

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL: http://wrap.warwick.ac.uk/138708

Copyright and reuse:

This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

Structural Aspects of Group(IV) Amines and Ketimines.

Зy

Melanie Anne Pierce-Butler.

A dissertation submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at the University of Varwick. January 1975

ACKNOWLEDGEMENTS

I would like to thank Dr. G.R. Willey and Dr. N.W. Alcock for the invaluable aid and encouragement they have given me during the course of this work. My thanks also go to Mr. Keith Holden for so much splendid glassblowing, to the technical staff and the staff of the Computer Centre for all their assistance. I would also like to thank Terri Cook for endless patience and encouragement, and also some help with this type script.

An award from the Science Research Council is gratefully acknowledged.

Parts of the work contained in this thesis have been published or accepted for publication in the scientific literature with the following references:

M. Pierce-Butler and G.R. Milley, J. Organomet. Chem., <u>54</u> C19 (1973) N.M. Alcock, M.Pierce-Butler and G.R. Willey, Chem. Commun., 627 (1974) N.M. Alcock, M. Pierce-Butler and K.Wade, Chem. Commun., in press.

Also part of this work was presented to the Autumn Meeting of the Chemical Society, in Leicester, September 1974. "You boil it in hawdust: you salt it in flue: You condents it with locusts and tape: Still keeping one principal object in view-To preserve its symmetrical shape." THE HUNTING OF THE SHARK Lowis Carrol "You boil it in sawdust: you salt it in glue: You conderns it with locusts and tape: Still keeping one principal object in vie -To preserve its symmetrical shape." The HUNTING OF THE SHARK Lowis Carrol

Abstract

In this work the structural aspects of M-N bonded systems of GroupIV(a) and (b) have been investigated. 1) GroupIV(a) : A novel heterocycle containing alternating atoms of titanium and nitrogen has been synthesised, and the solid state structure proved by X-ray Crystallographic methods. The titanium atom, which appears four-coordinate in solution, exhibits the unusual coordination number of five in the solid state, achieved via intermolecular chlorine bridges. The more usual octahedral geometry is found in the pyridine adduct of the ring.

i

The X-ray structure was not straightforward and many approaches were used, including the Patterson method, direct methods (using the X-RAY OYOTEM programmes of Phaser), and direct methods hand applied in two dimensions, with only partial success. Another direct methods approach, MULTAN, finally produced a repsonable solution and the discovery of disorder in the molecule led to the final result. The structure shows that the dimeric rings are planar, with rather short Ti-N bond lengths, indicative of substantial d_-p_ orbital interaction.

2) GroupIV(b) : Structural investigations have been carried out on the series of diphenylketimines $M(NC(C_6H_5)_2)_4$, (M = Si,Ge and Sn). The results show that the only major difference between the structures is in the M-N=C angle, which is sufficient to cause the three analogues to crystallise in different space groups with increasing symmetry as the normal sp^2 angle of 120° is approached. The variations in this angle support sustantial $d_{\pi} - p_{\pi}$ bonding in the M-N bond for M = Si, rather less for H = Geand the effect is undetectable for M = Sn. ii

Chapter 1 . Introduction 1-14	
1.1. (M-N) Bonded syntems of Group IV(b)	1.
1.2. Cyclic Amines	6.
1.3. The Group IV(b) Katimines	8.
1.4. (M-N) Bonded systems of Group IV(a)	11.
Chapter 2 . The Synthesis and Properties of	a Titanium-Nitrogen
Ring Cystem, (Cl ₂ TINSIMe ₃) ₂ 15-30	344
Experimental	27.
Chapter 3 . Crystallographic Techniques 31.	-48
3.1. Data collection	31.
3.2. Solution of the structure	35.
3.2.1. The Patterson method	36.
3.2.2. Direct methods	36.
3.3. Refinement	46.
Chapter 4 . Crystallographic Studies of the	Cyclic Amines
(Cl2TiNSiMe3)2 and (Me2SilMe)3 49-66	
4.1. (Cl ₂ TiNSiMe ₃) ₂	49.
4.1.1. Data collection	49.
4.1.2. Solution of the structure	51.
.411.3. Discussion	54.
4.1.4. Conclusion	5 9•
4.2. Nonamethylcyclotrisilazane - Prelim	inary results
	63.
4.2.1. Data collection	64.
Chapter 5 . Crystallographic Studies of the	Group IV(b) Diphenylketimines
$M(NC(C_{6}H_{5})_{2})_{4}$ (M= Si, Ge, and Sn) 67-87	
5.1. Data collection	67.

CONTENTS

CONTENTS (cont	inued)
5.1.1. Tetrakis(diphenylketimino)silane	si(NC(C6H5)2)4
	67.
5.1.2. Tetrakis(diphenylketimino)germane	$Ge(NC(C_6H_5)_2)_4$
	70.
5.1.3. Tetrakis(diphenylketimino)stannan	e $Sn(NC(C_6H_5)_2)$
	73.
5.2. Discussion	75.
5.2.1. Tetrakis(diphenylketimino)silane	75.
5.2.2. Tetrakis(diphenylketimino)germane	78.
5.2.3. Tetrakis(diphenylketimino)stannan	e 80.
5.3. Conclusion	82.
Appendix A . Experimental Techniques 88-	90
Appendix B . Crystallographic Results 91-	163
References 164-171	

The page numbers refer to the page in the text preceding the Table, except for Tables in Appendix B, which are individually numbered.

TA BLE

1.1. V(CD) shifts for Silylamines	23.
1.2. u.v. absorption spectra for silylamines	3.
1.3. Heats of mixing for silylamines	4.
2.1. Infrared spectral data	21.
2.2. Electronic spectral data	22.
3.1. Comparison of phases for Si(NC(C6H5)2)4	45.
4.1. Unit cell dimensions for (Cl ₂ TiNSiMe ₃) ₂	50.
4.2. Unit cell dimensions for (Me2SiNMe)3	64.
5.1. Unit cell dimensions for Si(NC(C6H5)2)4	63.
5.2. Unit cell dimensions for $Ge(NC(C_6H_5)_2)_4$	70.
5.3. Unit cell dimensions for $Sn(NC(C_6H_5)_2)_4$	73.
5.4. Estimation of M-N bond lengths	2 7 •
5.5. Bond length contractions	83.
5.6. Angle variations at O and N	86.
B.1. Atomic positions for (Cl ₂ TiNSiMe ₃) ₂	92.
B.2. Temperature factors for (Cl_TINSIMe_3)2	93.
B.3. Internuclear distances in (Cl ₂ TiNSiMe ₃) ₂	94.
B.4. Bond angles in (Cl ₂ TiNSiMe ₃) ₂	95•
B.5. Comparison of Fobs and Fcalc for (Cl2TiNSiMe3)2	96-104.
B.6. Atomic positions for Si(NC(C6H5)2)4	105-108.
B.7. Temperature factors for Si(NC(C6H5)2)4	109-111.
B.8. Internuclear distances in Si(NC(C6H5)2)4	112.
B.9. Bond angles in Si(NC(C6H5)2)4	113.

LIST OF TABLES (continued)

B.10. Comparison of F_{obs} and F_{calc} in $Si(NC(C_{6}H_{5})_{2})_{4}$	114-130.
B.11. Atomic posifions for Ce(NC(C6H5)2)4	131.
B.12. Temperature factors for Ge(NC(C6E5)2)4	132.
B.13. Internuclear distances in Ge(NC(C6H5)2)4	133.
B.14. Bond angles in $Ge(NC(C_5H_5)_2)_{l_2}$	134.
B.15. Comparison of F_{obs} and F_{calc} for $Ge(NC(C_6H_5)_2)_4$	135-148.
B.16. Atomic positions for Sn(NC(C6H5)2)4	149.
B.17. Temperature factors for Sn(NC(C6H5)2)4	150.
B.18. Internuclear distances in Sn(NC(C6H5)2)4	151.
B:19. Bond angles in Sn(NC(C6H5)2)4	151.
B.20. Comparison of F_{obs} and F_{calc} in $Sn(NC(C_6H_5)_2)_4$	152-163.

CHAPTER 1

Introduction:

(M-N) Bonded Systems of Group IV.

TI.IAR XAGOX

HILL V A

1.1.(M-N) Bonded systems of Group IV(b)

There is an extensive chemistry of compounds containing a nitrogen atom bound to a Group IV(b) element. Excluding carbon, these elements contain vacant, accessible nd orbitals, which affect their chemical behaviour and much of the sustained interest in the M-N bonded systems revolves around possible intermolecular multiple bonding using these orbitals. The vast majority of the reported work involves silicon, although research into the germanium and tin analogues is increasing, and several comprehensive reviews have been published¹⁻⁴.

Nitrogen has a lone pair of electrons, and the orbital which contains these may interact with the empty d orbitals on M, provided that the symmetry is correct. The extent of interaction will depend on the overlap integrals but unfortunately these cannot be accurately calculated.

The concept of d orbital involvement in π -bonding was first developed on a theoretical basis by Craig et al.⁵. He suggested that $d_{\pi} \cdot p_{\pi}$ overlap is relatively insensitive to the diffuseness of the orbitals concerned, because in a π bond the electrons lie off the internuclear axis and are closer to the donor atom. Appreciable overlap may therefore occur even with the more diffuse d orbitals. However, all experimental evidence indicates that overlap is greatest for silicon, with more compact d orbitals, and decreases down the group as the orbitals expand.

The primary problem is the evaluation of meaningful $d_{T}-p_{\pi}$

overlap integrals. The d orbitals are not properly described by Slater-type orbitals⁶ which do not account for radial nodes. There are no accurate calculations, but on the basis of hydrogenlike wavefunctions the radial node of a 4d orbital occurs at about the same distance from the nucleus as the 3d radial maximum, and is therefore expected to be very inefficient at \overline{u} -bonding⁷.

There are problems in defining π -bonds strictly for tetrahedral molecules. Individual atom pairs must be considered, excluding the rest of the molecule. Consideration of the d orbital symmetry implies that the most favorable interactions will occur when the lone pair on nitrogen occupies an orbital of high p character. Maximum overlap will thus be achieved with planarity of the nitrogen atom. Ebsworth⁸ has shown that the planarity of the donor atom is not essential, and substantial overlap can occur when the lone pair occupies an sp³ orbital. Thus a molecule such as $P(GeH_3)_3^9$, with a non-planar skeleton, may still have some p_{π} -d_{\pi} orbital interaction.

The theoretical aspects of d orbital involvement have been reviewed¹⁰⁻¹⁵, but predictions are limited owing to the impossibility of correctly describing the unoccupied d orbitals. Experimentally the extent of **N**-bonding may be deduced from the decrease in the basicity of the nitrogen atom as the lone pair is delocalised, or by determination of the M-N bond strength.

The basicity of an amine can be measured by its tendency towards adduct formation. The hydrogen-bonding capacity of silylamines, with respect to chloroform as reference acid;

$$Cl = \frac{Cl}{Cl - C - H} - - N(SiR_3)_n R_{3-n}$$

i.e.

has been measured using infrared techniques¹⁶. Because v(C-D) occurs in a cleaner area of the spectrum, and is therefore more easily distinguished, deuterochloroform is generally used. Some results are given in Table 1.1. As can be seen, silylamines show considerably lowered basicity compared with alkylamines, and successive silylation further lowers the donor capacity of the amine. The ratio of the shifted to unshifted V(CD) peak gives a relative measure of the steric accessibility of the nitrogen electrons for donation. From these values it may be seen that whilst the donor strength of the trimeric ring is about the same as its acyclic equivalent, $(Me_3Ci)_2NH$, the nitrogen lone pair is sterically more accessible.

Pitt and Fowler¹⁷ have investigated the effect of silyl substitution of amines on their u.v. absorption spectra, (see Table 1.2). Successive silylation of ammonia results in a hypsochromic shift. The absorption is due to the transition of the nitrogen lone pair, possibly into the Si-N σ^* orbital. The shift to higher energy on increased silylation is caused by the stabilisation of the nitrogen lone pair via delocalisation. There is also a contribution from the partial rehybridisation of the nitrogen from tetrahedral sp³ to planar sp²; the increase in s character of the Si-N σ -bond increases the energy of the σ^* orbital.

TABLE	1.1

AMINE	$\mathcal{V}(CD)(cm^{-1})$	Ratio Unshifted:Shifted
(CH ₃) ₃ CNHC ₂ H 5	89	1:100
(CH3)3SiN(CH3)2	62	1:12
(CH3)3SIN(C3H7)2	7 7	1:1
((CH ₃) ₃ S1) ₂ NH	30	1:1
((CH ₃) ₃ S1) ₂ NCH ₃	39	2:1
((CH ₃) ₂ SiNH) ₃	31	1:4

TABLE	1.2

Pitt and Fowler u.v (isooctane)			
AMINE	λmax mμ	٤	
Et_SiNH2	208.8	1730	
(Et ₃ Si) ₂ NH	205.5	1810	
(Me ₃ Si) ₂ NH	203.7	2870	
(Mezsi)3N	200.4	4850	
PhNH ₂	233.7, 287.5	91 30, 1860	
PhNHSiMe 3	239. ⁹ , 291.0	10700, 1860	
PhN(SiMe3)2	234 .0, 265.0	3250, 445	
(Me2SINH)3	201.8	6160	
(Me2SiNH)4	201 .1	7730	
n-Me7 ^{Si3NH} 2	213.0	6420	
n-Me_Si_NH	217.5	13200	

Quantitatively, the decrease in basicity of amines on silylation may be determined by measuring the decrease in heats of mixing with chloroform¹⁸. Table 1.3 shows some sample results.

The frequencies of M-H stretching modes have been found to be a sensitive probe for the estimation of M-X d_{π} - p_{π} interaction^{19,20} in compounds of the type X₃MH. There is found to be a linear correlation between the silicon and germanium analogues, indicating that the main features of the interaction are similar, but the effect is much smaller for germanium.

Photoelectron spectroscopy is a very valuable technique for investigations into possible T-bonding. The excitation of an electron from a non-bonding orbital causes no significant change in equilibrium bond lengths. By the Franck-Condon principle excitation occurs predominantly to the vibrational ground state of the molecular ion, and gives rise to a strong vibrationless component. In contrast, excitation of an electron in a bonding or antibonding orbital results in a change in equilibrium bond lengths. Excitation to various vibrational levels occurs and hence the band width increases and vibrational structure becomes apparent. Studies on Group IV(b) halides²¹⁻²³ indicate that multiple bonding is most important for silicon and that there is some d orbital participation in germanium and tin halides.

Structural data has proved useful in estimating the degree of Thorbital interaction. A most striking example of the Heats of Mixing [cals/mole]

		1. L	
AMINE	fr	 Heat of	Mixing
n C4H9NH2		714	
(n C4H9)2NH		810	Green har i
(C2H5)2NH		866	- net
(C2H5)3N		870	
(CH3)3SINHCH3		355	
(CH3)3SIN(CH3)2		359	
(C2H5)3SiNH2		272	
((CH ₃) ₃ Si) ₂ NH		28	
((CH ₃) ₂ SiNH) ₃		 196	Γ-

effect of multiple bonding can be seen in the molecule trisilylamine²⁴. The nitrogen atom in this molecule is planar, as compared with the analagous trimethylamine which has pyramidal nitrogen²⁵. This planarity was first thought to be due entirely to d_{π} - p_{π} bonding, with the nitrogen rehybridised to sp^2 . However the same structure is not observed for the phosphorus, arsenic or sulphur analogues^{26,27}. This must be due in part to the different sizes of the respective 2p, 3p and 4p orbitals, the 2p orbital being smaller and less diffuse is able to form a more effective overlap with the 3d orbitals of silicon. However other effects, such as ionic character, must be taken into account. The polar nature of the Si-N bond leads to a net (δ +) charge on silicon and mutual repulsion tends towards a planar configuration which will be stabilised by π overlap.

The results of all these investigations are consistent with the participation of d orbitals in internal π -bonding in M-N bonded systems. The effect is greatest when M is silicon and very small for germanium and tin. This trend is reflected in the reactivity of the compounds. Thus the silazanes are much less susceptible to hydrolysis than their germanium and tin analogues. The tin amines are particularly sensitive to traces of moisture and it has been suggested that reaction occurs via electrophilic attack at nitrogen and so possibly π -bonding is important for the stability of these compounds.

1.2. Cyclic Amines

There are no stable derivatives of Group IV(b) from silicon to lead containing formal $p_{\pi}-p_{\pi}$ double bonds. Instead cyclic or polymeric structures are preferred, because the bond energy of (M=X) must be less than twice that of (M-X). It has been suggested that np orbitals with n greater than 2 are so diffuse that π overlap is poor²⁸.

Cyclic amines which exhibit the Group IV elements in their characteristic hybridisation state are well known, particularly for silicon²⁹⁻³¹. The most favourable cyclic compounds are those containing alternating nitrogen atoms, in which the bonding is to some extent polar, which increases the bond energy. Providing the characteristic hybridisation is preserved, an element A may be replaced with an element A' in a heterocyclic system (AB)_n, formed by regular alternation, if A and A' have similar electronegativities. This is found especially for nitrogen and oxygen. Thus complete series are known such as : M_3N_3 ; M_3N_20 ; M_3N_2 ; M_3O_3 .^{32,33}

Various bonding schemes have been suggested for alternating cyclic systems of the type $(M-N)_{\chi}$ where M has vacant d orbitals. Craig and Paddock^{34,35} have proposed a model in which $d_{\pi}-p_{\pi}$ conjugation occurs throughout the ring. The symmetry properties of the d orbitals allow overlap with the p orbitals on nitrogen in a plane perpendicular to the ring (π) or in the local plane of the ring (π^{-}) forming aromatic type molecular orbitals. These interactions are schematically illustrated in Figure 1.1.

