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Characterization of quasirandom permutations

by a pattern sum∗

Timothy Chan† Daniel Král’‡ Jonathan A. Noel§

Yanitsa Pehova¶ Maryam Sharifzadeh‖ Jan Volec∗∗

Abstract

It is known that a sequence {Πi}i∈N of permutations is quasirandom
if and only if the pattern density of every 4-point permutation in Πi con-
verges to 1/24. We show that there is a set S of 4-point permutations such
that the sum of the pattern densities of the permutations from S in the
permutations Πi converges to |S|/24 if and only if the sequence is quasir-
andom. Moreover, we are able to completely characterize the sets S with
this property. In particular, there are exactly ten such sets, the smallest
of which has cardinality eight.
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1 Introduction

A combinatorial object is said to be quasirandom if it looks like a truly random
object of the same kind. The theory of quasirandom graphs can be traced back to
the work of Rödl [23], Thomason [24] and Chung, Graham andWilson [7] from the
1980s. It turned out that several diverse properties of random graphs involving
subgraph density, edge distribution and eigenvalues of the adjacency matrix are
satisfied by a large graph if and only if one of them is. In particular, if the edge
density of a large graph G is p + o(1) and the density of cycles of length four is
p4+ o(1), then the density of all subgraphs is close to their expected density in a
random graph. Results of similar kind have been obtained for many other types
of combinatorial objects, for example groups [14], hypergraphs [3, 12, 13, 16, 20],
set systems [4], subsets of integers [6] and tournaments [2,5,10,15]. In this paper,
we will be concerned with quasirandomness of permutations as studied in [9,21].

To state our results precisely, we need to fix some notation. We use [n] to
denote the set {1, . . . , n}. A permutation of order k, or briefly a k-permutation,
is a bijection from [k] to [k]. The order of a permutation π is denoted by |π|. If
A = {a1, . . . , aℓ} ⊆ [k], a1 < · · · < aℓ, then the subpermutation π induced by A
is the unique permutation π′ of order |A| = ℓ such that π′(i) < π′(j) if and only
if π(ai) < π(aj) for every i, j ∈ [ℓ]. Subpermutations are also often referred to
as patterns. If π and Π are two permutations, then the pattern density of π in
Π, which is denoted by d(π,Π), is the probability that the subpermutation of Π
induced by a random |π|-element subset of [n] is π, where n = |Π|. If |Π| < |π|,
then we set d(π,Π) to be zero. We often refer to pattern density simply as density
in what follows. Finally, a sequence {Πi}i∈N of permutations is quasirandom if

lim
i→∞

d(π,Πi) =
1

|π|!
for every permutation π.

Our research is motivated by the following question of Graham (see [9, page
141]): Is there an integer k such that a sequence {Πi}i∈N of permutations is

quasirandom if and only if

lim
i→∞

d(π,Πi) =
1

k!

for every k-permutation π? The question was answered affirmatively in [21] by
establishing that k = 4 has this property. It is interesting that this statement
is equivalent to a result in statistics on non-parametric independence tests by
Yanagimoto [25], which improved an older result by Hoeffding [17].

Theorem 1. A sequence {Πi}i∈N of permutations is quasirandom if and only if

lim
i→∞

d(π,Πi) =
1

4!

for every 4-permutation π.
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The statement of Theorem 1 does not hold for 3-permutations [8], also see [21];
i.e., there exists a non-quasirandom sequence of permutations in which the density
of every 3-permutation converges to 1/3!.

Theorem 1 says that if the limit densities of all 4-permutations in a sequence
are equal to 1/4!, then the sequence is quasirandom. Hence, it is natural to ask
whether it is possible to replace the set of all 4-permutations in the statement
of Theorem 1 with a smaller set. Inspecting the proof given in [21], Zhang [26]
observed that there exists a 16-element set of 4-permutations with this property.
We identify several 8-element sets that have this property. In fact, the sets S that
we identify have the stronger property that fixing the sum of densities of elements
of S is enough to force quasirandomness; i.e. it is not necessary to fix the density
of each individual element of S. This stronger property was studied in statistics
by Bergsma and Dassios [1] who also identified the first of the 8-element sets listed
in Theorem 2 below. Formally, we say that a set S of k-permutations is Σ-forcing
if the following holds: a sequence {Πi}i∈N of permutations is quasirandom if and
only if

lim
i→∞

∑

π∈S
d(π,Πi) =

|S|
k!

.

Our main theorem is the characterization of all Σ-forcing sets of 4-permutations.

Theorem 2. Let S be a set of 4-permutations. The set S is Σ-forcing if and only

if S is one of the following five sets

• {1234, 1243, 2134, 2143, 3412, 3421, 4312, 4321},

• {1234, 1432, 2143, 2341, 3214, 3412, 4123, 4321},

• {1324, 1342, 2413, 2431, 3124, 3142, 4213, 4231},

• {1324, 1423, 2314, 2413, 3142, 3241, 4132, 4231},

• {1234, 1243, 1432, 2134, 2143, 2341, 3214, 3412, 3421, 4123, 4312, 4321}, or

their complements.

Theorem 2 is implied by Theorems 6, 7, 8, 9 and 17 which are stated and
proved later in the paper. Some of the arguments are supported by supplementary
data, which are presented in Appendices 1–5. The Appendices are available as the
ancillary file on arXiv, which can be downloaded at https://arxiv.org/src/
1909.11027/anc/Appendices.pdf.

In relation to applications in statistics, we remark that Even-Zohar and Leng [11]
designed nearly linear algorithms for computing the sum of the pattern densities
in an input permutation for six out of the ten Σ-forcing sets listed in Theorem 2.
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2 Notation

In this section, we fix the notation used throughout the paper. The set of all k-
permutations is denoted by Sk, and A denotes the set of all formal (finite) linear
combinations of permutations with real coefficients. If π is a k-permutation, we
often write π(1)π(2) . . . π(k) to represent the permutation π; for example, 32145
is a particular 5-permutation. Two permutations π and σ of the same order,
say k, are symmetric if the permutation matrix of π can be obtained from the
permutation matrix of σ by a sequence of reflections and rotations when viewed
as k × k tables, i.e., if either

• π(i) = σ(i), or

• π(i) = σ(k + 1− i), or

• π(i) = k + 1− σ(i), or

• π(i) = k + 1− σ(k + 1− i), or

• π(i) = σ−1(i), or

• π(i) = σ−1(k + 1− i), or

• π(i) = k + 1− σ−1(i), or

• π(i) = k + 1− σ−1(k + 1− i)

holds for all i ∈ [k]. For example, exactly the following seven permutations are
symmetric to 12534 in addition to the permutation 12534 itself: 12453, 23145,
31245, 35421, 43521, 54132 and 54213.

