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Empirical networks often exhibit different meso-
scale structures, such as community and core–
periphery structure. Core–periphery typically consists
of a well-connected core, and a periphery that is
well-connected to the core but sparsely connected
internally. Most core–periphery studies focus on
undirected networks. We propose a generalisation of
core–periphery to directed networks. Our approach
yields a family of core–periphery blockmodel formulations
in which, contrary to many existing approaches, core
and periphery sets are edge-direction dependent.
We focus on a particular structure consisting of
two core sets and two periphery sets, which we
motivate empirically. We propose two measures to
assess the statistical significance and quality of our
novel structure in empirical data, where one often has
no ground truth. To detect core–periphery structure
in directed networks, we propose three methods
adapted from two approaches in the literature, each
with a different trade-off between computational
complexity and accuracy. We assess the methods on
benchmark networks where our methods match or
outperform standard methods from the literature,
with a likelihood approach achieving the highest
accuracy. Applying our methods to three empirical
networks – faculty hiring, a world trade data-set, and
political blogs – illustrates that our proposed structure
provides novel insights in empirical networks.
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1. Introduction
Networks provide useful representations of complex systems across many applications [1], such
as physical, technological, information, biological, financial, and social systems. A network in
its simplest form is a graph in which nodes represent entities and edges represent pairwise
interactions between these entities. In this paper, we consider directed unweighted networks.

Given a network representation of a system, it can be useful to investigate so-called meso-
scale features that lie between the micro-scale (local nodes properties) and the macro-scale (global
network properties). Typical meso-scale structures are community structure (by far the most
commonly studied), core–periphery structure, role structure, and hierarchical structure [1–3];
often, more than one of these is present in a network, see for example [2] or [4].

Here we focus on core–periphery structure. The concept of core–periphery was first formalised
by Borgatti and Everett [5]. Typically, core–periphery structure is a partition of an undirected
network into two sets, a core and a periphery, such that there are dense connections within the
core and sparse connections within the periphery. Furthermore, core nodes are reasonably well-
connected to the periphery nodes [5]. Extensions allow for multiple core–periphery pairs and
nested core–periphery structures [2,4,6]. Algorithms for detecting (different variants) of core–
periphery structure include approaches based on the optimisation of a quality function [2,5,7–9],
spectral methods [10–12], and notions of core–periphery based on transport (e.g., core nodes are
likely to be on many shortest paths between other nodes in the network) [12,13]. Core–periphery
detection has been applied to various fields such as economics, sociology, international relations,
journal-to-journal networks, and networks of interactions between scientists; see [14] for a survey.

Many methods for detecting core–periphery were developed for undirected networks.
Although these can be (and in some cases have been) generalised to directed graphs, they do not
also generalise the definition of a discrete core and periphery to be edge-direction dependent,
but rather, either disregard the edge-direction or consider the edge in each direction as an
independent observation [2,5,15,16], or use a continuous structure [17]. A notable exception
is [18], but with a different notion of core than the one pursued here. The discrete structure
which is most closely related to our notion of directed core–periphery structure is the bow-tie
structure [19,20]. Bow-tie structure consists of a core (defined as the largest strongly connected
component), an in-periphery (all nodes with a directed path to a node in the core), an out-
periphery (all nodes with a directed path from a node in the core), and other sets containing
any remaining nodes [20–22].

In this paper, we propose a generalisation of the block-model introduced in [5] to directed
networks, in which the definition of both core and periphery are edge-direction dependent.
Moreover, we suggest a framework for defining cores and peripheries in a way that accounts
for edge direction, which yields as special cases a bow-tie-like structure and the structure we
focus on in the present paper. Our accompanying technical report explores a small number of
additional methods [23]. Extensions to continuous formulations (e.g., as in [24]) or multiple types
of meso-scale structure are left to future work.

We suggest three methods to detect the proposed directed core–periphery structure, which
each have a different trade-off between accuracy and computational complexity. The first two
methods are based on the HITS algorithm [25] and the third on likelihood maximisation. We
illustrate the performance of methods on synthetic and empirical networks. Our comparisons
to bow-tie structure and illustrate that the structure we propose yields additional insights
about empirical networks. Our main contributions are (1) a novel framework for defining cores
and peripheries in directed networks; (2) scalable methods for detecting these structures; (3) a
comparison of said methods and (4) a systematic approach to method selection for empirical
data.

This paper is organised as follows. In Section 2 we consider directed extensions to the classic
core–periphery structure. We introduce a novel block-model for directed core–periphery structure
that consists of four sets (two periphery sets and two core sets) and a two-parameter synthetic



3

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

model that can generate the proposed structure. In Supplementary Information (SI) A, we
consider alternative formulations. We further introduce a pair of measures to assess the quality
of a detected structure; the first one is a test of statistical significance, and the second one is a
quality function that enables comparison between different (statistically significant) partitions.
In Section 3, we introduce three methods for detecting the proposed directed core–periphery
structure. Section 4 illustrates the performance of our methods on synthetic benchmark networks,
and validates the use of our proposed partition quality measures. In Section 5, we apply the
methods to two real-world data sets (a third data set is shown in SI E). Section 6 summarises our
main results and offers directions for future work.

The code for our proposed methods and the implementation for bow-tie structure (provided
by the authors of [26]) is available at https://github.com/alan-turing-institute/
directedCorePeripheryPaper.

2. Core–periphery structure
We encode the edges of an n-node network in an adjacency matrix A= (Au,v)u,v=1,...,n, with
entryAu,v = 1 when there is an edge from node u to node v, andAu,v = 0 otherwise. We partition
the set of nodes into core and periphery sets, resulting in a block partition of the adjacency matrix,
and a corresponding block probability matrix. In the remainder of the paper, we use the term
“set” for members of a node partition and “block” for the partition of a matrix. We shall define
a random network model on n nodes partitioned into k blocks via a k × k probability matrix M,
whose entries Mij give the probability of an edge from a node in block i to a node in block j,
independently of all other edges.

Core–periphery in undirected networks The most well-known quantitative formulation of
core–periphery structure in undirected networks was introduced by Borgatti and Everett [5];
they propose both a discrete and a continuous model for core–periphery structure. In the discrete
notion of core–periphery structure, [5] suggests that an ideal core–periphery structure should
consist of a partition of the node set into two non-overlapping sets: a densely connected core
and a loosely connected periphery, with dense connections between the core and the periphery.
The probability matrix of a network with the idealised core–periphery structure in [5] and the
corresponding network-partition representation are given in (2.1);

M0 =

Core Periphery
Core 1 1

Periphery 1 0

, (2.1)

where the network-partition representation on the right-hand-side shows edges within and
between core and periphery sets. In adjacency matrices of real-world data sets, any structure
of the form Eq. (2.1), if present, is likely observed with random noise perturbations.