π'

TT and TT' conjugation throughout the ring.

Figure 1.2

Three-centre 'island' delocalisation.

Also exocyclic π -bonding may occur between ring atoms and substituents. This type of bonding is less sensitive to non-planarity than the true aromatic $p_{\pi}-p_{\pi}$ analogue and is not necessarily restricted to the (4n+2) π electron systems.

An alternative mechanism, proposed by Dewar, Lucken and Whitehead³⁶, describes the π -bonding system as forming noninteracting 3-centre 'islands' of delocalisation covering the M-N-M linkage, as illustrated in Figure 1.2. It has been found that when the d orbitals are equally electronegative the 3-centre π -bonding accounts for 35-95% of the total delocalisation energy, the remaining 5-15% being due to delocalisation over the entire ring³⁷.

The extent of $d_{\pi}p_{\pi}$ bonding may vary between different systems because of different stereochemistries or other properties. Even in those systems which do not contain formal double bonds, such as the cyclic silazanes or siloxanes, the bonds are shorter than expected, suggesting some degree of delocalisation. For example, hexamethylcyclotrisilazane (Me₂SiNH)₃ has been found to be virtually planar with short Si-N bonds³⁸.

An interesting feature of cyclic systems based on alternating first and second row elements is the frequent occurrence of four-membered rings, which are normally considered strained. Their comparative stability is ascribed partly to the ability of such a system to minimise non-bonded repulsions. In addition to this there will be extra resonance stabilisation from the lack of perfect pairing of the ring

bonds. It is probable that the assumption of perfect pairing of the ring σ -bonding orbitals fails for molecules with small ring angles. σ -Delocalisation thus becomes more important. Wherever comparative evidence is available it appears that the four-membered rings are chemically more reactive than corresponding six- or eight-membered rings³⁹.

1.3. The Group IV(b) Ketimines

Quite distinct from the previous examples of Group IV(b) amines, in which the nitrogen is formally sp^3 rehybridising towards sp^2 on interaction with the Group IV elements, are unsaturated systems wherenitrogen is formally sp^2 and may approach sp in character on $p_{\pi}-d_{\pi}$ delocalisation. This type of system includes the ketimines, isocyanates and isothiocyanates, in which the T system of the N=C group might be involved in $d_{\pi}-p_{\pi}$ interaction with the vacant d orbitals. If such interaction occurs then both the T and T orbitals must be involved, but because of the difference in energies only one of these may be presumed to be dominant.

The first N-organosilyl ketimines were synthesised by Krüger in 1963⁴⁰, since when various Group IV(b) derivatives have been isolated. These compounds are reactive and undergo rapid hydrolysis to the parent ketimine:

 $2R_3M(NCR_2) + H_2O \longrightarrow R_3MOMR_3 + 2HNCR_2$ This tendency to hydrolysis increases with the number of ketimine groups and is hindered by bulky substituents on the metal. West⁴¹ has suggested a model for the effect of the metalloid substituent on the molecular orbital energy levels, and hence on the electronic transitions, of compounds of the type M-N=N-; M-N=C=; M-N=O; (see Figure 1.3). The vacant d orbitals on M can interact both with n and π^* levels. For most compounds the energy match of the d orbitals is better with π^* , causing resonant interaction with π^* and stabilising the excited state. A bathochromic shift of the $n \rightarrow \pi^*$ transition results. In some cases this resonant interaction is greater with the non-bonding, n, level, with the effect of π -bond formation. This probably explains the linearity of silyl isocyanate and isothiocyanate. The stabilisation of the n level in this case causes a hypsochromic shift of the $n \rightarrow \pi^*$ transition. There is thus always competition between inductive and π -bonding effects.

Chan and Rochow^{4/2} have studied the electronic spectra of various ketimines of the Group IV(b) elements, with particular regard to the $n \rightarrow W^*$ transitions, which are low intensity, high energy bands. Silyl ketimines show a bathochromic shift of about 12,000cm⁻¹ compared to the organic analogues, implying that d orbital interaction with the W^{*} orbital is greater than with the non-bonding orbital. Electron donor substituents on silicon cause no significant change in the $n \rightarrow W^*$ absorption maxima. This supports a bent C=N-Si linkage in which the n orbital has some s character and is directed away from the d orbitals. Such non-linearity of the nitrogen is found in other similar compounds;

HJIA A YTHAR MAGON

bis(trimethylsilyl)carbodiimide, Me_SiN=C=NSiMe_3, shows a dipole moment of 1.3 Debye units⁴³ where none is expected for a linear skeleton, and electron diffraction measurements for trimethylsilyl isothiocyanate and trimethylsilyl isocyanate show angles of 154° and 150° respectively at nitrogen⁴⁴. The effect on the electronic spectra of changing the Group IV substituent was also studied. The relative order of d_{π} -p_{π} bonding is known to be Si>Ge>Sn>Pb or C^{2,3,45-47}. Interpretation of the spectra must allow for the opposing effect due to electrone₆ativities varying as C>Si~Ge>Sn>Pb⁴⁸. The measured spectra are consistent with a combination of both these effects.

The intensity of the $n \rightarrow \pi^*$ absorption should be a sensitive indication of molecular geometry. Symmetry considerations show that the excitation of an electron from a non-bonding orbital of pure p character (p_{y}) (as found in a linear C=N-Si fragment) to a π^* orbital (from p_p) is forbidden. Eowever with a C=N-Si angle of 120° the non-bonding electrons occupy an sp^2 orbital and the transition to π^* is allowed. Thus the intensity of the absorption varies with the geometry at nitrogen, and hence with the amount of d_-n_ interaction. In the series Ph2C=NMMCe, the intensity increases as Si<Ge<Cn. This trend is not observed for the phenyl derivatives of M, presumably because of competition for the vacant d orbitals. The inductive effect of substituents on the metal is very marked. Electron releasing groups tend to raise the energies of π , π^* and n orbitals, especially the latter as it is more

directly affected, causing a bathochromic shift of the $n \rightarrow \pi^*$ absorption.

Summarising, these results show that $d_{\pi^{-}}p_{\pi}$ bonding is present in the Group IV(b) ketimines, although only to a small extent in the silicon compound and decreasing for the germanium and tin analogues. There is also substantial $d_{\pi}-\pi^{*}$ interaction, though no conclusions can be made as to the extent of $d_{\mu}-\pi$ orbital interaction.

1.4. (M-N) bonded Systems of Group IV(a)

Transition metal dialkylamides provide examples of covalent metal-nitrogen bonds, and they have been investigated with a view to elucidating the type of bonding that occurs. The field has been reviewed by Burger and Neese, and Bradley^{49,50}. In MNR₂ systems the nitrogen lone pair can be used to bridge to another metal atom or alternatively there is the possibility of internal TF-bonding.

The first transition metal dialkylamide, tetrakis(diphenylamino)titanium(IV), was reported in 1935⁵¹, but until the 1960s few other derivatives were synthesised. The compounds are readily hydrolysed and this is a special case of the general reaction with an acid HL;

 $M(NR_2)_x + yHL \longrightarrow ML_y(NR_2)_{x-y} + yHNR$ which has been explored by Lappert⁵²⁻⁵⁶. These compounds also readily undergo insertion reactions^{57,58} and metathetical ligand exchange⁴⁹.

It is sometimes assumed that the high reactivity of these

M-N species must be due to weak M-N bonds with a tendency to ionic character as H-NR,. However, the systems may be reactive owing to the presence of vacant, low energy orbitals on the metal which can interact with a nucleophile. The physical properties of the M(NR₂), compounds support considerable covalency in the M-N bonds. The compounds are usually fairly volatile, and are often sublimed or distilled in vacuo, and are generally soluble in non-reactive organic solvents. The presence of strong infrared- and Raman-active bands ascribed to $\mathcal{V}(M-N)$ also support the substantial covalent character of this bond 49,59. Additional evidence is supplied by the electronic spectra which show large ligand field splitting energies, and the thermal stability implied by mass spectrographic measurements in which peaks due to parent molecular ions (e.g. Ti(NMe2) 4 and M(N(SiMe2)2)))) are found^{60a,b}

Various crystal structures have been determined and the monomeric species invariably show trigonal planar nitrogen atoms, indicative of substantial π -bonding. In $W(NMe_2)_6^{61}$ the $C_2N-W-NC_2$ units are all coplanar. In the pentacoordinate nitrogen compounds $Nb(NMe_2)_5$ and $Nb(piperidide)_5^{62}$ the square pyramidal structures have the axial Nb-N bond shorter than the basal ones. Again all the nitrogen atoms are trigonal planar implying π overlap, although there is a possibility that this is due to steric congestion. It has been suggested that the longer bonds have only partial π -bonds formed from two d orbitals with the four nitrogen p_{π} orbitals.

A special class of dialkylamido species involves the bis(trimethylsilyl)amido group. These derivatives were first prepared by Bürger and Wannagat for the metals chromium, manganese, nickel, copper, iron and cobalt 63,54, and have unusually low coordination numbers. Using this ligand several three- and even two-coordinate transition metal species have been synthesised. The crystal structure of $Fe(N(SiMe_3)_2)_3$ has been reported by Bradley⁶⁵ and shows the FeN_{z} unit to be trigonal planar and all the nitrogens are also trigonal planar. Similar structures are found for other three coordinate species. The planarity of the nitrogens does not necessarily imply W-bonding with the transition metal as interaction with the silicon d orbitals would have the same effect. However, the structure of Cr(NPr_) has been determined⁶⁶ and shows the Cr-NC₂ units to be planar and the Cr-N bond length to be somewhat shortened (1.87A) suggesting significant orbital interactions.

Group IV(a) dialkylamides were first reported by Bradley in 1960, with the preparation of titanium(IV) and zirconium(IV) derivatives, and a hefnium analogue has also been prepared 67a,b . Titanium(III) dialkylamides (also titanium(II) via disproportionation) were first prepared in 1969 68 . It is found that the N-phenyl derivatives are more stable to attack than N-alkyl ones, possibly because the aryl groups would enhance any ligand-metal \mathbb{T} interaction.

Trimethylsilylamino derivatives of Group IV(a) have been prepared⁶⁹ and the electronic spectra and magnetism of the

three-coordinate species have been investigated by Bradley⁷⁰. He concludes that there is a certain amount of ligand to metal M donation into the empty metal d orbitals. This has the effect of raising the energy of the antibonding orbital, thereby increasing the M-N bond strength and decreasing the amount of M-bonding in the NSi₂ fragment.

CHAPTER 2

The Synthesis and Properties of a Titanium-Nitrogen Ring System (Cl₂TiNSiMe₃)₂.

and the set of the second s

As mentioned in the previous chapter nitrogen containing heterocycles of Group IV(b) are well known, particularly those with alternating nitrogen atoms. Cyclic silazanes have been known since 1921 when Stock first prepared a compound analysed to be $(H_2 SiNE)_n$ by the ammonolysis of dichlorosilane⁷¹, although they were not fully characterised until 1948 when Brewer and Haber isolated well defined cyclosilazanes, $(R_2 SiNE)_n$, (n = 3 and 4) from the ammonolysis of dimethyl- and diethyldichlorosilanes⁷² Research in more recent years has produced many well documented examples of dimeric, trimeric and tetrameric rings, (see Figure 2.1), with a wide range of substituents on both silicon and nitrogen. The chemistry of cyclogermazanes and cyclostannazanes has been much less studied but some authenticated examples of dimeric and trimeric rings are known⁷³⁻⁷⁷, (see Figure 2.2).

The presence of the nitrogen lone pairs in these systems points to the possibility of adduct formation with a suitable Lewis acid. Delocalisation of the lone pair charge into the available Group IV(b) d orbitals will decrease the basicity of the nitrogen, however both π - and σ -donation are possible. Because the π system is non-continuous, owing to the d_{π} orbital symmetry, σ donation is more likely. Indeed there is no evidence for π donor properties of the cyclosilazanes although adducts in which the nitrogen acts as a σ donor are known. Examples of this kind of system are MCl₃(Me₂SiNH)₃, (M=V(III) and Ti(III), Ti(IV)), and (MCl₃L)₂(Me₂SiNH)₄, (M = Ti,V, and Cr; L = T.H.F or NMe₃^{73,79}. A one:one adduct of

R = H, Me, Et, Ph, All, Vin, Buⁿ, Bu^t, Prⁿ, Prⁱ, (4-MeOC₆H₄), OR. R' = H, Me, Et, Buⁿ, Bu^t, Ph, All, CH₂Ph, SiH₃, SiMe₃, SiCl₃, SiCt₃.

Figure 2.2

M = Sn : R = Me ; R' = Me, Et ; R = Bu^t ; R' = Me, CH₂Ph.

hexamethylcyclotrisilazane with tin tetrachloride has also been reported⁸⁰.

Interestingly, examples of cyclic systems, analagous to the cyclosilazanes, involving Group IV(a) elements are extremely rare. The only discrete Group IV(a)-nitrogen heterocycle prior to this work is the four-membered titanium nitrogen ring, shown in figure 2.3, formed during the ammonolysis of titanium amides, $Ti(NMe_2)_4$ and $Ti(NEt_2)_4^{81}$. The reaction was repeated using a range of amines RNH_2 (R = Pr^n , Pr^i , $3u^i$, Bu^s , Bu^t , Ph, and cyclohexyl) but in all cases except R = Bu^t the rings polymerise via nitrogen bridges. It was suggested that the size of the bulky <u>tort</u>-butyl group prevents effective intermolecular interaction. To date there have been no reported nitrogen containing heterocycles of zirconium or hafnium.

There is no obvious reason why the Group IV(a) elements should not form analogues to the cyclosilazanes. Ring compounds which contain alternating atoms of titanium and oxygen are known⁸²⁻⁸⁵, and X-ray analysis has confirmed the cyclic nature of cyclotetra(μ -oxo-chloro- π -cyclopentadienyltitanium(IV), $(\pi - (C_5H_5)_2 \text{TiClO})_4^{-86}$. As discussed in the previous chapter elements of similar electronegativity can often replace each other in heterocyclic systems, and this is particularly true of oxygen and nitrogen. A discrete titanium nitrogen ring should therefore be attainable.

A good route to $(M-N)_x$ ring synthesis involves the ammonolysis of reactive metal-halogen bonds as set out in

the following equations:

 $\begin{array}{cccc} \text{MCl}_4 + \text{RNH}_2 & \longrightarrow & 1/n(\text{MCl}_2\text{NR})_n + 2\text{HCl} \\ \text{R}_2\text{MCl}_2 + \text{R'NH}_2 & \longrightarrow & 1/n(\text{R}_2\text{MNR'})_n + 2\text{HCl} \end{array}$

The stability of the product cyclosilazanes to hydrolytic attack is known to be enhanced by silyl substituents on nitrogen. Unfortunately silylamines are well known for their decreased basicity and hence their reluctance to undergo adduct formation. However the silicon-nitrogen bond is readily cleaved and this is the driving force behind many silylamine reactions, particularly when the formation of a thermodynamically favourable product, such as trimethylchlorosilane, ensues.

Wannagat et al.⁸⁷ have investigated the reaction of titanium tetrachloride with hexamethyldisilane, $(Me_{s}Ei)_{2}NH$, and its sodium salt. In both cases there is cleavage of the titanium-chlorine bond according to the equations:

TiCl₄ + (Me₃Si)₂NH \longrightarrow Cl₃TiNHSiMe₃ + SiMe₃Cl TiCl₄ + (Me₃Si)₂NNa \longrightarrow Cl₃TiN(SiMe₃)₂ + NaCl Treatment of the product, Cl₃TiN(SiMe₃)₂ with pyridine gives a compound of the formula Cl₂py₂TiNSiMe₃ for which the imide

structure shown in figure 2.4 is postulated.

Figure 2.4

YTERAR MAGON

Titanium(IV) chemistry is dominated by tetrahedral or octahedral geometry.^{87a} Established pentacoordinate compounds are known but not in abundance. The five-coordinate structure in Figure 2.4 might be expected to attain the more usual octahedral conformation by cyclisation. This would also avoid the formation of a formal titanium-nitrogen double bond. No other examples of such bonds to titanium have been reported.

It was decided to investigate the possible synthesis of cyclic titanium amines. On comparison with the cyclosilazane work the most obvious choice of starting materials are titanium(IV) chloride and bis(W-cyclopentadienyl)dichlorotitanium(IV). Both are readily available and have the advantage of being relatively easy to manipulate. Titanium-chlorine bonds are very reactive and many chlorinated titanium(IV) compounds are extremely sensitive to moisture because of this (especially the parent compound TiCl_L). In order to alleviate this problem the bis(11-cyclopentadienyl) compound was chosen for the first attempts. The reaction of this with primary organic amines is known to be complex, with some cleavage of the titaniumcyclopentadienyl linkage⁸⁸. Tris(trimethylsilyl)amin + was therefore selected as the amine source, but even under vigorous conditions the starting materials showed no sign of reaction. The reason for this must lie in the presence of the cyclopentadienyl groups, which can accept electron density from the metal, thus making the metal-chlorine bond less susceptible to attack. A more nucleophilic amine might be able to overcome this, as the initial adduct formation would

be more favourable. The lithium salt of trimethylsilyl(tertbutyl)amine was then reacted with $bis(\pi-cyclopentadienyl)di$ chlorotitanium(IV). As expected lithium chloride was immediately precipitated, however, there was no sign of evolution of trimethylchlorosilane, required by the reaction,

 $\pi - (C_{5}H_{5})_{2} \operatorname{TiCl}_{2} + \operatorname{SiMe}_{3}(\operatorname{Bu}^{t}) \operatorname{NLi} \longrightarrow 1/n (\pi - (C_{5}H_{5})_{2} \operatorname{TiNBu}^{t})_{n} + \operatorname{LiCl} + \operatorname{SiMe}_{2} \operatorname{Cl}$

even under harsh conditions, and no isolable product could be obtained from the reaction mixture. This reaction was repeated using the lithium salts of ethylamine and <u>tert</u>-butylamine; again lithium chloride was deposited but no product could be isolated.

