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ABSTRACT 

There are a number of products which are manufactured at a very large scale globally which are both 
energy and materials use intensive. In the case of paper and board manufacture, paper pulp (a mixture 
of cellulose, water and additives such as TiO2) require large quantities of cellulose, principally from 
trees and plant sources, with the corresponding addition and subsequent removal of water by mechanical 
or thermal means.  

The objective of the study was to investigate the potential benefit of using a nanofibrillated form of 
cellulose (NFC) to reduce the total paper pulp quantities used while retaining paper mechanical and 
printing performance of the paper stock produced. If successfully demonstrated, this would lead to a 
potential reduction in material usage and a possible pathway to reduce the water evaporative load in the 
production of paper products. 

To investigate the effectiveness of using NFC, we used a conventional ‘Top down’ approach to create 
small mass quantities of NFC suspensions generated through high pressure/high shear homogenisation 
and a microfluidisation recycle loop to break down a refined bleached softwood from a Kraft process 
feedstock into nanoscalar fibrils. The NFC produced represented 1-3% by weight of the final test paper 
pulp samples. On completion of nano fibril production, the paper pulp and NFC were combined using 
an in-line partitioned pipe mixing assembly to ensure homogeneous distribution of the NFC and ensure 
reproducible composite samples were available for characterisation. 

From the measured data, strong evidence indicated that NFC as an added reinforcement aid to bulk 
paper pulp has an advantageous effect on the ability to create an improved version of paper products 
with a substantial reduction in the total amount of paper pulp required to maintain both mechanical and 
printing performance characteristics of NFC enhanced paper products. In addition, the study indicated 
new opportunities to generate novel functional features for paper and board products using other 
polysaccharide systems including both chitosan and alginate hydrogels, cellulose acetate and seaweeds 
as potential mixed hybrid composites to create higher performance paper characteristics. 
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INTRODUCTION 

Resources that are available for products and product pipelines that provide human centred benefits 
through cleanliness, hygiene, nutrition, healthcare, intelligent built environments and consumer 
products need careful consideration in terms of their product lifecycle and their overall sustainability. 
This has been well documented through the publication ’Cradle to Cradle’ [1] which emphasise why 
and how we can and must conserve the Earth’s resources for future generations not just through 
recycling but through reuse and refunctionalisation of materials. This paper describes a Design:STEM 
Integrated approach that allows consideration of both materials and materials fabrication (making) in 
new, innovative ways and which can be summarised in general in the following Figure 1. Over the last 
decade, there has been a very significant increase in the number of useful materials that have been 
shown to exhibit new and improved performance characteristics in relation to both conventional and 
new user centred needs [2]. In general, these materials fall into the following classes: Natural, 
Responsive, Cellular and Structural. Below we will concentrate on Natural materials whose properties 
are inherently responsive and which can be processed or fabricated to provide beneficial mechanical 
and interactive behaviours that have both biocompatibility and sustainability through potential reuse 
and refunctionalisation. The focus of the work presented below therefore centers on how to increase the 
sustainable production of paper. In particular, the application of abundant polysaccharide materials that 
are both biocompatible and refunctional [3,4]. The results presented concentrate on the role of cellulosic 
materials in the form of cellulose and nanoscalar or nanofibrillated cellulose and how best to create 
more sustainable macroscale paper products manufacture through material property interactions at the 
macromolecular scale. Fig.1 

 

Figure 1: Cellulose chemical formula 



 

 

 

 

 

 

 

 

 

 

 

Figure 2: Bio- Design:STEM Integration 

 

LITERATURE REVIEW 

The research literature covering natural materials and their fabrication into useful products and relevant 
enabling technologies is extensive in both insight and application. Our work over the last three years in 
Design:STEM Integrated Systems has focused on responsive polymers and gels, cellular solids 
including foams and aerogels and natural materials, in particular the application of abundant 
polysaccharide materials that are both biocompatible and refunctional due to inherent characteristics 
that can interact with human centred  needs and behaviours.[2-4] This short review concentrates on the 
role of cellulose based materials as it has been demonstrated to be one of the most versatile and effective 
ways to create both a sustainable materials technology and a potential ‘Effects to Benefits’ platform. 
[5, 6] as highlighted in Fig 2 above and in Fig 3 below. 

