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The thesis consists of three parts A, B, C, part A being the 

longest part. The objects of interest throughout are minimal 

distal transformation groups, in particular those for which the 

phase space is a compact topological manifold. Although many of 

the results obtained are true for a transfromation group in which 

the group acting is an arbitrary topological group, there is an 

emphasis, particularly in the latter part of part A, on the groups 

of integers and of reals.

Part A is concerned mainly with a classification of those 

minimal distal transformation groups (X,T) for v/hich X is a compact 

manifold. A refinement of the Furstenburg Structure Theorem, for 

such a phase space X, is proved, to show that there exists a finite 

sequence lu^T)?! of transformation groups with (Xq ,T) trivial,

(Xr ,T) = (X,T), and (X^+^,T) an almost periodic extension of 

(Xi,T), where r ^ dim X. An important step in the proof is the 

Addition Theorem: if (7/,T) is any minimal distal transfornatiun 

group with factor (Z,T) and factor map IT , then the covering 

dimension of the fibres "h ''"(z) is constant, and: 

dim Z + dim TI ~^(z) = d.im W for all z 6 Z.

It is also shown- in the course of the proof that the compact group 

associated with the extension (Xi+-,,T) is Lie, so that Xi+^ is the 

total space of a fibre bundle with base X^, homogeneous fibre, 

ani Lie structure group. One can then use fibre bundle theory to 

obtain information about the structure of (X,T) when dim X is 

low (i.e. 3). The details of this are worked out in the second

half of part A.

Since fibre results are thus available for (X,T) with X  a compact 

manifold, one might expect such transformation groups to be less 

pathological than in general, and part B gives an example of this:
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using the Homotopy Covering Theorem, it is shown that any two 

fibres of a minimal distal transformation group over a factor 

are homeomorphic if the corresponding two points in the factor 

can be connected by a path (which implies all fibres are the same 

up to homeomorphism if, for example, the phase space of the trans­

formation group is a compact manifold). But it is shown that two 

fibres need not be homeomorphic in general. In the example given, 

the phase space^-Qf the transformation group is a connected metric 

3 -dimensional space resembling a nilmanifold, and the phase space 

of the factor is a solenoid. Points in the solenoid, over which 

the fibres belong to a fixed homeomorphisra class, lie in a nowhere 

dense set consisting of at most countably many path’.vise-connected 

components of the solenoid.

The "classification“ of part A is a topological one in a topo­

logical category, since the Furstenburg Structure Theorem deals 

with topological structure. A differentiable analogue of the 

Furstenburg Structure Theorem might be the following: if (X1 ,T) 

is minimal distal with X' a Cr manifold and T a group of c1" 

Aif£»o«orphisms, then (X*,T) is topologically conjugate to (X,T) 

(where X is a C manifold and T again a group of C difisomorphisms) 

such that there exists a finite sequence f tx^T)^ i^Q of 

transformation groups with (Xq ,T) trivial, (Xr,T) = (X,T), X^

a Cr manifold, (X±+;l,T) an almost periodic extension offX^.T), the
y* rfactor map being C , and the associated fibre bundle bexng C .

(One sees at once that one has to allow topological conjugacy between 

X and X* by considering minimal diffeomorphisms of the circle, 

which are always topologically, but not necessarily c \  conjugate 

to rotations). Part C shows that the differentiable analogue 

suggested here does not hold. By part A, a minimal distal positively- 

oriented non-almost-periodic honeomorphism of the torus is
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topologically conjugate to a topological skew-product of tne 

form:

(x,y) I---- > (x+*<, y+g(x)),

where o! is uniquely determined up to its sign. In part C, a 

minimal distal positively oriented analytic diffeomorphisn of 

the torus is constructed which is not topologically conjugate to 

any skew product, thus providing a counterexample to the 

suggested differentiable structure theorem. However, the construction, 

(which is similar to Arnold's construction of an analytic diffee- 

morphism of the circle which is not C^-conjugate to a rotation) 

depends on the associated irrational, which has, among other 

things, to be Liouville. It is not clear what happens if, for 

example, the irrational is of bounded density, in which case, as 

Arnold conjectured, and Herman has shown, an analytic diffeoaorphism 

with the irrational as rotation number is analytically conjugate 

to a rotation, so that Arnold's construction most certainly does

not work.
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ON THE STRUCT;;RS OP MINIMAL DISTAL *TRAIiSfORMATJlO:» GROUPS iVITH
TOPOLOGICAL MANIFOLDS AS PHASK SPACES

K. RE2S

¿1 Introduction and statement of the two basic theorems
The first purpose of this paper is to show ho* tbs Furstenbierg Structure 

Theorem for minimal distal transformation ¿roups [2j, ¿3J con be refined when 
applied to a minimal distal' transformation ¿roup (X.T) for which X Is a 
compact topological manifold. The refinement is given by the Manifold Structure 

Theorem 1.2, for which we need a result concerning thn dimension of a factor 

of a minimal distal transformation group, namely the Addition Theoren 1 .1.
££ 2 - 7  are devoted to proving these two basic theorems - the actual proofs 
are given in 6 - 7 . The rest of the paper is devoted to cxemlnlng, in some 
detail, what, the structure theorem tells us in the case of connected manifolds 

of dimension $ 3 » an explanation of how the structrre theorem gives ue some 
sort of classification of the transformation groups is given in $9» ar.d the 
results are summarized there in tabular form, U6ing the notation in the index 

of ^ 3, which is a constant reference for the rest of the paper. Details of 

the results are worked out in yj1 0  - 1 3 .
There Is soire overlap in this work with that of Bronsteln [l] which will 

be discussed where it seems appropriate to do so.
1 should like to thank my supervisor, Professor W. Parry, for Cwhsidcrable 

help, particularly in the preparation of this paper. Tnie leper * 1 1 1  he part 
of my Ph.D. tnecls, and I should like to thank the S.2.C. for financial support 

We now proceed to lue two basic thec-ems:

1.1 To* Aid 1 Her. Theorem
Let IX,T) be a minimal distal transformation group (¡f.l) ana let 

(Y,T) -<w(X,T) (1,.2). Then if "dim" denotes covering dimension, dim ir”^(y)

is constant for y <J I and :
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with the convention that n + *» = oo (n a •» or n an integer).

1,2 The Manifold Structure Theorem
Let (X,T) be a cinlmal distal transformation ¿roup (if.i) and let X be 

finite-dicenslonal with finitely many arcwlse-connected components. (These 
hypotheses are automatically satisfied if X is a topological manifold.) Then 

the following conclusions hold;
(1) If (Y,T) <  (X,T) then Y is a topological manifold (and, in particular,

X is a manifold).
(ii) CX,T) has order r, where r * Max(l,dJm X) (if.10).
(ill) Lot (Xq ,T) denote the trivial transformation group and let (X^.,,T> 
denote the (unique up to isomorphism) maximal almost periodic extension ct 
(Xi,T) in (X,T) (*i .9). Then there exists a minimal distal trar.afora^tiou group 
(Y^jT), a compact Lie group and a closed subgroup H., such that ti4 actc 

freely and Jointly continuously on Y^,
(s*y)t * C'(yt> for all g * y « TA, t * T,

e ’̂ E.g. r, »e^, and the following diagram is commutative
«t et 1  '
for 1 * 1  * rt

Diagram 1.2?a)

Xl ( = If/H.)

so that ■=
and the X^’a and Y^'s are manifolds.

v ) is a fibre bundle (3 .1 ) for 1 *  x » s

Dim X^, > dim unless dim X « C (in which case X 13 finite).
If dim then dim 0^ * r^ir^+l)/^ by a result of FlO] .

(iw) is connected for i 5 2  ̂and Bj/H^ is connected if and only if X
Is connected.



(v) (A uniqueness property.) Let (X,T) S' (X’,T).
Let (X',T) denote the trivial transforcation group and let (X{+1 ,T) be a 
naxinal almost periodic extension of (Xĵ ,T) in (X*,?), and let (X^,T)(X^+^,T)

so that (by Jf.9) there exist T-lsoraorphieas (0 * 1 < r) such that the 

following diagram la commutative*
Diagram 1.2fb) .

■*t----- ^ --------- * xi

■•i-1 -
fi-

■* Xi-1

Let TJ, 0|, Hj, V'1§ (1 é 1 <■ r)' bear the sane relation to X^:.
as Ti, 0 ^  H1. i ±, V ±, (lirii r> bear to X±, In (l±i).
Than there "exist T-isosnrpbiBao 5  1: (Y^T/ — » (Y£,t?), and topological group 
isomorphisms  ̂ ■ ■ ■ ■ / carrying onto Kĵ  such that
$  ̂ g.y) = ¿1(6).S1Cj) for eSi ye i j ,  g e- and such that the following
diagram commutes:
Plagi aa 1.2(c)

ÌT.

*1 = 1 1-1

1 . 3  la [i"j ¿îronstein proved, anong other things, a sligntly different 
formulation of theorem 1.2(i)-(lli) with the hypothesis that X have finitely 
many arcwlae-connected components replaced by the hypothesis that X be 

locally connected; neither of theee conditions on X implies the other.
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Bror.stein seems to use in the proof the following: if (i,T) <  (X,T) for (X,T) 
minimal distal, then din Y -S din X (wliic.li, of course, follows from 1.1), but 
this result does not seen to be stated is £ 1 ] as either a theorem or an 

assumption, which is part of our justification for duplicating some of 3ron- 

stein's work.

1 .4 A similar theorem to 1.2 holds if the hypothesis that X have finitely 
many arcwise-connected components is omitted, and the hypothesis "T " is 

added, where:
T If and only if there exists a compact K £• T such that every 

neighbourhood of K generates T,
Roughly speaking, the second version of (1.2) is obtained by replacing 

the words "manifold" and "Lie group", wherever they occur, by "finitt-diuensiona 
space" and "finite-diEenoicnal group" respectively, and omitting all reference 

to fibre bundles. Thi. 3 second version of (1.2) wi31 not be proved here.

¿2. Preliminaries on linenslon Theory
It seems helpful to ll6t here various properties of covering diiterslon 

which will be ueed subsequently, particularly in the proof of the Addition 

Theaters 1.1 (see § 6 ).
Covering dimension is defined on the category of compact Hausdorff 

spaces [1 1 ], [1 2 ].
2.1 Covering dimension is a topological invariant.

2.2 If I is a closed subset of X, dim Y S dim X.
2 . 3  For x e. X, let dlmx(X) = inffdim C: U is a closed neighbourhood of

Then dim X s suo din (X) ( 0-V1 11.6-11.dl 
xeX

2.4 Max (dim X, din I) tdin XxY •& dim X + dim I ([ll] 26.4).

2.5 Dim [0,l]n b n ( (XZ\ Chapter IV).
From 2.5, 2.3, it follows that the covering dimension of a manifold is the 

same as the usual dimension.



2.fi If D Is a partially ordered net and ( ^ Is as inverse
system of compact Haucdorff spaces with inverse limit ( X , t h e n

dim X -i lio sup din Xrf. 
•(«D

L 3  Prellninarles on Fibre Bundles
The relevance of fibre bundles to the study of minimal distal transformation 

groups follows, of course,, froo the Furster.ba.rg Structure Theorem The
definitions given here are considerably less general than tne customary anas, 

but. are used for simplicity.

3.1 Definition ©  = (T,*,X,3,H,n,f,V) is a fibre bundle (or bundle) if:

(i) Y,W,X arc compact Eausdorff spaces-and P, Y , are continuous surjective 

maps.
(II) Q is compact Lis, H ( S  Is closed and A  g-^HS =

g*G

(iii) a acts freely cr. the left of I, the action (g,y> >— V gy l>eing 

Jointly continuous.
Civ) The following diagram commutes:

Diagram 3.1
->X ( = T/G)

\

/
W  C = Y/H)

X is called the base of the bundle, 0 the group of tho bundle and 3 the isotropy 

6Ufc croup.
If H is trivial, G  is a principal bundle, and we write ®  = (Y.X,&,P).

3 , 2  The above definition of fibre bundle is essentially the same as that of 

tl?3 Chapter 1, $2, because cf the following, which will be used in the proof 

Of the Addition Theorem 1.1 (see [9 ]Theorem 1 inSJ.1»)*
(1) If Y, S, X, ff, H, if , Y,v satisfy (l)-(iv) of 3*1, then for each y e T,

■ M M H M B H i
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if V(y) = x, there exists a compact neighbourhood U o' x fe X, and a continuous
one-to-one nap : 0 ----Hf 6uch that '’ej' = identity on U.

(ii) Let V = V ^(U). If X : V ---»G is defined by X(v) v) = v,
then X(g.v) = g.x(v) for all g £• 0, v €  V, X is continuous, and

V  x V  : V --->U x G is a homeoucrphl6B of V onto U x G.
(ii 1) V : ?(V)---» G/H = {i!g s g t G$ is well delinen by:

. X(?v) = HX(v) (v € V), and is continuous, and

IT x x : ? (V)---- >U x G/H is a homeomorphiem. o£ the neighbourhood fiT)
of $(y) onto U x G/H.

3»3 Lemma If 43 = (T,R,X,G,H,n,?,v*) is a fibre bundle, then 
dim # * die X ♦ dim G/H.

Proof 3y 2.2 and 2.3, it suffices to show that given w t 3r, there exists a 
closed neighbourhood ? cf « such that:

• ' dim V < dimir(V) ♦ dim G/H.
By 3.2, w has a neighbourhood V hcmeoraorphic to iT(v) x G/H, so that 

dim V - dlmCirt'OxG/H) (2.1)
•£ dlmir(V) + dim G/H (2 .4.).

~5.b me now define three different types of isomorphism of fibre bundles. This 
may seem cumbersome, but for the Justification see^?. 1st-isomorphism, 

essentially the type generally used in fibre bundle theory, is essentially 
the same as eoulvalence of bundles as in £17}. Hougnly speaking, trd-lsoaornais 
is necessary because we shall usually regard tha base srics of a bundle as 
the phase apace of a transformation group, and shall want to consider certain ' 
transfer •atlco-group-iaoaorphlFms of it.
Definitions Let <3 = (I,W,X,G,H,T,?, V) and S‘ = (y ,*• ,X' ,G» ,H*, ff • , *> , v* ) 

be two fibre bundles.
a) (ft and (A' are *rd-lsogorphlc under (3.a) {write ($,<*) : 3 — »53*) if u is 

a topological group Isomorphism of G onto G' carrying H onto H*, and 
qj : Y -- » I' is a homsomorphlaa satisfying:
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i'(c-y) = ̂ (e)-?(y) for ail y t t , & «■ Q.
Kote that 5 induces hoaeoaorphlsms of ¥.’ onto W  and X onto X' (y^> ̂ 2’ 

eay) euch that the following diagram commutes:

Diagram 3.4

■3 Definition The produce bundle with base X, group G and isotropy subgroup 

H is the bundle (JCxS.XxG/H.X.G.H.ir,? .v>. the action of G on XxG is

given by:
g.(x,g') = (».eg') f°r all x t X, g, g< G 0.
Tf(x, Hg) = x, V(x, g) = x, S(x, g) = <■*, Hg).

2_io Theorem (See [l?] H-&) Any bundle with base [0,1) ‘ (where I is any index 

eet) is Ist-JFCaorphlc to a product bundle.

\ H Preliminaries on Transforcatlcn Groups,
11 Definition Tliroushout thia work, we snail be ccaslderiiiS traasfcraatlo

group's (t.g.'s) where the phase spat. X is compact Ha. sdorfi and T is an 
arbitrary topological group acting on X (on the right) such that the map 

(x,t)<---* xt is Jointly continuous.
It,2 Definition If (X,T) lc « factor of (Y,T) and IT : (T,T)--- >(X,T) is
the factor homomorpnisa, write <X,T) ̂ ( T , T ) • (The suffix IT will frequently 

be onitted.)
4 . 3  Definition Given a t.g. (X,T), write E(X) for the enwelopplng sealgrou.
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of X. E(X) Is a compact Kausdorff space when giver. tli£ topology 3 p of pointwise 
convergence. Write (E(X),T) for the canonical t.g. with phase space E(X) and 
group T ([23 Chapter 3).

li .q Let (X, T) be a minimal distal t.g.. A reference for the following is L-3J- 
(Note that J1 3 ] deals with left, rather than right, t.g.*s.)
(a) For any x <S X, the map s (E(X),T) --- KX,T) is a T-honomorphisn onto
(X,T), where fTx(p) = xp.
(b) (E(X),3p) is a group in which the following caps are conticuous:

pi— ♦ qp (p, q e. E(x)),
pi----pt (t in the image of T in E(X), p a E(X)>.

(c) Let <T be the weakest topology on E(X) malting the map if continuous, rhere
(f : (E(X)x£(X),lpxlp) ---pE(X) is given by Cf(p,e) o pc-1. Then er -- "3̂ .

(d) If H is a subgro-.o of S(X), (E(X)/fl,‘J.p) is Hausdcrff if and only if E is 

(T-closed, where E(X)/H = } rip s p ft E(X)} .
Define (Hp)t = Hfpt) ft € T).

Then (E(X)/H,T) -<f (E(X),T), where J(p) = Hp.
(e) If (Y.T) -< (E(X),T), then if e is the identity oi £(X}, let ft = (r“>(e).

r
E is a «T—closed subgroup of E(X) and the following diagram commutes;

Diagram h.h
(E(X),T) p

T

1  i  •
(T,T) *-- -----p (E( X)/H,T) Hp

H (p) i---------- » Hp v •
(») K(X) car. be Identified with the gro->p of T-isonorphisno r' (5(X),T). For 
consider the sap pi-- » Lp where Lp(q) = pq (q 6 E(X)).
(g) Similarly, the group of T-lsonorphisas of (E(X'/H,T) can be identified 
with L/H, where L = ^p fe E(X) i pH = Hpj- (30 L-is -closed).
(h) For a w-closed H $ E(X), define alg(H) = jf c C(E(X)) : Lpf = t\ (see(f)) . 
so that alg(E) la a T-lnvarlant (i.e. tf * aig(H) for all f t. alg(H), t s T, 

where tf(p) = f(pt)) C*-subalgebra of C(E(X)).



For a T-invariant C*-suoalgebra CX of C(E(X)), defies 
SP(CX) = {p <s E(X) s L*f = f for all f . Then gpCQ.) is aff-closed
subgroup of E(X).

Ke have alg(gp(CL)) = CK and gpCalgiH)) = H (use Uryssohn's lemma a:id 
the Stone-weierstraes Theorem).

ii-i5 i^Lln:Ulon A minimal t.g. (KT.T) is a quot dent-rroup-extenslon of (X,T)
if there exists a compact topological group G with closed subgroup H such that

^  8~lU8 = and a minimal t.g. (Y,T) such that G acts freely oa the left
g*G

of Y, the action (g,y)l--- )gy being Jointly continuous,

(sy)t = g(yt) for all g fr G, y e Y, t e T, and such teat the following 
diagram commutes:
Diagram if. 5 ^  x ( sr Y/c)

V ( = Y/H)

In this diagram and all subsequent dlas,rar,s. if the objects la ihr diagram 
arc phase spaces of tlg.'s with respect to a group '£. a::d the arrows denote 
T-hcmomorphic.rs..

We also say (W,7) is a C/B-extenslon cf (r,T). If G is Lie, finite etc., 
we say ('*’,?) is a ouotlent-Lle-a.rouc-exter.3ic."- ate. of (X»T). I-f H is trivial, 
we say (W,T) 1 4 a group-extent ion of (X,T)

Note that if G is Lie, <To,Wo,X^,Gf E.tr ,f , V) is a fibre bundle (3.1) for 
any cloned X3 < X with Y0>= V^CX^, WQ = iT_i(X0) .

U .6 Let (X,T) -<w (W,T) with (W,T) minimal. The following are equivalent 
conditions for (X,T) to be an almost periodic (a.n.) extension of (X,T) ([2) , fl3]
(i) Given an index £ on W, there exists an index & = &(£) on VT such that.
(<*1 ,»2) « S and [rtwJL) = il(w2)) imply ((Wjt,.^) € t for all t 6 T).
(ii) (W,T) is a quotient-group-extension of (X,T).
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For (lit) and (iv), ve make the additional assumption that (W,T) is distal,

and choose (T—closed subgroups H, G, of E(W) (4.3) such that the following

diagram commutes (6ee 4.4£)):

Diagram 4.6 ■
--- p (E(W),T)

Hp
T

(E(W)/H,T)<s- -» (W,T)

-KX.T)Gp (E(W)/G,T)«-----

(iii) H(G) $• H, rhere K(G) is the intersection of the <7'-closed <r-neig'uoourhoodj 

of the identity in G (;:(3) is a group):

(iv) (.G/B,*) = (G/U,^?). |

. 7 '¡it shall use tnc follcsi c.g formulation of the Furstenburg Struc.ure 

Theorem (see 123 Chapter 1?, and [3J for the elimination of the assumption 

of fiuaaiseparabtllty):

. Therrem
(a) set (X,T) be a minimal distal t.g.. Let (Y,T) ̂  Then there exists

(Z,T) with (Y,T) ^  (£,T)-< (X,T) auch that (Z,T) is ar. a.?, extension oi (T,T).

(b) If (Y,T) -< (X,T), then by traasfinite induction on a), there exists an

ordinal -'and ( ( V,.T) : o <. ft < a 3 j • { \ satisfying:

(1) (X,J) -< • (X,,T), '
.r v

(11) V  ,Tve = ̂  . 0 *
(ill) (X ,T) = (I.T),W
(iv) (X^+1,T) is a nro



t

Thls will be proved in 5*l-5-3» It was shown by Br-nstein in ^l] . However, 
a slight error in the proof led to the conclusion that one could assume that 
(X^+1 ,T) was a Gf+1 /H^+1-extension of (X^,T) ( where »«s either a
connected Lie group or finite. This is not true: for example, if T is an 
arbitrary group, and (X,T) is a minimal distal t.g. where X is a Klein bottle, 
and (T,T) is the trivial t.g., then it is not possible to choose ^(X^,T)^Q 
such that all the groups G^+ 1 (|S<*0 are connected Lie or finite. Se omit 

the details. .. _

4 . 9  Given a minimal t.g. (X,T), there is a natural correspondence between 
factors of (X,T) and T-invariant C»-aubalgebras of C(X), and any two factors 

associated with the ease subalgebra are isomorphic [2].

