viscous, inertial and 
surface tension forces acting on the surface of the liquid 
jet. They assumed that these forces are responsible for 
the formation of a disturbance wave on the surface of the 
liquid jet. The amplitude of the wave grows on the jet 
surface and when it becomes equal to the jet radius, the 
jet breaks-up to form drops. A number of theoretical 
solutions have been introduced in the literature to 
predict the wave length of the fastest growing wave on the 
surface of the jet and then this wave length was used as a 
criterion to predict drop sizes under the jetting 
conditions. These theories are used to predict the 
minimum drop size in the region which often corresponds to 
the maximum jet length conditions, as shown in Figure 1 
from C to D.

It has been observed experimentally that the drop 
size changes from a maximum drop diameter in the 
prejetting condition to a minimum drop diameter at the 
maximum jet length condition. Empirical correlations have 
been- proposed to match the experimental observations in



these two extreme cases. However, very little information 
is available in the literature to predict drop size in the 
intermediate region, from B to C in Figure 1.

The following literature survey will therefore 
examine the recommendations for predicting the drop size 
in the prejetting regime, the minimum drop size regime and 
the intermediate regime.
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2.2 DROP SIZE PREDICTION IN THE PREJETTING REGIME
The formation of droplets at the nozzle in 

liquid-liquid systems was studied by Harkins & Brown (1). 
The purpose of their study was to develop a reliable means 
of measuring interfacial tensions between two immiscible 
liquids. They derived an equation to predict the volume 
of a drop formed from a nozzle at a very low velocity by 
equating the buoyancy force acting on the drop to the 
interfacial tension force at the nozzle. The drop volume 
was corrected for the fraction (1 - \̂ ) of liquid which 
remained behind at the nozzle at the time of drop 
detachment. The fraction, U, was found to be a function 
of the detached drop volume and the nozzle diameter. The 
buoyancy force F^, and interfacial tension force,F^ were 
expressed as;

= vAPg
F = a 7TDs n

where V is the total volume of liquid attached to the 
nozzle.Therefore the volume of a drop formed at static 
conditions was given as;

(j-TTDxl/
= Vy = [---- 3 = C------ ] [2.1]Apg o

gD^APwhere Eotvos number Eo = [--- ---1
a
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In 1950 Hayworth & Treybal(2) extended Harkins & 
Brown's analysis by including inertial and drag forces in 
their force balance equation. They suggested that the 
total volume of the drop, V^, is made up of following 
partial volumes as;

Vf = ?s + [2 2]

where is the volume required to overcome the
interfacial tension force given by equation [2.1] of 
Harkins & Brown.

V is the volume required to reach a sufficient rising r
velocity to break away from the nozzle and was suggested 
to have a form

V = 0.5236 [------- ]

where K is calculated graphically and was given as a 
function of viscosity

[P^^O.747 
^ [ftg] Ô 814

is the negative volume equivalent of the kinetic energy 
supplied by the incoming stream and was calculated as

V .
^ 2APgD

where D is the diameter of the drop. Substituting these
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values of V^, and in equation [2.2] and assuming 
D = (V^/0.5236p'^^ they obtained;

^ ^ Apg Apg Apg

Further they replaced by a constant 0.655 and used 
a graphically calculated value for K in equation[2.3]. 
Thus equation [2.3] can be written as ;

u2 Q
+ 0.0041V^^^^[-^^“] = 0.0021[^^]

 ̂0.747y 0.365^ 0.186 
+ 0.0106(-5-_____G______S----- ) [2.4]

Their work was largely devoted to the prejetting 
conditions where the drop size was uniform and they used 
Alketerge C to vary the interfacial tension. They also 
tried to extend the correlation to the jetting regime, but 
concluded that their correlation is only valid for 
prejetting conditions.

Null & Johnson (3) used a geometric approach to 
predict drop volume in the prejetting conditions, and 
empirically correlated various geometric parameters with 
the dimensionless groupings. They considered a two stage 
drop formation process. Null & Johnson assumed a constant 
velocity of the drop and a linear decrease in the neck 
radius of the drop during its detachment process from the 
nozzle. The first stage corresponds to a maximum travel
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of the top edge of the drop, while the second stage 
corresponds to the jet behind the drop attaining a conical 
geometry. The time of formation of the drop was
determined by a data fitting exercise. For their
experimental data Null & Johnson found this approach to 
have a mean error of 20% compared to 84.7%for the
prediction of Hayworth & Treybal.

c,Meister & Sheele (4) studied a wide range of liquid 
properties and nozzle diameters. They found that the 
Hayworth & Treybal and Null & Johnson's correlation did 
not satisfactorily predict drop size. They extended 
Hayworth & Treybal's analysis for the prediction of drop 
size in the prejetting conditions.

c.
Meister & Sheele(4) considered four major forces 

which act on a drop during the process of its formation at 
the nozzle. The buoyancy force, Fĵ  ,due to density 
*3ifference between the two fluids and the kinetic force 
^k^ associated with the fluid flowing out of the nozzle, 
act to separate the drop from the nozzle. To balance 
these forces the interfacial tension force, F^, at the 
nozzle tip and the drag force, F^, exerted by the 
continuous phase, act to keep the drop on the nozzle. At 
equilibrium they suggested that the force balance equation 
was ;

Fb + Fk = Fg + [2.5]

where F. = V gAPb s



14

3

Fg = a TTD̂

The constants and n need to be evaluated
experimentally to correct any reduction in due to thea
induced continuous phase motion. Upon substituting values 
for Fĵ , Fĵ , Fg and F^ and rearranging the equation [2.5] 
they obtained an expression to predict the volume of 
liquid on the nozzle tip at static conditions as;

n
V ♦ ' s S î f y ________ ...
® APg ApgD Ld J sApg

Further they derived an expression to calculate the 
additional volume due to the volumetric flow out of the 
nozzle during the process of drop break off as;

2 2 Q o; p.a
\  - ^n ] C2.7]

where k^ is another constant.

Combining equations [2.6] and [2.7] they suggested a 
final expression for the drop volume after the detachment 
from the nozzle as ;

Vf = (V + V [2.8]
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(MTD D " 4P.QU^
V. = [ (----) + kj(l.Q (

Apg ° D APg 3APg

Q^D^P ff 1/3
* C..9I

where ;// is the Harkins-Brown correction factor, 
correcting for the residual volume left behind the nozzle. 
Equation [2.9] was derived for a parabolic velocity 
profile in the liquid leaving the nozzle. It was 
suggested that this equation can be used for a flat 
velocity profile if the constant 4/3 in the kinetic term
is replaced by 1.0

• . cMeister and Sheele calculated the empirical constant 
by fitting all data for systems with continuous phase 

viscosity less than 10 centipoise, since for these systems 
the drag term was negligible, and used this value to 
calculate k^ and n for the heptane-water system only.
With these  values for the constants Meister and Sheele
found good results for the prediction of the drop diameter 
with the average mean error 6%.

Chazal and Ryan (5) studied drop formation from a 
nozzle at low velocities, that is for prejetting 
conditions. They considered a two stage drop formation 
process where they suggested that the time required to 
form a drop can be divided into two parts. First, the 
time required for the drop to reach its unstable or 
necking in stage; and second, the time for the drop to 
detach completely after instability has occurred.
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The first stage of the formation process was analysed 
by applying Newton's second law of motion to the drop at 
the instant of instability. They considered buoyancy and 
interfacial tension forces acting on the drop at the 
nozzle and the momentum of the entering fluid. Drag on 
the forming drop was neglected. However, the effect of 
the continuous phase viscosity was taken into account 
during the second stage of formation. The final 
expression was suggested as;

APg au^

2D Ü
- k«(— ---— ) (1 + B) ] [2.10] ̂ a

where B = 0 in the prejetting region
B = 0.286 (ApgDĵ /̂P" in the jetting region 
xj/ = Harkin-Brown Correction Factor 

= Terminal velocity of the. drop 
k^ and k^ are empirical constants.

The equation [2.10] produced good results for their 
experimental data within 6.3% error. When they compared 
their results with Meister and Sheele (4) using equation
[2.10], they found that the curve of drop volume vs flow

crate was roughly comparable, but Meister and Bheele's 
numerical values over estimated by more than 50%. They 
were not able to explain this variation except to suggest 
that the physical properties of the systems used in the
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two studies can vary . significantly. A further
problem of making a comparison was that the techniques of 
measuring of drop volumes were different in both 
cases.

Kumar and Hartland (6) studied drop formation in both 
the prejetting and jetting regimes. They suggested a 
purely empirical correlation to predict drop diameter in 
low viscosity liquids as;

--- = k(We)” (Eo)" [2.11]

where the modified Weber number,

We = ------- , and Eo = —  ————
a a

*Kumar and Hartland calculated values of We and Eo 
from their experimental data and applied a multiple 
regression analysis to predict k,m and n for equation
[2.11]. For the prejetting region they proposed 
k = 1.591, m = -0.068, and n = -0.278.

This equation produced good results for their own
experimental data and also in predicting the results of

eMeister and ^heele. All these studies were found to be 
applicable only to the prejetting regime. Thus, in order 
to specify the limit of application of these correlations, 
it is necessary to be able to predict when the onset of 
jetting occurs.
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2.3 PREDICTION OF THE JETTING VELOCITY

The drop volume correlations described in the 
previous section apply only at low velocities where drops 
form directly from the nozzle. As the flow rate through 
the nozzle is increased, a critical velocity, called the 
jetting velocity U^, is reached, above which a jet of 
liquid issues from the nozzle. The jet breaks-up into 
drops, but because the drop formation mechanism has 
changed , the drop can no longer be predicted by the low 
velocity correlations. Various attempts have been made to 
pinpoint this critical velocity at which the jetting 
occurs.

Smith and Moss (7) found that for a liquid injected 
into a gas the jetting velocity U^ can be expressed as;

0.5
[̂4 = k[ [2. 12]

where k is a constant. For their experimental conditions 
they found it to vary between 2 and 3.

Smith and Moss reported that the value of k is a 
function of surface tension, the lowest value of k 
corresponding to the lowest surface tension.

Hayworth and Treybal (2) worked with liquid-liquid 
systems and found that the jet usually formed when the 
velocity through the nozzle was around 10 cm/sec. This 
was an average value for their systems. They did not make 
any attempt to correlate the jetting velocity.
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Fujinawa et al (8) developed an empirical correlation 
to predict the jetting velocity in liquid-liquid systems. 
In their empirical correlation they considered the jetting 
velocity as a function of surface tension and nozzle 
diameter, and produced an expression

^ 0.20
u. = 4.4[-------------------------------- [2.13]

(D„

Ryan (15) studied liquid-liquid dispersion and 
produced an empirical correlation to predict the jetting
velocity. He considered the density difference of the two 
phases and produced an equation

Pà 2tl? p 0.95
ÂÔ [--- ] ” 1.64 [2.14]^  gD„ APgo/

Ryan assumed 0.95 % 1 and simplified the above equation as

(7 1U. = 1.16 [--- ] [ ------ ] [2.15]

CMeister and Sheele (4) gave the first theoretical
basis to define the jetting velocity in liquid-liquid
systems. They considered two possible jet formation 
mechanisms on which they have based their predictions for 
the jetting velocity.

The first mechanism they proposed was that the jet 
will form if there is sufficient upward force at the
nozzle exit, to form a jet. They suggested that if the
drop is not large enough to detach from the nozzle , the
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kinetic force of the liquid leaving the nozzle can either 
enlarge the drop or raise the drop up on a cylinder of 
liquid, thus forming a jet. Further, they have postulated 
that if sufficient upward force exists to form a jet, this 
will occur in preference to further enlargement of the 
drop. They derived a force balance equation at the 
jetting velocity as;

Fk + fp =

where F. kinetic force — ————————
3 2CTTTD^F excess pressure force =  --

D
and F^ interfacial tension force = (JTTD s n

Upon substituting these values in equation [2.15] and 
rearranging;

U. - 1.73 [ (— (1 - --) ] [2.16]

In a second proposed mechanism Meister and Sheele 
considered that the jet will form when the initial rise 
velocity is sufficiently low and the drop rise is less 
than one drop diameter during the time of formation of the 
next drop. Thus the drops will then merge to form a jet.
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Their experimental data fits well with equation 
[2.16]. They did not find any experimental support for 
their second proposed mechanism when they analysed their 
cine film sequence during the jet formation.

Prediction of the jetting velocity is a crucial step 
in^*Vttempt to describe the whole range of behaviour of 
drop formation from nozzles, since after jetting, there is 
a complete shift in outlook from a force balance approach 
to a stability theory approach.
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2.4 DROP SIZE PREDICTION IN THE JETTING REGIME

It is accepted in the literature by most workers that 
the drop formation mechanisms are different in the 
prejetting and the jetting regimes. For prejetting 
conditions the drop size prediction is generally based on 
a force balance type of correlation as described in 
section 2.2 . On the other hand, it is agreed that the 
size of drops formed from a cylindrical liquid jet in the 
jetting regime is controlled by the surface disturbances 
which result from the jet instability. These disturbances 
grow on the surface of the jet and cause it to break into 
drops. In the jetting regime the breakup process is 
controlled by the rate of amplification of the 
disturbances on the jet surface.

The method of predicting the drop size from the 
disintegration of a cylindrical jet was established by 
Tyler(10), who argued that if the disturbance wave of 
length \ is responsible for the breakup of a jet into 
drops, then the volume of the resulting drop will be equal 
to the volume of the cylindrical portion of the jet of 
length \ , that is :

7TD  ̂ 1TD?X
Vp =  = — 3- [2.17]

= [2:!^] 0-33 ■ ^2.18]
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This equation can therefore be used to predict the 
drop size if the wave length of disturbance \ is known. 
This information can be found by considering the 
instability of liquid jets under the action of surface 
tension, viscous and inertial forces.
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2.4.1 THE RAYLEIGH'S INSTABILITY ANALYSIS

The instability of liquid jets has been a subject of 
investigation over the last one hundred years, but over 
the last two decades the interest has markedly increased 
and this has been reflected in the vast increase in the 
number of publications.

The instability theory predicts what kind of 
disturbances will trigger the breakup of the jet to form 
drops. Rayleigh(9) attempted to explain the growth and 
propagation of the disturbances on the surface of the jet.

The general form of a disturbance on the surface of 
the jet can be expressed as;

0 = cos(kz) [2.19]

where is the initial amplitude of the disturbance, (X is 
the growth rate of the disturbance and k is the wave 
number of the growing wave and is equal to 27T/ \.

He showed by considering the effect of the radii of 
curvatures on the pressure in a cylinder of fluid, that if 
the nodes on the surface of the jet are farther apart than 
the circum^ference of the cylinder, then the pressure will 
be greater at the node than between the nodes; and the 
nodes will amplify. But if the nodes are less than a 
circum^ferential distance apart, the pressure will be 
greater between the nodes than at the node; and the npode 
will diminish. Therefore, a critical wavelength, equal to 
the jet circum^ference exists, above which waves will 
amplify and below which waves will diminish.
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The disturbances which do grow on the surface of the 
jet will cause the jet to breakup. The disturbance wave, 
which grows fastest, will dominate the break up process. 
When the amplitude of the fastest growing wave becomes 
equal to or more than the radius of the jet, the jet
breaks up into drops.

Lord Rayleigh in the late nineteenth century 
suggested a number of solutions for jet instability which 
have been the basis for all subsequent studies. At the
first attempt, Rayleigh (9) suggested an analytical 
solution to predict growth rate for an axisymmetric wave 
on the surface of an inviscid, stationary liquid jet in 
air. His expression was;

ff ka(1 - k^a^)

It is clear from the above equation that the growth 
rate does depend on the surface tension(a ), liquid jet
density(^) and the jet radius(a).

The wave which has a maximum growth rate can be 
Identified from Figure 2, maximising (O') with respect to 
ka in equation [2.20]. The growth rate (a) is real and 
positive for 0<ka<1. It was found that the a passes a 
maximum value when (%a)max =0696 or = 9.02a. By
substituting these values in equation [2.20] Rayleigh 
obtained ;
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“ max = ■̂ 2.21]sp^a

Rayleigh's analysis was used directly by Tyler(10) 
for predicting the drop size. Tyler measured the wave 
lengths of the waves appearing on the surface of the jets
of various liquids. In all cases he found a close
agreement between the wavelength \ and the corresponding 
intervals between the drops after the breakup. Thus 
substituting for

X=X = 27T/(ka)^^^ and (ka)^^^ =0.696, the following
H la X  u ta X  Illâ.X

simple result was obtained using equation [2.18];

D 1.5 X 0.33 0.33
—  = [------- ] = [6.77] = 1.89 [2.22]

(ka)max

Tyler's measurements of drop size and jet diameter 
produced values in the range of 1.88<D/D . <1.94. These 
results confirmed Tyler's hypothesis and suggested that 
the instability theory could be used to predict drop sizes 
resulting from the breakup of liquid jets.

The use of an instability theory to isolate the 
fastest growing disturbance as the governing factor in the 
jet breakup, furnishes a prediction only for the minimum 
drop size. However, the prediction of the drop size 
distribution can not be made without further
considerations of the likely influence of the other 
disturbances on the surface of the jet. Further 
refinementsof Rayleigh's instability theory have therefore



27

X10- 1

RAYLEIGH'S INSTABILITY CURVE

5.00

3.00.
LUf—

X 2.00.
O(XCD

1 .00.

.00
.00 .20 .40 .60 .80 1 .00

WAVE NUMBER, ka

FIGURE 2 INSTABILITY CURVE SHOWING MAXIMUM GROWTH RATE AT WAVE NUMBER 0.696



28

yielded better prediction of the minimum drop size, 
particularly for liquid-liquid systems, but have not been 
useful in explaining the spread of drop sizes encountered
in the jetting regime, 
concentrate exclusively 
liquid-liquid systems.

Thus the following sections 
on minimum drop size in
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2_. 4. 2 MINIMUM DROP SIZE IN LIQUID-LIQUID SYSTEMS

In liquid-liquid systems it has been reported by 
several previous workers that there is a minimum drop size 
which occurs around a critical velocity near the 
conditions where the jet attains its maximum length. 
Predictions of the minimum drop size are based on 
extending Rayleigh's analysis to include the effect of the 
properties of the liquid surrounding the jet and influence 
of the jet velocity on the growth rate.

2_.A.2.1 INFLUENCE OF THE CONTINUOUS PHASE DENSITY

Christiansen and Hixson (12) derived an equation for 
the instability of an inviscid liquid jet in a second 
inviscid liquid by extending Rayleigh's equation to 
include the density of the surrounding phase. The 
equation for the growth rate of disturbances on the
surface of the jet was given by;

„ ka (1 - k^a^)
oi _ (---g) [-------------------- ] [2.23]

p^a Ig/ka) K^(ka)
I^(ka) K^(ka)

where s = ^c / ^d the ratio of the density of the two
phases. This equation reduces to Rayleigh's equation for

aPc wave length which maximises^in equation [2.23]
was found to be a function of the density ratio. This
equation predicts

4 50] < \nax < 4.83 D. [2.24]
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Based on the same reasoning as Tyler this result 
suggests that the drop size in liquid-liquid systems 
should be in the range of;

1.877 < D/Dj < 1.922 [2.25]

The experimental result of Christiansen and Hixson gave 
value of D/Dj = 2.07, which agrees well with the
prediction from their instability theory.