If τ is a permutation, then a τ -rooted permutation is a permutation with |τ |
distinguished elements such that the subpermutation induced by these elements is
τ ; the distinguished elements are referred to as roots. The two particular choices
of a root permutation that we work with most often are τ1 = 12 and τ2 = 21.
When presenting rooted permutations, the roots will be underlined. For example,
123, 123 and 123 are distinct τ1-rooted permutations. Finally, the set Aτ is the
set of all formal (finite) linear combinations of τ -rooted permutations with real
coefficients.

A permuton is a Borel probability measure µ on [0, 1]2 that has uniform
marginals, i.e., µ ([x, x′]× [0, 1]) = x′ − x for every 0 ≤ x < x′ ≤ 1 and
µ ([0, 1]× [y, y′]) = y′ − y for every 0 ≤ y < y′ ≤ 1. In other contexts, permutons
are known as doubly stochastic measures or two-dimensional copulas. Given a
permuton µ, a µ-random permutation of order k is obtained in the way that we
now describe. We first sample k points (x1, y1), . . . , (xk, yk) in [0, 1]2 according to
the probability measure µ. Note that the probability that an x- or y-coordinate
is shared by multiple points is zero because µ has uniform marginals. By renam-
ing the points, we can assume that x1 < · · · < xk. The µ-random permutation
π ∈ Sk is then the unique permutation such that π(i) < π(j) if and only if yi < yj
for every i, j ∈ [k]. We define the pattern density of π ∈ Sk in the permuton µ
to be the probability that a µ-random permutation of order k is π. A sequence
(Πi)i∈N of permutations is convergent if |Πi| grows to infinity and the limit

lim
i→∞

d(π,Πi)
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exists for every permutation π. It can be shown [18, 19, 21] that if (Πi)i∈N is a
convergent sequence of permutations, then there exists a unique permuton µ such
that

lim
i→∞

d(π,Πi) = d(π, µ)

for every permutation π; the permuton µ is called the limit of the sequence
(Πi)i∈N. In the other direction, if µ is a permuton, then, with probability one,
a sequence of µ-random permutations with increasing orders converges and its
limit is µ. We note that a sequence (Πi)i∈N of permutations is quasirandom if
and only if its limit is the uniform measure on [0, 1]2.

Recall that the support of a Borel measure µ, denoted supp (µ), is the set
of all points x such that every open neighborhood of x has positive measure
under µ. Fix a permutation τ ∈ Sℓ. A τ -rooted permuton is an (ℓ + 1)-tuple
µτ = (µ, (x1, y1), . . . , (xℓ, yℓ)) such that

• µ is a permuton,

• (x1, y1), . . . , (xℓ, yℓ) ∈ supp (µ), x1 < · · · < xℓ, and

• τ(i) < τ(j) if and only if yi < yj for all i, j ∈ [ℓ].

The points (x1, y1), . . . , (xℓ, yℓ) are referred to as roots. If µτ is a τ -rooted per-
muton, then a µτ -random permutation of order k ≥ ℓ is a τ -rooted permutation
obtained by sampling k − ℓ points in [0, 1]2 according to the measure µ, form-
ing a permutation of order k using the ℓ roots and the k − ℓ sampled points,
and distinguishing the ℓ points corresponding to the roots of µτ to be the roots
of the permutation. If πτ is a τ -rooted permutation, we write d(πτ , µτ ) for the
probability that a µτ -random permutation of order |πτ | is πτ .

Fix a permuton µ for the rest of this section. We define a mapping hµ :
A → R by setting hµ(π) to be d(π, µ) for every permutation π and extending
linearly. Clearly, hµ is a homomorphism from A to R that respects addition and
multiplication by a real number. One of the results of Razborov [22] can be cast
in our setting as follows: it is possible to define a multiplication on the elements
of A in a way that hµ respects the multiplication, i.e., hµ(A×B) = hµ(A)hµ(B)
for all A,B ∈ A. We write A ≥ α for an element A ∈ A and a real α ∈ R

if hµ(A) ≥ α for every permuton µ. Analogously to the unrooted case, for a
τ -rooted permuton µτ , we can define a homomorphism hµτ : Aτ → R.

Next, for a permutation τ with d(τ, µ) > 0, we wish to define a probability
distribution on τ -rooted permutons arising from µ. Formally, we define µτ to be
a τ -rooted permuton obtained from µ by choosing |τ | points randomly according
to the probability measure µ to be the roots (and sorting them according to
their first coordinates) conditioned on the event that the chosen roots yield the
permutation τ , i.e., µτ is a random τ -rooted permuton where the randomness
comes from the choice of |τ | roots. The probability distribution on τ -rooted
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permutons in turn defines a probability distribution on homomorphisms from Aτ

to R, and we will write hτ
µ for a random homomorphism from Aτ to R sampled

according to this distribution. It can be shown [22] that there exists a well-defined
linear map J·Kτ from Aτ to A such that

hµ (JAKτ ) = d(τ, µ) · Ehτ
µ(A)

for every A ∈ Aτ ; if d(τ, µ) = 0, then hµ (JAKτ ) = 0 and the above equality holds
with the right hand side considered to be zero (the expected value is not well-
defined in this case). In particular, if M is a k × k positive semidefinite matrix,
then the following holds for every vector w ∈ (Aτ)k:

hµ

(q
wTMw

y
τ

)

≥ 0.

3 Σ-forcing sets

In this section, we prove that the sets listed in Theorem 2 are Σ-forcing. The
proof is based on flag algebra calculations, which we present further in the section.
In addition, we will need the following lemma.

Lemma 3. Let µ be a permuton. If it holds that

µ ([min{x1, x2},max{x1, x2}]× [min{y1, y2},max{y1, y2}]) = |x2 − x1| · |y2 − y1|

for all points (x1, y1), (x2, y2) ∈ supp (µ), then µ is the uniform measure.

Proof. Our goal is to show that supp (µ) = [0, 1]2. We start with showing that
all points on the boundary of [0, 1]2 are contained in supp (µ). Suppose that
supp (µ) does not contain the whole boundary of [0, 1]2. Since supp (µ) is closed,
it is enough to consider the points distinct from the four corners. By symmetry,
we need to consider the following two cases.

• There exists x ∈ (0, 1) such that (x, 0) 6∈ supp (µ) but (x, 1) ∈
supp (µ). By the definition of the support of a measure, there exists
ε ∈ (0,min{x, 1− x}) such that

µ ([x− ε, x+ ε]× [0, ε]) = 0.

Let y′ ∈ [0, 1] be the infimum among all reals such that (x′, y′) ∈ supp (µ)
for some x′ ∈ (x − ε, x). If there was no such y′, then the measure of the
rectangle [x − ε, x] × [0, 1] would be zero, which is impossible because the
measure µ has uniform marginals. Observe that y′ ∈ [ε, 1]. Since supp (µ)
is a closed set, there exists x′ ∈ [x − ε, x] such that (x′, y′) ∈ supp (µ); if
possible, choose x′ distinct from x.
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We first consider the case that x′ < x. The assumption of the lemma
implies that the measure of the rectangle [x′, x]× [y′, 1] is (x− x′)(1− y′).
On the other hand, the choice of y′ implies that the measure of the rectangle
[x′, x]× [0, y′] is zero. Consequently, the measure of the rectangle [x′, x] ×
[0, 1] is (x− x′)(1− y′) < x− x′, which is impossible.

