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Abstract
Region search is an important problem in location-
based services due to its wide applications. In
this paper, we study the problem of optimal region
search with submodular maximization (ORS-SM).
This problem considers a region as a connected
subgraph. We compute an objective value over the
locations in the region using a submodular func-
tion and a budget value by summing up the costs
of edges in the region, and aim to search the re-
gion with the largest objective score under a budget
value constraint. ORS-SM supports many appli-
cations such as the most diversified region search.
We prove that the problem is NP-hard and develop
two approximation algorithms with guaranteed er-
ror bounds. We conduct experiments on two appli-
cations using three real-world datasets. The results
demonstrate that our algorithms can achieve high-
quality solutions and are faster than a state-of-the-
art method by orders of magnitude.

1 Introduction
With the proliferation of mobile devices and Location-Based
Services (LBS) (e.g., Google Maps, Foursquare), a huge
amount of geo-tagged data are being generated every day.
The geo-tagged data has rich information including times-
tamp, geo-location and comments, which facilitates a large
number of location-based applications. As an important prob-
lem in LBS, region search has wide applications such as user
exploration in a city [Feng et al., 2016; Cao et al., 2014], sim-
ilar regions query [Feng et al., 2019a], region detection [Feng
et al., 2019b], etc.

Most existing studies consider a region as a rectangle with
a fixed length and width [Nandy and Bhattacharya, 1995;
Choi et al., 2012; Tao et al., 2013; Feng et al., 2016]. It
is not general in practice since the regions might be of ar-
bitrary shapes. In order to address this limitation, Cao et
al. [Cao et al., 2014] define a region as a connected sub-
graph and propose the Length-Constrained Maximum-Sum
Region (LCMSR) query. It considers two attributes for re-
gion search: an objective value of the region computed by
summing up the weights of nodes in a region and a budget
value by summing up the costs of edges in a region. The
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Figure 1: A toy road network with POIs.

target of the LCMSR query is to find the region that has the
largest objective value under a given budget constraint.

A simple accumulative function (e.g., SUM) cannot mea-
sure the objective value in some applications (e.g., the influ-
ence or the diversity of a region [Feng et al., 2016], the like-
lihood of information [Leskovec et al., 2007], the entropy of
locations [Zhang and Vorobeychik, 2016]). In this paper, we
use a submodular function to compute the objective score of
a region defined as a connected subgraph, which makes the
problem more challenging. We denote this problem as opti-
mal region search with submodular maximization (ORS-SM).

We use the example network shown in Figure 1 to illus-
trate the problem, which consists of 6 locations connected by
8 edges. Each location is associated with some keywords (e.g,
mall, coffee) which represent its POI categories, and each
edge has a travel time cost. Consider a user travels in a city.
She would like to explore the most diversified region to expe-
rience the most types of POIs, and she does not want to spend
too much time on the road. We can use ORS-SM to find solu-
tions for the user by computing the objective score of a region
as the number of different types of POIs contained in the re-
gion and setting a travel time limit ∆. Given ∆ = 5, LCMSR
returns the region R1 = {e1 = (v2, v4), e2 = (v4, v5), e3 =
(v4, v6)}, as R1 has the most the number of keywords (not
distinct!), but R1 is not the most diversified region since it
only contains two types of locations. By contrast, ORS-SM
returns R2 = {e1 = (v1, v3), e2 = (v3, v5), e3 = (v4, v5)}
which has the most distinct keywords.

As the objective function we use is submodular, the ORS-
SM problem is a type of submodular optimization [Krause
and Golovin, 2014], which are extremely hard [Zeng et
al., 2015; Zhang and Vorobeychik, 2016; Stan et al., 2017;
Crawford, 2019]. We prove that solving the ORS-SM prob-



lem is NP-hard. To our best knowledge, only the Gener-
alized Cost-Benefit Algorithm (GCB) [Zhang and Vorobey-
chik, 2016] for the problem of submodular optimization with
routing constraints can be adapted to solve our ORS-SM
problem. The algorithm requires a root node, which does not
exist in our problem. Hence, we need to find a tree with the
largest objective value by treating each node as root, and the
best tree among them is returned as the result for ORS-SM.
We denoted this method as GCBAll. GCBAll has a high com-
plexity, so that it has poor efficiency and is not scalable.