Christiansen & Hixson's experimental results and 
theoretical predictions have been used as a basis for 
subsequent design correlations for minimum drop size in 
liquid-liquid systems. It has been generally observed 
that the ratio of the minimum drop diameter to the jet 
diameter is constant around a value of 2.

They also suggested a method of predicting the 
critical velocity at which the minimum drop size was
observed. This was obtained by correlating the wave 
celerity with the jet velocity. Most of their data fits 
the expression (U^yc^)=2.33 where c., is the celerity or 
inherent velocity of the sinuous wave and is given by;

aK 0 50
C = [----------------] [2.26]

I^(ka) Kg(ka)
I^Cka) K^(ka)

Treybal (13) used equation [2.26] to predict the 
optimum jet velocity for operating a liquid-liquid 
extraction column to produce maximum surface area. 
Treybal modified equation [2.26] to an empirical
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correlation for predicting this critical velocity;

D. 2 0.50
~ 2.69 [-^--] C  (0.5ip^ + 0.427p^)] [2.27]

°n °jm

where D i s  the mean jet diameter

Djm/D = [ 1 + 0.485Eo]"1 for Eo< 0.615 [2.28]

Dj^/D = [ 0.12 + 1.51(EoP‘̂ ) ]"1for Eo> 0.615 [2.29]

As is clear from the above equations, Treybal 
suggested that this critical velocity is a function of the 
jet diameter rather than nozzle diameter. In equations 
[2.28] and [2.29] the jet diameter was extrapolated from 
the work of Christiansen & Hixson. However, it should be 
noted that Christiansen & Hixson did not measure the jet 
diameter experimentally but estimated it retrospectively 
from the drop diameter.
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2.4.2.2 INFLUENCE OF THE JET VISCOSITY

The inclusion of viscous forces into the instability 
analysis may be expected to change the results because of 
the damping effect of viscosity on the wave growth.

It was Rayleigh (16) again who predicted the growth
rate of axisymmetric surface tension waves for a viscous 
stationary liquid jet in air and suggested the following 
equation.

cr / 1 - k^a^ \
C =  f -  -2 -2------------   [2 30]2/lal I (k"̂  a^) I

^ o 2 2C =--?-] - kTa^ - 1.I^Ck^ a^)

This equation suggests that the growth rate increases
as ka tends to zero which means, in viscous systems, long
wavelength waves will grow fastest and break the jet into 
drops.

Weber (17) combined the two analyses of Rayleigh, 
that is equations [2.20] and [2.30], to derive an 
expression for the wave growth on the surface of liquid 
jets as;

,,,2̂ 2
O ^ a 9 9 9 9O' + 3[— ^— ]0J =  2 [ 1 “ k a ] k a  [2.31]

pa 2pa

This equation includes the effect of viscosity on the 
growth rate of the disturbance on the jet surface. For an 
inviscid liquid jet this equation can be reduced to 
Rayleigh's equation [2.20] with the assumption that
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K^(ka)/K^(ka) = 2/ka. The maximum growth rate was found 
at a wave number (ka)^^^ given by ;

1
ka = --------- n”Rn where Z. is the Ohnesorge number

(2 + 6Z.)" ^

Upon substitution of this value in Tyler's equation 
[2.18] gives the following prediction for the drop size 
from a stationary liquid jet in air was obtained

D
-- = 1.88 (1 + 3Z.)° 157 [2.32]
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2.4.2.3 INFLUENCE OF THE CONTINUOUS PHASE VISCOSITY

Tomotika(18) presented an equation for the breakup of 
a stationary viscous liquid jet in a stationary viscous 
liquid continuous phase. Tomotika considered the case 
where the densities of the dispersed and continuous phases 
were very small to obtain an equation for the growth rate 
of axisymmetric waves on the surface of the jet. The
final equation was suggested as

Cl = 1 _ f(ka) [2.33]
2a.H

where f(ka) is a complicated function of viscosity ratio 

and Bessel functions of the wave number.

Meister (19) investigated the general solution
presented by Tomotika to calculate the growth rates of 
disturbances on the surface of a cylindrical liquid jet 
for various limiting cases. The characteristic equation 
for growth rate was given by ;

(X̂  + OfAl = (---q)A2 [2.34]
pa

where A1 and A2 are the complicated functions of the wave 
number, Ohnesorge number, density and viscosity ratios of 
the two phases. The criteria for these limiting cases was 
based on the Ohnesorge numbers of the jet,Zj and the
continuous phase Z^. These criteria are outlined in 
Table 1 .

Further, they suggested that the wave travels on the 
surface of the jet at the interfacial velocity which for 
liquid-liquid systems is less then the average jet 
velocity. They proposed an expression for the interface
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TABLE 1

SUMMARY OF THE SPECIAL CASES FOR THE PREDICTION OF THE WAVE
NUMBER AND THEIR CRITERION

1 SPECIAL CASE PREDICTION OF WAVE NUMBER CRITERIA 1
1 low fL jet in 
1 low jU, liquid Zj<<1 Zc<<1 1

1 High fi jet in 
1 high fX liquid Zj>>1

I
ZO>1 1

1 High ILL jet in 
1 low [x liquid

kj|j=1/(2(1+3Zj))-5 Zj>>1 Zc<<1 1 
1

1 Low fi jet in 
1 high fx liquid

kjn=1/(2(1+Zc))-5 Zj<<1 1Zc>>1 1 
1
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velocity based on continuous phase drag on the jet and 
derived the following equation to predict the minimum drop 
volume ;

2ir D̂^--------a---------------------- [2.35]
[-Î]
"a

where Uj is the interfacial velocity, is the average 
jet velocity and N is a function of a critical Reynolds 
number which depends on the wave length of the 
disturbance.

Kitamura, Mishima and Takahashi (25) presented a 
semi-theoretical approximation of Tomotika's analysis and 
showed that the influence of the continuous phase 
viscosity on the size of the fastest growing disturbance 
was very small for the range O . K  /̂ /jUy <20. They proposed 
therefore a slight modification to equation [2.32] which 
could be used for a stationary viscous jet in a moderately 
viscous continuous phase. Their equation for the wave 
number at which the growth rate was found to be maximum is 
given by;

0.95

where Z^ is the Ohnesorge number of the jet phase. This 
value gives the following prediction for the drop size

1.91 ( 1 + 3Z.)° 1*7 [2.37]
°3
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2.4.2.4 INFLUENCE OF THE JET INERTIA

All the analyses described so far have assumed a 
stationary liquid jet in a stationary continuous phase. 
The predicted values of the wave number are all JLess than 
0.7 giving the drop size ratio D/Dj = 2 according to 
Tyler's equation [2.18]. However, Bright(24) found that 
the measured values of the wave number for liquid-liquid 
systems were around a value of unity or greater; even 
though drop size ratios were still equal to two. Bright 
suggested that the motion of the jet rela- tive to the 
continuous phase introduces another term in the 
characteristic equation for growth rate. His analysis 
produced the following equation;

Q ka (1-ka) - -2DU
a J

(ka)2 [2.38]

where B is a function of viscosity ratio /̂ //̂  , and D is a 
function of the velocity gradient across the jet interface 
due to drag of the continuous phase. With this equation 
Bright was able to show that the fastest growing Wave 
could have values of wave number equal to or greater 
than 1 ,

Bright proposed an alternative hypothesis that an 
axisymmetric disturbance wave will always travel at a 
velocity less than the jet velocity and derived an 
expression for the velocity of the wave based on equation 
[2.38] as;
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C I* + sUK* + F
U I* + sK + G

where U is the ratio of jet to continuous phase velocity, 
F and G depend on the viscosity ratio and the velocity 
gradient across the interface.

Using equations [2.38] and [2.39] Bright suggested an 

equation to predict the minimum drop size as;

27T̂ D?
= ----a  [2.40]f

(ka)max g

For U = 0 ( no relative motion ) and s =0 ( liquid
jet in air ) equation [2.40] reduces to Tyler's equation. 
In other words, in liquid air systems the fastest growing 
wave is travelling at the same velocity as the jet, but in 
liquid-liquid systems the wave always travel more slowly 
than the jet. This phenomenon was observed in Brights 
experiments. Equation [2.40] explains why: although wave
number is larger than predicted by stationary theories, it 
is compensated by the increase in the drop volume between 
the antinodes of the wave due to a difference between the 
wave and the jet velocities.

Developments of instability theory for liquid-liquid 
systems to account for the physical properties of the two 
phases and relative motion between the jet and the 
surroundings have provided better methods of estimating
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the minimum drop size from the breakup of a liquid jet. 
The general procedure is based on theoretical calculations 
of the wave number, ka; and the wave velocity, C of the 
fastest growing wave in addition to the use of an equation 
relating the drop volume to the volume contained between 
the one wave length of the fastest growing disturbance. 
However, none of these theories can explain the range of 
drop sizes found in practice in the early part of the 
jetting regime. The next section will deal with the 
correlations to predict mean drop size in this regime.



40

2.5 DROP SIZE PREDICTION IN THE INTERMEDIATE REGIME

Most of the theories of drop size reported in the 
literature have been developed either for the prejetting 
conditions ( based on a force balance approach ) or for 
the conditions where the minimum drop size was observed ( 
based on the instability theory). Very little information 
is available for predicting drop distributions in early 
jetting conditions where quite repeatable patterns of 
drops have been observed. A large number of experimental 
drop size data sets in the prejetting and the jetting 
regimes have been obtained by many previous workers for 
various systems, where drops are formed by injecting one 
liquid into the other through a nozzle or orifice. Most 
of the workers have developed empirical correlations based 
on the Sauter Mean Drop Diameter, D32. These correlations 
have their own assumptions and limitations depending on 
nozzle diameter, flow conditions and physical properties
of the systems.

2.5.1 EXPERIMENTAL OBSERVATIONS

To bridge the gap for the drop size prediction 
between the prejetting and the maximum jet length 
conditions, Horvath et al (22) studied the drop formation 
and the drop size distribution in both the regions. They
reported that in the prejetting conditions at low
velocities, the drops were very uniform. When the
velocity was increased they observed that at a critical 
velocity where the jetting starts, the drop formed at the
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jetting velocity and further, at higher velocities, drops 
were of two different sizes. The plots of their 
experimental data on the drop size distribution at 
different jet velocities are shown in Figure 3.

Figure 3 suggests that the distribution is no longer 
uniform, but instead it is a bimodal distribution. It may 
also be seen from Figure 3 that the small drops prevailed 
at the higher velocities, which corresponded to the 
maximum jet length conditions where the larger drops 
disappear almost completely. However, this velocity at 
which only small drops appear, could not be achieved by 
them.

Keith and Hixson (11) experimentally studied drop 
sizes from liquid jets in liquid-liquid systems. For 
small nozzles they found that the curve of drop surface 
area vs flow rate shows a sharp maximum at a particular 
flow rate. The maximum becomes less pronounced for larger 
diameter nozzles. For most systems this maximum occurred 
at a velocity slightly below the velocity associated with 
the maximum jet length. The velocity at which the maximum 
surface area was obtained was shown to depend on nozzle 
diameter. They also observed that at the flow rate for 
the maximum surface area, the drops were surprisingly 
uniform. This uniformity suggests that some regular 
periodic disturbances occur on the jet which causes a 
regular jet breakup. They further studied the
distribution of drop sizes in the jetting region and found 
that the standard deviation of the drop size decreases
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gradually until the jet attains its maximum length, after 
which the standard deviation increases quite suddenly due 
to more random breakup mechanisms.

Van den Akker (23), in his experimental studies 
observed various combinations ( or families ) of large and 
small drops in the early jetting region depending on the
nozzle velocity. In most of the cases he found that the
sizes of large and small drops were constant, but the
relative number of the two kinds of drop in a combination 
varied. Further, he found that at a higher velocity (98.7 
cm/sec in his case) only small drops appeared. He 
reported this velocity as the critical velocity where the 
maximum jet length was observed.

Van dèn Akker measured the volume of large and small 
drops and found that the volume of the large drop was 
about twice . the volume of the small drops. This 
phenomenon of the formation of double sized drops was also 
reported as a 'twinning' effect by Christiansen and Hixson 
(12), where they observed only two types of drops at the 
flow rate below the critical flow rate; one equal to the 
ideal one wave length drop and one double that size or 
twin. They analysed their high speed cine films and 
suggested that the double size drops were created by the
oscillation in the jet length. The jet length fluctuates; 
releasing a small drop at its shortest length and a large 
or twin drop at the longest stable position. This 
phenomenon was experimentally observed by Christiansen and 
Hixson only at the flow rate just below the critical
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value, where oscillations were very small. At the lower 
flow rates they suggested that the jet oscillations 
increases ; corresponding to an increase in the number of 
the larger drops. This apparently explains the larger 
mean drop size and the consequent decrease in the surface
area at low flow rates.

eMeister and &heele attempted to explain their 
experimental data in the range of jet velocities where the 
jet length was shorter than the two wave lengths of the 
growing wave. They suggested that a regular alternating 
pattern of drop sizes will occur. After a drop breaks off 
as a result of an instability mechanism, the remaining jet 
is less than one wave length long and the next drop begin 
to form by the force balance mechanism.

Recently Bright (24) observed that when the nozzle 
velocity increases above the jetting velocity, drops break 
off the jet in various families at regular intervals. He 
said that the families contain drops of different sizes 
but the volume of each drop is an integer multiple of the 
fundamental (minimum drop) volume. He suggested that the
large drops in the family grow by the accumulation of the
jetting liquid within successive waves on the jet.

Bright confirmed the previous observations made by 
Horvath(22) and Van den Akker(23) and said that the
composition of the drop families changes within the
jetting regime. At low velocities he reported a 
preponderance of large drops in a family, while at higher 
velocities more small drops were observed.
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2.5.2 EMPIRICAL CORRELATION TO PREDICT THE DROP DIAMETER

It has been reported in the literature that as the 
flow rate increases through the nozzle the mean diameter 
of the drop decreases from the maximum value in the 
prejetting conditions to a minimum value which is observed 
near the maximum jet length situation. Instability theory 
also predicts that the minimum drop size is formed
by the fastest growing wave on the surface of the jet at 
the maximum jet length condition. Skelland and 
Johnson(14) suggested that the critical velocity at which 
maximum jet length was observed, could be used as a 
parameter to correlate the drop size .They plotted their 
experimental data ^3 2 /^jm ^n^^m where is the
critical velocity of the jet at which the maximum jet 
length was observed. They suggested that this critical 
velocity can be calculated using the continuity of mass 
between the nozzle and the point of breakup as follows;

D ^
"m = “cm (:*-) [2 41]

jm

where U is the velocity of the jet at the minimum drop cm
conditions and D. is the jet diameter at the maximum jet]m
length. U , U. can be calculated using Treybal's cm ]m
equation [2.27]. Skelland and Johnson's predicted drop 
size ratio varied within a range

D
,8 (   < 2.6
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Horvath et al (22) developed a correlation using 
Skelland and Johnson (14) and Christiansen and Hixson(12) 
theoretical approaches to predict the mean drop diameter 
in the jetting region. The correlation was suggested as ;

2.06 U
  = ——————— + 1.47 In (“*") [2.42]
^jm .̂ n.( —  )

"c

where the critical velocity was calculated from
Skelland and Johnson's equation [2.41] and the critical
jet diameter was calculated by Christiansen and Hixson
equation for the jet diameter.

Equation [2.42] provides a link between the
prejetting theories for maximum drop size and the
instability theory for minimum drop size. Horvath et al 
compared the prediction of equation [2.42] with Meister & 
Sheele(20) and Skelland & Johnson(14) and found a close
A

agreement with Skelland & Johnson's results in the early 
jetting region.

Kumar and Hartland (6) also produced a purely
empirical equation for the prediction of drop size in the 
jetting region which was based on their experimental data. 
They applied a multiple regression analysis to calculate 
the constants k, m and n for their general equation [2.11] 
and derived a final equation as;
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--- = 1.546 (We)"° (Eo)"° 214 [2.43]
D.

where We is the modified Weber number.
They calculated We and Eo from their experimental data.
The maximum error for the prediction of drop size in the 
jetting region using equation [2.43] was found to be 9.7%.

Bright(24) studied the drop formation process in the
jetting region and reported that the jet breaks-up into
distinct families of drops at different point in the
jetting region as described earlier. He measured the
group formation time (Tg) for different families and the
fundamental period (Tf) of the fastest growing wave on the 
surface of the jet.

Bright considered the formation of distinct size
related drops in a family group with reference to the 
fundamental frequency ) and hypothesized that the
fundamental frequency of the fastest growing wave
interacts with various harmonics of frequency (W^) to give 
a beat frequency, which he identified as the frequency for 
the formation of a family (w^) as ;

0g = Wf - Wh [2.44]

or

W|. o)a Tf—  = (1 — ————) = (1 — ----) [2.45]
“f Tg
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To support his hypothesis he characterized various 
family groupings on the basis of a harmonic ratio;

COl Number of drops in family
--     [2.46]

Number of fundamental volumes in family

n. + n_ + n_ + n. + ....,32 =--1----±----^----:------— -----  [2.47]
D n. + 2n« + 3n, + 4n. + ....m 1 z j H

From the definition of the Sauter mean drop diameter;

n. + 2n, + 3n, + 4n. + .... 

m 1 z j 4

Bright approximated equation [2.48] to get

1 /3D.g n. + 2n« + 3n, + .... '
--- = [--------------------- ] [2.49]
D n. + n, + n, + . . .m 1 z J

Bright plotted the harmonic ratio calculated from 
equation [2.48] against the ratio of jet velocity to 
critical velocity and found the following dependency

%  .
"f “c

Thus from Equation [2.49]

°32 “c  = [— ] [2.50]
“m “n ,

Equation [2.50] predicts mean drop sizes which are in 
close agreement with the data of Horvath et al and
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Skelland and Johnson. Equation [2.50] possesses a 
semi-theoretical justification on the basis of the likely 
interaction of a number of waves growing on the jet.

2.6 SIGNIFICANCE OF THE LITERATURE SURVEY

The survey presented in this chapter has illustrated 
the various methods proposed for estimating drop sizes in 
different regimes of drop formation in liquid-liquid 
systems. All of the theoretical developments presented 
depend on assumptions of the hydrodynamic behaviour of a 
drop or a jet surrounded by a second immiscible liquid. 
The experimental justification for these theories is
founded, principally, on drop size measurements in 
different regimes. However, drop size is always derived 
from more fundamental quantities such as the detachment 
time of a drop in the prejetting regime, or the wave 
properties of disturbances in the jetting regime. In
chapter 3 techniques are described for measuring these 
fundamental parameters in order to ascertain whether the
assumptions of previous theories are in fact justified.
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CHAPTER 3

EXPERIMENTAL APPARATUS AND PROCEDURE

To study the influence of various parameters like 
nozzle diameter, nozzle velocity and physical properties 
of the two phases on the drop size resulting from a liquid 
jet, an experimental programme was initiated to obtain 
data for use in the drop size predictions in the 
prejetting and jetting regimes. Further, to check the 
validity of the existing instability theories, data on 
drop formation time, wave lengths, wave growth rates and 
wave velocities of the fastest growing wave on the surface 
of the jet were obtained. In addition measurements of jet 
length at the point of breakup and the variation of the 
jet diameter with distance from the nozzle were made to 
give a better understanding of the mechanism of drop 
formation.