Core–periphery structure in directed networks We now introduce a block model for directed
core–periphery where the definitions of the core and periphery sets are edge-direction-dependent.
Starting from Eq. (2.1), a natural extension to the directed case is to split each of the sets into
one that only has incoming edges and another that only has outgoing edges. This yields four
sets, which we denote Cin (core-in), Cout (core-out), Pin (periphery-in) and Pout (periphery-out), with
respective sizes nPout

, nCin , nPin
, and nCout

. We assume that edges do not exist between the
periphery sets, and thus that every edge is incident to at least one node in a core set. Respecting
edge direction, we place edges between core-out and all ‘in’ sets, and between each ‘out’ set and
core-in. As in Eq. (2.1), the two core sets are fully internally connected, and the two periphery sets
have no internal edges. There are no multiple edges, but self-loops are permitted. The probability
matrix and corresponding network-partition are given in (2.2);

https://github.com/alan-turing-institute/directedCorePeripheryPaper
https://github.com/alan-turing-institute/directedCorePeripheryPaper
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M=

Pout Cin Cout Pin
Pout 0 1 0 0

Cin 0 1 0 0

Cout 0 1 1 1
Pin 0 0 0 0

. (2.2)

We refer to the structure in M as an ’L’-shape structure. There are other directed core–periphery
structures that one can pursue. In Supplementary Information (SI) A, we provide a framework
of which Eq. (2.2) is one example, and a block model formulation of bow-tie structure is another
example. The particular formulation of the well-known bow-tie structure that falls within our
framework is the directed core–periphery structure Eq. (2.3), where only periphery sets have a
definition that is edge-direction dependent, and where we assume that the core and peripheries
form a hard partition [22]

(2.3)

In general, bow-tie can allocate nodes to several sets – there is a core set, an incoming periphery
set, an outgoing periphery set and four additional sets corresponding to other connection
patterns. There are several known real-world applications of bow-tie structure, such as the
internet [20] and biological networks [27]. We note that the structure in Eq. (2.2) is not a mere
extension of the bow-tie structure as, in contrast to bow-tie, the flow is not uni-directional.

We motivate the structure in Eq. (2.2) with a few examples. Consider networks that represent
a type of information flow, with two sets that receive information (Cin and Pin) and two sets
that send information (Cout and Pout). Furthermore, within each of these categories, there is one
set with core-like properties and another set with periphery-like properties. Inspired by [3], in a
Twitter network for example, Cin and Pin could correspond to consumers of information, with
Cin having the added property of being a close-knit community that has internal discussions (e.g.,
interest groups) rather than individuals collecting information independently (e.g., an average
user). The sets Cout and Pout could correspond to transmitters of information, with Cout having
the added property of being a well-known close-knit community (e.g., broadcasters) rather than
individuals spreading information independently (e.g., celebrities). Another class of examples is
networks that represent a type of social flux, when there are two sets that entities move out of,
and two sets that entities move towards. Furthermore, within each of these categories, there is
one with core-like properties and one with periphery-like properties. For example, in a faculty
hiring network of institutions, Cout may correspond to highly-ranked institutions with sought-
after alumni, while Cin may correspond to highly sought-after institutions which take in more
faculty than they award Ph.D. degrees. For the periphery sets, Pout may correspond to lower-
ranked institutions who have placed some faculty in the core but do not attract faculty from
higher-ranked institutions, and Pin may correspond to a set of institutions which attract many
alumni from highly-ranked ones. These ideas will be showcased on real-world data in Section 5,
where we also illustrate that the structure in Eq. (2.2) yields insights that are not captured by the
bow-tie structure.

Synthetic model for directed core–periphery structure We now describe a stochastic block
model that will be used as a synthetic graph model to benchmark our methods. For any two nodes
u, v, let X(u, v) denote the random variable which equals 1 if there is an edge from u to v, and 0
otherwise. We refer to X(u, v) as an edge indicator. For an edge indicator which should equal 1
according to the idealised structure (Eq. (2.2)), let p1 be the probability that an edge is observed.
Similarly for an edge indicator which should be 0 according to the perfect structure (Eq. (2.2)), let
p2 be the probability that an edge is observed. Interpreting p1 as signal and p2 as noise, we assume
that p1 > p2 so that the noise does not overwhelm the true structure in Eq. (2.2). We represent this
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model as a stochastic block model, denoted by DCP (p1, p2), which has independent edges with
block probability matrix

p1M+ p2(1−M) =

∣∣∣∣∣∣∣∣∣
p2 p1 p2 p2
p2 p1 p2 p2
p2 p1 p1 p1
p2 p2 p2 p2

∣∣∣∣∣∣∣∣∣ . (2.4)

Setting p1 = 1 and p2 = 0 recovers the idealised block structure in Eq. (2.2). The ‘L’-shape structure
in Eq. (2.4) defines a partition of a network into two cores and two peripheries (see Eq. (2.2) for
the idealised case DCP (1, 0)). We refer to this partition as a “planted partition” throughout the
paper. The DCP (p1, p2) model allows one to increase the difficulty of the detection by reducing
the difference between p1 and p2, and to independently modify the expected density of edges
matching (respectively, not matching) the planted partition by varying p1 (respectively, p2). A
case of particular interest is when only the difference between p1 and p2 is varied; this is the
DCP (1/2 + p, 1/2− p) model, where p∈ [0, 0.5]. This model yields the idealised block structure
in Eq. (2.2) when p= 0.5, and an Erdős-Rényi random graph when p= 0.

Fig. 1 displays example adjacency matrices obtained from Eq. (2.4), with n= 400 and equally-
sized sets nPout

= nCin = nCout
= nPin

= 100. In the first 3 panels, p2 = 0.1 and p1 varies. As p1
decreases with fixed p2, the ‘L’-shaped structure starts to fade away and the network becomes
sparser. The last three panels show realisations of DCP (1/2 + p, 1/2− p) adjacency matrices for
p∈ {0.4, 0.2, 0.05}, n= 400, and four equally-sized sets. The ‘L’-shaped structure is less clear for
smaller values of p.
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Figure 1. Heatmaps illustrating our model. We present heatmaps of the original adjacency matrix, with n= 400

nodes. We generate the first three adjacency matrices with DCP (p1, p2) and the next three adjacency matrices

with DCP (1/2 + p, 1/2− p). Blocks are equally-sized in both cases.

Measures of statistical significance and partition quality In empirical networks, there is often
no access to ground truth. It is thus crucial to determine whether a detected partition is simply the
result of random chance and does not constitute a meaningful division of a network. Furthermore,
different detection methods can produce very different partitions (e.g., by making an implicit
trade-off between block-size and edge-density), and it can be very helpful in practice to have a
systematic approach for choosing between methods according to a specific criteria of “partition
quality”. As criteria of partition quality, we employ a p-value arising from a Monte Carlo test and
an adaptation of the modularity quality function of a partition (see, e.g., Eq. (7.58) in [1]).