To better solve ORS-SM, we propose a 1

O(
√

∆/bmin)
-

approximation algorithm AppORS, where bmin is the min-
imal cost on edges. We observe that the returned region is
always a tree. The basic idea of this algorithm is to first find
a set of nodes with large objective scores, and we guaran-
tee that there exists a tree connecting them whose total cost
is smaller than the budget limit ∆. Next, we find the best
region by using these nodes. Next, we propose another algo-
rithm with the same approximation ratio called IAppORS to
further improve the effectiveness of AppORS. This algorithm
can obtain regions of better quality.

In summary, the contribution of this paper is threefold.
Firstly, we propose ORS-SM through a submodular optimiza-
tion and prove its NP-hardness. Secondly, we develop two ap-
proximation algorithms AppORS and IAppORS for this prob-
lem. Finally we conduct experiments on two applications us-
ing three real-world datasets and demonstrate the efficiency
and accuracy of the proposed algorithms.

2 Related Work
Region search has been well studied and has a wide range of
applications such as user exploration in a city [Feng et al.,
2016; Cao et al., 2014], similar regions search [Feng et al.,
2019a], region detection [Feng et al., 2019b], etc.

Most existing region search problems consider the re-
gion as size-fixed rectangles or radius-fixed circles. The
Max-Enclosing Rectangle (MER) problem [Nandy and Bhat-
tacharya, 1995] aims to find a rectangle with a given size
a × b such that the rectangle encloses the maximum num-
ber of spatial objects. This problem is systematically stud-
ied as the maximizing range sum problem [Choi et al., 2012;
Tao et al., 2013]. The similar region search [Feng et al.,
2019a], bursty region detection [Feng et al., 2019b], and the
best region search [Feng et al., 2016] also consider regions as
rectangles. However, as shown in the study of the LCMSR
query proposed by Cao et al. [Cao et al., 2014], in practice
the regions are usually arbitrarily shaped. LCMSR defines a
region as a connected subgraph with relevant objects. It uses
a sum function to accumulate the weights of objects in the re-
gion, and it aims to find the optimal region that has the largest
total weight and does not exceed a size limit. We use a sub-
modular function to compute the objective value for a region
and aim to maximize this value under a budget constraint,
which makes the problem more challenging.

Our work is also related to submodular optimization which
has breadth of applicability with applications including vi-
ral marketing [Kempe et al., 2003], recommendation sys-
tem [Chen et al., 2015], information gathering [Leskovec

et al., 2007], deep neural network training [Joseph et al.,
2019], etc. A large amount of research considers sub-
modular optimization under constraints, such as cardinal-
ity constraint [Kempe et al., 2003], cost constraint [Qian
et al., 2017], routing constraint [Zeng et al., 2015; Zhang
and Vorobeychik, 2016], connectivity constraint [Kuo et al.,
2014], and so on. Submodular Optimization under Connec-
tivity Constraint (SOCC) [Kuo et al., 2014] is similar to our
problem, but it considers the cost on nodes to compute the
budget values. In contrast, the budget values are associated
with edges in our problem, and thus the algorithms for SOCC
is not feasible to solve ORS-SM.

3 Problem Formulation
In this section, we formally define the problem of optimal
region search with submodular maximization (ORS-SM) and
prove its hardness. The problem is defined over a spatial net-
work G = (V, E), where V is a set of nodes and E ⊆ V × V
is a set of edges. Each node v ∈ V represents a location, and
each edge 〈vi, vj〉 ∈ E represents an undirected path between
two locations vi and vj in V associated with a cost b(vi, vi+1)
(representing the distance, the travel time, etc.).
Definition 1. Region. Given a spatial network G = (V, E), a
region R is a connected subgraph of G. We denote the nodes
and edges in R as R.V and R.E respectively.

In order to measure the quality of a region, we consider
two values, namely the budget value and the objective value.
The budget value is defined as the sum of the costs on all the
edges in the region, which is computed as:

BS(R) =
∑

(vi,vj)∈R.E

b(vi, vj) (1)

The objective value is computed by a submodular function
f() over the set of locations in a region (e.g., the number of
distinct keywords, the social influence, etc.):

OS(R) = f(∪vi∈R.Vvi) (2)
OS(R) is submodular means thatOS(R1

⋃
vi)−OS(R1) ≥

OS(R2

⋃
vi) − OS(R2), for all R1 ⊆ R2 and vi 6∈ R1, and

R1(R2)
⋃
vi composes a new region.