3.1 APPARATUS

The experimental apparatus used in the present study 
is shown in Plate (1) and a schematic diagram is presented 
in Figure 4. The apparatus will be described according to 
the flow control unit and photographic unit;

3.1.1 FLOW CONTROL UNIT

To minimise the effect of variation of liquid flow 
through the nozzle and its effects on the jet length and 
the resulting drop sizes, it is essential to have a steady 
and constant flow of liquid at a fixed setting.
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A schematic diagram of a flow control unit is shown 
in Figure 5, consisting of a pressurised stainless steel 
feed tank- having a capacity of 0.6 litre,with 5mm 
stainless steel tubing connecting the feed tank to the 
nozzle holder. A hypodermic nozzle having diameter 0.0602 
cm and length 6.0 cm was used. This nozzle gave a fully 
developed laminar flow in the tube. A rotameter and two 
additional needle valves were fitted between the feed tank 
and the holder for fine control of the flow rate of a 
liquid. The rotameter was calibrated for each dispersed 
phase by measuring the volume of the collected liquid for 
a fixed time. A typical calibration curve is given in 
Figure 6 at 20°C.

The feed tank was pressurised from a nitrogen 
cylinder. A pressure regulator maintained the nitrogen 
pressure at 30 psi in the feed tank. The feed tank 
temperature was maintained at 20°C using a Gallenkamp
Thermostatic bath.

The temperature of the continuous phase was also 
maintained at 20°C using a test section which was enclosed 
within a sealed double walled jacket carrying circulating 
water from the thermostatic bath maintained at 20°C as 
shown in Figure 5

The test section was made from a double walled 
perspex sheet of 0.5 cm thickness with the following
dimensions :
Inside : Length - 12 cm Breadth - 12 cm Ht. - 37cm
Outside : Length - 14 cm Breadth - 14 cm Ht. - 38cm
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CALIBRATION OF ROTAMETER AT 20 C
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A perspex scale and a mercury thermometer were 
suspended in the test section to measure the magnification 
and the continuous phase temperature respectively. Hence 
the variation of the physical properties due to the 
temperature variation of the two phases can be ignored as 
the temperatures of both the phases were kept constant for 
all experimental runs.

To recycle the dispersed phase a storage tank of 
capacity 1.0 litre was fitted between the test section and 
the feed tank as shown in Figure 5. A needle valve G was 
fitted between the test section and the storage tank 
through which the level of the liquid in the test section 
was maintained. The outlet from the storage tank was 
controlled by a valve A to refill the feed tank.
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3.1.2 PHOTOGRAPHIC UNIT

In the present study, in addition to still 
photography, a stroboscopic video recording and high speed 
photographic techniques were also employed.

3. 1.2.1 STILL PHOTOGRAPHY

A fixed base stand mounted with a 35mm camera with a 
bellow attachment was used for still photography. A cable 
release mechanism was used to prevent unnecessary movement 
during the photography. A second strobe with a flash 
duration of 15 /xs was used to illuminate the jet and the 
droplets. The flash time was synchronised with the camera 
at a shutter speed 1/60 of a second. A light diffuser was 
placed in front of the flash and provided a uniform 
illumination over the photographic area, which produced 
distinct and measurable boundaries around the jet and drop 
surfaces. A scale was fixed in the same plane as the 
liquid jet and within the camera field. Ilford Pan F ( 50 
ASA ) film was used for the still photographs. The still 
film negatives were further enlarged and the image 
analysed directly on the enlarged screen. The still 
photographic images were analysed to measure the drop 
diameter and the length of the waves appearing on the jet.

3.1.2.2 VIDEO RECORDING

A video recorder was used to record the pictures from 
a video camera focussed at the jet. The camera was 
mounted on an adjustable rack to give both vertical and
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horizontal movements in the jet plane. To illuminate the 
jet, a strobe light was used. The frequency of the strobe 
light was set manually equal to the drop formation 
frequency. This gave a frozen picture of the liquid jet 
on a T V monitor. The recording was made at every setting 
of the flow rate. The period of drop formation and the 
group period of formation of regular families were 
measured at each flow setting.

The disintegration process of the liquid jet and the 
drop formation patterns were studied in detail by 
re-playing the recorded film in slow motion on the TV 
monitor. The jet lengths, drop sizes and inter drop 
distances could be measured directly from the TV monitor 
by freezing the frames of the film. This technique was 
very accurate for the measurement of the jet lengths. 
Re-play of the slow motion stroboscope image, using the 
freeze frame facility, enabled measurements of the jet 
length at the exact point of break up. The measurements 
of the wave lengths of the fastest growing disturbance and 
the drop diameter after the breakup were also obtained 
from the frozen image on the video monitor.

3. 1.2.3 HIGH SPEED PHOTOGRAPHY

The camera used was a 16mm Hadland Hyspeed rotating 
prism model of 30m film capacity. The camera was mounted 
on a strong pillar stand which combines great flexibility 
of adjustment with adequate stability. It employed two 
lenses, oriented at right angles, simultaneously. The
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image was superimposed on the same film. The camera is 
capable of up to 10K frames per second. The frame image 
is established on a continuously moving film by a prism 
which rotates synchronousi-S7 with the film motion. 
Different film speeds can be obtained by adjusting the 
voltage supplied to the motor of the camera and a speed at 
any point is indicated by limiting pulses registered on 
the film during the operation.

A speed control unit permits the synchronization of 
the camera with the events to be photographed.The 
regulation of the camera speed is controlled by the 
current supplied with an auto transformer with a maximum 
output of 280 volts. The camera control circuit also 
incorporates a 70 ms delay time when operating above 130 
volts. This delay brings the camera up to speed in two 
steps to prevent the stripping of the film sprocket holes.

The back light for the high speed film was provided 
by a microscope lamp giving a high illumination over a 
small field of view. The film requirements for jet and 
droplet photography are much the same as for any other 
high speed camera except good contrast and high resolution 
are required. A Kodak Tri-X reversal film was used for 
high speed film.

The film was analysed by projecting it on a large 
screen. The projector used gives a bright and flickerless 
picture at different variable film speeds for reversed and 
forward running facilities. Individual frames can also 
be .analysed and frames progressed frame by frame, forward
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or backward by operating a push button switch. An 
accurate frame counter which operates in both the 
directions provides a ready means of frame identification. 
Measurements of the position of the co-ordinates of the 
interface were digitised and stored on a data logging 
computer. Analysis of the high speed film allowed several 
measurements to be made. In the prejetting regime, the 
velocity of the front and the centre of the drop was 
measured. Also the neck velocity was measured during drop 
detachment. The major and minor diameters of the growing 
drop and neck were also measured and the volume of the 
drop and the neck were calculated. In the jetting regime 
the full wave profile from the nozzle to the breakup point
was analysed over the full period of formation of a group
of drops. Measurements of wave amplitude vs distance and 
time, wave length and wave velocity were calculated from 
the wave profile.

3.2 MEASUREMENT OF THE PHYSICAL PROPERTIES

In the present study three liquid pairs with six 
different configurations were used as given in Table (2). 
The physical properties were measured by two independent 
methods in each case and an average value was used for 
calculations.

The viscosity of the test liquids were measured using 
a Synchro- Lectric Viscometer. This viscometer measures
the viscosity by measuring the torque required to rotate a
spindle in the liquid.The torque is proportional to the
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viscosity of the fluid and the size of the spindle. The 
instrument was calibrated and found to be accurate within 
1% and to reproduce within 0.2% of its full scale range.

The measured value of viscosity was also measured 
with an Ostwald Viscometer calibrated with water at 20°C. 
The average value of these two were taken and used in the 
calculations.

Density measurements were made with a specific 
gravity Bottle also calibrated with distilled water at 
20°C. The obtained readings were also checked using 
calibrated hydrometers.

Interfacial tension was determined using the Harkins 
- Brown drop volume technique. A 3ml microburette fitted 
with a glass dropping tip having an inside diameter of 
0.52mm and outside diameter 1.5mm respectively was used 
for the measurements. The burette was filled with the 
denser liquid and the tip was just submerged into the 
other liquid. Each drop was then formed very slowly so 
that all kinetic effects could be ignored. Fifteen drops 
were formed and the average volume was measured to 
calculate the interfacial tension using the following 
equation ;

Dn ̂

where xf/ is the Harkins Brown correction factor which 
depends on D^/V^, D^- nozzle diameter and V^ is the drop 
volume under static conditions The value of the correction
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factor is presented in. Figure 7.
The measurements of the interfacial tension were also 

made with a Torsion balance. This balance records the 
forces required to lift a platinum ring or glass plate 
free from the interface between the two liquids. The 
results were very consistent and were very close to those 
results obtained from Harkin-Brown's method. The average 
values here again were taken for the calculations.

A list of these physical properties of the 
liquid-liquid pair used in the present study is given in 
Table (2).

NOTE In the present study the effect of contamination has been 
ignored j fcher-ef-ore, Jn practical application^ this effect 
could alter the results.
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TABLE 2

AVERAGE PHYSICAL PROPERTIES OF MUTUALLY SATURATED 

L I Q U I D  PAIRS USED I N  THE PRESENT WORK

SYSTEM DISPERSED PHASE CONTINUOUS PHASE INTERFACIAL
DP/CP Density Viscosity Density Viscosity Tension

-3kgm mPas kgm ^ mPas -1mNm

Decane/Water 732 0.99 999 1.10 22.5

Decanol/water 836 18.0 999 1 .15 3.1

Paraffin/Water 882 10.5 999 1 .15 27.5

Water/Decane 999 1 .10 732 .99 22.5

Water/Decanol 999 1.15 836 18.0 3.1

*
Water/Paraffin 999 1.15 882 10.2 27.5

* Liquid Paraffin was supplied by BDH Chemical for the experimental work
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3.3 EXPERIMENTAL PROCEDURE

The method of generating data for a particular run 
proceded as follows :

A

The flow control system was flushed with distilled 
water before starting with a new system. The feed tank 
was then emptied and dried. Meanwhile, the two phases 
were left to equilibrate in a stirred 20 litre flask. 
After several hours of equilibration the physical 
properties of the two phases were measured. The dispersed 
phase was then placed in the tank and run through the 
circulating system to fill the line and eliminate air 
bubbles in the line.

The nozzle to be used was cleaned with chromic acid 
and flushed with the continuous phase in order to prevent 
wetting of the nozzle exit by the dispersed phase. The 
test section was filled with the continuous phase.

The temperature of the two phases was monitored until 
a steady temperature of 20°C was achieved. Then the feed 
tank was pressurised and the flow rate was adjusted to 
have a steady rotameter reading. For each setting of the 
flow rate, the period and the wave length of the fastest 
growing wave was measured using the stroboscope. Still 
photographs of jet and drops were taken for every setting 
of the flow rate and a video film was also recorded 
simultaneously. The flow rate of the dispersed phase was 
increased in small intervals from prejetting conditions to 
cover the whole of the early jetting region until the 
point where asymmetric waves were observed on the surface
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of the jet. High speed cine film photography was run at 
three settings in the jetting region corresponding 
approximately to Weber numbers 6,10,20 and also at three 
settings in the prejetting region corresponding to Weber 
numbers 0.5,1.0,1.5

For each setting of the flow rate, the period and the 
wave length of the fastest growing wave was measured using 
the stroboscope. Still photographs of jet and drops were 
taken for every setting of the flow rate and a video film 
was also recorded simultaneously.
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CHAPTER 4

EXPERIMENTAL OBSERVATIONS AND RESULTS

4.1 EXPERIMENTAL OBSERVATIONS

The drop formation phenomena from liquid jets as 
observed in the present study can be best described in 
terms of the characteristic jetting regimes, which are a 
function of the velocity of the liquid through the nozzle 
as already described in chapter 2.

At low velocities, the drops are formed directly from 
the nozzle tip as illustrated in Plate (2). This flow 
regime is the prejetting regime, characterized by uniform 
sized drops growing at the nozzle tip with a specific time 
of formation. The drop size particularly depends on the 
ratio of interfacial tension to the density difference for 
a particular system. The drop size increases with 
increasing surface tension and viscosity of the continuous 
phase.

The complete process of drop formation in the 
prejetting regime can be identified under three distinct 
stages as revealed from high speed cine film photography.

a. Drop growth at the nozzle.
• b. Cylindrical column formation, 
c. Necking in process to detachment.
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PLATE %  DROP FORMTION FROM THE NOZZLE AT LOW VELOCITY

NOZZLE DIAMETER 
FLOWRATE 
FORMATIONTIME 
DROP SIZE 
SCALE I div

0.0602 cm 
0.048 cc/sec 
400 ms 
0.3322 cm 
1 mm
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Initially, all the volume flow of incoming liquid 
accumulates to form a spherical shaped drop at the nozzle 
tip. The drop grows in size with a constant velocity. 
After a certain time a critical stage is reached where 
this drop is no longer attached to the nozzle, but 
instead to a small cylindrical liquid column as can be 
seen in Plate (3) from 12. Beyond this critical stage a 
fraction of incoming volume of liquid stays in the 
cylinder, which causes an increase in its length. 
However, at the same time due to,the reduction of the 
total flow of liquid into the drop a decrease in the rate 
of expansion of the drop was observed . This stage can be 
seen in Plate (3) from 12 to 14. When the cylinder
acquires a critical length it becomes unstable in its 
cylindrical form and tends to gain its stability by 
reducing its surface area. Therefore, it starts to form a 
neck in order to adjust its stability and eventually this 
neck detaches the drop from the cylinder. This process 
can be seen in Plate (3) from 14 to 18. The remaining
liquid left behind on the nozzle relaxes to a spherical
shape, acting as a seed for the next drop growth at the 
nozzle. Three different stages can be viewed as two
separate time intervals. The time required for a drop to
grow at the nozzle, t.j ; and the time it takes to form a
neck and detach from the nozzle, t^.

Plate (4) shows the transition to jetting conditions
as the velocity is increased. The velocity at which the
drops no longer form at the nozzle tip but instead from
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the end of a short liquid jet is called the jetting 
velocity,Uj. At the jetting velocity it appears that 
after the detachment of the drop from the jet, the 
remaining liquid has no time to relax towards the nozzle 
before a new neck formation process starts. When the 
jetting occurs, there is generally a considerable decrease 
in the average drop size. At this point it is often 
reported that the mechanism of drop formation process 
changes, with the instability governing the breakup 
process. However, Plate (3) has shown that even before 
the jetting velocity, although the drop grows initially at 
the nozzle tip, the point of detachment is from the end of 
a definite, if short jet. Such observations suggest that 
the change from drop formation at the nozzle to the drop 
formation at end of the jet is not a sharp transition, but 
rather a progressive change depending on the relative 
magnitudes of various forces acting on the drop and the 
jet. Thus, it might be expected that the jet instability 
is an operating factor in determining the detachment time 
even in the prejetting condition. This observation forms 
the basis of subsequent development of the theory of drop 
formation in the prejetting regime to be discussed in 
chapter 6 .

With a further increase in the nozzle velocity above 
the jetting velocity, the jet disintegrates to form 
various distinct families at regular intervals. These 
families contain drops of various sizes but the drop 
volumes appear to be related to one another as multiples
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PLATE 4 JETTING CONDITION

FLOWRATE 
VELOCITY 
DROP DIAMETER

0.90 cc/sec 
31.2 cm/sec 
0.15 & 0.315 cm
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of the fundamental ( minimum ) drop volume, which is equal 
to the volume of liquid contained within one wave length 
of the fastest growing wave on the jet. The large drops 
in the family grow by accumulating the jetting liquid over 
the successive waves on the jet. This process can very 
well be seen in the slow motion video pictures. These 
waves can be counted as they travel on the surface of the 
jet,accumulating their liquid in the drop until the drop 
detaches from the jet. For convenience, depending on the 
number of waves ( or nodes ) which are involved in the 
formation of the drop at the end of the liquid jet, the 
drop sizes can be referred to as 1-node(1N),2-node(2N),
3-node(3N) and 4-node(4N) etc.

The structure of these families varies with the 
velocity in the jetting regime. It has been observed that 
at low velocities the proportion of large to small drops 

^ family is higher and the ratio of the two reduces as 
the velocity increases; such variations can be seen in 
Plate (5).

Plate (5a) presents a monosized drop stream in the 
P^®3 ®1-tiug regime at a Weber number of 1 .50 where the drop 
grows at the nozzle tip and detaches in close vicinity of 
the nozzle. As the flow rate increases, the point of
detachment moves increasingly away from the nozzle tip
until a small liquid jet is formed at the jetting 
velocity,Uj . Soon after the jetting starts (Plate (5b)) 
at a Weber number of 1.86 a mixture of large(ION) and 
small(IN) drops are formed. The size of the large drop is
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of the same order of magnitude as the drop formed in the 
prejetting conditions at the tip of the nozzle. As the 
flow rate increases the size of these drops varies, as can 
be seen in Plate (5c) at Weber number of 1.90, where a 
large drop(9N) is actually smaller than the large drop at 
Weber number 1.86; the smaller drop(2N) is in fact larger 
than the small drop in Plate(5b). Experimentally it has 
been observed that this process continues until both the 
drops become the same size to produce a monosize stream as 
can be seen in Plate (5d), where 4N monosize drops are 
produced at a Weber number of 2.73. The stroboscopic 
measurements were used to measure the group, or family 
period Tg and the fundamental period Tf of the fastest 
growing wave on the surface of the jet. In all cases Tg 
was found to be an integer multiple of Tf. The formation 
time for a 4N monosize drop is exactly four times the
fundamental period, that is Tg = 4Tf. At higher 
velocities, at a Weber number of 4.19 in Plate (5e), the 
4N monosize drop stream changes to a 2N monosize drop 
stream, where the formation time is exactly twice the
fundamental period, in other words Tg = 2Tf.

The transition of these drop families as described
above, for example from 4N monosize to 2N monosize 
streams, is not a sudden change. The experimental
observations suggest that these transitions are gradual 
and systematic; performed in a step by step manner. 
These reproducible and repeatable drop patterns also 
suggest the possibility of more than one wave being
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present on the surface of the jet, interacting with each 
other to give a beat effect which which could be 
responsible for producing various distinct families of 
drops in a regular manner.

One way of characterizing these family groupings is 
in terms of a harmonic ratio which can be defined as ;

number of drops present in a family (ND)H = ------------ ------------------------------
number of nodes present in a family (NN)

Thus the harmonic ratio H varies as the composition 
of the family changes with the velocity. This can be seen 
more clearly in Plate (6).

