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Abstract

The identification of early markers of dementia is important for higher-risk populations such

as those with type 2 diabetes (T2D). Retrotransposons, including long interspersed nuclear

element 1 (LINE-1) and Alu, comprise ~40% of the human genome. Although dysregulation

of these retrotransposons can induce aberrant gene regulation and genomic instability, their

role in the development of pre-symptomatic dementia (PSD) among T2D patients is

unknown. Here, we examined locus-specific changes in LINE-1 and Alu methylation in PSD

and the potential to offset these changes via supplementation with folate and vitamin B12.

We interrogated DNA methylation patterns corresponding to 22,352 probes for LINE-1 and

Alu elements using publicly-available Illumina Infinium 450K methylation datasets from i) an

18-month prospective study in 28 T2D patients (GSE62003) and ii) an intervention study in

which 44 individuals were supplemented with folic acid (400 μg/day) and vitamin B12

(500 μg/day) over two years (GSE74548). We identified 714 differentially methylated posi-

tions (DMP) mapping to retrotransposons in T2D patients who developed PSD in compari-

son to those who did not (PFDR < 0.05), comprised of 2.4% (228 probes) of all LINE-1

probes and 3.8% (486 probes) of all Alu probes. These loci were enriched in genes with

functions related to Alzheimer’s disease and cognitive decline, including GNB5, GNG7 and

PKN3 (p < 0.05). In older individuals supplemented with folate/vitamin B12, 85 (11.9%) PSD

retrotransposon loci showed significant changes in methylation (p < 0.05): participants with

the MTHFR CC genotype predominantly showed hypermethylation at these loci, while hypo-

methylation was observed more frequently in those with the TT genotype. In T2D patients,

LINE-1 and Alu elements are differentially methylated in PSD in a locus-specific manner

and may offer clinical utility in monitoring risk of dementia. Further work is required to exam-

ine the potential for dietary supplementation in lowering the risk of PSD.
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Introduction

Type 2 diabetes mellitus (T2D) is a metabolic disease affecting more than 200 million people

worldwide in 2010, and global prevalence is predicted to increase to more than 400 million

people by 2030 [1]. T2D is a recognised risk factor for dementia and for cognitive dysfunction

in older people, affecting domains of processing speed, cognitive flexibility, learning and mem-

ory [2–7]. Alzheimer’s disease (AD) is the most common cause of dementia and its develop-

ment is associated with insulin resistance in the brain [8]. Up to 80% of AD patients have

either impaired fasting blood glucose or T2D, and these conditions are associated with cell

death in the brain and loss of β-cells in the pancreas [9].

To date, the characteristics of T2D patients who go on to develop dementia are unclear.

Epigenetic changes occur during cognitive dysfunction and the development of dementia in

T2D patients and, therefore, have potential as disease biomarkers. Retrotransposons, including

long interspersed nuclear element 1 (LINE-1) and Alu, comprise approximately 40% of the

human genome [10]. There are one-million copies of Alu and over 500,000 copies of LINE-1

in the human genome, which can replicate and integrate themselves into new locations

throughout the genome [11–13]. The evolutionary age of these elements, that is the timing of

their insertion into the human genome, can be estimated through sequence variants that facili-

tate their categorisation into subfamilies. Younger LINE-1 and Alu subfamilies have retained

the ability to retrotranspose within the human genome [12, 14], and incorporation of these ele-

ments can interfere with the expression of adjacent genes, disrupting regulatory sequences of

exon-intron interactions [15–17]. Aberrant activity of transposable elements has been impli-

cated in neurological disorders, such as multiple sclerosis and AD, and can promote neuronal

loss [18–20]. Furthermore, LINE-1 and Alu methylation has been widely measured as surro-

gate marker for global DNA methylation [15, 21–25]. Hypomethylation of these elements is

associated with genomic instability [26] and occurs in multiple diseases including cancer [15,

22, 27] and AD [28]. Hypomethylation of retrotransposons is an essential factor promoting

retrotransposition and becomes more common during ageing [15, 29, 30]. Blood methylation

signatures of pre-symptomatic dementia (PSD) in older individuals with T2D have been iden-

tified, including differential methylation of loci mapping to genes linked to dementia [31].

