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Abstract 

High temperature superconductor (HTS) machine is promising candidate for the electrical aircraft propulsion, due 

to its great advantage on high power density. However, the HTS machine always suffers the problem of low thermal 

stability during quench. In this study, we apply a no-insulation (NI) coil technique on the rotor windings of HTS 

machines to enhance the stability and safety of the electrical aircraft. The NI HTS rotor windings experience ripple 

magnetic fields, which leads to induced eddy currents through the turn-to-turn contacts. This induced current and 

accompanying losses will considerably affect the practicality of this technique. To study this issue, an equivalent 

circuit network model is developed, and it is validated by experiments. Then analysis using this model show that 

most of induced current flows in the outer turns of the NI HTS coil because of skin effect, and lower turn-to-turn 

resistivity leads to higher transport current induced and more significant accumulation of turn-to-turn loss. A grading 

turn-to-turn resistivity is proposed to reduce the transport current induced and AC loss accumulation and meanwhile 

keep the high thermal stability of the NI HTS coil. Optimization of turn-to-turn resistivity is required when the NI 

HTS coil is applied in the machines environments.  
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I. INTRODUCTION 

The aerospace sector is actively pursuing revolutionary design concepts toward electric aircraft to further reduce 

the environmental impact of air travel[1-3]. Aggressive targets have been set by both the EU and US to cut aviation 

emissions. The United Nations’ International Civil Aviation Organization plans to cut carbon emissions from 

airplanes by more than 650 million tons between 2020 and 2040. The EU plans to have greater than 75% reduction 

in CO2 and NOx emissions by 2050[4, 5]. These regulations are the key drivers for aviation manufacturers to design 

more efficient electric aircraft. The advancement of electric power to improve automobiles serves as the base 

technology being applied toward aircraft. However, electric aircraft propulsion requires generator & motor with 

very high power density, which cannot be achieved by conventional electric machines using copper wires[6-9]. The 

latest second generation high temperature superconductor (2G HTS) (RE)Ba2Cu3Ox (REBCO) offers a 

transformative opportunity to develop electrical machines with high power densities, because their current-carrying 

capability is more than twenty times that of copper. HTS machines have been developed for wind generator, ship 

propulsion and energy storage successfully, which show great advantages on high power density, compact structure 

and lightweight, thus is a promising candidate for future electrical aircraft propulsion [6-11]. 

 

The aviation propulsion has a very high demand on safety and stability. However, the superconducting machines 

using HTS coils have always suffered the problem of low thermal stability and quench damages [12-14]. Quench 

has a significant influence on the safety and reliability of HTS machines, which has to be solved. Conventional 

quench detection and protection methods applied on low temperature superconductor (LTS) is not suitable for 

REBCO coils because of its low quench propagation [14-18]. No effective quench detection and protection 

technique are developed so far for HTS coils. Then, an alternative solution, novel no-insulation (NI) coil technique, 

was proposed to enhance the thermal stability of REBCO coils in high field magnet [19-21]. The key idea of NI coil 

is to remove the turn-to-turn electrical insulation of traditional insulated coils. Transport current can bypass the local 

hot spot through turn-to-turn metallic contacts, so that the quench propagation is prevented and an enhanced thermal 

stability is achieved, which has been validated by both experiments and simulations [22-26]. Another advantage of 

the NI HTS coil is the enhanced power density since the elimination of turn-to-turn insulation increase the current 

density as well as the power density of the HTS machine. Since the NI HTS technique has been successfully applied 
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on high field magnets so far [27], there is a great potential that it can also be used in HTS motors/generators to 

improve the thermal stability and prevent quench damage [28].  Both the EU and NASA have proposed to develop 

NI HTS machines concept for electrical aircraft propulsion.   