The p-value is given by a Monte Carlo test to assess whether the detected structure could
plausibly be explained as arising from random chance, modelled either by a directed Erdős-Rényi
(ER) model without self-loops or a directed configuration model as in [28]. The test statistic is the
difference between the probability of connection within the ‘L’-structure, with that outside of the
‘L’-structure, i.e., ∑n

u,v=1Mgu,gvAuv∑n
u,v=1Mgu,gv

−
∑n

u,v=1(1−Mgu,gv )Auv∑n
u,v=1(1−Mgu,gv )

,
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where M is as in Eq. (2.2), and gu is the set assign to node u. To directly measure partition
quality, we extend the core–periphery modularity measure from [4,29], by replacing the block and
community indicators with indicators that match the ‘L’-structure, i.e.,

DCPM(g) =
1

m

n∑
u=1

n∑
v=1

(Auv − 〈A〉)Mgugv , (2.5)

where m is the number of edges (with bi-directional edges counted twice) and 〈A〉= m
n2 . We call

this measure directed core–periphery modularity (DCPM ). DCPM lies in the range of (−1, 1). If
there is only one block, thenDCPM = 0. If the ’L’-structure is achieved perfectly, then the number
of edges is m= nPout

nCin
+ (nCin

)2 + nCout
nCin

+ (nCout
)2 + nCout

nPin
and DCPM = 1−

1
n2 (nPout

nCin
+ n2Cout

+ nCout
nCin

+ n2Cin
+ nPout

nCin
) = 1− m

n2 . If instead, all edges not on
the ‘L’ are present, then DCPM =−(nPout

nCin
+ n2Cout

+ nCout
nCin

+ n2Cin
+ nPout

nCin
)/n2.

DCPM is related to the general form core–periphery quality function introduced in [10].
We note that in Eq. (2.5), the null model we compare the observed network against is the

expected adjacency matrix under an Erdős-Rényi null model, where each edge is generated with
the same probability m

n2 , independently of all other potential edges, and the expected number of
edges is equal to m, the observed number of edges. Such a null model was used in [4] to derive
a quality function for detecting multiple core–periphery pairs in undirected networks. As high-
degree nodes tend to end up in core sets, and low-degree nodes in periphery sets (see for example
Fig. 4 in this paper), using a null model that controls for node degree directly in the quality
function can mask a lot of the underlying core–periphery structure [4,18,29]. To circumvent this
issue, the authors in [29] modify the core–periphery block structure definition by incorporating
an additional block that is different from the core block and its corresponding periphery block.
For the purpose of this paper, we use an Erdős-Rényi null model and leave the exploration of
further null models to future work.

For networks with ground truth (e.g., synthetic networks with planted structure), the accuracy
of a partition is measured by the Adjusted Rand Index (ARI) [30] between the output partition of
a method and the ground truth, using the implementation from [31]. ARI takes values in [−1, 1],
with 1 indicating a perfect match, and an expected score of approximately 0 under a given model
of randomness. A negative value indicates that the agreement between two partitions is less than
what is expected from a random labelling. In SI D(a), we give a detailed description of the ARI,
and also consider the alternative similarity measures VOI (Variation of Information [32]) and NMI
(Normalised Mutual Information [33]).

3. Core–periphery detection in directed networks
Several challenges arise when considering directed graphs, which makes the immediate extension
of existing algorithms from the undirected case difficult. As the adjacency matrix of a directed
graph is no longer symmetric, the spectrum becomes complex-valued. Graph clustering methods
which have been proposed to handle directed graphs, often consider a symmetrised version of
the adjacency matrix, such as SAPA [34]. However, certain structural properties of the network
may be lost during the symmetrisation process, which provides motivation for the development
of new methods. In this section, we describe three methods for detecting this novel structure. We
pay particular attention to scalability, a crucial consideration in empirical networks, and order the
methods by run time, from fast to slow. The first two methods are based on an adaptation of the
popular HITS algorithm [25], and the third method is based on likelihood-maximisation.

(a) The Hyperlink-Induced Topic Search (HITS) algorithm
Our first method builds on a well-known algorithm in link analysis known as Hyperlink-Induced
Topic Search (HITS) [25]. The HITS algorithm was originally designed to measure the importance
of webpages using the structure of directed links between the webpages [35]; authoritative
webpages on a topic should not only have large in-degrees (i.e., they constitute hyperlinks on
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many webpages) but should also considerably overlap in the sets of pages that point to them.
Referring to authoritative webpages for a topic as “authorities” and to pages that link to many
related authorities as “hubs”, it follows that a good hub points to many good authorities, and
that a good authority is pointed to by many good hubs. The HITS algorithm assigns two scores to
each of the n nodes, yielding a n-dimensional vector a of “authority scores” and a n-dimensional
vector h of “hub scores”, with a=ATh and h=Aa .

To each node we assign core– and periphery–scores based on the HITS algorithm which we
then cluster to obtain a hard partition; we call this the HITS method. Appealing features of the
HITS algorithm include (1) it is highly scalable; (2) it can be adapted to weighted networks; and
(3) it offers some theoretical guarantees on the convergence of the iterative algorithm (see [25]).

Algorithm for HITS

(i) Initialisation: a= h= 1n. Alternate between the following two steps: (a) update a=ATh; (b)
update: h=Aa . Stop when the change in updates is lower than a pre-defined threshold.

(ii) Normalise a and h to become unit vectors in some norm [35].
(iii) Compute the n× 4 score matrix SHITS = [PHITS

out ,CHITS
in ,CHITS

out ,PHITS
in ] using the node

scores

CHITS
in (u) = h(u), PHITS

in (u) = maxv(CHITS
out (v))− CHITS

out (u) , (3.1)

CHITS
out (u) = a(u), PHITS

out (u) = maxv(CHITS
in (v))− CHITS

in (u) . (3.2)

(iv) Normalise SHITS so that each row has an L2–norm of 1 and apply k-means++ to partition
the node set into four clusters;

(v) Assign each of the clusters to a set based on the likelihood of each assignment under our
stochastic block model formulation (see Section 2).

Remark 3.1. (i) To motivate the scores Eqs. (3.1) and (3.2), a node should have a high authority score if it
has many incoming edges, whereas it would have a high hub score if it has many outgoing edges. Based
on the idealised block structure in Eq. (2.2), nodes with the highest authority scores should also have a
high CHITS

in score, and nodes with the highest hub scores should also have a high CHITS
out score.

(ii) For step (i) of the algorithm we use the implementation from NetworkX [36] which computes the hub
and authority scores using the leading eigenvector of ATA. As [25] proved that the scores converge to
the principal left and right singular vectors of A, provided that the initial vectors are not orthogonal to
the principal eigenvectors of ATA and AAT , this is a valid approach.

(iii) Using the same connection between the HITS algorithm and SVD from Kleinberg [37], our scores based
on the HITS algorithm can be construed as a variant of the low-rank method in [12], in which we only
consider a rank-1 approximation and use the SVD components directly.

(iv) A scoring variant is explored in SI B, with Eqs. (3.1) and (3.2) performing best on our benchmarks.
(v) Intuitively, the row normalisation of SHITS from step (iv) allows the rows of SHITS (vectors in

4-dimensional space) to not only concentrate in four different directions, but also to concentrate in a
spatial sense and have a small within-set Euclidean distance [38,39].

(vi) Using k-means++ [40] alleviates the issues of unstable clusterings retrieved by k-means [41].