Additionally, retrotransposons, including LINE-1 and Alu, are active in the human central

nervous system throughout life [32, 33]. Therefore, we hypothesise that DNA methylation

changes within LINE-1 or Alu elements are potential novel markers of early-stage dementia in

T2D.

Folate and vitamin B12 are the source of coenzymes in one-carbon metabolism [34], and are

involved in the maintenance of normal epigenetic patterns [35] by generating S-adenosyl-

methionine (SAM), the main methyl group donor for DNA methylation. Low serum concen-

trations of vitamin B12 and folate are observed frequently in AD patients [36] and can disrupt

one-carbon metabolism and, therefore, SAM production [37]. Folate is essential for the devel-

opment of the central nervous system, and folate insufficiency leads to high circulating con-

centrations of homocysteine [38], which are associated with cardiovascular disease [39, 40],

venous thrombosis, cancer, psoriasis, T2D [39], renal and thyroid dysfunction [41], and with

the development of dementia and AD [42, 43]. The well-characterised polymorphism within

the methylenetetrahydrofolate reductase (MTHFR) gene at position 677 (C677T) results in a

dose-dependent decrease in enzyme activity [44], leading to reduced SAM production,

increased serum homocysteine and decreased serum folate concentration [45, 46]. However,

the potential for intervention with nutrients involved in one-carbon metabolism to offset the

epigenetic changes associated with PSD in T2D patients is unknown.
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DNA methylation patterns are well known to display tissue-specific differences [47], but

most loci show similar DNA methylation levels across a wide variety of tissue types. Equally,

epigenetic changes in disease and in response to external stimuli may be unique to target tis-

sues or may be more widespread throughout the body, and this is an important consideration

when seeking to identify blood-based epigenetic biomarkers of disease. Changes in DNA

methylation measured in the blood have been reported in response to a variety of environmen-

tal exposures [48, 49] and lifestyles [50], and also in the blood of patients with variety of pathol-

ogies [51, 52], but their role in disease aetiology can be complex. For example, differences in

DNA methylation patterns observed in the blood of cancer patients may relate to changes in

leukocyte composition of the blood as part of the body’s immune response to the tumour [53].

In the case of dementia, there is evidence that epigenetic marks in blood can serve as biomark-

ers of early disease, which may be related to brain-blood barrier leakage in the early stages of

Alzheimer disease [54]. Most blood-based studies have identified differences in DNA methyla-

tion associated with pre-symptomatic dementia (PSD) but with little correlation to changes in

brain tissue [55], which may imply that they are associated with risk factors for the disease (e.g.

chronic inflammation) rather than informing upon epigenetic changes in the brain. Indeed,

some of the genes whose differential methylation with PSD are unique to blood have roles in

inflammatory processes [56]. However, some genes show disruption in both blood and brain

tissue, such as differential methylation of the OXT gene that encodes the neuropeptide oxyto-

cin [56]. Furthermore, in an analysis of blood samples taken from older individuals with T2D,

genes with known functional relevance to dementia showed DNA methylation changes that

were associated with PSD [31].

In this study, publicly-available Illumina Infinitum 450K methylation datasets were utilised

to examine DNA methylation of retrotransposons in blood of older T2D patients with and

without PSD, and to examine the potential of supplementation with folic acid and vitamin B12

to offset the epigenetic changes observed in PSD.

Materials and methods

Study design

Publicly available Illumina Infinium 450K datasets from two studies were used to analyse ret-

rotransposon methylation (Fig 1). We used DNA methylation data from the Israel Diabetes

and Cognitive Decline (IDCD) study (GSE62003)[31] to identify epigenetic changes in PSD.