Plate (6a) shows a monosize stream of 2N drops at a 
Weber number of 4.19 where Tg = 2Tf, and hence NN = 2 and 
ND = 1. Therefore, the ratio of the number of nodes (NN) 
to the number of drops (ND) is H=ND/NN=1/2. Further, at 
higher velocities at a Weber number of 4.55 (Plate(6b) a 
family containing four 2N and one IN (i.e 1N2N2N2N2N) have 
H=ND/NN = 5/9. At a Weber number of 4.85 a large family
consisting of two groups which repeat alternatively was 
found as shown in Plate (6c). One group contains four 2N 
drops and one IN drop, while the other contains three 2N 
drops and one IN drop. Therefore the whole family can be 
represented as a string of 1N2N2N2N2N1N2N2N2N and the 
total number of drops (ND) in the family is 1+4+1+3 = 9 
The total number of nodes (NN)
1(1x1)+4(2x1)+1(1x1)+3(2x1) = 16, which gives ND/NF
9/1£. With a further increase in the jetting velocit
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Weber number of 4.93 a family of three 2N drops and one 1N 
drop [Plate (6d)] have attained the ND/NN ratio equal to 
4/7. At a Weber number of 5.29 a family containing two 
groups 1N2N2N2N and 1N2N2N ( Plate (6c)) have acquired the 
ratio equal to 7/12. Finally, last in Plate (6f) 
corresponding to a Weber number of 5.75 a family of 1N2N2N 
has the ratio equal to 3/5. Therefore, the ratio 
increases as the proportion of smaller drops in the family 
increases.

It would be expected that the ND/NN would tend to 
unity with increasing velocity as the drop families 
include larger numbers of IN drops until eventually a 
monosize stream of IN drops would be produced. However, 
this ultimate condition could not be achieved 
experimentally in the present study.

As the harmonic ratio approaches unity it has been 
observed that there is a larger increase in the jet length 
and the rate of increase of the jet length with increasing 
velocity. The jet length depends on the growth rate of 
the surface disturbances. In the early part of the 
jetting regime, it appears that the jet breaks up earlier 
than expected from the growth of the single fastest 
growing wave, due to interactions with harmonics as 
described above. Later on in the jetting regime these 
harmonics have less effect and the jet achieves its 
natural length from the single wave controlling breakup 
into minimum size drops. Also, it has been noticed that 
as,the minimum drop size condition is reached it was
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difficult to isolate the fundamental period using the 
stroboscope, instead a band of the fundamental period was 
recorded. These subsidiary waves are not the harmonics 
but have their periods close to the fundamental wave. 
This was also reported by Bright(21). Since there is no 
longer one single fundamental wave responsible for the 
breakup, but rather a range of waves having very close 
wave frequencies,a stable monosize stream of 1N drops 
might not be achievable. In addition, an occasional 
appearance of multinode drops gave a flickering image on 
the TV monitor. As the number of drops in a family
increases, the formation time of the family also 
increases, and hence to see these large families on the TV 

the flash period must be large enough to freeze 
the family on the monitor. This is only possible if we 
use a very low flash frequency. There is an observational
limit for the human eye therefore, if the stroboscopic
flash frequency is lower than 10 Hz then the stroboscopic 
image becomes very difficult to retain on the retina 
for a fine adjustment. To investigate these large 
families having a large number of IN drops, the 
stroboscope alone is not sufficient. Therefore, high 
speed photography was employed to follow these large 
family transitions and it was found that the harmonic 
ratio H still increases with increasing velocity, but a 
single monosize stream of IN drops was never achieved.

The critical velocity at which the jet length
reaches its maximum value, marks the end of the regular
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breakup of the liquid jet into drop families. Because of 
the large proportion of 1N drops in this region the mean 
drop size becomes equal to the minimum drop size produced 
from the fastest growing disturbance on the surface of the 
jet.

An additional increase in the flow rate above the
critical value U produces conditions where the jetm
acquires a sinuous shape due to asymmetric waves being 
present on the surface of the jet. The transition between 
the early and late jetting regimes is shown in Plate (7a 
and 7b). At higher velocity, as shown in Plates (7c and 
7d), the breakup pattern is highly irregular. The 
combination of symmetric and asymmetric waves produces a 
spread of drop sizes with mean drop size larger than the 
minimum drop size ( Figure 7c). The jet length reduces 
quite rapidly. At very high flow rates small drops are 
sheared from the side of the jet ( Figure 7d). The drop 
formation mechanism takes on the random aspect of 
atomization conditions.
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4.2 EXPERIMENTAL RESULTS

The experimental results for the present work are 
presented in two sections on the basis of two regimes of 
drop formation from the nozzle.

4.2.1 DROP FORMATION AT LOW VELOCITIES

Although there is a large volume of drop size data 
for the prejetting regime in the literature, there are 
only a few studies of the detailed behaviour of the drop 
during the time of its formation. It was felt that 
additional experiments were necessary to measure drop 
growth, velocity and formation time and to relate these 
primary quantities to existing theories. High speed cine 
measurements of drop and neck volumes, and velocities were 
made for water injected into decane system using a 0.0602 
cm diameter nozzle at three different flowrates in the 
prejetting regime. The complete data set is presented in 
appendix A.

Figure 8 shows the experimental measurements of the 
volume of the drop and the volume of the neck during the 
time of formation at three different Weber numbers. 
Initially the total volume of the incoming liquid goes 
into a drop until a critical time t^ where a fraction of 
the volume starts to go into the cylindrical neck. This 
critical time corresponds to the instant where the acted 
buoyancy and momentum forces due to the incoming liquid 
overcome the restraining surface tension force at the 
nozzle tip. The drop leaves the nozzle and grows on the
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EXPERIMENTAL DATA FOR DROP VOLUME DURING FORMA T I O N
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TIME IN sec

FIGURE 8 CHANGE OF DROP VOLUME DURING ITS FORMATION IN THE PREJETTING REGIME AT THREE DIFFERENT WEBER NUMBERS. '
= TOTAL VOLUME OF LIQUID Vj = VOLUME OF DROP V^ = VOLUME OF NECK

-------------  AT WEBER NUMBER 0 . 5 9

—---------- AT WEBER NUMBER 1 .0 7

................  AT WEBER NUMBER 1 . 4 8



top of the cylinder of the liquid. This process is called 
the 'take off' process. Further, it can be seen that 
this critical time t.j reduces as the Weber number 
increases. This suggests that the take-off time for the 
drop from the nozzle, which marks the end of the first 
stage growth of the drop at the nozzle, reduces as the 
flow rate increases.

Figure 9 shows the distances travelled by the drop top 
edge, the drop centre and the neck as was measured from 
high speed cine film at a Weber number of 0.591 where the 
formation time of the drop was 420 ms. The two stage drop 
formation process can be seen in Figure 9. During the 
first stage of drop growth at the nozzle, the liquid 
cylinder left behind the drop at the time of the 
detachment of the previous drop, relaxes and goes back to 
the nozzle where it acquires a spherical shape. The 
spherical shaped drop grows at the nozzle with a constant 
rate until a critical time t^ is reached, which marks the 
end of the first stage growth of the drop at the nozzle. 
In the second stage the drop rises on the top of a liquid 
cylinder where subsequent growth of the drop takes place. 
The length of the cylinder increases with time during the 
second stage. When the length of the liquid jet exceeds 
the circumference of the jet, it becomes unstable and 
forms a neck which eventually detaches the drop from the 
jet. The liquid left behind by the detached drop acts as 
a seed for the growth of the next drop at the nozzle and 
the process repeats itself.
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EXP DATA FOR DISTANCES TRAVELLED DURING DROP GROWTH

X10-16.00
Second stageFirst stage

5.00.

ZI—I
LU 3.00.OZ<I—CO
^  2.00. Q

1 .00.

.00..00 1 .00 2.00 3.00 5.00

TIME IN sec

FIGURE 9 VARIATION OF DISTANCE WITH TIME IN THE PREJETTING REGIME 
NOZZLE DIAMETER = 0.0602 cm
WEBER NUMBER = 0.59
TIME FOR 1st STAGE = 290 ms
TIME FOR 2nd STAGE = 130ms
TOTAL TIME OF FORMATION = 420 ms

  DISTANCE TRAVELLED BY DROP TOP EDGE
-----  DISTANCE TRAVELLED BY DROP CENTRE
.....  DISTANCE TRAVELLED BY DROP NECK



Further, it can be seen from Figure 9 that the drop 
top edge travels more distance during the first stage, but 
in the second stage, after the neck is formed, the whole 
lot moves away from the nozzle with the same rate.

Figure 10 represents the velocity variation during 
the formation of a drop. It shows that the drop top edge 
velocity is higher than the drop centre velocity during 
the drop growth period at the nozzle. It can also be seen 
that the velocities are constant until the point where the 
drop takes off from the nozzle. After this point the 
cylindrical neck starts to form and the drop accelerates 
away from the nozzle.

The high speed cine film [as given in Plate(3)] shows 
that the drop shape is nonspherical during the growth 
period. Therefore, the rate of increase of the major and 
the minor axes of the drop were also measured. These 
rates are plotted in Figure 11. It can be seen that the 
rate of expansion of the major and the minor axes 
decreases near the point where the cylinder starts to grow 
and becomes zero. The figure shows that the drop top 
edge, centre and neck, all move with the same velocity 
during the second stage.

These observations suggest that the measured 
velocities in Figure 10 must be considered as relative 
to the natural expansion rate of the drop. Since the 
bottom edge of the drop is still attached with the nozzle 
and the top edge is travelling twice as fast as the drop 
centre. The velocity in the first stage reduces because
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FIGURE 10 VARIATION OF THE DROP VELOCITIES WITH TIME IN THE PREJETTING REGIME 
NOZZLE DIAMETER = 0.0602 cm
WEBER NUMBER = 0,59
TOTAL TIME OF FORMATION = 420 ms
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EXP DATA FOR EXPANSION & ELONGATION VELOCITIES
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FIGURE 11 THE EXPANSION & ELONGATION VELOCITIES OF A DROP IN PREJETTING REGIME
NOZZLE DIAMETER = 0.0602 cm
WEBER NUMBER = 0.59
TOTAL TIME OF FORMATION = 420 ms
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the expansion rate is inversely proportional to the drop 
surface area, and this leads to a decrease in the 
velocity. At the end of the growth stage where the 
buoyancy and momentum forces become equal to the maximum 
resisting force due to surface tension, the drop initially 
relaxes (Figure 10) with the relative velocity decreasing 
slightly as shown, but then accelerates because the 
increasing buoyancy force now exceeds the maximum constant 
surface tension resisting forces on the drop, as shown in 
Figure 10, until detachment occurs.
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4.2.2 DROP FORMATION AT HIGHER VELOCITIES

At flow rates above the jetting velocity, a jet is 
formed which subsequently disintegrates to form drops. 
The prediction of the minimum drop size in the jetting 
region is based on the instability theory, whereas the 
drop size distribution is based on empirical correlations. 
Therefore, the present experimental results have been 
divided into two sections. The first section contains the 
experimental data which was collected for wave growth 
rate, wave length and wave velocity in order to test the 
various instability theories, and the second section
presents the data for the distribution of drop size for
the jetting regime.

4.2.2.1 WAVE PROPERTIES ON THE SURFACE OF THE JET

The variation of the displacement of the jet with
time on the surface of the jet was measured at various
distances from the nozzle for the six systems as described 
in chapter 3. A typical plot of time variation of the jet 
surface with distance from the nozzle for the decane into 
water system at three different Weber numbers,is shown in 
Figure 12. This figure suggests the presence of the 
fundamental wave which grows as the wave travels away from 
the nozzle. It can also be seen that near the jet breakup 
point there is a variation in the peak amplitude, 
suggesting interference of the fundamental with another 
disturbance on the jet near the breakup point. Because of 
this variation of the magnitude of the peaks at a
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particular distance from the nozzle and lack of detailed 
knowledge of the wave interactions patterns, in the 
present work an average peak amplitude of the wave at a 
particular distance has been considered. This point will 
be discussed in detail in chapter 6. The variation of 
this average peak amplitude with distance from the nozzle 
at Weber numbers 6,10 and 20 for six different systems are 
plotted in Figures (13 to 18) and results are tabulated in 
appendix B.

These figures suggest that the rate of increase of 
average peak amplitude with distance depends on both the 
physical properties of the systems as well as on the 
velocity of the liquid through the nozzle. This variation 
can be seen in Figure 19 at two different constant Weber 
numbers for three different systems.This figure shows that 
at a constant Weber number, a high viscosity and low 
surface tension system (decanol into water) has a larger 
peak amplitude as compared to the system having a high 
surface tension and low viscosity (decane into water). 
The effect of the Weber number on the average peak 
amplitude in Figure 19 can be explained on the basis of 
the variation of the jet length with the nozzle velocity. 
The fundamental wave grows on the surface of the jet and 
when its amplitude becomes equal to, or greater than, the 
radius of the jet, the jet breaks up. For a particular 
system the jet breakup time is constant, but as the 
velocity increases through the nozzle the fundamental wave 
travels a longer distance during the same time, thus the 
jet,length increases.
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FIGURE H  VARIATION OF THE AVERAGE PEAK AMPLITUDE WITH NOZZLE DISTANCE
SYSTEM - DECANOL INTO WATER
+ - AT WEBER NUMBER G
X - AT WEBER NUMBER 10
* - AT WEBER NUMBER 20



95

E X P ERIMENTAL WAVE AMPLITUDE DATA
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+ - AT WEBER NUMBER 6
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* - AT WEBER NUMBER 20
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X - AT WEBER NUMBER 10
* - AT WEBER NUMBER 20
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The variation of the jet length with Weber number is 
presented in Figures (20,21 and 22). It can be seen that 
the viscosity, density and surface tension play an 
important role in controlling the jet length. Figure 20 
shows that an increase in the dispersed phase viscosity 
reduces the jet length. Figure 21 indicates the same 
effect of continuous phase viscosity on the jet length. 
These results suggest that the viscosity of both the 
phases affect the growth rate of the wave on the surface 
of the jet. The effect of the interfacial tension can be 
seen in Figure 22 which shows that in viscous systems jet 
length increases with decrease in the interfacial tension.

In instability theory the dimensionless wave number 
is always given by 'ka' where a is the jet radius. Thus 
knowledge of the jet radius, or diameter, at the point of 
breakup is crucial for comparing experimental data with 
the theory. The variation of the jet diameter for 
different systems with distance from the nozzle is given 
in Figure 23, where it can be seen that in viscous systems 
the jet shows an appreciable increase in the jet diameter. 
A large error would be involved if the nozzle diameter 
were used in these systems to calculate the wave numbers. 
The jet diameter is an important parameter in order to 
C3.1 culate wave properties like wave lengths, wave velocity 
and wave frequency.

The experimentally measured wave velocity of the 
fundamental wave is plotted against the jet velocity in
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E X PERIMENTAL DATA FOR JET LENGTH
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EXPERIMENTAL DATA FOR JET LENGTH

EU

X
I—
CDz
LU

LU*—>

50.

40.

30.

20.

1 0. oo
o

cP®

10
- 1—  20 30 40

WEBER NUMBER

FIGURE 22 VARIATION OF THE JET LENGTH WITH WEBER NUMBER
NOZZLE DIAMETER = 0.0602 cm
A - WATER INTO PARAFFIN  
o - WATER INTO DECANOL



104
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EXPERIM E N T A L  DATA FOR WAVE VELOCITY
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EXPERIMENTAL WAVENUMBER DATA
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Figure 24. In most instability theories it has been 
assumed that the wave travels at the jet velocity. In all 
cases the wave velocity is smaller than the jet velocity.

Figure 25 shows the experimentally measured values of 
the wave number of the fundamental wave for six systems. 
It should be noted that the wave numbers span the region 
0.60 < ka < 1.0 . In other words, in some cases wave
numbers are outside the range of predictions from
stationary instability theories ( ka > 1 . 0  )

The experimental observations and the data will be 
discussed in detail in chapter 6 where the effect of the 
wave velocity, wave length, jet length and jet diameter on 
the instability of the jet will be discussed thoroughly.

4.2.2.2 DROP SIZE IN THE JETTING REGIME

The formation of the drop families in the 
intermediate regime not only reveals that the mean drop 
size varies with the flow rate, but also suggests that 
there is a definite type of wave interaction on the
surface of the jet. As we have discussed in the section 
4 .2 .2 . 1  these interactions become more and more pronounced 
as the fundamental wave approaches the breakup point which 
can be seen in the wave profiles given in Figure 12.
Measurements of the formation time of the group of drops, 
Tg, as well as the fundamental period, Tf, of the 
fundamental wave are given in Table (3). It can be seen 
that Tg is always an integer multiple of the fundamental 
period, Tf.
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TABLE 3

EXPERIMENTALLY MEASURED GROUP PERIOD Tq AND FUNDAMENTAL 
PERIOD Tf FOR VARIOUS DROP FAMILIES FOUND IN WATER INTO 
DECANE SYSTEM

S. NO WE Tg
ms

Tf
ms

Tg/Tf FAMILY

1 . 1 . 8 6 203.0 18.5 1 1 . 0 10N/1N
2 . 1.87 2 0 1  . 0 18.4 1 1 . 0 9N/2N
3. 2.73 55.3 13.6 4.0 4N monosize
4. 3.04 87.2 12.4 6.9 4N/3N
5. 3.25 105.0 1 1 . 8 9.0 4N/4N/1N
6 . 3.57 186.2 10.9 17.7 3N/3N/1N/3N/3N/3N/1N
7. 4.19 19.0 9.6 2 . 0 2N monosize
8 . 4.55 83.5 9.4 9.0 2N/2N/2N/2N/1N
9. 4.93 56.2 8.4 6.9 2N/2N/2N/1N
1 0 . 5.78 35.4 7.4 4.9 2N/2N/1N
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In the present work the relaxation process of the jet 
was considered at the point of breakup. It was observed 
from high speed cine films that soon after the detachment 
of the drop from the end of the jet, the jet relaxes and 
seems to generate a relaxing wave which travels backward 
on the surface of the jet. Simultaneously, the 
fundamental wave of the fastest growing disturbance 
travels forward with the wave velocity. The relaxation 
process of the jet can be seen very clearly in the slow 
motion video recordings.

The period of the relaxation wave, Tr, was measured 
from video recording and is presented in Table (4). 
Figure 26 shows that the fundamental period of the wave 
decreases loflk' increasing Weber number, while the 
relaxation period stays constant. In other words, the 
relaxation period is independent of the flow rate or the 
jet velocity.