 

HTS motors/generators prefer the synchronous half-superconducting design to minimize the AC losses, in which 

the HTS is only applied on rotors windings and the stator windings still use copper wires. The application of HTS 

windings on rotor can significantly increase the magnetic field at air gap, so that the power density of the machine 

is increased. In synchronous machines, rotation speed of fundamental fields generated by stator windings is same 

with the rotation speed of rotor, thus the HTS rotor windings serve as a DC magnet during operations [29-31]. 

Besides the fundamental fields, the ripple fields from stators are not synchronous to the rotor windings. Therefore, 

the HTS coils on the rotors of machines will suffer AC ripple magnetic fields.  AC loss of HTS coils induced by the 

ripple fields has always been a critical issue in the design of conventional HTS machines using insulated HTS coils, 

since it has a considerable influence on the efficiency of HTS machines[32]. If NI HTS coils was applied on rotors 

of machines, the ripple field may have a considerable influence on the electromagnetic behavior of NI HTS coils 

due to the absence of turn-to-turn insulation, like induced eddy current and extra loss on turn-to-turn contacts[33, 

34]. This has never been studied thoroughly, which may a great challenge for the thermal stability and efficiency of 

HTS machines with NI technique. 

 

This work aims to investigate the influence of ripple magnetic fields in machines on the electromagnetic behavior 

of NI HTS NI coils numerically and experimentally, in order to investigate the practicability of NI HTS machine 

design. Since the current can flow along any direction in the NI HTS coils, an equivalent circuit modeling method 

is developed to calculate the current and loss of NI HTS coils exposed in AC ripple background magnetic field. A 

NI HTS coil is wound b REBCO tapes for test, and a copper solenoid is wound to generate the background ripple 

magnetic field. Then, the NI HTS coil is exposed in the ripple magnetic field and its electromagnetic behavior is 

tested. Results from simulation and experiments are compared to validate the model. Then the distribution of 

induced eddy current and AC loss is analyzed using this model, and the influence of turn-to-turn resistivity, field 

frequency and amplitude on the eddy current are also discussed.  
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II. NUMERICAL MODEL  

The 2G HTS REBCO tape is a coated conductor with high aspect, as shown in Figure 1(a) and 1(b). It has multiple 

layers, and the superconducting layer is covered by metallic layers (copper, silver and hastelloy), as shown in Figure 

1 (b). The NI HTS coil is often wound with pancake structure, as shown in Figure 2(a). When the NI coil is operated 

in DC environment below critical current, all the current flows in the superconducting layer along azimuthal current, 

since the resistivity of superconducting layer is much lower than the metallic layer and the metallic layers serve as 

in insulation. When the NI HTS coil is exposed to AC ripple magnetic fields, eddy current can be induced in the 

coil, and some current can flow along the radial direction through the turn-to-turn contacts[35, 36].  

 

To calculate the distribution of this eddy current in NI HTS coils, an equivalent circuit model is developed to study 

the distribution of the induced eddy current as well as turn-to-turn loss in the NI HTS coil. In this model, the current 

is decomposed to the azimuthal component i and radial component j. Each turn of the coil is subdivided to fine arc 

element, and each element is equivalent to lumped circuit model. The whole coil is equivalent to a distributed circuit 

network [37-41], as shown in Fig. 2(c). Each dependent current node has four current branches, two azimuthal 

branches and tow radial branches, in which the governing equation can be derived from Kirchhoff current law. Each 

dependent circuit mesh also has four current braches, two radial branches and two azimuthal branches, in which the 

governing equation can be derived from Kirchhoff voltage law. The two radial branches represents the resistive 

voltage generated on turn-to-turn contacts. Therefore, the governing equation of this network model can be 

expressed as:   
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where ik and jk are the azimuthal and radial current respectively. Sr, k is the radial surface of arc element, ρr is the 

equivalent radial resistivity with a unit of μΩ·cm2 [42], which is obtained in the following measurement. uk is the 

voltage of the k-th azimuthal branch, including the resistive voltage and inductive voltage.  
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The background magnetic field can be generated by equivalent virtual coils in this network model, as shown in Fig. 

