
Northumbria Research Link

Citation: Pakpahan, Eduwin, Hoffmann, Rasmus and Kröger, Hannes (2017) Statistical methods for 
causal analysis in life course research: an illustration of a cross-lagged structural equation model, a 
latent growth model, and an autoregressive latent trajectories model. International Journal of Social 
Research Methodology, 20 (1). pp. 1-19. ISSN 1364-5579 

Published by: Taylor & Francis

URL:  https://doi.org/10.1080/13645579.2015.1091641 
<https://doi.org/10.1080/13645579.2015.1091641>

This  version  was  downloaded  from  Northumbria  Research  Link: 
http://nrl.northumbria.ac.uk/id/eprint/43647/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access 
the University’s research output. Copyright © and moral rights for items on NRL are retained by the 
individual author(s) and/or other copyright owners.  Single copies of full items can be reproduced, 
displayed or performed, and given to third parties in any format or medium for personal research or 
study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, 
title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata 
page. The content must not be changed in any way. Full items must not be sold commercially in any  
format or medium without formal permission of the copyright holder.  The full policy is available online: 
http://nrl.northumbria.ac.uk/pol  i  cies.html  

This  document  may differ  from the  final,  published version of  the research  and has been made 
available online in accordance with publisher policies. To read and/or cite from the published version 
of the research, please visit the publisher’s website (a subscription may be required.)

                        

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/326516158?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nrl.northumbria.ac.uk/policies.html




Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tsrm20

International Journal of Social Research Methodology

ISSN: 1364-5579 (Print) 1464-5300 (Online) Journal homepage: https://www.tandfonline.com/loi/tsrm20

Statistical methods for causal analysis in life
course research: an illustration of a cross-lagged
structural equation model, a latent growth model,
and an autoregressive latent trajectories model

Eduwin Pakpahan, Rasmus Hoffmann & Hannes Kröger

To cite this article: Eduwin Pakpahan, Rasmus Hoffmann & Hannes Kröger (2017)
Statistical methods for causal analysis in life course research: an illustration of a cross-
lagged structural equation model, a latent growth model, and an autoregressive latent
trajectories model, International Journal of Social Research Methodology, 20:1, 1-19, DOI:
10.1080/13645579.2015.1091641

To link to this article:  https://doi.org/10.1080/13645579.2015.1091641

© 2015 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

View supplementary material 

Published online: 13 Oct 2015. Submit your article to this journal 

Article views: 4809 View related articles 

View Crossmark data Citing articles: 10 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tsrm20
https://www.tandfonline.com/loi/tsrm20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/13645579.2015.1091641
https://doi.org/10.1080/13645579.2015.1091641
https://www.tandfonline.com/doi/suppl/10.1080/13645579.2015.1091641
https://www.tandfonline.com/doi/suppl/10.1080/13645579.2015.1091641
https://www.tandfonline.com/action/authorSubmission?journalCode=tsrm20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tsrm20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/13645579.2015.1091641
https://www.tandfonline.com/doi/mlt/10.1080/13645579.2015.1091641
http://crossmark.crossref.org/dialog/?doi=10.1080/13645579.2015.1091641&domain=pdf&date_stamp=2015-10-13
http://crossmark.crossref.org/dialog/?doi=10.1080/13645579.2015.1091641&domain=pdf&date_stamp=2015-10-13
https://www.tandfonline.com/doi/citedby/10.1080/13645579.2015.1091641#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/13645579.2015.1091641#tabModule


International Journal of Social Research Methodology, 2017
VOL. 20, NO. 1, 1–19
http://dx.doi.org/10.1080/13645579.2015.1091641

Statistical methods for causal analysis in life course research: an 
illustration of a cross-lagged structural equation model, a latent 
growth model, and an autoregressive latent trajectories model

Eduwin Pakpahan  , Rasmus Hoffmann and Hannes Kröger

Department of Political and Social Sciences, European University Institute, Firenze, Italy

Introduction

In recent decades there has been rapidly growing interest in research into how socioeconomic status 
(SES) and health are related over the life course. For example, illness and disability during childhood 
together with parental and adult social class influence health later in life (Blane, Netuveli, & Stone, 
2007). This finding supports the view that biological and social factors in early life play an important 
role in development later in life. This field of enquiry is termed life course research, since it is con-
cerned with development throughout life (Bartley, 2004; Blane et al., 2007; De Stavola et al., 2005; 
Kuh, Ben-Shlomo, Lynch, Hallqvist, & Power, 2003; Warren, 2009).

One interest of life course researchers is to make inferences of a causal nature, which requires us to 
move beyond the traditional approach simply describing the correlation of variables. In this paper we 
address social causation and health selection, where social causation suggests that SES affects the health 
status while health selection suggests that health status affects SES. To address such causal questions, 
we need a consistent sequence of observations that follow variations at the level of the individual, given 
that causality does not occur spontaneously but develops over time. Therefore, it is not sufficient to 
use cross-sectional data but longitudinal repeated measurement data is required, preferably from the 
early to the late stages of life. Three methods that are particularly suited to answering causal questions 

ABSTRACT
We present three statistical methods for causal analysis in life course research 
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in life course research with longitudinal data are the focus of this paper: cross-lagged structural equa-
tion models, latent growth models, and autoregressive latent trajectories models as a combination of 
the first two. Cross-lagged structural equation model allows to use long time span information (for 
example distant age ranges) and can use different observed variables. Latent growth model (LGM) 
and autoregressive latent trajectories model (ALT) use the same observed variables over time, so that 
in many practical situations with limited data availability and comparability the time span tends to be 
shorter than for a cross-lagged model. We illustrate these methods in separate sections and consider 
their advantages and disadvantages. We also discuss them in comparison to other similar approaches. 
Our review is an illustration for researchers dealing with similar research questions or methods. In 
the end we provide a list of useful references.