It remains to analyze the case that x′ = x. The choice of y′ implies that
there exist y′′ ∈ (y′, 1] and x′′ ∈ (x − ε, x) such that (x′′, y′′) ∈ supp (µ).
Since the measure of the rectangle [x′′, x]× [y′′, 1] is (x−x′′)(1−y′′) and the
measure of the rectangle [x′′, x] × [y′, y′′] is (x − x′′)(y′′ − y′), the measure
of the rectangle [x′′, x]× [y′, 1] is (x − x′′)(1 − y′). On the other hand, the
choice of y′ implies that the measure of the rectangle [x′′, x]× [0, y′] is zero,
which yields that the measure of the rectangle [x′′, x] × [0, 1] is less than
x− x′′, which is impossible.

• There exists x ∈ (0, 1) such that (x, 0) 6∈ supp (µ) and (x, 1) 6∈
supp (µ). By the definition of the support of a measure, there exists
ε ∈ (0,min{x, 1− x}) such that

µ ([x− ε, x+ ε]× [0, ε]) = 0 and µ ([x− ε, x+ ε]× [1− ε, 1]) = 0.

Let y1 ∈ [0, 1] be the infimum among all reals such that (x1, y1) ∈ supp (µ)
for some x1 ∈ (x − ε, x + ε). If there was no such y1, then the measure
of the rectangle [x − ε, x + ε] × [0, 1] would be zero, which is impossible
because the measure µ has uniform marginals. Since supp (µ) is a closed
set, there exists x1 ∈ [x− ε, x+ ε] such that (x1, y1) ∈ supp (µ). Note that
y1 ∈ [ε, 1 − ε]. Similarly, let y2 ∈ [0, 1] be the supremum among all reals
such that (x2, y2) ∈ supp (µ) for some x2 ∈ (x − ε, x+ ε) (again note that
y2 ∈ [ε, 1 − ε]) and we fix x2 ∈ [x − ε, x+ ε] such that (x2, y2) ∈ supp (µ).
If possible, we choose x1 and x2 above such that x1 6= x2.

We first consider the case that x1 6= x2; by symmetry, we can assume
that x1 < x2. The assumption of the lemma implies that the measure of
the rectangle [x1, x2] × [y1, y2] is (x2 − x1)(y2 − y1), and the choices of y1
and y2 imply that the measure of each of the rectangles [x1, x2] × [0, y1]
and [x1, x2] × [y2, 1] is zero. It follows that the measure of the rectangle
[x1, x2]× [0, 1] is (x2 − x1)(y2 − y1) < x2 − x1, which is impossible.

It remains to consider the case that x1 = x2. Since the measure of the
rectangle [x − ε, x + ε] × [0, 1] is not zero, there exists x3 ∈ [x − ε, x + ε],
x3 6= x1, and y3 ∈ (y1, y2) such that (x3, y3) ∈ supp (µ). By symmetry, we
can assume that x1 < x3. The measures of the rectangles [x1, x3] × [y1, y3]
and [x1, x3]×[y3, y2] are (x3−x1)(y3−y1) and (x3−x1)(y2−y3), respectively.
Since the measure of each of the rectangles [x1, x3] × [0, y1] and [x1, x3] ×
[y2, 1] is zero, we conclude that the measure of the rectangle [x1, x3]× [0, 1]
is (x3 − x1)(y2 − y1) < x3 − x1, which is impossible.
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We have shown that all points on the boundary of [0, 1]2 are contained in
supp (µ). Suppose that there exists a point (x, y) ∈ (0, 1)2 that is not contained
in supp (µ), and let ε ∈ (0,min{x, y, 1− x, 1− y}) be such that the whole set
[x− ε, x+ ε]× [y− ε, y+ ε] is not contained in supp (µ). Let y1 be the supremum
among all reals in [0, y−ε] such that (x1, y1) ∈ supp (µ) for some x1 ∈ (x−ε, x+ε),
and let y2 be the infimum among all reals in [y+ε, 1] such that (x2, y2) ∈ supp (µ)
for some x2 ∈ (x − ε, x + ε). Further, let x1, x2 ∈ [x − ε, x + ε] be such that
(x1, y1) ∈ supp (µ) and (x2, y2) ∈ supp (µ). Note that y1 can be 0 and y2 can be
1, and y2 − y1 ≥ 2ε.

We first consider the case that x1 6= x2. By symmetry, we can assume that
x1 < x2. Since the boundary of the square [0, 1]2 is contained in supp (µ), the
measures of the rectangles [x1, x2] × [0, y1] and [x1, x2] × [y2, 1] are (x2 − x1)y1
and (x2 − x1)(1 − y2), respectively. On the other hand, the choice of y1 and y2
implies that the measure of the rectangle [x1, x2]× [y1, y2] is zero. Consequently,
the measure of the rectangle [x1, x2] × [0, 1] is (x2 − x1)(1 − y2 + y1) < x2 − x1,
which is impossible.

To conclude the proof, we need to analyze the case x1 = x2. Let x3 be any
point in the interval [x − ε, x + ε] distinct from x1 = x2. By symmetry, we can
assume that x1 < x3. Again, since the boundary of the square [0, 1]2 is contained
in supp (µ), it follows that the measures of the rectangles [x1, x3] × [0, y1] and
[x1, x3]× [y2, 1] are (x3− x1)y1 and (x3 −x1)(1− y2), respectively, and the choice
of y1 and y2 yields that the measure of the rectangle [x1, x3]× [y1, y2] is zero. We
obtain that the measure of the rectangle [x1, x3]× [0, 1] is (x3−x1)(1−y2+y1) <
x3−x1, which is impossible. We can now conclude that the support of the measure
µ is the whole square [0, 1]2. Consequently the measure of each set [x, x′]× [y, y′]
is equal to (x′ − x)(y′ − y), which implies that the measure µ is the uniform
measure on [0, 1]2. This finishes the proof of the lemma.

For the rest of the section, we fix the following elements A1 ∈ Aτ1 and A2 ∈
Aτ2 .

A1 = (1234− 1432) + (1234− 3214) + (2341− 2143) + (4123− 2143)

A2 = (3214− 3412) + (1432− 3412) + (4321− 4123) + (4321− 2341)

We next show that if the value of Ai is zero for almost all random τ1-rooted
homomorphisms for both i = 1 and i = 2, then the permuton satisfies the
assumptions of Lemma 3.

