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ABSTRACT 
 

The dynamic fracture behavior of brittle materials that contain micro-level cracks should be examined when 

material subjected to impact loading. We investigated the effect of micro-cracks on the propagation of 

macro-cracks that initiate from notch tips in the Kalthoff-Winkler experiment, a classical impact problem. 

To define pre-defined micro-cracks in three-dimensional space, we proposed a two-dimensional micro-crack 

plane definition in the bond-based Peridynamics (PD) that is a non-local form of classical continuum theory. 

Randomly distributed micro-cracks with different number densities in a constant area and number in 

expending area models were examined to monitor the toughening of the material. The velocities of macro-

crack propagation and the time required for completing of fractures were considered in several pre-defined 

micro-cracks cases. It has been observed that toughening mechanism only initiated by exceeding a certain 
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number of micro-cracks; therefore, there is a positive correlation between the density of pre-defined micro-

cracks and macro-crack propagation rate and also, toughening mechanism. 

 
1. INTRODUCTION 

 

The crack initiation and propagation under impact loading is a problem that has 

received considerable attention because of its technical consequences. Both macro and 

related micro level cracks may adversely affect the operation of the system especially in 

cases where brittle structural elements subjected to impact load. Brittle materials have 

advantages such as hardness and wear resistance, but their deficiencies in terms of 

toughness and brittleness significantly restrain their usage in practice. This is the main 

reason that the problem of crack propagation at both macro and micro levels is a problem 

of frequent discussion in the recent literature [1-4]. 

Due to high stress concentrations, pre-existing micro-cracks appear in many brittle 

materials [5]. The presence of micro-cracks around the tip of a macro-crack may lead to 

crack shielding or crack amplification and affect crack propagation significantly [6]. The 

amplification increases the stress intensity factors around the crack tip, whereas the 

shielding reduces them. Recent studies have stated that the micro-cracks and as a 

consequence, the shielding increases material toughness [7,8]. This phenomenon is called 

as "micro-crack toughening" [4]. Location, orientation, and density of micro-cracks 

significantly alter the toughening mechanism and crack propagation due to changes in 

stress intensity around the main crack [9-11]. Examining the effect of non-uniformly 

arranged micro-cracks with analytical approaches is rather complicated due to complex 
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mechanical behavior [4]. Some analytical solutions were presented for uniformly 

distributed micro-cracks [12-16]. Several researchers investigated the effect of micro-

cracks on the propagation of the main crack and obtained solutions with analytical 

approximations under certain restrictive assumptions [9, 12, 17, 18]. Tamuzs and Petrova 

[19] presented a review of studies that focus on problems and methods to investigate 

macro-crack growth in materials with micro-damages. 

Finite element method (FEM) has been used with some modifications such as 

cohesive-zone [20], element-erosion [21], and extended-FEM (XFEM) [22] to simulate 

crack propagation with a numerical approach. The restriction of crack propagation path 

with element boundaries causes to obtain inaccurate results in element-erosion and the 

cohesive-zone techniques [23]. Although some researchers [24-31] stated that the XFEM 

is a useful method for simulating crack propagation, it is necessary to adjust the input 

fracture energy to examine the dynamic fractures precisely [23, 32]. Moreover, 

complexity and cost as a result of the sub-division of cut elements are other disadvantages 

of crack propagation modeling with XFEM [32]. Rabczuk et al. [33] and Kosteski et al. [34] 

studied the dynamic crack propagation with discrete element models. Braun and 

Fernández-Sáez [35] suggested a 2D discrete model and applied it to the benchmark 

problem in [36], though crack paths were lattice dependent for coarse meshes. Therefore, 

a more comprehensive and robust approach is a considerable requisite to determine 

crack nucleation, propagation, and interactions [4]. Silling and Askari [37] presented 

Peridynamics (PD) method, which naturally involves crack modeling, nucleation, and 

progression in a continuum, and thus overcomes the deficiencies of classical numerical 