If (X,T) is minimal and (Y,T) < b (X,T), then there exists (Z,T) such that 

(Y,T) <  <Z,T) (X,T) = TT), (Z,T) is an a.p. extension of <T,T),
and the subalgebra of C(X) corresponding to (Z,T) is at least as large as that 

corresponding to any other a.p. extension of (Y,T) in CX,T). (Z,T) is called 

the maximal almost Periodic extension of (Y.T) -in (X-T) \_<Zi *

^ , 1 0 Definition -Let (X,T) be minimal distal, and vY,i) vhe trivia.. factor.

If, in the transfinit* induction procedure of lf.?o) *s take CXi+,,T) to be 

the maximal a.p. extenalon oi (X?,T> in (X.T), then *e obtain the smallest 
ordinal * for ehich there exists a system C : 0 s /Ssif »0«. ̂
satisfying (i)-(y) of !».■&). This j. is called the order of (X,I).

- 1 1 -

(¡5 On Ou'-.cier.t-GroUD-Sxtens-cns . ■ • .
In this Section, -.arioue rtsuits 01 qoutient-group-exterolons (see ^ .5  

for definition) are collected together. 3.1-5-3 contain tne proof of tne 
modified Furstenburg Structure Theorem (t».3). The main result is 5*5» which 
concerne the "uniqueness" of a group-extension associated with a given quotient-' 

group-extension.
5 .X Lemma Let G be a compact topological group, and H a closed subgroup.

Let K1 <  G with G/l^ Lie and HN^ p H. Then there exists K <3 G with H & Hj_,

f\ q ' y- ■=■4̂
1
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G/N Lie, HK * KK and ft g-1HJIg =- H.
. «¿a

Proof Cboose x t (G'HjrtES^, and let f bea finite-dimensional representation
of G such that ?(x) $ ?(h) for any h e  H (f exists by Urys. oi.n's lemma and

the Peter-Seyl Theorem [15] Section 33)* Put H_, = 1 1 , 0  Ker S , and put
N = O  g“ 1  H.N g. 

g*G
5.2 Lemma Let (X,T) be a minimal distal t.g. and !et (Y,T) (X.T). Then

there exists (Z,T) with (T,T)-< (Z,T)< (X,T) and (Z,T) a quotient-LJ.e-group- 
extenslon of (Y,T).
Proof By we can assume (X,T) is a G/K-extensioa of (Y,T) for some compact

topological group G. By 5 . 1  (with = G) we can find N -3 G with G/H Lie.
r\ J f ]RNg = N and HU r 0. Then Tl gHN/Kg- 1  = (hi, and we have the following 
6«=^ gtG/H .

commutative diagram: 

Diagram 3.2
Z/S

\ ' T

)Y ( fz/G = (ZAN)/p/:.))

s Z/H)
I

-?Z/H* ( = (Z/K)/(5if/3jl

So (Z/HN.T) is O quotient-Lie-group-extension of (Y,T), and 

(T,T)-< (Z/HN,T}< (X,T>.

p , 3 Let (X,T) be a minimal distal t.g., and (Y,T) -i^CX.T). By using 3.2 to 
obtain a quotient—Lie-group—extension of (Ye,T), find by ..anafic^.e

induction a system ^ sattsiylns ^11*» C111-)»
(v) of l*.#) ana (iv)* of 1+ -S. Hence J*.3 is proved.
¿li follows iron 5-1 that if (X,T) is minimal, and a finite a.p. extension 
of <Y„T), then (X,T) is a quotlent-flnite-group-extension of (Y,T), hence a 

covering of (Y,T).
The following proposition holds without the assumption that the (Z^,T)

(i „ X, 2) be di6tal, but the proof of this will not be given here.

>
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Propositlon Let (Z^,T) be minimal distal (i = 1,2) and suppose we have the 
following commutative diagram:
Diagram 5.5a)

2

Y2 ( = Z^H.,)

«here 0^ ia (as usual) a compact topological group acting freely and continuous!;

on Z^, and H1  la a closed subgroup with f\ g"'*'Hig =
g«=G.

Then there exists o T-lsoaorphlso : (Z^.T) --- »(Z^.T) and a topological

group Isomorphism °( : <1^--- » carrying H1  onto such that
$  (gz) = «¿(g) $(z) for all z e Z^ and g g G^, ar.a such that diagram 5 • :>a) 
remains commutative »hen the arrow Z^ ^  >Z^ is Inserted.

Proof 1. Define : E(Zj)----ÿEÎY.̂ ) as follows (see l*.3>ï

For p g E(Zi) and y £ T^, oefine yiî^p) = ^(zp), whenever ^(z) = y.
Then la well-defined. To show is one-to-ones 

' Let p, q 6 SiZ^ and suppose o) = (q). Then ?4(zp) = ? 4(zq.) for all *- c Z_'.
Fix z £ Z ^  For each g <£ G1, there exists fe such that gzp = h^gzq

(because Ç^(gmp) =* ^(fizq))»

i.e. zp = (g-1h g)zq, i.e. zp-= kzq, where k * O  g_ 1 H4g * S e\ .
* g«G^

1. e. zp a zq, and hence, since z is arbitrary, p = q.
Ç j ’t E C Z ^ ----is a T-isoaorphism ar.a (clea-ly) a group Isom>rphlsa.

2. Let (Y.^iiTp) denote the semigroup of (not necessarily continuous) maps 

from Ta to 't^ with the topology "3 of pointwi se convergence. Consider the

map Tj^l __ ) Y2 Y2 given by h»---The restriction S’of this map to •

EiYj) Is a T-isoaorphlsm and group isomorphism onto E(Y2). 3y it -V«), it is
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possible to find (T-closed subgroups G^, of E(Y^), »id T-honoaorphisas 

such that the following diagram commutes;
Diagram b.'jb)

3. Let T^(e) = y.̂  (e the identity of E(Y^)) and choose Zi such that

f <* > = yx. Now define <J\ : E(Zi)----^  by (T^p) =• z p  (p &

Then Sj“**”, = T p
Then inplies the existence of a T-iso'oorphiss and KJ' ( a <f-closed

subgroup of E^)). such that the following diagram commutes:

• Dla^-raa 5.5c)

1». Let L| « [p t O p  pK£ = K*p]. Then (LpK|,3p) is a group and a compact

.. *».■ 1 aflESWWWSi
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Hausdorff space, and identifies with the group of T-lcosorphisxs of ECl^J/KJ 
rhose transposes leave C(E(l'i)/G^) invariant, with the topology of polntwlse 
convergence and(h)).

Minimality of (Z^,T) inplies that identifies with the group of 
T-isoaorphisns of Z^ whose transposes leave CCX^) invariant. Hence there ■>
exists ---»0^ (e group Inonorphlom and hoaoonurpliiaa, eo tliat
(LJ/K^,*3p) i’s, in fact, a topological group, and (3̂  is a topological group

isomorphism) such that: * _ _
Tt'iCKjpq) = for all p 6 L>, q 6 EO^).

Since Ci/^) is the fixed algebra of Gi? CCEd^/G^) cust be tho fixed 

algebra of L|/K£, and hence LJ = G£ by .

l.e. K' <  G£.
Since 6. (KJ/HJ ) = t., we have K> D  s-1HJg- 

. 1  1 1 1 . g*G£ 1

5. We have Cj> : (EiYj),!,)--- >(E(Y2),3p ) is e group ipocorphisa and horeo-

corphisa, where ty(G^) - Gjj, ^(H^) = E!,.
Bence, since Kj = /""). g *HJg, (K! ) = Ki.

X geG* J
Then induces a T-ieoworphisa £  ’ (ECY^/K^, T) -- i-(E(T

ancf a topological group leosorchiso y : (Gji/Ki.Jp)--- eCG^/K^, Jo)

such that $ ‘(K,'pq) e T5 (KJp) •$ (K£q) for all p G G£, o fe Ei^).

Then define i, by : $  : Z^— » Z^, $  =
J. t G1---»G2,

and oL have the required properties.

- V  •.
5 . 6  ¿0.-311 ary Let (X,T)’̂  (*,T), where (Y,T) is a G/E-exier.sion of (X,T)
and (Y,T) in ainiatal distal. Lot (X,T)-< (Sr,T)-<. (Y,T). Then there exists a 

Closed subgroup L of G, H ^ L si G, such that the following diagram coerutea:



Ifl
ftH
I

(X,T) = (E(I)/G*,T) «hers G*, H' are JT-closed subgroups of E(T) with 
H(G') £ U> £ G1 (see 1 ,.i, and 1».6), G = (G'/K* ,3p) = (G'/K* ,<r), and

H = (H*/K',3p) = (H'/N',<r), where K* n  g"1K ’s.
gc-G*

In this case, (W,T) = (E(Y)/L',T) for 60ne L', H* ■£ L*-c G* (if.if), and we can 

take L = (L'/N',1p) = (L'/M* ,<H • .

5 . 7  The following proposition rill be needed in the procf of the Manifold 

Structure Theorec 1.?:
Proposition Let (B,T> bo ninlnal distal and (X,T) (Y,T) -«^(W.T) (5‘a-S’, = v1
where (Y,T) la a quotlent-Lie-group-extenslon Qf (X,T) and (fi,T) is an a.p. 

K-extenalon of (Y,T). (i.e.n^iy) has « eleuentii for one, hence all, y e 7 
Then (W,T) is a nuotiont-Lie-group-extenslon cf (X,V).
Proof 3y L>.6, 5.5 and repealed application of 5-1» suffices to prove (»,!) 

is an a.p. extension of (X,Y).
Dee tho following standard notation: for an index « on a uaifora spare

Z, let B^z) = {*» : •-
The proof is analogous to that'of theorem 3 in L16i.
I ¡8 , G/a-exter.sion ?f X, say, where G is cocpact Lie. Choose any open 

$r <d *• such that nr, I* is a hoaeoucrphisn C5-i) ar.d such thac there exists a 

homeomorphiau of the fora:
jT x X : il^Wg)-- » 7T(Wc) x n »here 0 is open in G/H (3.2(iii)). .

»rite f « (rr2xV)'.1|(r(Bo)xn) and g = ((ir2xN)-iri)"1| (tr(»o)x0).

Find open 0 ^  U and an open neighbourhood U2 of e e G such that GjGg <£ G.

To coupletc the proof, it suffices to prove the following.

M m B m m
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5.7.1 Suppose given an index £ on W such t:.at fi jJ is a hoacoaorphiGa

• onto |7j(U (w>) for all w t. W. Then them exists an Index .Son G/H
ouch that Bj(u) c. uu^ for all u «- G/il and:
(g(]x^ x B i(u))).t •=■ B t(g(x,u).t) for all x tIT(V.'o), u <•- Uj, t fc T.

For If 5.7.1 holds, then It follows from the minimality of (W,T) that 1».6(1 ) 
#

Is satisfied, i.e. (W,T) is an a.p. extension or (X,T).
Suppose given such an £• Choose an index on T such that 

B^UiC.t)) € rf1(Bfc(w.t))- for all w 1 W, t fc T (1.16] lemma 2). Since (X,T) 
is an a.p. extension of (X,T), choose an index ^on G/H such that:

5-7.2 f(]x^x B{(u)).t «= Bt.(f(x,u).t) for all x £■ 7I(»0), t 6 T.
Now choose an index & on G/H, and a connected neighbourhood V €1 tf, of 

• e o  such that B t(u) C uV <iB^(u) for all u fcG/H. ,

Fix x < n"(W0) and u fe U^. Then uV U and :
( s ( W  x i t(u))).t c. <gcix] x uv)).tc n^((f(tx^ x uv;.t)

C. TT ¡X((f<txi * B^uJJ.t) 5 n-"1B£l(f(x>u).t) (by 5-7.2)
c r ; V 1B,(g(x>u).t)^,(«!x.u).t)u U2 ....oU;!
* *  *■; ----------------------------------— J

N disjoint open sets

Since g(x,u).t ¿ ( 6(^x5 xuV)).t and V is connected,
g($v^ x B4(u)).t c g(]x$ x uVl.t<= 3e(g(x,u).t) as required.

¿6 Proof of toe Addition Theorem 1.1
6.1 The hypothesis is that (X,T) is minimal distal, and (7,T) ̂ v X » * . *
Using I*.3 (twice), choose ordinals -¿j, e<2 (o^ « w 2) ana a systaa
i/v f CT ' v  . v . . I of Taotors of (X,T) such t..ai: ̂f s ^ ’ v f * 0 -ipfiti-vi

(i) (X.,T) -< U p T ) ,  0
P > f

(ID nft. \  . V  , •*-- TT-
(ill) (X0,T) la the trivial t.g., (XM ,T) = (7,T), ( X ^ T )  = (X,T).

(lv) For ? < - v, ( X ^ . T )  is » +1/Hf+1-extenslon of (X^.T), where G ^  is

compact Lie, and O  6-1H.+jS “ (**• 5)»
«‘V 1 p
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(v) If p Is a limit ordinal, (X^,T) is the inverse limit of }(XjfT)^ ̂  .

Write = dim G^/H ̂  for p not a limit ordinal, |? ? 0, and n̂ , = 0 for 
^ a limit ordinal.

The Addition Theorem wlll'be proved if it can bo proved that: 

a) dim 1 = 2 .  n, b) dim rr”\y) = H  n* for all y Y

c) dim X = X  Ha (where these sums are interpreted as ™  if they do not 
converge).

Only b) will be proved: c) is proved in the same nay as b) with Y replaced 
by the trivial factor and oI, by 0, and a) is proved in the same say cs b> rith 
I replaced by the trivial factor, U l by 0, X by Y and by oi, .

6.2 Proof of 6 .1 b) Fix y o Y. For =(£ < (1 ■£ we shall construct by 
transfinite induction closed sets q^ and homeoaorphisms C^such that:

(i) < ^ . x p, t y v  = <*<» <*> •‘i4 -

(ii) : Qf -

Y
-> F  [o.il
<<n(■

«■

a homeoraorphism (where 1.0,l]° = {o\ by

definition) such that the following diagram commutes for :

Diagram 6.2a) 'VS

1

TT ro.i]

hi i-
as

->■ if [e,il 

,D< rt *TT lp,lj x H [0,1] , and p is the
x*1*1 w«tsa »

where we regard ¡1 \0,l]
-.»kif

natural projection, ^
(iil) .dim O = dim "if -1(y) p rf*r

Then, nine© it is clear that dia Qa = X  a* (by (ii)), 6.1b) will be
p •*.*#>;>

proved by putting oL ̂  in (iii).
- »

Case ft = -i, * 1 Clearly IT (y) is homeoaorphle to G . ,/B , Hence findl 1 ‘'l A# Q
a closed subset q. • , of IT”“ (y) homeooorpbic under some CP to [b,li *‘>+1 

Now suppose q , have been constructed for </,<TS«̂ b.
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Case p = Q +■ 1, sooa T|~>c<.

By 6.1(iv) there exists a minimal distal t.g. (Z^,T) and continuous 
surjective maps ?, such that the following diagram commutes:

Diagram 6 -2b)
= Zfl/3^)

Then (V"1(qi),n,“1(Q.(v), q,, Gp, H? , n ^ ,  ?, V) is a fibre bundle U.5,5. 

and by 3*6 there exists a homeonorphlsn

(n x Sf) trr;ha,)-----* ,  * <y/ty
r *» _Kow let Np C  Gp/Hp be a closed subset isomorphic to [0,11 under j say, 

and let Qp be the inverse image under x >p) of (q^ x Ĵ ).

I.et : Q ---- ^ T T  i.0,1] 1 be defined by x ) • C x Xp).

Clearly (i) and (ii) of 6.2 hold, and dim q„ = 51 n^.» a/ ■€.

By considering the fibre bundle

{ ( r y o V ) - 1«*)', T t ^ y ) ,  TT'^Cy), Gf , h,, , 9 , v), •• see that

dim TS\“l(y) <  dim IT -1(y) ■*• dim G./H* (by 3-3) S ^  a,, ar.d
J-t J' 1 1 "

dim IT _1(y) *. 5T n , since Q C T«"J(y) (¿.2), »■'<» s.c (ill) lr satisfied.

Case p a limit ordinal, ji

r.<± hence:

Define - n X V
e •

Do fine % : a, ----- >1T£o,l] by:

% -  % (z) = % ‘1iip(z) (z& q^) for all

Then £j>p is well-defined and a homeoaorphls*. (1) anu (il) of 6.2 are clearly 
satisfied, and cle'arly:

T. 1
<<V4f

dim Qp ^ din TT ” (y).
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sattsfied.

£cl Corollary to the Addition Theorea Let (X,T) be minimal distal. Let 
(X^T) denote the maximal a.p. factor of (X,?). Then X is connected if and 
only if X^ is connected.
Proof If X Is connected, clearly X^ is connected.

Conversely, suppose X is not connected. For x, y e. X, define x ~  y if x 
and y lie in the same connected component of X. Then ~  is a closed T-lnvariant 
equivalence relation bn X, hence Induces a factor (X/»,T) of (X,T). By the 

Furstenburg Structure Theorem (It.7), (XA.,T) has a non-trivial a.p. factor 
(Y,T), which, by the Addition Theorem. 1.1, must be C-dimensional, hence 
totally disconnected. But y is c continuous image of X^. Hence X^ is cot 

connected.

¿7 Proof of the Manifold Structure Theorea 1.2
7 . 1  Throughout this section use the notation of 1.2.

First note that, since, in 1.2(1), Y, like X, has finitely many arewise 
connected components and hence, like X, satisfies the hypotheses of the theerea 
it suffices to prove X is a manifold, which will follow from 1.2(11) and (tit) 

(since each "i is there proved to be a manifold).
(li) will follow from (lit) (dim X1 + 1  7 dim »ad the Addition Theorem 

(dim XA i. dim X for all i).
In 1.2(Lv), connected if and oajy if X is connected" is precisely

6 .3 . 1.2(v) follows from Proposition 5 .5 .
Thus »» only need to prove 1.2(111), and tnai 3,/H^ is connected for 172, 

which we proceed to do.

7 . 2  Supposa (inductive hypothesis) that X^, Y^, G^, H^, have been

have been constructed for 1 < s < order(X) satisfying all the conditions in 

1.2(111), and with Gj/Hj  ̂connected for 2 S 1 < s. Let (Xe,T) be the maximal
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a.p. extension of (X ,T) in (X,T). Let Yo«*X )
the following diagram commutes (if.6 (ii)):

'‘.i ?_» V  be such that

> » V i  ( *  W

ye Know that Gs is non-trivial, and it is easily seen tnat ^  is not finite.
Bence, to complete the proof of (iii) and (It ) of 1.2 for X , 7 . G . Hs' s’ s’ s’
TTb, fs, V6, it will suffice to proves

(a) Gs is a Lie group (for then 7g and. Xfi will be aanifolas by 3.2).
(b) G /H" is connected l i s l ’. ■S B .

7.3 Proof of 7.2(a) If Gs is not Lie then there exists a strictly decreasing 
sequence 5h , \ of normal ocbgroups of G_ sucn that H N, , <  H N. and G /Kt X S * 6  l+I ^ S i  6 i
is Lie (5*1), where dim G /H K. dim G /HN , * dim G /H < «-» bv theS 6 X S X**J S 8 *
Adultlon Theorem 1.1. 7 _/H W. is a manifold for each i (3.2). We obtain the 
required contradiction to Ga not being Lie from the following lemma;

Lemma Let (W,T) be minimal distal with W having finitely many arewise-
connected components, and let (V,T) -< (W,T), with V & manifold. Then in is

r - »o
not possible to find a strictly increasing sequence > ( Vn, T )>;   of factors

of (W,T) such that (V0>T) = (V,T) and (Vn,T) is a finite a.p- extension of 
( V,T) •*
Proof Suppose for contradiction that such a sequence exists. Keplacing T by 
a syndetic subgroup, {(Vn,T)j by a proper subsequence and », Vn by one of the 

connected components of W, VQ if necessary, w* can assume that W is arcwise- 
connected. We can also assume (W,T) is the inverse limit of-^(Vn,T)^. Then 
(W,T) is an a.p. extension of (V,T), hence a G/H-extension of (V,T) for some 

compact topological group ’G. Fix vo & V. ThenTi_1 (v0) is infinite and totally
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a.p. extension of ( X ^ . T )  in (X,T). Let Yb, Gjs, Hs , iT., Sb , V b be each that 
the following diagram commutes (if.6(H)):
Diagram 7.2

f Sr . , _ , s s'

Suppose also that g H g 
gsGa E

We Know that is non-trivial, and it is easily seen teat X^ is not finite.
Hence, to complete the proof of (ili) and (Iv) of X.2 for X , Y . G Hs’ s’ s’ s’
TTe> fs, V6, it will suffice to prove:

(a) Gb is a Lie group (foi- then Yg and. Xfi »ill be manifolds by 3 .2 ).
(b) G /H’ is connected If 3  2.fi s '

7«3 Proof of 7.2(a) If Gs is not Lie then there exists a strictly decreasing 

sequence of normal subgroups of Ge suen that H b N.,+1 <  Hsfll aQ;1 °6/K.

is Lie (5.1), where dim 8 /H I. •$ dim G /HN, , ■£■ dim G /H < «-=> bv the

Addition Theorem 1 1 .  X i s  a manifold for each i (3.2). We obtain the 
required contradiction to Gfi not being Lie from the following lemma:

Lemma Let (W,T) be minimal distal with W having finitely many arewise- 
connected components, and let (V,T) -<v (W,T), with V a manifold. Then it is

r - od
not possible to find a strictly increasing sequence ;(Vn,T)^c j of factors 
of (W,T) such that (VQ,T) = (V,T) and (Vn,T) is a finite a.p- extension of 
(V,T).‘

Proof Suppose for contradiction that such a sequence exists. Replacing T by 

a syndetic subgroup, {(Vn,T)j by a proper subsequence and I, by one of the 
connected components of W, Vfl if necessary, we can assume that W is arewise- 
eonnected. We can'also assume (W,T) is the Inverse limit of-^(V^.T)^. Then 
(W,T) is an a.p. extension of (V,T), hence a G/H-extension of (V,T) for some 

compact topological group'd. Fix vo £ V. ThenTi_1 (v0 ) is infinite and totally



disconnected. Since TT 1 (v{)) is hoaeomorphic to G/H, it is also compact and 
perfect, hence uncountable. Since each VQ is a finite cover of V (5.Z,), a loop 
in V based at vQwill lift to a unique path in X Joining w q (a fixed point in 

another point in IT and a homotopy between two loops lifts
to a hoaotopy between the corresponding paths in W ([9] Chapter 6 Theorem I*). 
Since rr_1 (T0) is totally disconnected, if Wj, w2  s ir_1 (vo), a path in W Joinin, 
* 0 to cannot be hoaotopic to a path joining w q to w2, if the endpoints are 
restricted to fr end w^ $ »2. Bence the fundamental group of V (based at
vQ) is uncountable. But this is inpossible since V is a compact manifold.