Lemma 4. Let µ be a permuton. If hτ1
µ (A1) = 0 with probability one, then

µ ([x1, x2]× [y1, y2]) = |x2 − x1| · |y2 − y1|

for all points (x1, y1), (x2, y2) ∈ supp (µ) such that x1 ≤ x2 and y1 ≤ y2.
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a11 a21 a31

a12 a22 a32

a13 a23 a33

x1 x2

y1

y2

Figure 1: Notation used in the proof of Lemma 4.

Proof. Fix (x1, y1), (x2, y2) ∈ supp (µ) such that x1 ≤ x2 and y1 ≤ y2 and such
that h(A1) = 0 for the homomorphism h : Aτ1 → R associated with the τ1-rooted
permuton (µ, (x1, y1), (x2, y2)). Further let (x0, y0) = (0, 0) and (x3, y3) = (1, 1),
and let

aij = µ ([xi−1, xi]× [yj−1, yj])

for i, j ∈ [3]. See Figure 1 for illustration of the just introduced notation.
Since h(A1) = 0, the following holds:

a22a33 − a23a32 + a22a11 − a12a21 + a22a31 − a21a32 + a22a13 − a12a23 = 0 .

We rewrite this expression using the property that µ has uniform marginals as
follows:

0 = a22a33 − a23a32 + a22a11 − a12a21 + a22a31 − a21a32 + a22a13 − a12a23

= a22(a11 + a13 + a31 + a33)− (a21 + a23)(a12 + a32)

= a22(1− (x2 − x1)− (y2 − y1) + a22)− (x2 − x1 − a22)(y2 − y1 − a22)

= a22 − (x2 − x1)(y2 − y1)

We conclude that the equality from the statement of the lemma holds for almost
all points (x1, y1), (x2, y2) ∈ supp (µ) such that x1 ≤ x2 and y1 ≤ y2.

We next show that the equality in the statement of the lemma holds for all
(x1, y1), (x2, y2) ∈ supp (µ) such that x1 ≤ x2 and y1 ≤ y2. Fix (x1, y1), (x2, y2) ∈
supp (µ) such that x1 ≤ x2 and y1 ≤ y2. If x1 = x2 or y1 = y2, then the equality
holds since the measure µ has uniform marginals. Let ε0 = min{x2 − x1, y2− y1}
and consider ε ∈ (0, ε0/2). Since all points in the ε-neighborhood of (x1, y1) have
both their coordinates smaller than all points in the ε-neighborhood of (x2, y2),
almost every point (x′

1, y
′
1) in the intersection of supp (µ) and the ε-neighborhood

of (x1, y1) and almost every point (x′
2, y

′
2) in the intersection of supp (µ) and the

ε-neighborhood of (x2, y2) satisfy the equality from the statement of the lemma,
and it also holds that

|µ ([x1, x2]× [y1, y2])− µ ([x′
1, x

′
2]× [y′1, y

′
2])| ≤ 4ε

9



because the measure µ has uniform marginals. Since both (x1, y1) and (x2, y2)
are contained in supp (µ), the ε-neighborhood of (x1, y1) has positive measure
and the ε-neighborhood of (x2, y2) also has positive measure, we conclude that

∣

∣µ ([x1, x2]× [y1, y2])− |x2 − x1| · |y2 − y1|
∣

∣ ≤ 8ε

for every ε ∈ (0, ε0/2). It follows that the equality from the statement of the
lemma holds for all points (x1, y1), (x2, y2) ∈ supp (µ) such that x1 ≤ x2 and
y1 ≤ y2.

A symmetric argument yields the following lemma.

Lemma 5. Let µ be a permuton. If hτ2
µ (A2) = 0 with probability one, then

µ ([x1, x2]× [y1, y2]) = |x2 − x1| · |y2 − y1|

for all points (x1, y2), (x2, y1) ∈ supp (µ) such that x1 ≤ x2 and y1 ≤ y2.

We are now ready to prove the first of the four main results of this section.
The proofs of Theorems 6, 7, 8 and 9 are based on the flag algebra method. We
follow the standard path of applying the method by setting up appropriate SDP
programs; solving these programs yields the positive semidefinite matrices M and
vectors A1, . . . , O1 and A2, . . . , O2 used in the proofs of the four theorems.

Theorem 6. Let S = {1234, 1243, 2134, 2143, 3412, 3421, 4312, 4321}. It holds

that
∑

π∈S
d(π, µ) ≥ 1

3

for every permuton µ, and equality holds if and only if µ is uniform.

Proof. Let B1, C1, D1 and E1 be the following four elements of Aτ1.

B1 = (1234− 3214) + (1234− 4231) + (1243− 3241) + (1243− 4213)

C1 = (1234− 1432) + (1234− 4231) + (2134− 2431) + (2134− 4132)

D1 = (2143− 4123) + (1234− 4231) + (2134− 4132) + (1243− 4213)

E1 = (2143− 2341) + (1234− 4231) + (2134− 2431) + (1243− 3241)

Further, let B2, C2, D2 and E2 be the corresponding four elements of Aτ2 , e.g.,
B2 is the following element:

B2 = (1432− 3412) + (1324− 4321) + (1423− 3421) + (1342− 4312) .

Finally, let M be the following (positive definite) matrix.

M =









1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2
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A direct computation yields that

hµ

(q
w1MwT

1

y
τ1
+

q
w2MwT

2

y
τ2

)

= hµ





8

9

∑

π∈S
π − 2

9

∑

π∈S4\S
π





=
2

3

(

∑

π∈S
d(π, µ)− 1

3

)

where w1 = (B1, C1, D1, E1) and w2 = (B2, C2, D2, E2). Since the matrix M is

positive semidefinite, it holds that hµ

(q
w1MwT

1

y
τ1

)

≥ 0 and hµ

(q
w2MwT

2

y
τ2

)

≥
0, which implies that

0 ≤
∑

π∈S
d(π, µ)− 1

3
.

Moreover, the equality holds if and only if both hτ1
µ (w1MwT

1 ) = 0 with probability
one and hτ2

µ (w2MwT
2 ) = 0 with probability one. Since all the eigenvalues of the

matrix M are positive, hτ1
µ (w1MwT

1 ) = 0 if and only if hτ1
µ (B1) = 0, hτ1

µ (C1) = 0,
hτ1
µ (D1) = 0 and hτ1

µ (E1) = 0. Since A1 = B1 + C1 − D1 − E1, we conclude
that if the equality holds, then hτ1

µ (A1) = 0 with probability one. A symmetric
argument yields that if the equality holds, then hτ2

µ (A2) = 0 with probability one.
The statement of the theorem now follows from Lemmas 3, 4 and 5.

We next prove the second main theorem of this section. Since the proofs of
this theorem and the two subsequent to it are similar to the proof of Theorem 6,
we will be brief in their parts that are analogous.