Journal of Engineering Materials and Technology 
 

4 
 

approaches. Silling [38] established PD as a non-local form of continuum mechanics. PD 

is a non-local formulation in an integral form in contrast to the local differential form of 

classical continuum mechanics [39]. In PD, a continuum body is defined with material 

points (particles) that have a volume in space. Each material points can interact with 

points located with a certain distance that is defined as the horizon. The interaction forces 

between a material point with other points in the horizon determines the behavior of that 

point. Since PD is based on integro-differential equations instead of spatial derivatives, it 

complies with problems comprising discontinuities such as cracks [38]. Silling and 

Lehoucq [40] conducted a convergence study of force densities of PD and the classical 

elasticity theory to examine the robustness and efficiency of the theory. Besides some 

researchers applied PD theory in different applications, such as coupling of PD and FEM 

for failure prediction [41, 42], damage propagation in layered glass under impact loading 

[43], for anisotropic materials [44], problems of heat conduction [45, 46], cracks 

generated from corrosion pits [47], and examining composite laminates under explosive 

loading [48]. Madenci and Oterkus [49] published a book that consist of detailed 

explanations of the theory with different applications and extensive literature surveys. 

Rubinstein [12], Rose [9], Brencich and Carpinteri [7] presented analytical 

methods for investigation of micro/macro- crack interaction with uniformly distributed 

micro-crack patterns. The solutions belong to the problem of the interaction of intricate 

micro-crack patterns are not widely presented in the current literature [4]. One of the 

most recent studies on the effect of small cracks on the propagation of a macro-crack is 

presented in [3]. They provide a relation between various locations, density, and numbers 
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of cracks and macro-crack propagation speed. The models considered in that study are 

single crack collinear to the main crack, two symmetrical cracks, and horizontal and 

transverse array of cracks. Another study carried out by Basoglu et al. [4] present arbitrary 

micro-crack patterns by using the same bond-based PD models. They observed that a 

crescent-like micro-crack distribution near the macro-crack tip cause the highest shielding 

effect and so that a considerable increase has shown in material toughness. In both 

studies, two-dimensional plates involving macro-cracks along their mid-axis are subjected 

to displacement-controlled tensile-load. In this study, we proposed a two-dimensional 

micro-crack definition in a three-dimensional body and extended the cases in previous 

studies to simulate the stochastically distributed micro-cracks around the macro-crack 

tip. We aimed at a realistic approach to investigate the micro-crack toughening 

mechanism by creating disordered two-dimensional micro-cracks in a three-dimensional 

body. For this purpose, we have examined the problem described by Kalthoff and Winkler 

in [36, 51] and presented numerical solutions using the PD method in [49, 50, 52].  

In recent years, several authors have suggested various approaches to the 

modeling of the Kalthoff-Winkler problem. Silling [50] presented the PD solution of the 

problem as a part of the validation process of PD theory. The crack propagation angle 

from the vertical axis was determined by bond-based PD in [49]. Ren et al. [53, 54] 

proposed the dual horizon PD formulation to reduce the calculation cost and examined 

the problem in this aspect. Amani et al. [55] proposed the implementation of state-based 

PD for thermoplasticity to simulate the Kalthoff-Winkler problem effectively. Gu et al. [56] 

extend this study by implementing non-uniform discretization and Voronoi diagrams in 
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PD. Also, the effect of plate dimensions and model parameters such as impact velocity, 

plate thickness on the crack propagation speed, and the crack angle were investigated 

with the state-based PD model [57]. Moreover, Trask et al. [58] applied a meshfree 

quadrature rule for the discretization of PD material points and verified the model with 

results from the Kalthoff-Winkler experiment. On the other hand, a reformulated thermo-

visco-plastic model study was made to demonstrate the effect of impact velocity on the 

crack propagation speed [59]. To authors best knowledge, the effect of micro-cracks on 

crack propagation in a material subjected to an impact load stands out as a gap in the 