For example, we consider a problem of finding the most
diversified region in a network G as shown in Figure 1. In
this example, the objective value is computed as OS(R) =
| ∪vi∈R.V K(vi)|, where K(vi) is the set of distinct key-
words on vi. For R2 in the example, we can get OS(R2) =
|{bar, coffee, park,mall}| = 4 and BS(R2) = 5.

Formally, we define the ORS-SM problem as follows:
Definition 2. Optimal Region Search with Submodular
Maximization (ORS-SM). Given G = (V, E), and a budget
constraint ∆, we aim to find the region R such that

R = argmaxR OS(R)
subject to BS(R) ≤ ∆ (3)

Theorem 1. Solving the ORS-SM problem is NP-hard.
Proof. The LCMSR query [Cao et al., 2014] which is men-
tioned in the Introduction is a special case of ORS-SM, be-
cause the sum function also satisfies the submodular proper-
ties. As the LCMSR problem is proved to be NP-hard, the
ORS-SM problem is NP-hard as well. �



4 Approximation Algorithm AppORS
In this section, we propose a novel approximation algorithm
called AppORS for solving the ORS-SM problem, and we
also prove its error bound. For any subgraph region Ri,
we can always find its minimum spanning tree Ti such that
BS(Ti) ≤ BS(Ri) and OS(Ti) = OS(Ri). Hence, the
optimal region of the ORS-SM problem must be a tree, and
we consider the tree search in the subsequent discussions di-
rectly. Before presenting the algorithm, we first introduce the
following lemma which lays the foundation of our algorithm.

Lemma 1. For any tree T = (VT , ET ) with budget value
BS(T ), there always exist n ≤ max(10bBS(T )

m c, 2) subtrees
Ti = (VTi , ETi), 1 ≤ i ≤ n, such that BS(Ti) ≤ m if
|ETi | > 1 and ∪ni=1VTi = VT .

Proof. We utilize the claim 3 of the Maximum Connected
Submodular set function with Budget constraint problem
(MCSB) [Kuo et al., 2014], and we conduct the proof through
the following steps:
1) Given a graph G = (V, E), we can get its line graph
GL = (VL, EL). For a tree T = (VT , ET ) with the budget
value BS(T ) in G, we can get its corresponding subgraph
GL

T in GL. If GL
T contains cycles, we break cycles by remov-

ing some edges. After that, we get a tree TL = (VTL , ETL)
spanning all nodes of GL

T . Now each edge in T corresponds
to a node in TL.
2) According to the claim 3 for MCSB, for TL with budget
value BS(TL), there always exist n = max(5bBS(TL)

m c, 1)

subtrees TL
i = (VTL

i
, ETL

i
), such that BS(TL

i ) ≤ m +

BS(rLi ) and ∪ni=1VTL
i

= VTL , where rLi is the root of TL
i

for all 1 ≤ i ≤ n. For each subtree TL
i , if VTL

i
> 1,

we can always select a node with degree 1 as rLi , and we
can then divide it into two subtrees T 1,L

i consisting of rLi
and T 2,L

i consisting of the remaining of VTL
i

. Hence, we

know that BS(T 2,L
i ) ≤ m. After that, we can obtain n ≤

max(10bBS(TL)
m c, 2) subtrees T ′Li = (VT ′Li , ET ′Li ), such

that BS(T ′
L
i ) ≤ m if |VT ′Li | > 1 and ∪ni=1VT ′Li = VTL .