Theorem 7. Let S = {1234, 1432, 2143, 2341, 3214, 3412, 4123, 4321}. It holds

that
∑

π∈S
d(π, µ) ≥ 1

3

for every permuton µ, and equality holds if and only if µ is uniform.

Proof. Consider the following elements F1 and G1 of Aτ1 .

F1 = (1243− 3241) + (4132− 2134) + (1243− 1423) + (2314− 2134)

+ (1324− 1342) + (2431− 2413) + (3124− 1324) + (2413− 4213)

G1 = (1243− 1234) + (3421− 3412) + (1432− 1423) + (2314− 2341)

+ (4312− 3412) + (2134− 1234) + (3214− 2314) + (1423− 4123)

+ (1432− 1342) + (3214− 3124) + (1324− 1234) + (2143− 2413)

+ (3124− 4123) + (1342− 2341) + (2143− 3142) + (4231− 1234)

11



Let F2 and G2 be the corresponding elements of Aτ2 as in the proof of Theorem 6,
and let M be the following (positive definite) matrix.

M =





5 0 3
0 9 0
3 0 4





It holds that

hµ

(q
w1MwT

1

y
τ1
+

q
w2MwT

2

y
τ2

)

= 2

(

∑

π∈S
d(π, µ)− 1

3

)

where w1 = (A1, F1, G1) and w2 = (A2, F2, G2). This implies that

0 ≤
∑

π∈S
d(π, µ)− 1

3

and equality holds if and only if both hτ1
µ (w1MwT

1 ) = 0 with probability one
and hτ2

µ (w2MwT
2 ) = 0 with probability one. Since all the eigenvalues of M are

positive (the eigenvalues are 9 and 9±
√
37

2
), it follows that equality holds if and

only if hτ1
µ (A1) = 0 with probability one and hτ2

µ (A2) = 0 with probability one.
The statement of the theorem now follows from Lemmas 3, 4 and 5.

We next prove the third main theorem of this section.

Theorem 8. Let S = {1324, 1342, 2413, 2431, 3124, 3142, 4213, 4231}. It holds

that
∑

π∈S
d(π, µ) ≤ 1

3

for every permuton µ, and equality holds if and only if µ is uniform.

Proof. Let S = S4 \ S and consider the following four elements of Aτ1.

H1 = (1234− 3214) + (2341− 2143) + (1243− 4213) + (2431− 2134)

I1 = (2143− 4123) + (1432− 1234) + (1243− 4213) + (2431− 2134)

J1 = (2134− 2314) + (1324− 3124) + (3241− 1243) + (2413− 2431)

+ (4231− 1234) + (1423− 4123) + (2314− 2341) + (2143− 2413)

K1 = (2413− 4213) + (4132− 2134) + (1243− 1423) + (1324− 1342)

+ (4231− 1234) + (1423− 4123) + (2314− 2341) + (2143− 2413)

Further, let H2, I2, J2 and K2 be the corresponding elements of Aτ2 as in the
proof of Theorem 6, and let M be the following (positive definite) matrix.

M =









35 0 12 0
0 35 0 −12
12 0 37 0
0 −12 0 37
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It holds that

hµ

(q
w1MwT

1

y
τ1
+

q
w2MwT

2

y
τ2

)

= 16





∑

π∈S

d(π, µ)− 2

3





where w1 = (H1, I1, J1, K1) and w2 = (H2, I2, J2, K2). This implies that

0 ≤
∑

π∈S

d(π, µ)− 2

3

and equality holds if and only if both hτ1
µ (w1MwT

1 ) = 0 with probability one and
hτ2
µ (w2MwT

2 ) = 0 with probability one. Since all the eigenvalues ofM are positive

(the matrix has eigenvalues 36 +
√
145 and 36 −

√
145, each with multiplicity

two), hτ1
µ (w1MwT

1 ) = 0 if and only if hτ1
µ (H1) = 0, hτ1

µ (I1) = 0, hτ1
µ (J1) = 0 and

hτ1
µ (K1) = 0. Hence, if equality holds, then hτ1

µ (A1) = 0 with probability one
(note that A1 = H1 − I1). A symmetric argument yields that hτ2

µ (A2) = 0 with
probability one. The statement of the theorem now follows from Lemmas 3, 4
and 5.

Finally, we prove the last main theorem of this section.

Theorem 9. Let S = {1234, 1243, 1432, 2134, 2143, 2341, 3214, 3412, 3421, 4123,
4312, 4321}. It holds that

∑

π∈S
d(π, µ) ≥ 1

2

for every permuton µ, and equality holds if and only if µ is uniform.

Proof. Consider the following four elements of Aτ1 .

L1 = (4213− 1243) + (4123− 2143) + (2341− 2143)

+ (4231− 1234) + (1234− 1432) + (3241− 1243)

M1 = (2134− 2431) + (1234− 4231) + (1234− 1432)

+ (1243− 3241) + (2134− 4132) + (3241− 1243)

N1 = (1243− 1234) + (2134− 1234) + (1324− 1234) + (2143− 2413)

+ (2143− 3142) + (2314− 2341) + (3214− 2314) + (1432− 1342)

+ (1342− 2341) + (3214− 3124) + (3124− 4123) + (3421− 3412)

+ (4312− 3412) + (1432− 1423) + (1423− 4123) + (4231− 1234)

O1 = (1423− 1243) + (1342− 1324) + (1324− 3124) + (2413− 2431)

+ (4213− 2413) + (2134− 2314) + (2134− 4132) + (3241− 1243)
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Further, let L2, M2, N2 and O2 be the corresponding elements of Aτ2 as in the
proof of Theorem 6, and let M be the following (positive definite) matrix.

M =













1132 −652 −638 197 326
−652 774 516 −68 −326
−638 516 774 68 −326
197 −68 68 172 0
326 −326 −326 0 516













It holds that

hµ

(q
w1MwT

1

y
τ1
+

q
w2MwT

2

y
τ2

)

= 172

(

∑

π∈S
d(π, µ)− 1

2

)

where w1 = (A1, L1,M1, N1, O1) and w2 = (A2, L2,M2, N2, O2). This implies that

0 ≤
∑

π∈S
d(π, µ)− 1

2

and equality holds if and only if both hτ1
µ (w1MwT

1 ) = 0 with probability one
and hτ2

µ (w2MwT
2 ) = 0 with probability one. Since all the eigenvalues of M are

positive (because all the leading principal minors of M are positive), it follows
that equality holds if and only if both hτ1

µ (A1) = 0 with probability one and
hτ2
µ (A2) = 0 with probability one. The statement of the theorem now follows

from Lemmas 3, 4 and 5.

4 Perturbations of the uniform permuton

In this section, we analyze pattern densities in step permutons obtained from the
uniform permuton by a perturbation. This analysis will yield that most of the
sets different from those listed in Theorem 2 are not Σ-forcing.