The experimental data gathered in this study have 
been used to support a number of theoretical approaches to 
predict drop size in liquid-liquid systems. These 
theories are outlined in the next chapter.
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TABLE 4

EXPERIMENTALLY MEASURED FUNDAMENTAL AND RELAXATION 
TIME AT VARIOUS WEBER NUMBERS

1 s. NO 
1 _

WE FUNDAMENTAL 
TIME IN ms RELAXATION | 

TIME IN ms |

1 i, 
1

1 . 8 6 18.5 1
6 . 0 2  1

1
1 2 . 
1

2.42 15.0 1
6 . 1  1

11 3. 
1

3.25 1 1 . 8
1

6 . 0 0  1

1 4.
1

3.57 10.9 5.90 1
11 5.
1

4.04 1 0 . 0
1

6 . 0  1
1
1 6 . 
1

4.19 9.6 5.90 1
11 7.
1

4.93 8.4 1
6 . 0  j

1 8 . 
1

5.78 7.4 1
6 . 0 1  1 

1
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CHAPTER 5 

THEORETICAL DEVELOPMENTS

5.1 DROP FORMATION AT LOW VELOCITIES

The drop formation regime at low velocities is 
characterized by individually formed drops of uniform size 
growing at the nozzle tip. The regular pattern was shown 
in Plate (2).

There are four major forces which act on the drop 
during the process of its formation in liquid-liquid 
systems. The buoyancy force*, F^, due to the difference 
of the density between the two phases, and the momentum 
force, F^, due to the momentum flow of liquid into the 
drop will tend to remove the drop from the nozzle. The 
interfacial tension force, F^, will tend to retain the 
drop at the nozzle and the drag force, F^, due to the 
continuous phase viscosity will act to reduce the motion 
of the drop during take-off from the nozzle. When the net 
force due to buoyancy and momentum, exceeds the net 
restraining force, due to surface tension and drag, the 
drop will accelerate away from the nozzle on a liquid 
cylindrical neck and finally detach when the neck becomes 
unstable.

The complete quantitative picture of the drop 
formation in the prejetting condition can be described 
under two distinct stages of its formation process, as was 
observed in chapter 4. In the present work a model has
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been developed to explain a two stage drop formation 
process at the nozzle tip. The first stage of drop growth 
is based on a force balance while the second stage 
considers the instability of the neck behind the drop. 
The general equation for force balance can be written as ;

d(Pvu) p q 2
—— — +  — D TTOcosS' ~ U [5.0]
dt A " "

Pwhere P = p + - to account for added mass.
2

STAGE .1 DROP GROWTH AT THE NOZZLE

At this stage it is assumed that at all the time the 
forces are in balance with surface tension, adjusting with 
Q, increasing to exactly balance that is U = 0. The take 
off condition occurs when 0 reaches a maximum value ofTT/2. 
At this stage, neglecting the drag force, we can express a 
force balance as ;

Buoyancy force + Momentum force = surface tension force
_  PQ'or V.-AP9 t ---- “ D TTCJ = 0  [5.1]

A *
where is the volume of the drop at the nozzle where
surface tension force balances the buoyancy and momentum 
forces. This volume is equal to [Qt^ + Vq ] where is 
the residual volume and t^ is the time taken to increase 
the volume from to .
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Q - Volumetric flow rate.
A - Cross sectional area of the nozzle,
p - Density of the dispersed phase.

P - Density of the continuous phase.
- Density difference between the two phases.

upon re-arrangement, equation [5.1] can be written as ;

PQ^7TD (7 - [---]
^ AV = [---------------] [5.2]

 ̂ Apg

Equation [5.2] can be written in a dimensionless form by 
using a fictitious static drop volume, V^, which can be 
expressed as;

TTD a
V_ = [--S-] [5.3]s

or
V 7TD a 4 4(7
— — = [“"■“"■] [--p — ] = ---- — — [5.4]
Q Apg UTTD̂  APgUD^

Therefore, we can write equation [5.2] as ;
V., PQ^
-- = [1 - — — — ] [5.5]
V 7TAD (7s n

or
V. We
-- = [ 1  ] [5.6]
V 4
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The form of equation [5.6] is based on the assumption that
the velocity profile is flat with momentum force F =m

2 2pD^ Ü /4. For a parabolic velocity profile momentum force
2 2can be expressed as F^ = PD^ U /3, and then we can write 

equation [5.6] as;

V We
= [1 - --] [5.7]

Vs 3

Equations[5.6 ] and [5.7] suggest that the drop growth at 
the nozzle will not occur when the Weber number reaches 3 
or 4, which might be used as a criterion for the jetting 
velocity. In addition we can calculate the time taken 
during the first stage of the drop growth, as we know;

V.| = Qt^ + (where Vq is the residual volume)
or

- ^ 0t. = [------- -] [5.8]
Q

Equation [5.8] can be written in a dimensionless form as ;

. = Ys [!i - Yo]
Q Vs v^

Using equation [5.6] we can write

t = [ 1  - - -9 ]
Q 4

Vs ®=   [5.9]
Q

We V
where B — [ 1 — — — — — — ]

" Vs
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7TD a 7TUD
Since V =  and Q = -----, therefore

 ̂ APg 4
4<T

t = B [-------- ] [5.10]
ApgUDjj

During this stage it is assumed that the centre and the 
top of the drop move acccording to an expansion process, 
that is

dL Q 2dL 2Q
^ dt 47TL dt 47TL

where and are the drop centre and drop top edge
velocities respectively and L is the position of the drop 
centre, thus

6 V 0  3 3
L = R = [“ ] where V = Qt + V
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STAGE 2 TAKE OFF AND DETACHMENT

After the surface tension force has reached its maximum 
value the increased tfoyancy will lead to the drop moving 
away from the nozzle on a jet of liquid. A force balance 
on the drop predicts an acceleration throughout this stage 
with the buoyancy increasing against a constant (maximum) 
surface tension force. Therefore, we can write, ignoring 
the drag term;

d (PVU) p q 2
= APgV +    7TD d rc 1 1 1dt A ^ L3.11J

At t - 0, V - , u = . The volume in this stage can be
represented by V = + Qt where is the volume of the
drop at the end of the first stage.

PVU ?  A- y  QtAPdt = QAPg —  [5.12]

AP9

“ ° 2~P ^ [5.13]

*where t̂  = V^/Q.

Assuming U = dL/dt and = 0 we can solve equation [5.13] 
in terms of L as

APg t^dtnry r ^ ar
- L .  = ------ T  I [ ------- ]

2 P 5' t+t^

Apg - 2 t t t + t,
— -[ (--------- ) + t. 1n(----- -)]
2 P 2 1 t 0 [5.14]
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where is the centre position of the drop at the end of
the first stage.

^ 2Let T =  and L — L. — L
ti

We can write equation [5.14] as;

- 2T 2L P
——————— + 1n(1 + t) — —5 --  [5.15]

2 t'^APg

Using equations [5.9] and [5.4] we can write equation 
[5.15] as

- 2T 1 L a WeEo
-------- + 1n(1 + T) = - —  [-^] [5.16]

2 8 D ^ BTn

Equation [5.16] was solved using graphical solution for 
the left hand side of the equation. This is shown in 
Figure 27, and then equation [5.16] can be expressed as 
power series

1 L p WeEo 0.375
T — 1.86 [ - -- [ -- ] ] [5.17]

8 D P B^ n

Now we can calculate the total volume of the drop at the 
end of the second stage to be

Vt = + tg)
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GRAPHICAL SOLUTION FOR EQUATION [5.16]
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FIGURE 27 GRAPHICAL SOLUTION OF MODEL EQUATION [5.16]
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t, TV. = Qt (1 + --) = Qt (1 + ---------  )

We
T [ 1 + —  ] 

4
Qt. (1 + -----

B
^t «t^

  (1 + T )

Vs
We

T[1 + — ] 3
4

= B[i + [  ] [APg(— --)]]
B WDn

In terms of drop diameter this equation can be written as

D, 6 B ^ Oq
-- = [-- (1 + r)] O'33 [5.18]

Eon

In order to use equations [5.17] and [5.18] to predict the 
drop diameter, some estimate of L and must be made.
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JET S T A B I L I T Y  C R ITE R IO N

To calculate the point of detachment of the drop at 
the end of the second stage,it will be assumed that the 
jet behind the drop becomes unstable to surface tension 
forces. This will occur when the surface area of the jet 
increases to a point where it exceeds the surface area of 
a sphere of equal volume. In the present model it has 
been assumed that the neck behind the drop acquires the 
geometry of a cone as was observed experimentally.

Considering Figure 28 the volume and the surface area 
of the cone and the sphere of the same volume can be 
written as

for a cone
, ir L (r^ + + r„r)

V = - . " [5.19]

A = 1TL(r + Tq ) [5.20]
For the equivalent sphere

4irR̂
V = - [5.21]

3
A = 47TR̂  [5.22]

Using equation [5.19] we can rearrange equation [5.21] as

R = - (r^ + [5.23]
4 0

Assuming that the cone has an equal surface area as that 
of the sphere of the same volume then we can write:
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CONE

FIGURE 28 Stability criterion for predicting residual volume 
in prejetting condition
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TLfrg + r) = 41TR̂
using equation [5.23] we obtained

L (r^ + rg2 + r^Z)
L ( + r) — 4 [ ——————-------—---— ]

^ 4
or

(r^ + r 2 + r r ) 2
= 4 [ -------2----- 9___ ] [5.24]

(ro + r)^

If we put f = —  then r = r^f 
^ 0

Équation [5.24] can now be written as
2 2 (f + 1 + f)

L = 4r^ [ ---------- q-- ] [5.25]
( 1 + f)

Since = 2 r^, therefore
L (1 + f + (2)2
—  = 2[  ---------= ] [5.26]
Dn ( 1 + f)
From equation [5.19]

TTLXq  ̂ ( 1 + f + f2 )
[5.27]

Using a static drop volume = ?rD^ /APU and rearranging 
equation [5.27] we get

V 4 - 1 + f  + f ^ ,
—  = - r^ [ ----------- ] [----] [5.28]
V 3 1 + f 1TD (Ts n

^0 3= -- [ 1 +   ] [5.29]
6 1+f
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FORCE BALANCE ON THE JET
We can now write a force balance equation for the

geometry of the jet as

buoyancy force+momentum force-surface tension force = 0 

PQ^ 1 1
^pgV + -- [ — 2 “ ”2  ̂ ~ 27rcr(rQ - r) = 0 [5.30]

^ = 0  =
or

pTfrQ^U^ [ ~“"'2”'2—   ̂ ” APUV - ZÏÏOî Q “ [5.31]
^ 0  r

Rearranging equation [5.31]
r t r

(Tq - r) [PTTrQ^U^ [ ”“"2 —  ] 2VT(7] = APgV [5.32]

Putting a value for V from equation [5.28]
r r

(r® - r) IpttXq^V^ [ "““2 —  ] + 27Tff] =

4 - f2 3
- r^ [1 +  ] AP9 [5.33]
3 ^ 1+f

since We = pTTD^U^/a therefore
_ _ 1 + f  4 4 A f ^ '

pu r_ (1 + f)[ — 0—  + — ]= ~ C'*  ] AP9 [5.34]0 We 3 u 1+f
or

1+f 4 4 Â 9̂ c) ^ 2  .(1 + f) [-=- + — ] = - [--- ô"] [1 +   ] [5.35]fZ We 3 1+f
Replacing 2r^ = and Eo =A?gD-^/o in equation [5.35]

1 + f  4 2 Eo f ^ 3
(1 + f) [---«- + --] = - -- [1 +   ] [5.36]

We 3 We 1+f
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Now comparing equations [5.35] and [5.36] we can write

6 (1 - f) (1 + f)We
Eo - 2 [ 1 + ---------- ] [5.37]

f 2 4f
[  1 +  ————— j

1 + f
Equation [5.37] suggests that Eo = f(f,We)
Using equation [5.29] we can write 
Vq (1+f)We
-- - ( 1 + f) [ 1  + ----2 "" ] [5.38]Vg 4f^

Equation [5.38] suggests that -- = f(f We)
Vs

Using equation [5.38] in equation [5.9] we can write
We (1-f^)We We 1+f^

B— 1 - - (1 -f) — ---- X----- f - —  [1+ ----]
4 4
We 4f'̂  - We

® ^  “ " 2  = ----2--- [5.39]

Equation [5.39] suggests that B = f(f,We)
From equations [5.26] and [5.39] we can write 
1 t 4F^(1 + f + f2)2
8 = n^.we)

From equation [5.26]
L 2 (1 + f + f2) L
- -  =--------------------------------which suggests that —  = f ( f )D„ ( 1 + f)-̂  Dn

Therefore, having thus calculated L/D^ it can be used in 
equation [5.17] to estimate r, and this information can be 
used to predict the drop diameter using equation [5.18]
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5.2 INSTABILITY ANALYSIS

The instability analysis considers the pressure and 
velocity fields as made up of a sum of large and small 
motions, which can be represented by ;

= P + pO [5.40]
u ^ = u + u ^  [5.41]

where P and u are pressure and velocity terms associated 
with the large motion of the jet and surrounding 
continuous phase; P^ and u^ are fluctuations about P and 
u respectively.

Ignoring the terms involving the viscosity and 
product of the fluctuating quantities in the linear 
analysis an equation of small motion can be written as ;

Equation of continuity
V.u° = 0 [5.42]
Equation of motion

0  VP°  = (u.V)u = — g- [5.43]
dt ^

The linear equation [5.42] and [5.43] can be reduced to 
ordinary differential equations, by a transformation 
involving terms of complex functions. Therefore, the 
solutions were obtained by assuming;

pO ^ p O j j . j g O : t + i ( k z + h 0 )

u° = u° (i-)e“ ^+i(k2 +h0 ) [5.44]
« = O!t+i(kz+h0 )

'0
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where 7f is the wave amplitude at position (z,g) after 
time t

a-is the wave growth rate which may be complex 
k-is the wave number which is real positive 
h-is the wave oscillation mode, which is 0  for 
symmetric oscillations and 1 for assymetric 
oscillation.

Considering the geometry of the wave motion, as indicated 
in Figure 29 and substituting equation [5.47] into [4.43] 
for cylindrical coordinates gives the following sets of 
Navier Stokes equations

[NSz] ( oi + ikU)u + ikrr = 0
[NSr] ( O' + ikU)v + ir = 0 [5.45]
[NS#] ( (X + ikU)w + ihir/r = 0

where u = u^;v = u^; w = u^;n = P^/ç; U = u^ and the prime

(') indicates the derivative with respect to r.

The fluctuating pressure field can be obtained by
considering the divergence of the component equations of 
motion [5.45] and combining with the equation of
continuity [5.42] to obtain

r̂ TT + rn̂  - (k^r^ + h^ ti = 0  [5.46]
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71 e coslkz 'o

FIGURE 29 SYMMETRTCAL WAVE PROFILE ON THE SURFACE OF THE JET
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2 _2 ,r d TT rdir « «
 %— + - — (k r + h)7i = 0 [5.47]
àr dr

/
The general solution of equation [5.47] involves a linear 
super position of Bessel functions
Ti - Alj^(kr) + BKj^(kr) [5.48]
Considering the boundary conditions, equation [5.48] can 
be solved for both jet and continuous phases as;

For the jet phase where r = 0 and n is finite therefore 
n* = Alj^(kr) [5.49]

For the continuous phase where r = oo and ti = 0 therefore 
n = BK^(kr) [5.50]

The constants A and B are found from the kinematics of the 
interface. At r^a where

dv SvV  = —  = — — + U[ —— ] = (Oi + ikU) [5.51]
dt 9t 9 z

V = -- = ^  + a[ -- ] = (0 ! + ikU) [5.52]
dt 9t 9z

It is assumed that the radial velocity fluctuation at the 
interface is;

ti'
V  = - ------  [5.53]

( a + ikU)
Using equation [5.53] and substituting values from 
equations [5.19] to [5.52], we can calculate the value of
the constants A and B at the the interface as

[5.54]
( O' + iku)2 q
If, (ka)
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( a +  ikU)2%
B = ----------- [5.55]

(ka)

The solution of the jet and the continuous phase can now 
be matched at the interface between the two phases. At
the interface there is a continuity of tangential and
normal velocity as well as a continuity of tangential and 
normal stresses. Considering the continuity of
longitudinal stress we can relate the pressure on either 
side of the interface as follows;

+ PO- [5.56]
9u

where “ P “ --
dr 

90 

9r
n — P —

and

Per = ( T O -  2 9 ^“(-J ' [7? + a — = + — g]
/  9z^ aea ar dz Qd

Separating out the small scale motion, equation [5.56] can 
be written in terms of a complex function as ;

-n + sn + 2P(v - mv) = (-21) [1 - [5.57]
ça

O *
where s = m = ^ and p = ^

If we assume that at the interface = U = U, then using 
equation [5.57] we can derive a characteristic equation as
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2 * * 2 Pk(a+ ikUj)“ [I + sk 3 + (---) [Of + ikUj] [I^ + mK^]
r
3ça

*where I = I^Cka)/I^(ka)
*K = KQ(ka)/K^(ka)

= %r* - 1

K° = îcK* -1
The growth rate in equation [5.57] is complex in form 

aconsisting of^real (growth rate) part and an imaginary
(wave frequency) component. Putting a = ^  +  i o ) ,  the real
part (growth rate) of equation [5.58] can be expressed as

(3 = (0-/ça^)C / [A + 2qB] [5.59]
* * where A = I + sK

B = 1° + mK°
C = K'(£' -îĉ )
q = pl̂ /a/ 3

The imaginary part, wave frequency can be given as W = kU^ 
where Uj is the wave velocity at the interface and equal 
to c where

c =
The equation [5.59] indicates a progressive wave with a 
velocity c and growth rate, /? . The principal forces 
involved in the individual terms can account for the 
propagation of the disturbance wave on the surface of the 
jet.
Surface tension forces are associated with the term
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c = ic'd -h^ -Iĉ )
For a symmetrical wave h=0, it follows that c will be 
positive (destabilising) when Jc > 1 and negative
(stabilising) when < 1, as was described by Rayleigh. 
For an asymmetric wave h=1 and C will always be negative 
(stabilising).

The viscous forces are associated with the damping 
coefficient qB. An increase in the damping coefficient 
reduces the growth rate as indicated in equation [5.59].

The combined effect of the principal forces on the 
wave motion will depend on the type of the wave (symmetric 
or asymmetric), the wave number and the relative magnitude 
of the forces. The equation [5.59] can be written in 
dimensionless form as

^ 2  2 r ^
B ~ j8  “ [------- ]A + 2qB

with q = Y -%r

These growth rate equations differ from previously 
proposed growth rate equations. Most of the previous 
workers assume that the wave travels on the surface of the 
jet with the jet velocity. But in the present work it is 
assumed that the wave travels with an interfacial velocity 
which is always less than the average jet velocity. This 
point will be discussed in detail in the next chapter.
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The equation [5.59] can be reduced to Weber's 
equation [2.31] if we assume a stationary continuous phase 
with U = 0, C = U and s, m are very small. Further 
ignoring the effect of viscosity this equation can be 
reduced to Christiansen and Hixson equation [2.23].

NUMERICAL SOLUTIONS

The values of the dimensionless growth have been 
calculated as a function of the wave number for 

a symmetrical wave. The base values were chosen to show the 
effect of different parameters like s,m and z individually 
and separately on the growth rate.

In general the characteristic growth rate curves pass 
through a single maximum at an optimum wave number 
representing the fastest growing wave.