3) For each subtree T ′Li , we find its line graph Gi. As T ′Li is
obtained from the line graph of G, Gi must be a subgraph of
the original tree T in the first step. Based on translated prop-
erties of a line graph, i.e., the the line graph of a connected
graph is connected, Gi must be connected. Thus, each Gi

must be a tree as well and we denote it as Ti, and we have
∪ni=1VTL

i
= VTL = ET . We thus complete the proof. �

Now we are ready to present our approximation algo-
rithm AppORS. The basic idea of AppORS is to find a tree
T ∗, such that OS(T ∗) is larger than the objective score of
any subtree Ti whose budget score is no larger than m and
BS(T ∗) ≤ ∆. We then can prove that the regionR∗ obtained
based on T ∗ is an approximate feasible solution of the prob-
lem based on Lemma 1. In AppORS, Nemhauser’s greedy al-
gorithm [Nemhauser et al., 1978] is used to to solve the Max-
imum Rooted Submodular set function (MRS) problem [Kuo
et al., 2014], which aims to find a node set containing a given
root node and otherK−1 nodes such that the score computed

Algorithm 1: AppORS Algorithm
Input: G = (V, E), ∆
Output: A region R∗

1 Initialize a node set VK
opt ← ∅, vopt ← ∅;

2 K ← d
√

∆
bmin
e+ 1, DisLim←

√
∆bmin;

3 for each node vi ∈ V do
4 Vvi ← {vj |vi 6= vj , dis(vi, vj) ≤ DisLim};
5 Use Nemhauser’s greedy algorithm to solve

MRS(OS(·),Vvi ,K, vi), and get top-K node set VK
vi ;

6 if OS(VK
opt) < OS(VK

vi ) then
7 VK

opt ← VK
vi , vopt ← vi;

8 T ∗ ← findOptTree(VK
opt,G,∆, vopt);

9 T ′ ← a single edge in E with the maximum OS value and
BS(T ′) ≤ ∆;

10 R∗ ← T ∗ if OS(T ∗) ≥ OS(T ′) else T ′;
11 return the region R∗;

by a submodular function over the K nodes is maximum.
As shown in Alg.1, AppORS starts with an initial node set

VK
opt, a root node vopt, two parameters K and DisLim (lines

1-2), where bmin = min(vi,vj)∈Vb(vi, vj). After that, for
each node vi ∈ V , AppORS first finds the candidate node
set Vvi in which each node has a distance to vi smaller
than DisLim (lines 3-4). Then AppORS constructs a MRS
problem instanceMRS(OS(·),Vvi ,K, vi), and then uses the
Nemhauser’s greedy algorithm to solve the instance for get-
ting a K-node set VK

vi
(line 5). If OS(VK

opt) < OS(VK
vi ),

AppORS updates VK
opt and vopt (lines 6-7). Next, AppORS

uses function findOptTree(VK
opt,G,∆, vopt) to find a tree

T ∗ spanning all nodes in VK
opt, satisfying BS(T ∗) ≤ ∆ (line

8). After that, AppORS finds T ′ consisting of a feasible edge
by scanning all edges in E which has the maximum objec-
tive score (line 9). Finally, it returns the tree with the larger
objective value as the region R∗ (lines 10-11). One simple
method of implementing findOptTree(VK

opt,G,∆, vopt) is
to find all shortest paths from vopt to all nodes in VK

opt, and
then get a tree T ∗ by removing duplicate edges in the shortest
paths. We will present a better method in Section 5.3.

We analyze the error bound of AppORS as below.
Lemma 2. AppORS returns a feasible solution of the ORS-
SM problem.
Proof. In AppORS, BS(T ′) ≤ ∆. And VK

opt contains K
nodes, the largest distance between vopt and vj ∈ VK

opt is
DisLim. Thus, in the tree T ∗ is achieved by combining all
shortest paths from vopt to all nodes in VK

opt,BS(T ∗) ≤ (K−
1) ∗DisLim = ∆. �

Lemma 3. OS(Ropt) ≤ O(
√

∆/bmin)OS(R∗), where
Ropt denotes the optimal region of the ORS-SM problem.
Proof. We denote the optimal solution of
MRS(OS(·),Vvi ,K, vi) as VMRS

opt , the optimal tree
rooted at vi whose budget value under DisLim as T vi,DL,
and T vi,DL with the maximal objective value as T vi,DL

opt . We
can get that T vi,DL

opt has at most bDisLim
bmin

c nodes except vi,



and these nodes are in {vj |dis(vi, vj) ≤ DisLim}. And

bDisLim
bmin

c ≤ b
√

∆
bmin
c ≤ K − 1. For any node vj ∈ T vi,DL

opt ,

vj ∈ Vvi . Thus, OS(VMRS
opt ) ≥ OS(T vi,DL

opt ). Meanwhile,
in AppORS, OS(T ∗) ≥ OS(VK

opt). And based on Lemma 2
in [Kuo et al., 2014], Nemhauser’s greedy algorithm can
get a e−1

e -approximate solution for the MRS problem, we
have OS(VK

opt) ≥ e−1
e OS(VMRS

opt ). Hence we can get
OS(T ∗) ≥ e−1

e OS(T vi,DL
opt ).