literature that needs further investigation. Therefore, in this study, we applied bond-

based PD to monitor the effect of micro-cracks on dynamic crack propagation. We 

focused on examining the relationship between stochastically pre-defined defects and 

the toughening mechanism in the Kalthoff-Winkler problem by using bond-based PD. A 

two-dimensional micro-crack definition and examining the effect of stochastically pre-

located micro-cracks on the three-dimensional body by using PD theory are considered 

as a novel approach. The bond-based PD theory and two-dimensional micro-crack 

definition are briefly explained in Sec. 2. The reference impact problem, results of 

numerical studies, and discussions are given in Sec. 3. The conclusion is presented in Sec. 

4. 
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2. METHODOLOGY 

The equation of motion, its discretization form, and the damage definition in 

Peridynamic theory and micro-crack definition are given in this section. 

2.1 Peridynamic Formulation 

Silling [38] presented PD theory to overcome the problem of the mathematical 

framework that is inoperative for discontinuous situations such as crack formation in 

classical continuum mechanics. The use of partial derivatives to define the relative 

displacement and force between two particles results in the fact that the equations are 

undefined in discontinuity regions naturally. PD's equation of motion is based on integral 

equations, so that it is applicable for both continuity and discontinuity zones. In the bond-

based PD theory, firstly presented in [38], force density vectors between two material 

points are equal in magnitude and being parallel. This formulation has been extended to 

state-based PD formulation by Silling et al. [52], which defines force density vectors 

unequal in terms of magnitude. The equation of motion in bond-based PD theory for any 

material point is given in [37] as follows: 

            !"̈(%, ') = ∫ +("(%!, ') − "(%, '), %! − %)d."! + 0(%, ')	
ℋ"

                                   (1) 

where ℋ% is a spherical region with radius (2) called horizon, x′ is a family member 

of the material point x inside its horizon, u is the displacement vector, b is the body load, 

! is the mass density, f is the force vector that the material point x′ exerts on particle x, 

and d."!  is the infinitesimally small volume of point x′. The relative position vector 

between two material points in the undeformed state is denoted as ξ = %! − % and 8 =

"(%!, ') − "(%, ') denotes the relative displacement vector after deformation (Fig. 1). 
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Moreover, 9! − 9 = 	8 + ξ is the relative position vector in the deformed configuration 

[37, 49]. 

When a material is considered as micro-elastic, it can be said that the bond 

between the two material points can be evaluated as an elastic spring and a scalar micro-

potential function in a single bond can be written as: 

                                            ;(8,ξ) = &
' =>'|ξ|                                                                (2) 

where the bond-constant = = 12B/D2( is obtained by comparing the energy 

densities of PD and classical continuum theory for three-dimensional structures and the 

bond stretch can be expressed as > = (|ξ+8| − |ξ|)/|ξ| [49]. The derivative of micro-

potential gives the pairwise force function f, as: 

                        )*)+ (8,ξ) = +(8,ξ) = ξ++
|ξ++| E(|ξ+8|,ξ)			∀	8,ξ                                       (3) 

where f	is a scalar-valued function and it is expressed as follows: 

                                                     E(|ξ+8|,ξ) = =>                                                            (4) 

It is usually not possible to solve the PD equation of motion given in (1) by 

analytical tools. Hence, the initial continuum body is discretized into points that have 

specific volumes to solve the PD equation of motion. The discretized form of the 

governing equation for the material point k by considering all material points inside the 

horizon can be written as: 

                             !/"̈/0 =	∑ +H"10 − "/0, %1−%/I.1 + 0/01                                          (5) 

where "/0 represents the displacement of a material point k at the nth timestep. The 

volume of material point j is defined as .1 = (ΔK)2 in a three-dimensional problem where 