This study included 36 older T2D patients (mean age = 73.9 years) with a clinical dementia rat-

ing (CDR) of 0.0 at baseline, of whom 18 showed a decline in cognition to CDR = 0.5 at

18-months follow-up, while 18 controls remained without dementia (CDR = 0). T2D with

PSD patients was age, gender, education, and HbA1C matched to the T2D without PSD (S1

Table). Secondly, data from an intervention study of folic acid and vitamin B12 supplementa-

tion (GSE74548)[57] were used to determine the effect of these nutrients on methylation of

retrotransposons. This study was a part of the B-PROOF study and recruitment criteria have

been described in previous study [58]. Briefly, 44 older participants (mean age = 70.8 years)

were supplemented with 400 μg/day folic acid and 500 μg/day vitamin B12 over two years and

43 participants constituted the placebo group. Both groups were non-smokers (25 and 31 for-

mer smokers in supplemented and placebo groups, respectively). No excessive alcohol users

were recruited. Levels of the C-reactive protein (CRP) at baseline was� 10 mg/L. In both stud-

ies, DNA was extracted from peripheral blood samples and DNA methylation was analysed

using the Illumina Infinium 450K methylation microarray platform at two time points (base-

line and 18-month follow-up in the IDCD study; and baseline and two-year follow-up in the

folic acid and vitamin B12 intervention study). MTHFR genotype data were available for the

PLOS ONE LINE-1 and Alu in pre-symptomatic dementia and type 2 diabetes

PLOS ONE | https://doi.org/10.1371/journal.pone.0234578 June 11, 2020 3 / 18

https://doi.org/10.1371/journal.pone.0234578


dietary intervention study (22 participants with 677CC and 22 participants with 677TT). Ethi-

cal approval for the longitudinal IDCD study was granted by the Institutional Review Board of

Mount Sinai and the Helsinki committees of Sheba and MHS [59], and for the dietary inter-

vention study by the Academic Hospital Maastricht [57].

Data analysis

Datasets from the intervention study and IDCD study were normalised using the wateRmelon

method, respectively [31, 57]. Data from the two studies were analysed separately and therefore

normalisation of the two datasets together was not required. After data filtering and quality

control, 15 subjects who developed dementia and 13 who had normal cognitive function were

retained from within the IDCD dataset. Probes on the Illumina Infinium 450K methylation

microarray mapping to LINE-1 and Alu elements were extracted using RepeatMasker and cat-

egorised according to evolutionary age of subfamilies into oldest (L1M; AluJ), intermediate

(L1P and L1PB; AluS), and youngest (L1HS and L1PA; AluY) [20]. Top differentially methyl-

ated positions (DMPs) were identified in PSD patients by paired-sample t-tests and ANOVA,

with correction for multiple hypothesis testing using the Benjamini-Hochberg method and

significance defined as PFDR < 0.05. The genomic locations (TSS200, TSS1500, 5’UTR, 3’

UTR, 1st Exon, and gene body) of probes were identified through the Illumina annotation. The

pathway analysis with significantly differentially methylated loci was performed using Web-

Gestalt (WEB-based Gene SeT AnaLysis Toolkit) [60].

Statistical analysis

Differentially methylated loci were identified by paired-sample t-tests and ANOVA. Paired t-
test was used to identify significant changes from baseline in DNA methylation of retrotran-

sposons in both PSD and supplementation datasets. Fisher’s exact test was used to identify

enrichment by genomic location and evolutionary age of retrotransposons. ANOVA was con-

ducted to assess changes in DNA methylation by genomic location. Correlations between

DNA methylation and plasma homocysteine and serum vitamin B12 concentrations were

Fig 1. Study design.

https://doi.org/10.1371/journal.pone.0234578.g001

PLOS ONE LINE-1 and Alu in pre-symptomatic dementia and type 2 diabetes

PLOS ONE | https://doi.org/10.1371/journal.pone.0234578 June 11, 2020 4 / 18

https://doi.org/10.1371/journal.pone.0234578.g001
https://doi.org/10.1371/journal.pone.0234578


assessed by Pearson’s correlation coefficient. The impact of MTHFR genotype upon the effects

of folate supplementation was assessed by paired t-test. All analyses were performed using

IBM SPSS statistical software program (version 24) and R Studio (version 1.1.442). Data are

presented as means ± SD unless otherwise stated. Probabilities (P) were adjusted for multiple

hypothesis testing by the Benjamini-Hochberg method, with PFDR < 0.05 considered

significant.