As Ropt must be a tree, we use Topt to represent it. Ac-
cording to Lemma 1, for Topt = (VTopt , ETopt) with the bud-
get value Topt, there always exist n ≤ max(10b ∆

DisLimc, 2)
subtrees Ti = (VTi

, ETi
), where BS(Ti) ≤ DisLim if

|ETi
| > 1, such that ∪ni=1VTi

= VTopt
. Hence, we have:

OS(Ropt) = OS(Topt) = OS(VTopt ) = OS(∪n
i=1VTi

)

≤ max(10b
∆

DisLim
c, 2) ∗max(OS(T

vi,DL
opt ), OS(T

′
))

≤ O(
√

∆/bmin) ∗max(
e

e− 1
OS(T

∗
), OS(T

′
))

= O(
√

∆/bmin)OS(R
∗
)

where the first inequality is derived from the property of the
submodular function OS(·). �

Based on Lemma 2 and 3, we can obtain Theorem 3:
Theorem 2. AppORS is a 1

O(
√

∆/bmin)
-approximation algo-

rithm for the ORS-SM problem.
Proof. It is obvious since AppORS returns a feasible solution
whose objective score is no smaller than 1

O(
√

∆/bmin)
times

of the optimal value. �

5 Improved AppORS
As AppORS considers the worst case to compute K nodes
under the budget constraint and only searches within Vvi =
{vj |dis(vi, vj) ≤ DisLim}, it cannot achieve high-quality
solutions in practice (as shown in the experimental study).
To improve the solution quality of AppORS, we present an
Improved version of AppORS (IAppORS). Meanwhile, we
develop two heuristic methods to implement a key function
of IAppORS.

5.1 An Improved Version of AppORS
We abbreviate lines 3-7 of Alg. 1 as: for each node vi ∈
V do update(vopt,VK

opt). In the improved version of Ap-
pORS, the details of the new update(vopt,VK

opt) function
are shown in Alg. 2. Different to the old function, the
new one improves the solution quality by using a method
findFeaNodeSet(vi,G,∆) to find another feasible node
set V2,K

vi (lines 4-6). Note that, iff V2,K
vi has a tree T 2,K

vi span-
ning its all nodes, and BS(T 2,K

vi ) ≤ ∆, V2,K
vi is a feasible

node set.
Theorem 3. IAppORS returns a 1

O(
√

∆/bmin)
-approximation

solution of the ORS-SM problem.
Proof. As both of V1,K

vi and V2,K
vi are feasible node sets, IAp-

pORS can find a feasible solution for the ORS-SM problem.
Meanwhile, the solution quality of IAppORS is not worse
than that of AppORS. This leads to the final conclusion. �

Algorithm 2: New update(vopt,VK
opt)

Input: G = (V, E), ∆, K, DisLim, vi, vopt, VK
opt

Output: Updated vopt, VK
opt

1 V1
vi ← {vj |vi 6= vj , dis(vi, vj) ≤ DisLim};

2 Use Nemhauser’s greedy algorithm to solve
MRS(OS(·),V1

vi ,K, vi), and get topK node set V1,K
vi ;

3 VK
vi ← V

1,K
vi ;

4 V2,K
vi ← findFeaNodeSet(vi,G,∆);

5 if OS(VK
vi ) < OS(V2,K

vi ) then
6 VK

vi ← OS(V2,topK
vi );

7 if OS(VK
opt) < OS(VK

vi ) then
8 VK

opt ← VK
vi , vopt ← vi;

9 return vopt, VK
opt;