The use of the $bis(\pi-cyclopentadienyl)$ derivative was then given up in favour of the more reactive titanium tetrachloride. This was found to react, although extremely slowly, with tris(trimethylsilyl)amine according to the following equation:

 $2\text{TiCl}_4 + 2N(\text{SiMe}_3)_3 \longrightarrow (\text{Cl}_2\text{TiNSiMe}_3)_2 + 4Ne_3\text{SiCl}$ The product, <u>catena-di-µ-chloro-bis-µ-(trimethylsilylamino)-</u> di-(chlorotitanium(IV), was formed as yellow-orange needle crystals in good yield.

Two chlorines have been removed from each titanium atom as volatile trimethylchlorosilane, but the exact mechanism is open to conjecture. The possibilities are that either one or both of the chlorines are lost via solvolysis to give respectively $Cl_{3}TiN(SiMe_{3})_{2}$ or $Cl_{2}Ti(N(SiMe_{3})_{2})_{2}$. In the first instance intramolecular elimination of trimethyl-

chlorosilane followed by dimerisation would yield the product. In the second case the $\operatorname{Cl}_2\operatorname{Ti}(\operatorname{N}(\operatorname{SiMe}_3)_2)_2$ could react with a further molecule of titanium tetrachloride, i.e. intermolecular elimination would result in product formation. In an effort to distinguish which intermediate was being formed the reaction was halted at various intervals. However it was not possible to isolate either of the possible amides from the reaction mixture. The solubility of the intermediate parallels that of the product, and so this was always present as an impurity.

The yellow-orange crystalline product is extremely sensitive to hydrolysis and decomposes without melting at $T \ge 415^{\circ}K$ to a brown amorphous solid. It exhibits limited solubility in benzene, cyclohexane, chloroform and dichloromethane. Heating in vacuo to $600^{\circ}K$ causes decomposition to an almost black, polymeric material approximating to (ClTiN)_X, i.e. loss of a further molecule of trimethylchlorosilane.

Cryoscopic and vapour pressure osmometric molecular weight determinations were denied by the insufficient solubility of the compound. The mass spectrum was measured but the thermal instability of the molecule prevented detection of the parent molecular ion. The highest m/e value measured was 206, which corresponds to the $(Cl_pTiNSiMe_3)^+$ fragment.

An X-ray crystal structure analysis unambiguously showed the crystals to be composed of planar, dimeric titanium-nitrogen rings, polymerised via chlorine bridges (see Figure 4.2). The crystallographic aspects of the structure are reported in Chapter 4.

Spectral Data

Infrared

Both solid and solution (dichloromethane) infrared spectra were obtained, and band assignments are given in Table 2.1. The titanium-nitrogen stretching mode has been reported 39,90,91 to occur between 580 and 670 cm⁻¹. The band at 640 cm⁻¹ is tentatively assigned to this mode. The relatively high energy could be due to substantial overlap of the nitrogen p_{π} and titanium d_{π} orbitals.

The titanium-chlorine stretching frequencies should be informative with regard to the coordination number of the titanium atom⁹²⁻⁹⁴. For tetrahedral chlorotitanium(IV) compounds $V(\text{Ti-Cl})_{\text{terminal}}$ occurs in the region 470 to 490 cm⁻¹, whereas similar absorptions for octahedral analogues are normally found in the region 370 to 400 cm⁻¹. The solid phase spectrum of the cyclotitanazane shows a strong band at 427 cm⁻¹, attributable to $V(\text{Ti-Cl})_{\text{terminal}}$, which is indicative of pentacoordination. The band at 231 cm⁻¹ is assigned to a bridging V(Ti-Cl) mode on the basis of previous assignments.

The solution spectrum is virtually identical to the solid phase one, except in the region of V(TiCl) frequencies. The bridging (TiCl) stretching mode is no longer observed and $V(\text{Ti-Cl})_{\text{terminal}}$ has shifted to 470 cm⁻¹, indicating a change in the geometry of the titanium atom towards tetra hedral. The species in solution therefore appears to be monomeric, with four-coordinate titanium (see Figure 2.5).

	2 2	
1019	14 - Fi	• •

INFRARED SPECTRAL DATA (cm⁻¹)

(Cl_TiNS	SiMe ₃)2	Sublimate	A	Pyridine	Mode
and Subl	limate B			Adduct	
Solid	Solution	Solid Solu	ition	Solid	
2348 w 2319 sh 2785 w	2965 w 2910 w	2978 w 296 2920 w 291	55 w 10 w	3102 w* 3062 w* 3042 w* 2348 m 2820 sh 2787 w 2746 w 1603 s* 1482 w*	^つ _{れま} (CH ₃) ッ _s (CH ₃)
1403 w 1244 s	1410 m 1265 sh 1252 s	1406 m 141 1265 sh 126 1252 ε 125	10 m 55 sh 52 s	1442 w* 1250 m* 1239 m 1212 m* 1151 m* 1069 m*	δ _{as} (ch ₃) δ _s (ch ₃)
10 1 4 w	1070 w 986 w 806 s	1012 v 107 986 894 m 896	70 w 5 w 6 s	1041 m* 1011 m* 946 s	V (si-N)
844 vs 827 s	847 s 826 s	845 vs 841 826 s 821	7 s 6 s	833 s	(cH ₃)
756 s	759 s	7 <u>58</u> s 759	95	753 s*	V _s (Si-C)
698 m 670 m	693 m 670 m	693 m 693 670 m 67 0	3 m O m	692 s* 670 w 654 w*	$e_{s}(ch_{3})$ as(sic ₃)
640 s 624 m	641 s 624 m	6 ¹ +3 s 64 624 m 62 ¹	1 s 4 m	636 s 620 sh 428 m*	ン(Ti-N) V _S (SiC ₃)
427 s 356 m	468 s 356 m	470 s 46 352 m 35	8 s 6 m	371 s 350 s	V(Ti-Cl)(terminal)
276 m 231 w		276 m		258 m	ὸ(Si-N) V(Ti-Cl)(bridging)

* = due to coordinated pyridine.

s = strong vs = very strong m = medium w = weak sh = shoulder. Bands have been assigned on the basis of known vibrational modes of the starting materials 9^3 ,99,103-105

H n.m.r.

The proton n.m.r. spectrum was measured using dichloromethane as both solvent and internal reference (4.50%). As expected a singlet peak was obtained at 9.43\%, which is slightly downfield from the starting material, tris(trimethylsilyl)amine resonance (9.5%; dichloromethane solution). This deshielding effect can be rationalised in terms of Mbonding between the nitrogen and the titanium.

Electronic Spectrum

The absorptions occurring in the electronic spectrum are recorded in Table 2.2. The bands are due to charge transfer transitions from the lone pairs on chlorine and nitrogen. Possible transitions are chlorine(\mathbb{T}) \rightarrow titanium(d); nitrogen(n) \rightarrow silicon(d); and nitrogen(n) \rightarrow titanium(d).

Sublimation

Attempts to purify the cyclotitanazane via sublimation resulted in two different components; a yellow amorphous powder, A, sublimes slowly at 363-373°K, and above 373°K an orange microcrystalline component, B, also collects on the cold finger. The cyclotitanazane decomposes rapidly above 410°K and slowly at the temperatures required for sublimation. The extremely slow sublimation necessary for the separation of A and B was thus accompanied by considerable loss of material. Elemental analyses of the products, A and B, were identical with that of the parent cyclotitanazane. Furthermore, all solution spectra (infrared, ¹H n.m.r. and electronic) were identical with the solution spectra of the parent cyclo-

The set the structure part is in the state of a set of the set of

r	A	В	L	Έ	2	•	2	

(Cl ₂ TiNSiMe3)2	Sublimate A	Sublimate B
45500 s	45500 s	45500 s
44200 sh	44200 sh	44200 sh
40800 sh	40800 sh	40201 sh
33300 sh	33300 sh	3 33 00 sh
25500 m	25500 m	25500 m

Electronic Spectral Data (cyclohexane solution; $\lambda_{max} < m^{-1}$)

s = strong; m = medium; sh = shoulder

a series of the second se

titanazane. The solid phase infrared spectra, (see Table 2.1) show some differences in the region of titanium-chlorine stretching modes. The crystalline sublimate, B, exhibits the same bands as the cyclotitanazane, indicating a pentacoordinate species polymerised via chlorine bridge bonds. Sublimate A however shows no band due to a bridging V(Ti-Cl)mode, and $V(Ti-Cl)_{terminal}$ occurs at 470 cm⁻¹, indicating a four-coordinate species similar to that existing in solution.

Behaviour in Solution

Samples of the ring were dissolved in dichloromethane, (as a neutral solvent) and in ether (as a weakly coordinating solvent). The solvents were then removed under vacuum and the resultant solids were pumped for several hours to complete dryness. The solid phase infrared spectra were then measured. The sample retrieved from the dichloromethane solution was microcrystalline and the spectrum was identical to that of the original five-coordinate bridged species. The sample from the ethereal solution was non-crystalline, and appeared identical to sublimate A, the non-bridged, discrete ring. Presumably the ether, coordinated to the titanium in solution, hinders the formation of intermolecular chlorine bridges.

Adduct Formation

It was decided to investigate the donor ability of the cyclotitanazane ring nitrogens similar to that demonstrated in the cyclosilazanes. The ring is expected to be a weak σ -donor, as the solid state structure shows substantial

23

and and the set a state of state and a set at the set state of a set water and a set of the set of

delocalisation of the nitrogen lone pair. The species in solution is thought to be four-coordinate from infrared evidence. The distortion of the tetrahedral angle to accomodate a ring which is planar (or nearly so) might be stabilised by solvation. Alternatively, the ring skeleton may be puckered, relieving the angle strain by weakening the $\overline{\mathbf{N}}$ -orbital interaction: increased basicity of the nitrogen would result, with the ressibility of donation to a suitable Lewis acid. Titanium tetrachloride is known to form adducts with the cyclosilazanes but failed to react with the cyclotitanazane in the temperature range required to avoid decomposition of the ring. A T-bonded complex might be preferred if there is a high degree of delocalisation. (m-Bicyclo(221)hepta-2,5-diene)tetracarbonylmolytdenum(0), $C_{7}H_{2}Mo(CO)_{L}$, might be a good system for this kind of adduct formation. The diene is easily displaced leaving two cis-coordination sites available. The mild conditions normally required for substitution reactions also favour its use⁹⁵⁻⁹⁷.

(CO)₄Mo(norbornadiene) was allowed to react with the cyclotitanazane at ambient temperatures. Careful work-up under strict anhydrous conditions yielded a brown solid, completely insoluble and probably polymeric, and also an olive-green powder which was soluble in a wide range of organic solvents. This green compound was extremely sensitive to traces of air and moisture, and appeared to be unstable, decomposing to a light brown polymeric powder. Adequate characterisation of this compound was therefore not achieved.

Lewis Acid Behaviour

Octahedral geometry is very common in titanium(IV) chemistry. The cyclotitanazane has the ability to react with donor ligands to form a six-coordinate complex, and in fact is extremely soluble in coordinating solvents such as pyridine, acetonitrile or tetrahydrofuran. This contrasts with the limited solubility demonstrated in non-coordinating solvents.

It was decided to investigate the cyclotitanazane/pyridine system as a direct comparison to Wannagat's work, in which the titanium imide species was postulated (see Figure 2.4). The reaction was carried out in benzene using an except of pyridine. The product, formed over a few hours, was precipitated as chunky orange crystals which were soluble in dichloromethane, pyridine, acetonitrile and to a small extent in benzene. Decomposition without melting occurs at $T > 373^{\circ}K$ to a brown solid with loss of pyridine. As with the parent cyclotitanazane hydrolysis is rapid via attack at the titanium-chlorine bond. Elemental analysis agrees with the empirical formula C13H19Cl2 N_zSiTi for the compound which is consistent with a biz-pyridine adduct formulation similar to the Wannagat compound (Figure 2.4). A molecular weight determination to prove the integrity of the ring skeleton was attempted by cryoscopic and vapour pressure osmometric methods. However, unsatisfactory results were obtained, probably because of the hydrolytic instability of the compound.

والمحافظ فيرجعهم والمتعاجم والمتعاقية المسترين جلم التناجية الأراط فارتبا ومصطفا ليعتروا الراعد المراجع المتحاد

Spectral Data

The solid phase infrared spectrum (see Table 2.1) shows all the bands expected for coordinated pyridine^{98,99}, in addition the original cyclotitanazane vibrations appear, with only the titanium-chlorine stretching region showing a major shift. The band due to the bridging V(Ti-Cl) vibration is missing altogether, and the terminal V(Ti-Cl) mode occurs at 371 cm⁻¹, within the range for octahedral coordination of the titanium.

The proton n.m.r. spectrum (dichloromethane solution) shows a complex multiplet around 1.0 T due to the pyridine moieties, and a singlet peak at 9.52 T. There is thus a small upfield shift of .07 T from the free cyclotitanazane. The ratio of the integrated intensities of the two peaks is 9.0: 10.0 (trimethylsilyl :pyridine protons), which is consistent with a bis-pyridine adduct.

The similarity between the spectra of the pyridine adduct and the parent cyclotitanazane suggests that ring cleavage has not taken place. The adduct is therefore proposed to be $bis-\mu$ -[trimethylsilylamino]-bis-(dichlorodipyridinetitanium(IV)), (py₂Cl₂TiNSiMe₃)₂, shown in Figure 2.6, and not the imide structure put forward by Wannagat, shown in Figure 2.7 for comparison.

service the set of a service definition with the literative service sector with a set of the sector of the sector

Experimental

Due to extreme air-moisture sensitivity of the products and many of the reactants special techniques were necessary. Materials were handled under an inert atmosphere or under high vacuum.

All glassware was thoroughly washed in chromic acid and dried by baking in an oven at 400° K for several hours, and whenever possible flamed out under vacuum prior to use.

All materials were purified prior to use.

BENYENE: Supplied by Koch Light Laboratories Ltd., Colnbrook. It was stored over sodium wire and when required was heated under reflux over CaH₂ or LiAlH₄ and distilled under a normal pressure of nitrogen.

DICHLOROMETHANE: Supplied by Hopkin and Williams Ltd., Essex. This was heated under reflux over P_2O_5 and distilled under a normal pressure of nitrogen.

n-HEYANE: Supplied by B.D.H. Chemicals Ltd., Poole. This was stored over sodium wire and prior to use was heated under reflux over CaH₂ or LiAlH₄ and distilled under a normal pressure of nitrogen.

CYCLOHEXANE: Supplied by B.D.H. Chemicals Ltd., Poole. Purified as n-hexane.

MOLYBDENUM HEXACARBONYL: Supplied by Koch Light Laboratories Ltd.. Purified by sublimation under vacuum.

(CO)₄Mo(norbornadiene): Prepared by the method of Pettit¹⁰¹. PYRIDINE: Supplied by Fisons Scientific Apparatus Ltd., Loughborough. This was distilled under a normal pressure of nitrogen over KOH pellets.

and a set of the set of

TITANIUM TETRACHLORIDE: Supplied by Hopkin and Williams Ltd., Essex. This was stored over copper powder to remove traces of iron and vanadium impurities and distilled in vacuo when required. TRIS(TRIMETHYLSILYL)AMINE: This was prepared by the method of Lehn¹⁰⁰ and purified by distillation under reduced pressure.

Analyses

Chlorine was determined by the Volhard method¹⁰². A small quantity of sample (about 0.1gm) was hydrolysed with aqueous nitric acid made up to 50mls in a graduated flask. Determinations were carried out on 10ml aliquots. Silver nitrate solutions were standardised against sodium chloride using potassium chromate as indicator; potassium thiocyanate solutions were standardised against silver nitrate with ferric ion as indicator

Elemental analyses for carbon, hydrogen and nitrogen were carried out professionally at the A. Bernhardt Microanalytical Laboratories, Mullheim, Germany.

Spectral Measurements

1) Infrared Spectra (4000-200 cm⁻¹): Recorded on a Perkin-Elmer 621 Grating Infrared Spectrophotometer. Calibrations were taken at three points, 2850, 1601, and 1028 cm⁻¹ from a 0.05mm polystyrene film. Samples were run as nujol or hexabutadiene mulls held between caesium iodide plates. Solution spectra were recorded with the samples held in potassium bromide windowed infrared solution cells. 2) Proton Nuclear Magnetic Resonance Spectra (60MHz):
Recorded on a Perkin Elmer R 12 Spectrophotometer.
3) Electronic Spectra: Recorded on a Cary 14 Spectrophotometer.
Solution spectra were measured using special sealed 1cm
silica cells (see Appendix A).

Experimental Details

1) Preparation of (Cl_TiNSiMe_),

Titanium tetrachloride (3 moles i.e. excess) was distilled into a glass reaction vessel containing tris(trimethylsilyl)amine (1 mole) and dry benzene. On warming to 293⁰K a yellow solution was apparent, which gradually deepened over a few days to red and some red crystalline material was precipitated. As the reaction proceeded more of this was produced and the product began to be deposited as yellow-orange needles. Three months (at 293° K) was required for total conversion to the product. The solid was filtered and washed with n-hexane. A sample of the crystalline material was sealed under nitrogen into a glass vial to be used for the crystal structure analysis, and the remainder was extracted with dry dichloromethane, (yield = 65%). Fractional distillation of the filtrate gave 2 moles of trimethylchlorosilane (B.P. 59-60°). Melting point: Decomposes at $T \ge 415^{\circ}K$. Analysis: Required for (Cl_TiNSiMe_3)2 ; Cl=34. 5 %; N=6.3 %; C=17. 5% ; H=4. 4 %. Obtained results were; Cl=34.6 %; N=6.9 %; C=17. 5%; H=4.4 %.