7 .h Proof of 7.2(b) If s y 2 and G^/Hg is not connected, then define an 
equivalence relation ~ on Xe by:

(x ~ y) if and only if ([Te(x) = ffB(y) and x and y lie in the same connected 
component of rr^iTgix)).
Then (X A--,T) lo a proper finite extension of (X„ , ,T), so that (X /~,T) is (5. 

an a.p. extension oi (XD -.T) - which contradicts (X„ . ,T) being tfcd maximal8 “f.
a.p. extension of (Xfi_2 >T) in CX,T). Therefore Gs/He must be connected.
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$3 Index of notation and List of Fundamental Orov.ps

In this section ve give a list of tne symbols used from now ca to denote 

the Indicated standard (topological) groups and topological spaces. Tnere fcllc 
(8 .3 ) « table of fundamental groups which is sufficient for proof that root 
of the topological spaces nenMonhed in S . 2  are of distinct tcpclogical types. 
8»1 Note If X is a topological 6pace and ~ is an equivalence relation on X, 
X/s will denote the spree-of equivalence classes wltn the quotient topology.
For x * X, Cxj will denote the---equivalence class of x; square brackets will

I

be used without mention of the associated equivalence relation, if it is though 
that no confusion can arise. In particular, fx 3 will often denote the orbit 

of x under the action of bob» group on X.
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K3/«

(K X S2)/.

KB

N/rn

0 (n)

P“
IP­
S'*

3n
SU (2)

(S2 X H)/~ 

(S2 x K)/*

(<T is an automorphism of K2 of order r.5 This denotes the orbit 
spaca of K3  under the free action of <<f> defined by: 
¿-.(k^k^kj) = (e2 "i/rk1, CT(k2 ,k5)).

This denotes K3/(T where <r corresponds to /rn  r(Tll r12\
' r 21 r 22 )i GL(2, Z.)V‘21 *22;

(See 10.8.)
~  denotes the equivalence relation (k, x) "• (-k, -x) for

This denotes the Klein bottle K2/~ where (k^.k^)'- (-k^,!:^).
l e d  and x G S^ (see 8.1).
This denotes the Klein bottl 
(nj 1): U denotes the Lie group of matrices:

2 6 l£f/ 1 *f 0 1 sl : x, y,

\o 0 1 /
P  denotes the subgroup n

, tne group operation being 

matrix multiDlicati.cn.

(1 ^  »¿/»I
0 1 ?.

I 32* ■ 3 6 2
tO 0 1

Where no confusion can arise, [x,y,zj denotes the element:

./I ^ ,\

fn (° 1  *
\0 0 1 /

of K/rL.

Qroup of real orthogonal n x n aatriccc.
(n > 2 ): n-dinersaional real projectlva plane s V ~  where x ~ -x. 

The field of real numbers.
5^1 »

(n > 1 ): {Cx, ...x0<-1) £ |R- l: ^  V  = 1  S '
Group of permutations of il..-»5 (so |inJ = nT).

/
r  c C. i v i1 , 1 J{Ci Ç)

denotes the equivalence relation (x,k) ~  (-x,-k) for x '6 S ,

kc-’X. This space is homeoaorphic to (K x S )/~ .
-1.¡̂- denotes the equivalence relation (x,k) (-x,k >



K^A, whore«- is the equivalence relation:

«v |kj) ^
K ^ A  where ~  is the equivalence relation: 
(k^k-^kj) ~  (-k^k^.kj)- (k1,-k2>k^kj1) ~  (-kx 
Group of integers.
Cyclic group of order n ^a : an = 1 /.
As a subgroup of SO(3): the group generated by: 

'cob 2v/n ‘ ain 2ii/n O'
-sin 2 r/n cos Zf/a O

0 O 1
As a subgroup of SU(2): the group generated by:
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Table of Fundamental Groups

Space Fundamental Group N'unber of homocorph- 
tsas of fundamental 
KrouD into:
Z2 Z3 V D6

k3 • Z 5 s 2?

^a,b,c: eb = b-1a, ac = c“*a, be a cb ^ S 3
j

ka j
j

% ° - l )
<̂ a,b,c: cb = ba, ac = c-1a, be = cb"? a 9

1
3i»j

<a,b,c: &b *s ba, ac c~^ab, be = cb ̂ tr 9 r2 zh\

%  -Vi ^e,b,e: be = cb, ba = ac"^, ca = ac'^'o^ 2 9

1 :

| !

i) <a,b,c: be = ct, cb = c-*a, ae = ba^ k 3 8
j •fi ;i :

K3/
y i ? - Avx 1 )

<a,b,ct be = cb, ta = ac, ca = ab-1c'/> 2 3 | ! 
1 ‘
i ;

*0 <a,b,c: ab =• b_1a, be = c-1b, ac = ca"> ? 3 1 \ * '

W2 <Ji,b,c: ab * cb”*a, be = c-1b, ac = ca*> 3 H i :
K/ri ^afb,c: ab = ba, ac = cab, be = cb"> S r2 f 18

s/r2 <<a,b,c: ab = ba, ac a cab^, be = eb*> $ e 9 ¡3°:—£ <k,b,c: ab a ba, ac a cab^, be = cb> ¡ 4 27 r2x(3,r]
1

K/j^Cn 7 1 ») a v  * •<̂ a,b,c: ab s ba, ac = cab , be s cb > ( r2x(n,r] r
S2 X K z ‘ !
<S2xX)/~ z
P2 x X Z  * z2 ii
(S1*K y ^ Z i
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Motes on table

(i) (“» r) denote» the highest common factor of n ana r.

iii) If can be shown that £ X K and (S2xh)/— are not bomeonorpnlc, even 
though they have the aaae fundamental group, and similarly for P2x K and 
(S2xK)/a .

$ 9 On the String of a Minimal Distal Transformation Group
First we need some definitions (9.1-9.2):

9.1 Definitions A string of bundles is a finite saquencs of
bundles (1 i i •& n) where XQ is a or.e-polct
6et. n is called the length of the string, which is denoted by iL , say.

If g'= (S^... &‘n) is another string wit h  ,7Tj
then B  and &' are l3onornhic under 4?n , «C^... <*n ) if there e x i s t  j
3rd-isooorphisms (.3.'*} 0>£------ » s u c h  that the following d i a g r a m

commutes:
Diagram 9.1

9.2 Definition let &  » (£^...<E^.) be a string wi-t:

%  * (ri»*i*xi-i'0i»Hi»Tri'si,vi) (1 4 1 *  r)*
<6 is o-allowabla if each Gj/H^ Is connected, due 2 1 and

r
n = 2_ din (0,/H, ) ( ■ din X,).

1»1 1 *
8> is allowable if &  is n-allowable for some n.
9.3 Use the notation of the Manifold Structure Theorem (1.2): this theorem 
shows that given a minimal distal t.g. (X,T) where X is a compact connected



n-dimensional manifold, we can associate with it an n-allovable string

(Sr) = &(X,T) where r is the order of (X,T) (it.10). There is some 
choice in the strings which can be associated with (X,T> in this way, but 
any two choices are isomorphic as strings. Moreover, if (X,T) = (X',T), then 
ft(X,T) 3 « I 1,«. Therefore we have;
9-*t Definition Given a topological group T, a string ¿ is admlssable if 'Jt 
is £_(X,T) (up to isomorphism) for some minimal distal t.g. (X,T) where X is 
a compact connected topological manifold.

($> is adclssable if (I is T-admlesable for some T. Clearly (9-3) 

adnlasable strings are allowable.
9.5 Later (9-7) we give a complete list of Z-adml66able and |&-adeissable 
n-allowable strings for n £ 3, and hence obtain a coarse classification of 

minimal .distal and ¡fL-aetionc on compact connected manifolds of diaensicn 5- 3 
It is easy - but rather tedious, so we shall not do it - to give a complete 

list of the admlasable n-allowable strings for a -Z 3, by using the results

of 10-11 and analogues of the results of $12. However, we li6t (9-6) the 

compact connected manifolds of dimension < 3 which can be phase spaces of 
minimal distal group notions for some group» It ic clear that such a list is 
m "corollary" of a list of the isomorphism classes of adcissable strings.

Clearly the problem of finding the isomorphism classes of strings 
&  3 (ftJL... * r) with 0̂  = (It,Xi,X1 _1 ,Gi,Hi,-ri>?t,V1) ( 1 *  i«. r) is inductive

on the length of the string and related to the following two prcble»3!
(i) Find the possibilities fer ftG±,S±)̂  1%lvr up to isomorphism ($10).
(li) . Having found X, 0^, 3^, find the 1st, 2nd and 3rd-isoaorphisn classes 

of bundles with base X ^ ,  group Gx and isotropy subgroup lst-isocorphi-c j 
classes c.rc given in fll. 2nd- and jrd-lsoaorphism ciacses are easily deduces 

from tbeae.

9.6 Hanlfolds of dimension S 3 aupportlng minimal distal actions of some 

group; (for notation see fl0)r

Actions of order 1 (almost periodic): K,Kl, s \  PX, KJ, S0(2)/Zn (h >, 1),



SO(3)/D2n (n >y 2), 

Actions of order 2i

%  IYK%  -JV
S2x K, P2x K, (S2x K)A. , (S2x K ) A  

■ Actions of order 3

ft
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S013)/^, S0(3)/S^, s o (3)/a5, S2x K, P2X
K2, KB, K*. • ^ 1  0\> RPfl O'

U  -lj \0 -1/ (l -1

SU(2)/Zn (n 1), S O C i V D ^  (n > 2),

' ^  .?)• %  .?) , K/pn (n * 1), W ,

3-7 If ^  = ( CJjl*** ftj.) 13 an n-allouable string for n < 3 and

&  j_ = til»xl,Xl-l,Gi*Hl>,ri>^i»'>,l^ and - = for 60=e T, then = G^
and T acta on G^ by right multiplication on. Gĵ  of a honocorphic image (in 5,) 

of T. So if T is abelian, H1 is trivial, Gj is abelian and ^  = T
Therefore, in tables A and 5 we list the n-allowable strings (n £ 3) of 

length 2. and 3 for which 0^ is abelian and Hx is trivial, stating which of 
then are Z-admlssabie and which are jS.-ad=issaole. Each line in the tables - 
except At» - represents exactly one isoaorphisn class.

The tables are intended merely as a susir.ary of inforsstior. 3aJ can only 
be understood in conlunctlca with?? 10 and 11.



Table A (order 2)
disi .<3, I ( g2 , h2 ) ( ¿ ID ) 6, (ill) ¿-aóaisà 

412
d-adaiss§13

Al
A2

U . W y.iK) ii.it 8.2 Tes No
Tt(Kt2-,) 11. t

A3 W i , z 2.£) KB »
K3*  ••A4 (K“Sc A,A) * ( K % A ,x ) 3 .8 ,1 2 .6

A5
A6

(S0(3),K) 3i(S0(3),K) KxS 8 .2 Yes( s o ( 3 ) x b z 2>k x s z 2 ) 3 i( S 0 ( 3 ) ,K ,Z 2 )
A7 y ( S 0 ( 3 ) ,K ,Z ;, ,€ ) CKjcS2)/-
A3 ( S 0 ( 3 ) ,K x 6z 2 ) 3<(80(3)>Kx kZ;>) KxP
A9 (K, il\) 11.7A1C n »  1 K/i’j,, oil

Jill <K*622>Z2> ' X I - 7 ,1 1 .3
A12
A13

A1S

-jnxsZ2, nil: 11.7,11.3

W " ^ ’̂  11:7
^o(kl»-k2»kik31) 11 *7

»/Pa. ail
vJ /
V l  0 \ 

lo -lj

No

v3

& y

No

les
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9*8 Notes (i) None of the strings of table 3 are -admissable (<fl3)* 
(11) In AU, A can be assumed to be one of the groups of 10.8, and A.

If A and K/̂ -'y is cyclic (12.6).

^ 10 On Connected Irreducible Pairs
In this section we give some isomorphism classes of Irreducible pairs 

(G,H) (definitions 10.1 - 10.2) - this information is needed for finding the 

isomorphism classes of strings (9.1) and can doubtless be found elsowher«, 
but is collected together for convenient reference.
1 0 , 1  Definition An irreducible pair.(G,H) consists of a compact lie group 

G and a closed subgroup H such that P\ g ^Hg = (.a j. .

(G,R) is connected if G/K is connected.

(G,R) is croup-connected if G is connected.
1 0 , 2  Definition Irreducible pairs (G^.K^) and (G,,H,) are isomorphic if 

there exists a topological group isomorphism of Gĵ  onto G^ which maps Hj onto 

E¿ (written (0^,8^) ”= (G^.H^,)).
XQ.'S The following lemma given the relationship between connected irreducible 
pairs and gr^up-connected irreducible pairs. The proof is straightforward and 

will be owltted.
Lemma (1) If (G,H) is a connected irreducible pair, thee (G0, H O G q) is a 
group-connected irreducible pair, where Gq denotes the identity component

G H « SG = G, and the map Hg |---- ?(HoG )g <5 6 G ) defines a bomeo-o o u w
morphism of G/H onto Qg/iH r> Gq) .
(11) If, for h 6 H, g 6 G5, ^ h(g) = hgb-1, the map hi »6>h ia a topological
group isomorphism of 3 into the subgroup S(GQ,E A  0o) of Aut(G0) of 
automorphiams leaving Hrt GQ Invariant, where Aut(G0) is given the topology

gfrG

of a .



.

of pointwlse convergence. So identify H with H ̂  .c S(G0> l!ftOo).

(ill) Suppose, fur tier, there exists a subgroup S, = S,(G ,Ko G ) of
1  X o o

S(G0,HrtG0) such that each element of S(Go,H«’Go) can be uniquely written in

the form xy, where x G Sĵ  and y fc S(Gc>H n Gq) (which clearly happens
if HnG„ is trivial). Than write i = S.nH < S(G ,Kr\G ). A is finite and o l - o o

(G,H) = (0oX8A,(H ̂ G 0)xfiA) where GQxeA = fig,«) : g 0o» ^ and
multiplication is defined by .(g2,^) = *
(iv) If A, and A, are finite subgroups of Aut(C- ) then (G x A,,A,) '= (G x a . ,a | x a O O 8 X i O S ¿L J
if and only if A^ and A, are conjugate in Aut(GQ).

10.h Detailed proof that the list of 10.6 is exhaustive will not be given, 

but the following facts are nsed:
(i) If (G.H) is an 1-rodncibie pair and die G/H n then dig G <  n/(ft+l)/2 ElC
(ii) A -compact connected lie group is isomorphic to one of the form 
(S x T)/Z where S is awmlslmple compact connected, I is a torue and Z is a 

finite central subgroup with S nZ and T o Z  trivial (£8j Chapter Xlll Theorem 1. 
(ill) Given a compact seal-simple Lie algebra , there is a unique compact 
simply-connected connected Lie group G with Lie algebra Cj (up to iscitorpll ss), 

and if tf( io another connected Lie group with Lie algebra £} , then G, « 0/3 

for some finite central eubgroup Z of G £l5l*
(iv) A compact sealaimple Lie algebra is a direct sum of compact simple Lie 

algebras, which have been completely classified p5]-
(v) Any toral subgroup or a compact connected Lie gro-.p G is contained In
a maximal torus, and any two maximal tori are conjugate ([d j Chapter Xlll.h).

1 0 . 5  Definition If G la a compact Lis group, and H is e closed subgroup,

and Z = f\ g_13g, then [G,Hj will denote the irreducible pair (G/Z,B/Z). 
fifcO

ff* ' 1 ‘ « ■ M
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10.6 ge now list the group-connected Irreducible pairs (G.H) with ala G/H £ 3 
using the notation ox 8.2.
(I) (K,{l^)
(II) u 2,US>
(ill) (S0(3),K) s £sU(2),lO . S°(3)/K is homeoaorphic to S2 .
(iv) (S0(3), KxeZ2) S |[SU(2),M] where M lc the subgroup generated by the set

f(o ?\ * w K} ° f(-? l)\
S0(3)/CK *BZ,) is homeocorphlc to P . -

<v) (K3, W )
(vi) [SU(2),Zj
(vil) (S0(3),D2q) * [sa(2),Hltn] (n ̂  2) Where is the subgroup generated 
by the set l / e1,_/,'' 0 \ A) 1\ 7

lie .-•/')-U oil •
(vlli) (S0(3 ),Â ), (SO(3 ),S4), (SO(3),A5). All subgroups or S0C3)
isomorphic to Â , St , A^ respectively are conjugate ([?J Chapter Z).
(ix) I>U(2) x K, Z£ j whore z; “ [ ((£ ^ (0 :5.0).

It n » 0, 0/H Is homeooorphic to S2x K. If n > O. G/H is homeomorpoic to

StU2)/Zn.
(x) [SU(2) x K, M x |1^1 where M Is as in (It ). 3/H is fcoueoaorphic to

P2X K.
(xl) [S’J(2) x K, *], «here « = i] s ,\ t k ] * *\ , -l'j s Xe

G/K ie homeoaorphic to (S'"! K)/~ •
(xil). [ s a ( 2 )  x S0(2), V,3 , where Vx = f (u,u) s u i  SU(2) T . G/H is 

hooeoaorpcic to S0(2)> equivalently to S .
(xltl) [s-J(2) x SD(2), V21  Where = V j O  i(u. -u) : u SU(2)^. G/H is 

homeoaorphic to S0(2)/Z2, equivalently to 50(3) and to P3 .

1 0 . 7  Let (O’,H’)* be one of the group-connected irreducible pairs of 10.S(l)-( 

and let S(G',H*) = {<9 *Aut(G') s 6(H* ) = , eo that H* S S(G*,H*) (10.3(ii)
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For each such (G»,K'), we define a S^G'.H'J-r S(G',H-) such that each
element of S(G',H’) can be uniquely written in the form xy (x e. H*, y c Sjl(G*,H

and hence show that if (G,H) is a connected irreducible pair with dim G/H -s 2,
then (G,H) = (G x A, (H AO ) X A), for a finite A £ S.(G .H AG ) (10.3(iij)). O S  O S  X o c
(Go,Hr>G0) being (up to isomorphism) one of the pairs 10.6(1) - (iv).
(i) (0o ,Ha Go) = (K.jl^) S1(K,{1\) = S(K,}i<i) = Aut(K) = \ 1 , ^  = ¿z,
where £(k) = k-1 (k e, K).

(li) (G0,Hf.G0) = (K2,U\) Sj U 2, ^ )  = S(K2, U ’l) = Aut (K2)

Aut(K2) = GL(2,2) (8.2) where the isomorphism is given by:

(T I—  --- > ^  where <T ( k j ^ )  = (k®k2, k'k^).

(ili) and (iv) (0o,EnGo) = (S0(3),K) or (S0(3),K x ^ )

All automorphisms oi S0(3) are inner, so that Aut(S0(3)) '= S0(3). Under 
this identification, S(SO(3),K) = S(S0(3),K xsZ2> - K V’3Z2 ̂  S0(3).

(Hi) (Go,HnGo) = (S0'3),K) S1(S0(3),K) = (l.fc1, = Z^, where

c is the inner automorphism corresponding to /O 1 9 \
1 0 O

. V o o -i/

‘(iv) (G'.Hn Gn) = (S0(3)»K x.?,2) S1(S0C3),K xsZ2) is trivial.

1 0 . 3  in order to completely classify the connected irreducible pairs (G,H)

for which (G .Ha G ) = (X2,U\>> ** remains to find the conjugacy classes o o
of finite eubgroups of AutOC2) T GL(2,2J (10.3(lv) and 10.7). I aa indebted
to my father, 9.Rees, for ¿lading the eonjugacy classes, although he says 

tho au3«0r cust be leaden» Note thatj
(a) If •cfiLCa.'Z) baa finite order then u oust have order 1, 2, 3» ^ or 6. 
(Consider the minimal polynomial of u, which must have integral coefficients.)

(b) A finite subgroup of GL(2,B) is conjugate la «,(2X0 to a subgroup of

0(2), which is, of course, isomorphic to K xs&2 Theorem 16.9.X).
(a) and (b) imply that a non-trlvlal finite subgroup of Aut(K2) must be



Isomorphic to 2& or D^n (n = 2, 3» k or 6 ). It can be shown, further, that 
the coujugacy classer. of finite subgroups are as follows:
(i) Cl) (trivial subgroup) (ii) <-■> ■ (v) // 0

•
(ill)

(ft 3 >
\ W

•= Z2

(iv)
(ft -3>.

<“ ’ < &  i))~- ^
(Vil)

( e  '!)> *
(viii) A i ,  /i o\\ (X) // 0 1 \ to 1 \ \ 1

' (o -l)/
= D1

1  -l) * U  of?