(b) The Advanced Hits method
We now modify the HITS algorithm such that it considers four distinct scores (rather than two
core scores, from which we then compute the periphery scores); we call the resulting method the
Advanced Hits method, and abbreviate the corresponding algorithm as ADVHITS. We do this by
incorporating information about the idealised block structure into the algorithm (which, as we
show in Section 4, yields better results on synthetic networks). Namely, instead of using hub and
authority scores, in each set, we reward a node for having edge indicators that match the structure
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in Eq. (2.2) and penalise otherwise, through the reward-penalty matrix associated to M, given by

D= 2M− 1 =

−1 1 −1 −1
−1 1 −1 −1
−1 1 1 1

−1 −1 −1 −1

= d1 d2 d3 d4 =

e1
e2
e3
e4

,

where di is the ith column vector of D, and ej is the jth row vector of D. The first column/row
corresponds to Pout, the second column/row to Cin, and so on. We use the matrix D to define the
ADVHITS algorithm, with steps detailed below.

Algorithm for ADVHITS

(i) Initialisation:

SRaw = [SRaw
1 ,SRaw

2 ,SRaw
3 ,SRaw

4 ] = [PRaw
out ,C

Raw
in ,CRaw

out ,P
Raw
in ] =Un ,

where Un is a n× 4 matrix of independently drawn uniform (0, 1) random variables;
(ii) For nodes u∈ {1, . . . , n} let B(u) =min{PRaw

out (u), CRaw
in (u), CRaw

out (u), PRaw
in (u)}, and

calculate, for sets i∈ {1, 2, 3, 4},

SNrm
i (u) =

SRaw
i (u)−B(u)∑4

k=1

(
SRaw
k (u)−B(u)

) . (3.3)

If for a node u, the raw scores for each sets are equal, up to floating point error (defined as the
denominator of Eq. (3.3) being less than 10−10), this implies an equal affinity to each set and
thus we set SNrm

i (j) = 0.25.
(iii) For i∈ {1, . . . , 4}:

(a) Update SRaw
i :

SRaw
i =

(
1− m

n2

)
ASNrmeTi +

m

n2
(1−A)SNrm(−eTi )

+
(
1− m

n2

)
ATSNrmdi +

m

n2
(1−AT )SNrm(−di). (3.4)

(b) Recompute SNrm using the procedure in step (ii).
(c) Measure and record the change in SNrm

i .

(iv) If the largest change observed in SNrm
i is greater than 10−8; return to step (iii).

(v) Apply k-means++ to SNrm to partition the node set into four clusters.
(vi) Assign each of the clusters to a set based on the likelihood of each assignment under our

stochastic block model formulation (see Section 2).

Remark 3.2. (i) The first term in Eq. (3.4) rewards/penalises the outgoing edges, the second the missing
outgoing edges, the third the incoming edges, and the fourth the missing incoming edges. The
multiplicative constants are chosen to weigh edges in each direction evenly, and to fix the contribution
of non-edges to be equal to that of edges.

(ii) We envision the score to represent the affinity of a given node to each set. Thus, the normalisation step is
included so that the scores of an individual node sum to one. We includeB(u) as the scores in Eq. (3.4)
can be negative and thus we shift the values to be all positive (and rescale).

(iii) The general iteration can fail to converge within 1000 iterations. If the scheme has not converged
after 1000 steps, we fall back to a scheme which updates the scores on each node in turn, which often
empirically removes the convergence issue with the cost of additional computational complexity.

(c) Likelihood maximisation
Our third proposed method, MAXLIKE, maximises the likelihood of the directed core–periphery
model Eq. (2.4), which is a stochastic block model with four blocks and our particular connection
structure. To maximise the likelihood numerically we use a procedure from [42] which we
call MAXLIKE, it updates the set assignment of the node that maximally increases/minimally
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decreases the likelihood at each step, and then repeats the procedure with remaining non-updated
nodes. The complete algorithm is given in SI C. For multimodal or shallow likelihood surfaces,
the maximum likelihood algorithms may fail to detect the maximum, and instead find a local
optimum. To alleviate this concern, we use a range of initial values for the algorithms.

In our preliminary analysis, we also employed a related faster, greedy likelihood maximisation
algorithm. We found that MAXLIKE slightly outperformed the faster approach on accuracy, and
hence do not present the fast greedy method here.

4. Numerical Experiments on Synthetic Data
In order to compare the performance of the methods from Section 3, we create three benchmarks
using the synthetic model DCP (p1, p2) from Section 2. Leveraging the fact that we have access
to a ground truth partition (here, a planted partition), the purpose of these benchmarks is
(1) to compare our approaches to other methods from the literature; and (2), to assess the
effectiveness of the p-value and theDCPM as indicators of core–periphery structure. We also use
the benchmark to assess the run time of the algorithms. For the methods comparison, we compare
HITS, ADVHITS and MAXLIKE to a naïve classifier (DEG.), which performs k-means++ [40],
clustering solely on the in- and out- degree of each node; we also compare them against two
well-known fast approaches for directed networks, namely SAPA from [34] and DISUM from [43];
implementation details and variants can be found in SI D. For brevity, we only include the best
performing SAPA and DISUM variant, namely SAPA2, using degree-discounted symmetrisation,
and DISUM3, a combined row and column clustering into four sets, using the concatenation of
the left and right singular vectors. Both SAPA and DISUM perform degree normalisation which
may limit their performance. Moreover, our methods are compared against the stochastic block
modelling fitting approach GRAPHTOOL [44], based on [2,45], which minimises the minimum
description length of the observed data. To make this a fair comparison, we do not use a degree
corrected block model but instead a standard stochastic block model, and we fix the number of
sets at four.

The second goal is to assess on synthetic networks whether our ranking of method
performance based on p-value and DCPM is qualitatively robust across measures that do not
require knowledge of a ground truth partition. To this end, we compare these rankings to those
obtained with measures that do leverage ground truth, namely the ARI.

(a) Results for the Benchmark Networks
Benchmark 1 We test our approaches using our 1-parameter SBMDCP (1/2 + p, 1/2− p), with
equally-sized sets, and varying p∈ {0.5, 0.49, 0.48, . . . , 0.21} ∪ {0.195, 0.19, 0.185, . . . , 0.005}, the
finer discretisation step zooming in on the parameter regime which corresponds to the planted
partition being weak. We average over 50 network samples for each value of p. Recall that, for
p= 0.5, the planted partition corresponds to the idealised block structure in Eq. (2.2) and for p= 0

the planted partition corresponds to an Erdős-Rényi random graph with edge probability 0.5.
The performance results for sets of size 100 (n= 400) are shown in Table 1, giving the ARI for

p= 0.4 and for values of p between 0.1 and 0.02 with step size 0.01, in decreasing order (with
results for the full parameter sweep in SI D).

With regards to ARI, MAXLIKE performs best for p in the range of 0.1 to 0.03,, with
performance deteriorating when the noise approaches the signal. Above a certain threshold of
p (roughly around p= 0.25, results shown in Fig. SI 1 in SI D), many approaches, including
the degree-based one DEG., achieve optimal performance, indicating that in this region of the
networks obtained with Benchmark 1, the degrees alone are sufficient to uncover the structure.
For NMI and VOI, we observe similar qualitative results, see SI D.