We start with the definition of a step permuton. If A is a (non-negative)
doubly stochastic square matrix of order n, i.e., each row sum and each column
sum of A is equal to one, we can associate with it a permuton µ[A] by setting

µ[A](X) :=
∑

i,j∈[n]
Aij · n ·

∣

∣

∣

∣

X ∩
[

i− 1

n
,
i

n

)

×
[

j − 1

n
,
j

n

)∣

∣

∣

∣

for every Borel set X ⊆ [0, 1]2. We refer to permutons that can be obtained in this
way from a doubly stochastic square matrix as step permutons. A straightforward
computation yields the following expression for the density of a k-permutation π
in µ[A]; we use f : [k] ր [n] to mean that f is a non-decreasing function from
[k] to [n]. Indeed, each of the summands corresponds to the probability that the
µ[A]-random permutation of order k is π and the k points defining π are sampled
from the squares with coordinates (f(i), g(π(i))), i ∈ [n].
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Lemma 10. Let A be a doubly stochastic square matrix of order n, and π a

k-permutation. It holds that

d(π, µ[A]) =
k!

nk

∑

f,g:[k]ր[n]

1
∏

i∈[n]
|f−1(i)|! · |g−1(i)|! ×

∏

i∈[k]
Af(i),g(π(i)).

For i, j ∈ [n− 1], let Bij be the matrix such that

Bij
i′j′ =











+1 if either i′ = i and j′ = j or i′ = i+ 1 and j′ = j + 1,

−1 if either i′ = i and j′ = j + 1 or i′ = i+ 1 and j′ = j, and

0 otherwise.

In the following exposition, the order n of the matrices Bij will always be clear
from the context and so we use only the indices i and j to avoid unnecessarily
complex notation.

For an integer n and a permutation π, we define a function hπ,n : Un → R on
the cube Un := {~x ∈ R[n−1]2 : ‖~x‖∞ ≤ 1/4n} around the origin as

hπ,n(x1,1, . . . , xn−1,n−1) := d



π, µ



A+
∑

i,j∈[n−1]

xijB
ij









where A is the n× n matrix with all entries equal to 1/n. Note that this is well-
defined as A +

∑

i,j∈[n−1] xijB
ij is doubly stochastic whenever xi,j ∈ Un for all

i, j ∈ [n−1]. More generally, if S is a set of permutations, we define hS,n : Un → R

as
hS,n(~x) :=

∑

π∈S
hπ,n(~x) .

In this section, we are concerned with sets S that consist of 4-permutations only.
If S is a set of 4-permutations, we define the cover matrix of S to be a 4× 4

matrix CS such that CS
ij is the number of permutations π ∈ S such that π(j) = i.

If the set S is clear from the context, then we will just write C for the cover
matrix. We show that the gradient of hS,n at the origin is determined by the
cover matrix of S.

Lemma 11. Let n be an integer and S a set of 4-permutations with cover matrix

C. It holds that

∂

∂xij

hS,n(0, . . . , 0) =
4!

n7

∑

f,g:[4]ր[n]

1
∏

m∈[n]
|f−1(m)|! · |g−1(m)|! ×









∑

k∈f−1(i)
ℓ∈g−1(j)

Ck,ℓ

−
∑

k∈f−1(i+1)
ℓ∈g−1(j)

Ck,ℓ −
∑

k∈f−1(i)
ℓ∈g−1(j+1)

Ck,ℓ +
∑

k∈f−1(i+1)
ℓ∈g−1(j+1)

Ck,ℓ
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for every i, j ∈ [n− 1].

Proof. Since both the first derivative on the left hand side and the expression on
the right hand side in the statement of the lemma are additive with respect to
adding elements of the set S, it is enough to prove the lemma when S contains a
single element π. In such case, the formula given in the statement of the lemma
follows directly from Lemma 10.

Lemma 11 yields the following.

Lemma 12. Let n be an integer and S a set of 4-permutations. If the cover

matrix C is constant, then the gradient

∇hS,n(0, . . . , 0) =

(

∂

∂xij
hS,n(0, . . . , 0)

)

i,j∈[n−1]

is zero.

Proof. We start by defining an operator on non-decreasing functions from [4] to
[n]. Given f : [4] ր [n] and an index k ∈ [n− 1], we define f̃ (k) as follows. Let Z
be the image of f viewed as a multiset with every k replaced with k+1 and every
k + 1 replaced with k. Then f̃ (k) is the unique non-decreasing function from [4]
to [n] whose image is Z. Informally speaking, we switch the values k and k + 1

and reorder to obtain a non-decreasing function. Note that f = ˜(f̃ (k))
(k)

for all
f and k, and f = f̃ (k) if |f−1(k)| = |f−1(k + 1)|.

We now analyze individual summands in the sum in the statement of Lemma 11.
Fix two indices i and j, and a function g : [4] ր [n]. If f = f̃ (i), then the ex-
pression in the parenthesis evaluates to zero. If f 6= f̃ (i), then the expressions for
f and f̃ (i) have opposite signs, in particular their contributions cancel out. We
conclude that the sum is equal to zero if all the entries of the cover matrix C are
the same. The lemma now follows.

Lemma 11 establishes that the gradient ∇hS,n(0, . . . , 0) for a set S of 4-permu-
tations is a linear function of the entries of the cover matrix C of S. Analyzing
the matrix corresponding to this linear function for n ∈ {4, 5} yields that for
such n the gradient ∇hS,n(0, . . . , 0) is zero if and only if the cover matrix of S is
constant. Instead of providing this technical computation here, we give a more
illustrative proof that the converse of Lemma 12 holds for large enough integers
n, as this is sufficient for our exposition.

Lemma 13. Let S be a set of 4-permutations whose cover matrix is not constant.

Then there exists an integer n such that the gradient

∇hS,n(0, . . . , 0) =

(

∂

∂xij

hS,n(0, . . . , 0)

)

i,j∈[n−1]

is non-zero.
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Proof. We will assume that the gradient ∇hS,n(0, . . . , 0) is zero and establish that
the entries of the cover matrix satisfy Ck,ℓ − Ck+1,ℓ − Ck,ℓ+1 + Ck+1,ℓ+1 = 0 for
all k, ℓ ∈ [3]. We will then use this to show that the cover matrix C must be
constant.

We start by analyzing the partial derivative ∂
∂xij

hS,n(0, . . . , 0) for i = 1 and

j = 1. Recall the notation f̃ (k) from the proof of Lemma 12. If |Im(f)∩{1, 2}| ≤ 1
or |Im(g)∩ {1, 2}| ≤ 1, then the summands in the expression given in Lemma 11
corresponding to (f, g), (f̃ (1), g), (f, g̃(1)) and (f̃ (1), g̃(1)) sum to zero. Hence, we
need to focus on the summands where {1, 2} ⊆ Im(f) and {1, 2} ⊆ Im(g). Note
the number of summands such that f or g is not injective is O(n3), which yields
the following.