(ix) /-I, (1 l\\ h
<xl> <c

0 1\ (0 -1<\.
\ \o -if) . 1  -l) ’ ( - 1  oJ/J

<xll> <E i  J) ■ ft .3) ~ D8
(xiii)

( e  d  • g  s )

= D.

12

ill let-isOBorphiss Classen of fibre bundles
In order to deteraine the isomorphism classes of strings, it i6 necessary 

(9 .5 (ii)) to find the lst-lsosorpki6n classes (3 -h) of bundles:

(a) with base K, group G and isotropy subgroup H, vhere (G,H) is a connected 
irreducible pair with .din G/H •£ 2. (For the possibilities for (G,H), see £10.) | 

Sea 11.b.
P 2 2(b) with base K , XB, S or P , group G and isotropy subgroup H where 

(G,H) > (K,{lj) or (K Is22 >Z2). See 11.5 - 11.10.
This la Just a matter of collecting together known results, lat-isomorchlsr

classes rather than acd-lscnornhisa classes are glwen (the latter would in 
seme ways be e.ore convenient) mainly because Ist-isoaorphisa Js the type of 

isomorphic» usually used in fibre buncie theory.
The rotation ofi 3 will be used throughout this section.
I should like to thank E. Cesar de Sa, X. Eastwood, J. Sells ard D. Epstein 

for helpful suggestions and discussion.
11.1 We define a copulate lst-lsooorphisa Invariant TC :
( 1  * 1 , 2 , 3  or 1») for each of the following classes of principal

w m m m m m m

i
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bundles , where 16 the given range space.

(i) ([l7l 13*5) ^j^CX.G) is the set of principal bundles with base X (a
compact connected manifold) ar.d finite group G. Let (£, «.• (Y,X,G,(i) e d’1 (X,G). 
Fix xQ £ X, yQ £ Y with lT(yo) =• xQ. (T is a finite covering map, hence
determines (with XQ, yQ) a homomorphism si^tX)---» G, where Jf̂ iX) denotes
the fundamental group of X. Two homomorphisms in Kon(TC^(X),G) are said to

of G. jp^CX.G) is the set of equivalence classes in Horn (T^CX),«).
"X ( $>) is defined to be the equivalence class of Cj>g , and "X 1 ¿^(X.G) — >(J)̂ (X 
thus defined is Independent of the xQ, yQ chosen for each :& .
fli) ( [l?] 18.5) ¿f2(G) la the set of principal bundles with base K group
G. j)2(G) is the set of conjugacy classes in G/Go, where Gq ±3 the component 
of the identity in G.

(a) The, definitions of “X on ti^CK.G) and on <f2(G), for flnito G, do not 
quite coincide cn £^(£,6) O £f2<0), out tnere is a natural correspondence 

between the two definitions, and in any case no confusion should arise.

be equivalent if one is the composition of the other with an inner automorphism

Let £'= (Y,K,G,TT.' S (?2(G)* 
denote ^e1̂  : (9̂  ̂  *
Define V, * and »2 . f a iiT/q „71'Vhii • e j 1
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(b) It follows froa (li) that a principal bundle with base K and group K 

must be a product bundle. Hence ([17] 11.4) a principal bundle with base 

K x [pyl] and group K Bust be a product bundle.

(ill) and (lv)
is the set of principal bundles with base K2 and group K.

e is the set of prlncinal bundles with base KB and group K.

<p = H  ' . 6>. = {0, i\ .
(ill) Let V, = f t e - ^ A ,  . » ' A f t  x K> V2 = . » ' A f t  x Kf

S = I K, T = {-1^ X K. So K2 = Vx V  V2.

(lv) Recall that KB = (kj^kp) 6 K2 ^ (8.2).

Let Vx - { f k ^  : k, € *51r/a&

Let V2 = J [ k ^  . ^  e3 l V 0 . e5tTiAi'^ *2«

Let S = ttl.UJ s k d  K^, T =.fti,kl : k *

So K3 = VX «J V2.

IJ $ .  (y,X,X,n)f f  J (i « 3 or L, SO that X = K~ or K2), choose 

naps <£, s V j-- >1 (J = 1, 2> * ^ h  . identity (see (il>(b)) and:

3i\s * ^'!3 -
Define e12 : VjO V.,-- > K by (fjU) = «1>2(*> ' V * ' * * 6 V1 n V.
Thea s1 2|T la hoaotopic to:

(ill) (-l,k) k--- * kn for a unique n t Z .

(iv) [I,*) _____ * kn ior. a UBl<lue n 6 Z  .



Define X< 9>) by : ( i l l ) X ( ® ) = n

(iv) %{S>) = 0 if n is even and 1 if n is odd.
"X is independent of the choice of ^ .

ilil We "define" a lst-lsonorphism invariant "X on the class C  ?(X) of principal 
bundles with group K and base X, for a fixed con pact Hausdorff X.

Suppose (t> = (Y,X,K xbZ2,V). Let Y/K denote the orbit space of Y 
under K i K xeZ2> and : Y --->Y/K the orbit nap. Let = (Y/K,X,Z2,v^)

and fi,2 = (Y,Y/K,K,V2), where „-J .

Define * ( &  ) = ( © 2)-

It is simple - but tedious - to give a more rigorous definition of "X. 
Baking it a lst-isonorphiem invariant on ^^(X). But* is apt a complete 

Invariant and does not rap onto any sinply defined domain. However,X ».ill cs 
a help in determining the Ist-lsoEOrphism classes of bundles in S_(X). 
"Son-surlectivltv11 For an example of hosr one determines Then c. couple (¿j ^, (>_) 
of fibre bundles is not in the inage of*, see 11.8.
Son-completeness For an example of how one determines how many Ist-ieonorphisr. 
classes in ¿’j(X) nave the same inage under %  , soe 11.10.

11." Definition Given a principal bundle J> = (T,X,K.,^), define 
(E r 3, * (Y x Z,, Y, X, K x Z-, Z,, IT , S,^ ), a bundle with group £ x Z „a tl c_ 8 c c S c
as follows:

the action of K i X xe3_ 0:1 X x Z2 is defined in terns of the action of 
E on Y for &  by k.(y,l) n (k.y,lT

, ' k.(y,i) .= (k*'1 .y,tj for all y g  T, k e  K, w.era Z2 *
£ acts on I x Z2 by = Cy,«) for all y a  Y,

V(y ,<f) = trt?) • S(y.<r) = y-
Note that if $  is a product bundle, so la Q> XgZ2 .

-39-
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11.1, lst-lsoaorrhlsn classes ofbundles with base K

We wish to find the lst-isomorphirm classes of bundles (7,'A-̂ . ,G,H,i", S,^) 
where (G,H) is a connected Irreducible pair with dim G/B 4- Z. So (10.6 - 10.fi) 

(G,H) = (G0xsA, (HnGo) xsA), where A is a finite subgroup of Aut(G0) ani

(G0,HhC0) = (K^l1»), (K2,^l\), (S0(3),K) or (30(3), K X ^ ) .
Fix (GfH) = (G x A, H'xsA) and <Tt A. The lst-isomorphiso classes are 

given by the bundles ■JCXG^H', A,tf) = (Y(<r) *W(<r) ( = j<l(G0>A,tf’)

or ^ ( G o,H',A) or y ( G 0,E*) or £ ( G 0,A) or -fc(Go), depending on which of H', 
A, (T are trivial) where <r runs through the A-conjugacy classes in A, and 
the principal G-bundle associated with ̂  (G^K* ,A,(T), which is an element 

of ^ ( G )  (11.1), ie napped to <T under"X.

Define Y((T) = K x (G0* A/A1 ), wnere A' = <«“) and A/A' = : U  .
There is a natural left G-action on Gox A/A* .
Let r «= order of f . "hare ie a natural left Kx^Zg-action on K. Define 

left G-action on K hi (60*r).k = F^l) .k for all S0 £ < V  T t *» * * K*
where j A ____>K x.Zj la some chosen konocorpkisc for which

= (e2Ti^r,l) (always possible for the A's being considered).

Define action of G cn T4r) by £.(k,x) = (g.k.h.x) for all g e G. k c, S-,

x c- G0x A/A*.
Define v  : T( f) -- ? K by V((l,t) .(k,gQ,A* )) = k* far all r e A, k i  K,

g iG . (Vis well-defined.)
Define <j x S V;.---- ■,!(«-) (see il.l(il)) by ^ ( e 1*) - (e1*'*',1, A> )

for < C ‘ 111'/'* .
. ^  , v 2 ---■: 7(w") t y ^ i e 19) -= (e1,?/r,l, A*) for V i  * 9 *  7»A.

Then g. -(-1) = (1,0 «  reo.uired (see 11.1(11)).*■»4
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For definition ol 'fj(tr) and ? consider the different possibilities for (G,H): 
_ a i mere a = i u  or a = u r n  — a . « ere m k i  = I' ^(G,H) = (K xeA,A) »here A = {l^ or A = ^1,1^ “ z2 wkere £(k) = k~^ (k e= K).

^Ji(K) and 3<jCK,Z2) are the product bundles.
3£(K,Z ,f) = <K2,K3,K,K xBZ2>Z2,Tr,?,v) where ? : K‘

?(kltk2) [kX»k21
s"2*72*

(see 3.1, 6.2).

(G,H) = (K^A . A )

■ KB is defined by

X-’/s'‘ -ii(K2 ,A/T) = (K3x A/A'»k V , K , K 2 xsA,A,u ,?,tO  where ? : K3x A/A»

ie well-defined by f {(l.T) .(kj.k^kj.A')) = G‘1» V t3] ior a11 kx* k2* k3 e K 
and To A (see 8.2 for definition of K3/r, and 8.1).
X?/r is hoaeooorphlc to the unique K3/^ in the list of 8*3 Tor which rr is 

conjugate in Aut(K2) to ̂ .
(G,H) = (S0(3),K) or (S0(3),K XeZ2)

3d(SO(3)»K) = (K x S0<>), K x S2, K, S0<3), K.Tu. Sx, Vj) and
(S0(3), K x6Z2) = (K x £0(3), K x P2, K, SO(3), K x ^ ,  IT,, «2, V£) 

are product bundles where ^  and ?2 are defined by

?l(k, (u±j)) = (k, (Ox1 .ttj2 .Ux3 )) ^ 1  * K * S0C3) > K  x S-
§2 (k, (Uj j J) = (k,[(ttli,u1 2 ,u1 3 )3 ) s K x S0 (?) )«. x ? 2

. (See 8.2 for the definition of P ,  ar.d 8-1.)

(O.H) = (S0(3) xgZ2,X xsZ2)

y. (S0(3),X,Z2 ) = (K X S0(3) x Z2, K x S2, S0(3) X#Z-. X -Ss2« "W* ?.V > is 

the product bundle.
-J/ (S0(3),K,Z2,'O = (X x S0(3). (X x S2 )A, X, S0(2) Xj,!;,:- K X8Z_, IT, S.V )  

has ?j K x SG(3) — — > (K x S2)/~ defined by:
?Cki (Ujj)) * [k, (Uii;u12,u15)cok] Where, if k = e1®, * SO<3) is

c o&0 0 sin <9 
0 1 c

-sin$ C COS^j

J



Ist-lsonorphlse classes of bundles with base S2 
We state the results without proof. (See fl?] IS.5 )

(i) Bundles with group K

The distinct Ist-isomorphisc classes are given by ^ (c e2), 
n = 0 {?>Q is the product bun'dle.
Fix n > O = (SU(2)/Za, S2, K . H ^ .

The action of K on Sa(2)/Zn Is defined byr

fe • ZJ " U  'l - 2; /fcl/n ° / ull “12^
■ > 2 1  “22/ * U  '<-1/"J(»2l ”22)

Diagram 11-5
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XL.6 lGt-lsonorahiso cliKoes .if huiiJlee >itli bus'- P"
Vfe state the resulto wltnout proof.

(I) Bundles with group K
Thero are two lst-isomorphisn classes of bundles, denoted by Q ana 

^  Is the product bundle.
= ((S2x K)A, P2, K, n ), »here K acts on (S2x K)A- by

k.Jx^.kj^ = t*I.«*x3 f0r a11 X1 € s2> k* kl “ K *
IT t (S2x K)/~--- > P2 is defined by |T([x,k]) = [xj.

(II) Bundles with group K xgZ2

The lst-lsoaorphlsE classes are given by bundles denoted by 'f

'S 1XSZ2 êe8 11 *3 i ®-nd f a  (a ? °)*

y o = (S2x X, (52x K)^, ?2, K xsZ2, Z2, IT , ^ , V) (oee 8.2 lor 

definition of (S2x Kl/j- ).
Action of K ■& K xoZ, on S2x X is defined by

k.tyj.kj) *■ (yj^.kl̂ ) (yx (= S2, k, ^ 6  K).
Action of U 2 2 i K  xgZ2 on S2x K is defined by 

‘i. .(x,k) = (-x.k"1).
v  , S2X K — * p2 ls dafin<t<i by V(x,k) = [x"i (x a. S2, k e £).

= (50(2)/^. SO(3)/D2n, P2, X i s22, Z2, ?2a* * v kn}

Action of X on SU(2)/Z2q 1» «8 for (11.5), 031 v 2a la *“ ^  ior ^2n*

Action of d ̂  ^2 ^ & Xa^2 on SU(2)/Z2a is defined by.

? 2 .(*«• = 
. ' 2a \U21 U2’ ) •

i U21 u22\
211 K l  -U12l

To classes of bundles »1tr. base K2

a ) Bundles with xroua £ : , rtl, (11.1).► Vi»3
) = 0 This-gives the product bundle, denotes by 

Tt ( ft) » n t 0 A bundle with this characteristic is "3,,, 

Tor n > 0, define f_n » P n  (8,2* »

o*
defined as follows.



and let "3n = (N/rn, K2,K,(rn).

Action of K on K/J* Is given by e

tv : N’/ r  -----,  K2n n

2»it [x.y.z] = [x,yKt/4z] •
is defined by fTn( [x.y.zl) = (e2olr. 2 nlz,

Define

,(e

1 = 1, 2 (11.1(111)) by
2rtLx 2irlz. r n -I , , , ,e ) = lx,0,zj, -t S X 4 j

,2.vit, D

«fei«2 '1*,*2'1*) * {x,0,zj, - J t x l l .
(11) Bundles with group Z2: use t C 1(K2,Z2> ---^ f ^ i K 2^ )  (11.1).

(PJL(K2,Z2 ) - Ko=(^(K2),Z2) = { V W ^ *

1Tx (K2) = ^a, b : ab e b & ^ •
a and b are the hoaotopy classes corresponding to the paths t ►-— »-(e4

and ti--- »(l.e21̂ 1) (t «• [0>l]) respectively.
We define e bundle = ( x f ,  K2, Z2> V x) with /X ( & £ )  = ^  (1 = 1...U.

vjjia) *»J-̂(b) = 1 : la the product bundle.

YJ2(a) = £, tj2(b) = l : XJ = E2, * .(k^kg) = (-k^k^), V*(k1#k2> « (fc2,^)

= *7 j(*>) = ^ = ^ = ^ 2 *  *2^
yj^(a) = TJ^(b) s i : « K y ? v^vk^^k^) - .

(1.1.1) Bundles with group K : use *1̂  defined on ¿^(K2) (11*2).

l.e. we find lst-lsoaorphlen classes of bundles
(£> = (Y, Y/Z,, X1^  XaZ2, Z2. n , f , Vj,-V2) in terras of tb.» bundles

. (X1,K2,Z2,V1) and ® 2 e (Y.X^K.v^). Ccaplete proofs will aot be

given.

Tt(fi>1) » O- So 3 2 has base K2z Z2> It can be shown that the only posslbllltie* 

up to Ist-lconorphlan *re~i„z6Z2 * (11.7(1), 11.3).

,X(fli>1) » »'12. »lx orrii4 14 C*R 5,9 Bho*n that :& 2 Bust bc J0

The actxon of C e Z2 •£. K *BZ, on deteraiaes S  up to Ist-lsonorphlsu,'and

can be taken to be as follows:
, ( ^ H 2 €.(k!,k2,k3 ) = (-k^^.k^1) : gives bundle

«



o r t . ( k 1 ,k 2 , k j )  = ( - k 1 ,k 2 ,k 2k " 1 ) : e lv e s  b u n d le Q c ( S 1 ) = ; ^ «< k1 , k 2 ,k 3 ) = ( k j . - k g . k J 1 ) s e lv e s  b u n d leo r i .  • ( k ^ , k ^ tk^) — ( k ^ i - ^ j k ^ k j  ) :  g iv e s  b u n d le  J  ^ )~x « a t ) = ^ t| ; M k ^ k g , ! ^ )  = ( - k ^ - k ^ k “ 1 ) : g i v e s  b u n d le  3  ^ - f c j . - k ^ k “ 1 ) o r  « .( k j ^ .k g .k j )  = C - ^ . - k g . k ^ k “ 1 ) s g iv e s  b u n d le  J ^ - l ^ . - ’̂ . k ^ k " 1)
In  e a ch  c a s a  Y/Z2 i s  h o n e o a o rp h lc  t o  o \ nnd K‘S ' f l  0\ r e s Pc c t i v e l y •X  (o  - l )  X  C l  - l )I X . 8 As an exarople o f  th e  method u sed  i n  th e  c a l c u l a t i o n  o f  1 1 .7 ( 1 1 1 ) , we show t h a t  i f  X ( .& ,)  = V Z ,  and $ 2 = " ] 0 ,  th e n  up t o  I s t - I s o m o r p h i s a ,  th e  a c t i o n  o f  i  on must b e :fc . ( k l t k 2 ,k 3 ) =. ( - k j . k y k j 1 ) o r  ( - k j . ^ . ^ k " 1 ) .
It can be shown that til® action of £ Bust be of the fora:* f ( e 2‘r* £JLt o2 i ,i®2, c 2" 1^  = ( - e 2 P i^ l ,  e 2’ i£>2 ,  . 2 r t U f c ,1 . » 2 >
where f t C( l£.2, )2-) baa f ^ + i »  »2) = (aoi^  = f (c^j^+l).

I t  con be shown t n e t  1 -  "and t .  a r e  a s s o c ia t e d  w ith  I s t - l o O —. r p h l c  * 1 2
bundles If there exists ij> s C((P-2,iB.) with:C ^ i G j V l , ^ )  = i f ( 6’l ' ,92 '  (o o d ^  =<^(£'1 ,( « + 1 )  a n d :
e2Bif2«51,c25 _

l.e. f2(£>1,02) = ^ x » ^ )  - ̂ Oj*i,Oz) -<fSv Cz) Cnod 2 * *

Oivon. fj, *e can choose a aultable )/2 - ^ ^ / 2  ♦ ̂ A
(■/ , 0 or 1, (1 « O or 1) «o that = 0 or 6^ as required.
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lat-lsOMOrphior. classes of bundles w '.t:i base KB

— >i>. ui.i).(1) Bundles with ¿roup K : use X : C fc- 
'K ( (8 ) = 0 This gives the product bundle, denoted by "3<B.

where tne action of K** <6 > = 1 *his «Ives 3.8^ = oy  *3> K.T),

is defined by k.[kj,k2,k^J = (k^, k2> k,, k t  K).
(T S K3

n o )
-f K3 is defined by ird^.^.K^J; = [ ^ , ’«0

(11) Bundles with group Z2 : use x  : ¿ ^ ( K B . z p--->> (^(KB.Z^ (11.1).

/P1(KB,Z2) = Hoa(Ji1(KB),Z2) =

[f^(KB) = <fa, b : ah = b-*»-̂ .
a and b are the hoootcpy classes corresponding to the paths t 1—  

and tl---*[l.e2,rltJ e 0>,l] ) respectively.

nit ii

We define a bundle = (X^,KB,Z2,V^) with a(i>^) = '/j_ (i = 1..-0- 

rj^a) = ̂ ( h )  = 1 : iu- the Product handle.
rj2(a) s f , lj2(b) " I s  = X » ^.(k^,k2) = (—k^,k2 ), S  ^(k^,k2) = ^c^-kjj 

7j j(u) s 1> i^(b) =£ • X3 = KE, = 1 " ^ 1 ' = [k- *k-
y|i(a) = ">ĵ (b) = 2 : X^ = XB, = \k^,— k2"2, V^(^k, .a2J) = k

(ill) Bundles with group X XfiZ2 s use "X^ defined oh ^ ( K E )  (11.2).

i.e. we find lst-iaonorphlan classes of bundles 
(fc = (T,T/Z2 ,X3,S xlZ2,22,X,i,V1«V2) In terns of the bundles 

. (X1,K2,i2,V1) and ,G>2 = (T,X1,K,V2).

'XiSj) M "*’l ’• can be Bh0,n that up 60 is3=or?hlsa, the only posolbllities 
for £> »re ^<S0»a32 and y S ^ Bz2 (11.9(1)» 11.3).
"X (l£>x> - 1 , : it can be shown that (&2 must be "30 (11.7), and than the

only possibility for $> la ~j!!3>0 * o\ ’  X xoZ2’ Z2*,T • ̂  » v »̂
V.o -i)

l\) 
H
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where the action of K xsZ2 on in given by:

k • ( , k2, k^ ) s ( •  ̂ 2 *^^3 ^ > * j  )•
V  1 6  given by Vikj^k^k^) = [kj^kJ.

*7 . ( fe^) = rj-tl • It can be shown (1 1 .1 0 ) that ® 2 rust be - not -

up to lst-l60norphlsa. Dp to lst-l60aorpi.is=, there are two possibilities 
for &  , deterained by two possible actions of i on I = K3 x Xi 
i .( [kitkJ',kj) » ( [klt-k^] .k̂ '-) : gives bundle 3c<&0( ,kjl)

or ^ . ( D v k ^ . k j )  = : gives bundle J^So( [kj,-k2], k^kj1) .
Y/Z2 is hooeoaorphic to W0, '<2 respectively (see 6.2, 8.3).

t ({»j) = >?, ! There ie a natural correspondence of the possible bundles

with those for y[,, therefore they will not be listed.