Natural materials are a product of the forest (cellulose), the sea (chitin and Chitosan), from crops (starch 
biomaterials) and from bacteria. Cellulose along with lignin, another product extracted from wood form 
the two most abundant and relatively low cost natural materials that have been studied in detail in order 
to understand how best to utilise them for human, economic and environmental benefit [1,7-10]. The 
physico-chemical properties of NFC and its incorporation into bulk paper pulp (BPP) formulations 
indicate that NFC lends itself to a very wide applications space that incorporates potentially favourable 
fabrication choices and novel manufacturing routes through 0,1,2,3,4D manipulation. i.e. ‘dots’, ‘lines’, 
‘surfaces’, ‘structures’ and spatiotemporal constructs due to the rheology and malleable nature of 
cellulose often in the form of a super molecular polymer, hydrogel or as an organic aerogel assembly. 
[5, 11-22]. Nanocellulose introduction into paper formulations therefore provides a very wide ranging 
set of application opportunities from use in regenerative medicine [15,16] to structural applications in 
lightweight architectural structures [17] to automotive , aerospace and Space [18,19,20] to fashion and 
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consumer goods [21,22] incorporating , for instance, new paper and board constructs in new ways that 
are attractive through their interactive attributes as well as their sustainability through reuse and 
refunction. [23-32]. We can summarise the key requirements of research and development through Fig. 
3 below which follows the evolution of the polysaccharide platform from the bulk material (cellulose) 
through to the synthesis of NFC’s to its incorporation for implementable manufacture of nano composite 
based paper. Figs. 4  

 

Figure 3: Polysaccharides and the future of paper products 

 



Figure 4: Textile ‘DNA’ 

 

MATERIALS AND METHODS 

Cellulose and Nanofibrillated Cellulose (NFC) materials 

Cellulose has many excellent physico chemical characteristics. It is the most abundant natural and 
renewable materials on Earth and has been the subject of thorough investigation as to the use and novel 
application. It is the main constituent of wood & bamboo and contributes to the hierarchical structure 
of nearly all plant cell walls which, in turn, allows them to be disintegrated, providing native cellulose 
nanoscale fibres with good mechanical properties within crystalline and amorphous domains. It is an 
excellent example of Nature’s way of creating a sustainable biopolymer that is constructed from the 
bottom up from CO2 and water catalysed by chlorophyll. [33-36]. An essential characteristic is the 
formation of its macromolecular structure controlled by hydrogen bonding that links and dictates the 
positioning of glucose molecules through an energetically favourable condensation reaction pathway. 
Fig.5 

 

Figure 5: Textile visual ‘DNA’ 

The nano-micro-meso-macro scale characteristic of cellulosic growth can be exploited to generate a 
reverse breakdown of macro cellulose to micro and nano cellulose. In the case of nanoscalar material, 
the formation of nanocrystalline and nanofibrillated forms are possible. In top down energetically 



intense processing, nanofibrillated cellulose (NFC) is obtained with an average fibril diameter between 
3 and 30 nanometres and an overall fibril length of 1-5 microns.  For typical NFC cylindrical 
dimensions, the specific surface area SgSA is O(100m2/gm), making nanofibrillated cellulose extremely 
reactive. In addition, individual NFC fibrils are very strong (37-40) which makes the combination of a 
nanoscalar network of strong entangled fibrils ideal for the creation of fibril based reinforcement. When 
combined with cellulose bulk paper pulp (BPP), provides the hypothesis that we can create a new paper 
product that is mechanically robust and potentially requires a reduced BPP content in order to yield a 
more sustainable product outcome.  

Processing technologies:  

There are numerous routes to the creation of NFC. The most common techniques for NFC preparation 
feature a number of energy intensive mechanical ‘Top Down’ approaches, and chemical and biological 
‘Bottom up’ methodologies well documented in the literature [38-42]. They can be summarized for 
selection purposes as follows: 

a) Mechanical – energy intensive but relatively uncomplicated 
b) Chemical – complex pathways, higher cost but good control 
c) Biological – the subject of the most active research in order to explore the concept of living material 

systems for a sustainable bio-economy 

For our purposes, a mechanical route was chosen to create NFC that allowed us to minimize the use of 
additional chemicals. Once the dispersed phase NFC was acceptable in terms of nanoscalar attributes, 
the NFC was then mixed with bulk paper pulp (BPP) using customised in-line partitioned pipe mixing 
to create homogeneous composite mixtures. The reproducible composite feed material was pressed into 
10cm x 10cm test samples of final paper sheets for mechanical property evaluation. The experimental 
set-up is shown diagrammatically in Fig. 6 below and biological ‘Bottom up’ methodologies well 
documented in the literature [43-47]. They can be summarized for selection purposes.  