Results

Distribution of retrotransposon (LINE-1 and Alu) probes by subfamily and

genomic location

A total of 9,139 probes mapping to LINE-1 elements and 12,339 probes mapping to Alu
sequences on the 450K array were analysed in relation to PSD. Of the LINE-1 probes, 7,389

map to L1M (old) elements, 1,460 to L1P and L1PB (intermediate) elements, and 290 to L1HS

and L1PA (youngest) elements (Fig 2A). Of the Alu probes, 3,456 map to AluJ (oldest) ele-

ments, 7,440 map to AluS (intermediate) elements, and 1,443 to AluY (youngest) elements.

The majority of the interrogated repetitive element loci were located within gene bodies

(50%), while 30% were in TSS1500 and 3% in TSS200 (Fig 2B); the rest of the elements were

located in the 5’UTR (13%) and 3’UTR (4%). DNA methylation across all retrotransposons by

genomic location did not significantly differ between PSD and non-PSD cases (Fig 2C).

Fig 2. Distribution and methylation changes of LINE-1 and Alu probes. (A) Number of total probes by evolutionary

age of LINE-1 and Alu elements. (B) Number of probes by genomic location. (C) Alterations in DNA methylation of

retrotransposons at the 18-month follow-up in non-pre-symptomatic dementia and pre-symptomatic dementia by

genomic location.

https://doi.org/10.1371/journal.pone.0234578.g002
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DNA methylation changes within LINE-1 and Alu elements in PSD

Changes in DNA methylation of retrotransposons at the 18-month follow-up compared with

baseline were examined for all participants. Among the 21,478 of retrotransposon loci, there

were 714 significant differentially methylated positions (DMPs; PFDR < 0.05) in PSD at follow-

up (Fig 3A and S2 Table), corresponding to 2.4% of all LINE-1 and 3.8% of all Alu probes ana-

lysed, and enriched significantly within the AluJ and AluS families (p< 0.0001). Of these, only

three probes were also significantly different in non-PSD subjects at follow-up. The majority

of the loci were hypermethylated (424 Alu loci and 155 LINE-1 loci; PFDR < 0.05), while 62

Alu loci and 73 LINE-1 loci were significantly hypomethylated (PFDR < 0.05) (Fig 3B and 3C).

The DNA methylation changes (follow-up vs baseline) by retrotransposon subfamily evolu-

tionary age are shown in Fig 3D. The oldest LINE-1 subfamilies (L1M) demonstrated the larg-

est variation in magnitude of DNA methylation changes (Δβ) within LINE-1 elements

[standard deviation (SD) = 0.041] and tended to be hypomethylated at the 18-month follow-

up, while the youngest Alu subfamilies (AluY) had the greatest variation in methylation

Fig 3. Differentially methylated positions in pre-symptomatic dementia (PSD) at 18-month follow-up. (A) Manhattan plot of

retrotransposon loci displaying significant changes in DNA methylation between type 2 diabetes patients with and without PSD at follow-up.

B-C) Volcano plots of changes in retrotransposon methylation (Δβ) in PSD by evolutionary age of Alu (B) and LINE-1 (C) elements. D)

Changes in DNA methylation (Δβ) by evolutionary age of LINE-1 and Alu elements. The Red line represents PFDR = 0.05.

https://doi.org/10.1371/journal.pone.0234578.g003
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(SD = 0.016) of all Alu elements (Fig 3D). We did not observe changes in DNA methylation at

non-retrotransposon probes mapping in close proximity to the DMPs, suggesting that these

changes are highly loci specific.

