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Abstract—In the paper, we study the so-called p-safety of a
Markov chain. We say that a state is p-safe in a state space S
with respect to an unsafe set U if the process stays in the state
space and hits the set U with the probability less than p. We
show several ways of computing p-safety: by means the Dirichlet
problem, the evolution equation, the barrier certificates, and the
Martin kernel. The set of barrier certificates forms a cone. We
show how to generate barrier certificates from the set of extreme
points of a cone base.

Index Terms—Stochastic systems, Optimization algorithms,
Markov processes, Lyapunov methods, Numerical algorithms,
Computational methods.

I. INTRODUCTION

In control theory, system verification is defined formally
as a reachability problem. For stochastic processes, this takes
the shape of the stochastic reachability problem and its re-
finement - the reach-avoidance problem [19]. Conceptually,
their definitions and analytics are related to the hitting and
exit time problems for stochastic processes. Tackling these
problems boils down to solving boundary value (of Dirich-
let type) problems related to the infinitesimal generator of
Markovian processes. The control version of the stochastic
reach avoidance for diffusion processes has been solved using
Hamilton-Jacobi-Bellman equation [7].

The problem of safety verification of stochastic systems
is known in control literature [18]. In this work, we strive
to extend the approach leaning on barrier cerificates to dis-
crete settings of Markov chains. We deal with a constrained
stochastic reach avoidance problem, which we have coined p-
safety. We study the reach-avoidance when there is an imposed
threshold p for reaching the unsafe set. This can be translated
into finding a p-safety function that is the solution of a
particular Dirichlet problem. On the other hand, the super-
harmonic functions provide ways to build supermartingales
associated to the underlying process. Using the properties of
the supermartingales and superharmonic functions, we define a
natural concept of stochastic barrier certificates for p-safety. In
the series of papers [16], [4], it was shown that the analytical
approach based on potential theory provides straightforward
proofs for the barrier certificate properties. In our quest for
finding the adequate characterisations of stochastic barrier
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certificates for stochastic hybrid systems (with switchings, or
proper jumps) [15], [14], we have encountered difficulties
regarding the continuity or, in other words, the hybrid nature
of such systems. The primary purpose of this paper is to set
up the theory of stochastic barrier certificates for the simplest
stochastic processes, namely the discrete-time Markov chains.
Since the state space is discrete, there are no significant
problems regarding its topology or the real-valued measurable
bounded functions defined on this state space. Here, these
functions are just vectors. The important advantage is that the
infinitesimal generator has a matrix form, and the probability
distributions are probability vectors. Regularity assumptions
for the hitting distributions are not necessary. We use classical
results on the connection between Markov chains and potential
theory (see, e.g., [5]), well-known characterizations, in the
context of Markov chain, for hitting times (see, e.g., Chapter
B in [1]) and for reachability (see, e.g., Chapter 12 in [2]).

Leaning upon these results, we succeed in characterizing
p-safety as the problem of finding a vector in Rs, where s
is the number of states in the considered Markov chain, that
satisfies few of inequalities. In Theorem 1, we formulate an
optimization problem, which provides efficient computation
of p-safety. Another important contribution of this paper is
Theorem 2, which characterizes all barrier certiticates via an
appropriate set of extreme points of the base for the cone of
superharmonic functions. Its variant, Proposition 5, provides
a tangible algorithm for computing the certificates. Briefly, the
p-safety problem can be formulated as follows. We consider a
process that lives in a generic space, but we limit the analysis
to a smaller subset, the living space of the process, the state
space. In this subset, a set of forbidden states is given. The
p-safety problem consists of studying when the probability
of reaching the set of forbidden states before exiting the
state space is less than the threshold p. The mathematical
description of p-safety uses concepts like p-safety function
and hitting and occupation measures. A stochastic barrier
certificate is a special numerical function that allows us to find
the p-safe initial states. From these characterisations, some
auxiliary concepts appear in the p-safety description such
as superharmonic (excessive) functions, Green and Martin
kernels. However, before getting to this point, in Section II, we
recall instrumental definitions from the Markov chain theory.
Then, in Section III, we equip the reader with the notions
of the occupation measure and the hitting probability. The
concept of safety is introduced in Section IV. We study safety
employing the evolution equation in Section VI. The set of
barrier certificates is then studied in Sections VII and VIII.