The structure of this paper is as follows. In the next section we begin with structural equation 
model (SEM) as the foundation of all three methods, then we provide an overview of each method, 
underlying its rationale, key features and main uses, and briefly discuss an example of a real case of the 
application of these three models by referring to selected research papers. Then, we illustrate each one 
using empirical data and continue with a discussion of the merits of the methods and our conclusions.

Structural equation model

A SEM is a multivariate regression model that extends standard regression by allowing multiple out-
comes, called ‘endogenous’ variables and unobserved ‘latent’ variables. For each endogenous variable 
there is a corresponding regression equation, which can depend on other endogenous variables, as well 
as on exogenous variables. Exogenous variables here refer to the predictor variables (covariates) that 
are not determined by any other variable in the model. A SEM combines the approach of confirmatory 
factor analysis for the measurement model and path analysis for the structural model. The measure-
ment model describes how well the observed indicator variables serve as measurement instruments 
for the underlying latent variable, whereas the structural model describes the relationship among 
the latent variables, and both are denoted by path coefficients. This combination of the measurement 
model and the structural model is the core advantage of SEM: together, they simultaneously take into 
account the measurement errors, the multiple dependent variables of the model, and estimate direct, 
indirect and total effects (Acock, 2013; Bollen, 1989; Wang & Wang, 2012).

Cross-lagged structural equation model

A cross-lagged structural equation model (CL) takes into account the temporal order of longitudinal 
data by modelling a cross-lagged structure, where X at time t causes Y at time t + 1, or Y at time t causes 
X at time t + 1. Beside cross-lagged parameters, the temporal order is also shown by autoregressive 
parameters; that is, X at time t affects X at time t + 1, and likewise for Y. To describe graphically those 
associations we use single-headed arrows to define the causal relationships in the model. In addition, 
to define the covariances or correlations, and without causal interpretation, we use double-headed or 
bidirected arrows (Hox & Bechger, 1998).

The general model of a SEM can be expressed in three basic equations:
 

 

 

The first equation represents the structural model which establishes the relationship among the latent 
variables. The components of η are endogenous latent variables: ξ are exogenous latent ones, and 

(1)� = B� + Γ� + �

(2)Y = Δy� + �

(3)X = Δx� + �.



International Journal of Social Research Methodology    3

both are a system of linear equations with B and Γ; ζ is a residual vector. Equations 2 and 3 represent 
measurement models which define the latent variables in terms of the observed variables. That is, 
Equation 2 links the endogenous indicators, Y, to endogenous latent variables, η, and Equation 3 
links the exogenous indicators,X, to the exogenous latent variables �. In addition, both � and δ are the 
residuals (Bollen, 1989; Wang & Wang, 2012).

Having specified the model above, the next step is to find a unique solution for all the free param-
eters in the model. The model is said to be identified if the parameters in the system of equations in 
the model can be uniquely generated.

The model estimation for the structural parameters is derived from the covariance matrix of 
the observed variables, and the most widely used fitting function is maximum likelihood (ML). 
The procedure is to minimise the difference in the residuals between the sample variances/
covariances and those estimated from the model. Note that maximum likelihood will work best 
when the variables are assumed to follow a Gaussian distribution and the sample size is large. 
There are other methods, such as ordinary least squares (OLS), 2 stage least squares and Bayesian 
methods, but these are beyond our scope. For detailed information on parameter fitting, refer 
to Bollen (1989). A graphical representation of a cross-lagged structural equation model can 
be found in the Analytical Strategy section; see Figure 1(a) for an example. The latent variables 
are represented by ellipse shapes, and the observed variables are with rectangular shapes. The 
arrows from the latent variables to the observed variables represent measurement models while 
the arrows among the latent variables represent the structural relationships.

Figure 1. Four cross-lagged models, each with a specific time dimension and covariates. Model 1(a) describes the cross lagged model 
using the whole range of age, i.e. from childhood to old age. Model 1(b) reduces Model 1(a) by excluding childhood in order to have 
the same observation time. In Model 1(c) we only use the adult life indicators, i.e. the same measurements over 30 years. Model 1(d) 
extends Model 1(c) by using only one indicator for each SES and Health measurement.
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If the variance/covariance matrix in the estimated model is not statistically different from the 
observed variance/covariance matrix, then the model fits the data well. We evaluate the adequacy 
of the model (i.e. the overall model fit)by means of goodness of fit statistics, of which there are many, 
such as χ2 (ideally the p-value is not significant), the comparative fit index (CFI)and the Tucker-Lewis 
index (TLI) (ideally both are >95%), the root mean square error of approximation (RMSEA) (ideally 
<0.05 and the 90% confidence of interval (CI) should be less than 0.08) and the standardised root 
mean square residual (SRMR) (ideally <0.05) (Browne & Cudeck, 1992; Byrne, 1998; Hu & Bentler, 
1999; MacCallum, Browne, & Sugawara, 1996). We must emphasise that evaluation of the model is 
not purely a statistical matter. It should also be based on sound theory and empirical findings. If a 
model makes no substantive sense, it is not justified even if it statistically fits the data very well (Wang 
& Wang, 2012). Moreover, note that a good overall model fit is neither necessary nor sufficient for the 
identification of causal estimates.