2(b). then the influence of the background field can be represented by coupling through the mutual inductance Me, 

as shown in Fig. 2(c). Therefore, the inductive voltage of uk has two parts: one is from the coil itself, the other one 

is from the virtual external coil:  

           
, , ( , )l e

k k l ek R k k c

di dI
u M M V i I

dt dt
                                                 (2) 

Where Mk,l is the multiple inductance between two arc element in the NI HTS coil, Mek is the multiple inductance 

between k-th arc element and the external equivalent virtual coils. Ie is the transport current of the equivalent virtual 

coil, the amplitude and frequency of the background field can be changed by adjusting the amplitude and frequency 

of this current. VR, k is the resistive voltage of the k-th azimuthal circuit branch. As shown in Fig. 1(c), the resistance 

of HTS tape consists of two parallel resistances: resistance of superconducting layer Rsc and resistance of metallic 

layer Rn. The resistance of superconductor is nearly zero below critical current Ic, and it increase dramatically when 

the current is higher than critical current. It can be obtained directly from the E-J power law of REBCO conductor:  

0 ( )n

c

J
E E

J
                                                                                (3) 

where Jc is the critical current density, E0=1𝜇V/cm, n=25~35. Then the distribution of current induced by ripple 

magnetic field can be calculated by solving this numerical model.  
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Fig. 1.  (a) Photo of 2G HTS ReBCO tape; (b) The multiple layer structure of the2G HTS tape; (b) The equivalent circuit model 

of ReBCO tape  
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Fig. 2.  (a) NI HTS pancake coil exposed to background ripple fields; (b) The schematic illustration of NI HTS coil with virtual 

coils generating the background ripple fields; (c) The schematic illustration of the equivalent circuit network model for NI HTS 

coils exposed to background fields. Notice that each turn is subdivided to 4 elements in this figure, which is for clear presentation.  

III. EXPERIMENTS AND MODEL VALIDATION  

A. Experimental setup  

To validate the above model, A NI HTS coil is wound by REBCO tapes from SuNAM, South Korea, as shown in 

Fig. 3(a). The tape has a width of 4 mm and thickness of 0.25 mm. Its critical current at 77 K is 190 A and the coil’s 

critical current is 130 A. The NI coil has a single pancake (SP) geometry, and two copper sheets are used as current 

leads for fast discharge test. More details of the coil is shown in the Table 1. A solenoid copper coil is wound to 

generate the background magnetic field, as shown in Fig. 3(b). It is energized by an AC power supply. Specification 

of this solenoid is shown in the Table 1. As shown in Fig. 4, the NI HTS coil is placed at the central position of the 

copper solenoid, thus the NI HTS coil is exposed to an AC ripple magnetic field generated by the copper coil. A hall 

sensor is placed at the centre of the HTS coil to measure the magnetic field.  
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Fig. 3.  Photos of test NI HTS coil and copper solenoid coil. 
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Fig. 4. Location of the NI HTS coil and copper coil during test. 

 

TABLE I.  

SPECIFICATION OF THE TEST HTS COILS AND COPPER COIL 
 

Parameters  NI HTS coil  Copper coil 

Coil type Single pancake  Solenoid 

Inner diameter  100 mm 215 mm 

Outer diameter 121 mm 235 mm 

Height 4.0 mm 110 mm 

Number of turns 45 289 

Critical current, @77 K 130 A / 

Inductance 406 μH 18.7 mH 

Filed per Ampere 506 μT/A 1.42 mT/A 

Tape producer SuNAM / 

Width/thickness of tape 4.0/0.25 mm / 

Turn-to-turn resistivity 96.7 𝜇Ω ∙ cm2 / 

 

B. Fast discharge test 

Turn-to-turn resistivity ρr is a key parameter of NI HTS coil, which distinguishes it from conventional insulated 