Figure 30 shows the damping effect of the increased 
continuous phase viscosity on the wave growth. Figure 31 
shows a similar effect for increased jet phase viscosity 
or Ohnesorge number, Z. It is indicated that the increase 
in the viscosity suppresses the growth rate of the wave.

Figure 32 shows the effect of the density ratio s on 
the growth rate. As indicated the increased s reduces the 
growth rate, but the effect is not && . pronounced as in 
the case, of m or z. There is generally a good agreement 
between the theory and experiment in the present study for 
the prediction of the growth rate, wave number and wave 
velocity. The discrepancy will be discussed in chapter 6 .
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FIGURE 32 THEORETICAL PREDICTION OF THE GROWTH RATE OF SYMMETRIC WAVES 

INFLUENCE OF THE DENSITY 
BASE LINE VALUES

  AT S = 0.01, M = 1.0, Z = 0.001
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5.3 DROP SIZE IN THE JETTING REGIME

It is not possible to be able to explain the drop
size variation in the jetting regime on the basis of the
instability theory alone. As already discussed, it is 
based on the assumption that there is only one wave 
present on the surface of the jet which grows fastest and 
breaks the jet into drops. If this were true then we 
should expect only monosize drops of one node at every 
flow rate in the jetting regime, because only the
fundamental wave would break the jet to form drops of the 
fundamental volume. Since the drop size varies in the 
jetting regime, additional assumptions are needed to
account for the formation of multinode drops from the 
liquid jet.

Using the instability theory one can consider the 
growth of the fundamental wave on the jet surface. This 
takes a time Tf to grow enough to pinch the jet at the 
ultimate antinode of the wave to form a one node drop. 
The fundamental period of the wave can be written as 

7TD
Tf = — - [5.60]

kc
where k is the dimensionless wave number of the fastest 
growing wave on the surface of the jet which can be 
predicted from instability theory. is the nozzle
diameter and c is the wave velocity.

As the drop detaches, the jet initially relaxes as 
observed experimentally. Due to this relaxation process, 
it appears that a relaxing wave generates from the end of



138

the jet and propagates backward with a constant relaxation 
period Tr.

Considering the vibration mode on the jet surface as 
described by Lamb (26), the period of relaxing vibration 
Tr can be calculated from

-5- = ka[-------](k2a2 + s - 1 ) -“
Tr

where ka is dimensionless wave number, S is the mode of 
vibrations which is 0  or 1 for either the symmetric or 
asymmetric waves respectively and is the interfacial
tension.

For the symmetric mode of oscillation this equation 
can be written as

I_(k) 9 CT--- = [ -----  ] [k - 1 ] ---- [5.61]
Tr

where the dimensionless wave number )c = ka. Equation 
[5.61] can further be simplified to yield

TTr = V K  ---- [5.62]
E(F

where a dimensionless constant K is defined to be 
1

K
lA^)
[— --] Ĉ t-1 ] i^(k)

The relaxation period Tr of the wave can be predicted 
if the value of dimensionless constant K is known. The
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experimental value, using Figure 26, shows that the 
relaxation period of the wave is constant at around a 
value of 6 ms. For water into decane system the 
experimental value of K was estimated to be 3.714.
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CHAPTER 6

DISCUSSION

6.1 DROP FORMATION AT LOW VELOCITIES

The model developed in chapter 5 was used to predict 
the experimental drop size data for water into decane
system. The predicted values of the present model were

ecompared with Meister & l^heele, Hayworth & Treybal and 
Kumar & Hartland. A full comparison is given in Table(5).

The mean percentage deviation for all data in the 
prejetting regime using equation [5.18] was 3.04%. For 
the same data Hayworth & Treybal [equation 2.3] and Kumar 
& Hartland (equation [2.11]) predicted a mean percentage 
deviation of 26.0% and 24.4% respectively. The prediction 
of Meister & Sheele was found to be the closest to the 
present model with a mean percentage deviation of 8.5%.

As we have discussed in chapter 2 Kumar & Hartland 
derived their equation [2 .1 1 ] purely on the basis of a 
data fitting exercise. They did not consider the drop 
formation mechanism or the factors which could affect the 
final volume of the forming drop such as formation time, 
the volume of liquid which goes into the drop and the 
residual volume during the second stage of the formation. 
Therefore, a big variation in the prediction using their 
equation is not an unexpected result.
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In the case of Hayworth & Treybal, there are a number 
of reasons why their equation [2.3] could not predict 
good results for the present data. Hayworth & Traybal 
used a surfactant Alketrage C to vary the surface tension 
in order to study the effect of the interfacial tension on 
the forming drop. The effective interfacial tension
increases as the velocity through the nozzle increases due
to diffusion of the surfactant to the interface. This
causes a much greater increase in the drop volume with 
increasing velocity than observed in pure systems. Thus 
Hayworth & Treybal's interfacial dependency is not
generally applicable and causes error in pure systems. 
Secondly, Hayworth & Treybal did not consider the 
possibility of volume flow into the drop during the
process of break off. Further, Harkins-Brown the
correction factor was used to account for the residual 
volume which is an errorful estimation of the residual 
volume as will be discussed subsequently.

It has been pointed out in chapter 2 that both Kumar
& Hartland and Hayworth & Treybal did not consider a two
stage formation process of drop in the prejetfing
condition. They based their prediction predominantly on 
the empirical data fitting exercise. Therefore, a direct
comparison of their predictions is not really applicable
for the present study.

cMeister & Sheele's equation produced a close
prediction for the drop size as shown in Table (5). They 
have also considered a two stage drop formation process in
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their theoretical analysis. Therefore, equation [2.9] can
be used to compare the prediction of drop volumes in
individual stages separately, much of the following
discussion will be discussed in the light of Meister & 
c^heele' equation [2.9].

Figure 33 shows the prediction of the drop volume
during the first stage of its formation using the present
model [5.18] and equation [2.9] proposed by Meister &
^heele. It can be seen that the experimental data is well
predicted by the present model. However, the discrepancy
with Meister & Sheele possibly lies with the term
predicting the momentum force during this stage. Meister 

cSc ^heele assumed a parabolic velocity profile to derive 
their equation. This assumption overestimates the 
momentum force during this stage and therefore, the time 
to 'take off was underestimated. In the present model 
the assumption of the flat velocity profile allowed a
longer time for a drop to take off from the nozzle.

e.Further, it should be noted that Meister & ^heele included 
a drag term to account for the effect of viscosity, but in 
the present model this term was neglected. Since in the 
present work only one system, water into decane, was 
investigated the viscosity was very low, and hence the 
drag forces were negligible as can be seen in Table (6 ) 
where the relative magnitude of various forces are 
presented.

Figure 34 is plotted to calculate the drop volume in 
the second stage of its formation using equation [5.16].
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1 .00

.80.

.60.in>
\

>

.20.

.00
.00 .50 1 .00 1 .50 2.00

WEBER NUMBER

FIGURE 33 COMPARISON OF THE PREDICTED DROP VOLUME
+ - EXPERIMENTAL VALUES
X - MEISTER AND SHEELE
* - PRESENT MODEL



145

TABLE G

SYSTEM WATER INTO DECANE 
RELATIVE MAGNITUDE OF VARIOUS FORCES ON THE DROP 

DURING TIME OF FORMATION

1 s. NO FLOW RATE BUOYANCY MOMENTUM S.TENSION DRAG 1
1I FORCE FORCE FORCE FORCE 1

I - -- nil/sec N N N N [

1 1 . 0 . 0 0 0 0 . 0 0 0 . 0 0 4.255 1
0 . 0 0 0  1

1 2 . 0 .0 0 1 . 0.3 0 . 0 0 4.255 0 . 0 0 1  11 3. 0 . 0 0 2 0.5 0 . 0 1 4.255 0 . 0 0 2  114. 0.003 0 . 8 0.03 4.255 0.004 11 5. 0.004 1 . 0 0.05 4.255 0.005 1
1 6 . 0.005 1.3 0.08 4.255 0.006 11 7. 0.006 1 . 6 0 . 1 2 4.255 0.007 1
1 8 . 0.007 1 . 8 0.17 4.255 0.008 1
1 9. 0.008 2 . 1 0 . 2 2 4.255 0 . 0 1 0  1
1 1 0 . 0.009 2.4 0.27 4.255 0 . 0 1 1  1
1 1 1 . 0 . 0 1 0 2 . 6 0.34 4.255 0 . 0 1 2  1
1 13. 0 . 0 1 1 2.9 0.41 4.255 0.013 11 14. 0 . 0 1 2 3.1 0.49 4.255 0.014 1
1 15. 0.013 3.4 0.57 4.255 0.015 I
1 16. 0.014 3.7 0 . 6 6 4.255 0.017 11 17. 0.015 3.9 0.76 4.255 0.018 1118. 0.016 4.2 0.87 4.255 0.019 ;I 19. 0.017 4.5 0.98 4.255 0 . 0 2 0  1
1 2 0 . 0.018 4.7 1 . 1 0 4.255 0 . 0 2 1  1
1 2 1 . 0.019 5.0 1 . 2 2 4.255 0.023 1
1 2 2 . 0 . 0 2 0 5.2 1.35 4.255 0.024 11 23. 0 . 0 2 1 5.5 1.49 4.255 0:025 1I 24. 0 . 0 2 2 5.8 1.64 4.255 Ô.026 11 25. 0.023 6 . 0 1.79 ■ 4.255 0.027 1
1 26. 0.024 6.3 1.95 4.255 0.029 11 27. 0.025 6.5 2 . 1 2 4.255 0.030 1



146

Though the present model predicts higher values than the 
experimentally measured drop volume for this stage, the 
differences can be explained if we consider the drop 
detachment process in detail.

A small portion of liquid is left behind the drop at 
the nozzle during the process of its detachment, as can be 
seen in the high speed sequence given in Plate (4).This 
residual volume increases at higher flowrates through the 
nozzle. Figure 35 shows the plot for the present set of
experiments. The experimental values for this volume are

cfar higher than predicted by Meister & ^heele, because 
they have used the Harkins-Brown correction factor to 
account for the residual volume. The Harkins-Brown 
correction factor is only valid for a static drop 
formation process and should not be included in the 
dynamic processes. Therefore, instead of considering this 
correction factor in the present model, a new approach of 
instability mechanism was used to calculate the residual 
volume as described in chapter 5.

The inclusion of the jet instability to predict this 
residual volume also supports the experimental
observation made in chapter4, where it has been observed 
as shown in high speed sequence of Plate(4), that even in 
the prejetting conditions the drop breaks off from the end 
of a definite transitory jet and the point of detachment 
moves increasingly away from the nozzle as the flow rate 
increases. As we can see in Figure 35 the predicted value 
of the residual volume follows the same pattern as its
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COMPARISON OF DROP VOLUME IN STAGE 2

1 .00

.80

.60in>
\

.20.

.00 T.00.00 .50 1 .50 2.00

WEBER NUMBER

FIGURE 3i COMPARISON OF THE PREDICTED DROP VOLUME
+ - EXPERIMENTAL VALUES
X - MEISTER AND SHEELE
X - PRESENT MODEL?



148

COMPARISON OF RESIDUAL VOLUME
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experimentally calculated counter part that is the 
residual volume increases with the flow rate. In other
words, the inclusion of the instability theory shows that 
the length of the transitory jet increases, or the point 
of the detachment of the drop moves away from the nozzle 
as the flow rate increases. Further, as shown in Figure 8  

the time of growth t, at the nozzle decreases as the flowI ■ .

increases. At a critical flow rate where t^ becomes zero, 
and the residual volume ( or jet ) is left behind, the 
detached drop does not get time to relax towards the
nozzle before the new neck starts to form. Therefore, as
the system evolves beyond this state the instability alone 
governs the drop formation process. This follows along 
the same lines as discussed above: the effect of the jet
instability on the final drop volume becomes more and more 
pronounced as the flow rate increases until the jetting 
starts, where the instability of the jet governs the drop 
sizes. This supports the observations made in chapter 4, 
that the transition of the drop formation mechanism at the 
nozzle (prejetting regime) to the drop formation mechanism 
at the end of the jet is not a sharp transition. It 
further suggests that the net increase in the drop volume 
in the second stage depends on both the volume of the drop 
in the second stage and the residual volume of liquid
which is left behind the drop.

Figure 36 is plotted for the final drop diameter 
using equation (5.18) and the results are tabulated in
Table (7). As can be seen the present model predicts
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COMPARISON OF FINAL DROP DIAMETER
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COMPARISON OF EXPERIMENTAL AND PREDICTED DROP VOLUMES IN DIFFERENT 
STAGES OF ITS FORMATION AT VARIOUS WEBER NUMBERS

Formation We
Drop volume in cc

Stages No Experimental | EQ NO 1 EQ NO
results 1 [2.9] 1 _________1

[5.18]
in first 0.63 0.779 1 0.70005 1 0.7995
stage 1 .07 0.706 1 0.59456 1 0.7002
V1/VS 1 .48 0.601 1 ___ __________ 1

0.49242 1 _________1
0.6003

in second 0.63 0.311 1 0.21481 1 0.4502
stage 1 .07 0.299 1 0.23614 1 0.5050
V2/VS 1 .48 0.265 1 ______________ _ 0.25198 1 ________ 1. 0.5537

residual 0.63 0 . 0 2 1  1
10.00279 I 0.0213

volume 1 .07 0.029 1 0.00267 1 0.0218
VO/Vs 1.48 0.030 1 ______________ 1. 0.00251 1 ________ 1 _ 0 . 0 2 2 0

total 0.63 1.089 1 0.91207 I 1.1223volume Vt 1 .07 0.976 1 0.86790 1 1.1828
1.48 0.835 1 0.74103 1 1.1310

drop 0.63
______________ _

0.332 1 0.30985 1 0.3319diameter 1 .07 0.319 1 0.29600 1 0.3278
1.48 0.302 1 0.28094 1 0.3231
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slightly higher values than the experimentally measured
ones. However, the overall prediction using equation
[5.18] is much better than the predicted values of Meister 

c.& Sheele. The discrepancy suggests that Meister &
cSheele's equation also suffers from empiricism. The weak 
point of their analysis is the term for predicting the 
flow into the drop during the necking process. This term 
was empirically correlated for a very limited number of 
data points for the heptane water system only. Therefore, 
their equation is not generally applicable. The present 
model has not only predicted a good agreement for the 
present experimental data, but is theoretically based and 
does not depend on experimental data fitting.

The quantitative prediction of the final drop volume 
can be improved if the jet geometry after the drop 
detachment is fully understood. The present model assumed 
a conical geometry of the jet soon after the drop 
detachment. This assumption might not be true, therefore 
more experimental information is needed to consider the 
right geometry of the jet to improve the prediction of the 
residual volume. This residual volume plays an important 
role in the determination of the final drop volume as can 
be seen in equation [5.18], which suggests that if this 
volume is lower, then the predicted final drop volume 
would be higher.
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6.2 WAVE PROPERTIES

As described in chapter 2 the wave properties on the 
surface of the jet have been studied by many previous
workers. Most of them based their theoretical analysis on 
the original instability theory proposed by Rayleigh(9) 
and extended it to calculate the wave length, wave 
velocity and wave frequency of the fastest growing wave on 
the surface of the jet.This information was used to
predict the drop size in the jetting region.

According to instability theory, the amplitude of the 
fastest growing disturbance wave grows exponentially on
the surface of the jet as the wave travels away from the
nozzle. When this amplitude becomes equal to the radius 
of the jet, the jet breaks up into drops. The size of 
these drops depends on the wave length of the fastest 
growing disturbances. As has been pointed out in chapter 
2 very little experimental data on wave properties are 
available to test the various instability theories.

The growth rate of the wave on the surface of the jet 
has been calculated from the measurement of the wave 
amplitude using the following equation:

where is the initial amplitude of the wave, n is the 
amplitude at time t and a is the growth factor. 
Rearranging equation [6.1] in terms of distance along the 
jet we can write
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t = Y/c [6.2]
Where Y is the distance from the nozzle and c is the 
velocity of the wave on the surface of the jet. Thus 
equation [6 .1 ] can be written as ;

logr] = aY/c + log?;̂  [6.3]

A plot of logr] against the distance Y should give a 
straight line having a slope equal toO/c and an intercept 
of logrĵ . These plots are presented in Figure 37 to 42 ,
and the results are tabulated in appendix B

It can be seen that the intercept logy]̂  is equal to a 
constant, -9.0 for all the systems. This confirmed the 
assumption made by previous workers that the initial 
amplitude is a function of the particular nozzle used and

C-independent of the liquid properties. Meister & Sheele
found a constant value of 5.8 for log (a/7 7) which matches

V
very well with the present finding of log (a/7 7 ) equalo
to 6 .

To calculate the growth rate from such plots 
experimentally measured wave velocities were used. As 
shown in Figure 24 the wave velocity always travels slower 
than the jet velocity. The results of Figure 24 have 
shown that the assumption made by most of the previous 
workers that the wave travels with the jet velocity on the 
surface of the jet is not valid. The experimentally 
calculated growth rate for six systems are presented in 
Table (8 ) along with the predictions of Rayleigh equation 
[2.20] and Bright, equation [2.38].
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Table (8 ) shows that the growth rate is well 
predicted in the present study using equation [5.59]. The 
discrepancy of the results with the stationary instability 
theory equation [2 .2 0 ] and inertial instability theory 
equation [2.38], can be explained if we compare the 
present results individually and separately with these 
equations.

The equation [2.20], as proposed by Rayleigh(S), is 
based on two major assumptions. Primarily, he considered 
a stationary liquid jet, therefore the effect of the 
relative velocity of the two phase was ignored completely; 
this assumption could produce good results for the 
liquid/air system where the continuous phase density and 
viscosity are negligible. Secondly, he assumed that only 
one single wave of the fastest growing disturbance travels 
with the nozzle velocity on the surface of the jet. The 
present experimental data as given in Figure 24 suggest 
that the wave always travel slower than the jet velocity. 
Further equation [2.20] predicts that the wave possessing 
a wave number equal to 0.696 will grow faster on the jet 
surface and cause the jet to break into drops. But 
experimentally measured values of the wave numbers span 
the range 0.6<ka<1.8 as shown in Figure 25.