The performance of GRAPHTOOL collapses as p gets close to 0 (similar behaviour is observed
for n= 1000 see SI D). Further investigation indicated that for low values of p, GRAPHTOOL often
places most nodes in a single set (see SI D for further details).
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p 0.4 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02
DEG 1.0 0.878 0.819 0.753 0.663 0.536 0.408 0.281 0.163 0.0767

DISUM 0.995 0.383 0.277 0.193 0.117 0.0506 0.0171 0.00651 0.0021 0.000614
SAPA 1.0 0.405 0.276 0.202 0.144 0.0811 0.0306 0.00809 0.00274 0.00085

GRAPHTOOL 1.0 0.996 0.985 0.968 0.921 0.655 0.0104 0.000119 2.08e-05 2.73e-05
HITS 1.0 0.909 0.852 0.78 0.692 0.562 0.423 0.275 0.152 0.071

ADVHITS 1.0 0.972 0.946 0.901 0.814 0.693 0.525 0.333 0.168 0.0777
MAXLIKE 1.0 0.997 0.986 0.971 0.931 0.831 0.675 0.42 0.195 0.0577

Table 1. Average ARI of the methods under comparison on Benchmark 1 (DCP (1/2 + p, 1/2− p)) for different values

of p, and with network size n= 400. The largest values for each column are given in boldface.

Benchmark 1 is also used to assess the run time of the algorithms. The slowest of our methods
across all values of p is MAXLIKE. For small p, HITS is the fastest of our methods, whereas for
larger p it can be overtaken by ADVHITS; both are faster than GRAPHTOOL. Within methods, the
performance is relatively constant for HITS while it speeds up for decreasing p in ADVHITS and
MAXLIKE. The detailed results can be found in SI D.

Benchmark 2 We use the model DCP (p1, p2), again with all four sets of the same size n
4 .

In this model, the edge probabilities (p1, p2) vary the density and the strength of the core
periphery structure independently. To this end, we vary p1 and the ratio 0≤ p2

p1
< 1. For a given p1,

p2
p1

= 0 corresponds to the strongest structure, and p2
p1

= 1 to the weakest structure. We generate
50 networks each with p1 ∈ {0.025, 0.05, . . . , 1.0} and p2

p1
∈ {0, 0.05, . . . , 0.95}, resulting in 820

parameter instances of (p1,
p2
p1

). The contours corresponding to an average ARI of 0.75 and an
average ARI of 0.9 for n= 400 and n= 1000 are shown in SI D.

Similarly as in Benchmark 1, the full likelihood approach MAXLIKE outperforms all other
methods, with GRAPHTOOL also performing well, and the performance of ADVHITS coming close
and outperforming GRAPHTOOL in certain regions.

Benchmark 3 Benchmark 3 assesses the sensitivity of our methods to different set sizes. We use
the model DCP (1/2 + p, 1/2− p). We fix p= 0.1, as we observed in Table 1 that this value is
sufficiently small to highlight variation in performance between our approaches, but sufficiently
large that most of the methods can detect the underlying structure. We then consider the effect of
size variation for each set in turn, by fixing the size of the remaining three sets. For example, to
vary the size of Pout, we fix nCin = nCout

= nPin
= n1 and test performance when we let nPout

=

n2 ∈ {2−3n1, 2−2n1, . . . , 23n1}, with equivalent formulations for the other sets. Thus for n2
n1

= 1

we have equal-sized sets, which is equivalent to the model in Benchmark 1, for n2
n1
> 1 one set is

larger than the remaining sets, and for n2
n1
< 1, one set is smaller than the others.

Results are shown in SI D for n1 = 100 (n2
n1

= 1 implies a 400 node network). MAXLIKE

slightly outperforms GRAPHTOOL, and is the overall best performer, appearing to be robust to
set size changes. ADVHITS usually outperforms the other approaches, however, for larger sets,
the ADVHITS is in some cases even outperformed by DEG.

(b) Performance of the p-value and DCPM to capture ground truth
To investigate whether the p-values andDCPM introduced in Section 2 are appropriate to assess
partition quality, we test the relationship between our proposed quality measures and ARI on a set
of benchmark networks. We create these networks using the synthetic model for Benchmark 1, i.e.,
DCP (1/2 + p, 1/2− p), with three values of p focusing on the region where the planted partition
is detectable (p= 0.1); marginally detectable (p= 0.04); and (mostly) undetectable (p= 0.02). We
note that, for large p, all of the methods will be able to uncover the exact partition and thus each
partition would have an ARI of 1 (Table 1), with differences in DCPM driven by the strength of
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Figure 2. Scatter plots for p-value,DCPM and ARI, using the partitions given by each of our methods on networks taken

from DCP (1/2 + p, 1/2− p) with p∈ [0.015, 0.04, 0.1], with 20 networks for each p. Upper left panel: ER model p-

value against ARI. Upper right panel: DCPM against ARI. Lower left panel: ER model p-value against DCPM . Lower

right panel: ARI against DCPM using only networks that are significant (p-value< 0.05) in both the ER model and the

configuration model test. The colour of each of the points represents the method used.

the embedded structure. For computational reasons, we restrict the experiment to 20 networks for
each p, and use 250 null replicates for each Monte Carlo test. Each of our three methods is applied
to each network, and thus each network gives rise to three p-values and DCPM values.

For good partitions, the ARI should be high, the p-value should be low, and the DCPM value
should be high. Hence ARI and p-value should be negatively correlated, p-value and DCPM

should be negatively correlated, while ARI and DCPM should be positively correlated. For
robustness, we assess correlation by Kendall’s τ rank correlation coefficient. For both the Erdős-
Rényi (ER) and configuration model p-values, we observe a moderate negative correlation with
ARI (ER:−0.599, Configuration:−0.506, data for configuration model not shown). The correlation
betweenDCPM and ER p-value is−0.655, and the correlation betweenDCPM and ARI is 0.774.
The upper left panel of Fig. 2 illustrates selecting partitions with ER p-value less than 0.05 is
successful at filtering out partitions with a low ARI, but struggles to separate partitions with mid
range ARI from networks with high ARI. Focusing only on network partitions with a p-value of
less than 0.05 in both the ER and the configuration model test, as shown in the lower right panel
of Fig. 2, we note that DCPM further differentiates the partitions with low p-value and gives
a correlation of 0.774 with ARI. The direction of all of these correlations are as expected. If the
observations were independent, then these correlations would be highly statistically significant.
Thus, while not conclusive evidence, the level of correlation supports the use of our p-value test
and DCPM to identify partitions.

As further support for this claim, Table 2 presents the average ER and configuration p-value,
average DCPM values, and average ARI, broken down by method and model parameter. As
expected for good partitions, we observe low p-values for strong structures (p= 0.1, ARI> 0.9),
higher p-values for weaker structures (p= 0.04, 0.25<ARI< 0.45), and non-significant p-values
for very weak or non-existent structures (p= 0.02, ARI<0.1).1 In particular, whenever average ARI
≥ 0.4 in Table 2, all p-values are significant. Thus, we find that both the p-value and the DCPM
can be used as proxy for the ARI, displaying a moderate correlation. The DCPM is particularly
useful to extract more detailed information for partitions which exhibit low p-values. In particular,

1For completeness, we display the sample standard deviation for all methods in SI D.
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p 0.1 0.04 0.02
p-value p-value p-value

ER Con. DCPM ARI ER Con. DCPM ARI ER Con. DCPM ARI
HITS 0.004 0.004 0.091 0.916 0.004 0.004 0.031 0.274 0.325 0.269 0.011 0.071

ADVHITS 0.004 0.004 0.093 0.974 0.007 0.008 0.035 0.340 0.327 0.412 0.014 0.074
MAXLIKE 0.004 0.004 0.093 0.997 0.004 0.004 0.040 0.439 0.344 0.4 0.007 0.059

Table 2. Average p-value (ER and configuration model), DCPM and ARI, over 20 networks, with a breakdown by

method and parameter in a DCP (1/2 + p, 1/2− p) model; p-values are rounded to 3 dp. The corresponding sample

standard deviations are shown in Table 5 in SI D.