2) Reaction of (Cl_TINSiNe_3) with (CO)4No(norbornadione).

 $(CO)_{4}$ Mo(norbornatione) was prepared from molybdenum hexacarbonyl and excess norbornadiene (bicyclo(2.2.1)hepta-2,5-diene), in petroleum ether¹⁰¹. Recrystallisation from petroleum ether gave a good yield of yellow plate-like crystals of $(CO)_{4}$ Ho(norbornadiene). This (1 mole) and $(Cl_2\text{TiWSiWeg})_2$ (1.5 moles) were allowed to react in benzene in an evacuated glass reaction vessel. The reaction was left for some weeks and then careful filtration yielded a green-brown solution and a light brown solid, insoluble in all organic solvents and probably polymeric. The colution, after cautious work-up gave an olive green powder which proved to be extremely sensitive to air and moisture, and adequate characterisation was not achieved.

3) Preparation of the pyridine adduct of (Cl_TiNSiMe_)_.

Dry pyridine (3 moles) was distilled into a glass reaction vessel containing $(Cl_2TiNSiMe_3)_2$ (1 mole) and benzer. The orange solution deposited an orange crystalline solid over a few days. Careful anhydrous work-up yielded the product, which was recrystallised from dichloromethane/hexane (yield = 95%).

Melting point: Decomposes at $T \ge 393^{\circ}K$. Analysis: Required for $(py_2Cl_2TiNSiMe_3)_2$; Cl=19.5%; N=11.5%; C=42.8%; H=5.2%. Results obtained were; Cl=19.8%; 11.5%; C=42.6%; H=4.8%.

Cashing of cash of the State of the second state of the s

CHAPTER 3

Crystallographic Techniques.

.

Crystal structure analyses have been carried out on the cyclic amines <u>catena-di-µ-chloro-bis-µ-(trimethylsilylamino)-</u> di-(chlorotitanium(IV), (Cl₂TiNSiMe₃)₂, and nonamethylc:clotrisilazane, (Me₂SiNMe)₃, and the diphenylketimenes $M(NC(C_6H_5)_2)_4$ (M=Si, Ge and Sn); the results are discussed in Chapters 4 and 5. The techniques used during these structure determinations are set out and discussed below. The general background and mathematics behind the theory has been described in various books¹⁰⁶⁻¹¹⁰ and so will not be covered in any detail.

3.1. Data Collection

The first step in any crystal structure analysis is to determine the space group and unit cell vectors, and to this end initial Weissenberg or Precession photographs were taken. Observations on symmetry and systematic absences provided a basis for the selection of a space group and unit cell dimensions were approximately measured.

Intensity data were collected by diffractometer throughout the intestigation. Data for the cyclotitanazane, $(Cl_2TiNSiNe_3)_2$, were collected on a Stoe 2-Circle Weissenberg Diffractometer, equipped with a graphite monochromator. Initial centring was carried out manually (see Chapter 4.1. for details). All other determinations used a computer controlled Automatic Syntex P2₁ 4-Circle diffractometer, which was also equipped with a graphite crystal as monochromator.

The coordinates of several (up to fifteen) Friedel pairs of spots, obtained from a rotation photograph, were fed into the

energies (Carrowing) and a second animal for the Art Man Art and Carrowing with a second state of the second s

centring programme and accurately located by refinement. These were then used to generate sets of possible axial vectors; the choice of vectors defined the orientation matrix to be used. This matrix was then refined by using higher angle (24) reflections. Reflections were scanned using the 20 method in which both the counter (20 circle) and the crystal (ω circle) are rotated at relative angular rates given by:

$\Delta 2 \Theta = 2 \Delta \omega$

A maximum 20 value of 130° (Cu K_ radiation) or 50° (To K_ radiation) and variable scan rates dependent on reflection intensity were employed. Coincidence corrections were applied automatically to particularly intense reflections with the number of counts **not** exceeding 50,000. The background radiation was measured for half the time taken to measure each peak.

Standard reflections were collected at intervals so as to check for variations in intensity due to decomposition. When a crystal showed sign: of decomposition during data collection the structure factors were rescaled on the basis of the drop in intensity of the standards.

The scaling expression is:

Scale = $1.0(1.0 + \alpha T)(1.0 + \beta T sin \theta)$

Where $T = \exp osure$ time in hours and α and β are the coefficients to be determined.

After collection the data must be reduced to the form of Structure Factors (Fs) where $F \propto I$ and I is the measured intensity. Polarisation and Lorentz factors must be accounted for and corrections for background must be made.

The Lorentz factor is dependent on the method used to collect

A REAL PROVIDED AND A REAL

the data. For general inclination geometry the axis of rotation makes an angle $(\pi/2) - \mu$ with the incident X-ray beam and a reciprocal lattice point P on the nth layer (perpendicular to the axis of rotation). The semi-angle of the cone of diffraction for the nth layer reflections is $(\pi/2) - \nu$, and γ is the projection on the zero layer of the 20 angle between the incident and reflected beams. The Lorentz factor is given by: $L^{-1} = \cos\mu\cos\nu\sin\gamma$

For equiinclination Weissenberg geometry, as in the Stoe 2-Circle diffractometer, $\mu=-\nu$ and the expression reduces to:

 $L^{-1} = \cos^2 v \sin \Upsilon$

The geometry of the 4-Circle diffractometer is similar to that of the zero layer Weissenberg case, in which $\mu = \nu = 90^{\circ}$ and $\Upsilon = 20$. The expression becomes:

 $L^{-1} = sin2\theta$

The **polarisation** factor for monochromatised radiation is given by either

 $P = (\cos^2 2\theta_m \cos^2 \xi) \cos^2 2\theta_m + \cos^2 2\theta_m \sin^2 \xi_m + \cos^2 \xi_m + \sin^2 \xi \cos^2 2\theta_m$ $1 + \cos^2 2\theta_m$

 $2\Theta_m$ = the Bragg angle for the monochromator sin \mathcal{E} = tanµcot Θ where µ is the inclination angle for the Weissenberg geometry, or by

 $P = \frac{1 + \cos^2 2\theta_m \cos^2 2\theta}{1 + \cos^2 2\theta_m}$

with 'parallel' setting of the monochromator.

The raw data from the Stoe diffractometer was fed into the programme DATPRO and that from the Syntex was fed into SYNDAT. These programmes process the data into the corrected structure factor form.

and the second second

A systematic error in intensity data arises through absorption of radiation by the crystal. The diffracted beam is attenuated to the extent:

 $I = I_{e}^{-\mu\tau}$

I = measured intensity

I = incident intensity

 τ = the total distance travelled through the crystal

 μ = the linear absorption coefficient given by:

$$\mu = \left(\sum_{n} (P_n/100) (\mu/q)_{E_n, \lambda} \right)$$

 P_n = percentage of element in the compound μ/ρ = mass absorption coefficient for the element E_n at wavelength λ .

The crystal must be described and measured as exactly as possible¹¹¹. The bounding faces (which are not necessarily crystallographic planes) were measured by rotating the crystal using a Nonius orienter on which a dial indicates the angle of rotation. As each face was eclipsed the rotation angle $V_{\rm A}$ was noted and the scale reading, $D_{\rm A}$, where the face cuts the x,y line was measured by means of a Vickers Screw micrometer eyepiece attached to the microscope. The crystalwas rotated about 180° and the process repeated to obtain $\Psi_{\rm B}$ and $D_{\rm B}$. The angle (Θ) between the face and the rotation axis was also measured. The plane equation is then:

 $xsin(\psi - \psi_{o}) + ycos(\psi - \psi_{o}) + ztan \Theta = \frac{1}{2}(D_{B} - D_{A})$

The sign of the z term is determined by the intersection of the plane at + or - z (the rotation axis).

The corrected intensities are calculated by the programme ABSCOR¹¹². The crystal is divided into polyhedra within which rays are entering or leaving through one face only.

A REAL PROPERTY AND A REAL

Within these polyhedra the loci of constant absorption are planes; these may lie in any direction but their position is determined from the absorption of rays diffracted at the corners of the polyhedra. For each of the polyhedra the contribution to the total diffracted intensity (A_T) is found. The transmission $(e^{-\mu \Upsilon})$ is given by A_T/V , where V is the crystal volume.

The absorption effect is most important for elements with high atomic number (Z) and for less penetrating radiation. In this work absorption corrections were only applied to the tin ketimine, $Sn(NC(C_6H_5)_2)_4$, for which Cu K_K radiation was used, ($\lambda = 1.5418$ Å).

Binary data files were set up for each data set. This was done using the programmes SORTM (for the Stoe), SYNDAT (for the Syntex data) and DATRDN (for the X-RAY SYSTEM). These programmes make use of symmetry, unit cell contents, molecular $F_{(OOD)}$ and individual atomic scattering factors¹¹³. Should it become necessary the data may be transformed into a different space group at a later date.

3.2.Solution of the Structure

Deducing atomic positions from intensity data is maje difficult by the fact that the amplitudes of the structure factors are known but their phases are not. Solving a structure depends on the determination of an approximately correct phase set.

3.2.1. The Patterson Method

Initial Phase determination is often attempted using the 'heavy atom' Patterson approach which has been succeisfully applied in this work. Patterson ^{114,115} showed that a fourier synthesis with $|F|^2$ as coefficients (and hence no phase problem) has peaks corresponding to all the interatomic vectors. The height of a Patterson peak is proportional to the product of the atomic numbers of the atoms which give rise to it, and so those between heavy atoms should be easily located. The search may be made easier by referring to the Harker lines and sections for vectors between symmetrically equivalent atoms 116. The positions of the Harker lines and planes may also be of help in ascertaining or checking the correctness of the space group. The heavy atom(s) once located serve to determine the ph ses and intensities of the reflections to a large extent, and a fourier synthesis based on the calculated phases and observed structure factor amplitudes should show the positions of the remaining atoms.

3.2.2. Direct Methods

An alternative approach used successfully here is direct methods of phase determination. All the crystals studied in this way belong to centrosymmetric space groups, thus limiting the possible phases to 0 or π , i.e. confining the problem to the assignment of a plus or minus sign to each structure factor amplitude.

The direct method approach relies on mathematical

and the second states and the second s

relationships in the form of inequalities or probabilities between the phases of the reflections. These may be hand applied or, more commonly, make use of a computer. Both methods have been successfully employed here.

The hand application of inequality relationships was used to elucidate the h,k,O projection of the pseudo-subcell of the cyclotitanazane, $(Cl_2TiNSiMe_3)_2$, (see Chapter 4). The first step involved conversion of the 102 h,k,O structure factors into normalised structure factors (Es), satisfying the criterion $\langle E^2 \rangle = 1$, following the method of Woolfson¹¹⁷. The Harker-Kasper inequality relationships¹¹⁸,119

s(h).s(h').s(h+h') = +1

were then applied to the highest E values. Two strong reflections, (0,12) and (2,11), were chosen to be origin determining and there phases were arbitrarily assigned as positive. These acted as the starting point for phase determination and those large Es directly related to these could also be assigned positive. When no further progress could be made in this way the next highest E value was given the sign symbol 'a' and the process repeated. The use of two further sign symbols 'b' and 'c' gave the final phasing of the 27 highest, unique Es in terms of +, a, b, c or their products. Several inequalities supported the relationship $a = c \neq b$, and also a = +. The assumption that a = c = +and b = - gave the distribution of +:- of 14:13. The fourier synthesis hand computed on this basis showed six atoms, which were assumed to be the two titaniums and four chlorines expected in the pseudo-subcell. Least squares refinement on this assumption gave an initial R value of .42 which rapidly improved

annartha an saile annarthann dean an teannachta an tar an thairte an thairte an thairte an tar an tar an tar a

on further refinement. After the addition of further atoms (presumed to be silicons and nitrogens) an R value of .128 (102 reflections) was reached.

The limitations of the above hand application of direct methods lie chiefly in the size of the structure that can be conveniently handled. Two computer approaches have been used to overcome this problem, namely the X-RAY SYSTEM programme 'Phaser' (NORMSF, SINGEN and PHASE) and the programme MULTAN (NORMAL and MULTAN I,II, and III). The first stages of each are similar, involving the normalisation of the structure factors and the setting up of sigma-2 relationships. The programmes PHASE and MULTAN II and III, however, differ in their approach to phase determination.

Initially the observed structure factor amplitudes are converted to normalised structure factors (Es); there are two main approaches to this. Temperature and scale factors may be obtained from a Wilson plot:

 $\ln \left(\frac{\mathbf{I}_{\mathbf{r} \circ \mathbf{l}}}{\left(\boldsymbol{\xi}_{\cdot,\mathbf{f}}^{2} \right)^{2}} \right) = \ln C - 2B \left(\frac{\sin^{2} \Theta}{\lambda^{2}} \right)$

The overall temperature factor B is obtained from the slope and the intercept gives C which is related to the required scale factor by:

$$k = \frac{1}{\sqrt{C}} = \left| \frac{F_{abs}}{F_{rel}} \right|$$

The normalised structure factors are defined in terms of unitary structure factors, which are in turn obtained from the observed structure factors:

 $U_{hkl} = \frac{F_{hkl}(point)}{F_{000}} = \frac{F_{hkl}}{e^{-B(\frac{\sin^2 \varphi}{\lambda^2} \left(\sum_{i=1}^{n} f_{o_i}\right)}}$

and

also $\langle E^2 \rangle = 1$

 $E_{hk1}^2 = \frac{U_{hk1}^2}{\frac{1}{\pi^2}}$

The second approach to normalisation involves the use of 'K-curves', where K is derived from

 $F^2(h) = K(s) \cdot I(h)$

where K(s) is the K value for a small $(\sin\theta)/\lambda$ interval, (s). $\langle E^2 \rangle$ is assumed to be 1.7 for both the overall case and for $(\sin\theta)/\lambda$ zones. K is computed for a number of $(\sin\theta)/\lambda$ intervals and the curve obtained gives the scale function for: $k\langle F^2 \rangle = 1.0$

The normalised structure factors are thus obtained by setting: $E^2 = kF^2$

NORMAL uses the Wilson plot only, but NORMSF provides a choice of both methods.

The advantage of Es over Us is that they allow normalisation of all classes of reflections to a common basis. Thus they may be scaled such that $\langle E^2 \rangle = 1.0$ for the data as a whole or for separate groups. Experimentally the intensities of the reflections in different parity groups may vary considerably in some structural analyses. NORMAL allows the separate scaling of each parity group to overcome this problem. Unfortunately, NORMSF does not include this facility and during the investigation of the cyclotitanazane (see Chapter 4) Phaser failed to produce a reasonable solution because of the variations in different parity group intensities. Finally, both NORMAL and NORMSF give the statistical distribution of Es and compares this with the theoretical

A REAL PROPERTY AND A REAL PROPERTY A REAL

centric and acentric cases.

SINGEN and MULTAN I (SIGMA-2) then set up the signa-2 relationships, which are based on the Sayre equation ¹²⁰:

 $sE_{h} sE_{k} sE_{h-k} \approx +1$

The component vectors satisfying the criterion

H1 + H2 + H3 = 0 K1 + K2 + K3 = 0 L1 + L2 + L3 = 0

are searched for, where Hn,Kn,Ln is the vector for the nth reflection. To restrict the number of combinations only the largest E values are used. The probabilities of the relationships are determined. During the search SINGEN calculates the phase shift resulting from any transformations of reflections to their asymmetric equivalents. SIGMA-2 standardises the indices so that all reflections lie in the same part of the reciprocal lattice; any phase shift due to this is determined.

The actual phase determination is approached differently by PHASE and MULTAN (II and III). PHASE is a single solution method specifically designed for the solution of centrosymmetric structures¹²¹. Phases are first sought for a set of 'generators', which are usually chosen to be thirty to seventy of the strongest E value reflections.

The sigma-2 relationships, $s_{h1} \cdot s_{h2} \cdot s_{h3} = n$, of probability P, where n is the phase shift (0 or π), are divided into two types. The relationships of the first kind are derived entirely from the generators, and those of the second kind are obtained by the elimination of a common non-generator from a pair of original relationships. The resultant lists are sorted in order of decreasing probability.

こうちょう しょうしょう しょうちょう ちょう かいしょう ちょう かんしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう

The phases of the generators are solved for directly, assuming all relationships are true and examining them in descending order of probability until a unique solution is obtained, involving just as many relationships as there are unknown generator phases.

In any phase determination it is necessary to specify an origin for the system as groups of phases may change sign with origin shift. Looking at the simplest centrosymmetric case, PT, there are eight possible, distinct origin positions. Three reflections, chosen from different, linearly independent parity groups, are required to define a unique origin. Some phase determining programmes fix the origin at the beginning of the determination process, but both methods discussed here achieve this at a later stage.

When the unique set of relationships for the generators has been determined, if the origin determining reflections have not been assigned, it is found that an appropriate set of reflections cannot be solved for. These are then given signs (usually arbitrarily positive) as origin fixing reflections, before continuing to solve for the remaining ones.

Two 'pedigrees' are then set up; firstly for each reflection, showing which relationships were used in defining the phase, and also for each relationship, to show which phases are dependent upon it. The solution is tested on all relationships of the first and second kinds and the number of disprepancies noted. The unique feature of Phaser is that it is capable of refining and improving the solution. This minimises these discrepancies by identifying which relationship of those used in the solution for the generators

and the first of the second states of the reak of her ball of any line was the second the second states and the

is involved in most discrepancies. It is then deemed to be untrue (i.e. $s_h \cdot s_k \cdot s_{h-k} = -1$) and the process is repeated.