1 1 .10  As an exasple of the nethod used in the calculation of 11.9(210* We 

sketch the proof that if TK&j) = then ¡*2 oust be %g,c “P to 1st -isoser- 

phlsa.
I{ is "}(£>-; then there exists a homeoaor;hisa £ : q \-->

v i  1) v 1

such that £ 2 = identity and the following dlagren coa-utes: 

Dl^graa 11#10
tyf-i 3 ici>k2»k3 ^ 1 r

1 r
KB 3 ^--------

. J _
----^  [ki,-k2"! = j

l.e. •€ is-of the fora:
^ ‘rt2^*,tf2"0,.2^*i , (;,2.Tlx>#2n(y4')>e2*l(><i*,y) - *> ;

where V «  C(A.2, |£) and t 

V ( 3t*5r'*' 1) * V(x,y) aod "2 
-2y ♦ = y(.x,7) * i soi ̂
V(x,y+y) » V(x,y) a o d Z  (since t 2 = identity).
By considering a suitable function y^(x,y) ol^x.y) ♦ ax , we can assuae:
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VxC* ♦ 4-» - y )  -  2y  = ^ ( x . y )  ;  V j U . y  * ±) = V i ‘ X .y )  ♦ d ,  s e r e  d * Z ,

LetVjCO.O) = c. Evaluating 3 ) in t»c different ways, we see

cannot exist.

A 12 ? -adalBsabllltv
lg . 1  Te use the notation of 8.3 throughout this section. Denote a t.g. (Z,7.) 

by (X,t) where t is the homeonorphi6s of X corresponding to It 2  . In this 
section we prove (without- full details) that the n-allcwable strings (n <■ 3) 

are Z-aaaisGable or not as recorded in tables A and B of ¿9* 12.2 - 12.6 are 
devoted to showing that the strings for which non- Z-admissability is claimed 

in tables A and B are indeed not Z — adnlssable. 12.7 - 12.16 are devotee to 
reducing the problems of 2 -adslssablllty of the remain!n.c strings to problems 
concerning the existence of minimal group extensions of certain t.g.*s, and 

1 2 . 1 7  - 12.13 are devoted to solving these problems.
12.2 Definition For a hos.eomorph.isa c of K2, let r(£j) be the unique (r^) 

in QL(2 ,2 .) such that is homotopic to:

rU u  rl>?(k^k.,) i--- i(kx “ k., ", kx k2' » k / 22)

Tien det r('-f) = ± 1

12.3 If (K2 ,t) is minimal almost periodic, :

12.4 If (X,t) is a minimal distal t.g. with

it is clear that t : X -- »X must be of th<

Al (k1 (k2)t * ("i^, g(kj)!^)

A2 (k,, ) t = (jik1, )

A3 •[ h j . ^ t  = y * v  s < v k2 ^ for all

In c&c’i case* 3 »here ^ Is Irraior.ai, and S £ C(X,K) •

For A3, ¿Os lor all
Thurafore, if S(K2 ,t) la a 3  In Al, det r(t) = 1, a d if ® ( K 2 ,t) Is as

in A2, det r(t) = -1.
1 2 . 5  The following lemma shows that tae strings of A12, 34, 37 are not
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^ - a d a i s s a b l e ,  and w i l l  h e lp  prove t: .e  Z - a d n i s ¿ a b i i i t y  or t : .e  s t r i r . ; s  AIO,

B3, B3.

Lerr.r.a For n ? 0, let = (Íl/Pn, K¿,K,íTn) te as i»l 11.7. Let cj ; K2 ----» K2

be a hoaeoaorphiss.
(i) det r(y) = 1  If and only'if ^  exists os lr. the cjnmjtative diagraa 1 2 . 3  

with iT(k.x) = k.(5(x) for all x t tl/CD> k - K (action of X on N/pn as for

V -
(ii) det r(tf) = - 1  if ao.d only if £  exists a6 in diagraa 1 2 . 5  with 

$>(k.x) = k-1. $(x) for all x O» K/fa» k e K.

D iag raa  12 .5
N/rn

X2 -

-7 «/,1 n
rr

K

Proof It suffices to show the bundle (N/rn,X.2 ,K, (where the action of

K on K/Pn is as for jft) is lst-lsomorphic to "3n if det r(Cf) = 1 ar.d to 
if det r(</>) w -1. 2y tho first Honotopy Covering Theores ( [l7l 11.3) ii

suffices to prove this for <¡ of the fora:

C¡ (k^k.,) = ( k / ^ k / 12, kir2 1 k2 22), (rtJ) t GX.(2,"2) .
But this is a straightforward coaputation.
1 2  .A Lears The string ot AU corresponding to 3i(X2rA,<r} is "2-ada.issa'ol» 

only if A and V<<r> is cyclic (see table A).
Proof S.ippcse (X3/<r,t) ia * ninisal distal t.g. witft t) tne stric*
of At* corresponding to 3C( ̂  • ^nen (K^/<r»t) ^  (K3x A/<;j> ,s) where a is
a mir.iaaL distal hoaeoaorphisa coansuting with the action cf x^A (11 #U)* 

Fix  Tel. »rite ¿  » (1,1,1, «O). Is“«. X5x r « r ?  Cor »o-e *» «>y the

Rlnisallty of a.
Is“ . (1,1,1, Tjdr’Js“ for all *) t <<0

. (<i,n)(rro\-1)»x,!.<*’)«“ d x3* n <6ee u **>*
Therefore for all /jc 6
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Therefore cs> o A. Clearly A/<«> oust be cyclic.

1?•? Definitions Let (Y,X,G,V) be a principal bunnle (3.1) and let t be 

a hoseoaorphisc of X. Let HoaCYrX.O.V.t) denote the set of h j.T.eoaorphis=s 
of Y such that:

(1) (g-y)s = g.(ya) for all g t 0r y 6 Y.
Cii) (X,t) .-<v(Y,s)

Write Ho!r.(Y:G,t) for Hoo(Y:X,G,V, t) if the definition of X, Vare clear 

froo the context.
Let Roa(Y:0,t) b (p • Let Y be metric, and note that all setrics on ?,S 

respectively (giving rise to the right topologies) are equivalent. Let Koa(Y:C 
and C(Y,G) be given supreaiun netrlc6 (any two such, oetrics on Kon(Y:G,t), 

C(Y,G) respectively are equivalent). Then Hom(Y:G,tl is a coaplete o.etrJC 

space and Is laoaorphic (r.a a cetric space) to:
{ t fc C(Y,G) : f(g.y)g = gf(y) for all y t Y, gft G ̂  which is in turn 

lsoaorphlc (as n tetris epaco) to C(X,G) if G is abelian, or if (Y,X,S,'>) is 

a product bundle. In the letter case, for a hOEeoaorpnisa t of X, the elenent 
of Hoa(XxG:G,t) corresponding to f i C(X,G) is denoted by s, if tnis notation 

car.not give rise to confusion, where:
(x,g)ef = (xt,gf(x)) for all x fe X, g c G.
If H d G and t» 6 Ho*(T/E:0/a,t) then define;

Hoxf Y:G.H. t.f ) * Hoa(T:er,t) r> Hon(Y:H,t' )
so that If e 6 Ho=(T:G,H,t,t«), in particular the following diagram ccsautes: 

Pla^rao 1?.7

vY/H [yjE

fyJfi ->VG fyj0
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If t is minimal, let OKYtX.O, V, t) (or I ^Yil.Ol bê
 ̂a fe Hoc(Y:G,t) : a Is minimal i .

If t, t* are minimal, let lH(YsG.K.t■ t' ) = *KY;G,t) n !!cr.(Y:G,H,t,t• )

12.3 Definitions Let &  s be a string (V-l) with

&1 = (yi»Xi»Xi-l»ai»Hi»rri»Si>yi) * 1 ** Let t be a minimal distal 
hoaeomorphlsm of Xf_^ with ft(Xr_^,t) = ®r-l^*

Define D (T : §,t) as follows: 6 fc ttZ(Y :G ,t> la in j)(Y : ̂ ,t) if and 
only If &(Xr,u) = £ where u la the unique hoceomorphisa asking the following 
diagram connutatlve:
Diagram 12.8

;‘« . w } v

< V ° r  = > Xr-T - xr_i ( ~ W

Let L < Gr aud t* s >/l(Yl/Lr:Gr/Lr,t).
Defi-.e ¡Q(Tr: 3,t,t') •= i> (Y„: C,t) n Hoa( Yr:Gr,Lr,t,t‘ ) .

)2 ,Q Using Induction, Z. —admlssablllty of strings of taol23 A end 3 is Implies 
by the following proposition, wnich we shall spend the rest of tho section 
in proving using the notatlcn__of__12_̂ 3_ (and of 12»7s throu.-rhont»
Proooe11lor. Let * , t’, f  be as in 12.5, and Lp = GrQ, the identity component 
of Gr, and suppose A is one of the strings of tables A ana S for which 
~z -ascissaot11ty la claimed. Then:

P(Yr: (6,t,t*) la dense in 3oc(Yr:a.,Gro> t, f  ) .

Tor all the ~L -adalesable strings of tables A and 3 except AIO, 33 , 33, 
proof of Z-admlasablllty la achieved by reducing the problem to a similar



problem concerning minimal extensions and strings tn wnich t;.e final bundle 

Q r is a product bundle with connected group and (possibly non-conr.ectca) 
base (see 12.17 for statement of the reduced pro'olca). First (12.10 - 12.11) 

we deal with the strings of A10, 33, 33.
12.10 Learna If 8  Is one of the strings A2, A3, A5 - A3, A10, All, A13, All, 

B3, B8, 322, B23, then »1 (Y r:Gr,t) = S>Ofrs£.t>, so that 
/n(Yrsar,aro',t,t*) .p(irig,t,t').
Proof Let s e  f>t(Yr:Or,t) and suppose s 4 5>(*rt § » 0 .  .

We shall assuoe £  is one of the strings of table A (proof is siailar for 

B3, B3, B22 , 323). So r = 2. If s 4 i>(Y2:£,t) then the phase space of the 
caxioal almost periodic factor* of (X^,u), where (X2 ,u) ^^(Y^fS), must be

I2/L2 ’her® L? * °2 ard 32 ~ L2 ^  °2»-Witb K2 = L2 lf L2/H2 iS iinite <5.5,
5.6,5-7). In the particular cases considered, this implies K2 a I<2, hence 

(X ,u) is almost periodic, is trivial, G, is abelian and X2 is a .orus — 

which le not true for tho strings of A2, A3, A5 - A6, A1C, All, A13, AH*.

12.11 If <£> is the string, of A10, £z}6.19.2.6- implies HoB(fr:Gr,Gro,t,t’) 
m » 1 (YriGr ,Orj,t,t') and hence by a simple argument the same is true of tne 

strings or B3, B8. By 12.10 this implies proposition 12.9 is proved for ta» 

strings o$ A10, B3, B3.

jg.12 Now we need sob® definitions:
Definition« (i) If f « C(S,X), f can be uniquely written in the form

P<e I where p e Z  , c &■ X and J"h(k^) = C, h & C(h,i^).f(k.)
ihffcj)

Define ? t C(X.K)----) C(X,K) by PfUj,) -- e
(li) If f e C(X2,X), X can be uniquely written in the form

rll(k^) ♦lh(k1,k2)
f(kifk2) » kipk2,e , where jh(k^,k2> »»2dk^ = 0.

i hfkj^)
Define ? s C(X2,X) ---» C(X",X) by Pf(’<l,k2) = e
(Hi) For f t C(X,Kr) or C(X2,Xr), define Pf = (Pf1,...Pfr) if f = (f1*” tr)*

W H H I

,
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(lv) If B Is a finite set ther. C(Ksx 3,Kr) is isomorphic (as a group, with 
polntwlse multiplication) to C(K®, (Kr)3) under the nap:

f»----^ V b e B  *here <h. e Xs, be- 3).
Pslng this isomorphism. define P : C(Ksx 3, Kr) ---? C(K6x 3, Kr) for s = 1, 2.
(v) In each case, P is a continuous group hooonorphisa with respect to the 
unltora topology, and P3 = P.

12.13 Definitions (1) for X a conpact Hausdorff space and G a compact group, 
a group C is said to be an automorphism group of (X.G) if C acts freely on 
X and acts as a. group of automorphisms on G, both actions being on the left.
(il) If C is an automorphism group of (X,G), let Olc denote the closed 
subgroup of the group C(X,G) (polntwise aultipllcation) defined by: 

a c = {f e C(X,G) : f(c.x) = c.f(x)* for all x <- X, c £■ C
(lii) If C is an automorphism group 6f (X,G), define : C(X,G)---r OCX,3)

by (Hcf.)(x) = f(c.x) (c e C).
If X = KBx B (a a 1, 2 and B finite) and G = Xr, C is said to be a P-ic- 

warlant automorphism group if RcP = P3c for all c b C. If this condition 

is satisfied, P(&„) £ Gl̂ ..

l.T.Hi Suppose S  is one of the strings A1 - A9, Ail, A13, All*, 31, 32, 55,

B6-
(I) The principal bundle derined by the action of on ?r is a product
bundle. Recall (410) that we can assume Sr = *^ere Hr is a finite
subgroup of Aut(GrQ) in these particular cases. Thus is canonically 

isomorphic to 0r/G_0, which acts on Tr/Cro (a--3 cor.Rci.es with t*). Therefore 

Hr is' a finite automorphism group of (^r/°r0>arn^’
(II) Tr.er* exists f^ 6 ®(*{/^ro) such tr.at Hom(Tr:Gr ,G_0, t, t' ) = \sf: * 4 u •

where »* can taice f^ 5 1 except in the case of the string of A13, when

C(T_/3..0,Gr0) a C(S2,X) and we car. assume pfj = 1. OVy.f^ = [fafl : f2 G \  *
. r r_

(Hi) If S  is one of the strings of AX - Ah, A9, All, A13* All*, 31, 32, 35,

B6, then Hr 1b P-inwarlarrt.



-54-

12-15 If &' is one of the strings of 39 - 323 then the proof of 12-9 for 
reduces to proving:-

<D(*r: S ,t,t‘) n iaft I e(ic|| is dense in Her:(Y..:Gr, 3ro, t, t' ) n £s,: t c- 5? r \ 
»here:

(i) fi is the string of B1,.B2, 35 or 36.
(11) C is a finite P-lnvariant autoaorphins group of (*r/Gro>GrQ) such t.-.at
the actions .of C on Y / 0  _ and G comaute with those of K , and CK acts r  ro ro r r
freely on Y^/G^. Hence QHr is a finite P-invariant autoaorphisa group of 

<V°ro-°ro>-

12.16 Leosa If & is one of the strings Al, A4, A9, 31, 32, B5, 36 and 
a, 6 Hoa(Y :G .G„, t,t• ) then a sufficient condition for cfc- £> { Y_: % ,t,t* ) 

is that 8pf be clniaal.
Proof We indicate the proof only when- 6. is one of 31, B2, 35, 26. For tie 

strings 31, B2. 35, 36, ve can as suae is 31. This follows froa the fact 

that if (5(K2,u) Is »s in 32, 35, or B6, then g.JK2,u2) is as in Bl.
Hence suppose &  is the string of Bl, so that t = t1 : ----j. ff- iE 0f

the forr.: (k,,k2>t = lyk^gfk^kg), g s C(l'.X),

and (k1,k2,ltj)Bf = f(k^,k2)k^).
Suppose Spf is minimal. £y [lh3 Theorem 1.1, this is true if and only if 

there is no continuous solution <-i to the equation:
(12.16.1) <f((k1,k2)t).(Pf(ki,k2))3 = 9(k,,k2) for any a 6 1  ~ to?i.

If this equation cannot hold for ?f, it also cennot hold fur t, so that

s, is oi.'ileel.
Suppose 6-f Q(Ir’:®,t). Then (5.5, 5-S, 5«?) (Yr,s.) ■» (I.,of) = (X^,s,)

must he sn almost periodic extension of (X,u) where ^ denotes the hones>orpinsr.| 
k^ i-- r U. k, (kĵ  « K).

Hence (K^.Sj) is a G/H-extension of (X,<*) wnere there exists a group L 
with a 4 u e G and L/H S G/K S K (5-5, 5-6). This forces (0,H) * (X2 , 111).

This means there exists a ainlaal hoaeoaorphlsa s' of of the fora: 
(kj^.kj)»' = (rfk̂ , l(k^)k2> nikj^Jk^) with s, 1 6C(K,K), and a hoaeonorpais- I

*
$
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cf of of the fora:

^  s where C(K}rt)t^ , t  C(K ("ii»
such that 5 : (K^,sf) ---- >(K^,s') Is an lscaorphis».
This inplies ^((k^.^Jt) .fO^,!^) = <j^(k^,k2) .a(k, ) 
and hence (PyjKikj.kgH) .Pf(kltk ,) = Pfj^ikj.k^)

which contradicts (12.16.1) having no cntlnuous solution.
So sf £. ' 5XYr: A,t). Q.E.D.

12.17 The previous paragraphs, in particular 12.11» - 12.16, indicate that 

the proof of 12.9, except for the strings A10, B3, 33 (see 12.11) lc a 

consequence of the following proposition, which is analogous to a result of [̂ .J 
Proposition Let t be a nlniaal distal honeomorphisa of X. Let G he a ecnpact 

connected Lie group anl let C be a finite autoaorphisa group of (X,G) (12.13) 

such that c(xt) = c(xt) for all c.e C, x t X. Let s- denote the honenaorphlsn 

of T = X x G defined byt
(x,g)ar = (xt,gf(x)).

Then Q  n if ■■ is ninlaal^i Is dense in Q  where 0  is a closed subset 

or C(X,G) of one of the following forns (see 12.12, 12.13

(l) 0\ ■ CXc
(ii) X * X8x B for s =1 or 2 and B a finite set, G = X ar.d 

rt * 01 f> £f J f * Pf 5 Where C is P-lavariant.

Proof The followihg are truo:
(a) Given an open cover of G, there exists ar. integer p such that

if »A c ^1 ? l.»*P) theQ G * *i*2*'**p*
(b) Given f 6Q. and £ v  0 tnetfexists % >0 with t-e following property: 

x C X le fixed and u s F—'W G satisfies d(u(y),f(y)) ^ ^ for axi y fc r

where F Is a finite Bet with e.F n F = <f> for all c € C, then there exists
v e O  with v ’|F * u, and sup d( v(x) ,f(x)) < £ , where d in « netric on G. •

jcC-X
(a) is proved in [cl Proposition 2. For tee proof of (h) when O- is as 

in (1), see ieoxa 12.18. The proof of (b) when O- in (li) is omitted.
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No* fix yQ = (xo,l)fc Y. For V open in Y, let

E(U) = ff 0 Q  : -f yosfDs n ? 0} <1 U f P  \ • "Sing (i) er.d (ii), uso an 
argument sinllar to that of lemma 2 to show that ECU) Is dense in C(X,G). 
Then note that ^ f t Ql : tj is mlnimalj = l|/̂ ejj(U), hence is dense in Q. >open 

in Y
since Y has a countable basis of open sets.

12.13 Lemma (b) of 12.17 is true for 0- as in (i) of 12.17.
Proof Assume without loss of generality that the metric d is C-invariant. 

Choose i 0 and S(g) is S: G) such that:

^ g* : d(g,g')<s5 - s(s) £ ^S' : d(6>C') < »here Sig) is
honeoaorphlc to |R-n for some n.

For y c- F, choose ¡Ĵ , an open neighbourhood of y, such teat: 

f(Uy) c ^g' : d(g',f(y))c b 5 , and 0y n c.Uy = <f> for c c- C.

If y. =. c.y^ (yx c- I), define Uy = C.Uy^.

For ye dailn* »„(y) = c.u(y ) if yce C  * = c.y, for c c- C, y.

vy(x) = f(x), for x in the boundary of 3y,

and extend » to a function » : 3 -y 3 3
Then define v = vy on (j C- C.F) 

= f otherwise.

rSCf(y)) such that vry(c.x) = c,vyit>.

L l  &  • ad ait b »ability
1 3 . 1  The different types of minimal distal |£.-actlor.s on compact connected 
topological seal folds of dimension < 3  were obtained by 3ror.s*.ein [l] , though 

not quite in the form given here.
1 3 .2 CiearJy .2. (»1th the usual topology) can only act minimally on a 
connect"! apace. Then the following lemma, quoted by Bronsteln for roughly 
the aaao purpose , and easily verified, shows tnat all the strings in tables 

A and 3 except fofA9, AlO, a 13» Al<»» are not fc-adoissable.
Lenme tsl hat U , & )  be a minimal periodic t.g. and (Y.lii) a minimal almost 

periodic extension of (X,tf-). Then (Y, S-) is almost periodic.



(Note that an alnost periodic action cf on K cast he periodic, her.ce tr.e 

leisca laplies a distal action of i.i on a 2-diser.slonal nanifoid oust be 
aloost periodic.)