5.2 Two Heuristic Methods for IAppORS
To implement findFeaNodeSet(vi,G,∆) in IAppORS, we
present two heuristic methods. At first, we introduce the func-
tion compute(BS(Vi)) which is used to compute the mini-
mal budget value of the tree spanning all nodes in the node
set Vi. compute(BS(Vi)) is a Steiner tree problem which is
proved to be NP-hard [Vazirani, 2013]. Rather than comput-
ing accurate BS(Vi), we use an approximation algorithm to
get an estimated value B̂S(Vi). Here, we use Kruskal’s al-
gorithm to compute a Minimum-cost Spanning Tree (MST)
for spanning all nodes in BS(Vi), as we can utilize the MST
to obtain a 2-approximation solution for the Steiner tree prob-
lem [Vazirani, 2013], and Kruskal’s algorithm is efficient. We
denote this method as compute(B̂S(Vi)).

Next, we present the first implementation of
findFeaNodeSet1(vi,G,∆). As shown in Alg. 3, it
begins with initializing node sets V2,K

vi and V2
vi (lines 1).

In each while loop, the method selects a node vmax with
the maximum marginal objective value for the current V2,K

vi

from V2
vi . After that, the method removes vmax from V2

vi

and computes B̂S(V2,K
vi ∪ vmax) by utilizing the Kruskal’s

algorithm. If the estimated budget value is not larger than ∆,
vmax would be inserted into V2,K

vi . The process is terminated
when V2

vi = ∅ (lines 2-7). At the last step, the method returns
a node set V2,K

vi .

Algorithm 3: Function findFeaNodeSet1(vi,G,∆)

Input: G = (V, E), ∆, vi
Output: V2,K

vi

1 V2,K
vi ← {vi}, V2

vi ← {vj |vi 6= vj , dis(vi, vj) ≤ ∆};
2 while V2

vi 6= ∅ do
3 vmax ← argmaxOSvj∈V2

vi
(V2,K

vi ∪ vj);

4 V2
vi ← V

2
vi \ vmax;

5 B̂S(V2,K
vi )← compute(B̂S(V2,K

vi ∪ vmax));
6 if B̂S(V2,K

vi ∪ vmax) ≤ ∆ then
7 V2,K

vi ← V2,K
vi ∪ vmax;

8 return V2,K
vi ;



Note that, as BS(V2,K
vi ∪ vmax) ≤ B̂S(V2,K

vi ∪
vmax), and thus we have BS(V2,K

vi ∪ vmax) ≤ ∆. So
that V2,K

vi is a feasible solution of the ORS-SM prob-
lem. In addition, we can speed up the process of
findFeaNodeSet1(vi,G,∆) using an optimization tech-
nique called Lazy Evaluations [Leskovec et al., 2007]. We
denote IAppORS with findFeaNodeSet1(vi,G,∆) as IAp-
pORSHeu1.

Next, we propose another heuristic method to imple-
ment findFeaNodeSet(vi,G,∆) which is faster than the
first one. Intuitively, for two nodes v1 and v2, when
dis(v1, v2) is smaller, the difference between V2,K

v1 and V2,K
v2

is smaller. Thus, we can use V2,K
v1 to approximate V2,K

v2 .
Based on this observation, we present the second method
findFeaNodeSet2(vi,G,∆). The most steps are similar to
Alg. 3, but the line 4 is replaced by Vnei

vi ← {vj |dis(vi, vj) ≤
γ∆}, V2

vi ← V2
vi \ {V

nei
vi ∪ vmax}, where γ ∈ (0, 1] is a

parameter, and Vnei
vi

is the neighbor node set of vi. In this
way, we use the seconde feasible node set of vi as those of
vi’s neighbor nodes, and reduce the related computations. We
denote IAppORS with findFeaNodeSet2(vi,G,∆) as IAp-
pORSHeu2, and V2,K

vi in IAppORSHeu2 is also a feasible
node set.