HTS coils. It is also a necessary for the simulation of current distribution in the NI coil, as shown in Eq. (1). Both 
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the HTS coil and copper coil is immersed in liquid nitrogen during the test. Firstly, fast discharge test are performed 

on the NI HTS coils to obtain the turn-to-turn resistivity. During the fast discharge test, the copper solenoid coils is 

in open circuit, the NI coil is first ramped to a transport current below critical current and kept at this current for the 

time long enough to eliminate the charging delay. Then the current is switched off by an air circuit breaker, and all 

the magnetic energy stored in the coil is dissipated in the coil itself. The coil voltage is measured in the process, and 

its decay is shown in Fig. 5. Here the initial stable transport current of NI coil A is 40 A, 80 A and 100 A respectively. 

The field decay matches the following equation [19]:  
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                                                                        (4) 

where U is the coil voltage measured, B0 is the initial coil voltage, L is inductance of the coil, Rc is the equivalent 

radial resistance. The time constant can be obtained directly from the results in Fig. 5. The equivalent turn-to-turn 

resistivity 𝜌𝑡 with a unit of 𝜇Ω ∙ cm2 can be calculated by[43]:  
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where Nt is the total number of turns, rk is the radius of the k-th turn, wd is the width of the tape. The equivalent turn-

to-turn resistivity of this NI HTS coil is 96.7 𝜇Ω ∙ cm2. 

 

Fig. 5.  The decay of the NI HTS coil’s terminal voltage during the fast discharging test.   
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C. Model validation  

As shown in Fig. 4, the magnetic field at coil centre should be lower than the background field generated by the 

copper coil, since the induced eddy current in the NI HTS coil reduces the central magnetic field. Therefore, we can 

validate the numerical model by comparing the central magnetic fields from measurements and simulations. The NI 

HTS coils do not carry a transport current, and they are open circuited during the measurement. The copper leads 

are removed before this measurement to eliminate the influence of eddy current induced in copper leads. Fig. 5 

shows the variation of magnetic fields at coil centre when the copper coil is energized by a transport current with 

an amplitude of 20.66 A and frequency 40 Hz. Notice that the ripple background field here is that at same position 

when there is no NI HTS coils. It is used to represent the background field generated by the copper coil, and its 

amplitude is 29.3 mT in Fig. 6. Then, we change the amplitude of the background field, and measure the amplitude 

of the magnetic field at coil centre under different ripple fields, as shown in Fig. 7. The results from the above model 

show a good agreement with that from measurement. The discrepancy between simulation and experiment have two  

main possible factors: first, the turn-to-turn resistivity used in simulation is measured from a fast discharge test, and 

it may change in the following operations, like removing the current leads and the vibration induced by ripple fields 

and liquid nitrogen boiling. Second, the turn-to-turn resistivity is assumed uniform among turns in the simulation, 

while it may vary among turns in fact. However, the results are good enough to validate the modelling method.  
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Fig. 6.  The measured and calculated magnetic field at the centre of the NI HTS coil when it is exposed to a ripple background 

magnetic field with a frequency of 40 Hz. 
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Fig. 7.  The amplitude of magnetic field at the NI HTS centre under different ripple background magnetic fields, their frequency 

is 40 Hz.  



11 

 

Fig. 8.  The distribution of induce eddy current (azimuthal current and radial current) in the NI HTS coil when it is exposed to 

ripple background field generated by copper solenoid coil as shown in Fig. 5; the background field is 29 mT/40 Hz, the turn-to-

turn resistivity of the NI HTS coil is 96.7 𝜇Ω ∙ cm2. The thickness of each turn is enlarged 5 times for a better presentation.  
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IV. RESULTS AND DISCUSSION  