15.15 The string of A10 is fiv- -aa.oiseable.
(P.(X,/5-) is the string of A10 if and only if X = K/fn (8.2), and the 

action of |R- is given by:
[x,y»zjt 9 ^x+at,y+bt-fact2/2 *xct»gt(x,z), z+c*3 for all x, y, z, t C- »2 , 

where a and c < {L are rationally independent and the function 
(t,x,z) v---* gt(x,z) is Jointly continuous, with:

gt+s(x,z) = + Ss(x+at>z+ct)
6t(x+l,z) = gt(x,z) (ood 2. ) = gt(x,z+l) for all x, z, s, t d l£ .
For proof of ninioality see, for exaxple, ^2^ 6.19.2.6. Proof tuc.i 

(5.(X,i?-) is the string of A10 is analogous to 12.10.
1 3  .t, We. outline the proof that the string of A9 is 1<- -adaissable. (The proofs 

tor A13, All» are slniiar.)
If &(JC^t |C_) is the string of A9 then tne action of 'A is of the ferae

« V V * , » .  ■
and t t iP- , where a, b c are rationally independent, and if

A
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for all Xj i- Z

(fc, ,k2).t . (kxe2ciat 2«-;btjk^e” * ) then g^+s(k^,x3) s . ,è,) •fs((XyA,)t)

for all k. , k, £- K and t, e t !£• •
A necessary and sufficient condition that CK5, #-) be ziniaai and that 

£ ( K 3,£.) be tr.e string or A9 is that there exist no continuous solution 

f (r C(K2,K) to the equation:
2irl(cg (k. ,k,)+ *t)

for ax.y

a f '* {0 ̂ and \ 6 is- i»

Writ tag #Ck,,k2) = kipk2qe‘:rle>'1’*2' (g iCilt2,*-)), the condition becomes 

that trere is no c:ntinucus solution f^ £ CdC2»*1*-) equation:

( 13.1» .2) r ^ c — . k2e2,ribt) = f ^ ^ , ^ )  v g^^.k,) ♦ /'t for any

4 t
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$  of of the fora:
4> = k̂l»?2^ltl^k2* cf3^kl»it2^lt3^» *h"re C(X,K), ̂  <• C(X2,'i),
such that 5 : (K^.Sj)--- >(K^,s') is an iscaorphisn.
This iaplies (k^.kg)t).f(kj,k2) = «^(kj^.k^) .a(k, )
and hence (P<jfj)((kj,k2)t) .Pf(k^,k ,) = P<j\(kj,k2)
which contradicts (12.16.1) having no continuous solution.

So Brc <SXYr: *,t). Q.K.D.

12,17 The previous paragraphs, la particular 12.11» - 12.16, indicate that 
the proof of 12.9, except for the strings A10, R3, 33 (see 12.11) ic a 
consequence of the following proposition, which is analogous to a result of £v3 
Proposition Let t be a Dlnioal distal honeomorphisa of X. Let G be a compact 
connected Lie group an! let C be a finite autoaorphisa group of (X,G) (12.13) 
such that c(xt) = c(xt) for all c t C, x t X. Let s. denote the hoaenaorphlsa 
of T = X x G defined byi

(x,g)sf = (xt,gf(x)).
Then Q  n if ; Bj li nlnlsal^i is dense in ~Q where O  is a closed subset 

of C(X,G) of one of the following foras (see 12.12, 12.13':
(l) 01 * CXc
(li) X * X°x B for b =1 or 2 and B a finite set, G = Xr ar.d 

Q  * Glc r> J t * Pf5 «here C is P-lnvariant.
Proof The following are truo:
(a) Given an open cover {Vj^.,.7^ of G, there exists ar. integer p such that
if wl C. (i s 1...P) th«Q « «
(b) Given f 60. and 6 1 0 tne^exists S>>0 with t-e roliouing property: 
if x G X le fixed and u : F— > G satisfies d(u(y),f(y)) < V for all y e F 
where F Is a finite Bet with e.F n F » j for all c e C, then there exists
▼ e O  with v|F a u, and sup d(v(x),f(x)) < £ , where d is a netric on G. •

XfcX
(a) le proved in [i£] Proposition 2. For tee proof of (b) when O  is as 

in (1), see ieaxa 12.18. The proof of (b) when Q- is as in (li) is omitted.

V.V--*------- A1.; »■>»’■ 11 II. J't9
/
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No* fix yQ = (xo,l)t Y. For V open in Y, lei

E(U) = ff C- Q  : yoBjD! Oj U 7 ‘P'l’ "'sing (i) end (ii), usa an
argument slallar to that of [}J losna 2 to show that ET(U) is dense in C(X,G).
Then note that £ f t Ql : sf is clniaaljs , hence is dense in Q->

in Y
since Y has a countable basis of open sets.

12.18 Lemma (b) of 12.17 is true for Q  as in (i) of 12.17.
Proof Assume without loss of generality that the metric d is C-invariant. 

Choose £y 0 and S(g) is 6 G) such that:

{ g» : d ( g , g £ S(g) S \e' : d(g,c') * »here S(g) is
hoaeoaorphic to I?-n for some n.

For y Cr F, choose 0^, an open neighbourhood of y, such that: 
r(Uy) c \z' i d(g',f(y))d b } , and Gy n c.Uy = jt> for c C- C.

If y. =. c.yx (yx C- I}» define Uy = C.0y .

For y € U  c-7, define vy(y) = c.uiy^ if y = c.jj for c 6 C, ^  s. F 
• v (x) = f(x), for x in the boundary of Sy,

and extend v to a function vy : Uy-

Then define v = vy on Cv (y 6  C.F) 
s f otherwise.

iS(f(y)) such that vry(c,x) =

iii e  * 3idi.it fin*bil tty
The different types of miuiaal distal \ Z-actions on compact connected 

topological aanlfolds of dlseosion <3 »ere obtained by 3rcr.s*.ein [l] , though 

not quite in the fora giy‘en here.
•̂x tg Cl&ar&y ¿2. (»ith the usual topology) can only act sinisaliy on a 
connected apace. Then the following lemma, quoted by Sronsteln for roughly 
the sumo purpose , and easily verified, shows tnat all the strings in tables 
K  and 3 except rorA9, AlO, a13. Alt», are fc-adoissable.
Lenme [S3 Let (X,&) be a alalaal periodic t.g. and (Y.lR.) a ilnlnal almost 
periodic extension of (*,«-)• Than (T, ft.) le almost periodic.

1
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12.15 If ft* Is one of the strings or 39 - b2} then the proof of 12-9 for £  
reduces to proving:-

Q>(Yr : G ,t,t') r> £sfl f e 0>C Ĵ is dense la Hco( Y..: Cr, ¿r0, t, t • ) n £s..:f 2? r
»here:

Ci) s is the string of Bl,.B2, 35 or 36.
(il) C is a finite P-lavari&nt autoaorphi.-:s group of (Yp/G ,GrQ) such t.-.at
the actions .of C on Y /0 and G conaute with those of K , and CH acls.]r t o t o r r
freely on Yj/Gr0» Hence <JHr is a finite P-invariant aatoaorphisa group of 

^ A o ^ r o » *

12.16 Leona If & is one of the strings Al, AJj, A9. 31, 32, B5, 36 and
e, e Hoa(Y :G ,G ,t,t') then a sufficient condition for c c- (Y_: § ,t,t')f r r’ ro' * » *
Is that 8pf be alninal.
Proof We indicate the proof only when- &  is one of 31, 52 , 35, B6. for tie 

strings Bl, B2. 35, E6, we can assune £ is 31. Thic follows froa the fact 

that if ft.(K2,u) Is »s in 32, 35, or B6, chen ft_CK2,u2) is as in Bl.
Bence suppose &  is the string of Bl, so that t = t* s K 1 k is of

the fora: (k, ,k^)t - i»<kx,g(kx)k2), g & C(i.X).
and (k1,k2,k3 )cr = <*kx,g(k1)k2,f(kj,k2}kj).

Suppose Spj is ainlsal. By [in] Thecrea 1.1, this is true if and on*y -f 

there ia no continuous solution of to the equation:
(12.16.1) ^((k1,k2)t).(Pf(ki,k2))a = 9(k,rk25 for any n « Z  ~ \o\.

If thio equation cannot hold for ?f, It also cannot held for t9 so that

6r Is ai.Micalw
Suppose 6'̂ Then (3*3» 5-^» 5»7)

naet r»e an almost periodic erteision of (K,*) where

(Yr,sr) (I.,nf) = (K5 ,s,)
*. denotes the hoaeoaorainsr

k^ ^k, (kx * X).
Her.ce (X5,sf) is a G/B-extension of (:<,«0 ».-.ere there exists a group L 

with a 4 L e G and L/H » G/H W X (5-5, 5-6). This forces <0,H) * (X2,U\).
This lease there exi6ts a ainlaal hoaeooorphisa a* of Tf? of the tors: 

Ck1,k2,k3 )o' = C^klt K^Jk g ,  nCkj^jkj) with a, 1 6 CCK.K), and a hoseosorpnis
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of of the fora:

^ ( k ltk2,k^) = (k1 »y2(*t1 )k2» (^(kj.k^Jk.), *here <£.fc C(X,X), ̂  <• C(S2,i),
Euch that 5 : (K^,Sj)---- »(K^,s') is an lsoaorphisa.
This inplles Cj>^((k^,^) t).f(kj,k2) = «^(’̂.k^) .a(k, ) 
and hence (Py_)((k^,k2)t).PfCk^.k ,) = P(j^(kj,k2)

which contradicts (12.16.1) having no continuous solution.
So af c. (SXY^sA.t). Q.K.D.

12.17 The previous paragraphs, la particular 12.11» - 12.16, indicate that 

the proof of 12.9, except for the strings A10, 33, 33 (see 12.11) ic a 

consequence of the following proposition, which is analogous to a result of [4.]. 
Proposition Let t be a olnlaal distal hoaeomorphisa of X. Let G be a ecrpact 

connected Lie group and let C be a finite autoaorphisa group of (X,G) (12.15) 
such that c(xt) = c(xt) for all c e C, x «■ X. Let s- denote the hozcnnorphlsn 

Of I = X X G defined by:

(x,g)af = (xt,gf(x)).
Then O. r> ff ; Bj l i nlnlsal^i is dense ir. Q  where 0  is a closed subset 

of C(X,G) of one of the following foras (see 12.12, 12.13):

(i) GV » CXc
(li) X * X8x B for s si or 2 end B a finite set, G = Xr a.-.d 

01 a 0 ft (f 1 f « Pf 3 where C is P-invariant.

Proof The following are truo:
(a) Given an open cower of G, there exists an integer p such that

if C t V j (!■ f 1***P) thea G = *l*2**'*p'
(b) Given f €0- and € v 0 tnerrexists S>>0 with t-e following property:
if x G X ie fixed and u : F— > G satisfies d(u(y),f(y)) < i for all y e F

where F Is a finite set with e.Fh F = j for all c i C, then there exists
w 6 O  with v'|F * u, and sup d(v(x),f(x)) < i , where d Is a netric on G. •

xtX
(a) Is proved In [4] Proposition 2. For tee proof of (b) when O- Is as 

in (1), see lesza 12.IS. The proof of (b) when Q. as ln (H) ls omitted.
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Now fix yQ = (xo,l)fe Y. For S open in Y, let

E(U) = ff c- Q  : yosfns n ? Oy h U p <p J . Using (i) end (ii), uso an
argur.ent slollar to that of £3 !] ler.oa 2 to show that H U )  is dense in C(X,3).
Then note that $ t t 0> : 6, is cinisalfs E(U), hence is dense in Q - >x 1 J u open

in Y
since Y has a countable basis of open sets.

12.18 Lcnir.a (b) of 12.17 is true for Q  as in (i) of 12.17.

Proof Assume without loss of generality that the metric d is C-invariant. 
Choose L~? 0 and S(g) (s G) such that:

{ g' : d(g,g’ )<i*l £ S(g) £ ^g' : d(g,c‘) < 1/2$, where S(g> is

hooeoaorphic to |R-n for 60ae n.
For y 6 f, choose 3 , an open neighbourhood of y, 6uch that:

r(uy) c **• s d<e* .fiy))* ^>5 » ard n c,uy = P ZoT c 6 c-
If y. =. c.yx (yj C- I'}» define Uy = c.Uy^.

For ye O  c 
c«C

and extend v to 

Then define

-F, define vy(y) = c.uty^ if y = c.yL for c c- C, o ?

• v (x) = f(x), for x in the boundary of 3y,

a function vy : Uy---=>S(r(y)) such that Tpy(c.x) = e.Tyi V

r = w on C (y & C.F) y •
m f otherwise.

ill lE •AdavlR »ability13.1 The different types of oiniaal distal l£.-actlor.s on connect connected 
topological aanlfalds of diaacsion S3 »ere obtained by 3rcr.s-.ein [l] , though 
not quite in the Tors giVen here.

, 3  Clearly ¡2. (with the usual topology) can only act alniaally on a 
connected apace. Then the following lemr.a, quoted ty Sronsteln for roughly 
the suae purpose , and easily verified, shows tnat all the strings in tables 

A and 3 except forA9, AlO, Al3» AU, are not \i-adaissable.
Lenrra £5 ] Let (X,i3-) be a alalaal periodic t.g. and (Y,l£) a xinlnal alnost 

periodic extension of «,«•). Then (T, *-) is alaoet periodic.



(Note that an alnost periodic action cf on K cast he periodic, hence tr.e 
lenra lsplies a distil action of |i. on a 2 -diners tone I oanifoid oust be 
alaost periodic.)

lb . I? The string of A 1 0  Is |i?- -acinisenble .

£(X,/i) is the string of A10 if and only if X = K/f (8.2), and the 
action of |R. is given by:

[x,y,z]t s ^x+at,y+bt>act2/ 2  +xct+gt(x,z), z+ct^ for all x, y, z, t f- »2 , 
where a and c « A  are rationally Independent and the function 

(t,x,z) t---> gt(x,z) Is Jointly continuous, with:

gt+s(3C,z) = BtCx,z, * 5s(*+at>*+ct>
gt(x+l,z) = gt(x,z) (cod 2 ) = gt(x,z+l) for all x, t, t f 
For proof of niniaality see, for exaxple, |2^ 6.19.2.6. Proof~tuc.c 

fr.(X,A) is the string of A10 is analogous to 12.10.
1 3 . 4  He- outline the prooi that the string of A9 is A-adrissable. (The proofs 

for A13, AUt are sinxlar.)
If &(k \  ¡C_) is tfcv stx-ing of A9 then tne action of A  is of the fern:

(kl,k2 .k3)t - (K,e2clet,
2 »ig..vk .»k-)

k^e ‘ 1 ‘ ) for all 5 ^ , ^ , ^

and t t iR. , where a, -b c iK- are rationally independent, and if

(k, ,k̂ ).t « (k^e2niat xb.j then g^+e(k^,k,) — S^(*‘-̂ *kp) .gs((rt^,k^)t)

for all k, , k, f K and t, s t •:£ .
X C.

A necessary and sufficient condition that (K^, ) be zInina 1 and that

£ ( K 3,:A.) be the string of A9 is that there exist no cor.zlr.uo-.s solution 

f £- C(K2,iO tc the equation:

■»VJLlU  f(kle2»lat , „2*lbt, y ) = f(kltk2).e
2ifi(cg (k. ,k-)+ *t)

for at.y

f 2' io1 >r.d b o  li- .
2 n  e(kltk2)

(g £ C(K2, £- i ), the condition beconesWriting
that tr.ere is no c:atinucus solution f, 6 CCK2,^) to the equation:

(13 .<♦ .2) W 2*1“1» k2e£,ribt) * fl(kl'k2) * «t(Sll'k2> i0r *'y / “  *i A.
la

sa
gs

a 
o-
»n
r:
--
nr
-.
--
-r
_s
dr
o-
- -

g
g
a
f
f
i
i
H
M
B
g
l
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Let gt(k1 ,k2 > = J h((k^,k2)u) du.

By choosing h with suitable Fourier coefficients, we can ensure that 

there is no continuous solution to (1 3 .4 .2 ).

£ 14. Appendix.

In this appendix we give details of results which were omitted iron 

£§ 1  - 13 for the purpose of brevity, since those sections were 

submitted for publication:

(i) We prove that the assumption of distality in proposition 5*5 is 

unnecessary (1 4 . 1  - 1 4 *2 ).

(ii) We give the general "finite-dimensional" version of theorem 1.2 

(see 1 .4) with such details of the proof as seem necessary (14.3 - 1 4 *1 2 ). 

Note that the assumption "T £ 3  " (1-4) is not necessary after all.

(iii) We show that in theorem 1.2, the hypothesis that X have finitely 

many arcwise-connected components can be replaced by the hypothesis 

that X be locally connected (14.13 - 14.14) (see 1.3).

1 4 . 1  For the proof of the more general version of proposition 5-5, we

need the following facts about distal extensions. A reference is U2l.

For a group T, there exists a universal minimal set (I,T) such

that (1,^) is a compact Hausdorff topological semigroup with dense

subgroup T, where denotes the topology on I,the identity of T is an

iaempotent of I, I = ul has no non-trivial ideals and:

q t----- ?pq (p, q £ I) q 1----- ? qfc (q £ I, t £ ?)

are ~t -continuous.Jp
If (X,T) is a minimal t.g. then there exist universal minimal 

distal and almost periodic extensions of (X,T) denoted by (X*,T) and 

(X^,T) respectively.

(X,T) <  (X*,T) <• (X*,T) -< (I,T).

(X,T) can be regarded as J [p3x : P e *1» wnere Tp-̂ x 'i's x_equi_

valence class of p i I, where ^  x is a closed T-invariant equivalence
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.>• relation on I .

Write Gx = { g  C- G : [g]x = I uV} where G is the subgroup Iu of I. 

Then Gx „ <J , and Gxff <  G^. Now let CX,T) be fixed.

(a) If (Y,T) is a distal minimal extension of (X,T) with (X,T) -«d^CY,?),

then g [gp]Y maPs Gx ontQ ir_1rr (Lp3y) •
Hence (Gx/G.y,3p ) home0!norPhic t0 (lT_V(tu3y), I p )*

(b) There exists a topology (T i "3̂  on G (cT would be called the 

T  (C(X*))-topology in^2j) such that each of the following maps

([2] 11.17):

> pq (p, q & Gx) .
(Qx»tf> (Gx ,<r) is continuous (£2 ] 11.17):

qp

(Gx/G x < , O’ ) is compact T^.

(c) For a G -closed H, Gx# •<£ H <  Gx> define:

alg(H) = ^f  £ C(X*) : f(hp) = f(p) for all hi H, p i  i"̂  .

Then alg(H) is a T-invariant C*-suoalgebra of C(X#) containing C(X). 

For a T-invariant C*-subalgebra Ol , C(X) Q  &  C. C(X*), define 

g p ( a  ) = [  h 6  Gx  : f(hp) = f(p) for all f & <3- , p fc I ̂  .

Then gp({X) is aif-closed subgroup of Ĝ ,.

alg(g p ( O D )  = CX and gp(alg(’t)) = H (£2] Ch.13).

(d) B'or a (T -closed H, Gxs. 4  H 4  Gx> G^  £ H if and only if

(G../K, G  ) = (Gv/ H , 3  )• For a (T-closed H. Gy» i  H <3 G , G «. <  HA A p A A A
if and only if multiplication in G v/K is ~3 -continuous in eachA p
variable. In this case, the left-action of (G„/H,3 ) on (I/H,3 ) isa p P
continuous in each variable, where I/H = | Hp : p t IS . Since 

(I/H,1 ^) is compact Hausdorff by (c>, tiiis implies the leit-action

is jointly continuous (fl&l ) •
14.2 Proposition Proposition 5*5 is true without the assumption

that the (Z.,T) be distal.j. ’
Proof As in 5-5» we construct : EiY^) —  

minimal ideal ol E(Y^), and .T̂  =^(J^). In

— ^E(Y2 ). Let be a 

a similar manner to 5-5»

we can make (Z^,T) a factor of (Ji,T) so that the following diagram
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coramutes:

Diagram 14.2 J1

\!/
Zn1 z’2

Y1

Using the notation established in 14.1» G. <\ G (^2l 11.19 -
------ <r i11.21), and G f 4  G„ , so N. = G. G * is a normal<T-closed subgroup 

Ai Ai 1 Ji Ai
of Gv contained in G

Then ) = (G[,<r).

Since (’.Y^,T) is the maximal a.p. extension of (X^,T) in (J\,T), 

induces an isomorphism of (’.V̂ ,T) onto (W^jT). Now proceed much 

as in 5.5.

I4 .5 The statement of the general "finite-dimensional" version of 

theorem 1.2 is obtained from the statement of theorem 1.2 as follows: 

Replace the hypothesis that X hava finitely many arcwise-connected 

components by the hypothesis that X have finitely many connected 

components. Omit the sentence "These hypotheses....topological 

maniiold". Omit conclusion (i). In conclusion (iii), omit the words

Replace the words "manifold" and "Lie group", wherever they occur 

in the statement of the theorem, by "finite-dimensional space" and 

finite-dimensional group" respectively.

The proof of the new version follows the lines of the proof of 1.2

Y . 1
Write = Gx /h

'i

"so that & ± = (Yi ,X1,Xi_1,Gi,M1,iri,Si ,Vi ) is a fibre bundle (3-1) for 

1 - i r".
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once we have proved the following:

14.*+ Proposition Let (X,T) < n (Y,T) n^(Z,T) (if̂  vz = it ) where 

(Z,T) is minimal, (T ̂  1 (x) is connected (x e X), (Y,T) is an a.p. 

extension of (X,T), and (Z,T) is a finite a.p. extension of (Y,T).

Then (Z,T) is an a.p. extension of (X,T).

For the proof we need a sequence of lemmas. Proofs of the easier 

ones will be omitted.

14 >5 Lemma If (X,T) ^  (Y,T) -«i (Z,T) where (Y,T) is a finite a.p. 

extension of (X,T) and (Z,T) is an a.p. extension of (Y,T), then 

(Z,T) is an a.p. extension of (X,T).

iiLti Lemma For proposition 14*4» we may assume rr ''"(x) is connected 

(x<c X).

iiuZ Lemma Let G be a compact topological group, H •£. G: and suppose

Q/H is connected. Then if Gq denotes the connected component of

1 e G, G H = HG„ = G.7 o o

14.8 Lemma Let G be a compact connected topological group. Let A be 

a finite group acting freely and continuously on the compact 

connected Hausdorff space X such that G identifies with the orbit space

under the map ? : X ---f G. Suppose ?(xQ) = 1. Then X can be made a

topological group in such a way that x q is the identity and § a group 

homomorphism. The group structure is the unique group structure on 

X making xQ the identity and 5 a group homomorphism and the naps

q|___?pq continuous for each p X (alternatively the maps ql > qp

continuous for each p e X).

Proof G is the inverse limit of the net neD» ■f'rnn^  n «n* of

compact connected Lie groups. Let TT^ : G ---> Gn be the limit map.