The MULTAN approach to phase determination is a multiple solution one, which depends on finding a good starting point. This would be a combination of known phases which would lead to new phases with maximum reliability.

Firstly, a small group of strongly interlinked reflections are obtained by the MULTAN IL(CONVERGE) programme. A measure of the reliability with which the phase may be determined using the tangent formula is given by the quantity $\alpha_{\rm h}$ defined by¹²²:

 $\begin{aligned} & \propto_{h}^{2} = \left(\xi_{h}, K_{hh}, \cos\left(\varphi_{h}, + \varphi_{h-h}, \right) \right)^{2} + \left(\xi_{h}, K_{hh}, \sin\left(\varphi_{h}, + \varphi_{h-h}, \right) \right)^{2} \\ & \text{where:} \quad K_{hh} = 2\sigma_{3}\sigma_{2}^{-3/2} E_{h}\Sigma_{h}, E_{h-h}, \\ & \text{and:} \quad \sigma_{h}^{*} = \int_{J=1}^{M} Z_{J}^{n} \end{aligned}$

This equation is a general expression applicable to centric or acentric structures, and in the centric case the φ terms reduce to 0 or T.

In the absence of phase information the value of ∞_h may still be estimated using the formula¹²³:

 $\mathbf{x}_{h}^{2} = \underbrace{\xi}_{h} K_{hh}^{2} + 2 \underbrace{\xi}_{h} K_{hh}, K_{hh}, K_{hh}, \mathbf{I}_{1} (K_{hh}) \mathbf{I}_{1} (K_{hh}) \\ h' \neq h''} \mathbf{I}_{0} (K_{hh}) \mathbf{I}_{0} (K_{hh})$

where I_1 and I_0 are modified Bessel functions. The value of \sim_h is calculated for each reflection. The reflection with the smallest \sim_h is eliminated together with all its phase relationships. The remaining \sim_h s are updated and the process is repeated until the best starting set is obtained. As each reflection is eliminated those remaining are examined to ensure that they contain all the necessary

A REAL PROPERTY AND A REAL

reflections for origin definition; if not, the reflection just eliminated is reinstated and becomes one of the reflections used to define the origin.

Clearly a knowledge of the phases of one or two reflections would be very valuable. CONVERGE therefore applies the ligna-1 formula before the elimination procedure. The Sigme-1 formula for the centrosymmetric case is

 $s \{E_{2h2k2l}\} \approx s \{|E_{hkl}|^2 - 1\}$ which must be modified for space group symmetry.

The starting set is then chosen to include the sigma-1 signed reflections, the origin fixing reflections and a selection of other 'good' reflections picked by CONVERGE. In this work usually three of these reflections were selected. Eight possible starting points are obtained by assigning plus and minus signs to each of these.

These starting points are developed into complete sets of phases using the sigma-2 relationships in the order indicated by CONVERGE (i.e. the reverse order of elimination. For each set of phases finally obtained 'figures of merit' are computed. In this work the absolute figure of merit (ABS FOM), which is related to \propto_h , was mainly used. This is a measure of the internal consistency of the set of phases and is given by

> ABS FOM = $\xi_{\underline{n},\underline{n}} - \xi_{\underline{\alpha}_{\underline{r}}}$ $\xi_{\underline{\alpha}_{\underline{e}}} - \xi_{\underline{\alpha}_{\underline{r}}}$

where α_h is calculated from equation 1, α_e is the sum of estimated ∞ s from equation 2 and α_r assumes random phases. Clearly this value should be a maximum for the correct solution, ... r fact a correct set of phases will give a

And the second states when the second s

others picked by CONVERGE. E-maps from seven possible phase sets were then calculated (apart from the all plus solution). None of these, on examination, showed any structure that could serve as a starting point for structure determination.

The initial results from PHASE were examined with particular regard to the pedigrees of the phases and the relationships. In a PT structure the refinement facility of PHASE, based on minimising discrepancies, cannot be used, because of necessity the first solution found is the all plus case in which there are no discrepant relationships. The strategy used to identify the subgroups has been to examine the pedigree for a low probability relationship which might be invalid, which has a high degree of involvement and is related to some of the generators. An appropriate generator phase is defined as negative and serves as the basis for the negative subset.

This approach was effective in the analysis of the silicon ketimine, and the second attempt to form the subsets resulted in the phases used as the starting point for the structure determination. The phases of the generators are listed in Table 3.1., where they may be compared with the final, correct phases. Of the 76 common reflections 69 of the phases calculated by Phaser agree with those of the final solution. The Phaser pedigrees have been further examined in an attempt to find a possible phase set in better agreement with the correct one. One other possible starting point was found of which 70 of the phases were in agreement, but there was no choice leading to a completely correct solution.

こことで、 は、 とう ときまたをするの あい などのないない ないしょう あんない ないない ないない ない ないのうちょう

reflections for origin definition; if not, the reflection just eliminated is reinstated and becomes one of the reflections used to define the origin.

Clearly a knowledge of the phases of one or two reflections would be very valuable. CONVERGE therefore applies the figura-1 formula before the elimination procedure. The Sigma-1 formula for the centrosymmetric case is

 $s \{E_{2h2h2l}\} \approx s \{|E_{hkl}|^2 - 1\}$ which must be modified for space group symmetry.

The starting set is then chosen to include the sigma-1 signed reflections, the origin fixing reflections and a selection of other 'good' reflections picked by CONVERGE. In this work usually three of these reflections were selected. Eight possible starting points are obtained by assigning plus and minus signs to each of these.

These starting points are developed into complete sets of phases using the sigma-2 relationships in the order indicated by CONVERGE (i.e. the reverse order of elimination. For each set of phases finally obtained 'figures of merit' are computed. In this work the absolute figure of merit (ABS FOM), which is related to \propto_h , was mainly used. This is a measure of the internal consistency of the set of phases and is given by

ABS FOM =
$$\frac{\xi_{\alpha}}{h} - \frac{\xi_{\alpha}}{r}$$

 $\xi_{\alpha_e} - \xi_{\alpha_r}$

where α_h is calculated from equation 1, α_e is the sum of estimated ∞ s from equation 2 and α_r assumes random phases. Clearly this value should be a maximum for the correct solution, and in fact a correct set of phases will give a

and a secondation with a b think to be want the second with the second second

e Mana PAGE SSING - Cashering Marchines M here white ou estimated es Cearly this walls. colution, and

others picked by CONVERGE. E-maps from seven possible phase sets were then calculated (apart from the all plus solution). None of these, on examination, showed any structure that could serve as a starting point for structure determination.

The initial results from PHASE were examined with particular regard to the pedigrees of the phases and the relationships. In a PT structure the refinement facility of PHASE, based on minimising discrepancies, cannot be used, because of necessity the first solution found is the all plus case in which there are no discrepant relationships. The strategy used to identify the subgroups has been to examine the pedigree for a low probability relationship which might be invalid, which has a high degree of involvement and is related to some of the generators. An appropriate generator phase is defined as negative and serves as the basis for the negative subset.

This approach was effective in the analysis of the silicon ketimine, and the second attempt to form the subsets resulted in the phases used as the starting point for the structure determination. The phases of the generators are listed in Table 3.1., where they may be compared with the final, correct phases. Of the 76 common reflections 69 of the phases calculated by Phaser agree with those of the final solution. The Phaser pedigrees have been further examined in an attempt to find a possible phase set in better agreement with the correct one. One other possible starting point was found of which 70 of the phases were in agreement, but there was no choice leading to a completely correct solution.
TA	BL	Ξ.	3.	1.
- C		÷.,		

Comparison of MULTAN and PHASE Solutions for $Si(NC(C_6H_5)_2)_4$

	MUL	TAN	PHASE	Correct		MUL	TAN	PHASE	Correct
h,k,1	a	Ъ		Solution	h,k,l	a	b		Solution
3 -5 14					3 _0 10				
2,-2,14	Ť	+	+	-	3 -3 15	+	-	-	2
1 - 7 7	2	-	Ţ	-	4 _0 _1	-	-		+
6 12 1	-	-	-		9.2.8	-	-	- 2	-
3 -7 0	1	-	-	-	0.113	+	+	+	+
0.3 -4	+	1	_	1.1	0.10.0	+	+	+	+
4.13.7	+	+	_	+	148	+	+	-	-
101 5	+	+	-	-	1.2.16	+	+	+	+
8.1.0	-	-	-	-	0.8.11	-	+	-	-
2.22	-	-	-	+	62.2	-	-	+	+
22.5	-	-	+	+	4.108	-	-	-	-
24.0	+	+	_	+	0.107	-	+	+	+
1.57	-	+		_	5.78	-	-	-	-
9 3. 3	-	+	+	+	6,-2,0	-	+	-	
5 -12 -2	-	-	-	-	2,-6,-7	-	-	-	-
20.11	+	+	+	+	4,-6,-9	+	-	+	+
610.7	+	-	-	-	3,1,-2	-	-	-	-
311.9	-	+	+	+	5,6,-4	-	+	+	+
3,-12.0	-	-	+	+	4,10,12	+	-	-	-
10,-1,-2	-	+	-	-	3,-5,8	+	-	-	-
2,3,-2	+	-	-	- 1	4,11,11	-	+	-	+
10,3,3	+	+	-	-	4,13,-4	+	+	+	+
3,-7,13	-	-	-	-	5,-3,2	-	+	+	+
1,-1,-4	-	-	+	+	0,4,1	-	-	-	
1,2,5	+	-	-	-	0,2,1	+	+	-	
1,5,7	-	+	+	+	0,-4,-7	+	+	-	
3,-5,10	+	+	+	+	0,0,-5	-	-		-
1,8,-3	+	-			, 12,1	+	-	+	-
4,5,-7	-	-	+	+	+,-,,9	+	+		1
4,3,-11	+	+	+	+	6 7 7	-	+	1	_
9,4,5	+	+	+	+	3 12 2	2	-		
4,3,-8		+	-	5	2 11	-	-	1.1	- <u>-</u>
3,-11,-2	: +	+	-	-	5 -4 4	Ī	- 2	+	+
4,6,-5	-	+	+		59.8	1	_	+	+
3,-7,-9	-	+	+	+	3.10.0	+	-	-	-
3,-5,-5	+	+	+	+	0.3.10	-			+
5,-1,-12	: +	+	+	-	22.4	+	-	-	-
1,2,6	+ 1		1000		-11				

As has been noted previously the AB3 FOM figure of merit given by MULTAN is not meaningful in cases of non-translational symmetry. This is demonstrated by the results (see Table 3.1.). The phase set with the highest value of ABS FOM (1.1283) is labelled 'a', and only 36 of the phases are correct. The MULTAN solution with the best agreement is labelled 'b', (ABS FOM = 1.0676); 49 of these phases are correct.

3.3. Refinement

A fourier synthesis using phases determined by either of the methods described above, gives possible atomic positions, and these are fed into the Least Squares refinement programmes SFLSR or CRYLSQ (X-RAY), which work by minimising the function $\geq_{\rm nkl} w_{\rm nkl} (|F_0| - |F_c|)^2$, where $w_{\rm nkl}$ is the weight to be applied to an observation and $|F_0|$ and $|F_c|$ are the observed and calculated structure factor amplitudes. Positional parameters and temperature and scale factors were allowed to refine throughout the determinations.

In the initial stages each atom is assumed to have a spherical, isotropic, thermal motion. This modifies the atomic scattering factors so that :

$$f = f' \exp - \frac{B \sin^2 \Theta}{\lambda^2}$$

The isotropic temperature coefficient B is allowed to refine; consistent. f large or negative B values for a particular atom indicate that the atom may be unreliable.

wards at any and an an a stand was the second was seen and the second second second second second second second

More accurately the atomic motion may be described by a triaxial ellipsoid defined by the coefficients B_{11} , B_{22} , B_{33} , B_{12} , B_{13} , B_{23} , and the form factor expression becomes: $f = f'exp(-\frac{1}{4}h^2B_{11}(a^*)^2 + k^2B_{22}(b^*)^2 + l^2B_{32}(c^*)^2$

+ 2hkB₁₂a*b* + 2hlB₁₃a*c* + 2klB₂₃b*c*)

This is allowed for in the final stages of the refinement procedure.

The agreement between the calculated and observed structure factors is given in terms of a residual index R, where:

$R = \underbrace{\left| \left| F_{o} \right| - \left| F_{c} \right| \right|}_{\left| \sum_{i=1}^{n} \right|}$

The final R value should be less than 0.10 for any reliance to be placed on bond distances and angles.

The calculated physes and observed F amplitudes are used to generate another fourier map which should ressemble the true molecule more closely. Further atomic parameters are assigned and the process is repeated until a satisfactory result is obtained.

In the final stages of refinement ΔF syntheses have proved valuable. As these are based on coefficients of $|F_0| - |F_c|$ they give information on the differences between the model and the true structure. Thus unlocated atoms will appear as peaks and incorrectly placed atoms as holes, or on a gradient between a peak and a hole. Hydrogen atoms may be found in this way, although these are easily obscured and the nonhydrogen atoms should be fairly well refined before this is

and the second mathematical and the second strength and th

weight the state

attempted. In some cases, such as methyl groups, rotation causes the hydrogens to appear as a smear of low electron density and they cannot be located.

A difference synthesis also shows anisotropically vibrating atoms. At the atomic position the electron density shrinks in some directions and stretches along others in the true ellipsoidal distribution.

The interatomic bond distances and angles are calculated together with their standard deviations (σ). Throughout the text all structural values are followed with the standard deviation on the last significant figure in parentheses. Theoretically, differences of greater than 2σ should be considered significant, but in practice it is found that the standard deviations tend to be underestimated, and consequently differences of less than 3σ are considered insignificant.

A STATE AND A STATE OF A STATE OF

and the

CHAPTER 4

Crystallographic Studies of the Cyclic Amines (Cl₂TiNSiMe₃)₂ and (Me₂SiNMe)₃. In this chapter the X-ray diffraction study of the cyclic amine <u>catena-di-µ-chloro-bis-µ-(trimethylsilylamino)-di-</u> (chlorotitanium(IV)), $(Cl_2TiNSiMe_3)_2$, is described and discussed; the preliminary results of the X-may analysis of nonamethylcyclotrisilazane, $(Me_2SiNMe)_3$, are also presented.

4.1.1. Data Collection

Crystals of the compound were prepared as described in Chapter 2. Recrystallisation was attempted from dichloromethane but the resultant crystals were too small for use. and so the sample used in this analysis was taken directly from the reaction mixture.

The cyclotitanazane is extremely sensitive to traces of moisture, and so handling and mounting of the sample was accomplished using a modified nitrogen 'dry box' (described in appendix A), fitted with a microscope and a heating wire. The crystals are formed as yellow-orange needles and a single crystal, approximately 0.1mm in diameter, was selected and mounted in a 0.5mm Lindemann glass capillary. The crystal was oriented with the needle axis approximately parallel to the axis of the capillary. It was then affixed with a dab of silicon grease and the capillary was sealed with the aid of the hot wire. To ensure a perfect seal a drop of 'dental' sticky wax was applied.

and a second second

Oscillation, zero and first layer equiinclination Weissenberg photographs, obtained about the needle axis, indicated a monoclinic system. Systematic extinctions were observed for h,0,1 : 1=2n+1 (glide plane) and 0,k,0 : k=2n+1 (screw axis), which are consistent with the choice of P2₁/c as space group.

Data were collected on a Stoe 2-Circle Equinclination Weissenberg Diffractometer, equipped with a graphite monochromator. The approximate unit cell dimensions, obtained from the preliminary photographs, were used to generate a set of diffractometer settings for several of the high intensity reflections, using the programme STOE. These were accurately located by manually operating the diffractometer, and then used to generate more accurate cell constant data. The unit cell dimensions are recorded in Table 4.1. The programme STOE was again used to produce a paper tape to control the diffractometer during data collection.

Data were collected using MoK_{ex} radiation(λ =0.71069Å) on layers h,k,O to h,k,8, to a maximum 20 value of 60°. The total number of independent reflections was 4,955, of which 1,298 were considered observed, having I/ $\sigma \ge 3.5$.

The crystal density was measured by flotation in a benzene/diiodomethane mixture. Mixtures were made up in a dry box using dried solvents; small crystals were dropped into the various solutions until one was found in which the crystal floated. The refractive index of this mixture was measured, and the density was found

TABLE 4.1

Data For $(Cl_2TiNSiMe_3)_2$ <u>Cell Constants</u> a 17.74Å b 18.52Å c 11.46Å \sim 90.00° β 102.71° χ 90.00° Vol = 3671.3 Å³ <u>Experimental Details</u> Dediction MoK = 0.710

Radiation MoK_{oc} = 0.71069Å Maximum (Sin θ)/ λ = 0.587Total reflections = 4955 Observed reflections (I/ σ (I) \geq 3.5) = 1298 Z=4 F(000) = 832 Calc = 1.504 Cobs = 1.505

and the state of the second state of the secon

using a calibrated graph of refractive index versus density. It was found to be 1.50^{4} . The number of (Cl₂TiNSiMe₃) monomer units per unit cell is therefore sixteen.

The structure was assumed to be tetrameric, as this would give one molecule in each asymmetric unit. This assumption was supported by apparent pseudosymmetry. In addition to the absences for the screw axis (0,k,0; k=2n+1) and the glide place (h,0,1; l=2n+1) there were further conditions for reflection nearly obeyed in the h,k,0 and h,0,1 planes, namely k=2n (h,k,0) and h=2n (h,0,1). Thus h+k=2n, which is the condition required for a centred sub-cell. Only one strong reflection, (h,k,1 =-5,0,4) contradicts this.