Warren (2009) is an example of how a CL can be applied to model the dynamics of the relation-
ships between SES and health across the life course. He uses the Wisconsin Longitudinal Study, which 
includes information about individuals’ SES and health from childhood until late adult life. He imposes 
an indirect relationship through education between childhood SES and health later on and finds that 
higher childhood SES leads to greater educational achievement, better childhood health leads to better 
adult health and more educational achievement leads to better SES and better health. The hypothesis 
of social causation is strongly supported, while health selection is only indirectly supported through 
education.

Latent growth model

The main focus of a LGM is on changes or development over time. This requires that the subjects are 
followed over time with repeated measures of each variable of interest. The goal of this model is to 
make inferences about the features of growth trajectories, i.e. the initial levels of outcome measures 
and their rate of change. This leads us to more substantive questions concerning when or at what 
level the process begins and how it varies over time. In LGMs, the changes are represented by growth 
parameters or trajectories (which are specified as latent variables): the intercept, the initial value of 
the outcome measure, which is sometimes called a constant, because it is the standard from which 
change is measured, and the slope, which tells us how much the curve grows or the rate of outcome 
changes over time. In terms of causal analysis, the model can estimate the causal effect of the initial 
level on the rate of change.

LGMs assume that the subject’s growth trajectories vary randomly around the overall mean of 
growth trajectories (Bollen & Curran, 2006; Wang & Wang, 2012).

The trajectory equation for a simple LGM model is
 

where yit is the value of the trajectory variable y for the i-th case at time t, αi is the random intercept 
for case i, βi is the random slope for case i, and �i are random error terms.

The mean of the intercept, αi, and the mean of the slope, βi, are of interest, and can be modelled 
as follows:

 

 

where μα and μβ are the mean intercept and mean slope across all cases. Note also that �
�i
 and �

�i
 are 

assumed to be uncorrelated with �it.

(4)yit = �i + �t�i + �it ,

(5)�i = �
�
+ �

�i

(6)�i = �
�
+ �

�i
,
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The above equations can be combined as follows:
 

The first term refers to fixed components, which represent the mean structure; and the second to ran-
dom components, representing various sources of individual variability.

The identification, parameter estimation, and goodness of fit in a LGM are similar to those of the 
CL method. For example, the most common estimation method is ML. There are various types of ML 
estimators, for instance, robust ML (MLM) accounts for non-normality and ML with robust standard 
error (MLR) accounts for small sample size. For goodness of fit, the most commonly used indicators 
are CFI or TLI indices (Bollen & Curran, 2006).

A graphical representation of a LGM and details on how it can be applied to empirical life course 
analysis will be shown in the Analytical Strategy section; see Figure 2. Repeated measurements of 
SES and health are used to construct the trajectories and the causal analysis between SES and health 
is described by the cross-lagged path between the trajectories.

An example of a LGM in life course research is an empirical analysis of the direct relationship between 
changes in SES indicators and changes in morbidity over time (Hallerod & Gustafsson, 2011). The 
time-invariant covariates are age, sex, and social class, and the observed outcome measures are educa-
tion, occupation, income, and morbidity. The authors find that each intercept has significant variance, 
indicating that the latent intercept factor significantly varies across individuals. Apart from education, 
the slopes and variances of occupation, income, and morbidity are significant, which indicates that the 
slope also varies across individuals. Furthermore, from the intercepts, women have slightly lower average 
education levels and there is an age difference that reflects the expansion of the education system in the 

(7)yit =
(

�
�
+ �t��

)

+

(

�
�i
+ �t��i

+ �it

)

.

Figure 2. LGM model with education as the exogenous variable. The SES is represented by wages and health by percentage of years 
of poor health.
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1980s. From the slopes, people who have a white collar father or a self-employed father, net of education, 
occupation and income intercepts, have slightly better career prospects.

ALT model

We have described above two methods to incorporate temporal order, at the level of time-specific 
influences, and at the level of latent trajectories. These two methods employ different approaches: 
cross-lagged models take into account the stability through autoregressive parameters, within each 
time-specific, while LGMs take into account the accumulation, or the whole range of observations 
over their trajectories. A combination of these two methods is called an ALT model (Bollen & Curran, 
2006), and it can be created in two ways: either by adding the autoregressive parameters to the repeated 
and observed variables of a LGM, or by adding the trajectory parameters to a CL model.

By adding the autoregressive parameters we avoid the potential bias of independencies, i.e. we 
treat later observations as direct functions of earlier observations plus a time-specific error. Although 
ALT might in some specific cases be mathematically equivalent to a LGM, with autoregressive error 
structures it represents a more flexible and generic expression of that model (Hamaker, 2005; Morin, 
Maïano, Marsh, Janosz, & Nagengast, 2011).