ΔK denotes the constant grid spacing [37]. 
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In PD, the failure criteria can be considered as the bond is broken when the bond-

stretch s, between two material points exceeds a pre-defined critical-stretch value sc. 
Considering a bond is not recoverable after failure, a history-dependent scalar-valued step 

function µ(',ξ) can be combined with the bond-force equation as: 

                                       E(|ξ+8|,ξ) = =>µ(',ξ)                                                                (6) 

where 

               µ(',ξ) = N1					if			>('!,ξ	) < >3 				for	all				0 ≤ '! ≤ ',
0					otherwise																																																		                                  (7) 

The local damage parameter for a material point concerning broken bonds is 

defined as: 

                                                 [(%, ') = 1 − ∫ 5(",8,ξ)ℋ" :;ξ
∫ :;ξℋ"

                                                              (8) 

 
2.2 Micro-Crack Definition 
 

In many engineering applications, cracks may have existed in structures at 

different positions, angles, and lengths. In PD, removing bonds passing through crack 

surfaces is a suitable approach to determine a pre-defined crack. Madenci and Oterkus 

[49] examined the damage value of the material points by considering their location with 

respect to the crack surface. They showed that material points close to the crack tips 

might have different damage values with respect to the other material points around the 

crack region. Fig. 2 shows a pre-defined crack plane and material points exposed to bond-

breakage due to the intersection of bonds with this plane. The plane of the pre-defined 

crack may be located at any position between the material points in the presented model. 

As shown for an exemplary material point, the bonds between the material point and its 
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family members are considered to vanish when they intersect the crack plane. The 

material points whose horizon intersects with the crack plane are damaged at specific 

amounts, as shown on the color scale (Fig. 2). The amount of damage is directly related 

to the proximity to the plane of the fracture and the points closest to the crack plane 

suffer more damage than distant ones. The length of the crack plane can be adjusted to 

determine whether the fracture is a micro or macro-crack. An algorithm is given in Fig. 3 

to detect and break the bonds due to the crack. 

 
3. NUMERICAL EXAMPLES 
 

In this section, the results of numerical examples of the Kalthoff-Winkler problem 

that contain pre-defined micro-cracks are given by employing the bond-based PD theory. 

Firstly, we demonstrate “the crescent-shaped micro-crack pattern” case defined in [4] to 

show that the micro-crack definition and the bond-based PD implementation are 

applicable for the Kalthoff-Winkler problem. Then, the effects of the location of micro-

cracks and their density on the crack propagation velocity are presented. 

The Kalthoff-Winkler experiments [36], was performed with the high strength 

maraging steel plate (X2NiCoMo 18 9 5) having two parallel notches. It is impacted by a 

steel impactor as shown in Fig. 4a. The material properties of the steel plate are the same 

as in [49] and given in Table 1. Kalthoff [51] stated that the high strength maraging steel 

shows an almost linear-elastic behavior and the linear elastic equations can describe the 

stress distribution around the crack tip. When shear bands control the fracture at high 

rates of loading, crack propagation is nearly parallel to the notch (Mode II). On the other 
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hand, at low rates of loading, a mode transition occurs. The crack propagates as Mode I 

and micro-elastic PD theory is valid to simulate this brittle fracture as stated by Silling 

[50]. As indicated in [36], the impact of projectile with a certain velocity results in a brittle 

fracture in the target body and our study only focused on this failure mode. The 

dimensions of the plate are \ = 0.200	^,_ = 0.100	^, and ℎ = 0.009	^. The distance 

between the notches (slits) is b = 0.050	^ and they are located symmetrically with a 

length of d = 0.050	^. The notch thickness is e = 0.0015	^. In the initial state, plate 

boundaries are traction-free and at rest. The cylindrical impactor is assumed to be a rigid 

body with sizes of f = g0.050	^ and h = 0.050	^. The mass of the impactor is 1.57	jk. 

The velocity of the impactor is l = −32	^/> through the y-axis. 