∂

∂x11
hS,n(0, . . . , 0) =

4!

n7















∑

f,g:[4]ր[n]
f(1)=1,f(2)=2,|Im(f)|=4
g(1)=1,g(2)=2,|Im(g)|=4

(C11 − C12 − C21 + C22) +O(n3)















=
4!

n7

(

n− 2

2

)2

(C11 − C12 − C21 + C22) +O

(

1

n4

)

.

If n is sufficiently large, the above expression can be zero only if C11 − C12 −
C21 + C22 = 0. An analogous argument for i = 1 and j = n − 1 yields that
C13−C14−C23+C24 = 0, for i = n−1 and j = 1 that C31−C32−C41+C42 = 0,
and for i = n− 1 and j = n− 1 that C33 − C34 − C43 + C44 = 0.

We next analyze the partial derivative ∂
∂xij

hS,n(0, . . . , 0) for i = 1 and j =

⌊n/2⌋. If |Im(f) ∩ {1, 2}| ≤ 1 or |Im(g) ∩ {⌊n/2⌋, ⌊n/2⌋ + 1}| ≤ 1, then the
summands in the expression given in Lemma 11 corresponding to (f, g), (f̃ (1), g),
(f, g̃(⌊n/2⌋)) and (f̃ (1), g̃(⌊n/2⌋)) sum to zero. Hence, we need to focus on the sum-
mands where |Im(f)∩{1, 2}| = 2 and |Im(g)∩{⌊n/2⌋, ⌊n/2⌋+1}| = 2. Since the
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number of summands such that f or g is not injective is O(n3), we obtain that

∂

∂x1,⌊n/2⌋
hS,n(0, . . . , 0) =

4!

n7















∑

f,g:[4]ր[n]
f(1)=1,f(2)=2,|Im(f)|=4

g(1)=⌊n/2⌋,g(2)=⌊n/2⌋+1,|Im(g)|=4

(C11 − C12 − C21 + C22)

+
∑

f,g:[4]ր[n]
f(1)=1,f(2)=2,|Im(f)|=4

g(2)=⌊n/2⌋,g(3)=⌊n/2⌋+1,|Im(g)|=4

(C12 − C13 − C22 + C23)

+
∑

f,g:[4]ր[n]
f(1)=1,f(2)=2,|Im(f)|=4

g(3)=⌊n/2⌋,g(4)=⌊n/2⌋+1,|Im(g)|=4

(C13 − C14 − C23 + C24)















+O

(

1

n4

)

.

Since the first and the third sum are equal to zero, we obtain that

∂

∂x1,⌊n/2⌋
hS,n(0, . . . , 0) = (C12 − C13 − C22 + C23) ·Θ

(

1

n3

)

+O

(

1

n4

)

.

Hence, if n is large enough and this partial derivative is zero, it must hold that
C12−C13−C22+C23 = 0. An analogous argument for i = ⌊n/2⌋ and j = 1 yields
that C21 − C22 − C31 + C32 = 0, for i = n − 1 and j = ⌊n/2⌋ that C32 − C33 −
C42 + C43 = 0, and for i = ⌊n/2⌋ and j = n− 1 that C23 − C24 − C33 + C34 = 0.

Finally, we analyze the partial derivative ∂
∂xij

hS,n(0, . . . , 0) for i = j = ⌊n/2⌋.
As in the preceding two cases, we consider the functions f̃ (⌊n/2⌋) and g̃(⌊n/2⌋) to
conclude that the summands with |Im(f) ∩ {⌊n/2⌋, ⌊n/2⌋ + 1}| ≤ 1 or |Im(g) ∩
{⌊n/2⌋, ⌊n/2⌋ + 1}| ≤ 1 sum to zero. We next express the partial derivative
as the sum of nine terms corresponding to injective mappings f and g with
{⌊n/2⌋, ⌊n/2⌋ + 1} ⊆ Im(f) and {⌊n/2⌋, ⌊n/2⌋ + 1} ⊆ Im(g) (the terms are
determined by the preimages of ⌊n/2⌋ and ⌊n/2⌋ + 1). Eight of these terms
correspond to the sums of the entries of the cover matrix that we have already
shown to be zero, which leads to the following expression for the considered
partial derivative:

∂

∂x⌊n/2⌋,⌊n/2⌋
hS,n(0, . . . , 0) = (C22 − C23 − C32 + C33) ·Θ

(

1

n3

)

+O

(

1

n4

)

.

Hence, if n is large enough and the partial derivative is zero, it must hold that
C22 − C23 − C32 + C33 = 0.
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Since the cover matrix C satisfies that Ck,ℓ − Ck,ℓ+1 − Ck+1,ℓ + Ck+1,ℓ+1 = 0
for all k, ℓ ∈ [3], C is of the form

C =









a b c d
e b+ e− a c+ e− a d+ e− a
f b+ f − a c + f − a d+ f − a
g b+ g − a c+ g − a d+ g − a









for some integers a, . . . , g. Since C is a cover matrix for a set S of 4-permutations,
each row and each column must sum to |S|, i.e., the sums of the entries of each
row are equal and the same holds for the columns of C. It follows that b = c = d
and e = f = g, so

C =









a b b b
e b+ e− a b+ e− a b+ e− a
e b+ e− a b+ e− a b+ e− a
e b+ e− a b+ e− a b+ e− a









.

It now follows that b = e (otherwise, the sum of the second row and the second
column would differ), which yields that the matrix C must be of the form

C =









a b b b
b 2b− a 2b− a 2b− a
b 2b− a 2b− a 2b− a
b 2b− a 2b− a 2b− a









.

Hence, we get that a + 3b = 7b− 3a, which yields that a = b. We conclude that
the matrix C is constant.

The following lemma will be used to analyze sets of 4-permutations with
constant cover matrix.

Lemma 14. Let S be a set of 4-permutations such that the cover matrix C is

constant. The Hessian matrix of the second order partial derivatives of hS,5 at

(0, . . . , 0) has both a positive and a negative eigenvalue, unless S is symmetric to

one of the following sets of 4-permutations

• {1234, 2143, 3412, 4321},

• {1234, 1243, 2134, 2143, 3412, 3421, 4312, 4321},

• {1234, 1432, 2143, 2341, 3214, 3412, 4123, 4321},

• {1324, 1342, 2413, 2431, 3124, 3142, 4213, 4231},

• {1342, 1423, 2314, 2431, 3124, 3241, 4132, 4213},
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• {1234, 1243, 1324, 2134, 2143, 2413, 3142, 3412, 3421, 4231, 4312, 4321},

• {1234, 1243, 1342, 2134, 2143, 2431, 3124, 3412, 3421, 4213, 4312, 4321},

• {1234, 1243, 1342, 2134, 2143, 2431, 3214, 3412, 3421, 4123, 4312, 4321},

• {1234, 1243, 1432, 2134, 2143, 2341, 3214, 3412, 3421, 4123, 4312, 4321},

• {1234, 1243, 1432, 2134, 2341, 2413, 3142, 3214, 3421, 4123, 4312, 4321},

• {1234, 1243, 1432, 2143, 2314, 2341, 3214, 3412, 3421, 4123, 4132, 4321},

• {1234, 1342, 1423, 2143, 2314, 2431, 3124, 3241, 3412, 4132, 4213, 4321},

• {1234, 1342, 1423, 2314, 2413, 2431, 3124, 3142, 3241, 4132, 4213, 4321}, or

to the complement of one of them.