5.3 A Better findOptTree(VKopt,G,∆, vopt)
In this section, we present a better method to implement the
function findOptTree(VK

opt,G,∆, vopt) in line 8 of Alg. 1.
We first compute the shortest distances between each pair

of nodes using some existing methods. Then, we use the
Kruskal’s algorithm to find a MST (denoted as MST1) span-
ning all nodes in VK

opt, and MST1 contains unknown shortest
paths between some pairs of nodes. Next, we find the real
shortest paths by inserting the node set Vmid = {vi|vi ∈
Vvopt , B̂S(VK

opt ∪ vi) = B̂S(VK
opt)} into VK

opt, and finding a
new MST (denoted as MST2) spanning all nodes in MST2,
where Vvopt ← {vi|vi /∈ VK

opt, dis(vopt, vi) ≤ ∆}.
MST2 is a feasible solution for the ORS-SM problem,

but its budget value may be far less than ∆. We further
improve MST2 by extending it greedily. In each itera-
tion, we select a node which is connected to MST2 and has
the maximum marginal objective value, and insert the node
into MST2. The process is repeated until no more nodes
can be added into MST2. Finally, we can get a better re-
gion MST2 from VK

opt. Thus, we use this method to do
findOptTree(VK

opt,G,∆, vopt) for all proposed algorithms
by default.

5.4 Time Complexity of the Proposed Algorithms
In this section, we analyze the complexity of all the pro-
posed algorithms AppORS, IAppORSHeu1 and IAppOR-
SHeu2. The three algorithms have two main steps. Step1
computes a feasible node set VK

opt, and Step 2 searches a feasi-
ble spanning tree T ∗ from VK

opt and T ′ consisting of one edge.
We denote the time cost of computing dis(vi, vj) as tdis. Ap-
pORS needs |V| loops in Step 1, and in each loop, it takes
O(|V|tdis) time to get the candidate node set Vvi , and costs
O(K|Vvi |) time to get top K node set and update VK

opt. The

method in Section 5.3 is the default method used in Step 2. It
first takesO(|VK

opt|
2
log|VK

opt|) time to findMST1. After that,
it costs O(|V|tdis) time to get the candidate node set Vvopt ,
and then costs O(|Vvopt ||VK

opt|
2
log|VK

opt|) time to get MST2.
Next, it requires O(|Vvopt ||VK

opt|) time to extend MST2. Fi-
nally, it takesO(|E|) time to find T ′. Thus, the time complex-
ity of AppORS is O(|V|2tdis + |Vvopt ||VK

opt|
2
log|VK

opt|).
IAppORSHeu1 also needs |V| loops in Step 1. In each

loop, it first takes O(|V|tdis) time to get V1,K
opt , and then costs

O(|V|tdis + |V2,K
opt |

2
log|V2,K

opt |) time to get V2,K
opt . Step 2 of

IAppORSHeu1 is the same to that of AppORS, and the worst
case of IAppORSHeu2 is IAppORSHeu1. Consequently the
time complexity of IAppORSHeu1 and IAppORSHeu2 is
O(|V|2tdis + |V||V2,K

opt |
2
log|V2,K

opt |).

6 Experimental Study
We compare the proposed algorithms to the state-of-the-art
algorithm GCBAll in two applications on three real-world
datasets. As discussed in Section 1, GCBAll is the adapted
version of GCB [Zhang and Vorobeychik, 2016] for solving
our ORS-SM problem. In GCBAll, to compute an approxi-
mation of the minimal budget value of a tree spanning all the
given nodes, we adopt the 2-approximation algorithm for the
Steiner tree problem [Vazirani, 2013] by utilizing the mini-
mum spanning tree. We implement all the algorithms in JAVA
on Windows 10, and run on a server with an Intel(R)Xeon(R)
W-2155 3.3GHz CPU and 256 GB memory.

6.1 Case Study 1: Most Influential Region
Problem Definition and Datasets.
We first investigate the Most Influential Region Search
(MIRS) which aims to find an optimal region under a bud-
get constraint such that the number of affected users is max-
imal in a geo-social network. This problem is useful in
many scenarios, e.g., a company wants to find a region for
marketing its products, the government intends to find a re-
gion for building some public facilities, etc. We model the
geo-social network as an undirected graph G = (V, E) and
compute the probability that a user ui visits a region R as
PR
ui

= 1 −
∏

vj∈R.V(1 − P vj
ui ), where P vj

ui is the probability
that ui visits the location vj , and it is computed as P vj

ui =
# of check−ins in vj of ui

# of check−ins of ui
. Thus, the objective value of R is

the number of users expected to be affected by R, and it is
computed as a submodular function: OS(R) =

∑
ui∈U P

R
ui

,
where U represents all users.