The general ALT equation, with two variables, y and w, is as follows:
 

 

where αyt is the fixed intercept at time t, �yt yt−1 is the autoregressive parameter, �yit is the residual, and 
the first observations yi1and wi1 are treated as predetermined (Bollen & Curran, 2006).

The identification, parameter estimations, and model evaluations are the same as in CL and LGM. A 
graphical representation of an ALT model can be found in the Analytical Strategy section: see Figure 3. It 
extends the LGM graphs by adding autoregression parameters for both SES and health. Although we could 
not find an example of ALT applied to our research question, this model has been used in psychological 
research (Morin et al., 2011). They studied the interplay between self-esteem and body image in adolescents. 
They found that self-esteem and body image levels remained high and stable over time, and the growth of 
self-esteem were positively influenced by the growth of body image.

Data and methods

The data-set we use for these analyses is SHARELIFE, the third wave of data collection in 2008/2009 
for Survey of Health, Aging and Retirement in Europe (SHARE) that collects micro-data on the health 
and SES of individuals over 50 years old across 15 European countries, covering the interplay between 
economic, health, and social factors in shaping older people’s living conditions (Borsch-Supan et al., 
2013). SHARELIFE collected retrospective life course data on individuals and their spouses regarding 
their health and SES from childhood to old age. The data we use combine six European countries 
(Austria, Germany, The Netherlands, France, Switzerland, and Belgium), which are similar enough 
in terms of social model and welfare state for the data to be aggregated, particularly given that our 
analysis serves only for illustrative purposes (Pappadà, 2010). We only use males (N = 3812) because 
gender differences are beyond the scope of this study. We use these data and design to study our cau-
sality hypotheses: social causation (SC) and health selection (HS).

Analytical strategy

Figure 1 shows four cross-lagged models with different age ranges and measurements. Figure 1(a) 
shows the CL model using the whole age range, i.e. from childhood to old age. We start by exploiting 

(8)yit = �yt + �yt yt−1
yi,t−1 + �ytwt−1

wi,t−1 + �yit

(9)wit = �wt + �wtyt−1
yi,t−1 + �wtwt−1

wi,t−1 + �wit ,
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the full age ranges, because, by default, this is the preferable way to address causality in life course 
research (Heckman, 1981; Smith, 2009). We split the life course data into three time points: childhood 
(C), adult life (A), and old age (O). We define childhood as up to 15 years old, adult life as between 
30 and 54 years old; and old age as above 55 years old, and we construct age-specific latent variables 
and measurement models. The information about childhood SES refers to when they were age 10, 
and consists of number of books in the household (the place where they lived), number of rooms 
per person, and father’s occupation (following ISCO skill levels 1–4). For SES in adult life we use 
two indicators: ISCO skill levels and monthly average wages weighted by PPP to 2006 German euros 
(Weiss, 2012), while for SES in old age we use monthly household net income and household wealth 
(net financial assets). The educational achievement of individuals is expressed in years of schooling. 
For health status during childhood (until age 15), the respondents were asked to self-rate their health 
in five categories, and then whether they missed school or were hospitalised for one month or more. 
For adult and old age health, we use three indicators: periods of stress, periods of illness, and periods 
of poor health. The variables contain the percentage of years in which a person reports experiencing 
one of the health conditions. Altogether, we have six latent variables, each with their observed variables 
or indicators. For simplicity, we do not draw the residuals. We allow CSES and CHealth to covary by 
adding a bidirected arrow between them. Education acts as a mediator of the effects between childhood 
and adult life (MacKinnon, 2008). This makes it possible to differentiate between direct effects, i.e. the 
effect of CSES on ASES and its indirect effect through education.

Figure 1(b) shows a similar cross-lagged design but without childhood information. It is a model 
nested within Figure 1(a) with exactly the same information on adult life and old age. We exclude 
the childhood information in this model to make it comparable to the age ranges of the subsequent 
models. In order to fully achieve this comparability, our next step is Figure 1(c), where we exclude old 
age and use the adult life indicators, observe them at ages 20–29, 30–39, and 40–49. In Figure 1(d), 

Figure 3. ALT model, similar to the LGM model in Figure 2, but with regressing later time-specific repeated measures on earlier 
measures of the same construct.
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instead of measurement models we use single measured indicators of SES and health, namely average 
wages and the percentage of years in which a person reports experiencing poor health (years of poor 
health) along the same time dimension. While CL models allow both latent and measured variables, 
including the option that indicators of a concept such as SES might change between life stages, a LGM 
requires SES to be measured over time in exactly the same way. Thus, in order to compare a CL model 
and a LGM, we need to use wages as the indicator of SES for both models.

The causal hypotheses in Figures 1(a)–(d) are represented by the cross-lagged paths (arrows) 
between SES and health, which represent the changes in SES caused by changes in health, and vice 
versa. In addition, the autoregressive parameters, e.g. the pathway between ASES and OSES, show the 
steady-state relationship, i.e. how SES at one time point affects subsequent SES.