EXPERIMENTAL STUDIES 

 



Figure 6: Materials processing flowsheet 

 

To test our hypothesis that NFC addition to BPP feedstock can lead to sustainable paper products we 
had the following materials and processing objectives: 

i) To prepare and disperse NFC suspensions and incorporate them homogeneously into BPP 
suspensions 

ii) To prepare the resulting nanopaper sheets and test the effect of added quantities of NFC on the 
mechanical properties of the prepared nanopaper in the form of pressed test sheets. (modulus, 
strength, breaking/tearing load and air permeability) 

iii) Establish the conditions of NFC addition that provides a significant reduction in the amount of BPP 
required to equal or exceed the characteristics of base BPP paper production  

To quantify and characterize the effect of incorporating NFC into BPP and to measure the effect on 
fabricated paper sample mechanical properties and surface features while systematically reducing the 
mass of the paper pulp used in each sample, the following materials, process equipment and 
characterization apparatus were used. 

1 Basic paper pulp feedstock was gently bleached softwood from the Industrial Kraft process and 
supplied by VTT  

2 NFC material samples were obtained using mechanical nano fibrillation carried out in a Masuko 
MKZA 10-15J apparatus to generate high shear breakage conditions followed by a 5 pass recycle 
loop through a micro-fluidisation zone. 

3 The NFC Suspensions were then added into a partitioned pipe mixer with a BPP feed to generate 
reproducible samples for paper sheet testing. 

4 NFC rheological characterization was carried out using a Brookfield Viscometer RVDV 111 with 
a V73 vane spindle at 230C. The results are shown in Table A below. 

5 Mechanical property measurements were carried out using a bench scale Instron mechanical tester 
6 The NFC suspensions were incorporated into BPP at a range of concentrations frpm 1-4% by weight 

in a series of experimental trials in which the basic weight of the BPP content was reduced from 
100 to 70 wt%. The experimental design pattern is shown in Table B below: 

 

Experimental results 

Table A. NFC suspension rheology 
Yield Stress (Pa) Viscosity mPa sec @ 0.5rpm Viscosity mPa sec @ 10rpm  

49 208971 25701 Mean 

4 6460 654 Standard Deviation 

 

 

 



 

Table B. NFC – Paper pulp sample plan 
Trial 
no. 

Name Grammage 
(g/m2 

Thickness 
9microns) 

Density 
(kg/m3) 

Base Weight NFC Conn 
(wt%) 

1 Reference 99.3 137 723 100 0 
2 90 NFC 1 87.0 120 726 90 1 
3 90 NFC 3 88.1 120 738 90 3 
4 80 NFC 1 75.9 108 705 80 1 
5 80 NFC 3 78.2 111 703 80 3 
6 70 NFC 1 66.5 97 684 70 1 
7 70 NFC 3 67.6 98 688 70 3 

For each formulation, mildly dried sheets of treated paper (0.14m x 0.14m) were prepared. Each of the 
7 experiments were repeated 5 times and the grammage, paper sheet thickness, tensile strength, strain 
at breaking point, Elastic modulus and sheet stiffness were measured and recorded in Tables C and D 
and in Fig,7 below. 