Let f = r . Then for each x e X, i5 “ 1 ?(x) = O  ? „ S_(x) n n neD

For an index«; on X, let B^Cx) = ^x' : (x.x,') t «rj.

y

1 .
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Let U,(x) b.(x ').
s(x«)=£(x)

Choose a symmetric index S on X such that if = ^(x£) and

^X 1 ,X2  ̂e , then xx = x2>

Choose a symmetric c^osed in<}ex £ on X such that (x^,x2) «-

implies (ax1 ,ax2 ) t ^ for all a f  A .

There exists n C D such that ? -1S  (x) fe U (x) for all x &  X, o n n €.
n 7 % •

Define ~ n by x-v,n x' (n ^  H.'0) if and only if?n (x) = ^(x') and 

(x,x')t i . This is a closed A-invariant equivalence relation on X. 

Write XQ = X/^.^. a acts freely and continuously on XQ by

a * W n = £axjn .

Define in : ^ --- >  Gn by TQ( &c]ft) = ?n<x>.

Define ^  ; x ---- »* by <T(x) = P G  and <T ->Xn (n $  m)

by = W  • Then the following diagram commutes (n s m<n):

7T,

x'  IT

r„

- > g„

Write x = Tx ] . Then ¿T (x } = x (m-t n). For each n ̂  n ,

there exists a unique topological group structure on Xfl making xa

the identity and T  a group homomorphism. Then each (m ^ n) is

a group homoraorphisa. Then ) is the inverse limit of the

net (^xjj, ^  ) of groups, hence X can be given a topological

group structure SUch that each <T is a group homomorphism, and xQ is

the identity. Then each 5 s T of is a group homomorphism, and Ç isn n n
a group homomot.phism.

The uniquehess statement of the lemma is the "unique lifting 

theorem" for Covering spaces (see, for instance, El93)*

M

%
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14*9 Proof of proposition lu.^.

Let (X,T), (Y,T), (Z,T) be as in the statement of proposition 

14*4* Use -the notation of 1 4 .1 .

Let G' = Gx/Gx., H' = Gy/Gx#, L' = Gz/Gx..

Then (G'/L*,^p ) is connected and H'/L' is finite.

Put N' = g*Qi S_1 H' g. Then (G'/N'.l ) = (G'/N'^)*

N'/(N'n L' ) is finite. Put M' = ^ N , n-1 (NVxL' )n. N'/M' is finite,

since N'/M' acts effectively on N'/(NViL').

We can assume that M' <7 G', from which it will follow that
mi - ^g&G* ° u g *
For let R* = ^g c G* : gM' = M'g^. R' iscf-closed, and since N ’ <7 S',

R 1 is of finite index in G'. If necessary, replace X by X*/R', Y by 

X V ( H ' n R ' ) ,  and Z by X*/(L'r>R').

Now let B^, B^ be the groups containing M' such that B£/M* and 

B^/M' are the 3 ^-connected and 6~-connected components of M' in G'/M' 

respectively. Then B^ = B!, = B' , say (14.10), and B' is<T-closed.

Write G = G'/M', N = N'/M', H = H'/M*, L = L'/M*, B = B'/K'.

G inherits <T- and ^-topologies from G' .

To prove 14>4,we only have to show the maps:

q|----->pq and q|---- >qp (p,q 6 G) are ^-continuous (14.1(d))

(B,Jp ) is a finite cover of (3/NnB,0p ) = (B/N ̂ 3,^5"). 14.8 

implies there exists a topological group structure on B making 1 t  3 

the identity and the natural quotient map (relative to the original

group structure) B -- > B/(Nr> D) a group homomorphism. The uniqueness

clause of 14.8 implies that the topological group structure is the same 

as the original group structure. So (B,3p) = (B,ff) (essentially 14.1(d) 

see also Lzl Chs. 11-13)*
B <t G. So b > a-1bh : (B,3p ) ----> (B,lp ) is continuous for each

a e l .
G = BL = LB (14*11), so (G/L,3p ) = (B/L, Up), and the maps:
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-» (G/L,^p )(G/L,^Jp )<°»V -
Hence (£iô]) the map:

-? (G/L,^p )
Lg

g H

’ Lgg'

>Lg'g (g, S' é G) are continuous.

(G/L x G,-3pxlp ) (G/L, *3p ) : (Lg,g' ) i- Lgg' is continuous.

Let C(G/L,G/L) denote the topological semigroup of "3^-continuous 

naps of G/L into itself, v/here the multiplication is composition of 

functions and the topology is the topology of uniform convergence.

Let G ---- t>C(G/L,G/L) : g|— ? Cj^ be defined by (Lg')y^ = Lg'g.

Since this is a continuous injective homomorphism of G into 

C(G/L,G/L), multiplication in G is~3p-continuous in each variable, 

as required.

14.10 Lenma Let B^, B!, be the groups containing N' such that 

Bj/N' and B^/N* are the t?p-connected and<T-connected components of 

M' in G'/M' respectively. Then B^ = B£.

Proof Clearly < B£ and N'B£ = N'B£. So B*̂  is of finite index in 

B£. To show B^ = B!,, it suffices to show B*̂  is cT -closed.

Use the notation of 14*1. Let (W,T) = (I/M',T) where 
I/M' = {M'p : pG • (W,T) is a distal extension of (X,T), 
say (X,T) -¿{.(W.T). Let (V,T) = ( !* A  ,T), where *2 if and only
if'S(w1> (w2) and w^, *2 lie in the same connected component of
? -1?(w ). By 14.1(a) and (c), G y  = B£, so that B^ is ¿r-closed as 
required.

14.11 Lemma BL = LB = G.
Proof B/N is the connected component of the identity in G/N. So (14.7) 
BH/N = G/K. So 3H = HB = G. So BL is of finite index in G. So G/L is 
a finite union of cosets of B/L, which are <r-closed, hence"3p-closed.
So, since G/L is 3p-connected, BL = G.

1 4 . 1 2  InjsoJ an example is constructed of a minimal t.g. (X,T) with 
totally disconnected phase space such that (X,T) is a finite group



extension of an a.p. factor, but (X,T) is not almost periodic.

14.13 Proposition. Let (X,T) be minimal distal and let X be finite­

dimensional and locally connected. Then X is a manifold.

Note. This was proved, by Bronstein in £l}. As I was unable to 

understand the proof, I include one here.

It suffices to prove the following len a, by analogue with^7.
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14.14 Lemma. Let (W,T) be minimal distal, with W locally connected 

and connected. Let (V,T) (W,T), with V a manifold. Then it is notIT t>o
possible to find a strictly increasing sequence ^(vn >T ^  n=i sucil 

that each (Vn ,T) is a finite extension of (V,T) and C.V,T) the inverse 

limit of f(Vn ,T)^.

Proof. Suppose for contradiction that (W,T) is the inverse limit 

of a strictly increasing sequence ^(Va ,T)̂ ] as described in the state­

ment of the lemma. Let U V be a simply connected open set. Since 

each Vn is an open cover of V, by passing to the limit we can find a

map <r : U --->fT - 1 (U) with 1T̂ <r = identity. Then Ti " (U) is

horaeomorphic to U x G/H (3*2) where (W,T) is a G/H-extension of 

(V,T), and hence G/H is totally disconnected, infinite and perfect.

It follows that no open subset of 71 ''"(U) is connected, contradicting 

the fact that W is locally connected.
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0:< THK FIBRES OF A MINIMAL, DISTAL LXTF-XSIOX OF A 
TRANSFORMATION GROUP

11. RUES

51. INTRODUCTION

Let (X.T) be a minimal quasi-separable transformation group, 

and an extension of (Y,T), with II: (X,T) *(Y,T) as the factor map.

If (X.T) is an almost periodic extension of (Y,T) then all the 

fibres It-1(y) (y e Y) are homeomorphic to a fixed homogeneous space [1]. 

One might ask whether the fibres II-1(y) (y r Y) are all homeomorphic 

if (X.T) is a distal extension of (Y,T). The answer is, in general, 

uo, as is shown in 56. However, if we -assume that Y is arcwise-conaected 

(or, more generally, has finitely many arcwise-connected components) 

then theorem 5.1 gives a positive answer.
I should like to thank my supervisor Professor V. Parry, and 

Dr. K. Schmidt, for helpful discussion. I should also like to 

thank the S.R.C. for financial support, 

i 2. Notation
2.1. v a .T) will denote a transformation group (t.g.) with compact 

riausdorff phase space X. T will be a topological group acting on X 

on the right, the action being Jointly continuous.
2.2. If (Y,T) is a factor of (X,T)j the factor map being II: iX.T) - (Y.T 

we shall write (Y,T) <ff (X.T).
2.3. If G is a compact topological group acting on a compact Hausdorff 

space Z, the action being jointly continuous, then Z/C will det:o«.e the 

compact Uausdcrff orbit space endowed with the quotient topology.



s
- 2-

2.4. A word about diagrams: all arrows in diagrams will denote 
continuous surjective maps', and two-ended arrows will denote 

homeomorphisns; if the objects in a diagram are the phase spaces 

of transformation groups with respect to a group T, all maps in 
the diagram will be assumed to denote T-homomorphisms; if G is a 

compact topological group acting continuously oa a compact Hausdorff 

space Z, then Z •* /G will denote the orbit map.

i

S3. PatXIMINAiUKS AdCX'T FIBRE BUNDLES 

. 3.1. Definition For present purposes, a fibre bundle

S «  (Z,X,Y,G,H,n,o,p) satisfies
(i) X,Y,Z are compact Hausdorff spaces, and li.c.p are continuous 

surjective maps.
(li) G is a compact Lie group with closed subgroup H. g lHg - fe}

geG

and G ’acts freely on the left of Z, the action being jointly 

continuous.
(iii) Tne following diagram is commutative.
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Diat;ra:n 3.1. Z --- ---- ► Y ( = Z/G)

/ ’
X (5 Z/ti)

Y is called- the base of the buadle, and G the group of the bundle-. 

This definition of fibre bundle is essentially the saice, for a 
restricted class of bundles, as that in [4J chapter 1 52, since

([2], theorem 1 of 55.4) the free action of a compact Lie group 

on a compact ilausdorff space is locally trivial.

The following definition of bundle nap essentially coincides, 

for the restricted class of bundles.(3.1), with that of [¿t) Chapter

1, 52. '
3.2. Definition Let $  - (Z,X,Y,G,H,n ,o,p) and s8' = (Z* .X1 ,Y* .G.K.TT ,<T' ,p 

be fibre bundles. •> is a bundle mao between $znd (written

« ; £ -- - o' ) if <t is continuous, 0 : Z * Z', and$Cs a) * f=‘ *-11

g e G,. z c Z .
Then -J induces maps X - X' and $2 : Y - V  such that the

following diagram is commutative:
♦

Diagrao 3.2. 2
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3.3. Del' iaition. if ©  = (Z,X,Y,C,H,n ,o ,p) m i  I = {0.1], then
.'6 x I denotes the bundle (Z x i, x  x I, Y x I, g , H, n x identity,

a x identity, c * identity) where the action of G on Z x i iS

defined in terras of the action of G on Z by g.(z,t) *= (g.z,t) for 
all g c G ,  z t Z ,  t e l .

3.4. fte shall need:
Horaotopy Covering Theorem (Cf. [-1] theorem 11.3) ■

Let e = (Z,X,Y.G,K,Il,o,p) and S ' - (Z’,X* ,Y* .G.H.Il■ ,a • ,p • ) be 

bundles and let 0 : S  ~ 3>' be a bundle map inducing <>: Y •» Y'.

Let h: Y x I Y' be a continuous map with h(y,c) = o(y) for all 

y c Y. Then there exists a bundle map Jt: <3 * I -*• •£?’ inducing
h: Y x I -* Y ’ such tncr Jt(z,0) « <>(z) for all z t Z.

- 4 -

14. ON' THE Ftip.STEHa'ElG STRUCTuRZ THEOREM •
4.1. Definition. Let (X.T) be minimal and (Y,T) <? (X,T). (X.T)

is ¡i quotient (Lie) group extension of (Y,T) if there exist a minimal

t.g. (Z.T) with (X,T)<3 (Z,T) and a compact (Lie) topological group

G with closed subgroup H, ^  g_1Hg - (c), such that G acts freely
gtG

on the left of Z, the action being jointly continuous, (gz)t - g(zt) 

for a l i g e G ,  z c Z ,  and t t T, and the following diagram is 

coranutatlve.

Diagram 4.1.

X U  Z/H)
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Kemark. Note that if G is Lie then (Z ,X ,Y ,G,JI,a ,o ,o) is a fibre 
bundle where Yq  is any closed subset of Y, 7Jq = p_1(Yo ) and XQ = n-1(

4.2. Definition. Let (Y.T) <n (X,T) with (X,T) minimal. (X.T)
is a distal, extension of (Y.T) if given x, ,x, c X with Il(x,) » H(x )

the existence of a. net .It ) <=• T with lim x-t * lira x_t implies
n n

X 1 “ x2*

4.3. Definition. (X.T) is cuasi-separable if C(X) is generated 'ey 
its norm-separable T-invariant subalgebras. For instance, if X is 
metric, or if T is separable or e'-iompact, then (X.T) is auasi-separa

4.4. The following modification of the Furstenburg structure theater 

will be needed in the proof of theorem 5.1. Proof of the modificatio 

will not be given here. The proof of conclusions (i) - (v) with the 

word "Lie" omitted in (iv) can be found in_[l] Chapters 14 and 15. 
Theorem Let (X.T) be a minimal quasi-separable t.g., (Y.T)'»- (X.T 

(X.T) a distal extension of (Y.T). Then there exist an ordinal a ,

a family ((X^.T)) 0<3ea of factors of (X.T) and T-homo-or?his=s

- 5 -

Y^O<Sf.Y<o such that

(i) ( X ^ T )  <n (XY .T), OiftlYi*.
^ 8>Y

(il)5r r * V  n|.4 ’ j0-3-V-i-°-

(lii)(X0 .T) =

(iv) ( X ^ . T )  
for 8 < a

(v) If 3 is a 
{(XT .T))

(Y.T), (Xo ,T) = (X.T).

is a proper quotient Lie group extension of (X^.T)

limit ordinal then (X^.T) is the inverse limit of

0<Y<!8.
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j5. THS fOSITIVT RESITL?

5.1. Theorem. Let (X,T) be a minimal cjuasi-separable t.g., (Y.T)<„(X.7).' I.
(X.T) a distal extension of (Y,T), and let Y be arcwise-connected. Then 

for any yQ ,yj E Y, n- 1 ( y Q) and II >re honeomorphic.

Proof. Let a, {(X^.T)}.o<B<a and ^nB»Y^ 0<B£y£3 satisfy (i) - (v) of 

(4.4). Write I - [0.1].

Choose a path ho :(yo > * I  * Y with ho (yo>0) » yQ and b0 (>'0 .l)

Write P 0 = It0 , B 1(yo) Q3 ” nO.B~1<yl) R3

Hence P^ C  Rj, Qg C  Kg , n"1(y0 ). Qa

yo and ho(>o,l) “ >1-

“O.5'1(ho ({yo } * I ) ).

a"l(yx).

! -hB}0<3<a such thatFind by transfinite induction on B continuous traps Ch->

( 1 ) h„ : P„ » I ♦ It„ restricts to a homeotr.orp’jisr. of Pa * {1}B B n B
onto Q , , and h.(x,0) ' x for all x c P, .O P

(ii) The follow mi; dlr.^ium commutes for Y £ B :
llBDiagram 5.1(a) . P^ * I -------------- »R

"y.B identity

B

ft»

PT * X

If (i) and (ii) are satisfied. r.a will restrict tc a hotteoxorphism 

of p * (o)- - 2_1(y ) * i°> ocio $a “ •xi“1(F1) aad proof will

ofc completed.
ti satisfies (i) and (ii). hence it remains to assume that 0-»B>3<j 
o

nave been constructed satisfying (i) and (ii) for (J < * < a. and - 

to construct hg • .



Lie group G. with closed subgroup H and O  g 1Hg “ {e}:
gcG

Diagram 5.1(b)

By the remark of (4.1), 2 = ('.t,Ps ,o,o) and
2' » (W! .RfifRn ,G,H,11^,o,p) are fibre bundles where Vf = p_i{?n )

= p-1(Rp) (sc W £  Vf'). By the inductivo hypothesis we have

a man h : P * I - u satisfying (i) and (ii). By the Konotopy 
n 0 n

Covering Theorem 3.4, we car. find a bundle map k: 6 * I * 8 '  inarcin?

h * P * I ■» R. and'such that •‘(w.O) « w for all w e V. Let
f\. 1 «

h P. * I ~ R, be the induced map as shown in the diagram! c o o lc
Diagram 5.1(c)

identity

R , *• identityr» o i
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(2) Case 6 a U n i t  ordinal

Is well-defined aad satisfies (i) and (ii) if we define 
h5(v.t) (v e P6 , t c I) by

" hn(nn<5(v),t) for all n < «.

S6. A COUNTEREXAMPLE

6.1. In this section we construct a connected minimal distal t.g. 

(X,®.) and a factor (Y, i)<E (X, ?) such that Y has Infinitely many 

arcwise-connected components and such that not all the fibres 

n_1(y) (y c Y) are hoseoaorphic to each other. X will be a connected 
metric space of covering dimension 3, and (X, 2) will be a group 

extension of an almost periodic t.g ., so (X,3  will be of degree 2 

(Cf [1], 15.1.2). T w j IL be the group 2 o.f integers.
6.2. Definitions. Let 2, H  denote the additive groups of integers 

and reals respectively, let K = R/Z denote'the circle group and Sd 

a fixed solenoid which <s the inverse limit of the sequence

-> K, -f K,

whore Ki - K, nA denotes the homomorphism x •-* n-x (x e K.^^), n, 

being an integer >_ 2 for each i. All group operations will be 

written additively.
Let nf Ks :<r be the homomorphism .. * s)-

l,et j^iSd ” be ciie inverse limit homomorphism.

6.3. Toe following facts about Sd are known.
(i) Since Sd, being the character group of a subgroup cf the reals 

with the discrete topology, is a continuous homomorphic image of the 
hour compactification of R, ([3] 1.8), Sd contains a dense 1-parwaotp

subgroup T .
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(fi) Xj (O) is an infinite closed subgroup of Sd. hence uncountable. 

Since 1(0) is countable, T has uncountable index in Sd.

(iii) For 0 eT and x c E  we can uniquely define xS satisfying
(a) x •---► xS is a continuous homomorphism of R  onto T
(b) IB w B .

(iv) T is the arcwise-connected coir.ponent of O c Sd. For let x c Sd 

be in the arcwise-connocted component of 0 e Sd. Let c: [0,1]-* Sd

be a path from 0 to x. o is the unique lifting to Sd of the path

Xj • o : [0,1] ♦K, with the property o(0) = O. No’* x-'a Dust
be homotopic to the path ta (t): 2 + at for some a e 3t where Z «■ a = x,(X/

t . lifts to a unique path in Sd joining 0 to x. But we can assume

T = (N't)': t e R} where y is a homomorphism suoh that y.^* y(t) = Z + t

for all t £ H, and then the path t — >ay(t) is the lifting of T^,

hence x * an(l), x t f ,
(v) For each integer n > 0, Sd contains at most r. elements x suet

that nx » O, since the su-ie is true for each

6.1. Definitions of some phase spaces 
o

Let X » (R * Sd )/•*. where w- is the smallest equivalence relation
on R  * 3d2 such that (x,7 ,z) n. (x*l, y+T.z) for all x e R, y.z c Sd.

Let [x ,y ,z ] denote the equivalence class of (x.y.z). Then X is
compact metric and can be realized as an "inverse limit of nilnaaifolds";

• o
For i * 1,•?,... lc't X; » (K » K r-i where is the smallent 

equivalence relation on such that (x,y,z)''>* (x»l , y»z,z) for all 

X t It, y.z. £ K. Let lx,y,zli denote the -^-equivalence class of 

(x.y.z.) ■

- 9 -
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Def iue II . : X.l , J l xj by Hi.j ix -y«zJj Ix>ni.j y -“i.j2,(i < j)-
Define It^ X - XA by n^x.y.z] - (x.x^y) ,*¿(=0

Then (X, (H ^ )  is the inverse limit ox ({X^, £Hi j) ^ ).

Moreover it can be shown that X^ is a 3-dimensional nilmacifola 

whose fundamental group li^X^ is isomorphic to the multiplicative 

group of matrices,i I / 1 m n \ \
) ( O 1 p ) : n,n,p e 2 , 
/ ' O O 1 • )

6.6. Definitions o f some Z-actions.
For actions of 2 with phase space V, if t is the homeomornhism 

of Vi corresponding to the action of 1 £ Z on if, we shall denote the 

corresponding t.g. by (ff,t).

We now define minimal distal Z-actions on X and X; (i “ 1,2,... 

Choose l,a,B c tl to be.rationally independent ana let 2 £ T be in 

the inverse image under of Z ♦ - sues a S exists by

considering a lifting (under Xj) to Sd of a path in Kj from Z to

Z ♦ 6j.

Define t: X -«• X by (x,y,z]t « (x+a, y+x3, a+3j (S.3(iii)).

Then (Xi ,t1)<ni iJ (Xj.tj) <rt̂ X . t )  (i < j). where t^X V  * Xt is 

of the form
(x,yA,xi)i t- » [x+X, Vj+XT^ «•♦Tftl1 wh‘-'e »i £ * ls the

unique element of II for which
*.(x2) - Z + XT, for all x c 5t.

Since (X . t) is the inverse limit of to show (,\,t) is

minimal distal it suffices to show each (XjL,ti> is minimal distal. 

Define a free action of K on X^ by
w.[x,yi.xil1 » [x.yj + (w c K >-
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The action of K on Xi commutes with t.. anc! we have

(Xi .ti) --- ► Xi/K 2 (K2.Si) (see (2.4)).

where (x,z)sA = (x +a, z * Y^ ,  (x,z e K).
o and Y^ are rationally independent since Z  ̂y1 • Z * 3 

and hence Y^ and B are rationally dependent. Thus (K .s^) is 

minimal and hence (X^.t^) is minimal - for if not we could find a 

finite subgroup ¡i of K such that Xi/K was hcmeocorphic to K3 , which 

would imply that the commutator subgroup of ^ ( X )  was of finite 

index (see, for example [1] (6.19.2.6)).