The discretized model of the steel body is generated with 201 × 101 × 9 material 

points along x, y, and z-axis, respectively (Fig. 4b). The spacing between material points 

(grid size) is determined as Δ = 0.001	^ in all directions and the radius of the horizon is 

2 = 3.015 × Δ as stated in [49]. The total number of particles is 180873. The time step is 

specified as Δ' = 8.7 × 10<=> and the critical stretch is defined as >3 = 0.01 as suggested 

in [49]. 

 
3.1 Benchmark Problem 
 

Various micro-crack pattern models to examine the effect of micro-cracks on the 

toughening mechanism and the macro-crack propagation speed was studied in [4]. They 

proposed that the crescent-like distribution of micro-cracks is the most effective among 

all models to resist the crack propagation and increase the toughness of the material. In 



Journal of Engineering Materials and Technology 
 

12 
 

the benchmark problem, we adapted the crescent-shaped micro-crack pattern to the 

Kalthoff-Winkler experiment. In Fig. 5, pre-defined micro-cracks are placed around the 

notch tip and along the main crack path that was observed in the reference model of the 

Kalthoff-Winkler experiment without micro-cracks (Fig. 6a). In the reference model, no 

micro-cracks are defined in the material as in the experiment and there are only two 

notches that dominate the initiation points of macro-cracks. The main crack initiates the 

propagation at 30.5 μs (350th timestep). The crack propagation reaches the right and left 

edges at 91.4 μs (1050th timestep) (Fig. 6a) and the average velocity is 1345 m/s. 

Considering the required time for cracks to reach edges, all models in this study were run 

to 117.5 μs (1350th timestep) to observe the damage path properly. The damage pattern 

of the benchmark model at 91.4 μs is presented in Fig. 6b. In the benchmark problem, the 

main crack starts occurring at 30.5 μs as same with without micro-crack model. However, 

the crack cannot reach the edge at 91.4 μs due to the decrease of propagation velocity. 

The crack propagation reaches the edge at 95.7 μs (1100th timestep) (Fig. 6d) and the 

average velocity is 1188 m/s. Herein, the crack propagation velocity of benchmark model 

with micro-cracks reduces about 12% as compared to the original experiment model. 

Brencich and Carpinteri [7] stated that opening and coalescence of micro-cracks cause 

stress redistribution and energy dissipation mechanisms. Using of part of input 

mechanical energy by the pre-existing micro-cracks weaken the propagation of main 

crack and thus, creates shielding effect which is called toughening by micro-cracks. The 

deceleration in main macro-crack velocity is a result of this toughening mechanism. 
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Therefore, validation study confirms that presence of micro-cracks can cause a fracture 

toughening effect that reduces the crack propagation velocity in our simulation. 

 
3.2 Stochastically Distributed Micro-Cracks 
 

It is more challenging to analyze randomly distributed micro-cracks with analytical 

methods. Thus, with the bond-based PD method, we examined the effects of micro-cracks 

on macro-crack propagation by varying micro-crack amounts and densities. 

 
3.2.1 Micro-Cracks with Varying Densities 
 

In this section, three different densities of micro-crack cases are investigated in the 

reference region that is defined as in Fig. 7. The micro-crack patterns are stochastically 

determined and they are with the same length. In the first model, the default density of 

micro-cracks in the reference zone is defined as e> = p>/q> where p> is the number of 

micro-cracks and q> is the area of the reference region. The three simulations are 

performed with varying density of micro-cracks, e> = {0.75, 1, 1.25} in the reference area 

q>. The results of the parameterized density of micro-cracks are used to compare the crack 

propagation speed of without micro-cracks case. In Fig. 8a, the simulation of the original 

experiment, without micro-cracks is given for comparison purposes. In this model, macro-

cracks start to propagate at 30.5 μs. Macro-cracks reach edges approximately at 91.4 μs. In 

Fig. 8b, the density of micro-cracks in the reference area (q>) is assigned as e> × 0.75 and 

the macro-cracks propagation is given at 91.4 μs. It can be seen that the macro-cracks reach 

the edge within the same time according to the case without micro-cracks. The case of 

e> × 1 is shown in Fig. 8c. When the tip of macro-cracks at 91.4 μs is examined, the 
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propagation speed of macro-cracks decreases with the increase of the density of micro-

cracks and macro-cracks can precisely reach the edge after 91.4 μs. In Fig. 8d, the density 

of micro-cracks is increased compared to the reference model with multiplier 1.25. 