In this problem, we use two real-world datasets SG and
AS crawled from FourSquare (also used in the work [Zeng
et al., 2015]), in which SG has 189,306 check-ins made by
2,321 users at 5,412 locations in Singapore, and AS contains
201,525 check-ins made by 4,630 users at 6,176 locations in
Austin. Following the work [Zeng et al., 2015], we make an
edge between two locations which were visited continuously
in one day by the same user, and use the Euclidean distance as
the budget value for each edge. We also removed the check-
ins made by users who checked in a location less than 3 times.
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Figure 2: Comparison of algorithms in MIRS.

Performance of Our Methods.
We compare three proposed algorithms with GCBAll in terms
of efficiency (the run time) and effectiveness (the objective
score) by varying ∆ from 20km to 60km. Fig. 2 shows
that GCBAll is rather time-consuming when ∆ is large, as it
calls compute(B̂S(Vi)) too many times and cannot use Lazy
Evaluations optimization [Leskovec et al., 2007] to find vmax

quickly. All the proposed algorithms are faster than GCBAll
more than one order of magnitude. Meanwhile, the objective
scores of IAppORSHeu1 and IAppORSHeu2 are relatively
high (more than 90% of GCBAll), which is also consistent
with our theoretical analysis of the solution quality. The re-
sults demonstrate that two presented heuristic methods can
improve the solution quality of AppORS significantly. The
experimental results also show that the solution quality of our
algorithms is better than that of GCBAll within a run time
limit (e.g., 1s, 5s, 10s). We omit these results here due to the
space limitation.

6.2 Case Study 2: Most Diversified Region
Problem Definition and Datasets.
The second application Most Diversified Region Search
(MDRS) is to find the most diversified region under a bud-
get constraint. We consider MDRS on road networks which
contains a set of locations associated with a set of keywords
(e.g., mall and bar). We measure the diversity of a region us-
ing the number of different keywords, and thus the objective
function is OS(R) = | ∪vi∈R.V K(vi)|, where K(vi) is the
set of keywords on vi.

We use the road network in California (CA) from a public
website1. We then utilized the Foursquare APIs to fill in the
missing keywords for nodes (categories of locations)2. CA
contains 21,048 nodes and 22,830 edges [Li et al., 2005].

Performance of Our Methods.
As GCBAll cannot find results under ∆ = 30km on AS
within 1, 000s and CA is even larger than AS, we only com-

1http://www.cs.utah.edu/ lifeifei/SpatialDataset.htm
2https://developer.foursquare.com/docs/api
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Figure 3: Performances of the algorithms in MDRS on CA.
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Figure 4: Performance of the algorithms in MDRS on SY.

pare the performance of the three proposed algorithms on a
larger ∆ using CA. As shown in Fig. 3, the objective scores
of IAppORSHeu1 and IAppORSHeu2 are competitive, and
higher than that of AppORS. Meanwhile, IAppORSHeu2 is
faster than IAppORSHeu1 by about one order of magnitude,
and can solve the problem with 4s when ∆ = 100km.

In addition, to compare the performances of the three al-
gorithms by varying the dataset size, we generate a synthetic
dataset (denoted as SY ) based on the structure of the CA
dataset. Next, we run the three algorithms on SY by vary-
ing the number of nodes from 10,000 to 30,000, and set
∆ = 60km. Fig. 4 shows that the run time of IAppOR-
SHeu2 grows slowly with the increasing number of nodes,
and the solution quality of IAppORSHeu2 is close to that of
IAppORSHeu1, and better than that of AppORS.

7 Conclusion
We propose the ORS-SM problem which aims to find the op-
timal region such that it maximizes the objective score of a the
region computed by a submodular function subject to a given
budget score constraint. To efficiently solve the ORS-SM
problem, we propose two approximation algorithms and fur-
ther improve them with some optimization techniques. The
results of empirical studies on two applications using three
real-world datasets demonstrate the efficiency and the solu-
tion quality of our proposed algorithms. In future work, we
would like to design an efficient index to improve the effi-
ciency and scalability of the proposed methods.
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