Proof. For a 4-permutation π, let Hπ be the Hessian matrix (of order sixteen)

(

∂2

∂xij∂xi′j′
h{π},5(0, . . . , 0)

)

i,j,i′,j′∈[4]
.

The matrices Hπ for all 4-permutations can be found in Appendix 1. For a set S
of 4-permutations, let HS be the corresponding Hessian matrix, i.e.,

HS =
∑

π∈S
Hπ.

Note that HS = −HS where S is the complement of S with respect to the set
of all 4-permutations. If the cover matrix of S is constant, then |S| must be
divisible by four. Up to symmetry, there are 12 sets S with 4 elements and 65
sets S with 8 elements whose cover matrix is constant. Up to symmetry and
taking complements, there are 68 sets S with 12 elements whose cover matrix is
constant. These sets are listed in Appendices 2–4 together with the corresponding
matrices HS and their largest and smallest eigenvalues. An inspection of these
values yields the statement of the lemma (the sets S such that the matrix HS

does not have both positive and negative eigenvalues are highlighted by the bold
font in Appendices 2–4).

We are now ready to prove the main theorem of this section.

Theorem 15. Let S be a set of 4-permutations. There exists an integer n and

~x, ~y ∈ Un such that hS,n(~x) < |S|/24 < hS,n(~y), unless S is symmetric to one of

the sets of 4-permutations listed in Lemma 14, or to the complement of one of

them.
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µ1

µ2

2− λ

2− λ

Figure 2: The permuton µλ in the proof of Lemma 16. The support of the
permuton lies in the gray area.

Proof. If the cover matrix C of S is not constant, then there exists an integer
n such that the gradient ∇hS,n(0, . . . , 0) is non-zero by Lemma 13. Hence, we
can set ~x = −ε∇hS,n(0, . . . , 0) and ~y = ε∇hS,n(0, . . . , 0) for a sufficiently small
positive ε. If the cover matrix C of S is constant, then ∇hS,n(0, . . . , 0) is zero
for every integer n by Lemma 12, in particular, for n = 5. However, unless S
is symmetric to one of the sets of 4-permutations listed in Lemma 14 or to the
complement of one of them, the Hessian matrix of the second partial derivatives
of hS,5 at (0, . . . , 0) has both positive and negative eigenvalues. Hence, we can set
~x to be an ε-multiple of the eigenvector corresponding to a negative eigenvalue
of the Hessian matrix and ~y to be an ε-multiple of the eigenvector corresponding
to a positive eigenvalue for a sufficiently small positive ε.

5 Non-Σ-forcing sets

We start this section with a lemma which asserts that in order to show that a set
S of 4-permutations is not Σ-forcing, it is enough to find a permuton where the
sum of pattern densities is smaller than |S|/24, and a permuton where the sum
of pattern densities is larger than |S|/24.

Lemma 16. Let S be a set of 4-permutations. If there exist permutons µ1 and

µ2 such that
∑

π∈S
d(π, µ1) <

|S|
24

and
∑

π∈S
d(π, µ2) >

|S|
24

,

then there exists a non-uniform permuton µ such that

∑

π∈S
d(π, µ) =

|S|
24

.

21



Proof. Define a permuton µλ for λ ∈ (1, 2) as follows:

µλ(X) = (2− λ) · µ1

(

1

2− λ
×
(

X ∩ [0, 2− λ]2
)

)

+ (λ− 1) · µ2

(

1

λ− 1
×
(

X ∩ [2− λ, 1]2 − (2− λ, 2− λ)
)

)

,

where α×X stands for {α·x, x ∈ X} and X−v for {x−v, x ∈ X}. The definition
of a permuton µλ is illustrated in Figure 2. Note that µλ is µ1 for λ = 1 and µ2

for λ = 2. Next define a function f : [1, 2] → [0, 1] as

f(λ) =
∑

π∈S
d(π, µλ).

Observe that f is a continuous function on the interval [1, 2]. Hence, there exists
λ ∈ (1, 2) such that f(λ) = |S|/24. Since the permuton µλ is not uniform for any
λ ∈ (1, 2), the statement of the lemma follows.

We are now ready to prove the main theorem of this section.

Theorem 17. Let S be a set of 4-permutations. Then there exists a non-uniform

permuton µ such that
∑

π∈S
d(π, µ) =

|S|
24

unless the set S is one of the following sets of 4-permutations

• {1234, 1243, 2134, 2143, 3412, 3421, 4312, 4321},

• {1234, 1432, 2143, 2341, 3214, 3412, 4123, 4321},

• {1324, 1342, 2413, 2431, 3124, 3142, 4213, 4231},

• {1324, 1423, 2314, 2413, 3142, 3241, 4132, 4231},

• {1234, 1243, 1432, 2134, 2143, 2341, 3214, 3412, 3421, 4123, 4312, 4321}, or

the complement of one of them.

Proof. Fix a set S of 4-permutations that is not one of the sets listed in the
statement of the lemma. We can assume that |S| ≤ 12 by considering the com-
plement of S if necessary. By Lemma 16, it suffices to find permutons µ1 and
µ2 such that the sum of the pattern densities of the permutations contained in S
for µ1 is less than |S|/24 and for µ2 is larger than |S|/24. If S is not symmetric
to a set listed in the statement of Lemma 14, such permutons µ1 and µ2 exist
by Theorem 15. Hence, we can assume that S is one of the 9 sets listed in the
statement of Lemma 14 but not in the statement of Theorem 17.
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We first consider the case S = {1342, 1423, 2314, 2431, 3124, 3241, 4132, 4213}.
We choose µ1 to be the monotone increasing permuton, i.e., the unique permuton
such that supp (µ)1 = {(x, x), x ∈ [0, 1]}. The density of a pattern π in µ1 is 1 if
π is increasing and 0 otherwise; in particular, the sum of the pattern densities of
the permutations from S is zero. Next, consider the following doubly stochastic
matrix A

A =

















0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 1 0 0 0 0

















,

and set µ2 = µ[A]. A direct computation yields that the sum of the pattern
densities of the permutation contained in S in µ2 is 25

72
> 1

3
.

Each of the eight sets S that remain to be considered contain the permutation
1234. Hence, we set µ2 to be the monotone increasing permuton. The permu-
tons µ1 for these sets can be chosen as step permutons corresponding to doubly
stochastic matrices listed in Appendix 5.
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