NOTATION

R+ ≡ {x ∈ R| x ≥ 0}. The complement of a set D is
denoted by Dc. ID denotes the indicator function of D, i.e.,
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ID is 1 on D, and 0 on its complement Dc. I is an identity
matrix. We denote by E the expectation corresponding to a
probability P. For a convex set Q, we denote the set of its
extreme points by Ex(Q). Recall that an extreme point of a
convex set Q in a real vector space is a point in Q which does
not belong to any open line segment linking two points of Q.
By a cone, we understand a set C that satisfies 1) C + C ⊆ C,
2) R+C ⊆ C, 3) C ∩ (−C) = {0}. We say that BC is a base of
the cone C if and only if for any p ∈ C \{0}, there is λ ∈ R+

such that λp ∈ BC .

II. MARKOV CHAINS

Let Y be a countable set of states. The states in Y will be
denoted by the letters i, j. The σ-algebra on Y is the algebra
of all its subsets, and it is denoted by B(Y). A measure µ on Y
is a sequence (µ(j))j∈Y , or alternatively, it is thought of as a
row vector µ ∈ RY+. Consequently, a probability distribution is
thought of as a stochastic vector in RY+. A function f : Y → R
is defined as a column vector f = (f(j))>j∈Y .

Suppose that (Xn) := (Xn)n∈N is a discrete-time homoge-
neous Markov chain with the transition probabilities

pij := P[Xk = j|Xk−1 = i] = P[X1 = j|X0 = i]. (1)

The transition matrix P of (Xn) is P := (pij)i,j∈Y . The k-
step transition probabilities are P[Xk = j|X0 = i] = (P k)ij ,
where P k = PP...P is the k-fold matrix product. The
probability space Ω is identified with Y∞, the set of all
sequences (ω1, . . . , ωn, . . .) of points ωn ∈ Y .

Usually, Ω is equipped with the filtration F := (Fn), where
each Fn is seen as the history of the process (Xn) until time
n ∈ N, i.e., Fn comprises the unions and intersections of the
sets of the form X−1k (i) for i ∈ Y and k ≤ n. These are the
events seen by the process (Xn).

Let us denote by µ the initial probability distribution of
this chain. If µ is equal to the Dirac distribution δj then the
process starts in j. We write Pj and Ej for probabilities and
expectations, respectively, for the chain started in j at time 0.
More generally, we denote by Pµ and Eµ the probabilities
and expectations corresponding to the initial distribution µ.
Whenever the initial distribution is immaterial, we abuse the
notation and write P (or E) for both Pj , Pµ (or Ej , Eµ).

For a Markov chain, the generator is one-step increment of
the transition semigroup L := P − I .

The first hitting time of state j, defined by Tj := min{k ≥
0|Xk = j}, and, more generally, the first hitting time of a
set U , defined by TU := min{k ≥ 0|Xk ∈ U} are standard
examples of stopping times.

For a stopping time T , a stopped process (XT
n ) is defined

by XT
n = Xn if n > T , and XT

n = 0 otherwise (where 0 is
a cemetery/absorbing point).

III. EVOLUTION OF THE PROCESS

In this section, we will characterize the process in terms
of the Green operator (with associated Martin kernel) and
infinitesimal generator. Before introducing the two concepts,
we take the intermediate step and recall the definitions of two
measures: occupation measure, and hitting probability.

A. Occupation measure

Suppose that T is a stopping time and D is a subset of Y .
Let ρ<T (D) be a random variable that describes the amount
of time the Markov chain spends in D before the time T .
Formally, the occupation variable ρ<T (D) is written

ρ<T (D) :=
T−1∑
k=0

I{Xk∈D}. (2)

The pre-T occupation measure (or just the occupation mea-
sure) γ<T for (Xn) is defined as the expectation of ρ<T (D)
in (2), i.e., γ<T (D) := E(ρ<T (D)). From the calculation

γ<T (D) =
∞∑
k=0

P[k < T |Xk ∈ D], (3)

it follows that γ<T is a measure on (Y,B(Y)). If µ is the initial
measure (i is the initial state), then we employ the probability
Pµ (Pi), and use the notation γµ<T (γi<T ), i.e.,

γµ<T (D) =

∞∑
k=0

Pµ[k < T |Xk ∈ D].