The dimeric model was at this stage discarded as being unlikely on steric grounds because of angle strain in the ring.

4.1.2. Solution of the structure.

The first attempt at solving the structure used direct methods. The data was transferred to a binary data file and normalised by DATRON and DATFIX. The direct methods programs NORMSF, SINGEN, and PHASE (X-RAY 70) were then used to generate a starting set of phases. No acceptable starting point was found from this, and the results showed clearly that the parity groups required normalisation. The average intensities of the various parity groups differed considerably, such that the hundred strongest normalised structure factors (E) only included three reflections from parity groups eoo and cool. Unfortunately the facility for normalisation is

The second se

not available within the program, and so this approach had to be abandoned.

A three dimensional Patterson map was obtained from the 1,289 observed reflections. There were a large number of intense peaks which could not be resolved. The problem here is that the structure contains too many relatively heavy atoms, namely four titaniums (Z=22), eight chlorines (Z=17) and four silicons (Z=14) in each Asymmetric unit. Each atom gives rise to vectors by interaction with itself and with every other atom, and so in this situation the Patterson map is very confused. Attempts were made to solve it using the two dimensional h,k,O vector map, but to no avail.

The next approach to the problem again involved the use of direct methods, hand applied to the h,k,O, projection of the centred pseudosubcell. From this a set of atomic coordinates (x,y,O) were located and subjected to least squares refinement using the program SFLSR. This two dimensional refinement gave an R value of .128 (101 reflections). However, the molecule could not be recognised from the electron density distribution. The packing diagram (figure 4.1), illustrating the h,k,O projection of the final structure shows the substantial overlap of atoms that in fact occurs in this projection. A similar approach was applied to the h,O,1 projection, and another set of atomic coordinates was found (x,O,z). The common coordinates (x) matched fairly well with those previously obtained.

There now appeared to be two groups of atoms, one

centred around (0,0,0) and one around (1/2,1/4,0). On inspection this proved to be inconsistent with a tetrameric model if the spacegroup is P2₁/c. The tetramer at (0,0,0) would be catisfactory, containing a centre relating the two halves, but at (1/2,1/4,0) the two halves of the molecule would have to be related by the C-glide, i.e. a Z-shift of 5.73° between them.

The two dimensional symmetry of the h,k,O projection is pgm, consistent with $P2_1/c$ or $P2_1/m$. It can be rearranged to pmm which agrees with P2/m and P2/c. With extra pseudosymmetry the subgroups P2, P2, Pc and Pm are also possible spacegroups. These eight spacegroups were examined for consistency with the assumption of tetrameric rings. P2 was the only one not to solit the two halves of one of the molecules by a half unit cell translation. The data was transformed to P2 (SORTM) and a least squares refinement was attempted u ing the atomic parameters from the h,k,O and h,O,1 projection maps. Unfortunately the atoms formed pairs with very similar x coordinates. Several permutations were therefore possible, and all those giving coherent ring structures were fed into the SFLSR program for least squares refinement. The R factors were all unsatisfactory, indicating incorrect choice of spacegroup.

At this point another attempt at three dimensional direct methods was begun. For this the program MULTAN was used, which has the has the facility for normalising the parity groups which had been required previously. The

normalisation run showed the ratio for the eee:ooo groups to be 2.65:1. The final statistics pointed strongly to a centrosymmetric spacegroup, and so the data was resorted into $P2_1/c$. Encouragingly of the seven possible electron density distributions the one with the best MULTAN figure of merit agreed closely with the previously obtained h,k,O projection map. The three dimensional map showed clearly that a tetrameric structure could not be fitted to the located atom positions. However the fourier map could now be almost fully explained in terms of dimeric $(Ti-T)_2$ units stacked around (0,0,0). Based on this an R value of .240 was reached. 54

The final solution came with the discovery of disorder in the molecule centred around (1/2,1/4.0), involving the titanium atoms and half the chlorine atoms. When allowance had been made for this, and the temperature factors of the titanium and chlorine atoms, and the silicon atoms from the disordered molecule had been allowed to refine anisotropically, the R factor improved to a final value of .090.

Tables of observed and calculated structure factors are given in appendix B, as are the final atomic positions and lists of bond distances.

4.1.3. Discussion.

The molecule is shown in figure 4.2. The titanium atom adopts the unusual coordination number of five, by

こことで、山、山市であたまで、東京をあるというなどのないという。 「日本のない」で、「日本のない」

polymerising via inter molecular chlorine bridges, parallel to the caxis. Such ring is inclined by about 45° from the chain axis, alternately up and down so that titanium atoms on adjacent rings approach close enough for double chlorine bridges to be formed between each pair of them. The stacking of the rings is such as to align the trimethylsilyl and terminal chlorine groups at a distance of 5.73%.

Figure 4.3 shows one unit of the disordered chain. One form is shown by the molecule with black bonds, and superimposed on this is another molecule linked with white bonds. The population of each is 0.5. The nitrogen atoms, trimethylsilyl groups and terminal chlorines remain fixed, but the titanium atoms and bridging chlorines move to mive rings with the ring planes approximately normal to each other, with each inclined at about 45° to the class. Externally these two chains are not altered by the disorder, and so no interchain forces prevent it.

The spacegroup symmetry $(P2_1/c)$ is only satisfied by a disordered structure, as the disordered atoms of one unit are related by the rlide plane, to the disordered atoms of the other, superimposed unit of the adjacent ring.

The position of the atoms in the ordered chain were refined more easily than those of the disordered chain. The bond distances and angles to be discussed will therfore be taken from the ordered molecule. A complete list of bond distances and angles is included in appendix B.

A single unit from the ordered chain is shown in figure 4.4. The most notable features of the structure are the fourmembered rings which are planar, rigorously so for two of the four independent examples. The geometry about the titanium is best described as trigonal bipyramidal (axial angles are $159^{\circ}(1)$ and $164^{\circ}(1)$). The axis is described by one of the nitrogen atoms and one of the bridging chlorines. The remaining nitrogen, bridging chlorine and terminal chlorine all lie in the equatorial plane; the largest equatorial angle is $137.3^{\circ}(4)$ and lies between the two chlorines.

Authenticated five coordinate structures are rare for titanium(IV), apparently because it can normally achieve octahedral geometry via bridging atoms. An example of this is shown by the chlorine bridges in diethylaminotitaniumIVtrichloride¹²⁵, and di-µ-chloro-bis(dichloroacetonylacetone)titanium(IV)¹²⁶. Five-coordination does occur in $(\text{TiCl}_2(OX)_2)_2$ (X = Et or Ph) with oxygen bridges. The geometry of this species may also be described as trigonal bipyramidal with an axial distortion very similar to that of the cyclotitanazane, with axial angles averaging to 159.5° (X = Et) and 167° (X = Ph).

Titanium-nitrogen bond distances differ markedly between the axial and equatorial positions, as the axial Ti-N bond averages to 1.96\AA (4) whereas the equatorial Ti-N distance averages to 1.76\AA (3). Some difference is to be expected due to the non-equivalence of the trigonal bipyramidal hybrid orbitals. A difference of 0.15\AA is

found in a four-membered phosphorus nitrogen ring (Cl_PNCH_3)2 in which the phosphorus atom adopts an approximately trigonal bipyramidal geometry with one axial and one equatorial nitrogen. The difference in axial and equatorial bond lengths in trigonal bipyramidal structures has been suggested to account for this 129; 130 least partially. The fivecoordinate alkoxy titanium(IV) species mentioned above shows a similar discrepancy in titenium-oxygen distances, with bond lengths of 1.96Å (axial) and 1.77Å (equatorial). The Ti-N bond length in diethylaminotitanium(IV) trichloride is reported to be 1.852%, and some degree of multiple bonding is suggested as this is considerably shorter than the hypothetical value of 1.96% for a pure Ti-N single bond. The extremely short alternate Ti-N bonds of 1.76% found in the cyclotitanazane, together with the planarity of the ring, indicate considerable interaction between the p_{π} -orbitals on nitrogen and the d_-orbitals on titanium.

The internal ring angles average to 86° (2) at titanium and 94° (2) at nitrogen. The deviation from the 90° that is predicted on the Dewar, Lucken and Whitehead model (see Conclusion) may be to allow the larger titanium atoms greater separation. Across the ring the Ti..Ti distance is 2.72Å (2) and the distance between the nitrogens is 2.5Å (1).

The terminal chlorine-titanium bonds are 2.217% (10) and 2.209% (10), which are slightly longer than the value of 2.185% reported for titanium tetrachloride^{1,31} This may be rationalised by assuming decreased acidity of the titanium

due to the attachments to nitrogen. Some effect may be due to the rehybridisation required to accomodate pentacoordination. These bond lengths are comparable to those of2.219Å and 2.209Å found in the five-coordinate species $(Cl_2Ti(OPh)_2)_2$.

The bridging chlorine-titanium distance varies between 2.427Å (10) and 2.501Å (10). This may be compared to the values for bridging chlorine distances of 2.419Å and 2.509Å found in $(Cl_3Ti(C_5H_7O_2))_{2_1}$ and 2.456Å and 2.496Å found in Cl_3TiNEt_2 .

The nitrogen atom is planar despite the strain caused by the small internal ring angle, thus indicating at least some multiple bonding in the silicon-nitrogen bond. The extent of W-orbital interaction is however in doubt as the Si-T bond lengths vary considerably. In the ordered molecule the lengths are 1.728% (34) and 1.862% (38), and in the disordered molecule they are 1.712% and 1.809% (35). None of these bond lengths differ by greater than 3σ from the mean value of 1.791%, but because of the individual variations this distance does not give information about the extent of multiple bonding.

The trimethylsilyl group appears to be essentially normal, with a Si-C bond lengths averaging to 1.89Å (5), ' which is comparable with the standard distance of 1.275Å¹³⁰.

Figure 4.1 shows the molecular packing within the unit cell, projected along c. The ordered molecule is positioned about a symmetry centre which leads to the strict planarity of this ring. The two conformations of the disordered molecule are shown around $(\frac{1}{2}, \frac{1}{4}, 0)$ and are differentiated

STATES OF A STATES AND A STAT

by the use of solid and dotted lines. The chains form columns parallel to the c axis, with molecules inclined by about 45° , alternately up and down, to allow for the formation of chlorine bridges. The bulky trimethylsilyl groups and the terminal chlorines occupy the space between the rings, and are stacked almost vertically above one another. The distance between them of 5.73 Å (i.e. c/2) is too great for significant interaction, and packing effects must be the major reason for this.

4.1.4. Conclusion

Pentacoordination in Titanium(IV)

This novel titanium-nitrogen ring compound (A), (Cl₂TiNSiNe₃)₂, provides an example of pentacoordinate titanium(IV), a coordination which has proved elusive with few of the proposed examples authenticated. In the vast majority of titanium(I7) compounds the metal atoms adopt tetrahedral or octahedral geometry, the latter being predominant. The occurrence of a few five-coordinate species suggests that it is not necessarily energetically unfavourable, but that an octahedral environment is normally preferred.

In A possible reasons for the pentacoordination can be deduced. The structure indicates substantial π -bonding between the nitrogen and the titanium, which is probably the cause of the planarity of the ring. The internal ring angles of about 90° which follow from this would give severely distorted

tetrahedral geometry about the titanium. Octahedral geometry with <u>cis</u> nitrogens would be a better arrangement, but for this both chlorine atoms would be required to form intermolecular bridges (implying a three-dimensional polymeric structure) and this would clearly be sterically very crowded. The five-coordinate trigonal bipyramidal structure would also allow approximately 90° ring angles, with one exial and one equatorial nitrogen atom; the steric crowding is relieved and so this structure is preferred.

A puckered trimeric structure would more easily accomodate tetrahedral geometry of the titanium, but the dimeric (planar) structure favours substantial \mathbf{W} -bonding. As mentioned in Chapter 1 four-membered heterocycles frequently occur despite the small ring angles required, because of the increased importance of σ -delocalisation. The presence of \mathbf{W} -bonding vill enhance the stability of such a system.

The bridging link is easily broken to allow two pyridine molecules to attach to each titanium, which thus achieves the normal coordination number of six, when there is less overcrowding.

W-Bonding in Cyclic Titanium Amines

The planarity of the solid state structure implies considerable T-orbital interaction and this is confirmed by the shortened bond lengths. The stucture may be compared to that of the dimeric cyclosilazane $(Me_2SiNSiNe_3)_2^{137}$, which is also strictly planar. In this molecule the bond lengths indicate substantial d_{T} -p_T bonding both internally, around

Samples of an international state of a state of the state of the

the ring, and externally with the N-silyl group.

Multiple bonding of the nitrogen with silicon is found to be much greater than with the heavier GroupIV(b) elements. This is attributable to the relative compactness of the 3d orbitals over the 4d and 5d ones, which thus allow more effective overlap with a T-donor orbital. Titanium(IV) is similar to silicon in the availability of vacant 3d orbitals which can act as W-acceptors. In titanium the 3d orbitals may be slightly lower in energy than in silicon because of the increase in atomic number; d-orbitals are known to be more sensitive to changes in effective nuclear charge than the s or p orbitals^{5,14,159,150}. The presence of electronegative substituents such as chlorine, will increase the effective nuclear charge, and this will cause some contraction of the 3d orbitals. The energy match with the nitrogen lone pair orbitals should be improved by this contraction. The cyclotitanazane should therefore exhibit considerable π delocalisation, and the structure confirms this.

61

The best description of the π -bonding around the ring skeleton is probably given in terms of the three-centre 'island'delocalisation, as described by Dewar et al³⁰. Two of the d orbitals normally considered available to triponal bipyramidal structures, d_{χ_Z} and d_{χ_Z} , may combine to give:

 $d_{\pi}^{a} = 2^{-\frac{1}{2}}(d_{xz} - d_{yz}) \qquad (antibonding)$ $d_{\pi}^{b} = 2^{-\frac{1}{2}}(-d_{xz} - d_{yz}) \qquad (bonding)$

The bonding scheme is pictorially represented in Figure 4.5.

Sampered - Stream, with a stream of Arth Name at the stream of the

Optimum conditions require internal ring angles of 90° and d_{xz} and d_{yz} orbitals of equal energies. If the energies of these orbitals differ (as expected for trigonal bipyramidal hybridisation) the T-system is expected to be progressively concentrated in alternate bonds, which is the situation found experimentally. Unfortunately, orbital energies for trigonal bipyramidal titanium(IV) have not been calculated, but nonetheless this model is consistent with the observed results.

It would be interesting and informative to determine the structures of analagous titanium(IV) and silicon systems in order to compare the relative 3d orbital energies. The silicon analogue of the cyclotitanazane, $(Cl_2SinCime_3)_2$ has not yet been reported although other cyclic chlorosilazanes are known.

Recently, the titanium(IV) diisocyanate $(\pi - (C_5H_5)_2 \text{TiNCO})_2$ has been reported together with its X-ray structure¹⁶¹. This is a monomeric, four-coordinate species, and the nitrogen atoms are very nearly linear with angles of $171.8^{\circ}(3)$ and $175.7^{\circ}(3)$. Similar silicon isocyanates, e.g. trimethylsilylisocyanate, Me₃SiNCO⁴⁴, and tetrakis(isocyanato)silane, Si(NCO)₄¹⁵¹, have angles at nitrogen of 154° and 146.4° respectively, implying rather less π -orbital interaction than in the titanium case. Of course, the presence of π -cyclopentadienyl groups attached to the titanium atom can enhance the π -bonding by their electron acceptor ability and so no conclusive comparison can be made.

HJH A YTHAR MAGON

Further synthetic work needs to be done on cyclotitanazane systems. Varying the substituents on both the titanium and the nitrogen should have an effect on the extent of W-interaction in the titanium-nitrogen bond, and this will then influence the chemical behaviour as well as the structural properties.

4.2. Nonamethylcyclotrisilazane - Preliminary Results

Multiple bonding $(d_{\pi}-p_{\pi})$, as found in the cyclotitanazane is also known to occur in the cyclic silazanes. Attempts to determine the extent of delocalisation around the ring, and the effect of the ring geometry, have led to conflicting results. Vibrational analyses on trimeric rings suggest planar (D_{3h}) molecular symmetry^{132,133}, whereas ¹H n.m.r. spectral data support a non-planar conformation¹³⁴⁻¹³⁶. An X-ray structural analysis on the dimeric ring (Me₂SiNSiMe₃)¹³⁷ shows the ring skeleton to be planar. Electron diffraction studies of hexamethylcyclotrisilazane, (Me₂SiNH)₃, show the ring to be puckered³⁸. Non-planar rings are also found for octamethylcyclotetrasilazane, (Me₂SiNH)₄, by X-ray studies. This structure has the unique feature of both 'chair' and 'boat' conformations occurring together¹³⁸.

It would be informative to determine the structure of the N-methyl derivative of the trimeric or tetrameric ring in order to investigate the inductive effect of the alkyl

group on the ring skeleton. To this end a crystal structure analysis of nonamethylcyclotrisilazane, (Me₂SiNMe)₃, was initiated.

The sample was prepared by the method of Lienhard and Rochow¹³⁹ and purified by sublimation under reduced pressure. The melting point of the compound is quoted as $36^{\circ}C$ ($309^{\circ}K$). Because of the low melting point handling the crystals at ambient temperatures proved difficult. The dry box was cooled by passing the inlet nitrogen through a coil dipped in liquid nitrogen. The crystals were then mounted in the usual way (but without the use of the hot wire to seal the capillary) and stored in a refrigerator prior to use.