Gene functions and pathway analysis

The DMPs in PSD mapped to gene bodies (47% of total loci), TSS1500 (34%), 5’UTR (13%),

3’UTR (4%), TSS200 (2%) and 1st Exon (< 0.1%), and demonstrated enrichment at TSS1500

regions (p = 0.013) (Fig 4A). Pathway analysis incorporating the DMPs showed that aberrantly

methylated retrotransposon loci were involved in multiple pathways relating to dementia (Fig

4B and 4C); the most significant pathway (by p value) was the muscarinic acetylcholine recep-

tor 1 and 3 signalling pathway (p = 0.007), which is implicated in AD development and cogni-

tive decline. Additionally, the Alzheimer disease-amyloid secretase (p = 0.012), metabotropic

glutamate receptor group 3 and group 1 (p = 0.015 and p = 0.017, respectively), beta 3 adrener-

gic receptor signalling (p = 0.019), interferon-gamma signalling (p = 0.025), corticotropin

releasing factor receptor signalling (p = 0.028), apoptosis signalling (p = 0.030), 5HT4 type

receptor mediated signalling (p = 0.030) and opioid proenkephalin (p = 0.030) pathways were

also significantly enriched using Over Representation Analysis in WebGestalt (S3 Table).

Within pathways related to dementia development, AluS elements mapping to TSS1500

regions within the Protein Kinase N3 (PKN3; cg14036226) and G Protein Subunit β 5 (GNB5;

cg24202638) genes (Fig 5A and 5B) and L1M elements (cg22023664 and cg02849894) within

the 5’UTR of G Protein Subunit γ 7 (GNG7) (Fig 5C) were differentially methylated.

The effects of folic acid and vitamin B12 supplementation on DNA

methylation at DMPs of PSD

To assess the effects of supplementation with folic acid and vitamin B12 on DNA methylation

of the 714 PSD-associated DMPs, an independent intervention study dataset was used (supple-

mentation group: n = 44; placebo group: n = 43). DNA methylation at 85 of the 714 loci were

significantly altered (PFDR < 0.05) following the two-year intervention. An additional 12 loci

which overlapped with the placebo group were excluded from further analysis. Methylation at

15 DMPs, nine of which mapped to L1M elements that were hypomethylated in the PSD

group, significantly increased (PFDR < 0.05) after folic acid and vitamin B12 supplementation

(Fig 6A, top-left quarter and Table 1). Four of these 15 loci were also related to AD:

cg14051544 of HAL1-2a-MD in the 5’UTR of Solute Carrier Family 7 Member 14 (SLC7A14);

cg22023664 of L1M in the 5’UTR of GNG7; cg23342367 of L1M in the gene body of Tumor

Protein D52 (TPD52); and cg23304647 of L1M in the gene body of G Protein Subunit Alpha

12 (GNA12). An additional 29 probes within AluJ (35%), AluS (24%), AluY (7%), of L1M

(24%), L1PA (7%) and L1PB (1%) elements were positively correlated with the development of

PSD and displayed significantly decreased DNA methylation (paired t-test, PFDR < 0.05) fol-

lowing dietary intervention (Fig 6A, bottom-right quarter and S4 Table). However, another 29

loci were hypermethylated both in the vitamin-supplemented and PSD groups (Fig 6A, top-

right quarter and S5 Table). When examined by MTHFR genotypes (677CC and 677TT),

DNA methylation levels of 71 of the 714 PSD-associated DMPs were significantly altered in

participants with the MTHFR CC genotype (8 hypomethylated, 19 hypermethylated) (Fig 6B),

whereas 89 loci were significantly different in participants carrying the MTHFR TT genotype

(61 hypomethylated, 6 hypermethylated) after intervention (Fig 6C).