Define the integral w.r.t. γ<T of a vector function f as

〈γ<T , f〉 := E
T−1∑
k=0

f(Xk). (4)

B. Hitting probabilities

For a stopping time T , let λT (D) be the expected time that
the process hits a set D ⊂ Y precisely at the time T .

λT (D) := P[T <∞|XT ∈ D]. (5)

When T = TU , the hitting time of a set U , (5) is known as
the hitting distribution of U . Then λT is similar to (3)

λT (D) =
∞∑
k=0

P[T = k|Xk ∈ D]. (6)

We define the hitting operator corresponding to T as the
integral of a measurable function f w.r.t. λT as

〈λT , f〉 = E(f(XT )I[T<∞]). (7)

When the initial state is i, we employ the probability Pi, and
use the notation λiT . Similarly, for the initial probability µ, we
use Pµ, and the notation λµT for the hitting distribution. When
the initial state is i, we write the hitting kernel as

λiT (D) =
∞∑
k=0

Pi[T = k|Xk ∈ D]. (8)

If D is a singleton {j}, the hitting kernel has a matrix form

ΛT (i, j) := λiT ({j}) =
∞∑
k=0

Pi[T = k|Xk = j]. (9)



C. Occupation Operator

The Green (also called occupation) operator is defined as

G :=
∞∑
k=0

P k, (10)

where P is the transition matrix with the entries pij in (1).
Then, we can write the entries of G as

G(i, j) =
∞∑
k=0

Pi[Xk = j], ∀i, j ∈ Y. (11)

Intuitively, G(i, j) represents the number of visits of the state
j starting from i. For a function f on Y , Gf is called the
potential of the function f .

Given a reference state ρ, the Martin kernel is defined by

K(i, j) :=
G(i, j)

G(ρ, j)
, ∀i, j ∈ Y. (12)

IV. SAFETY CONCEPT: p-SAFETY

Let S and U be subsets of Y . We refer to the set S as the
state space, where the chain (Xn) has a behaviour of interest.
Outside of S, the chain has already achieved its objective. In
the context of our safety problem, the objective is to compute
the probability that (Xn) reaches U at some time without
leaving S. This statement can be formalised using the first
hitting time TU of the set U , and the first exit time ζS from
S. By definition, the first exit time from a set is the first hitting
time of its complement. An initial state j is considered unsafe
if Pj [TU < ζS ] is bigger than a given threshold p. Formally,
a state j ∈ S is p-safe if

Pj [TU < ζS ] ≤ p. (13)

Related to the concept of p-safety is the taboo probability
[13], which computes the probability that the process (Xn)
starting from a state i enters another state j without entering
in the taboo set in its movement from i to j.

The main tool to study the bounded reach avoidance prob-
lem, defined above, is the following safety function

q(j) := Pj [TU < ζS ] = Ej [IU (XTU∪SC
)]. (14)

Recall that TU∪Sc is the first hitting time of U ∪ Sc.
From definition, the safety function can be written as

q(j) = λjTU∪Sc
(U).

We extend the safety function to act on subsets of Y . For
A ∈ B(Y), we define

q(A;U, S) := max
j∈A

q(j).

V. DIRICHLET PROBLEM CHARACTERIZATION OF
p-SAFETY

We study a Markov chain with the family {pij} of transition
probabilities from the state i to the state j. For a subset S, we
define its boundary as follows:

δS := {l ∈ Sc|pjl 6= 0 for some j ∈ S}.

We take the target set U to be a subset in S, i.e., U =
{j1, j2, ..., jm}. We let the initial set A also to be a singleton
in S, A = {i}. The safety problem formulated above reads
for the discrete case as the problem of finding the probability
that the Markov chain, starting at i, hits U before reaching δS
(when δS is nonempty). Our aim is to compute

q({i};U, S) = Pi[TU < TδS ]. (15)

It is known that the probability q({i};U, S) is a solution of
a boundary value problem for a discrete Laplacian [11], [17],
which we address next. The discrete Laplacian for a Markov
chain is defined as ∆f(i) ≡