Table C. Mechanical property characteristics (mean of 5 measurement cycles) for NFC bulk paper 
pulp reinforced nano-composites 

Sample 
code 

Tensile 
strength 

N/m2 

Textile 
index 
N/m2 

Breakage 
energy 
J/m2 

Breakage 
energy 
index 

J/m2gm 

Strain @ 
breakage 

% 

Modulus 
of 

elasticity 
N/mm2 

Tensile 
stiffness 

N/m 

REF 7000 70.4 215 2.17 4.5 4298 589 
90 NFC 1 6370 73.2 188 2.16 4.4 4440 533 
90 NFC 3 6790 72.1 200 2.27 4.4 4623 555 
80 NFC 1 5550 73.2 160 2.11 4.3 4507 497 
80 NFC 3 6110 78.2 180 2.44 4.6 4649 516 
70 NFC 1 4830 72.7 141 2.12 4.3 4525 439 
70 NFC 3 5170 76.5 149 2.20 4.3 4446 436 

Table D. Mechanical property characteristics (standard deviation of 5 measurement cycles) for the 
above nano-composites 

Sample 
code 

Tensile 
strength 

N/m2 

Textile 
index 
N/m2 

Breakage 
energy 
J/m2 

Breakage 
energy 
index 

J/m2gm 

Strain @ 
breakage 

% 

Modulus 
of 

elasticity 
N/mm2 

Tensile 
stiffness 

N/m 

REF 490 4.93 32.5 0.328 0.40 236 32.4 
90 NFC 1 363 4.17 12.9 0.206 0.22 204 24.5 
90 NFC 3 455 5.17 26.3 0.298 0.34 221 26.5 
80 NFC 1 359 4.74 23.6 0.312 0.42 271 29.3 
80 NFC 3 226 2.90 13.7 0.175 0.21 168 18.7 
70 NFC 1 271 4.07 18.2 0.274 0.38 280 27.1 
70 NFC 3 203 3.01 13.5 0.199 0.26 311 30.5 

 

 



 

Figure 7: Histogram representation of the BPP modulus at a range of bulk paper solids content 

DISCUSSION 

The drivers behind this study are based on the continuing need to reduce material use while maintaining 
material performance. At the same time, asking the question from the point of view of alternative value 
adding applications that increase the versatility of paper. Nanocomposites have been a feature of 
material applications from the 1950’s onwards and with the accelerated study of nanoscience and 
technology, much has been learned about the new uses and functions that can be attributed to nanoscalar 
objects that can enhance mechanical and physico-chemical reactivity.  

Nanocomposites by adding nanoscale reinforcements to tune or tailor mechanical properties have now 
become regarded as an advantageous way to provide dispersed phase additions of small nanoscalar 
material quantities, usually < 5% by weight to minimize excess cost, into a bulk commodity material to 
reinforce the mechanical characteristics of the ensuing bulk material. In the case of paper production, 
creating a homogeneous mixture of bulk paper pulp (BPP) and nanofibrillated cellulose (NFC) [7,8,32-
38]. 

Perhaps the key characteristic feature of nanoscalar additives lies in their extremely high 
surface/volume ratio and so the properties of the nanocomposite material greatly depends on the 
engineering of the interface interactions and subsequent properties. However, nanoscalar materials 
nearly always tend to want to agglomerate and so homogeneous mixing is a key part of generating a 
successful outcome, in this case BPP reinforcement. (41). In general, nanocomposites allow a better 
method of adjusting the balance of mechanical properties (strength v’s toughness), lighter structures, 
improved thermal properties and scratch or tare resistance for example. In addition, nanofibrils can 
provide new or enhanced functionalities, such as electrical conductivity. Optical effects and 
importantly, gas barrier property improvements (O2 and H2O). NFC has a length / diameter ratio >>10 
which gives rise to entangled nanofibril networks and, when coupled to the fact that the NFC surfaces 
are easy to modify due to high degree of reactivity, allows good dispersibility in aqueous environments 



and therefore the NFC can be admixed with several types of matrix polymeric bulk materials to allow 
bonding with various surfaces.  

The results of the exploration on the role of nanoscalar cellulose have shown, through reproducible 
experiments, that the mechanical and surface properties of basic paper production can be maintained 
while at the same time reducing the total bulk paper pulp usage. Both the physico-chemical nature of 
nano fibrillated cellulose and the ability to homogeneously incorporate the NFC into bulk paper pulp 
are key to the final paper performance and stem from nanoscalar fibrils with dimensions of 5-50 
nanometres (fibril width) and 1-5 microns (fibril length). Measured values of individual fibril 
mechanical properties, for example Young’s Modulus (E) have been measured in the range 60-150G 
Pa with the spread dependent on the raw material type. The modulus and strength of NFC/paper 
nanocomposites are estimated from measurements taken on nanocomposite paper sheets (NCP) as 
shown in the previous section, where it was important to test the reproducibility of the data as shown in 
Tables (C) and (D) above. From the experimental data, we can make the following conclusions from 
the experimental investigation concerning the influence of nano-fibrillated cellulose (NFC) content on 
the quality and performance of bulk paper containing (NFC) as a nanocomposite reinforcement agent 
and its effect on the ability to ‘tune’ the paper product mechanical properties as follows:  