Propagation of macro-cracks slows down more according to without micro-cracks, 

e> × 0.75, and e> × 1 cases. However, due to the change in macro-cracks propagation 

path angle, cracks reach the edge approximately at the same time as the e> × 1 case. The 

crack patterns of all simulations are nearly straight and very similar to patterns in [49, 53, 

54, 56, 57]. Once macro-cracks pass over the reference zone of micro-cracks, velocities of 

macro-crack tips can be determined for each model. In Fig. 9, we present the velocity data 

after 52.2 μs when the macro-crack tips can be observable after passing the reference 

region of micro-cracks. Considering that macro-cracks reaching the edge of the body at 91.4 

μs in the case of without micro-cracks, the velocity comparisons should be considered up 

to this time. Therefore, crack propagation without micro-cracks and with pre-determined 

micro-cracks with different densities are quantitatively compared by calculating the 

velocities of macro-crack tips from 52.2 to 91.4 μs. The average velocities in without micro-

crack case and with micro-crack cases with densities e> × {0.75, 1, 1.25} are 1345 m/s, 

1327 m/s, 1284 m/s, and 1165 m/s, respectively. In without micro-crack case, average 

velocities and the trend agree with models in [25, 34, 35] that validates our approach to the 

problem. Moreover, Gu et al. [56] and Guo and Gao [57] emphasized that the macro-crack 

initiation time is about 30 μs that is very close the values in the experiment (29 μs) and our 

model (30.5 μs). Without micro-cracks and the low- density of micro-cracks (e> × 0.75) 

conditions show similar trends since, their velocities are very close to each other. In addition 
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to this, in the case of e> × 1, the trend seems to be similar despite the average velocity 

decreases. In without micro-cracks and e> × 0.75 models, the macro-crack propagation 

velocities reach a maximum in approximately 60.9 μs. However, in the cases of e> × 1 and 

e> × 1.25 macro-cracks the time to reach the maximum speed has a delay with 65.3 μs and 

78.3 μs, respectively. In addition to this, while the velocity profiles of the without micro-

crack and e> × 0.75 cases are very similar, more dense models (e> × 1 and e> × 1.25) lead 

to deceleration in macro-crack propagation according to their number of micro-cracks. In 

conclusion, our models show that number of micro-cracks in the same area is an important 

parameter in toughening mechanism. Besides, in e> × 1.25 case, the initial velocity is quite 

low compared to the other three models. Overall, considering the trends of the four models 

together, it is observed that velocity differences between models decrease as the macro-

cracks approach edges of the body. 

 
3.2.2 Micro-Cracks with Various Number 
 

In this section, the effect of number of micro-cracks on the toughening mechanism 

is investigated. We define two more micro-crack zones around the notch tips. The 

densities of micro-cracks are preserved as e> in all three zones by changing the number 

of micro-cracks according to the area of regions. In Fig. 10, geometrical details of q>: the 

reference area in the previous section, q&: the inner area, and q': the outer area including 

q> and q& are given. These regions that contain several micro-cracks proportional to their 

area are compared to the original experiment simulation as in Sec. 3.2.1. Macro-crack 

propagation without micro-cracks is presented in Fig. 11a. In the inner region q&, the 
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pattern that contains the least number of micro-cracks does not produce a significant 

change in the propagation of macro-cracks (Fig. 11b). The required time for macro-cracks 

to reach the vertical edge is the same as in without micro-cracks case (91.4 μs). Micro-

crack pattern in the region q> decreases the macro-crack propagation velocity. As seen in 