∑
j(f(i)−f(j))pij , for f : S →

R. In this case, the discrete Laplacian operator coincides with
the negative infinitesimal generator of Markov chain, ∆ =
−L = I − P . Then q(i) = q({i};U, S) is the solution of the
following Dirichlet problem:

(∆q)(i) = 0 if i ∈ S \ U and (16a)
q(j) = 1, ∀j ∈ U (16b)
q(l) = 0 if l ∈ δS, (16c)

which is a system of linear equations.
Example 1: We consider the example of a Markov chain

as in Figure 1. The space Y consists of possibly infinitely
many states, where only the first five states are shown, the
transition to the remaining is indicated by the dashed lines.
The state-space S = {1, 2, 3}, its boundary is δS = {4}, and
the forbidden set is U = {3}.

Fig. 1. State-space is S = {1, 2, 3}, and the unsafe set is a singleton U =
{3}. Transition probabilities are indicated by the weights on the edges.

The discrete Laplacian is ∆ = I − P ,

∆ =


0.7 −0.4 0 −0.3 0 0 . . .
0 0.6 −0.1 −0.5 0 0 . . .
0 0 0.5 −0.5 0 . . . . . .
0 0 −0.4 1 −0.6 . . . . . .
0 0 0 −0.2 0.2 . . . . . .
. . . . . . . . . . . . . . . . . . . . .

 .

Equation (16a) gives

0.7q(1)− 0.4q(2)− 0.3q(4) = 0

0.6q(2)− 0.1q(3)− 0.5q(4) = 0.

The boundary conditions (16b) and (16c) give q(3) =
1, q(4) = 0. Consequently, the remaining values of the vector
q are q(1) = 2/21 and q(2) = 1/6.



We have shown one way of computing the p-safety using the
Dirichlet problem. In the next sections, we will introduce two
other methods instrumental for computation of safety based
on: (i) the evolution equation, and (ii) excessive functions.

VI. THE EVOLUTION EQUATION

Let µ be an initial distribution on Y . For a stopping time
T of the Markov chain (Xn) defined on (Ω,F ,Pµ), let γ<T
denote the pre-T occupation measure associated to the chain,
and λT the hitting probability. The connection between the
occupation measure and the hitting probability is known in
the literature as the adjoint or evolution equation [8]

λµT = µ+ γµ<TL. (17)

This equation is satisfied for more general Markov Processes
[3]. Its proof, for Markov chains, can be found in [10]. One
can prove that the triplet (µ, γµ<T , λ

µ
T ) characterises in a unique

way the underlying Markov process.
Proposition 1: If the chain is transient, hence, the kernel

operator G is proper, (17) becomes

µG = λµTG+ γµ<T . (18)

Proof: Take f = Lh and rewrite (17) as 〈λµT ,−Gf〉 =
〈µ,−Gf〉+ 〈γµ<T , f〉, which becomes 〈µ,Gf〉 = 〈γµ<T , f〉+
〈λµT , Gf〉, taking into account that L = −G−1.

Both the evolution equation (17) and (18) are affine in
measures. For a finite state space Y with n states, µ, γµ<T ,
and λµT are vectors in Rn and L and G are n by n matrices.
To illustrate how (17) can be used for safety, we assume that
the initial distribution µ is known and take T = TV , where
V = U ∪ Sc. Then, the measures γµ<T and λµT have the
following ‘boundary’ conditions:

γµ<T (i) = 0 for i ∈ V
λµT (i) = 0 for i ∈ V c.

Example 2: We give an example modified from Example
(2.8) (iii), [10], page 72. Let T = TV , where V = U ∪ Sc.
Let µ be the initial probability distribution. We can write
the occupation measure, as follows: γµ<T =

∑∞
n=0 αn, where

α0 = µ and, for n ≥ 1, αn(A) := Pµ{Xk ∈ V c| 1 ≤ k ≤
n, Xn ∈ A} represents the taboo probability. Similarly, the
hitting measure is λµT =

∑∞
n=0 λn, where λ0 = 0 and, for

n ≥ 1, λn(A) := Pµ{Xk ∈ V c| 1 ≤ k < n, Xn ∈ A ∩ V }
represents the hitting probability.

VII. BARRIER CERTIFICATES

In this section, we show how to compute safety using barrier
certificates.