Table 2 and SI D indicate that using average DCPM as an approach to rank methods, overall
yields qualitatively similar results to ARI.

In Table 2, MAXLIKE and ADVHITS tend to have the highest average DCPM and ARI. In SI D
we show that this observation is robust across further values of p. Overall, our ranking of method
performance based on average partition quality values is thus robust across DCPM and ARI, for
different values of p in DCP (1/2 + p, 1/2− p).

To illuminate the relationship between DCPM and ARI further, for p= 0.1 we observe a
Kendall correlation of 0.315 between them across methods; for p= 0.04 this correlation increases
to 0.753, while for p= 0.02 the correlation decreases to 0.367 (all rounded to 3 dp). For p= 0.1 there
is little noise and hence variation in DCPM , ranging between 0.0868 and 0.0964, nor in ARI ,
ranging from 0.863 to 1; the structure is so strong that much of it is picked up by the methods, and
the noise which both methods pick up will be small and a Kendall correlation will mainly relate
to this noise. For p= 0.04 there is a moderate signal; DCPM ranges between 0.020 and 0.0427
while ARI ranges between 0.0186 and 0.605. Here the strong correlation between DCPM and
ARI supports the value of DCPM as proxy for ARI in choosing partitions which resemble the
ground truth. For p= 0.02 there is little signal in the data and hence DCPM and ARI will be
noisy; DCPM here ranges between -0.032 and 0.033, while ARI ranges between 0.021 and 0.132.
Due to the high level of noise, none of the methods will tend to give very good partitions, and the
correlation between the measures will be relatively weak. Notably, in all cases the correlation is
larger than 0.3, revealing a moderate correlation across the range.

(c) Procedure
Our procedure to select between methods and partitions in a systematic manner is as follows.
Procedure:

(i) Compute partitions using each computationally tractable method;
(ii) For each partition, use our Monte Carlo test to see if it deviates from random, both with

respect to ER and to the directed configuration model, and exclude the partitions that are not
significant;

(iii) Rank the selected significant partitions for further analysis using DCPM .

5. Application to real world data
In this section, we apply our methods to three real-world data sets, namely Faculty Hiring data
(Faculty) from [46] (Section 5(a)), Trade data (Trade) from [47] (Section 5(b)), and Political Blogs
(Blogs) from [48] (presented in the SI F for brevity). In each case, our methods find a division
into four sets, and we explore the identified structure using known underlying attributes. We
use the procedure which we validated on synthetic data in Section 4, using DCPM to only rank
partitions with significant p-values. We also assess the consistency of the partitions, both within
and across each of the approaches, by computing the within-method ARI between the resultant
partitions and the ARI between methods of different types.
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H
it

s
A

d
v
H

it
s

M
a
x
L
ik

e
B

o
w

t
ie

B
o
w

t
ie

A
d
j

Hits

AdvHits

MaxLike

Bowtie

BowtieAdj

Faculty Hiring - Average ARI Between Partitions

0.0

0.2

0.4

0.6

0.8

1.0

H
it

s
A

d
v
H

it
s

M
a
x
L
ik

e
B

o
w

T
ie

B
o
w

T
ie

A
d
j

Hits

AdvHits

MaxLike

BowTie

BowTieAdj

Trade Data - Average ARI Between Partitions

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3. (Top) Performance of the methods on each of the real world data sets. The p-values are computed using our

Monte Carlo test with 250 samples from the null distribution. The values have been rounded to 3dp. The largest values of

DCPM (from Section 2) for each data set are given in boldface. (Bottom) The ARI between the partitions uncovered

by each method, in (Left) Faculty, (Right) Trade. Negative values are set to 0. For our methods we compare with 11

runs and show the average similarity between all pairs of partitions whereas for bow-tie, we use a single run (the algorithm

is deterministic) and thus display a blank (white) square on the corresponding diagonal blocks. To compare to bow-tie, we

compare both to the partition into 7 sets and the BOWTIEADJ partition formed by a subset of the nodes corresponding

to the main three sets.

Moreover, we compare the partitions with the structure uncovered by bow-tie [20], as
discussed in Section 2. As bow-tie allocates nodes to 7 sets, we consider the ARI between the
partition into 7 sets (BOWTIE), and the partition induced only by the core set and the in- and
out-periphery sets (BOWTIEADJ). When computing the ARI between the partition given by
BOWTIEADJ with another partition S, we consider the partition induced by S on the node-set
in BOWTIEADJ (by construction, the ARI between BOWTIEADJ and BOWTIE is always 1).

Fig. 3 (top) shows a summary table for the three real-world data sets; the p-values correlate
with the DCPM measure on all three data sets, and the value of DCPM is always highest for
the likelihood approach. We thus focus our interpretation on the output partition obtained with
MAXLIKE.

(a) Faculty Hiring
In the faculty hiring network from [46], nodes are academic institutions, and a directed edge from
institution u to v indicates that an academic received their PhD at u and then became faculty at
v. The data set is divided by gender, faculty position, and into three fields (Business, Computer
Science, and History). For brevity, we only consider the overall connection pattern in Computer
Science. This list includes 23 Canadian institutions in addition to 182 American institutions, The
data were collected between May 2011 and March 2012. They include 5,032 faculty, of whom
2,400 are full professors, 1,772 associate professors, and 860 assistant professors; 87% of these
faculty received doctorates which were granted by institutions within the sampled set. In [46], it
is found that a large percentage of the faculty is trained by a small number of institutions, and it
is suggested that there exists a core–periphery-like structure in the faculty hiring network.
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Figure 4. Structures in Faculty. Summary network diagram associated with the uncovered structure for MAXLIKE. The

size of each of the nodes is proportional to the number of nodes in the corresponding set, and the width of the lines is given

by the percentage of edges that are present between the sets. Partitions in Faculty. A - Boxplot of in- and out-degrees

in each of the sets in MAXLIKE. B - Boxplot of in- and out-degrees in each of the sets in ADVHITS. To visualise the

out-degrees on a log scale, we add 1 to the degrees. C - Boxplot of the ranking in [46], denoted π, ranking in NRC95 and

the ranking in USN2010 in each of the sets in MAXLIKE. If a ranking is not reported for an institution, we exclude the

institution from the boxplot.

We apply our procedure to this data set, and find that the results from the ADVHITS variants
and the likelihood method MAXLIKE are significant at 5% under both random null models,
whereas the other approaches are not (Fig. 3). Next, we consider the DCPM score between the
significant partitions (Fig. 3), and note that, MAXLIKE (0.507) yields a stronger structure than
ADVHITS (0.390), and hence we focus on the MAXLIKE partition, which is shown in Fig. 4.

