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Abstract 

In this work, ZnO/Al thin film based flexible acoustic wave devices are demonstrated for their applications 

in gas flow rate measurements based on the changes in temperature of the devices. A good sensitivity of gas flow 

rate can be achieved, mainly because thin film based device has a large temperature coefficient of frequency of 

~280 ppm/K, owing to the large coefficient of thermal expansion of aluminum foil. A heat source is used to 

enhance the sensitivity of the thin film device by introducing a temperature offset. The flexible acoustic wave 

device shows a high sensitivity, fast response times, and a good repeatability for measurement of the flow rate of 

nitrogen. When the flexible acoustic wave device is bent and attached onto the inner wall of a pipe, the device 

exhibits good performance for monitoring the gas flow rate, demonstrating its applications of flow rate 

measurement on curved or randomly shaped surfaces. 

 

Keywords: surface acoustic wave, flexible device, gas flow rate measurements 

1. Introduction 

Flexible electronics have rapidly emerged for wearable device applications in recent years owing to their unique 

advantages to their rigid counterparts. Various flexible devices and technologies have been reported as sensors 

[1], [2], electrodes [3], transistors [4], printed electronics [5], and nanogenerators [6]. As a member of flexible 

electronics, flexible acoustic wave devices have advantages of high sensitivity, good reliability, low power 

consumption, and easy integration with digital circuits [7]. For example, Xuan et al. reported flexible Lamb wave 

humidity sensors fabricated by depositing ZnO thin films on polyimide substrates with a sensitivity of 145.83 

ppm/%RH (at humidity 85%RH) [8]. Chen et al. reported ZnO thin film based bendable and transparent surface 

acoustic wave (SAW) strain sensors fabricated on flexible glass substrates with excellent linearity and a sensitivity 

of ~34 Hz/με [9]. Xu et al. presented dual-mode (Rayleigh mode and thickness shear mode) SAW strain sensors 

based on flexible 128°Y-cut lithium niobate thin films [10]. Recently, we have developed flexible Lamb wave 

devices by depositing ZnO thin film on commercially available and low-cost aluminum foils, which have 

demonstrated excellent performance in temperature sensing [11], ultraviolet light sensing [12] and microfluidics 

[13, 14], and lab-on-a-chip [15]. 

Flow rate measurements are critical for numerous applications, such as biomedical flow control, environmental 

and industrial flow monitoring, aerospace, automotive system, respiratory monitoring [16]–[19]. Various types of 

flow meters based on microelectromechanical systems (MEMS) technology have been developed based on 

different transduction mechanisms such as thermal [20], piezoresistive [21], piezoelectric [22], ultrasonic [23] and 

capacitive [24]. For example, Joshi developed a 128°Y-cut lithium niobate based SAW flow sensor which shows 

a frequency shift larger than 142 kHz with an initial temperature offset of about 55 °C and a flow rate of 1 liters-

per-minute (LPM) [25]. Zhou et al. developed a Lamb wave microsensor with AlN/Si structure and investigated 

the interaction between gas flow and acoustic waves [26]. Compared with the conventional flow meters, MEMS 

based flow meters show advantages of small size, less interference to the flow field, high sensitivity, low power 

consumption and low cost.  
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Flow rates can be indirectly measured by precisely detecting temperature of SAW or Lamb wave devices. 

According to Newton's Law, the heat transfer rate is directly proportional to the temperature difference. According 

to thermal boundary layer theory [27], the temperature difference between the solid and gas is mainly concentrated 

in a thin layer on the solid surface, i.e., a thermal boundary layer, which results in the most thermal resistance of 

convective heat transfer. When the temperature of the acoustic wave device is higher than the airflow, the larger 

the airflow rate, the thinner the boundary layer, the larger the temperature gradient in the boundary layer, the 

larger the heat exchange rate, and the lower the temperature of the acoustic wave device in the equilibrium state. 