A. Excessive functions

First, we introduce the notion of excessive function. A
finite nonnegative function f on Y is called excessive or
superharmonic function for the chain (Xn) if Lf ≤ 0 on
Y , or, equivalently, Pf ≤ f on Y . The cone of excessive
functions will be denoted by E . If, moreover, Lf = 0 (i.e.,
Pf = f on Y) then f is called harmonic function.

Some properties of excessive functions for Markov chains
are as follows [17]:

1) The set of superharmonic functions is a convex cone.
2) A function f is superharmonic iff the sequence f(Xn) is

a supermartingale w.r.t. Fn for any probability measure
Pµ.

3) If G given by (10) is a proper kernel1 [11, pg. 41],
every superharmonic function is the increasing limit of
a sequence of finite potentials2.

4) Any superharmonic function f has the unique (Riesz)
decomposition as f = u+h, where u is a potential and
h is a harmonic function.

For a Markov chain, the superharmonic function cone has
a well-studied characterization w.r.t. the following base

BE := {u ∈ E|u(ρ) = 1}, (19)

where ρ is a fix reference point (“origin”) in Y . The set BE is
a base for the cone E with vertex 0. Moreover, BE is compact
in the topology of pointwise convergence.

When (Xn) is transient, the extreme elements of BE are
given by the Martin kernels, i.e.,

Ex(BE) = {K(·, j)|j ∈ Ȳ}, (20)

where Ȳ is the Martin compactification of Y [17, pg. 184].
Further results can be found in [11], Ch.2.

B. Stochastic barrier functions

We define the notion of a stochastic barrier function. Let us
consider function h : Y → R+, and denote by hn ≡ h(Xn)
the image of the Markov chain (Xn) through this function.

A function h is called a stochastic barrier function for the
chain (Xn) w.r.t. a triple (A,U, S) if:

1) hζSn is a supermartingale, where hζSn is the process (hn)
killed outside of S, and

2) inf{h(u)| u ∈ U} ≥ sup{h(a)| a ∈ A}.
Next propositions hold for general Markov processes and list
the properties of the set of all barrier functions. These have
been proved in [16].

Proposition 2: Let us consider: A,U, S ∈ B(Y), A and U
subsets of S; and (Xn) a Markov chain. Suppose that there
exists h : S → R≥0 such that hζSn is a supermartingale. Then

q(A;U, S) ≤ HA

HU
, (21)

HA := max
y∈A

h(y), HU := min
y∈U

h(y). (22)

Proposition 3: Let CB be the set of all barrier functions for
a Markov chain (Xn) and a triple (A,U, S). Then:

1) CB is a positive cone that contains constant functions.
2) If h1, h2 ∈ CB then h1 ∧ h2 ∈ CB .
3) If CB 6= ∅ then there exists a function h ∈ CB and

p ∈ [0, 1] such that: (a) h ≥ 1 on U , (b) h ≤ p on A.

1G is proper if Y is the limit of an increasing sequence Yn of sets in B(Y)
such that G(·,Yn) are bounded.

2f is a potential if there is c such that f = Gc



t

If for p ∈ [0, 1], there exists a function h : Y → R+ such 
that hζS is a supermartingale, and the conditions h ≥ 1

on U , h ≤ p on A are satisfied then q(A;U, S) ≤ p.
For a superharmonic function h, (hn) is a supermartingale.
Hence, the first condition in the definition of stochastic barrier
function could be replaced by the condition Lh ≤ 0.

Example 3 (Example 1 continued): Let A = {1, 2}. Search
for h : S → R such that (i) Lh = −∆h ≤ 0, (ii) h(3) ≥ 1.
Function h = (0.1, 0.2, 1) satisfies the conditions above. Then
using (21), q(A;U, S) ≤ max{2/21, 1/6} = 1/6 .

For a fix p, we define the set of barrier certificates as:

K := {h ∈ E(S)|h ≤ p on A , h ≥ 1 on U}, (23)

where E(S) is the cone of excessive functions of (XζS
n ).