4.2.1. Data Collection

Initial oscillation and zero level Weissenberg photographs showed hexagonal symmetry and approximate unit cell dimensions were measured. Data were collected by diffractometer (4-circle Syntex P2₁). The accurate cell constants (see Table 4.2) and the orientation matrix were determined as described in Chapter 3. Because of the tendency of the sample to melt a large crystal was chosen for the data collection. CuK_ radiation ($\lambda = 1.5418$) was used via the 20 scan mode. The maximum 20 value was limited to 115° in order to reduce the total number of reflections. A variable scan speed was employed with a minimum rate of 5° in 20 per minute.

The crystal needed recentring twice during the first 336 reflections as melting caused it to slip in the tube.

TABLE 4.2

Cell	constants	
		σ
a	15.655Å	.005
ъ	15.64 5 Å	.003
с	11.530Å	.002
শ	89.99°	•01
ß	90.01 ⁰	•02
x	120.00°	•02
Vol	2445.68 ³	•97

Experimental details

Radiation CuK_{et} = 1.5418^A Maximum (Sin0)/ λ = 0.5460Total reflections = 1105Observed reflections ($I/\sigma(I) \ge 3.0$) = 882

After this the tube was opened and more silicone grease is applied to hold the crystal in position. The intensity mop of the tores standards increased from this point, but the orientation of the crystal remained unchanged. A further 759 were collected over 1° hours, by which time the intensities of the standards had dropped to 50% of their initial values. The overall date quality was clearly low.

The last 769 reflections were rescaled on the balls of the intensity drop of the standards. The coefficients of the scaling equation;

 $F = F_{cos}(1.0 + \alpha T)(1.0 + \beta T_{sine})$

ere thus determined as $\alpha = .029$ and $\beta = .058$. The maximum modeling factor (calculated on F) is 1.79. The total number of reflections collected was 1105.

A space group could not yet be selected. The data clearly note h,k.l \neq k,h,l. indicating have group 6/m. The reflection 0.0.5 is the only one to violate the condition 0.0.1 : left 1+ has $1/\sigma(1)$ of 13.5. If this reflection truly exists that the space group is one of T., P5, or P5/m. However, it was contineed more likely to be spurious, implying the possible space groups P6₃ or P5₂/m.

A Patterson synthesis was calculated and examined for possible Harker lines and sections. Possible Harker planes were found at x,y,0 and x,y, $\frac{1}{2}$, with a Harker line at 0,0,z. This is consistent with space group P6₃/m. Attempts to solve the Patterson were unsuccessful; the interatomic vectors point to the presence of only two molecules in each unit cell.

-63

After this the tube was opened and more silicone grease is applied to hold the crystal in position. The intensity rop of the three standards increased from this point, but the orientation of the crystal remained unchanged. A further 759 were collected over 14 hours, by which time the intensities of the standards had dropped to 50% of their initial values. The overall date quality was clearly low.

The last 769 reflections were rescaled on the balls of the intensity drop of the standards. The coefficients of the scaling equation;

 $F = F_{cos}(1.0 + \alpha T)(1.0 + \beta T_{sine})$

A Patterson synthesis was calculated and examined for possible Harker lines and sections. Possible Harker planes were found at x,y,0 and x,y, $\frac{1}{2}$, with a Harker line at 0,0,z. This is consistent with space group P6₃/m. Attempts to solve the Patterson were unsuccessful; the interatomic vectors point to the presence of only two molecules in each unit cell.

Selection of the select

The crystal density calculated on this assumption is only 0.36, which is extremely low, and the R factor calculated on a possible silicon position was .75.

66

Direct methods was then applied to the problem via MULTAN in both P6/m and P6₃/m. The normalisation run supported the centric nature of the space group. Two of the last eliminated reflections were chosen for the starting set together with the origin determining reflections and the sigma-1 signed reflections, for each space group. Four possible phase sets were produced in each case and all were examined. Atomic positions from the two best solutions from each run (P6/m and P6₃/m) were fed into the least squares refinement programme CRYLSO, however, the high R values (R>.65) indicated that they were all incorrect.

The failure to solve this structure is almost certainly due to the inferior quality of the data collected and the limited number of acceptable reflections. Cryogenic apparatus is obviously needed for a data collection of this sort, but unfortunately such apparatus was not available.

CHAPTER 5

Crystallographic Studies of the Group IV(b) Diphenylketimines $M(NC(C_6H_5)_2)_4$ (M = Si, Ge and Sn).

The crystal and molecular structures of the series of tetrakis(diphenylketimines) $M(NC(C_6H_5)_2)_4$ (M = Si, Ge and Sn) have been studied and the results are discussed in this chapter.

67

All three samples were supplied by K. Wade¹⁴⁰, and were prepared by the method of Chan and Rochow⁴² from the lithium salt of diphenylketimine and the appropriate Group IV(b)halide:

 $4Ph_2C=NLi + MX_4 \longrightarrow 4LiX + (Ph_2CN)_4M$ M = Si, Ge or Sn.

The products were obtained as yellow crystals which are moisture sensitive, especially for M = Sn. The samples were recrystallised from n-hexane. The silicon and germanium compounds formed ill-defined, chunky crystals, whereas the tin compound took on a bipyramidal shape.

The samples were mounted in Lindemann glass capillaries in a dry box, as described in Chapter 4.1. Particular precautions against traces of moisture were required when handling the tin isocyanide, and the capillaries were baked at 350°K for several hours under vacuum prior to use.

Tables of atomic coordinates, temperature factors, bond lengths and angles, and observed and calculated structure factors are included in Appendix B.

5.1. Data Collection

5.1.1. Tetrakis(diphenylketimino)silane Si(NC(C6H5)2)4

Preliminary precession photographs showed no symmetry

elements, indicating a triclinic system.

Data were collected using the Syntex P2₁ 4-Circle Diffractometer. Accurate cell constants and the crystal orientation matrix were determined by use of the automatic centring procedure detoribed in Chapter 3. The unit cell dimensions are given in Table 5.1. The 24 scan mode was employed for the observations using MoK, radiation ($\lambda = 0.71069$ Å). Because of the size of the unit cell, and Tence the large number of reflections to be collected, the maximum 29 value was limited to 40° for the first 500 reflections, and then reduced to 35°. A total of 5203 reflections (a complete hemisphere of the reciprocal lattice) were measured. 2327 of these were considered observed, with $I/\sigma(I) \ge 3.5$.

60

Solution of the Structure

An accurate density determination was not performed because of the experimental difficulty. The assumption of four molecules in each unit cell would give a crystal density of 1.16gcm⁻⁵, and this who thought to be the only plausible value. Of the two possible triclinic space groups the centrosymmetric PT was chosen.

In the absence of any atoms heavier than silicon the direct methods approach was adopted using MULTAN. The initial normalisation used group scattering factors based on rigid phenyl rings. The final statistics agreed with the choice of a centrosymmetric space group. MULTAN produced seven sets of phases other than the all plus solution, and

		TABLE 5.1	
Data	For Si(NC(C6H5)2) ₄	
CELL	CONSTANTS	STANDARD	DEVIATIONS
a	12 .3428	•006	
ъ	18 .100Å	•008	
c	19 .586 8	.015	
~	36 .89 ⁰	•05	
β	32 .72°	•05	
४	84.06°	•04	
Vol	4312.828 ³	4.51	

Experimental Details.

Radiation MoK _{ee} 💦	= .71069 Å
Maximum (Sin) X	=.4303
Total Reflections	= 5205
Observed Reflections	() 3.50) = 23 27
<i>7</i> ∙ = 4	
F(000)	= 1632.0
Ccalc	= 1.16gcm ⁻³

Metalakera altra terreta altra de la construcción de la construcción de la construcción de la construcción de la
each of these were used as a basis for the calculation of E maps. However in all these maps only one 'heavy' atom, attributable to silicon, could be found instead of the two expected for the asymmetric unit.

The X-RAY SYSTEM programmes of Phaser were then applied to the problem, and this is discussed in Chapter 3. The second attempt at division into subsets provided a workable starting point, and the E map based on these phases showed the 'heavy' atoms and several possible rings.

The first stages of least squares refinement proved to be difficult. Inaccuracies in the phasing resulted in slight errors in atomic positions. The problem was augmented by the large number of atoms in the structure; each asymmetric unit contains two silicons, eight nitrogens, one hundred and four carbons and eighty hydrogens.

Initially the positions of the silicons, nitrogens and the carbons of ten of the sixteen phenyl rings were taken from the E map and fed into the programme CRYLSQ. The inevitable errors in the atomic parameters caused a large overall error, reflected in the R value of .563, which prevented effective refinement.

Idealised phenyl ring positions were calculated (EIGBOD) from the carbon atoms and using these the R factor improved to .500. However this still proved too inaccurate to serve as a basis to improve the phasing. Most of the carbons were therefore discarded and only those atoms which were welldefined in the E map were used. These included the silicons, nitrogens and twenty of the carbon atoms. On the basis of

these atom positions CRYLSQ gave an R value of .430. A fourier map calculated from the refined phases showed all these atoms as well as defining more clearly the positions of fifteen more carbons. With these included the R factor improved to .408. The process was repeated until all the remaining carbon atoms had been located. The R value was .0°2 at this stage. The positions of the phenyl hydrogens were then calculated (using the programme BONDAT) and these were allowed to refine. For the final stages the core atoms, silicon, mitrogen and non-phenyl carbon, were allowed to refine anisotropically, and the phenyl rings were refined as rigid bodies, with interatomic distances of 1.395^o (C-C) and 2.95° (C-H). The final R value obtained was .067 (2327 reflections).

5.1.2. Tetrakis(diphenylketimino)germane Ge(NC(C₆H₅)₂)₄

Oscillation, zero and first layer Weissenberg photographs show the crystal to be monoclinic, and therefore not isostructural with the silicon analogue.

Data were collected using the Syntex P2₁ Diffractometer. The orientation matrix was established by the procedure outlined in Chapter 3, with the vectors chosen to fit a monoclinic system, (see Table 5.2.). MoK_∞ radiation was used ($\lambda = 0.71069$) via the 20 scan mode to a maximum 20 value of 50°. 4260 reflections were collected, up to reflection 8,10,2, but a malfunction of the Syntex computer prevented completion of the collection. The molybdenum tube was replaced by a

TABLE 5.2 Data For Ge(NC(C6H5)2)4 CILL CONSTANTS STANDARD DEVIATIONS (1) Before transformation - body centred. a 18.839Å .003 ъ 11.9718 .001 c 13.587Å .002 × +90.01° .009 B 100.03° .01 8 *90.00° .01 Vol 4127.7583 .86 (2) After transformation (C_{p}/C) . a' 24.050Å .002 .001 ъ 11.9718 .003 c' 13.839Å ~ *90.00° .01 β' 130.44° .003 8' *90.01° .008 .86 Vol 4127.7543 "Required to be 90° but not constrained with least sources refinement of cell constants. Transformation Matrix 1.00 0.00 1.00 0.00 1.00 0.00 -1.00 0.00 0.00 Experimental Details. Radiation MoK : .71059A(4260 reflections) $CuK_{\alpha}: \lambda = 1.5418Å(3697 reflections)$ Total reflections collected = 7867 Maximum (Sin) x =.5955 Observed reflections (I>30(I)) =2189 Z = 4F(000) = 1648.0Calc = 1.28gcm⁻³

copper one, and the second half of the data was collected using CuK_{ex} radiation ($\lambda = 1.5418$ Å) to a maximum 29 value of 120°. 3607 reflections were collected in this way to make the total number of measurements 7867. However. inspection of the data revealed that a condition for reflection of h,k,l : h+k+l = 2n (implying I-centring) was obeyed by all but 5 weak reflections. The monoclinic system contains no 'standard' body-centred cells, and so the data required transformation to a 'standard', face-centred form. The new vectors were chosen such that a' = a + c; b' = b; and c' = a. The lattice condition was therefore transformed to h',k',l': h'+k' = 2n. An additional absence was now obvious, namely h'Ol' : l' 2n. These absences are consistent with choice of space group C2/c or Cc. Since these are indistinguishable at this stage the unit cell and the data were transformed (SYNDAT) into the higher symmetry group of C2/c. Excluding the lattice absences 3933 reflections were examined, of which 2189 were considered observed, having $I/\sigma(I) > 3.0.$ Table 5.2 gives the unit cell dimensions before and after transformation, and the transformation matrix used.

Solution of the Structure

The number of molecules in the unit cell was deduced to be four from consideration of the unit cell volume $(4126\lambda^3)$ and comparison with the silicon analogue. On this assumption the crystal density was calculated to be 1.28 gcm⁻³. The space group C2/c contains eight general equivalent positions, and so the value(Z = 4) implies that the molecules

Martin and a state of the state

are centred about a special position.

A three-dimensional Patterson synthesis, calculated on the observed data, located the germanium atoms on the special positions (4e) $0, y, \frac{1}{4}; 0, y, \frac{3}{2}; \frac{1}{2}, \frac{1}{2}+y, \frac{1}{4};$ and $\frac{1}{2}, \frac{1}{2}+y, \frac{3}{4}$. Initial phasing was accomplished on the basis of the heavy atom alone, for which the least squares programme [SPLTR gave an R value of .542. Despite this high value the phases were defined well enough to locate all the remaining atoms, other than hydrogen, by a fourier synthesis. Positional and temperature factors (isotropic) were allowed to refine together with the scale factors for the two sections of data. The intensity difference was such that the scale factors refined to final values of .96092 (molybdenum radiation) and .34235 (copper radiation).

At this stage the R value was .221. The programme RIGBOD was used to determine the positions of the phenyl hydrogen atoms. These were allowed to refine and the temperature factors of all other atoms (germanium, nitrogen and carbon) were allowed to become anisotropic. As the germanium lies on a special position not all coefficients are unconstrained. In this case two of the cross terms, B12 and B23, reduce to zero¹⁴².

Up to this point unit weights were applied to all observations and an R value of .064 (2189 reflections) was reached. The use of a weighting scheme, in which the weight given to each observation is inversely proportional to the square of its standard deviation, marginally improved the R value to .058.

5.1.3. Tetrakis(diphenylketimino)stannane $Sn(NC(C_{6H_5})_2)_4$

This compound is extremely moisture sensitive, so much so that despite all preclutions the mounted crystals had very limited lifetime. For this reason it was decided to use the diffractometer (Syntex P2₁) for preliminary investigations rather than standard photographic procedures.

The initial results from the centring procedure pointed to a tetragonal space group, thus eliminating any possibility of the compound being isomorphous with the silicon or germanium analogues. The Laue group was chosen to be 4/m because of the difference in intensities of equivalent reflections $(|F(hkl)| \neq |F(hkl)|)$. The variation in intensities was considered too great to be caused entirely by absorption of radiation by the crystal. Random sampling of the data indicated that the system is body-centred as no reflections satisfying the condition h,k,l : h+k+l = 2n+1 were observed.

Because of the rapid decomposition of the sample data were collected as quickly as possible. Thus a variable scan rate was employed with a minimum speed of 5° in 29 per minute. Copper radiation ($\lambda = 1.5418^{\circ}$) was used to a maximum 29 value of 120°. A total of 1994 unique reflections were measured in a total time of 23 hours, of which 1329 were considered observed ($I/\sigma(I) \ge 3.0$). Three standards were used and these were remeasured after every hundred reflections; the intensity drop was used to rescale the data for decomposition. It was found that for the three standards the fall off in intensity with time showed a slight break after 7 hours, and was fitted to two straight lines.

SA-S MARCHA RUBIANCE

		TABLE 5.3		
Dat	a For Sn(NC(C6	^{II} 5 ⁾ 2 ⁾ 4		
CEL	L CONSTANTS		STANDARD	DEVIATIONS
a	18.137 R		.008	
ъ	18.146 2		.007	,
c	14.4618		.002	5
~	90.00°		.023	5
β	90.00°		.026	5
8	90 .00°		•033	5
Bes	t value <u>a</u> = 18	.141	.007	
Vol	4759.283		1.02	2
Exp	erimental Deta	ils		
Pad	iation $CuK_{a}:\lambda$	= 1.5418Å		
Max	imum(Sin0)/2 =	.5622		
Tot	al reflections	= 1 99 ¹		
Obs	erved reflecti	ons $(>3\sigma) = 13$	329	
Z =	: 4			
F(o	000) = 1720.0			
Cca	$1c = 1.17 gcm^{-3}$			
Lin	lear absorption	coefficient	= 53.6	
Sca	ling Coefficie	nts		
∝1	. 0233			
P1	= .0103			
∝2	. 0135			
P2	= .0309			

.

A REAL PROPERTY AND A REAL

1 A

The scaling expression is:

 $F = F_{obs}(1.0 + \alpha T)(1.0 + \beta T \underline{Sin} \theta)$

The coefficients α_1 and β_1 for the first set were (.023) and (.010) respectively, and for the second set α_2 and β_2 were (.014) and (.031). The maximum rescaling factor required for any of the standards was 1.72 (calculated on F).

74

The presence of a heavy atom (tin) and the use of a fairly large crystal necessitated corrections for abcorption of radiation. The mass absorption coefficient (μ/ϱ) for tin is 256* and the total linear absorption coefficient for the molecule was calculated to be 53.6. Absorption corrections were applied to observed data only using the programme BROOR (see Chapter 3) and only these were used in subsequent refinement; transmission factors varied from .35727 to .59525, calculated on F.

Inspection of the data showed systematic extinctions for 0,0,1 : $1 \neq 4n$; h,k,0 : h,(k) $\neq 2n$; and h,k,1 : h+k+ $1 \neq 2n$. These are the conditions required by the space group I4₁/a. The unit cell volume is $4758k^3$ which is comparable with those found in the silicon and germanium cases. It was therefore again assumed that Z = 4; on this basis the crystal density was calculated to be 1.17 gcm⁻³.