The initial temperature offset can be provided by a heat source, which introduces a temperature difference between 

the acoustic wave device and airflow. When the airflow passes, heat is taken away and temperature of the acoustic 

wave device decreases. The change in temperature of the substrate causes a shift in resonant frequency, which 

depends on the temperature coefficient of frequency (TCF) of the acoustic wave device. The sensitivity of acoustic 

wave device increases with the TCF, so a large TCF is desirable for a highly sensitive thermal flowmeter. Owing 

to the large value of TCF for the ZnO/Al flexible Lamb wave devices [11], it is possible to achieve a high 

sensitivity in flow rate measurements. In this paper, constant power heat source (CPHS) and constant temperature 

heat source (CTHS) are respectively employed to investigate the frequency response of the flexible acoustic wave 

device. The CPHS mode shows high sensitivity while the CTHS mode shows fast response. In other aspects, the 

CPHS mode is simple to use, because only a constant power supply is needed, but with a drawback of slow 

response. The CTHS mode significantly decreases the response time. However, a complicated feedback control 

system is required, which may introduce additional noise due to the fluctuations of the temperature of the heat 

source.  

This paper is an extended version of work published in IEEE MEMS Conference 2020 [28]. We extend our 

previous work by adding the following new results: theoretical model analysis, experiments with CPHS mode, 

comparison between CPHS and CTHS modes, analysis of hysteresis characteristic, and comparison between our 

flexible Lamb wave flow senor and other reported rigid SAW flow sensors in literature. Using aluminum foil as 

the substrate, the acoustic wave device is flexible and capable to conform to curved surfaces. This feature is 

advantageous for the measurement of flow rates at important and application-specific locations, such as duct walls, 

surfaces of aircrafts and vehicles, and building walls. In addition, the device has the merits of being small and 

light, and having less interference with the original flow field. 

2. Modeling 

2.1 Equivalent circuit model 

   

Fig. 1. (a) Schematic diagram of thermal equilibrium analysis. (b) The equivalent circuit model in equilibrium state. 

As illustrated in Fig. 1a, there are three common ways of heat transfer: conduction, convection, and radiation. 

According to the Supporting Information, the heat transfer via radiation can be ignored because it is much less 

than the heat loss caused by conduction and convection. Conduction and convection effects are expressed by: 

 conduction, 𝜙 = 𝐴𝜆 𝑑(𝑇ℎ − 𝑇𝑙 )/𝑑𝑥 (1) 

 convection, 𝜙 = 𝐴ℎ(𝑇ℎ − 𝑇𝑙) (2) 

where 𝜙 = heat flow, A = surface area of the device, 𝜆 = thermal conductivity, 𝑇ℎ = higher temperature, 𝑇𝑙 = 

lower temperature, 𝑥 = the distance parallel to the direction of heat flow, ℎ = heat transfer coefficient. In Fig. 

1a, the dotted and solid arrows indicate the insignificant and the main thermal paths, respectively. For simplicity, 

we only consider the solid arrows. Moreover, we assume that thermal conductivity 𝜆 and convective heat transfer 

coefficient ℎ do not change with temperature, and thus we can obtain the equivalent circuit model as shown in 

Fig. 1b. R, R1, and R2 are the equivalent thermal resistances between the heat source and environment, between 



the heat source and the surface of the flexible device, and between the surface of the flexible device and 

environment, respectively. The three equivalent thermal resistances are defined as: 

 𝑅 =
𝑥

𝐴𝜆
, 𝑅1 =

𝑥1

𝐴𝜆1 
, 𝑅2 =

1

𝐴ℎ
 (3) 

where 𝑥1 = thickness of the flexible device, 𝜆1 = thermal conductivity of the flexible device, 𝑥 and 𝜆 are the 

equivalent values of a thermal resistance network. Due to the heat dissipation from the heat source is complicated,  

𝑅 is actually a thermal resistance network formed by multiple thermal resistances in series and parallel. 

2.2 Steady state response 

Based on the Supporting Information, we can obtain the following equation: 

 
𝑑𝑇𝐴𝑊

𝑑ℎ
= −

𝑅+𝑅1

𝑅+𝑅1+𝑅2
⋅

𝐴𝑅2
2

𝑅1+𝑅2
(𝑇𝑠 − 𝑇𝑒) (4) 

where 𝑇𝑠 = heat source temperature, 𝑇𝑒 = ambient temperature, 𝑇𝐴𝑊 = acoustic wave device temperature. This 

equation can be regarded as the sensitivity formula in the case of using a CPHS. Similarly, the sensitivity formula 

for the case of using a CTHS is: 

 
𝑑𝑇𝐴𝑊

𝑑ℎ
= −

𝑅1

𝑅1+𝑅2
⋅

𝐴𝑅2
2

𝑅1+𝑅2
(𝑇𝑠 − 𝑇𝑒) (5) 