The results in Fig. 4 show a clear ‘L’-shape structure, albeit with a weakly defined Pout. To
interpret these sets, we first compare them against several university rankings. In each of the
sets found using MAXLIKE, Fig. 4C shows the University ranking π obtained by [46], and the
two other University rankings used in [46], abbreviated NRC95 and USN2010. Here, the NRC95
ranking from 1995 was used because the computer science community rejected the 2010 NRC
ranking for computer science as inaccurate. The NRC ranked only a subset of the institutions;
all other institutions were assigned the highest NRC rank +1= 92. The set Cout has considerably
smaller ranks than the other sets, indicating that Cout is enriched for highly ranked institutions.
Upon inspection, we find that Cout consists of institutions including Harvard, Stanford, MIT and
also a node that represents institutions outside of the data set. The setPin from MAXLIKE appears
to represent a second tier of institutions who take academics from the schools in Cout (Fig. 4) but
do not return them to the job market. This observation can again be validated by considering the
rankings in [46] (Fig. 4C). The Cin set loosely fits the expected structure with a strong incoming
link from Cout and a strong internal connection (Fig. 4), suggesting a different role to that of the
institutions in Pin. A visual inspection of the nodes in Cin reveals that 100% of the institutions
in Cin are Canadian (also explaining the lack of ranking in USN2010 (Fig. 4C)). In contrast, the
proportion of Canadian universities in Pout is 11.1%, in Cout it is 2.3%, and in Pin it is 0.79%.
This finding suggests that Canadian universities tend to play a structurally different role to US
universities, tending to recruit faculty from other Canadian universities, as well as from the top
US schools. In [46], the insularity of Canada was already noted, but without a core–periphery
interpretation. One possible interpretation of this grouping is salary. In 2012 it was found that
Canadian public universities offered a better faculty pay on average compared to US public
universities; see [49].

Finally, Pout is weakly connected both internally and to the remainder of the network
and does not strongly match the ‘L’-structure (Fig. 4). In each of the rankings (Fig. 4C), Pout
has slightly lower average ranks than the other sets (with the exception of Cin, due to the
default/missing rankings of Canadian institutions). This could indicate that Pout consists of
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lower ranked institutions which are not strong enough to attract faculty from the larger set of
institutions. The in- and out-degree distributions, (Fig. 4B), show that Pout has lower in- and out-
degree distributions than the other sets. Thus, an alternative hypothesis is that Pout consists of
universities with smaller Computer Science departments which do not interact with the wider
network. We leave addressing this interpretation to future work. In either case, the institutions in
Pout do not appear to match the pattern observed in the remainder of the network and hence it is
plausible to delegate them into one set.

Overall, in this real-world data set, we demonstrated the power of our method by uncovering
an interesting structure that includes a Cin which captures Canadian Universities that appear to
recruit faculty from top ranked US institutions, but also recruit from other Canadian institutions
in Cin.

(b) World Trade
The World Trade network from [47] has countries as nodes and directed edges between countries
representing trade. For simplicity, we focus on data from the year 2000 and restrict our attention
to the trade in “Armoured fighting vehicles, war firearms, ammunition, parts” (the SITC class 9510).
We remove trades that do not correspond to a specific country, resulting in a total of 256 trades
involving 101 countries, which leads to a network density of roughly 0.025.

Following our procedure, we first consider the p-values of our Monte Carlo test. ADVHITS

and MAXLIKE show significant deviation from random when compared to the directed ER and
directed configuration models (Fig. 3). When calculating the DCPM for statistically significant
partitions, we observe a similar ordering to that of the Faculty data set results, with MAXLIKE

having the highestDCPM (0.72), ADVHITS having the second highestDCPM (0.65), and finally
HITS with a DCPM of −0.60.

The ARIs in Fig. 3 show considerable similarity between the MAXLIKE and ADVHITS, with
a weaker similarity between HITS and the BOWTIE variants. Considering the similarity with
BOWTIE, the connected component based BOWTIE performs better on this sparser data set,
producing 4 sizable sets and 2 singleton sets (unlike in Faculty with 2 sizable sets and 1 singleton
set). However, while there is some similarity with our partitions (as demonstrated by a larger
value of ARI), the structures captured by each approach are distinct and complementary. For
example, focusing on the structure with the highest DCPM (MAXLIKE), the BOWTIE ‘core’
combines our Pout and Cout, capturing ≈ 93% of the nodes in Pout (26) and ≈ 82% of the nodes
in Cout (9). Overall, this demonstrates that in this data set, BOWTIE does not distinguish between
what we will demonstrate below are two distinct structural roles. Furthermore, BOWTIE splits
our Pin set into two. A similar comparison of the division of the sets holds between BOWTIE and
ADVHITS, indicating that the differences between BOWTIE and methods to which it is similar
in Fig. 3 methods are robust.

Following our procedure, we now focus on the structure with the highest DCPM (MAXLIKE).
It has the ‘L’ shaped structure (Fig. 5 top left panel), with smaller core sets and larger periphery
sets. To support our interpretation of the structures, we also present summaries of some of their
covariates for the year 2000, namely GDP per capita, research spend, and military spend, the latter
two as a percentage of GDP. We obtain these covariates from the World Bank using the ‘wbdata’
package [50], using ‘GDP per capita (current US$)’ licensed under CC-BY 4.0 [51], ‘Military
expenditure’ (% of GDP) from the Stockholm International Peace Research Institute [52], and
‘Research and development expenditure (% of GDP)’ from the UNESCO Institute for Statistics
and licensed under CC BY-4.0 [53]. Not all country covariate pairs have the covariate data
available. For completeness, in the last line of Fig. 5, we report the percentage of data points
we have available, split by covariate and group.

From Fig. 5, key patterns emerge, with Cout consisting of somewhat wealthy countries, with a
higher research spend as a percentage of GDP and a high density of export links. This set includes
several European countries (France/Monaco, Germany, Italy, UK, Switzerland/Liechtenstein, the
Czech Republic, and Slovakia), as well as Russia, China, Iran and South Africa.
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Figure 5. Structures in the WorldTrade data set. We show summary network diagrams associated with the uncovered

structures for the MAXLIKE partition on Trade network, constructed using trades from the category "Armoured fighting

vehicles, war firearms, ammunition, parts” category from the year 2000. In the top left panel, we show a summary of

the uncovered structure. The size of each of the nodes is proportional to the number of nodes in each set, and the width

of the lines is given by the percentage of edges that are present between the sets. In the middle left panel, we display

the percentage of edges between each pair of blocks, allowing for a visualisation of the ‘L’-structure. The top right
panel visualises the partition on a World map with the colours corresponding to each of the uncovered sets. In the lower

set of three panels, we display boxplots of three covariates of the uncovered groups, namely GDP per capita, military

spend as a percentage of GDP, and research spend as a percentage of GDP. To render the covariates comparable with

the partitions from the year 2000, we restrict the covariate data to be from the same year. We note that data from yer 2000

is not available for all country covariate pairs, and thus we present the percentage of countries with data in each group in

the bottom row of each plot.