A. Induced eddy current and losses 

The distribution of induce eddy current is analysed using the above model developed, as shown in Fig. 8. Here 5 

moments P1, P2, P3, P4, P5 is selected during a cycle, as shown in Fig. 6. The azimuthal current, with a unit of A, 

flows in superconducting layer, and its positive direction is anticlockwise direction, as shown in Fig. 8(a). The radial 

current follows through the turn-to-turn contacts, Fig. 8(b) shows the normal value of the radial current density, 

whose unit is A/m2 here. We observe kind of skin effect, where most of eddy current is generated on the inner and 

outer turns of the NI HTS coil, especially the outer turns. That’s because the outer turns have relatively larger 

diameter, thus couples more external magnetic flux than other turns. Then the induced eddy current has a field 

shielding effects on the other turns, so that less current is induced on these turns. The azimuthal current (transport 

current induced) flows and the closed circuit is formed through the turn-to-turn contacts, which leads the radial 

current. Thus, the distribution of radial current is almost same with that of azimuthal current. The induced currents 

show a uniform distribution along the angular direction of the coil, but the current on the outermost turn shows a 

considerable non-uniform distribution along angular direction. The zone near the current lead has higher current 

than other zones on the same turn. 

 

The maximum transport current induced (azimuthal current) is a critical issue for the HTS coil, since the quench 

risk increases rapidly with the transport current. The transport current in HTS tape has to be below critical current 

during operations. The results in Fig. 8 also show that the azimuthal current is not synchronous with the amplitude 

of the background field. The maximum azimuthal current induced does not occurs at the peak point (P2) of the 

background fields, but before these moments, P1 and P5. That’s because the induced voltage is generated by variation 

of background fields, and it has the highest rate of change at these moments. Therefore, P1 and P5 is the weak 

moment with higher quench risk for the NI HTS coil. Fig. 9 shows the azimuthal current induced by higher 

background fields, and an overcurrent (>190 A) is observed on the outermost turn of the NI HTS coil when the 

background field is high enough. The penetration depth of induced current increases rapidly with the background 

field when overcurrent is induced. This is because that the resistance of HTS increases dramatically above the 

critical current, which forces more current to other turns. 
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Fig. 9. The distribution of induced azimuthal current in the NI HTS coil, when it is exposed in higher background fields, 

56.8mT/40Hz and 85 mT/40 Hz; the turn-to-turn resistivity of the NI HTS coil is 96.7 𝜇Ω ∙ cm2.  

  

Fig. 10. The losses generated by radial current (turn-to-turn loss) and azimuthal current when the NI HTS coil is in background 

field is 56.8 mT/40 Hz, the turn-to-turn resistivity of the NI HTS coil is 96.7 𝜇Ω ∙ cm2. 

 

Losses are generated by the eddy current induced, which consist of two parts: the radial current induced generates 

a resistive loss on the turn-to-turn contacts, which is called ‘turn-to-turn loss’ in this study; the losses generated by 

transport (azimuthal) current is called ‘azimuthal loss’. The azimuthal current flows in superconducting layers below 

critical current, and a magnetization loss is generated in superconductors by this AC transport current[33, 34]. When 

the induced transport (azimuthal) current is over the critical current, the resistance of superconducting layer 

increases dramatically, some current is forced out to metallic layers, and thus a huge resistive loss is generated by 

this overcurrent. Fig.10 shows the turn-to-turn loss and azimuthal loss induced by background fields 51 mT/40 Hz.  

The peak moment of radial loss matches well with the peak moment of azimuthal current in Fig.8.  The induced 
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losses should have same distribution on the NI HTS coil with the induced current, most of the eddy loss accumulated 

on the outermost turns of the NI HTS coil. 

 

The above analysis show that both the eddy current and losses accumulate on the outermost turns of the NI HTS 

coil, therefore, the outmost turns have a much higher quench risk than other turns, and a special design is required 

on this zone during electromagnetic and cooling design. 

 

Fig. 11.  The dependence of maximum azimuthal current on the amplitude of background field, the turn-to-turn resistivity of the 

NI HTS coil is 96.7 𝜇Ω ∙ cm2. 