Equations (4) and (5) reveal that the sensitivity of a system using the CTHS is lower than that of a system using 

the CPHS under equal initial temperature offset values. In the extreme case of R1 >> R2, the two sensitivities are 

approximately equal. The TCF is defined as: 

 𝑇𝐶𝐹 =
𝛥𝑓

𝑓0𝛥𝑇𝐴𝑊
 (6) 

where 𝛥𝑓 = resonant frequency shift, 𝑓0 = initial resonant frequency and 𝛥𝑇𝐴𝑊 = change in temperature of the 

acoustic wave device. 

2.3 Transient response 

The transient temperature response can be expressed as [25]: 

 𝑚𝐶
𝑑𝑇

𝑑𝑡
= 𝜙𝐴𝑊 − 𝐴ℎ𝑇 (7) 

where 𝜙𝐴𝑊 is the heat flow shown in Fig. 1b, 𝑚 and 𝐶 are the mass and specific heat of the acoustic wave 

device, respectively, T is temperature change of the acoustic wave device and t is time. The transient temperature 

response with the CPHS is: 

 𝑇 =
𝑅𝜙𝑠/(𝑅+𝑅1)

𝐴ℎ+1/(𝑅+𝑅1)
(1 − 𝑒

−
𝑡

𝜏1) (8) 

where 𝜏1 =
𝑚𝐶

𝐴ℎ+1/(𝑅+𝑅1)
 and 𝜙s = total heat flow out of the heat source as shown in Fig. 1b. Similarly, the 

transient temperature response with the CTHS is: 

 𝑇 =
𝑇𝑠−𝑇𝑒

𝐴ℎ𝑅1+1
(1 − 𝑒

−
𝑡

𝜏2) (9)  

where 𝜏2=
𝑚𝐶

𝐴ℎ+1 𝑅1⁄
. It is obvious that 𝜏1 > 𝜏2, and the transient frequency shift and time have an exponential 

relationship. The response of the system with the CTHS is faster than that with the CPHS. 

3. Fabrication of acoustic wave device 

 
Fig. 2. Schematic diagram and optical image (inset) of the flexible acoustic wave device. 



 

For fabrication of the flexible acoustic wave device, a 5-μm-thick ZnO film was deposited on a commercially 

available aluminum foil with a thickness of ~50 μm, using a DC sputter system (Nordiko 3750). Then a layer of 

Cr/Au (with thicknesses of 20/100 nm) was deposited and patterned to form the interdigital transducers (IDTs) 

using a standard lift-off process. The wavelength of the IDT is 100 μm. The schematic diagram and optical images 

of the flexible device are shown in Fig. 2. The detailed fabrication process was described in our previous work 

[13,29,30]. 

4. Experimental setup 

 

Fig. 3. Experimental setup. (a)The flat acoustic wave device is fixed on a probe station heated by CTHS. (b) The curved 

acoustic wave device and CPHS are fixed together in a pipe.  

Fig. 3 shows the experimental setup for flow rate measurement with a CTHS in (a) or a CPHS in (b). As shown 

in Fig. 3a, the flexible device is fixed on an aluminum probe station, and then connected to a vector network 

analyzer (Agilent E5061B) through coaxial wires. The probe station is placed on top of a hot plate. The probe 

station effectively acts as a heat sink as it has a high thermal conductivity and a large heat capacity. Therefore, 

the surface temperature of the probe station can be kept practically constant, and interference caused by 

temperature fluctuations can be minimized. Compressed nitrogen gas is used as the gas source, and a flow 

controller and a flowmeter are used to control and measure the flow rate, respectively. Polyurethane (PU) gas 

pipes with an inner diameter of 4 mm is used for connection. The end of the air pipe is fixed by a clamp on an 

iron stand, and the distance from the acoustic wave device is ~5 mm. The angle between the axis at the end of the 

pipe and the normal of the acoustic wave device is ~45°.  

Fig. 3b shows the experimental setup in which the CTHS in Fig. 3a is replaced with a flexible CPHS. Both the 

CPHS and acoustic wave device are attached onto the inner wall of a polyvinyl chloride (PVC) pipe. The CPHS 

is an electric resistance heating film (with the rated voltage/power of 12V/20W), and its outer insulation layer is 

polyimide (PI). The heating power can be controlled by changing the input voltage. 