A threshold of Δβ value = ±0.05 was used to identify loci displaying substantial changes in

methylation levels following dietary supplementation. For all participants, methylation at 10

repetitive element loci increased significantly while one decreased significantly following
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supplementation (S6 Table), which corresponded to DMPs that were hypomethylated (10 loci)

and hypermethylated (1 locus) in PSD. With both the CC and TT genotypes of MTHFR, meth-

ylation of cg05310486 (AluS) and cg23911433 (L1M) increased by Δβ> 0.05. However, in par-

ticipants with the CC genotype, methylation of 10 other loci (cg27324781, cg23304647,

cg14567424, cg15980656, cg26381210, cg12785183, cg10959668, cg24534583, cg06305891, and

cg23342367), increased by Δβ> 0.05 after vitamin supplementation and had lower methyla-

tion within the PSD group, while methylation of cg01168028 was increased by supplementa-

tion and within PSD patients (Fig 6B). In those with the TT genotype only, methylation of

three CpG loci (cg23489236, cg10675515, and cg27133230) decreased by Δβ> 0.05 following

dietary supplementation and methylation at these loci correlated inversely with DNA

Fig 4. Pathway analysis for the 714 differentially methylated positions. (A) Number of probes by genomic location. B-C) Pathway

analysis for the 432 genes associated with the 714 DMPs by biological process categories (B) and molecular function categories (C).

https://doi.org/10.1371/journal.pone.0234578.g004
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methylation changes in PSD. In addition, methylation of cg07291836 decreased both in the

PSD group and after intervention (Fig 6C).

Association between differentially methylated retrotransposon loci and

serum/plasma concentrations of B-vitamins and homocysteine

We investigated the relationship between DNA methylation of the 15 significantly hyper-

methylated DMPs and concentrations of serum folate, vitamin B12 and plasma homocysteine

in participants in the intervention study. We observed inverse correlations between DNA

methylation and homocysteine concentration for 9 of the 15 loci displaying hypermethylation

after supplementation with B-vitamins; cg23304647 (r = -0.290, p = 0.006), cg22023664 (r =

-0.314, p = 0.003), cg23342367 (r = -0.374, p< 0.001), cg06305891 (r = -0.306, p = 0.004),

cg05310486 (r = -0.302, p = 0.004), cg27609217 (r = -0.244, p = 0.022), cg23911433 (r = -0.338,

p = 0.001), cg15980656 (r = -0.269, p = 0.011), cg14567424 (r = -0.312, p = 0.003) (Fig 7).

Moreover, at six of these nine loci, there were positive correlations between methylation and

serum vitamin B12 concentration; cg22023664 (r = 0.212, p = 0.048), cg23342367 (r = 0.222,

p = 0.037), cg06305891 (r = 0.223, p = 0.037), cg05310486 (r = 0.219, p = 0.040), cg27609217

(r = 0.244, p = 0.022), cg14567424 (r = 0.211, p = 0.048) (S1 Fig). There were no significant cor-

relations between methylation and serum folate concentration.

Discussion

In this study, we identified 714 loci mapping to retrotransposons (LINE-1 and Alu) that were

differentially methylated in T2D patients with PSD compared to those with normal cognitive

function, with such changes enriched within older families (L1M, AluJ, and AluS). LINE-1 ele-

ments are enriched within intergenic regions of the genome while Alu elements are preferen-

tially integrated upstream of genes and within introns [61], but for both there are extensive

reports on their impact upon gene expression via cis- and trans-regulation. In concordance

with their genomic distribution, the probes on the Illumina Infinium 450K mapping to

Fig 5. Genomic location of significant differentially methylated retrotransposons. (A) Protein Kinase N3 (PNK3). (B) G Protein Subunit β 5

(GNB5). C) G Protein Subunit γ 7 (GNG7). Red arrows indicate DMPs identified by the study.

https://doi.org/10.1371/journal.pone.0234578.g005
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retrotransposons predominantly correspond to TSS1500, gene bodies and intergenic regions,

with relative depletion close to transcriptional start sites and within exons [20]. As changes at

those probes mapping to TSS1500 are more likely to have a functional impact upon gene

expression, such as through promoter hypomethylation, we observed enrichment of DMPs at

TSS1500. This finding supports the hypothesis that changes in retrotransposon DNA methyla-

tion may have influence through mediation of neighbour gene expression. Further, we

observed that a number of PSD-associated DMPs showed inverse changes in methylation with

folic acid and vitamin B12 supplementation. To our knowledge, this is the first study to analyse

methylation of retrotransposons by their evolutionary age in people with T2D-associated PSD

and in response to dietary intervention.