On the other hand, the experimentally calculated 
values of the growth rate can also be compared using 
equation [2.38],proposed by Bright(24). He considered the 
effect of the relative velocity and the viscosities of the 
two phases. He suggested that the viscous forces are
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TABLE a

COMPARISON OF EXPERIMENTAL AND PREDICTED DIMENSIONLESS GROWTH RATE

1 SYSTEM WE EXP
VALUES EQ

[5.59] EQ
[2 .2 0 ]

EQ 1 
[2.38] 1

1 Decane / Water 6 . 0
1 0 . 0
2 0 . 0

0.2262
0.2259
0.2241

0.2303
0.2303
0.2303

0.2537
0.2537
0.2537

0.4000 1 
0.4684 1 
0.5890 j

1 Decanol / Water 6 . 0
1 0 . 0
2 0 . 0

0.1777 
0.1822 
0.1796

0.1123
0.1123
0.1123

0.2557
0.2557
0.2557

0.2464 1 
0.2843 1 
0.3558 1

1 Paraffin / Water 6 . 0
1 0 . 0
2 0 . 0

0.1780
0.1773
0.1733

0. 1850 
0.1850 
0.1850

0.2418
0.2418
0.2418

0.4608 1 
0.7143 1 
0.9409 1

1 Water / Decane 6 . 0
1 0 . 0
2 0 . 0

0.2753
0.2704
0.2487

0.2335
0.2335
0.2335

0.2536
0.2536
0.2536

0.4172 1 
0.5222 1 
0.6709 1

1 Water / Decanol 6 . 0
1 0 . 0
2 0 . 0

0.1689 
0.1739 
0.1628

0.1115
0.1115
0.1115

0.2550
0.2550
0.2550

0.2418 1 
0.2676 1 
0.3125 1

1 Water / Paraffin 6 . 0
1 0 . 0
2 0 . 0

0.1630
0.1619
0.1628

0.1923 
0.1923 
0.1923

0.2538
0.2538
0.2538

0.3107 1 
0.3275 1 
0.3566 1
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associated with the damping coefficient, and an increase 
in the damping.coefficient will reduce the growth rate of 
the wave. He also considered the inertial forces due to 
relative motion on either side of the interface.

The combined effect of the viscous and inertial 
forces on the wave motion on the surface of the jet 
depends on the relative magnitudes of the forces. In the 
derivation of equation [2.38] he considered a shear 
velocity gradient at the interface, which has the effect 
of reducing the magnitude of the inertial term in the 
equation. Although equation [2.38] is based on the wave 
velocity and predicts the wave numbers to be of the same 
order as were measured experimentally, it has been found 
that the calculated growth rates were far higher than the 
measured growth rates. Further as can be seen in Table 
(8 ) the predicted growth rate using equation [2.38] 
increases with the Weber number.

If the experimental growth rates are compared with 
the corresponding theoretical values obtained from 
equations [2.20] and [2.38] the following picture can 
emerge: the experimental results show the same trend as
one would have expected from using a stationary theory, 
that is to say, a constant growth rate independent of the 
Weber number (equation [2.20]). The experimental data 
indicates that the wave velocity is always lower than that 

jet velocity, and the wave number has a value 
around 1. These two findings alone suggested that for 
liquid liquid systems the wave velocity and the effect of
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the physical properties of both the phases should have 
been included in the stationary theory in order to improve 
the prediction of the wave number. These two parameter 
were included in the present study to derive equation
[5.5%]. The prediction of the growth rate is given in 
Table (8 )

The prediction of the growth rate using equation
[5.5%] has confirmed that the viscosity of both the phases 
affects the growth rate of the growing wave on the surface 
of the jet. The effect of the dispersed phase viscosity 
can be seen in the decanol/water and paraffin/water
systems in Table (8 ). The effect of the continuous phase
viscosity on the growth rate of the wave can be seen in 
Table (8 ) for the water/decanol and water/paraffin
systems. In both the cases the predicted growth rates are 
lower than the non viscous systems and match the 
experimental findings. This explains the damping effect 
of the wave on the surface of the jet due to viscosity as 
we have discussed in chapter 5. Since Rayleigh only 
considered the physical properties of the dispersed phase 
his equation could not account for such variations.

Further, Rayleigh's theory predicts values of the 
wave number around a value of 0.696 which is lower than 
the experimentally measured values. The discrepancy 
however, should be explained. The stationary theory 
considered that the wave travels with the jet velocity, 
but Figure 24 has shown that the wave velocity is always 
slower than the nozzle velocity. Therefore, in the
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present work the prediction of the wave number was 
corrected to account for the difference between the actual 
wave and nozzle velocities.
Hence,
ka = (U/c) ka [6.4]

mean predicted

where U is the nozzle velocity and c is the wave velocity. 
The corrected wave numbers are presented in Table (9) 
where it can be seen that the experimental values are in 
good agreement.

The present study suggests that the wave growth rate 
does not depend on the jet velocity and the wave velocity 
is always slower than the nozzle velocity. These facts 
are important for predicting a fundamental drop size in 
the jetting regime, since the fundamental drop volume 
depends on the wave length of the fastest growing 
disturbances on the surface of the jet.
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TABLE 9

COMPARISON OF EXPERIMENTAL AND PREDICTED DIMENSIONLESS WAVE NUMBER

SYSTEM WE EXP 
ka value EQ

[6.4] EQ
[2 .2 0 ]

EQ
[2.38]

6 . 0 1 .05 1.160 0.696 0.91Decane/ Water 1 0 . 0 1 . 18 1 .165 0.696 1 .05
2 0 . 0 1 . 18 1 . 136 0.696 1 . 2 0

6 . 0 0.65 1 .030 0.696 0.71Decanol /Water 1 0 . 0 0.83 1 . 125 0.696 0.81
2 0 . 0 0 . 8 6 1.262 0.696 0.93

6 . 0 1 .30 1.570 0.696 0.93Paraffin /Water 1 0 . 0 1 . 2 0 1.710 0.696 1.23
2 0 . 0 1.30 1.620 0.696 1.42

6 . 0 1 .06 0.990 0.696 0.71Water / Decane 1 0 . 0 1 . 18 1 .004 0.696 0.82
2 0 . 0 1 . 2 0 1.312 0.696 0.96

6 . 0 1.41 1.360 0.696 0.61Water / Decanol 1 0 . 0 1.50 1.560 0.696 0.80
2 0 . 0 1.80 1.541 0.696 1.30

6 . 0 0.74 1 . 0 1 1 0.696 0.61Water /Paraffin 1 0 . 0 0.80 1.130 0.696 0.73
2 0 . 0 0.97 1.323 0.696 0.83
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6.3 DROP SIZE IN THE JETTING REGIME

It is not possible to be able to explain the drop 
size variation on the basis of the instability theory 
alone, since it assumes that each fundamental wave will 
grow exactly in the same manner as every other fundamental 
wave, and should eventually lead to a break up of the jet 
into a stream of monosize drop with no necessary 
distinction between them.

The formation of distinct 'family' groupings as 
observed in chapter 4, provides the best clue to the 
possible explanation of the drop size variation in the 
jetting regime. The family has its own period of 
formation, Tg, which is always an integer multiple of the 
fundamental period, Tf, as can be seen in Table (3). 
Therefore, the group frequency, COg = 2 7T/Tg, can be
compared to the beat frequency in music by the interaction 
of the fundamental wave with one of its harmonics. If ^f 
is the frequency of the fundamental wave and -̂̂h is the 
frequency of the harmonic wave, then the group frequency 
is such that Wg = üJh - ^f. For example, a 2N-1N family of 
drops with Tg = 3Tf might be formed from the interaction 
of the fundamental ^f with the harmonic ^h = 4 <^f/3 .

The qualitative picture of regular families could be 
explained on the basis of the interaction of the harmonic 
waves. However, it is still necessary to be able to 
characterise these patterns quantitatively. It is helpful 
to consider the relaxation process of the jet. Figure 26 
suggests that the relaxation period, Tr, for water/decane
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system is constant around a value of. 6 ms while the 
fundamental period decreases as the flow rate increases. 
Therefore, a characteristic ratio Tf/Tr could be used as a 
criterion to relate the mean drop size in the jetting 
regime.

The formation of the distinct families in the early 
jetting regime can also be explained if we consider the
interaction of the relaxing wave with that of the
fundamental wave. A clear picture can emerge if we 
consider the growth of the fundamental wave. Tf is the 
time needed for the fundamental wave to grow large enough 
to pinch the jet at the antinode of the ultimate wave to 
produce a monosize stream of 1N drops. However, during 
the same time interval, a relaxing wave propagates 
backwards to interact with the fundamental wave.

Each fundamental wave could break the jet into a 1N 
monosize stream of drops if the relaxing and fundamental
wave attain the same phase at the final antinode on the
jet. Therefore, it is assumed that for an ideal situation 
of 1N monosize drops, Tf, should be equal to Tr.

Using the experimentally calculated value for the 
constant K for water into decane system as described in 
chapter 5, we can predict the relaxation time using 
equation [5.65]. The monosize stream of 1N drops will 
occur at a flow rate where Tf becomes equal to Tr. 
Replacing Tf in equation [5.63], we can estimate the 
critical velocity at which this stream is expected to 
occur. For the water into decane system this velocity was
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found to be 53.5 cm/sec, which gives a critical Weber
number We_ = 7.6 at which a monosize stream of IN drop is m ^
anticipated. The experimental evidence arising out of the 
present work and Bright (21) suggests the onset of the 
minimum drop size occurs around a Weber number of valueS.O 

The experimentally measured mean drop sizes for these 
families is given in Table 10. The next step is to 
establish the relationship between mean drop size and the 
characteristic ratio Tf/Tr for the family group. If D1 is 
the diameter of a IN drop, D2 the diameter of a 2N drop 
etc, the mean drop size can be calculated for these 
families by adding up the numbers n^,n2 ,etc of each size 
of drop in each family and using the following formula ;

--- = [nu+ 2n_+ 3n_+ ..]/[n,+ 2^*®^n2+ 2®'^^n3+ ..][6.5] D1 I j I
To a first approximation equation [6.5] can be written as
D.

- - -  =  [ ( n ^ + 2 n 2 + 3 n 2  +  . . ) / ( n ^ + n 2 + n 2 +  . . . ) ] ® * ^ ^  [ 6 . 6 ]

or
D
D
32 n 1—  = [NN/ND]^'^^ [6.7]

For a monosize stream of IN drops at the critical Weber
number (We ) we can write: m
NN/ND = [Tg/Tf] = [Tf/Tr] [6 .8 ]
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TABLE 10

EXPERIMENTAL DROP SIZE DISTRIBUTION AND VALUES QF THE RATIO Tf/Tr 
AT VARIOUS WEBER NUMBER FOR WATER INTO DECANE SYSTEM

1 s. No1_____ WE D32/D1 Tf/Tr I
11 1 . 1 . 8 6 1.93 3.08 1
1 2 . 1 .87 1.84 3.06 1
1 3. 2.73 1.58 2.26 1
1 4. 3.04 1.51 2.06 1
1 5. 3.25 1.48 1.96 1
1 6 . 3.57 1.36 1.81 1
1 7. 3.66 1.32 1.71 1
1 8. 3.84 1.29 1.65 11 9. 4.04 1.28 1.62 1
1 1 0 . 4.14 1.27 1.61 I
1 1 1 . 4.19 1 . 2 2 1.60 1I 1 2 . 4.55 1 . 2 1 1.50 11 13. 4.85 1 . 2 0 1.45 11 14. 4.93 1 . 2 0 1.40 11 15. 5.29 1.19 1.30 1
1 16. 5.78 1 .18 1.23 1
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Therefore, equation [6.7] can be written as

---- = [Tf/Tr]° 33 [6.9]

Now it is reasonable to assume that the fundamental
period, Tf, for the fastest growing wave will depend on
the Weber number. Therefore, the characteristic ratio
Tf/Tr can be regarded as a function of the ratio We/We ,m
where We^ is the critical Weber number at which a stream m
of 1N monosize drops is expected, that is the minimum drop 
size conditions apply. Therefore, we can write ;

Tf/Tr = f (We/We^) [6.10]

Figure 43 was used to calculate the dependency of these 
two ratios Tf/Tr and We/We^ using Table 10. The
dependency was estimated as follows

Tf/Tr = (We/We^)"° [6.11]

Now under the limiting case of the IN monosize drop
stream, the ratio in the equation [6 .1 1 ] must be unity and
using equation [6.9] we can write

---- = ( [We/We ]"° 30 )0.33= [we/We ]"° 47 [6.12]ra m

To test equation [6.12] the mean drop size ratio
against critical Weber number ratio We/We^ was plotted in 
Figure 44. A straight line of slope -0.50 was drawn. 
Thus equation [6.12] appears to possess the correct form.
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VARIATION OF MEAN DROP DIAMETER
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FIGURE 14 VARIATION OF MEAN DROP DIAMETER WITH FLOW RATE
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which can be used to predict the mean drop size in the 
jetting regime up to the jet velocity where minimum drop 
size appears.

Considering the propagation and interaction of both 
the relaxing and fundamental waves on the jet one can 
explain the formation of a multinode drop in the
intermediate regime. At a critical Weber number, where 
the relaxation time Tr is exactly the same as the 
fundamental period Tf, every fundamental wave will be in 
the same phase with the relaxing wave at the final
antinode of the jet. The jet will break to form a one 
node drop due to constructive interference by every 
fundamental wave. But if Tr is not exactly the same as Tf 
then the jet might not break at the final antinode, but 
instead it will wait until these two waves attain the same 
phase again. The time these waves take to become equal in 
phase, determines the size of the drop.

For example, if Tf is equal to 2Tr the relaxing wave
will be in the opposite phase to the fundamental wave at 
the final antinode and will suppress the growth of the 
fundamental wave; the jet will not break at this stage. 
The next following fundamental wave, after 2Tf, would be 
in the same phase and will pinch the jet to form a 2N 
drop. Similarly, if the Tf is equal to 3Tr then after 
three fundamental nodes these waves will attain the same 
phase and cause the jet to break to form a 3N drop. 
Further more, if Tr is a fraction of Tf then a combination 
of drops are expected depending on the Tf/Tr ratio.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

In the final chapter the conclusions from the present 
study will be summarised. Recommendations are proposed to 
extend the present work in order to include aspects which 
have not been covered in this study.

When one liquid is injected into a second immiscible 
liquid through a nozzle a number of distinct regimes have 
been identified in the drop formation process.

7.1 DROP FORMATION REGIMES

7.1.1 PREJETTING REGIME

At low flow rates the drops of liquid grow at the
nozzle tip and detach at, or close, to the nozzle. The
drop's point of detachment moves increasingly away from 
the nozzle leaving a small residual volume of liquid at
the nozzle, which becomes the seed for the growth of the
next drop.

The final equation to predict the drop diameter in 
the prejetting condition can be written as;

Dg/ °n = [ --( 1 + 7) ]° 33 [5.18]Eo

where Eo is the Eotvos number and the values of 7- and B can be
calculated as given in Appendix C.

A two stage drop formation mechanism is proposed. 
The first stage involves a force balance on the drop
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during its growth period at the nozzle. When the forces 
attain an equilibrium the drop leaves the nozzle and 
detaches from the end of a transitory liquid jet. During 
the second stage a new approach of the drop detachment 
process is proposed on the basis of the instability of the 
liquid column behind the drop.

The diameter and the first stage growth period of the 
drop decreases as the flow rate increases, while the 
length of the liquid column behind the drop at the time of 
drop detachment increases with the flow rate.The jetting 
starts when a flow rate is reached where the transitory 
liquid column behind the drop does not get time to relax 
towards the nozzle before a new drop start to detach.

7.1.2 JETTING REGIME

Three regimes have been identified depending on the 
type of the waves responsible for the eventual breakup of 
the jet. These regimes have been characterised by the
dimensionless Weber number of the jet. We..j *

(a) 2 < We^ < 8

This range has been given the name of "intermediate 
jetting regime", where the jet breaks up into families of 
drops of different sizes. The volumes of the individual 
drops are related to each other in terms of integer 
multiples of the fundamental minimum drop volume. The 
phenomenon of breakup is believed to be caused by the 
interaction of the fastest growing symmetrical and
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relaxing wave travelling in the opposite direction on the 
surface of the jet.

(b) 8 < We^ < 25

This range has been termed the "maximum jetting 
regime", where the length of the jet achieves its maximum 
value and most of the drops formed are of the minimum drop 
size. The jet breakup is believed to be caused by the 
growth of a single wave. This wave can be one of a narrow 
band of fast growing waves having wave length close to the 
fundamental wave. Within this range drop formation was 
irregular and no identifiable repeatable pattern was 
found

(c) Wej > 25

This range has been given the name of "asymmetric 
jetting regime", where the first appearence of the 
asymmetric waves were observed around this Weber number. 
The drop sizes vary considerably due to a combination of 
symmetric and asymmetric wave patterns on the jet.

7.2 DROP SIZE DISTRIBUTION

The drop size varies from a maximum in the prejetting 
regime to a minimum in the maximum jetting regime. As the 
flow rate increases the mean drop size reduces in the 
intermediate regime, because the number of the small drops 
in the family increases. At the transition from 
intermediate to maximum jetting regimes the drop families
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contain a large number of single node drops and the mean 
drop size approaches the minimum drop size.

7 . 3  WAVE PROPERTIES

A model is proposed to calculate the growth rate of 
the wave on the surface of the jet. The final equation 
used to predict the growth rate is given as;

g = ( a!pa})C / [A + 2qB] [5.59]

The dimensionless growth rate of the symmetrical 
waves on the surface of the jet is believed to be 
independent of the jet velocity. The growth rate 
decreases with the increasing viscosity of both the 
continuous and dispersed phase. The wave velocity is 
always less then the jet velocity and was found to satisfy 
the following relation, 
c = 0.60 Uj

7 . 4  RECOMMENDATIONS FOR FUTURE WORK

In the prejetting regime, the residual volume is an 
important parameter to be predicted accurately, in order 
to improve the overall drop volume prediction. To this 
end, more experimental information is required in order to 
consider the right geometry of the liquid column left 
behind the drop at the time of detachment. The present 
model assumed that during the first stage growth of the 
drop at the nozzle, the surface tension force adjusts 
itself until it reaches its maximum value, to keep the
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velocity of the drop constant. To test the validity of 
the assumption further information about the changing 
behaviour of the surface tension force during the drop 
formation process is required. One way to achieve this is 
to measure the inner and the outer radii of curvature of 
the drop during the formation process. It would also be 
useful to have more information about the necking inI .

process.
In the jetting regime, theories of instability are a 

long way in advance of the necessary experimental 
verification. Thus more direct experimental measurements 
of the primary variables which influence drop size, are 
needed. This calls for more measurements of the growth 
rates and wave properties of the fundamental wave on the 
surface of the jet. Fourier analysis of the changing wave 
profile might be helpful in explaining the interaction of 
the fundamental wave near the point of breakup.

Further to this, an extension of the results from a 
single to a multiple nozzle would be of direct practical 
importance to various chemical and biochemical industries.

The present work holds a great potential with regards 
to the design and development of new contacting equipment, 
where it is desirable to have a maximum interfacial area 
in order to improve the efficiency. The present work 
could also be adopted to produce monosize drops for 
various industrial applications.



180

BIBLIOGRAPHY

1. Harkins,W.D and Brown,F.E 
Amer. Chem. Soc, 41, 499, 1919.

2. Hayworth,C.B and Treybal,R.E 
Ind. Eng. Chem, 42, 1174, 1950.

3. Null,H.R and Johnson,H.F 
AIChE Journal, 4, 273, 1958.

c4. Meister,B.J and Sheele,G.F
AIChE Journal, T4, 9, 1968.

5. Chazal,L.E.M and Ryan,J.T 
AIChE Journal, 17,1226, 197 .

6 . Kumar,A and Hartland,S
Trans. IChemE Journal, 60, 35, 1982.