C. Safety functional

Let us consider a larger set of barrier functions: Kb := {h ∈
E(S)|∃ph > 0 s.t. h ≤ ph on A , h ≥ 1 on U}. We define
the value function H : Kb ×A→ R+ by

H(h, j) := h(j). (24)

Proposition 4: Let (Xn) be a Markov chain. Suppose that
A,U, S ∈ B(Y), with A and U two disjoint subsets of S.
Then, we have the following estimation of the safety function

q(A;U, S) = max
j∈A

inf
h∈Kb

H(h, j), (25)

where H is the value function (24).
Proof: We use the hitting operator corresponding to T =

TU of the killed process (XζS
n ) as the integral of a function

f w.r.t. λT as:

ΛSTU
(f) := 〈λTU

, f〉 = Ef(XζS
T )I[T<∞].

Applying the Hunt’s balayage theorem (see Th. 49.5, pg. 231
in [12]) for the hitting distribution of U for (XζS

n ), we obtain:

ΛSTU
1(j) = inf{h(j)|h ∈ E(S), h ≥ 1 on U}.

Then, the conclusion comes from the definition of q(A).
For each h ∈ Kb, and the initial set A, we use the notation

qh := max
j∈A

h(j). (26)

Theorem 1: Let (Xn) be a Markov chain. Suppose that
A,U, S ∈ B(Y), with A and U being two disjoint subsets
of S. Then, we evaluate the safety function as:

q(A;U, S) = inf
h∈Kb

qh, (27)

where qh is defined by (26).
Proof: This theorem aims, in fact, to prove a min-max

theorem for the functional H defined by (24). We have

q(A;U, S) = max
j∈A

inf
h∈Kb

H(h, j) ≤ inf
h∈Kb

max
j∈A

H(h, j)

≤ max
j∈A

ΛSTU
1(j) = q(A;U, S),

where ΛSTU
is the hitting operator corresponding to U . Ac-

cording to the Th. 2.1 pg. 49 [11] the function g := λSTU
1

(called the reduced function of 1 on U ) is equal to the

smallest superharmonic function which dominates 1 on U .
Then g ∈ Kb, and the second inequality above follows.

Remark 1: Theorem 1 provides an optimisation program for
computing the safety q(A;U, S). It translates to q(A;U, S) =
inf p, subject to h ∈ RS+ and p ∈ R+ with

h(i) ≥ 1 for i ∈ U, h(i) ≤ p for i ∈ A, PSh ≤ h,

where PS(i, j) = pij for i, j ∈ S, and h ≥ 0 means that all
the entries h(i) ≥ 0.

VIII. BARRIER CERTIFICATE GENERATION

The barrier certificate set K is a convex subset of the cone of
excessive functions E(S) associated to the Markov chain (Xn)
killed outside of S. The structure and the characterization of
the cone of excessive functions is a classical result in the
potential theory of Markov processes [6], [9]. In particular,
for the Markov chains [17], these results are more intuitive,
since they are combinatorial.

Formally, E(S) is generated by the base BE(S), which is
compact and convex. The extreme points of BE(S) are defined
using the Martin kernel and the Martin compactification of
the state space S. The potentials of BE(S) can be expressed
as convex combinations of following extreme elements:

Ex(BP(S)) = {K(·, j)|j ∈ S}, (28)

where P(S) represents the set of potentials [17]. The set of
extreme harmonic elements of BE(S) has a similar expression
as (28), but the range of j will be the Martin boundary3, i.e.,
j ∈ S̄ \ S, where S̄ is the Martin compactification of S (see,
[17], pg. 184). Our aim is to characterize only the barrier
certificates that are potentials, since any excessive function is
the limit of an increasing sequence of such potentials.

Suppose that the state space S of the process is finite, and
U ⊂ S. Let G be the Green kernel corresponding the entire
process (Xn) on Y . Then, from the Proposition 1, we have

G = GS + ΛTScG, (29)

where GS is the occupation kernel for the killed process
outside of S. Note that since γµ<T is the occupation measure
of S, we can write that GSf = 〈γµ<T , f〉. ΛTSc is the hitting
kernel corresponding to TSc as defined in (9).

Suppose that there is an algorithm to compute the hitting
operator of Sc. Then, we write GS(i, j) = Gij for i, j ∈ S.

Recall that the expression of the Martin kernel is given by
(12). In this subsection, we will employ the Martin kernel KS

associated to the Green kernel GS . Therefore, we strive to find
potential barrier certificates generated by extreme vectors on
S, which are defined as follows

KS(·, j) :=
GS(·, j)
GS(ρ, j)

, j ∈ S. (30)

We conclude the above discussion by the following propo-
sition and illustrating it example.