Fig 6. DNA methylation changes between B-vitamins intervention and pre-symptomatic dementia development. Changes in DNA methylation

(Δβ) in the two studies are presented in all participants (A) and stratified by those healthy individuals in the intervention study with theMTHFR
677CC (B) and TT (C) genotypes. X-axis represents ΔβDNA methylation of pre-symptomatic dementia in T2D patients and Y-axis represents Δβ
DNA methylation of supplementation group with folic acid and vitamin B12 intervention.

https://doi.org/10.1371/journal.pone.0234578.g006
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Changes in methylation of LINE-1 or Alu elements during development and ageing may

cause DNA damage and double-strand DNA breaks that contribute to the process of neuro-

degeneration [62, 63]. Moreover, our locus-specific analysis revealed changes in elements

mapping to genes associated with dementia including GNB5, GNG7, and PKN3. Specifically,

we have identified hypermethylation of an AluSx element at the 5’ region of the GNB5 pro-

moter, and an AluSg element within the PKN3 promoter. We observed enrichment of

DMPs within AluJ and AluS sequences. While the reasons for this are not currently clear, it

may suggest that such elements are implicated in PSD not through retrotransposition, but

rather through modifying the expression of proximal genes. Younger repetitive element

subfamilies such as L1HS and AluY are known to be more active in retrotransposition [12,

64], and therefore the differential methylation of AluJ and AluS elements are unlikely to

result in somatic retrotransposition events. Loss of GNG7 is associated with dysregulation

of the adenylyl cyclase signalling pathway that is associated with a number of neurodegener-

ative disorders [65]. GNB5 is similarly implicated in regulation of adenylyl cyclase signal-

ling, and genetic variants within the gene are associated with impaired cognition [66], while

Gnb5 knockout mice display severe impairment of development and motor co-ordination

[67]. PKN3 activity increases in response to insulin signalling [68] and may have a neuro-

protective effect in response to hypoxia [69]. Furthermore, PKN family members have pre-

viously been implicated in the biology of AD [70]. Our study has therefore identified

epigenetic changes within retrotransposons mapping to genes with critical functions in neu-

ronal biology and the development of neurodegenerative disorders. However, further func-

tional studies will be required to examine the subsequent impact upon the expression of

these genes and fully elucidate the role of retrotransposons in dementia biology.

Table 1. Hypermethylated CpG sites after folic acid and vitamin B12 supplementation.

Probe ID Retrotransposon Gene Genomic

location

CpG

density

Gene function Relation to Alzheimer’s disease

cg03316030 AluJ LTB TSS1500 S_Shelf Signalling receptor binding and tumour necrosis factor

receptor binding

NA

cg05310486 AluS NA NA N_Shelf NA NA

cg20227511 AluS FLT3 Body N_Shelf Protein homodimerisation activity and protein kinase

activity

NA

cg27324781 AluY NA NA S_Shelf NA NA

cg14051544 HAL1-2a_MD SLC7A14 5’UTR N_Shore Amino acid transmembrane transporter activity and L-

amino acid transmembrane transporter activity

Expressed in OXYS rat at the early

stage of Alzheimer’s disease

cg06305891 L1M NA NA NA NA NA

cg15980656 L1M SDC2 Body NA PDZ domain binding and cytoskeletal protein binding NA

cg22023664 L1M GNG7 5’UTR N_Shelf Obsolete signal transducer activity Marker of pre-symptomatic

dementia

cg23342367 L1M TPD52 Body NA Calcium ion binding and protein heterodimerisation

activity

Neuron related genes

cg23911433 L1M NA NA NA NA NA

cg23304647 L1M GNA12 Body S_Shelf GTP binding and obsolete signal transducer activity Upregulated in late-onset