In Figure 2 we are interested in how changes in both socioeconomic and health status influence 
each other at the level of trajectories. We replicate the data design and the measurements of Figure 
1(d), but this time average wages and years of poor health are not directly associated, but through their 
intercepts and slopes. The trajectories in the LGM take into account the accumulative processes of the 
development of wages and health over time, i.e. over 30 years in our model. To estimate the changes in 
SES and health over the three time periods, we denote the intercept of average wages with i–w and its 
slope with g–w, and the health trajectories with i–h and g–h. To explain variation in the intercept and 
the slope, we include education as a time-invariant variable. The factor loadings of the intercepts are 
fixed at one, which means the intercept influences all measures across time equally, while the factor 
loadings for the slope are fixed at the amount of time elapsed since the first measurement. Assuming 
linear trajectories and equal time intervals between the observations, we set time scores at 0, 10, and 
20 for the three time points respectively. The causal hypothesis in this model is through the intercept 
and the slope, i.e. the intercept of wages can affect the slope of health (SC), and the intercept of health 
can affect the slope of wages (HS).

Finally, Figure 3 shows the ALT model, which extends Model 2 taking into account the stability of 
the development of average wages and years of poor health. This allows us to test the same hypotheses 
of causality as in Model 2 while taking into account the potential bias that can occur by ignoring the 
autoregressive paths between the average of wages or between years of poor health.

For all models, we include cohort as control variable (but we do not show it in the diagrams) and 
we use male samples only. All the analyses are done using Mplus version 7.3. We use full-information 
maximum likelihood for the parameter fitting to address the problem of missing data (Arbuckle, 
1996; Little & Rubin, 2002).

Results

The distribution of the variables for the cross-lagged models can be seen in Table 1 in the section 
‘Variables for CL Models’. The subsequent parts show the characteristics of LGM and ALT models. 
From here onwards ‘Model 1a’ refers to ‘Figure 1a’, etc.

We begin with the results for Model 1a with the correlation of SES and health in childhood (see 
column ‘Model 1a’ in Table 2a). We find no substantive correlation (0.030) between childhood SES 
and health. Next, we move to the autoregressive parameters, where we find that for all time periods all 
parameters are statistically significant. Furthermore, CSES affects ASES not only through its autoregres-
sive parameter (0.562), but also indirectly (mediated) through education (CSES to education = 0.520 
and education to ASES = 0.354). We conclude that the direct effect of CSES on ASES is larger than 
the indirect one. For the causality hypotheses, described through the cross-lagged paths between SES 
and health from childhood to adult life we do not find them statistically significant, either indirectly 
via education or directly (direct paths not shown in the figure 1(a)). However, from adult life to old 
age both hypotheses are confirmed; i.e. for SC a one-standard-deviation improvement in SES in adult 
life is associated with a0.064 standard-deviation of less health problems in old age health. In other 
words, the better the job and wage in adult life, the fewer health problems in old age. In addition, or 
HS a one-standard-deviation increase in worse health is associated with a 0.049 standard-deviation 
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Table 1. Descriptive statistics of all variables in all models.

    Avg or % SD n

Country        
 A ustria   7.5%   284
 G ermany   17.7%   674
 N etherlands   19.7%   750
 F rance   19.8%   755
  Switzerland   11.1%   422
  Belgium   24.3%   927
Variables for CL Models 1a & 1b        
SES in childhood        
 N umber of books        
    0–10 books   43.7%   1622
    11–25 books   24.1%   895
    26–100 books   19.8%   734
    101–200 books   6.0%   224
    More than 200 books   6.3%   233
         
Rooms per person at age 10   0.9 0.5 3692
 F ather’s occupation        
  E  lementary skills   17.6%   616
  O  perators   66.5%   2324
  A  ssociate professionals   5.5%   193
    Managers or professionals   10.4%   363
Health in childhood        
 R etrospective Self-rated health        
  E  xcellent   29.8%   1113
    Very good   31.4%   1176
  G  ood   29.0%   1084
  F  air   7.5%   281
    Poor   2.3%   86
Missed school for one month or more (1 = Yes)   13.7%   515
Hospitalised for one month or more (1 = Yes)   6.6%   248
Education (years of education)   11.7 4.2 3276
SES in adulthood        
 O ccupation        
  E  lementary skills   13.8%   477
  O  perators   50.3%   1736
  A  ssociate professionals   15.8%   544
    Managers or professionals   20.1%   695
Monthly average wages (in €)   1713.7 1053.4 2307
Health in adulthood        
  Percentage of years of poor health   4 0.1 3812
  Percentage of years of illness   2 0.1 3812
  Percentage of years of stress   13 0.3 3812
SES in Old Age        
  Monthly Household net income (in €)   2254.3 2634.1 3660
 A nnually Household net financial assets (in €)   110865.2 372259.6 3660
Health in old age        
  Percentage of years of poor health   15 0.3 3812
  Percentage of years of illness   7 0.2 3812
  Percentage of years of stress   10 0.2 3812
         
Variables for CL Models 1c & 1d        
Average wages (in €)        
  Period 20–29 years old   1435.0 991.6 3812
  Period 30–39 years old   1620.2 1039.2 3812
  Period 40–49 years old   1729.3 1120.7 3812
         
Occupation        
  Period 20–29 years old Elementary skills 15.04   536
  Operators 54.9   1956
  Associate professional 15.24   543
  Managers or professionals 14.82   528
         
  Period 30–39 years old Elementary skills 14.03   428

(Continued)
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deterioration in SES at older age, which means increasing health problems in adult life will reduce 
income and wealth in old age.