Clearly (X^.t^) is also dis'tal.
6.6. Definitions. Define Y ** Sd and I! : X ♦ Y by E[x,>,zl “ ’• - 

Then <Y-,s) «jj (X.t) where zs = z +3.

Then It-1(z) = (h A Sd)/"',z where •«. is the smallest equivalence relit 

such that (x.jr)'- (x +  1, y + z) for all.x e 3a, y £ Sd. Let ( x j f ^  

denote the vz-equivalence class of (x,y) £ JR *: Sd.

6.7. Proposition. Let O denote the identity of Sd » Y. There ex: s 
z. c Y such that nz 4 r  for any n e Z, n * 0. For such a  z , u _1(2> 
ar.d P._1(0) are not homeoraorphlc.
Proof. Let A - (v e Sd: av « 0, some a e Z, n f 0}. Then by (6.2'v 

A is countable, hence by (6.3(ii)) r ♦ A f Sd. Eu* ac £ r ior seme 

n e 3. n / 0, if and only if w c T ♦ A. Hence z exists.
• Wote that R -I(w)' is a quotient of 3R « Sd by a discrete sue group 

so that Its fundamental group It ̂  (II *(w)) is independent of the 
base-point, audit x SU is a covering of H 1»), so that loops in 

C ~ 1(v») based at (0,01 lift to paths in H  x Sd Joining (0,0) to 

(n ,nv>) (n c 2).
(0,0) can be Joined to (n,0) for any n e Z. So i!j(ii (0)) i -- 

(0 O) cannot be joined to (n,hz) for any n c Z, n f 0 (6.3(iv))
¡ 1 ^ 1
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so TT1(rr1(z)) = o .
Therefore VT ^(z) and ÏT '''(O) are not homeomorphic.

£ 7. UhCOUNTABLY MANY EOMOTOPIC TYPES OF FIBRES 

7»1 In this section we show that in the example o f ¿ 6, where 

(Y,T) (X,T), and X = (Sd x B ) / ~  and Y = Sd, the cardinality of

the set of distinct homotopic (hence topological) types of the fibres 

rr_1 (z) (z e Sd = Y) is the cardinality of the continuum. (In f 6 it 

was shown merely that the cardinality was greater than one.)

Recall that Sd is the inverse limit of the sequence:

. . .K,
“3 n2 1

with limit maps S d ----

We make the additional assumption that each = 2.

The fibre TT-1 (z) is the compact connected abelian group (Sd x |R)/Kz

where N is the discrete group generated by th- element (z,l). Let Az z
denote the character group of (Sd xlR-)/Kj,.

7,2, Propositions TT-1 (z) and TT- 1 (w) are homotopic if and only if

A and A are isomorphic as groups. z w
We do not give a proof of this. It follows from

either (i) A is the first Cech cohomology group of (sdx iR.:)/N (£5

or (ii) It can be shown that a continuous map between two

compact connected abelian groups is homotopic to a unique group homo­

morphism.

7.5. Description of Az«

Fix z e Sd.

(Sd x )/Nz is the inverse limit of ( ^ ^ n , z \  *l^n,n+A^

is generate

(Kn+ix a  )/k

where N is generated by (X (z),l) and n. z a

n,n+l* n+l,z ■* <Kn xlR-)/Nn,*
®"n,n+l^Nn+l,z + (k’x)) = V *  + <k ’X>*

is defined by:

I-1
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The limit raap<r : (Sd x £ ) / N ----->(K x£)/N is defined by:11 z n n, z *

iTn(Nz + (y»x)) = Nn,z + ( V y }*x)-
2rie

Wow X  (z) = e for a unique 6  = t1 (z)fr Co,l). Then 6 . = 6  /2n n n+J. n
or <?n/ 2 + 1 /2 .

tj? n s (Knx $-)/Nn z ----> K2 is a group isomorphism,

-2 hix£? 2 mix
if y n (Nn , z + (k>x)) = (ke * e >•
Then (Sd xiR)/N z is the inverse limit of:

K2-------* K2 ....... K2 ------ => K2
■^n.n+l * 1 , 2

where ? = <7’ ® C~ ,°CP .n,n+l Jn n,n+l J n+1

If *n+l " V 2 then *n,n+l<kl»k2 ) =

If P n+1  = *n/ 2 + 1 / 2  then fn,n+l(kl’k2 > =
2Let A be an isomorphic copy of the character group of K . W e  have: n, z

Al,z ------ > A2 ,z ----- > A3 , Z ------ > ***•

5 1,2 2,3

A can be regarded as the inductive limit of this sequence. Se z
shall now define An>z so that AQ>z C  An+1 > z 4 ^ Q 2 and § n>a+1 

is the inclusion map.

an = an(z) * 0 If ©n4l = 6 j t

«„ ■ «„<»> - 1 if »„.1 * * 1 / 2 • n i. ^
Then let A be generated by the elements (0,1) and (1/2 " , - Z  a ./21  n,z i=i

7 .4 Lemma If A and B are subgroups of €?“ with rational span 

then any group isomorphism between A and B can be uniquely extended 

to f -linear isomorphism of <Q n .

We omit the proof. It follows that Az is isomorphic to only 

countably many distinct groups A (w fc Sd). Thus we only have to prove:
oa 2

7.5 Proposition. If Az = An z  where An>2,6<R is generated by
^ - I •

(1 / 2  n '', - X  a ,(z)/2l ) as described in 7 .3 , then the cardinality 
i=l n"i



of the set ^Az : z <i Si\ is the cardinality of the continuum.

Proof (i) Vie claim Az = A^ if and only if an(z) = aQ(w) for all n. 

For suppose Az = A^. Then for each n,

(i/2n- \  - Y  ^ ( « j / a 1) é Aw = u  Am>w.

l’1 . S an-iiz>/2l) = (0 ,p) + q(1 /2n

q fc Z. | in 1  • Then q =.2B_n(m ;

m- 1  . n- 1  .
£ l  am-i(w)/2 - - £ i

m - 1

The fractional parts are equal. So:
n- 1m-1

~ Îkm-n+1 am_i(w)/2i—  = - &  .

So " ¿ 1  a n-i(wJ/2i = " ¿ 1  an-i(z)/2i *
So a. (z) = a ^ w )  for 1 •£ i ̂  n-1. Hence result, since n is arbitrary. 

(Li) Let £b  ̂ be any sequence of 0's and l's. We claim there exists

z & Sd with a (z) = b for all n. n n
2wi©_

For take z 6 n ) where & 1 = 0 and & a is defined

inductively for n ^ 1  by:

o  n+l = V 2
if b = ° n

« e /2 + 1 / 2  if b = 1 .n 11

(i) and (ii) Show that the cardinality of £ a z : x t  Sd7̂ is the 

cardinality of the set of sequences of 0rs and l's, as required.
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XCN-CONJUGACY OF A y i M M L  DISTAL DIF/KCyCPPKIS.V Or THS TOSl'S 70 A 
C1 SKEVT-PROSgc?.

X. j\Er.S

Introduction
Let Hoa+(Kn) denote the set of orientation-preserving hoceoaorph:s=s 

of the n-dloensional torus Kn = P.n/£n. If T is a minimal element of 
Hoa*(K), then It Is.known that T is topologically conjugate to an irrat­
ional rotation of K, which is, of course, C**. Correspondingly, if T is 
a minimal distal element of Hoa(K2), it is known (see, for instance,

[if-]) that T is topologically conjugate to a hoaecaorphisa of K2 of the 

fora:
T, „ s (x,y) !----* (x+*,y*g(x)) where g 6 C(X,K) and «x is

irrational. In this paper, it is shown that, contrary to what happens 
for' the circle, or for almost periodic hoaeooorphloas in general, there 
is a minimal dintal € “ element of Hoe+(K2) which is not topologically 

conjugate to <iny Ci hsceomorphisa of the fora
I should like to thank ny supervisor, W.Parry, icr suggesting tie 

problem and for helpful discussion. I should like to thank the S.B.C. 

for financial support.

tl. Preliminaries.
1.1. If f e C(£n',Ia)* then there exists a unique element of S(£n ,fcn), 
again denoted by f, such tnst f(C) c. [0,1.* , and .be .ol^CTlng dlagran

commutes:
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For Ho=*(K), this correspondence reduces to a correspondence between 
Hoa (K) and ( f t  €(&,•*-) : f is a hoseonorphlsa, f(x*l) = f(x) ♦ 1
for all x <i£ , and f(O) fe [0 ,1 ) 5 •

Note that in »hat follows, for all equations (inequalities) involving 
elements of C(i-n,£a) corresponding tc eleeents of C(Kn,Kn), the equality 
(inequality) sign denotos real equality (inequality) anH not equality 
(Inequality) nod 2 .°.

1.2. Let Hon+(K) be given the topology oi uniform convergence. The
rotation nusbar function f t Hoa+(K) ---- » K is continuous.

If q € Z and f <s Hon+(K), thenS(i) = Z+lp/q) for sone p fe 7- if 
and only if there exists x e. K with f°-(x) = x. (Sea, fur exaaple, F 3 ] , 
£l] for deflniti on end basic properties of? •)

1 .3 . . De finltlon. Lat f & 3oa+(K) with <{f) ""7_+(p/q) with p, q
coprime and positive, 0 >( p < q. We follow fi3 in defining f to be
semistable forward if:

f^Cx) > x ♦ p for all x 6 «?..
1.1». Den joy* * Theoros. (See, for example, fj]..

Let f €Hoa*(K) be C2 and ?(f) = 2+^, .£* £<>,1) ar.d irrational.
Chen there exists a unique <j»e Hon^CK) such that:

Of ( f ( x) ) = Cf(x) ♦ for all x * <2 , ^f(O) = C.
<j> Is called the algenfuactl-n of f corrc3 oor.-llng to-’ . Note that, 

in particular, f is oinlaal albost periodic.

i2. g--l :ctl/er. of the-oroblen.
Throughout this section, let f <= Koa*(SJ be C with >{f) =2+»«, 

ol irrational, we £6 ,1 ).
Let T 6 Hoa*(K2) be given by:

T(x,y) = (f(x),x*y). f
Then (K*»T) is distal» and the aaximal aisost periodic factor i5



(K, f). Since (K,f) is mlnlnol by l.q, U 2,T) Is alnlsal by ^23 S2. 
Consider trc following four statonento. It «11! be sbo.’.n that 

2.1» =9 2.3 = ?  2.2 =p 2.1.

2.1. If T(x,y) = (f(x),x+y), then T is not conjugate to any C1 hqaeo- 

aorphl&a of the fora:
T s (x,y) i----» (x+^,y+g(x)>, where SelC and g £ C1(K,K).
f 9 © •

2.2. The equation:
x -<J(x) =>C$(x)) + X(f(x}) - X(x) ♦ /-

does not hold for any V *  C1(R,lX), X £- C(R,#-), , where V  and "X
,1

have period 1, JQV  = 0, and Cj> is the eigeniunctl .n of f corresponding 

to « (see 1.1») .

2.3. For each b e  C1^ * )  with period 1 and ¿ V  = 0, there exists a 

strictly Increasing sequence f a\  of positive Integers with:
|na-i
£  V  («♦!-)
4

(ii) The eoquence
• fc l" I <fi(x) • ^

i. if vx> - l*i 
0 1}

16 unbounded•

(1 )

There exists a cenutaat 3 ^C, a s
, ? q 6 and a sequence {x \ of ft* j. n

, *n le any xultlpie if q'a with qQ

-quence^qD\ «X late 
elesiats rf ii. sue'« If 

* pn ̂  q02. then:

, ' 2,5 rrV1 - e 6<  l for r s q_ , r r.ot a aulti;le of qQ.

1 - e2'Tlr,t

3. „<»-3 n +x.
1/“- >  i o

<f1(xn ) - 1-)] -
r oa-l ]
|(V/o ) H  ( f ^ O  - 1 -i 
l " 1=0 n j



(x,y) 1-- ^ (-j(x), h(x)»y) where h t  C(KtK) and is the elgenfjr.cti

of f corresponding to .
Thl6 is essentially because the group of eigenvalues is preserved 

under conjugacy, and a conjugacy nust give 1 - 1  correspondences bet*eer. 
the groups of eigenfunctions, and between the groups of generalised 

eigenfunctions of order- 2. The result follows.

2 . 3  > 2.2. Suppose 2.2 does not hold, i.e. the equation of 2.2 is
satisfied by ease Replacing x by f^x) in the equation, we

Then (1) and (ii) of 2.3 cannot hold sisultaneously for any sequence

obtain:
f1(x) - i* - > -yu- = V(^(x)eiaO + T£(f1+1(x)> -¿(f^x))

Sunning over 1 fron 0 to e -1,-we obtain:

2.U — > 2.3. Suppoe* 2 . If hold3.
Let Ift have period 1, and { QV  = O- It suffices to find e

la unbounded, and:
i n *  |

sup sup| 'TL V (x+i-wl -c *»<j • 
u i*0 ’

»nd a^ = 0.

Eg7i 2 wire-.
) «

2iUrx

1.0



.iiE V ’H * Z ' I 2rlra ■*
j |ar! I e ° - I|.-U=£ 1 r ' 2«iru
n • - 1

* I r ^ J a  I

e of a . *a

Hn
where ”̂T - denotes that the r'th tera 16 oaltted If r is a nultipl
Then, by 2.1,(1):
IBn-l ^
T  V<x+1*) 4 2>1/3/*r| + nn 21 la I .
1=0 | — . rl n |tl>l' tqn*

|_/»w u { £ & * } ” -  ■

Thus It suffices to find a sequence such that:
(2.5) 5»> /q "i. Is unbounded, q £ m <  q 2, Is a multiple rt q a.-.i -l n n j n n a 9 n ’a

sup m ~±. ia | <»» 
n ltl»l< qn'

°* £ l k q j <  ^  i S l < ^ 2qa* 'Z /2 •

r lt 8  C = f c l ( V t 2 )  ] ^  and 5 <qn> = { , i - q a  *‘ £ '» J  2 ]
? V 2

Then i (qn) —> 0 aa a — » ~  and 2 T  \at .  | -Sr CU'q 3/q 
Itlil1 '*n •*. a

Now ta*e ac to be the greatest sultiple of q, which is oot greater a **
than iiin(qnA'(qn), qn2). or ta>r-* Bn * in -f <»a is to° s=a11 for «*ch a 
sultlple to exist. Thep the sequence j fl»a  ̂sitisfieu (2.5), as required.

k t. Sole tier, of the reduced croblen.
We are now reduced to constructing a C f fc Koc ,K) *ttu §(f)

Ji irrational, such that f, ci satisfy the conditions of 2.«,. The construc­
tion Is sicllar to Arnold's construction [lj of a C t e Ho« (K) with 

irrational rotation nusber and eigenfunction which is net absolutely

• . H i
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The construction of f.

Sequences -Jf^, ^Pn\> Ixn̂ l 3 ^  wll~ 1,0 constructed such that:

3.1. Each tD is defined and analytic ln^z : |ia z| < 1^ , ,

fD(z*l) = fn(z) ♦ 1 for all z, fn(0) £ [O.l), fn'(x) > 1/2 for all xc£,

(so that fjift 6 Hoa+(K)), > fn Jl£ acd:
nup If (z) - f .(»)| <  1/2".

• \Imz»<l'° n+1

/»
3.2. pn and qn are coprima, 0 < pQ < qn, y(fn) = Z+<Pn/qn>» qn+1>  qa° 

ar.d Pn+x/qn+1 - PnA n - V q ^ j .

3.3 f la eemlstablo forward and has exactly one cycle i.e. exactly tae n
finite minimal f -larai-lant set (see 1.2)-.11

3.It hold fer tsy sequence £ of positive integers such that

a is a multiple of q with q £ n < q :

3 .  It 1 - e
2rir„6pn/qa

2rtrpD/rn
1 - e2rtras?n»l/qh*i|

2*lrPn*iAn+l' '*n+l
C  1/ 2“ ,

for r s q6", r not a multiple of q8, a < n.
B -1

3 .5 . su p l( 1/a . ) i f  < f „ V )  -  iP aA a> -  ( V * p> f  . - C ^ S x )  -  i J , _ 1/ ,W l
1=0 i=w *

{l/2n+!r)rlr f o r r i

3 . 6  10 * a9 queue* in a. and:

■a"1
«/>..,> t Cf l A x )K + x ¡1 " 1?n*l/,;c*-l) ^ * ^ a \ \  (fa < V  " lV V  * * * * * *  1=0

Then let f - 11m -fa, 
a

^  , llo ?n/qa. 
n

3 . 2  implies |pa/qo - P . ^ / q ^ d  <  1/“V  X°r iar89 ».
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hence ot Is irrational (flj »1).

Taking limits in 3.1» -3.6 implies f, </ satisfy 2.q, with B = 1/5 in 
2.ft(ll). For 3*5 implies that:

I V 1 ">"1 , I(l/»r) X q (f^ix) - ipr/qp - (l/nr) £  (f*<x) - i<) <. l/16qr

No# use this in 3.6 with r c n and r = n+1, to gst 2.i*(ii) with B = 1/3.

Let Pj» Le arbitrary caprice integers, O < Pj <  q^, and take any 

fx satisfying 3.1 and 3.3 with ft^) = PjA ^  + 2 .  (Cce [ijfl lccca ■# to 
gat a unique cycle for X^.)

Suppose fQ, p^, q^ haye been chosen and define Xn+1, Pn+ĵ» q.i+-
as follows:

Choice of x^. There are precisely qQ points in any half-open intervrl 
of £  of length one, which correspond to the points of the unique cycle 

of Xn |\R.t Hon+(K). let y, 2 <£• 'K correspond to points in the cycle with 

y <f z, and such that if y < w < r, then w does not correspond to a point 
in the cycle. Then for each 1, I^iy) and X^ii) have the sice property. 

Choose x with v ■< x <i z and such that:
lA XX

0 ' n ^ V  ' ~ - fni(*»* 0 - 1 < *• .
Iudn if 3ift is any aultlple of qQ with qQ £ * qa^s

re -1 R°a"1
0-7) U/aa) X  ( f 1«!) - X 1(xn)) 7t7/fca)I C*.1«*) - x/ty)) = ?^qfcV 

¡»0 1*0
Q -1s-1 , Ha ,

lemma, (l/s) T  <f ̂ ( x  ) - lp,/q_) --* ii/q) 7  Cf„ (t> - ‘P . / V-----  t=0 a n  a n .  n 1=0 n °

Proof. Clearly, it suffices to show:
^ n * 1 ’n*1 .

(l/rq8) r  < V < * n) - - *  <1/cin)?-_n(V U )  " * V V  as r “ * “
1=0 1=0

But
ra —1 *^n~V less

(l/rqD ) 2  '<rnlixa) ' lpa/'ln ) = (1/<»a) 2T f  fa ‘^ n 1 ‘ 6pa

- * W  \
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So it suffices to show that for each i, C i- i i 
r-1 i+sq

(Vr)«?0(fn "(Xn) " 6P° " ’ *. <*> - iPn/«.,

For this it suffices to show: 
i+sq
fn D(xn) " epn lpn/qa ---* V (z) “ iP,/««,, as e ~ • 3ut this

follows from there being no elements of the cycle of f between x andn n
* <]XI$1). (J.E.D.
Ko* choose tft -? q ® such that: 

t-1

for all t ? t . Then if t t : n n
t-1 . qn-l

0-8) ,(l/t)Z(f x{-c ) - ip /q ) "7 (Vq,,)-!: - i?„/o > - \'(8q )
i = 0  ° 11 D a n i = 0  n s a a

“n-1 Bn_1
“ < V h U ^ U '  iPa/°.a) " V O q J  >  Cl/aa) T  O a ‘(xa) - i->/a )

1=0 laC

’n'1

U*n>iïo (f. (t) 1Pa/qn) i/ieqn )

+ 3 / U q t) by >1.7),
• 2. trier* a Is any aultlple of q^ with <■ a; ^  c %  n a n a n

Choice of pnt, , Choose l/2n >  "> O such that if 0 <  ^  <S>a>

fn+1(ï) B f,(t) ♦  A (Jim z I 1), and f^, Is senistable forward with 

rotation nuiber patj/qn>^, tnCR fn+l> Pn+1* ^n+l satiafy ==baitiwM 3-1».
3.5. Choose a, b & 2. such that/ aqQ - b?3 = 1.

Tu.ee q .. . b • Uq , p , = a  + up , fcr a larre er.cugl to ensure

qn+l '■? *» • jrJ ouch that ?<fn * V  * ?n*l/qn+l- ?l**a ?n+l* qn+l 
satisfy >.2 and
Choice of f l# Suppose = Pa+l/qr.+l* tiirTe is ®«=lstable
forward. Such a >. exista and is unique (fl] Çl).# a

Choose ?„»!<*) « fn< = ) ♦ \  + £v,U> such that ■ Pr.+l/qr.+i’
f n(x) î O for all x it , fn+1 has a unique cycle, and £n is snail enourh
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to ensure 3 * 1 - 3*5 are satisfied (£lj£l). 

Verification that 3.6 is satisfied.

m , -1 n+1

i=0

qn+l
" 1 »n+l/*n+l) ?  £

-1

i=0 (fn+l(xn> -
ipn+l/c-n+l)

(since fn+^ is semistable forward)

‘»m-l-1 , qn+l"1
>  O / W  X q  (fn(xn } " iV qn ) " C1/qn+l) J =0(ipn+l/o-n+l ' i?n/a-n)

m^-1
>  (l/mn )<[ (f^ix^) ~ iPa/(ln ) + 3/(^qn) - l/(2qn ), by 3 .8, 3 . 2  and be­

cause qn+1 ̂  tQ , where mn and nn+1 are multiples of qn , qQ+1 

respectively.

The construction is completed.