Alzheimer’s disease

cg13755866 L1M NA NA NA NA NA

cg27609217 L1M NA NA N_Shore NA NA

cg12785183 L1M NA NA NA NA NA

cg14567424 L1PA GSTP1 TSS1500 N_Shore Glutathione transferase activity and kinase regulator

activity

NA

NA: not available

https://doi.org/10.1371/journal.pone.0234578.t001
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Genome-wide hypomethylation of LINE-1 and Alu elements causes loss of genomic integ-

rity [71, 72]. Folic acid and vitamin B12 are key players in one-carbon metabolism which gen-

erates SAM [73, 74], the universal methyl group donor used for DNA methylation. We

observed that these nutrients modified DNA methylation of retrotransposons, including PSD-

associated DMPs. Although these nutrients increased methylation of some CpG sites within

retrotransposons that are also hypermethylated in PSD (Fig 6), this effect was small for most of

the analysed loci (e.g. the change in methylation of cg02276269 and cg19764326 was below

0.05). Interestingly, nine of the 15 loci displaying hypermethylation after supplementation

with B-vitamins were negatively correlated with plasma homocysteine concentrations, while

DNA methylation at six loci were positively correlated with serum vitamin B12 levels. Repeti-

tive elements display differential sensitivity to environmental exposures [23], and it may be

that epigenetic changes within repetitive elements in response to internal stimuli or environ-

mental factors can serve to modify the expression of genes implicated in PSD development.

DNA methylation of old LINE-1 subfamily (L1M) seems to be vulnerable to dietary exposure

than younger subfamilies.

Additionally, we observed differences in retrotransposon DNA methylation by MTHFR
genotype following dietary supplementation with folic acid and vitamin B12. Specifically,

higher methylation levels were observed at some loci in in participants with the MTHFR CC

Fig 7. Correlation of DNA methylation and plasma homocysteine levels in healthy participants.

https://doi.org/10.1371/journal.pone.0234578.g007
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genotype (the most common variant of MTHFR), whereas lower levels were observed at the

same loci in participants with the MTHFR TT genotype. In those carrying the MTHFR TT

genotype, MTHFR enzyme activity is lower leading to decreased SAM production and, poten-

tially, resulting in hypomethylation events. Therefore, and in concurrence with our previous

study [35], individuals with the MTHFR CC genotype may show greater benefit from supple-

mentation with folic acid and vitamin B12 than those with the MTHFR TT genotype.

Our study has limitations. The number of participants in each of the two studies was rela-

tively small (38 participants for analysis of changes in PSD and 44 participants receiving die-

tary supplementation). Despite the measures in the study design and our analysis to increase

statistical power and limit the risk of yielding false positives, we cannot exclude the possibility

that some of the DMPs identified in this study may be artefacts. Our results will need to be

confirmed in independent cohorts, and the role of retrotransposon methylation in the initia-

tion of dementia will need to be examined further through in vitro studies. Secondly, the data

on effects of folic acid and vitamin B12 supplementation were obtained from healthy older peo-

ple and not in T2D patients. Due to the absence of cognition data, we cannot exclude the possi-

bility that some of the participants within the dietary supplementation study may have PSD;

therefore, care must be taken in extrapolating the results to the development of PSD in those

with T2D. However, both studies were undertaken in older people and the intervention and

follow-up periods were of similar duration (i.e. one-and-a-half and two years respectively), the

resulting data may be compatible.

To the best of our knowledge, there are no publicly-available RNA-seq datasets available to

examine the link between altered DNA methylation and gene expression to understand the

underlying mechanisms of PSD in T2D. Future studies may require such analysis to reveal the

functionality of these DMRs in the aetiology of PSD in T2D patients.

Conclusions

Our study is the first to report that locus-specific changes in DNA methylation within retro-

transposons is associated with PSD incidence in T2D patients, and that the methylation of

these sites might be modifiable by dietary supplementation with folic acid and vitamin B12.

Further, we observed that the effects of these nutrients on DNA methylation differ by MTHFR
genotype. If confirmed in future larger studies, these findings may contribute to the identifica-

tion of epigenetic biomarkers of dementia risk in those with T2D and will strengthen the evi-

dence for dietary intervention to reduce the risk of dementia among high-risk T2D patients.
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