Fig. 11c, the macro-cracks can reach the edge exactly after 91.4 μs. The region q' contains 

the greatest number of micro-cracks that are defined by increasing the number of micro-

cracks with keeping constant the density. The crack propagation path obtained from the 

simulation result can be seen in Fig. 11d. While complete fracture occurs at 91.4 μs in 

without micro-cracks case, macro-crack propagation in q' case cannot reach vertical 

edges of the body before 104.4 μs due to the high number of micro-cracks. In Fig. 12, as 

stated in previous section, macro-crack propagation velocities between the 5 2.2 and 91.4 

μs are given for the without micro-cracks and with micro-cracks cases (q>, q&, and q'). 

Average velocities during that time interval are 1345 m/s, 1284 m/s, 1347 m/s, and 1219 

m/s, respectively. Although some deviations are observed at 74.0 μs, 78.3 μs, and 87.0 

μs, propagation of cracks in the cases without micro-cracks and the q& are very similar. 

Therefore, it can be deduced that toughening mechanism can only be triggered with a 

sufficient number of micro-crack cluster. However, there is a significant reduction in the 

average velocity of the reference area case q> and the largest area case q'. The 

acceleration of the cracks tip in the q> and q' cases show similar trends with the other 

cases. On the other hand, the profiles reach their maximum velocities with a delay as 

compared to other models. In the cases of without micro-cracks and q& maximum values 

are reached at about 60.9 μs, while in q> and q' cases, the maximum velocities are 
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reached at 65.3 μs and 69.6 μs, respectively. Also, velocity differences between four 

models decrease as the time advances. Guo and Gao [57] explained the crack propagation 

and dynamic failure according to the wave propagation, especially "compressive wave" in 

[51]. They stated that Mode II crack propagation is driven by this wave until 60 μs. After 

that time, the shape of compressional wave is distorted and the effective Mode II crack 

propagation ends. After that, waves reflected by the boundary drive the crack 

propagation and weaken the propagation process [57]. The micro-cracks that are located 

on the path of compression waves can cause a distortion effect on these waves. Thus, 

shape of waves becomes vague early and its effect on the crack propagation weaken. In 

our study, the maximum velocity of without micro-cracks case is observed at 60.9 μs (Fig 

9. and Fig. 12). Conversely, maximum values are delayed to 65.3 and 69.6 μs (Fig. 12) and 

even to 78.3 μs (Fig. 9) and average velocities decrease in cases that have sufficient micro-

crack patterns in terms of toughening mechanism. Hence, the delay to reach the 

maximum velocities and the decrease of average velocities can be caused by compression 

waves being distorted early and reaching the edge lately because of micro-cracks on the 

wave path. 

 
4. CONCLUSION 
 

In this paper, the bond based Peridynamics (PD) model was proposed to 

investigate the effect of micro-cracks on the material toughness for an impact loading 

problem. While the less density of stochastically located micro-cracks around the crack 

tip has no effect on toughening mechanism, adding more micro-cracks in the same area 
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can reduce the crack tip velocity and increase the toughness with an appreciable 

difference. We also investigate the effective number of micro-cracks that cause the 

toughening. The results show that insufficient number of micro-cracks are inadequate to 

slow down crack tip's propagation velocities. To obtain the toughening effect, a certain 

number of pre-defined micro-cracks should be built in the body. In conclusion, the density 

of micro-cracks in a constant area and the number of micro-cracks in expanding areas are 

significant parameters on toughening mechanism of a material and using fracture 

modeling competence of PD can help to improve our understanding on design of more 

endurance geometries. Our modelling results provide the solution of certain cases, either 

the length or distances of micro-cracks can be investigated in future studies. 
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Figure Captions List 
 

Fig. 1 Position and force vectors of two material points in the reference state 

and after deformation 

Fig. 2 The definition of a micro-crack plane (red thick continuous line) that is 

located between material points. The broken bonds of a material point 

between the family members in its horizon and which intersect with the 

micro-crack plane are shown as red lines with arrows. 