3Martin boundary theory provides the representation of harmonic functions
as integrals of Martin kernels relative to a harmonic measure with support on
the Martin boundary, which is unique when the harmonic measure is supported
by the boundary extreme points.



Proposition 5: The subset of the set of barrier certificates
that are also potentials is the following intersection∑

j∈S
βjKS(·, j)| βj ∈ R+

 ∩ {h ∈ RS+| h(i) ≥ 1, i ∈ U}.

Example 4 (Example (1) continued): We compute the occu-
pation operator for the killed process XζS

n . To this end, we use
the transition matrix PS of the killed process, PS(i, j) = pij .
The matrix PS is substochastic. The occupation operator is
GS :=

∑∞
k=0 P

k
S . Since P∞S = 0, GS = (I − PS)−1; using

(30), with ρ = 1, we compute the Martin kernel:

GS ≈

1.43 0.95 0.19
0 1.67 0.33
0 0 2

 , KS ≈

1 1 1
0 1.75 1.75
0 0 10.5

 .
The columns of KS are the extreme points of the base
of the cone of excessive functions that are potentials. Con-
sequently, a barrier certificate can be written as h =∑3
i=1 βiKS(·, i) for βi ∈ R+. Furthermore, a vector h is a

barrier function if h(3) = 1. Therefore β3 ≈ 0.095, and(
h(1)
h(2)

)
= β1

(
1
0

)
+ β2

(
1

1.75

)
+

(
0.095
0.166

)
.

We observe that

q(A;U, S) ≤ p(β1, β2) = max{h(1), h(2)}.

For (β1, β2) = (0, 0), p(β1, β2) attains the minimum 0.166.
Let us consider the cone CB defined earlier in this paper,

with its subcone of potentials denoted by P(CB).
Theorem 2: Let (Xn) be a Markov chain. Suppose that

A,U, S ∈ B(Y), with A and U two subsets of S and the
corresponding safety function q. The set of extreme functions
for the base of P(CB), denoted by BP(CB), associated to q,
can be expressed as follows

Ex(BP(CB)) = {KS(·, j)| j ∈ S s.t. Θ holds} (31)

with property Θ : HA ≤ HU , where HA and HU , given by
(22), are generically defined for all functions (30).

Proof: The functions defined by (30) may not belong to
CB , since for such functions, the property Θ might not hold.
Then, we need to choose the ones for which Θ is fulfilled.

Suppose, we choose those j ∈ S, for which KS(i, j) ≥ C,
for all i ∈ U , where C > 0. First, we consider the columns of
GS corresponding to those j ∈ S, where the values GS(ρ, j)
are smaller than the values of CGS(i, j), where i ∈ U . In other
words, for such j ∈ S, the number of the process visits from
the reference point ρ to j is less than the number of the process
visits from any point of U to j multiplied by the constant C.
In this way, we obtain that {KS(·, j)|j ∈ S s.t. KS(i, j) ≥
C, ∀i ∈ U}. Suppose now that an initial set of states A ⊂ S
is given. For all j ∈ S selected in the first step, we select only
those for which K(i, j) ≤ Cp, for all i ∈ A. In other words,
for such js, the number of the process visits from any initial
state i ∈ A to j is less the number of the process visits from
the reference point ρ to j multiplied by Cp.

Remark 2: Due to the constraints that appear in the defini-
tion of K in (23) (i.e. h ≤ p on A, and h ≥ 1 on U ), the

potential barrier certificates could be obtained from the base
BP(CB) by multiplication with an appropriate constant.
Theorem 2 provides characterisation of all barrier certificates.
Specifically, the stochastic barrier certificates for the Markov
chain (Xn) w.r.t. the triplet (A,U, S) can be obtained, up to a
positive scalar, as limits of increasing sequences from the full
convex envelope of the set of extreme points in (31).

IX. CONCLUSIONS

In this paper, we have studied safety of Markov chains,
precisely the reach-avoidance problem. We have provided a
number of algorithms for computing safety based on the
concepts of Martin kernels, barrier certificates, evolution equa-
tions, and Dirichlet problems.
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