 

Fig. 12.  The dependence of turn-to-turn loss (Figure a) and azimuthal loss (Figure b) on the amplitude of background field, the 

turn-to-turn resistivity of the NI HTS coil is 96.7 𝜇Ω ∙ cm2. 
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B. Influence of background fields  

Fig. 11 shows the dependence of the maximum azimuthal current induced (transport current in HTS tape) on the 

amplitude of the background field. The maximum induced current increases almost linearly with the amplitude of 

the background fields, when it is below critical current (190 A). Above the critical current, it shows a very slowly 

increase with the further increase of background fields. Below critical current, the azimuthal resistance of HTS is 

nearly zero and the turn-to-turn resistance is constant, thus the induced current is almost proportional to the 

amplitude of the background field. Above the critical current, the resistance of HTS increases rapidly, the maximum 

transport (azimuthal) current is limited, and thus the increasing rate drops fast. 

 

Fig.12 shows the dependence of eddy loss on the amplitude of background fields. The turn-to-turn loss increases 

rapidly with the amplitude of background fields, and the increasing rate is a little higher than that of linear increase. 

The azimuthal loss is nearly zero when the induced transport (azimuthal) current is below critical current, which is 

much lower than the turn-to-turn loss. When an overcurrent is induced, the azimuthal loss increases dramatically 

with the further increase of background fields, which can be one magnitude of order higher than turn-to-turn loss.  

Therefore, a special design is required to prevent this induced overcurrent. Below the critical current, the azimuthal 

loss is ignorable compared to the turn-to-turn loss.  

 

Fig. 13 shows the influence of field frequency on the distribution of induced transport current. Higher frequency 

leads to more significant non-uniform current distribution on the NI HTS coil, more induced transport current 

accumulated on the outermost turns, due to the skin effect. Fig. 14 shows that the maximum induced transport 

current increases continually with the frequency of background fields. The results show that a very small AC field 

can induce a very high transport current in the NI HTS coil, especially at high frequency. As shown in Fig. 14, a 

background field 14mT/200 Hz can leads to a transport current up to 110 A on the outermost turn of the NI HTS 

coil, while the critical current of HTS tapes is only 190 A.  In the HTS machine environment of electrical aircraft, 

the frequency of ripple field can be much higher than 200 Hz, and the rated current of HTS coil is often more than 

60 % of the critical current. Fig.15 shows the dependence of the turn-to-turn loss power on field frequency. The 

logarithm of turn-to-turn loss power is almost proportional to the logarithm of field frequency. The turn-to-turn loss 

power increases rapidly with field frequency when the frequency is in a low range, but the growth rate drops 
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continually with field frequency. Therefore, the ripple background field with higher frequency leads to more 

significant eddy current accumulation, higher transport current induced and more eddy loss, which can considerably 

increase the quench risk of the NI HTS coil during operations. 

 

Fig. 13.  The distribution of induced transport (azimuthal) current in the NI HTS coil, the background fields are 29 mT/5 Hz and 

29 mT/80 Hz, the turn-to-turn resistivity of the NI HTS coil is 96.7 𝜇Ω ∙ cm2. 

 

Fig. 14.  The dependence of maximum induced transport (azimuthal) current on the frequency of background field, the turn-to-

turn resistivity of the NI HTS coil is 96.7 𝜇Ω ∙ cm2.  

 

Fig. 15.  The dependence of turn-to-turn loss power on the frequency of background field, the turn-to-turn resistivity of the NI 

HTS coil is 96.7 𝜇Ω ∙ cm2.  
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C. Influence of turn-to-turn resistivity  

The turn-to-turn resistivity of NI HTS coils ranges from 1 𝜇Ω ∙ cm2  to 10000 𝜇Ω ∙ cm2 , and it depends on the 

winding tension, surface condition, materials of substrate and stabilizer [44-46]. We change the turn-to-turn 

resistivity of the NI coil and re-calculate the distribution of eddy current induced by ripple background fields, as 

shown in Fig. 16. With lower turn-to-turn resistivity, a more significant skin effect is observed, and a higher transport 