In the experiment, the flow field is a multi-dimensional and complex variable, and is affected by many factors, 

including the relative position and angle between the PU gas pipe outlet and the acoustic wave device, the PU gas 

pipe diameter, the gas flow velocity at the pipe outlet, and the curved shape of the device surface. The flow field 

is uniquely defined by four parameters, including the relative position and angle between the end of the PU gas 

pipe and the device, the diameter of the PU gas pipe, and the flow rate of the gas in the pipe. Once these four 

parameters are specified, the flow field can be defined. Therefore, we keep the first three parameters unchanged 

and only change the flow rate. According to simulation, the flow rate of gas in the pipe is approximately 

proportional to the average velocity near the surface of the acoustic wave device. Based on the previous analysis, 

the flow field near the device can be determined and calculated as a function of the flow rate in the pipe. For a 

simple model such as the one in this experiment, the simulated flow field differs slightly from the actual flow 

field. 

5. Results and discussion 



5.1 Characterization and measurements 

 

Fig. 4. Transmission spectrum of the flexible acoustic wave device. 

Fig. 4 shows the transmission spectrum (S21) of the flexible acoustic wave device with multiple Lamb wave 

modes of A0, S0, A1 and S1. Simulations and discussion including these modes for these ZnO/Al acoustic wave 

devices have been reported in our previous work [30]. In this paper, for simple demonstration of working principle, 

the experiment is performed using the A0 and S0 modes, due to their better quality factors of frequency signals 

and relatively more stable signals. 

5.2 Temperature sensitivity 

  

Fig. 5. Fitted line plot of frequency shift changing with heating power in the absence (a) and presence (b) of airflow. Fitted 

line plot of frequency shift changing with heating temperature in the absence (c) and presence (d) of airflow. 

When there is no airflow, the frequency shift shows a good linearity with the power of heat source, but shows 

a quadratic relationship with the voltage of heat source, as shown in Fig. 5a and the inset. Fig. 5b shows a linear 

relationship between the power of heat source and the frequency shift when the airflow is present. Similarly, Figs. 

5c and 5d indicate linear relationships between the temperature of heat source and the frequency shift without and 

with airflow, respectively. The temperature of the heat source is linearly related to the frequency shift, and the 

flow rates are determined by the slope of the curves. This linear relationship proves the correctness of the 

theoretical model, i.e., the heat radiation power is negligible, and the equivalent thermal resistances (𝑅, 𝑅1, and 

𝑅2) do not change with temperature. 

5.3 Flow rate sensitivity 



 

Fig. 6. (a) Frequency responses of the A0 mode to flow rate with CTHS of 40 °C, 50 °C and 60 °C. (b) Frequency responses 

of A0 and S0 mode to flow rate with CPHS of 5V and 5.5V. (c) Comparison of the sensitivities of CPHS mode and CTHS 

mode with almost identical initial temperature offset.  

Fig. 6a shows the frequency responses at different temperatures of the heat source, i.e., 40 °C, 50 °C, and 60 

°C. With a constant heating temperature, as the flow rate increases, the resonant frequency of the acoustic wave 

device increases and the sensitivity (i.e., the slope of the curve between frequency shift and flow rate) decreases. 

Moreover, a heat source with a higher temperature will result in a higher sensitivity. Fig. 6b demonstrates the 

frequency responses of A0 and S0 modes when the supply voltage of the heat source is 5 V (~3.47 W, initial 

temperature offset is ~15 °C) and 5.5 V (~4.20 W, initial temperature offset is ~21 °C), respectively. By comparing 

the responses of A0 and S0 modes at the same heating temperature and flow rate, it is found that a higher operating 

resonant frequency contributes to a larger frequency shift. The characteristics of the changing trend of these 

polylines are similar to those shown in Fig. 6a. With heat sources of a 40 °C CTHS and a 5V CPHS respectively, 

the initial temperature offsets are almost identical (~15 °C). But the flexible sensor with CPHS mode shows larger 

frequency shift (~40.86 kHz) than that with CTHS mode (28 kHz) when the flow rate is 0.8 LPM, which shows 

an increase rate of 46%., as shown in Fig. 6c.  