In Model 1b, we find all the autoregressive parameters are statistically significant and the sizes are 
close to the ones in Model 1a. The effect of education on adult SES (0.630) stays statistically significant 
and becomes stronger in this model. It can be interpreted as one standard deviation of enhancement 
of education leading to a 0.630 standard-deviation improvement in adult SES. Regarding the causality 
hypotheses, both social causation and health selection are present and of about the same size. The 
estimated parameters in Model 1b do not differ much from Model 1a, which tells us that excluding 
childhood information from the same population and the same design can lead to similar results. We 
find that our model fits the data well (see Table 2b for the goodness of fit of all models).

In Model 1c, we focus the observations on the adult life period only, and observe the events from 
age 20–29 to age 40–49. We find all autoregressive parameters statistically significant. The effect of 
education on SES at ages 20–29 is also statistically significant (0.477), which can be interpreted as 
a one-standard-deviation enhancement of education leading to a 0.477 improvement in SES at age 
20–29. Regarding causality, SC is present (−0.028) at both age transitions, but the absolute sizes of 
the effect are less than in Model 1b and SC in the second age transition is at a lower level than in the 
previous transition. Compared to Model 1b, HS is no longer confirmed, as the coefficients are small.

    Avg or % SD n

  Operators 50.99   1748
  Associate professional 16.22   556
  Managers or professionals 18.76   643
         
  Period 40–49 years old Elementary skills 13.84   458
  Operators 49.73   1646
  Associate professional 15.68   519
  Managers or professionals 20.76   687
         
Share of years poor health        
  Period 20–29 years old   19.09 1.104 3812
  Period 30–39 years old   34.44 1.539 3812
  Period 40–49 years old   58.81 2.031 3812
         
Share of years illness        
  Period 20–29 years old   7.47 0.697 3812
  Period 30–39 years old   11.98 0.94 3812
  Period 40–49 years old   22.77 1.323 3812
         
Share of years stress        
  Period 20–29 years old   45.14 1.59 3812
  Period 30–39 years old   106.53 2.63 3812
  Period 40–49 years old   151.83 3.182 3812
         
Variables for LGM and ALT        
Average wages (in €)        
  Period 20–29 years old   1435.0 991.6 2229
  Period 30–39 years old   1620.2 1039.2 2095
  Period 40–49 years old   1729.3 1120.7 2053
Share of years poor health        
  Period 20–29 years old   19 1.1 3812
  Period 30–39 years old   34 1.5 3812
  Period 40–49 years old   58 2.0 3812
Education        
  Primary   18.2%   651
  Secondary   54.8%   1965
 T ertiary   27.0%   967

Table 1. (Continued).
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In Model 1d, we use a single indicator for both SES and health and observe them at three time 
points. As in Model 1a and 1b, all the autoregressive parameters are statistically significant for both 
average wages and years of poor health. In addition, we also find that the effect of education on SES 
consistently remains significant, even though it is smaller (0.123). However, for no period do we find 
any statistically significant SC or HS between average wages and years of poor health.

Model 2 shows the LGM, and the distribution of the variables can be seen in the lower part of Table 
1in the section ‘Variables for LGM and ALT’. The correlation between the intercept and the slope of 
average wages is statistically significant (−0.235), i.e. controlling for cohort and education those who 
started with higher wages experience a smaller increase over time. This can be interpreted as a ceiling 
effect: those whose ages are already high can increase their wages only by a limited amount. On the 
contrary, the correlation between the intercept and the slope of years of poor health is not statistically 
significant. Furthermore, neither the correlation of the two intercepts nor the correlation of the two 
slopes are statistically significant, indicating that the initial level of average wages is not correlated with 
initial health problems, and the rate of change of average wages is not correlated with the rate of change 
of years of poor health. Neither SC nor HS are statistically significant, i.e. neither the path from the 
intercept of average wages to the slope of years of poor health, nor from the intercept of years of poor 
health to the slope of average wages. However, education statistically significantly affects the intercept 
and growth of average wages (0.130 and 0.257) and the slope of years of poor health (−0.062). This 
means that education is an important factor for having a good starting salary and a better progres-
sion of it. Additionally, higher education leads to a less steep decline in health. The latter conclusion 
supports social causation, bearing in mind that education is one dimension of SES.

Model 3 shows the ALT Model, which is only slightly different from Model 2, i.e. we add the autore-
gressive parameter for average wages and years of poor health. We note three important changes. First, 
the correlation between the intercept and the slope of years of poor health is now statistically signifi-
cant with a negative sign (−0.296), which can be interpreted as, controlling for cohort and education, 
those who initially have more health problems experience a less steep increase in accumulative years 
of poor health between ages 20 and 50. Second, the effect of education on the trajectories of years 
of poor health (−0.052) just loses its statistical significance, but its size is close to that in Model 2. 
Finally, we obtain a very well-fitting model. The correlations of the two trajectories are not statistically 
significant, neither between the intercepts nor between the slopes. We find none of the autoregressive 
parameters for either average wages or years of poor health statistically significant. Regarding the 
causality hypotheses, neither SC nor HS is confirmed.