7. Smith,S.W and Moss,H
Proc. Roy. Soc. A93, 373, 1917.

8 . Fujinawa,K; Maruyama,T and Nakaike,Y 
Kagaku Kikai 21, 194, 1957.

9. Rayleigh,Lord
Proc. Lon. Math. Soc, 10, 4, 1879.

10. Tyler,E
Phil. Mag, 16, 504, 1933.

11. Keith,F.W and Hixson,A.N
Ind. Eng. Chem, 47, 258, 1955.

12. Christiansen,R.N and Hixson.A.N 
Ind. Eng. Chem. 49, 1017, 1957.

13. Treybal, .<B*E
Liquid Extraction 2nd Ed. McGraw Hill. 1963

14. Skelland,A.H.P and Johnson,K.R 
Can. J Chem. Eng. 52, 732, 1974.

15. Ryan, J T
PhD Thesis, University of Missouri 1965.

16. Rayleigh,Lord
Phil. Mag, 34, 145, 1892.

17. Weber,C
Z Angew Math Mech. 11, 136, 1931.



181

18. Tomotika,S
Proc. Roy. Soc, A150, 322. 1935.

19. Meister,B.J
PhD Thesis, Cornell University, NY 1966

e20. Meister,B.J and ^heele,G.F 
AIChE Journal 15, 701, 1969.

21. Bright,A
PhD Thesis, The Open University, U.K. 1984

22. Horvath,M; Steiner,L and Hartland,S 
Can. J Chem.Eng 15, 9, 1978.

23. Van den Akker,H.E.A
Chem. Eng. Journal 19, 255, 1980.

24. Bright,A 
ISEC 1982

25. Kitamura,Y., Mishima,H and Takahashi,T.
Can J Chen Eng 60, 723, 1978.

2 6 . Lamb,H
'HYDRONAMICS' Dover Publications Inc. New York.



182

LIST OF SYMBOLS

a Jet radius cm

^ 0
Nozzle radius cm

C Wave velocity = X/ 7  = co/k cm/ s

c Dimensionless wave velocity = c/U
Jet diameter cm

"̂ jm Jet diameter at cm

“n Nozzle diameter êrii
Static drop diameter cm
Drop diameter of 1-N drop = D cm m
Minimum drop diameter cm

°32 Mean drop diameter ( Sauter mean ) cm
Eo 2Eotvos number = g^p D^ /a

Buoyancy force N
Momemtum force n

Surface tension force n

"p Excess pressure force n

Fr
9

Froude number = U^AD^g)^^^ 
Acceleration of gravity, 9.81 m s~^

h Vibration mode number
i Square root of -1
Ih(x) Modified Bessel function of first kind

Derivative of Iĵ (x)
*I

I*
1+

lQ(ka)/I^(ka) 
îcl* - 1 
k/I*
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1 ° Kl+ - 1

k Wave number =27r/\ -1' cm
ka Dimensionless wave number = IT
k^max Wave number of the fastest growing wave

*

m
ND
NN

cm

Kĵ (x) Modified Bessel function of the second kind oforder h
Kĵ (x) Derivative of K. (x)
K Ko(ka)/K^(ka)
K* Kk + 1
K+ iT/K*
K° kk'’’ - 1
L Jet length cm

Maximum jet length cm 
ratio of viscosities ( 
Number of drops in a family 
Number of nodes in a family

n^ Number of drops of diameter Dĵ
Pressure mPa

P pâ /(7
q Damping coefficient = uk/ap
Q Volumetric flowrate through nozzle ml/s
r Radial distance cm
?  r/ao
Pe Reynold'' Number
s Ratio of densities (/ ^ / )

wave period of fundamental wave ? 
wave period of relaxing wave s 

t Time s
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^9 Growth time for fundamental wave to break the jet

"n Nozzle velocity cm/s

"m Nozzle velocity at minimum drop size condition cm/s

"l Interfacial velocity cm/s

"a Average jet velocity

"i jetting velocity cm/s

Jet velocity at minimum drop size conditions cm/s

"k Jet velocity at Maximum jet length cm/s

"r Velocity component, r-direction

“ 0
Velocity component, ^-direction

“z Velocity component, z-direction
U Axial velocity cm/s

ïï U/Un
ü AÜ/U

Vd Drop volume ml

Vf Final drop volume in prejetting conditions ml

Vp Fundamental drop volume ml

We 2Weber number = PU^ D^/J
we. Weber number at U.3
««m Weber number at Um
Z Axial distance cm

z 0  5Ohnesorge number = ^/( P D ^  ) '

Zc Ohnesorge number of continuous phase
Ohnesorge number of jet phase
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LIST OF GREEK SYMBOLS

Ot Growth rate of disturbance  ̂p - iw ,
- 1P Real part of Of , s

V Disturbance amplitude = e^^ ^ i(kz + h0) ,<
Initial disturbance amplitude 

X Wave length ,cm
P  Viscosity, mPa s
p kinematic viscosity
n  p°/ç

tt'  d n / d r

n" d^n/drZ
. * 3p Density ,kg/m

Ap Density difference
(J interfacial tension , n
r Wave period , s
Tjy Normal stress N/m^

—1CO Wave frequency, s
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SUBSCRIPTS

m pertaining to fastest growing disturbance

i pertaining to interface conditions

j pertaining to jet conditions

n pertaining to nozzle condition

SUPERSCRIPTS

Dimensionless variable 

Continuous phase 

Derivative with respect to r 

• Derivative with respect to z

o •fluctuating component ( small scale motion )
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APPENDIX A

EXPERIMENTAL DATA FOR DROP FORMATION 

IN PREJETTING CONDITIONS

SYMBOLS USED IN THE APPENDIX

Ht Drop top edge

Hn Drop neck
B Drop expansion

Vt Total volumetric flow

Vn Volume of the cylinder

Vd Volume of the drop

°d Drop diameter

Buoyancy force

Momentum force

Fs Surface tension force

Drop top edge velocity

Hn Drop neck rise velocity
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APPENDIX B

EXPERIMENTAL DATA ON WAVE PROPERTIES FOR VARIOUS SYSTEMS 

SYMBOLS USED IN THE APPENDIX

A - Growth rate
B - Dimensionless growth rate
D - Nozzle diameter o
p - Continuous phase density ‘ c
p - Dispersed phase density d
^  - Continuous phase viscosity 

- Dispersed phase viscosity 
O' - Surface tension 
U^ - Nozzle velocity 
We - Weber Number 
JL Jet length 
CVE - Exp. wave velocity 
DIM - Dimensionless group
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SYSTEM DECANE INTO WATER

Do = 0.0602 cm = 0.999 = 0.732 = 0.011 = .009 cr= 22.5

SET 1
Un =56. Ocm/sec WE = 6.14 JL = 0.65cm CVE = 27.5cm/sec DIM = 1013

S.No Dist from nozzle Ave. Peak Anp Log (Ave. Peak Anp)Y in cm in cm
1. 0.14811 0.000642 -7.35362. 0.24680 0.000471 —7.66643. 0.35056 0.001939 -6.81894. 0.40018 0.002967 -5.82755. 0.44595 0.007226 -4.9390
6 . 0.49895 0.008565 -4.76967. 0.50798 0.010764 -4.5315
8 . 0.60026 0.011795 -4.44069. . 0.65000 0.013980 -4.2762

A = 229 B = A/DIM = 0.2262
SET 2
Un = 72.Ocm/sec WE = 10.15 JL = 1.25cm CVE == 43.6cm/sec DIM = 916

S.No Dist from nozzle Ave. Peak Amp Log (Ave. Peak Anp)Y in cm in cm
1. 0.85575 0.002754 -5.89462. 0.92221 0.003625 -5.61993. 0.95843 0.004339 -5.44044. 1.00960 0.006243 -5.07635. 1.05860 0.007459 -4.9055
6 . 1.10790 0.007694 -4.8672
7. 1.15840 0.008401 -4.7793
8 . 1.20800 0 . 0 1 1 2 0 1 -4.49179 1.25000 0.011621 -4.4549

A = 207 B = A/DIM = 0.2259
SET 3
Un = 98.Ocm/sec WE = 18.81 JL = 2.4cm CVE = 59.17cm/sec DIM = 843

S.No Dist from nozzle Ave. Peak Anp Log (Ave. Peak Anp)Y in cm in cm
1. 2.20150 0.007084 -4.95422. 2.25150 0.008738 -4.74823. 2.29960 0.009279 -4.68734. 2.34930 0.010998 -4.51145. 2.40030 0.012130 -4.4126

A = 189 B = A/DIM = 0.2241
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SYSTEM DECANOL INTO WATER

DO 0.0602 cm = 0.999 = 0.836 = 0.015 =0.18 cT"= 6.9

SET 1
Un = 19.2cm/sec WE = 5.98 JL = 0.90cm CVE = 12.8cm/sec DIM = 438
S.No Dist from nozzle 

Y in cm Ave. Peak Amp 
in cm Log (Ave. Peak Amp)

2.
3.
4.
5.

0.50759
0.60611
0.70421
0.80429
0.90000

0.002579
0.007828
0.011678
0.008246
0.023190

-5.9617
-4.8596
-4.4545
-4.7983
-3.7647

A = 78 B = A/DIM = .1777

SET 2
Un = 24.8cm/sec WE = 9.98 JL = 1.05cm CVE = 13.7cm/sec DIM = 405

S.No Dist from nozzle
______ Y in cm Ave. Peak Anp 

  in cm Log (Ave. Peak Anp)

2.
3.
4.
5.

0.75057
0.84894
0.94634
0.99912
1.05000

0.006360
0.007129
0.014264
0.019448
0.024079

-5.1112
-4.9660
-4.2595
-3.9481
-3.7244

A = 73.8 B = A/DIM = 0.1822

SET 3
Un - 35.Ocm/sec WE = 19.89 JL = 1.95cm CVE = 19.3cm/sec DIM = 359
S.No Dist from nozzle 
  Y in cm Ave. Peak Anp 

in cm Log (Ave. Peak Amp)

2.
3.
4.
5.
6 .

1.6016
1.7002
1.8001
1.8507
1.8990
1.9500

0.010672
0.013420
0.018006
0.021927
0.027051
0.026252

—4.5530 
-4.3110 
-4.0171 
-3.8257 
-3.6139 
-3.6420

A = 64.5 B = A/t>IM = 0.1796
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SYSTEM PARAFFIN INTO WATER

Do = 0.0602 cm = 0.999 fd = 0.882 A =0.015 = .102 o-= 27.5

SETT 1
Un = 52.Ocm/sec WE-= 5.22 JL = 0.85cm CVE = 23.3cm/sec DIM = 845
S.No Dist from nozzle 

Y in cm
1. 0.55097
2. 0.60071
3. 0.64995
4. 0.70079
5. 0.74992
6 . 0.79996
7. 0.85000

Ave. Peak Anp 
in cm Log(Ave. Peak Anp)

0.004296
0.005247
0.006156
0.007083
0.009466
0.014696
0.018169

-5.4512
-5.2554
-5.0963
-4.9560
-4.6673
-4.2210
-4.0028

A = 150 B = A/DIM = 0.1780

SET 
Un =

2

74.5cm/sec WE = 10.7 JL = 1.30cm CVE = 30. Ocm/sec DIM = 829
S.No Dist from nozzle 

Y in cm Ave. Peak Anp 
in cm Log (Ave. Peak Anp)

1 . 0.905521 0.007153 -4.9439
2 . 1.053310 0.012548 -4.58023. 1.149470 0.015422 -4.17634. 1.200580 0.018297 -4.00125. 1.251460 0.021927 -3.8269
6 . 1.300000 

A = 147 ■ ■

0.026252
R = A/nTM - A 1

-3.6406

SET 3
Un = 105.5cm/sec WE = 21.49 JL = 2.20cm CVE = 45.1cm/sec DIM = 698
5.No Dist from nozzle 

Y in cm Ave. Peak Anp 
in cm Log (Ave. Peak Anp)

1 . 1.9020 0.008829 -4.7276
2 . 2.0015 0.010357 -4.57083. 2.0524 0.011562 -4.46164. 2.1027 0.013296 -4.32755. 2.1505 0.014698 -4.2254
6 . 2 . 2 0 0 0 0.016082 -4.1306
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SYSTEM WATER INTO DECANE
Do - 0.0602 cm = 0.732 = 0.999 jî = 0.009 = .011 0“= 22.5

SET 1
Un = 47.3cm/sec WE = 5.98 JL = 0.70cm CVE = 33.3cm/sec DIM = 924
S.No Dist from nozzle 

Y in cm Ave. Peak Anp 
in cm .Log(Ave. Peak Amp)

1 . 0.25546 0.000496 -7.6255
2 . 0.35319 0.001281 —6.66223. 0.45341 0.001490 -6.53564. 0.50371 0.004087 -5.50025. 0.55545 0.005742 -5.1585
6 . 0.60494 0.007226 -4.93467. 0.65380 0.019259 -4.5887
8 . 0.70000

a -
0.013842 -4.2884

SET 2
Un - 61.2cm/sec WE = 10.0 JL = 1.60cm CVE = 42.2cm/sec DIM = 917
S.No Dist from nozzle 

Y in cm Ave. Peak Amp Log (Ave. Peak Anp)
1 . 1.301521 0.005165
2 . 1.399310 0.0072993. 1.490970 0.0105674. 1.499680 0.0125255. 1.550560 0.013847
6 . 1.600000 0.059228

A = 248 B = A/DiM = 0.2704

-5.1354
-4.9223
-4.5537
-4.3825
-4.2856
-4.1468

SET 3
Un = 86.55cm/sec WE = 20.02 JL = 3.00cm CVE = 459.2m/sec DIM = 804
S.No Dist from nozzle 

Y in cm Ave. Peak Anp 
in cm Log (Ave. Peak Amp)

1 . 2.8055 0.012779 -4.3680
2 . 2.8562 0.011108 -4.50163. 2.9079 0.013334 -4.48214. 2.9545 0.015922 -4.14115. 3.0000

A = onh
0.016739 -4.0977 

------ ----------------
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SYSTEM WATER INTO DECANOL
Do = 0.0602 cm Pc ” 0.836 Pd “ 0-999 = 0.180 = .015 cr- 6.90

SET 1
Un = 17.2cm/sec WE = 5.73 JL = 0.75cm CVE = 8.80cm/sec DIM = 384

S.No Dist from nozzle 
Y in cm

Ave. Peak Anp 
in cm

Log(Ave. Peak Anp)
1 . 0.24196 0.001080 -6.8301
2 . 0.25564 0.001821 -6.74493. 0.35625 0.002554 -5.97634. 0.45467 0.004797 -5.34935. 0.55195 0.007012 -4.9631
6 . 0.65419 0.009377 -4.67227. 0.75000 0.011108 -4.5017

A = 64.4 B = A/bIM = 0.1677

SET 2
Un = 22.2cm/sec WE = 9.56 JL = 1.15cm CVE = 9.92cm/sec DIM = 341

S.No Dist from nozzle 
Y in cm

Ave. Peak Anp 
in cm Log (Ave. Peak Anp)

1 . 0.772301 0.002469 -6.0067
2 . 0.852000 0.003926 -5.54393. 0.958210 0.004748 -5.35334. 1.150000 0.010985 -4.5162

A = 59.3 B = A/DIM = 0.1739

SET 3
Un = 32.25cm/sec WE = 20.11 JL = 2.00cm CVE = 14.12m/sec DIM = 304
S.No Dist from nozzle 

Y in cm
Ave. Peak Anp 

in cm
L<^(Ave. Peak ;^)

1 . 1.50561 0.004700 -5.3690
2 . 1.60619 0.005092 -5.28193. 1.70640 0.007504 —4.86264. 1.80675 0.007306 -4.91925. 1.90675 0.010462 -4.5610
6 . 2 . 0 0 0 0 0 0.011562 -4.4690

A = 52.0 B = A/DIM = 0.1710
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SYSTEM : WATER INTO PARAEFIN
Do = 0.0602 cm = 0.882 pd = 0-999 ° °.102 jî  = .015 (T= 27.5

SET 1
Un = 52.3cm/sec WE = 5.98 JL = 1.40cm CVE = 36. Ocm/sec DIM = 865

S.No Dist from nozzle 
Y in cm

Ave. Peak Anp 
in cm

Log (Ave. Peak Anp)
1. 0.73901
2. 0.83895
3. 0.93782
4. 1.03827
5. 1.14165
6 . 1.23659
7. 1.33480
8 . 1.40000

0 . 0 0 2 1 1 2
0.002091
0.004086
0.006036
0.007592
0.009757
0.012038
0.013704

-6.1659
-6.1788
-5.5001
-5.1173
-4.8853
-4.6385
-4.4283
-4.2938

A = 141 B = A/bIM = 0.1630

SET 2
Un = 67.5cm/sec WE = 9.99 JL = 1.90cm CVE = 41.7cm/sec DIM = 840

S.No Dist from nozzle 
Y in cm

Ave. Peak Anp 
in cm

Log (Ave. Peak Anp)
1. 1.403801
2. 1.503300
3. 1.603710
4. 1.704600
5. 1.801200
6 . 1.900000

0.003588
0.005790
0.008066
0.010254
0.010254
0.014407

-5.6382
-5.1509
-4.8232
-4.7020
-4.5838
-4.2470

A = 136 B = A/bIM = 0.1619

SETT 3
Un = 95.55cm/sec WE = 19.91 JL = 3.00cm CVE = 50.02m/sec DIM = 694

S.No Dist from nozzle 
Y in cm

Ave. Peak Anp 
in cm Log(Ave. Peak Anp)

1. 2.50351
2. 2.60149
3. 2.70240
4. 2.79915
5. 2.89895
6 . 3.00000

0.005390
0.008069
0.008004
0.007446
0.010352
0.014122

-5.2226
-4.8200
-4.8289
-4.9003
-4.5720
-4.2655

A = 113 B = A/bIM = 0.1628
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APPENDIX C

PREDICTION OF DROP DIAMETER AT LOW FLOW RATES
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The drop diameter in the prejetting condition can be predicted using 

equation 5.18 provided the values of T, B and Eo are known. These values 

can he estimated as follows :

1. Measure flow rate of liquid through the nozzle. Q
22. Calculate nozzle velocity, Un = 4Q/ ttDn

23.' Calculate Weber number. We = PUn Dn/o-

4. Calculate Eotvos number, Eo = gAPDn/cr

5. Calculate Vo/Vs using Figure A.

6. Calculate B =(1 - We/4 - Vo/Vs)

7. Calculate L/Dn using Figure B

8. CalculateT using equation 5.17

9. Put values ofT , B and Ecf in equation 5.18 to predict the drop
diameter in prejetting conditions.
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5.0

4.0

3.0

Eo

2.0

0.40 0.2 0.6 0.8
’o / ’s

We=0

We=0.3

We=l.0 

We=2.0

figure a
Relationship between Vo/Vs and E6* at various We
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5.0

We=0

4.0

We=0.5

3.0

Eo , We=l .0

We=2.0

1.0

1.0 2.0
L/Dn

3.0 4.0

FIGURE B

Relationship between L/Dn and Eb at various We
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