(azimuthal) current is induced in outermost turns of the NI coil. When the turn-to-turn resistivity is low enough (1 

𝜇Ω ∙ cm2 in Fig. 16), the induced current path closes at the connecting position of the outermost turn and its adjacent 

turns, thus the radial current shows a significant accumulation at this point, which is near the current lead generally, 

as shown in Fig. 16. This may induce a local hot spot and increases the quench risk to some extent, thus this position 

is weak point of the NI HTS coil under ripple fields. The radial current shows a uniform distribution along the 

angular direction when the turn-to-turn resistivity is high enough.  

 

Fig. 17 shows the dependence of the maximum transport (azimuthal) current on the turn-to-turn resistivity. The 

results show that the maximum transport current induced can be reduced significantly by increasing the turn-to-turn 

resistivity.  If the background field is high enough (57 mT for example), increasing turn-to-turn resistivity may lead 

to a slight increase on the transport current induced, when the turn-to-turn resistivity is in a low range. Then, the 

transport current induced drops rapidly with the further increase of the turn-to-turn resistivity. Fig.18 shows the 

dependence of the induced turn-to-turn loss on the turn-to-turn resistivity. The turn-to-turn loss increases with the 

turn-to-turn resistivity when the resistivity is low. When the resistivity is high enough, the turn-to-turn loss drops 

rapidly with the further increase of turn-to-turn resistivity.   Since the turn-to-turn loss is the product of turn-to-turn 

contact resistance and the square of induced eddy current, lower turn-to-turn resistivity does not always lead to 

higher turn-to-turn losses. If the turn-to-turn resistivity drops to zero, the winding of NI HTS coil will be shielded 

from the external AC fields, and the AC loss will be reduced. On the other hand if the turn-to-turn resistivity is 

infinite, the NI HTS coil will change to an insulated HTS coil, thus only the superconductor magnetization loss is 

induced, which is much lower than AC loss of NI HTS coils. In other words, the behaviour is typical for eddy current 

loss in metals, where the decrease of resistivity increases the loss first reaching a peak point, and afterwards causes 

it to drop again. Obviously, this peak point should be avoided when the NI HTS coil is applied in ripple fields.  
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Therefore, the AC loss of NI HTS coils exposed to AC external magnetic fields can be reduced by both increasing 

and reducing the turn-to-turn resistivity. Lowering turn-to-turn resistivity always means better current redistribution  

during local quench, which can increase the thermal stability of NI HTS coil; while this will lead to more serious 

charging delay, which is also challenging for the fast magnetization and demagnetization of NI HTS coils [43, 47]. 

Lower turn-to-turn resistivity will also leads to higher transport current induced, which will increase the quench risk 

of the NI coil to some extent. Increasing the turn-to-turn resistivity can significantly reduce the eddy current and 

turn-to-turn loss induced, while this can prevent current redistribution among turns during a local quench, thus may 

considerably reduce the thermal stability of NI HTS coils. Therefore, an optimal design on the turn-to-turn resistivity 

is required on the NI HTS coils when it is applied on machines. 

 

 

Fig. 16.  The distribution of induced transport (azimuthal) current and radial current in the NI HTS coils with different turn-to-

turn resistivity 1~1000 𝜇Ω ∙ cm2, the background field is 29 mT/50 Hz. 
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Fig. 17.  Dependence of maximum induced transport (azimuthal) current on the turn-to-turn resistivity of the NI HTS coil, the 

frequency of the background field is 50 Hz. 

 

Fig. 18.  Dependence of turn-to-turn loss on the turn-to-turn resistivity of the NI HTS coil, the frequency of the background field 

is 50 Hz. 