Discussion

We have presented three statistical methods for causal analysis and their applications in the life course 
framework: a cross-lagged model, a LGM, and an ALT model. We have demonstrated how social 
causation and health selection can be addressed by each of the three models.

Applying a cross-lagged model, and looking at the long time span from childhood to old age and 
using different indicators for different ages, we find that both social causation and health selection 
are present, but only from adult life to old age. From childhood to adult life we only find statistically 
significant effects in the autoregressive parameters and in how education takes a role as a mediator 

Table 2b. Various goodness of fit statistics for all models.

Goodness of fit CL: Model 1b CL: Model 1c CL: Model 1d LGM: Model 2 ALT: Model 3
RMSEA CI 90%. 0.051 (0.047:0.056) 0.069 (0.067:0.073) 0.056 (0.048:0.064) 0.072 (0.065:0.080) 0.022 

(0.011:0.034)
CFI 0.879 0.897 0.962 0.932 0.997
TLI 0.812 0.854 0.926 0.878 0.988
SRMR 0.041 0.071 0.043 0.048 0.007
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between childhood and adult SES. The advantage of CL is that it allows different observed variables 
to be used as indicators for the underlying concept to be measured. This is not only important prac-
tically, because in a given data-set measures for SES are likely to differ between childhood, adult life 
and old age. It may also reflect theoretical reasons for changing indicators of SES or health from one 
age range to another, because different indicators may have different relative importance at different 
ages. Even though these variables may be measured with error, CL can handle this by imposing latent 
variables (measurement model). By comparing the SC and HS coefficients between different ages a 
CL model can reveal critical periods for the effect of certain factors. The steps from Model 1a to 1d 
illustrate that finding empirical support for causal hypotheses such as SC and HS in life course research 
heavily depends on the length of the periods observed (for instance age transitions) and the chosen 
indicators. In particular, limiting the focus to adult life only (Model 1c) decreases support for SC but 
almost erases support for HS, either because such effects take longer than 10 years, or they do not take 
place in adult life. Simplifying the measurement of SES and health in Model 1d deletes any support for 
our causal hypotheses, which suggest that either wages alone are not relevant for subsequent health 
changes or that a univariate measurement of health is less sensitive for our research question than the 
measurement models used in our Model 1a to 1c.

A LGM requires the use of the same variable for SES or health, measured over several occasions. 
It focuses on how the initial state of one variable affects the growth of another variable. For the same 
practical and theoretical reasons just mentioned, the time span for this model will in most cases be 
limited, because the same variables for SES or health for the whole life span might not be available or 
theoretically appropriate. Regarding our causality question, the only statistically significant result that 
we can interpret causally is the effect of education on the slope of years of poor health (SC). In princi-
ple, LGM focuses on the accumulative progression of SES and health over time. One disadvantage of 
LGM is the lack of autoregressive parameters, since it assumes that a later observation is independent 
of a previous one. This drawback of LGM is the main advantage of ALT. It is hard to deny that each 
observation will always depend on the previous one. Although our ALT model takes this into account, 
the results in terms of our causal question are similar to the LGM model.

To conclude, for causal analysis in a life course framework where we analyse long age ranges and 
have different observed variables for each time period, CL is more suitable. Instead, if the same variables 
are available over time then LGM or ALT would also be appropriate choices. Thus, the data available 
and the research question are central for the decision on the method, and we have provided examples 
to distinguish the characteristics of the different ones available. Any analysis of this kind should be 
based on a sound understanding of the mechanisms, their time line, and the operationalization of 
them, because results heavily depend on such choices.

We have also tried to approach the topic of our paper with simulated data. The general advantage of 
simulated data is that one can impose a certain constraint, for example a ratio between the coefficient 
of SC and the coefficient of HS in order to check if a method can reveal exactly this result. In princi-
ple this approach can increase the comparability of the results across methods and can improve the 
explanation of differences. In our particular simulation we faced the problem that it was impossible 
to simulate data not using a very specific complex model that, by this very nature, already favours 
one of the three models used to analyse the simulated data later on. Thus, we created three simulated 
datasets, each created by one of our three methods. Results show that within LGM and ALT it does not 
matter greatly which model is used to simulate or analyse the data, stressing the similarity of these two 
models. However, data created by a CL Model and analysed with LGM/ALT or vice versa produced 
results very different from the ones we imposed during the data simulation. The results are available 
as a supplementary material and the programmes are available from the authors upon request.

We acknowledge the debate about the limits of causal modelling, in particular in social research. It 
has been argued that complexity theory should be used to regard the social world holistically taking into 
account that it is unpredictable with multi-directional causality and feedback in unpredictable contexts, 
and with webs and networks of non-linear causality. ‘Causal modelling is necessary but unacceptably 
reductionist and over-simplistic, omitting the very details which must be included in understanding 
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Table 3. Summary of statistical methods in this review.