i. As base weight of NCP decreased, the thickness and density of prepared NCP films decreased. 
ii. The addition of NFC influenced the bulk modulus of NCP with the modulus value increasing as 

the NFC concentration increased. 
iii. Surface roughness remained constant across all of the NCP samples produced. 
iv. The specific tensile strength or tensile index was maintained despite the significant reduction in 

base weight by up to 30% 

Overall, the results indicate that the grammage of the NCP can be reduced by at least 10-15% without 
compromising the tensile strength when as NFC concentration of 3wt% is introduced into the bulk paper 
pulp.  This is significant in terms of the potential to reduce total paper pulp and the associated water 
evaporative load.  In addition, elastic modulus was also maintained as well as strain energy required to 
break the NCP paper films. Since the nanofibrillated cellulose has a very high specific surface area 
O[100m2/gm], the reactivity of surface sites is key in developing a physico-chemical network when 
homogeneously introduced into bulk paper pulp, especially in terms of ease of hydroxyl group 
interaction. In the experiments undertaken, the ability to ensure homogeneity was vital to ensure any 
scale up process would be both reliable and reproducible. Given the rheological character of both the 
NFC and the bulk paper pulp, the use of laminar flow stretching and folding mechanism could be an 
effective processing technology to carry out such scale up. Further work to establish the most effective 
fabrication technology for manufacture is essential, the literature has some clear guidance on which 
process technology would be most beneficial, sustainable and cost effective. 

From Fig.7, it is shown that the ability of NFC through it’s high surface/volume  ratio and its ability to 
create entangled networks and are well documented in the literature of nanoscalar use of additives 
incorporated into polysaccharide matrices [42-50]. The most significant consequence from our studies 
indicate that overall paper quality is at least maintained but with a significant reduction in total paper 
pulp usage by upto 30% by wt. 

 It is important to recognise compelling environmental and human centred needs and challenges as 
identified earlier in the introduction. Creative design when coupled to innovative materials and 
materials fabrication led to the final choice of experimental design strategy employed. Finally, 



therefore, it is possible to design and demonstrate better environmental outcomes through novel 
materials and new fabrications related to nanoscale material characteristics and biotechnology as key 
enablers for smart manufacturing with applications such as alternatives to synthetic plastics for 
consumer goods and food packaging. Future follow on work can provide an answer to the tenet that 
BioNano technology can provide an extensive ‘innovation toolkit’ that enables tailoring of material 
systems at the supramolecular and microscale level that can reduce depletion of material use in products 
used by people every day with no reduction in performance but with the possibility of an increase in 
new application spaces. Fig. 8, 9, 10 

 

Figure 8: Casting a bio-nanocomposite packaging film 

 



Figure 9: Sample showing laser cut NFC film 

 

Figure 10: Paper and biopolymers as metamaterial 

 

 

CONCLUSIONS 

Nanofibrillated cellulose (NFC) was found to act as a reproducible reinforcement agent as shown in the 
measurement of the mechanical property characteristics of fabricated nanocellulose paper (NCP).  

 In addition, even with additive NFC concentrations of 1-3% by weight, the base paper pulp can be 
reduced substantially without degradation in mechanical properties and visual appearance of NCP 
product samples.  

 The potential reduction in bulk paper pulp content by 20-30 wt% indicated no measurable detrimental 
effect on NCP quality, however, it does yield the prospect of reduced bulk paper and water use, 
increasing the possibility of a ‘More for Less’ sustainable and economic production manufacturing 
route. 

 It is important to create not only the optimal NFC concentration and nanoscalar size control but it is 
vital also to achieve homogeneously distributed NFC for optimum benefit in bulk paper pulp 
manufacture. 
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