 

D. Grading turn-to-turn resistivity technique  

The above analysis show that the transport current induced can be reduced significantly by increasing the turn-to-

turn resistivity, while most of induced current accumulate on the outermost turns of the NI HTS coil. All these 

studies are based on an uniform turn-to-turn resistivity among turns of the NI HTS coil. To reduce the induced 

transport current and meanwhile keep a better thermal stability of NI coils, a grading turn-to-turn resistivity 

technique is proposed, in which a higher turn-to-turn resistivity is applied on the turns near outermost zone of the 
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NI coil to reduce the current accumulation, a lower turn-to-turn resistivity is applied on the other turns to keep a 

good thermal stability of the NI coil.  A case study is shown in the Fig. 18. The case0 is an uniform turn-to-turn 

resistivity distribution among turns 100 𝜇Ω ∙ cm2, and the distribution of the induced transport(azimuthal) current 

is shown in the Fig. 15, in which the maximum azimuthal current is 153 A. Fig. 18(a) shows three grading turn-to-

turn resistivity cases, in which the resistivity of the  outermost turns are enlarged. The results show that the current 

accumulation on the outermost turns are reduced considerably, and hence the turn-to-turn loss. The maximum 

transport current induced is reduced significantly. Therefore, the grading turn-to-turn resistivity can significantly 

enhance the thermal stability of the NI HTS coil exposed in ripple magnetic fields.  
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Fig. 19.  Case study on the grading turn-to-turn resistivity technique, (a) distribution of the grading turn-to-turn resistivity, (b) 

distribution of the transport(azimuthal) current induced, (c) distribution of the turn-to-turn loss power. The background field is 

29 mT/50 Hz. 

V. CONCLUSION 

To sum up, we studied the practicability of applying the NI HTS winding technique on electrical machines with 

high power density, which is a promising technique for electrical aircraft propulsion. The induced eddy current and 

loss of NI HTS coil exposed in ripple magnetic fields is analysed, which have been main warries about this technique 

on the machines of electrical aircraft so far. A numerical model based on circuit network method is developed for 

the NI HTS coil exposed to ripple background fields, ant it is validated by experiments.  

  

Analysis using this model show that a considerable eddy current is induced in the NI HTS coil exposed to ripple 

fields. Most of eddy current accumulates on the outer turns of the NI HTS coil, and a very small external ripple field 

may induce a very high eddy current on outermost turns. This contributes to higher quench risk on the outermost 

turns of the NI HTS coil in machines. The induced transport current increases rapidly with the amplitude and 

frequency of the ripple fields, and an induced overcurrent (above the critical current) is possible when the amplitude 

and frequency is high enough.  

 

A considerable AC loss is generated in the NI HTS coils, which consist of turn-to-turn loss on contacts and azimuthal 

loss in HTS tapes. The turn-to-turn loss is more than one order of magnitude higher than the azimuthal loss when 

the induced transport current is below critical current. during overcurrent operation, the azimuthal loss increases 

dramatically and is much more than the turn-to-turn loss. Therefore,   AC loss may be challenging for the efficiency 

of HTS machines, when the NI coil is applied in machine environment with ripple fields, though the NI technique 

can significantly enhance the stability and reliability of the HTS windings. 

 

The induced transport(azimuthal) current can be reduced significantly by increasing the turn-to-turn resistivity. 

Below critical current, the AC loss (turn-to-turn loss) can be significantly reduced by both decreasing the turn-to-

turn resistivity and increasing the turn-to-turn resistivity. Lower turn-to-turn resistivity means better thermal stability, 

but leads to more significant accumulation of radial current as well as turn-to-turn loss.  Therefore, an optimization 

of turn-to-turn resistivity is required to avoid this peak point when the NI technique is applied on the HTS machines. 
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A grading turn-to-turn resistivity technique is proposed for the NI HTS coil in machines, which can significantly 

reduce the transport current induced and meanwhile keep the thermal stability of the NI HTS coil. This considerably 

increases the practicability of the NI HTS technique in machines of electrical aircraft.  
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