In contrast, the set Cin has a higher median GDP per capita but with a lower upper quartile,
and on average, lower research spend than Cout (Fig. 5). It includes several South American
countries, (Argentina, Brazil, Colombia, Ecuador and Venezuela), several European countries
(Greece, Norway and Finland), and several countries in south-east Asia/Oceania (Philippines,
Indonesia and New Zealand). A key player in the network appears to be the USA, with a very
high in-degree of 45 (the country with the second-largest in-degree is Norway, also in Cin, with
an in-degree of 15) and a lower out-degree of 14 (11 of which are in Cin); the country with the
largest out-degree of 16 is the Czech Republic (6 of which are in Cin). To assess the robustness of
this allocation, we removed the USA and all its degree 1 neighbours (a total of four nodes); the
resulting core–periphery structure is similar with 9 nodes changing sets.

The set Pout appears to consist of economies which are not large exporters, but support the
countries in Cin. The group consists of 14 European nations (e.g. Austria, Belgium, Netherlands
and Spain), several nations from Asia, (India, Pakistan, Japan, South Korea, Singapore, Taiwan
and Thailand), three Latin American countries (Chile, Mexico and Peru) and several additional
countries which do not fit into a clear division. Finally, Pin consists of nations who buy from
the main exporters, but do not export themselves. This group is large (49 nodes), and includes
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17 African nations, representing most of the African nations in the data set. An additional set of
seven nations were either part or closely aligned with the USSR (e.g. Estonia, Latvia, Lithuania
and Ukraine). Finally, there is also a group of six Latin American countries and seven Middle
Eastern countries, including Syria and Oman. The set Pin appears to have on average lower GDP
per capita than other groups (Fig. 5), with a higher range of military spending as a proportion of
GDP. For this group, data on the research spend as a percentage of GDP is only available for 37%
of the countries. We observe that for these countries, it is (on average) much lower than the other
groups.

In conclusion, our procedure uncovers four groups, each with a different structural role in the
trade network. We have explored the roles that each of these groups might play in the global
market, and while we cannot rule out data quality issues, the partition found does uncover latent
strong patterns which we have validated by considering external covariates.

6. Conclusion and future work
We provide the first comprehensive treatment of a directed discrete core–periphery structure
which is not a simple extension of the bow-tie structure. The structure we introduced consists
of two core sets and two periphery sets defined in an edge-direction-dependent way, each with a
unique connection profile.

In order to identify when this structure is statistically significant in real-world networks, and to
rank partitions uncovered by different methods in a systematic manner, we introduce two quality
measures: p-values from Monte Carlo tests and a modularity-like measure which we callDCPM .
We validate both measures on synthetic benchmarks where ground truth is available.

To detect this structure algorithmically, we propose three methods, HITS, ADVHITS and
MAXLIKE, each with a different trade-off between accuracy and scalability, and find that
MAXLIKE tends to outperform ADVHITS, as well as the standard methods from the literature
against which we compared.

Using our quality functions to select and prioritise partitions, we explore the existence of our
directed core–periphery structure in three real-world data sets, namely a faculty hiring network,
a world trade network, and a political blog network. In each data set, we found at least one
significant structure when comparing to random ER and configuration model graphs.

(i) In the faculty hiring data set, the MAXLIKE partition uncovers a new structure, namely
Canadian universities which have a large number of links with the top US schools, but also
appear to strongly recruit from their own schools, indicating a complementary structure to
the one found in [46].

(ii) In the trade data, we uncover four sets of countries that play a structurally different role in the
global arms trade, and we validate this structure using covariate data from the world bank.

(iii) In the political blogs data set, we uncover a Cin core, which we hypothesise to consist of
authorities that are highly referenced, and a Cout core which links to a large number of
other blogs. We support this hypothesis by noting that Cin has a much lower percentage of
‘blogspot’ sites than the other set, and that Cin contains all but 1 of the top blogs identified
by [48].

In cases where one of our methods does not yield a statistically significant partition or yields
a partition with a low value of DCPM (e.g., HITS with Trade), it can be important to inspect the
output partition before disregarding it. We have observed that in certain cases this can occur
because the assignment of clusters to the sets Pout, Cin, Cout and Pin with the highest likelihood
in the final step of each method (see Section 3) has low density within the ’L’ and high density
outside of the ’L’. This may phenomenon occur because the stochastic blockmodel which assigns
the group labels of recovered sets rewards homogeneity but does not penalise for sparseness
within the ’L’. One could modify our implementation into a constrained likelihood optimisation
where one would obtain partitions with potentially lower likelihood but a more pronounced ‘L’
structure.
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Future research directions There are a number of interesting directions to explore in future
work. We start with the specification of the core–periphery structure. The faculty data highlights
that some nodes simply may not fit the core–periphery pattern, and thus following the
formulation of bow-tie, it would be interesting to explore modifications to our approaches that
would allow for not placing nodes if they do not match the pattern (for example, by introducing
a separate set for outlier nodes). As detailed in SI A, other directed core–periphery patterns
are possible. Some of our methods could be adapted to detect such core–periphery patterns.
In principle, all possible core–periphery structures could be tested simultaneously, with an
appropriate correction for multiple testing. Such a development should of course be motivated
by a suitable data set which allows for interpretation of the results. More generally, meso-scale
structures may change over time, and it would be fruitful to extend our structure and methods to
include time series of networks.

Next, we propose some future directions regarding the methods for detecting core–periphery
structure. The first direction concerns scalability. Depending on the size of the data set under
investigation, a user of our methods may wish to compromise accuracy for scalability (e.g.,
by using HITS or ADVHITS instead of MAXLIKE). Another scalable method to potentially
consider stems from the observation that the expected adjacency matrix (under a suitable directed
stochastic block model) is a low-rank matrix. With this in mind, the observed adjacency matrix
can be construed as a low-rank perturbation of a random matrix, and therefore, one could
leverage the top singular vectors of the adjacency matrix to propose an algorithm for directed
core-periphery detection. The advantage of this approach is that it is amenable to a theoretical
analysis and one could provide guarantees on the recovered solution, by using tools from matrix
perturbation and random matrix theory. In our preliminary numerical experiments, such an SVD-
based approach outperforms the standard methods, and while outperformed by MAXLIKE and
ADVHITS, it is considerable faster. More details can be found in the technical report [23]. Further
future work could explore graph regularisation techniques, which may increase performance for
sparse networks. Another direction for future work concerns DCPM . In this paper, we have
used it as a quality function that is method-independent for assessing the directed core–periphery
partition in Eq. (2.2) produced by different methods. It would be interesting to develop methods
which optimize the DCPM quality function directly.

Finally, in future work, it would be interesting to explore more data sets with complex
structure. In studies of meso-scale structure (e.g. core–periphery and community structure), there
are many possible methods for detecting a given partition structure. While our methods are
designed to detect a specific core–periphery structure, empirical networks often contain more
than one type of meso-scale structure at a time. Adapting our partition selection process to other
types of meso-scale structures and combining different methods to explore a range of meso-scale
structures may yield novel insights about empirical networks.
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