Figs. 7a to 7c show the combined effects of flow rate and heating temperature/power on resonant frequency 

shifts of the flexible device. The resonant frequency shift is induced by heating power/temperature and gas flow, 

and either increase of heating power/temperature or increase of flow rate can increase the resonant frequency shift.  

 

(a) (b) (c)

 

Fig. 7. Three-dimension plots of freqeuncy shifts of (a) A0, CTHS, (c) A0, CPHS and (c) S0, CPHS, where x = flow rate, y 

= heating power/temperature and z = resonant frequency shift. 



5.4 Repeatability and response time 

 

Fig. 8. Frequency responses to a cyclic flow rate between 0 and 0.8 LPM with (a) CTHS and A0 mode, (b) CPHS and A0 

mode, (c) CPHS and S0 mode. Partial enlarged drawing of the processes of (d) increasing flow rate and (e) decreasing flow 

rate to reach new equilibrium states. 

Fig. 8a demonstrates the variation of the resonant frequency when the flow rate is rapidly changed between 0 

and 0.8 LPM at different heating temperatures. The flexible acoustic wave device shows both good repeatability 

and dynamic responses. Based on the flow changes shown in Fig. 8a, the shifts in resonant frequencies of A0 and 

S0 modes with a CPHS are shown in Figs. 8b and 8c, respectively. With the increase of heating temperature or 

power, the initial frequency shift is increased and consequently the sensitivity is increased. Without heating, 

changes of flow rate do not cause an apparent resonant frequency shift, as shown in red lines in Figs. 8a to 8c.  

Figs. 8d and 8e compare the frequency shifts when increasing flow rate (decreasing substrate temperature and 

increasing resonant frequency) and decreasing flow rate (increasing substrate temperature and decreasing resonant 

frequency) to reach their new equilibrium states. Regardless of the heating process in Fig. 8d or the cooling process 

in Fig. 8e, the CTHS mode can significantly decrease the response time by about 7 times compared to the CPHS 

mode. The response time is defined as the time taken for the resonant frequency to reach 95% of the final steady 

value. 

 

Fig. 9. Fitted line plot of frequency shift over time after changing flow rate between 0 and 0.8 LPM. 

According to equations (8) and (9), a natural exponential function 𝐹 = 𝑎 + 𝑏𝑒−𝑡/𝜏 is used to fit the data of 

transient frequency shift and time, where 𝐹 is frequency shift, 𝑡 is time, 𝑒 is the nature constant, τ is the time 

constant,  𝑎 and 𝑏 are fitting parameters. The experimental data and part of fitting results are shown in Fig. 9, 

revealing an excellent agreement (R2 = 98.33% and 96.91%), validating the theoretical model. The values of time 

constant τ of the transient responses obtained from Figs. 8d and 8e are listed in Table. 1. With the CTHS (A0, 

40 °C), the flexible acoustic wave device shows significant advantage in terms of response times compared to 

those with the CPHS (A0, 5 V and S0, 5 V).  

Table. 1. Time constants obtained by exponential fitting of the data in Figs. 8d and 8e 



 Time constant, 𝜏 (s) 

Increasing flow rate, Fig. 8d Decreasing flow rate, Fig. 8e 

A0, 40 °C 0.40 0.98 

A0, 5 V 2.83 4.79 

S0, 5 V 4.46 5.46 

5.5 Hysteresis characteristics 

 

Fig. 10. A cyclic flow is applied for measuring the frequency hysteresis using (a) CTHS and (b) CPHS. (c) Frequency 

responses of the acoustic wave device when the flow rate increases from 0 to 0.8 LPM and then decreases from 0.8 to 0 LPM 

in step of 0.2 LPM. 

In order to study the hysteresis characteristics during the transient response cycle, the device was first heated 

using a CTHS. The flow rate is increased from 0 to 1 LPM, and then decreased from 1 LPM to 0. During this 

process, the frequency shift is measured and recorded. As shown in Fig. 10a, the effect of hysteresis is nearly 

negligible. Fig. 10b shows the hysteresis effect when the device was heated by a CPHS with a flow rate cycling 

from 0 to 0.8 LPM. Obviously, the hysteresis effect in Fig. 10b is more significant compared to that in Fig. 10a. 