Fig. 3 An algorithm for the determination process of broken bonds due to micro-

cracks 

Fig. 4 (a) The Kalthoff and Winkler [36] experimental setup, (b) Peridynamic 

discretization model 

Fig. 5 Geometric details of the benchmark study: crescent-like micro-crack 

pattern 

Fig. 6 (a) The crack propagation in Kalthoff-Winkler experiment (without micro-

crack case) at 91.4 μs and (c) at 95.7 μs. (b) The crack propagation of 

benchmark problem at 91.4 μs and (d) at 95.7 μs   

Fig. 7 Geometric details of the micro-crack pattern in the reference zone q> with 

the reference density e> 

Fig.8 (a) The crack path of the simulation of Kalthoff-Winkler experiment, (b) 

e> × 0.75, (c) e> × 1, and (d) e> × 1.25 cases at 91.4 μs (1050th timestep) 
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Fig. 9 The macro-crack propagation velocities of without micro-crack and with 

micro crack cases with densities e> × {0.75, 1, 1.25} between 52.2 and 

91.4 μs. The initial and maximum velocities are shown with black boxes. 

Fig. 10 Geometric details of the micro-crack pattern in q>, q&, q' regions with a 

micro-crack density of e> 

Fig. 11 (a) The crack path of the simulation of Kalthoff-Winkler experiment, (b) q& 

(c) q>, and (d) q' cases at 91.4 μs (1050th timestep) 

Fig. 12 The macro-crack propagation velocities of without micro-cracks, q&, q>, 

and q'cases between 52.2 and 91.4 μs. The initial and maximum velocities 

are shown with black boxes. 
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Table Caption List 
 

Table 1 Material properties of maraging steel 
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Figure 1. Position and force vectors of two material points in the reference state and 
after deformation 
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Figure 2. The definition of a micro-crack plane (red thick continuous line) that is located 
between material points. The broken bonds of a material point between the family 
members in its horizon and which intersect with the micro-crack plane are shown as red 
lines with arrows. 
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Figure 3. An algorithm for the determination process of broken bonds due to micro-
cracks 
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Figure 4. (a) The Kalthoff and Winkler [36] experimental setup, (b) Peridynamic 
discretization model 
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Figure 5. Geometric details of the benchmark study: crescent-like micro-crack pattern 
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Figure 6. (a) The crack propagation in Kalthoff-Winkler experiment (without micro-crack 
case) at 91.4 μs and (c) at 95.7 μs. (b) The crack propagation of benchmark problem at 
91.4 μs and (d) at 95.7 μs   
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Figure 7. Geometric details of the micro-crack pattern in the reference zone q> with the 
reference density e> 
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Figure 8. (a) The crack path of the simulation of Kalthoff-Winkler experiment, (b) 
e> × 0.75, (c) e> × 1, and (d) e> × 1.25 cases at 91.4 μs (1050th timestep) 
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Figure 9. The macro-crack propagation velocities of without micro-crack and with micro 
crack cases with densities e> × {0.75, 1, 1.25} between 52.2 and 91.4 μs. The initial and 
maximum velocities are shown with black boxes. 
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Figure 10. Geometric details of the micro-crack pattern in q>, q&, q' regions with a 
micro-crack density of e> 
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Figure 11. (a) The crack path of the simulation of Kalthoff-Winkler experiment, (b) q& (c) 
q>, and (d) q' cases at 91.4 μs (1050th timestep) 
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Figure 12. The macro-crack propagation velocities of without micro-cracks, q&, q>, and 
q'cases between 52.2 and 91.4 μs. The initial and maximum velocities are shown with 
black boxes. 
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Table 1. Material properties of maraging steel 
Young's Modulus E Poisson's ratio ν Mass density ρ 

191 GPa 0.25 8000 kg/m3  
 