    Cross lagged 
structural equa-

tion model 

Latent growth 
model

Graphical chain 
model

Latent transition 
analysis

1 Synonyms Simultaneous 
equation model; 
autoregressive 
model; transition 
model

Latent curve 
analysis; latent 
trajectory analy-
sis; latent growth 
curve analysis

Chain regression; 
graphical Markov 
model

Latent Markov 
model; hidden 
Markov model

2 Able to handle 
cross-sectional 
data with differ-
ent individuals?

Yes No Yes No

3 Able to handle re-
peated cross-sec-
tional data?

Yes No Yes No

4 Able to handle 
longitudinal re-
peated measures? 

Yes Yes Yes Yes

5 Needs panel data? No Yes No Yes
6 Types of observed 

data
Continuous, 
discrete

Continuous, 
discrete

Continuous, 
discrete

Discrete

7 Straightforward 
to deal with latent 
variable? 

Yes Yes No, only partially, 
for example series 
of univariate 
regression

Yes

8 Able to handle 
non-recursive 
model? 

Yes Yes No Yes

9 Common param-
eter estimation 
methods

MLE MLE OLS, MLE MLE

10 Is global likeli-
hood available? 

Yes Yes No, since each 
path is estimated 
separately

Yes

11 Main objective Decompose 
direct and indirect 
effects

Evaluate trajec-
tories of change 
as well as the 
determinants of 
their variations

Decompose 
direct and indirect 
effects through 
conditional inde-
pendencies

Evaluate the 
transition of latent 
class over time

12 Typical research 
questions

What is the path-
way of variable X 
to Y? Is there a di-
rect effect of X on 
Y, or an indirect 
way, X to Z to Y? 
Or is there a con-
founder between 
X and Y? How is 
the measurement 
error related to 
the estimated pa-
rameter? Are the 
measurements 
reliable? 

At what level does 
X begin? Is the 
rate of change 
linear or nonlin-
ear? How rapidly 
does the process 
develop? Is there 
a steep slope? 

Is X conditionally 
independent of 
Y given Z? Or is 
it independent? 
What is the direct 
explanatory of 
variable Y? 

Are there distinct 
subgroups of in-
dividuals? Is there 
change between 
latent classes 
across time? What 
is the probability 
that the individual 
will be X at time 
t + 1? 

13 Computationally 
extensive? 

Yes Yes No Yes

14 Specific potential 
problems

Attrition or drop 
out; clustering; 
identification; 
multicollinearity

Needs at least 
three repeat-
ed reliable 
measurements, 
i.e. three waves; 
identification

Multicollinearity; 
measurement 
error

Justification for 
the number of 
latent classes; 
identification
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causality’ (Morrison, 2012). We can not discuss such fundamental criticism to causal modelling here, 
we admit that all our approaches are based on accepting such simplifications and claim that statistical 
causal modelling can be useful in many circumstances. Note that certain problems, which are not 
specific to causality or life course analysis, should also be considered, e.g. sample size and missing data 
(including attrition/drop outs). For categorical data and small sample sizes, the rapid development of 
bootstrap or Monte Carlo methods for computational issues (resampling) looks promising to handle 
estimation problems for non-normally distributed data, while for missing data we can use various 
multiple imputation methods (Efron & Tibshirani, 1994; Gilks, Richardson, & Spiegelhalter, 1996).

We mentioned earlier that there are other methods for dealing with time ordering and causal analy-
sis: the graphical chain model (GCM) and latent transition analysis (LTA). The GCM makes use of the 
Markov properties of the repeated measurements, and thus it can draw conclusions about conditional 
independency structures of the variables of interest. In addition, it offers a relatively simple way to 
estimate direct and indirect effects, with a sequence of regression models using ML. The disadvantage 
of the GCM is that it cannot take measurement errors into account and it is not straightforward to 
incorporate latent variables. For exploratory purposes, and with its computational simplicity, this 
approach can be employed together with SEM in order to obtain a baseline model. LTA is a mixture 
model that identifies a priori unknown homogenous classes of individuals based on the measures of 
interest, and models the dynamics or changes in the categorical latent class (the transition) over time. 
LTA is similar to LGM, the difference being that LTA deals with categorical latent variables. Like the 
other methods, the estimation method of LTA uses ML or Bayesian methods.

Table 3 summarises the methods we have discussed above and presents their distinguishing char-
acteristics. We do not show ALT since it is a combination of CL and LGM. Each approach is prone to 
misspecification, so that to achieve robust conclusions in causal inference more than one approach 
should be adopted, with the results compared and inconsistencies investigated, thus carrying out 
sensitivity analysis in the broader sense (De Stavola et al., 2005).

We provide below a selected bibliography that we consider useful for more in-depth study. An acces-
sible introduction to SEM and CL is given in some useful handbooks (Bollen, 1989; Hox & Bechger, 
1998; Jöreskog & Sörbom, 1996; Kline, 2011). They provide details of SEMs with a clear exposition 
of the technical issues. For LGM and ALT, we recommend Bollen and Curran (2006), who focusses 
on the LGM and extend it to the ALT model. In addition, for the applications of LGM using Stata we 
recommend Acock (2013). For the GCM, useful references are Whittaker (1990) and Cox and Wermuth 
(1996). They contrast path diagrams with conditional independence graphs. For LTA, we recommend 
Collins and Lanza (2010) and Lanza, Patrick, and Maggs (2010). Since longitudinal data is the main 
resource for causal life course analyses, a general reference for longitudinal data analysis is Diggle, 
Heagerty, Liang, and Zeger (2002). In addition, for recent advances in the modelling of probability 
and causal analysis, we recommend Pearl (2009).
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