Fig. 10c shows the variation of the resonant frequency with time under the conditions defined in Fig. 10b. A 

commercial flow controller (Alicat MC-20SLPM-D) was used to calibrate the flow controller, and it was found 

that there is no hysteresis in flow rate at the steady state, and so there is no hysteresis in heat transfer coefficient 

h and the force exerted by airflow on the device. Therefore, the hysteresis is caused by the small gap between the 

CPHS and device. 

5.6 Comparison with other rigid SAW flow sensors 

Besides the flexible nature, our ZnO/Al based flexible sensor shows a significant advantage in response time 

compared with other rigid counterparts. As shown in Table. 2, the response speed is improved by at least 3.5 times 

(CPHS) and 25 times (CTHS) compared to the response time of ~75 s in [31]. On the other hand, due to the large 

TCF value of the flexible acoustic wave sensor, it can achieve a comparable relative sensitivity with a lower initial 

temperature offset (15°C - 35°C) than those of the rigid counterparts, e.g., lithium niobate based SAW sensors 

(56°C and 87°C) reported in [25] and [31]. This indicates that the flexible flow sensor has a higher relative 

sensitivity with identical initial temperature offset values. Compared with quartz-based SH-APM flow sensors 

reported in Ref. [32], the flexible acoustic wave flow sensor shows 5.8 times higher absolute sensitivity and 15 

times higher relative sensitivity. 

Table. 2. Comparisons of the characteristics of flexible acoustic wave device in this paper with those rigid SAW flow 

sensors reported in literature. 

Acoustic wave 

type 

Heating 

condition 
Response time Absolute sensitivity Relative sensitivity Ref. 



Lamb ~81 °C ~90 s for 0.2 LPM 140 kHz for 1 LPM 1917.8 ppm for 1 LPM [25] 

Rayleigh ~112 °C ~75 s for 0.1 LPM 160 kHz for 1 LPM 2053.2 ppm for 1 LPM [31] 

Rayleigh  1.81 W >200 s for 0.8 LPM ~3.5 kHz for 0.8 LPM 35.7 ppm for 0.8 LPM [32] 

SH-APM 2 W >200 s for 0.7 LPM ~14 kHz for 0.7 LPM 140.4 ppm for 0.7 LPM [32] 

Dual-SAW NA >80 s for 0.3 LPM 
~8 degree phase shift for 1 

LPM 
NA [33] 

Lamb 

CTHS 

A0 mode 

60 °C 

~2 s for 0.8 LPM 53.4 kHz for 0.8 LPM 2176.8 ppm for 0.8 LPM 

This 

work 

CPHS 

S0 mode 

~42 °C 

~21 s for 0.8 LPM 81 kHz for 0.8 LPM 2108.8 ppm for 0.8 LPM 

CTHS 

A0 mode 

40 °C 

~3 s for 0.8 LPM 27.9 kHz for 0.8 LPM 1138.5 ppm for 0.8 LPM 

6. Conclusions 

In this work, a flexible ZnO/Al acoustic wave device has been developed and demonstrated for the 

measurement of gas flow rate. Owing to its superior flexibility, the device can conform perfectly to the curved 

surfaces without interference in the original flow field. The flexible device shows the ability to work in both flat 

and bent/curved states. Bending the acoustic wave device will not introduce obvious deterioration to the flow rate 

measurement performance, e.g., increased noise. Experiment results in Fig. 8 show that the transient response of 

the resonant frequency is shifted over time, which follows the exponential relationship and is consistent with the 

theoretical analysis. Compared with other rigid counterparts, the flexible device shows a significant advantage in 

response time, improving the speed of response by at least 3.5 times (CPHS) and 25 times (CTHS). As the initial 

temperature offset increases, the sensitivity increases, while there is no significant difference in response time. 

The use of CPHS can increase the sensitivity but at the cost of longer response time. Due to the high TCF of the 

flexible acoustic wave sensor, it can achieve comparable relative sensitivity with lower initial temperature offset 

(15°C - 35°C) than other rigid counterparts (56 °C and 87 °C). Compared with that of A0 mode, the resonant 

frequency shift of the S0 mode is larger due to the higher resonant frequency, while the response time is almost 

the same. The frequency shift is negligible without initial temperature offset, indicating that the frequency 

response is mainly caused by thermal effects. The proposed flexible device exhibits high sensitivity and fast 

response with a great potential in flow rate measurements on curved surfaces. 
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