Solution of the Structure

The space group $I4_1/a$ has a sixteen-fold general position. As there are only four tin atoms in the unit cell these must

· Cul Radiation.

occupy a four-fold special position. They are most likely to be situated on the $\overline{4}$ axis, owing to the presumed tetrahedral nature of the molecule. The tin atom positions are thus completely defined by the choice of origin. - Two standard choices of origin are available at 4 or 7. Selection of the origin at 1 defines a centrosymmetric unit cell, and this was accordingly picked. The tin atoms are thus situated at 0,1/4,1/8; 0,3/4,3/8; 1/2,3/4,5/8; and 1/2,1/4,7/8. Physing due to the tin. atom alone gave an R value of .37, and a fourier synthesic located the remaining non-hydrogen atoms. One cycle of refinement (CRYLSQ) improved the R value to .141. Further refinement including anisotropic thermal parameters for all atoms gave an R value of .121. For the tin atom, occupying the special position, the anisotropic coefficients are limited such that $B_{11} = B_{22}$ and B_{12} , B_{13} and B23 are all zero. The programme BONDAT was used to locate. the phenyl hydrogens and inclusion of these improved the R This is a comparatively high R value for value to .118. diffractometer data, but this is not unexpected in view of the severe decomposition encountered during data collection.

5.2. Discussion

5.2.1. Tetrakis(diphenylketimino)cilone

The asymmetric unit contains two independent molecules which are shown in Figures 5.1 and 5.2. The molecules

occupy a four-fold special position. They are most likely to be situated on the $\overline{4}$ axis, owing to the presumed tetrahedral nature of the molecule. The tin atom positions are thus completely defined by the choice of origin. - Two standard choices of origin are available at 4 or 7. Selection of the origin at 1 defines a centrosymmetric unit cell, and this was accordingly picked. The tin atoms are thus situated at 0,1/4,1/8; 0,3/4,3/8; 1/2,3/4,5/8; and 1/2,1/4,7/8. Phasing due to the tin atom alone gave an R value of .37, and a fourier synthesis located the remaining non-hydrogen atoms. One cycle of refinement (CRYLSQ) improved the R value to .141. Further refinement including anisotropic thermal parameters for all atoms gave an R value of .121. For the tin atom, occupying the special position, the anisotropic coefficients are limited such that $B_{11} = B_{22}$ and B_{12} , B_{13} and B₂₃ are all zero. The programme BONDAT was used to locate. the phenyl hydrogens and inclusion of these improved the R This is a comparatively high R value for value to .118. diffractometer data, but this is not unexpected in view of the severe decomposition encountered during data collection.

5.2. Discussion

5.2.1. Tetrakis(diphenylketimino)cilane

The asymmetric unit contains two independent molecules which are shown in Figures 5.1 and 5.2. The molecules

Figure 5.1 t wis si(NC(C6H5)2)4 : Molecule 1. and the state of the state of the second second

Figure 5.2 î. 5116. 2 si(NC(C6H5)2)4 : Molecule 2. 理想代表 动的复数子 14

are monomeric with approximately tetrahedral geometry about the silicon atom. The variations in internuclear angles are significantly larger for molecule 1 than for molecule 2. The N-Si1-N angles vary from 101.8° (7) to 116.2° (7) and the N-Si2-N angles fall in the range 103.0° (7) to 114.9° (8).

The most notable feature of the structure involves the wide angle at nitrogen. In the absence of delocalization of charge from the nitrogen lone pair into the silicon d orbitals this is expected to be 120° (i.e. pure sp² nitrogen). However in the ketiminosilane the angle has widened to an average value of 134.5° (13) for molecule 1 and 139.1° (15) for molecule 2. The values are all within three standard deviations of this average for molecule 2 but not for molecule 1 in which the individual angles vary from 128.2° (11) to $139.0^{\circ}(13)$

The substantial deviation from 120° is indicative of multiple bonding between the silicon d orbitals and the nitrogen p_{π} orbital. The reasons for the variations in the individual angles must lie in the fact that M-N=C angles are somewhat sensitive to their local environment. Thus although the widening of the angle is caused by the effect of multiple bonding on the hybridisation of the nitrogen, precise values will be dependent on packing effects, minimising the interactions between the bulky phenyl groups. The silicon atom does not require complete donation of four electron pairs. A suitable total overlap of electron density donation $(d_{\pi}-p_{\pi})$ can be obtained by contributions from the four nitrogens in

different ways to give different bond angles.

The silicon-nitrogen bond length is a reliable judge of the extent of d_-p_ interaction. A pure Si-N single bond length does not in reality occur. An often quoted value for this, 1.79Å, is calculated from atomic radii with the application of the Schomaker- Stevenson electronegativity correction The equation used is purely empirical, has no theoretical basis and frequently gives erroneous results. 144 For Group IV(b) elements the exact electronegativities are questionable; thus some measurements indicate that the order is Si>Ge>Sn, whereas others give the reverse order. $^{145-148}$ A more reliable single bond length can be determined from known interatomic distances¹⁴⁹. Atomic radii are estimated from interatomic distances in the diamond form of carbon and silicon. The difference in the radii is then calculated and this value added to the C-N= bond length (which is not significantly different from C-N<). The figures are tabulated (Table 5.4). On this basis a pure Si-N single bond length is determined to be 1.879Å. In the molecule trisilylamine, (SiH₃)₃N, the Si-N bond length is 1.732% (2)²⁴. This short distance and the planarity of the nitrogen support substantial multiple bonding. Apart from trisilylamine the structures of various other silylamine compounds have been determined, and these include $(Me_2SiNH)_3$ (Si-N = 1.78Å)³⁸; $(\text{SiH}_3)_2 \text{NH} (\text{Si-N} = 1.725 \text{ })^{150}, \text{Clsi(NMe}_2)_3 (\text{Si-N} = 1.715 \text{ })^{151},$ and Si(NCO)₄ (Si-N = 1.688 Å)¹⁵². The Si-N distance in the ketiminosilane is comparable with these at 1.707 $\stackrel{\text{R}}{\sim}$ (15) (averaged), indicating a considerable amount of π orbital

Windowski A. A. A. M. Market

KODAK SAFLETY A FILM

TABLE	5		4
-------	---	--	---

Calculations Of Group(IV) M-N Bond Distances.

M	M-M(Â)(diamond form)	RADIUS _H (2)	RADIUS _M -RADIUS _C (Å)	C=N=(Å)	M-N(R)
C	1.544	0.772			
Si	2.352	1.176	0.404	1.475	1.879
Ge	2.450	1.225	0.453	1.475	1.928
Sn	2.310	1.405	0.633	1.475	2.108

interaction. All values are within the standard deviation of the mean.

78

It is possible that the π -system of the C=N group can also interact with the vacant silicon d orbitals, and if this occurs the C=N bond should lengthen. Little structural data is available for analagous ketimine systems, but the normal bond length may be estimated as 1.265 Å from the atomic radii¹⁴⁹. This value is supported by the structural analyses of (CO)₃Fe(N=CR₂), in which the average C=N bond distance is 1.265 Å (16)¹⁵³, and π -(C₅H₅)Mo(CO)₂N=CBu^t₂, with a C=N bond length of 1.27 Å ¹⁵³. The ketiminocilane exhibits a mean C=N bond distance of 1.27 Å (2) which compares well with these, and therefore implies little involvement of the C=N TT system with the silicon d orbitals.

In the final stages of refinement the phenyl rings were treated as rigid bodies, with C-C bond distances of 1.395 Å and C-H distances of 0.95 Å. The rings subtend an angle of 117.2° (13) at the cyanide carbon, the deviation from 120° being probably due to steric interference between the ketimine groups.

The packing diagram, shown in Figure 5.3, presents the unit cell contents projected along a. The molecules are monomeric, approximately spherical in shape, with little or no interaction between them.

5.2.2. Tetrakis(diphenylketimino)germane

The molecule is shown in Figure 5.4. They are monomeric

and the geometry about the germanium is approximately tetrahedral with angles varying from 111.2° (3) to 106.8° (3). The two unique angles about the nitrogen (Ge-N=C) are 123.8° (5) and 130.1° (5), and as with the silicon analogue, the widening of this angle is indicative of some interaction between the p_{π} orbitals on nitrogen with the empty d orbitals on germanium, although the effect is much smaller than for the silicon case.

Any shortening of the germanium-nitrogen bond length from the hypothetical single bond distance would confirm the presence of any multiple bonding. Unfortunately, the structural aspects of germanium chemistry have received little attention in the literature. Electron diffraction studies on trigermylamine, $(GeH_3)_3N$, indicate a planar structure with a Ge-N distance of 1.836 Å ¹⁵⁵. The Ge-N single bond length may be estimated to be 1.928 Å from consideration of the atomic radii of germanium and nitrogen as described in the previous section on the silicon analogue. The ketiminogermane compound has a Ge-N distance of 1.871 Å (5) (average), which implies some degree of T orbital interaction, although rather less than in the trigermylamine molecule.

In this compound the C=N distance is 1.26 Å (1), which is comparable to the silicon analogue and is also very similar to the estimated value (1.265 Å). Thus there is no evidence for any involvement of the C=N π system with the d orbitals on germanium.

The bond distances in the phenyl rings are normal,

and the standard in the second of the standard with the standard

averaging to 1.39 Å (1). As with the silicon compound the angle subtended by the phenyl rings at the cyanide carbon shows a slight deviation from 120° , at 116.2° (7), and egain this is ascribed to packing effects.

80

Figure 5.5 shows the molecular arrangement within the unit cell, projected along the unique axis b. The germanium atoms are situated on the two-fold axis, which relates the two halves of each molecule. The packing is again of independent, approximately spherical molecules with little intermolecular interaction.

5.2.3. Tetrakis(diphenylketimino)stannane

Despite the tendency of tin(IV) to increase its coordination number via intermolecular association, in this instance the molecules are monomeric and closely tetrahedral, as shown in Figure 5.6. Both the independent angles at tin are within the standard deviation of the tetrahedral angle (109.5°), being 107.7° (7) and 110.4° (6).

The angle at nitrogen of 121.5° (13) agrees with the value of 120° expected for sp² hybridised nitrogen within the standard deviation. This points to a complete lack of π -bonding involving the tin d orbitals.

Few tin-nitrogen compounds have been structurally analysed. Those for which structural data is known include cyanamide and isothiocyanate groups. The difficulty of direct comparison with the ketimino compound lies in the tendency of tin to increase its coordination sphere by

polymerisation. The necessary change in hybridisation at tin affects the covalent radius. Also, in many tin compounds there exists some ionic character in the bonds, causing bond lengthening. Thus bis(trimethyltin)cyanamide is a dimeric structure with five-coordinate tin and a Sn-N bond length of 2.47 % ¹⁵⁶. Trimethyltin isothiocyanate and dimethyltindiisothiocyanate are also approximately trigonal bipyramidal structures with Sn-N bond distances of 2.15 % and 2.40 %respectively^{157,158}. The Sn-N pure single bond length may be estimated as for the silicon and germanium systems (see Table 5.4) and is calculated as 2.108 %. The Sn-N bond distance in the ketiminotin compound is 2.068 % (37), which is in close agreement with this.

The C=N linkage is 1.33 % (36), and is rather longer than for the other ketimines; however the standard deviations are such that this difference is probably not significant.

The phenyl rings are normal, with bond distances (C-C) averaging to 1.37 Å (6) and angles within the standard deviation of 120° . The angle subtended by the phenyl groups at the cyanide carbon is 115.7° (18). The deviation from 120° is thought to be due to packing effects, as with the analagous silicon and germanium species.

Figure 5.7 shows the molecular arrangement within the unit cell, viewed along c. The molecules are centred around $\overline{4}$ axes. The unit cell is shown with the origin at $\overline{1}$ (and is therefore centrosymmetric). As with the silicon and germanium analogues, the molecules are approximately spherical and show little intermolecular interaction.

5.3. Conclusion

W-Bonding in the GroupIV(b) Ketimines

The W-acceptor ability of the GroupIV(b) element (excluding carbon) is known to decrease as the atomic number increases. The structural analyses of the series of diphenylketimino compounds $M(NC(C_6H_5)_2)_4$ (K = Si,Ge and Sn) indicate that the variations in the angles at nitrogen ray be a sensitive probe to the extent of M-N $(d_{\pi}-p_{\pi})$ interaction.

82

In the three cases tudied the central atom is tetrahedral or nearly so. The only major difference between the structures is in the angle at nitrogen. This is sufficient to cause all three compounds to crystallise in differnt space proups with increasing site symmetry as the normal sp^2 angle of 120° is approached. Thus the silicon compound adopto triclinic symmetry (DT), the germanium compound belongs to the monoclinic system (C2/c) with molecular symmetry 2, and for the tin analogue tetragonal symmetry is found, the space group is $I4_a/a$ and the molecular symmetry is 4.

Multiple bonding in the silicon compound has a substantial effect on the nitrogen angle, increasing it from 120° to 134.7° and 139.5° (averaged) in the two independent examples. The angle widening found in the germanium analogue is very much smaller (123.2° and 130.1°) although still significant, and in the tin compound the nitrogen angle is not significantly different from 120° . Figures 5.8, 5.9, 5.10 and 5.11 show the core atoms for silicon (molecules 1 and 2), germanium and tin derivatives respectively, viewed along equivalent

Figure 5.8 SINC 1 Core Atoms for Si(NC(C6H)2)4 : Molecule 1 ushing TP with

directions.

The presence of multiple bonding is confirmed by the N-N bond length contractions from the predicted single bond lengths, as given in Table 5.5. The contraction is reatest for silicon, rather less for germanium and insignificant for tin. The calculations for the M-N single bond lengths have not accounted for electronegativity effects because of the unreliability of the Schomaker-Stevenson equation. Perhaps a more reliable guide to the difference in π -bonding effects between silicon and germanium is found by comparison of the atomic radii differences ($R_{Ge} - R_{Si}$) calculated from a) N-C distances, which accounted to the accurately known 149 , and b) from the compounds under examination.

 $R_{Ge} = R_{Si}$ is detrmined by a) to be .075 Å and by b) to be .155 Å, thus indicating that bond contraction is considerably more (.03 Å) for silicon than for germanium. Such comparisons for R_{Sn} are less useful because of the poorer suality of the data for this system.

The three structures are essentially similar and so any steric effects due to the bulky phenyl groups will be similar in all cases. The angle between the two phenyl rings of each ketimine is approximately 116.4° , and the distance between the cyanide carbon and 'C1' of the phenyl rings is approximately 1.50 Å. Any steric effect of the rings on the angle at nitrogen would be expected to be similar for the three structures. As the M-N=C angle in the tin compound is not significantly different from 120° it must

Party and the second and the second second with an and second and the second second second second second second

M	M-N (calc.)A	М-N (оъз.)Х	Contraction (o) 8
Si	1.379	1.707	.172 (15)
Ge	1.928	1.871	• 057 (5)
Sn	2.108	2.068	.0 40 (37)

TABLE 5.5

and should

be assumed that the steric effect in all cases is only small.

84

In order to confirm this it would be valuable to determine the structure of the aliphatic ketimino derivatives, in which steric hindrance would be minimal. However, silyl derivatives of aliphatic ketimines cannot be prepared in a pure form as the hydrogen in the α -position enters into enamine tautomerism.¹⁴⁰:

> Pn C=N-SiMe₃ H₂C

Ph H C-N-SiMe₃ H_oC

Tetrahedral molecules in which the central atom contains vacant d orbitals can form $d_{T}-p_{TT}$ bonds, and the d orbitals most suitable for T-interaction are the $d_{\chi}^2 - y^2$ and the d_{χ}^2 , as illustrated in Figure 5.12. The tetrakis(diphenylketimines) of silicon, germanium and tin contain tetrahedral central atoms and can therefore invoke this type of T-bonding. There are two models for the T-interaction in this situation. The first involves donation of charge from the nitrogen lone pair into the empty M d orbitals, and in the second there is interaction between the ketimine (N=C) T-system and the d orbitals on M.

In the first case no significant change in the C=N group is expected. The nitrogen lone pair initially occupies an sp² hybrid orbital, which is directed away from the d orbitals, and is therefore not very favourable for interaction. Increase in the p character of this lobe would enhance effective overlap, and linearity of the M-N=C fragment

would result as the nitrogen is rehybridised to sp. The two extremes are schematically illustrated in Figure 5.13. This model explains the approach to linearity of silicon isocyanates and isothiocyanates (see Table 5.6).

Alternatively, if the C=N π -system of the ketimine is involved in d- π bonding no rehybridisation of the nitrogen is required. Overlap will depend on the orientations of the d orbitals on M and the nodal plane of the substituents, relative to one another. The orientation required for maximum overlap (as illustrated in Figure 5.14) is orthogonal to that required for interaction involving the non-bonding electrons.

(d-W) Interactions are known to exist for silicon-olefin systems. The silicon-vinyl W-bond must be interpreted in terms of both (d-W) and (d-W) interactions, but the latter effect is much larger due to better energy matching with the d orbitals.¹⁶² Involvement of the bonding V-orbitals in (d-W) bonding would lead to delocalisation of the W-bonding electrons, weakening and hence lengthening the W-bond of the substituent. Interaction with the W* orbital however would not seriously effect the ground state properties of the molecule, but would be significant in relation to electronic spectra or reaction mechanisms.

For effective interaction the energies of the orbitals involved should be similar. Antibonding (π^*) and non-bonding orbitals will be higher in energy than the bonding (π) orbitals, and so more favourable for overlap with the d orbitals on M.

- A CARLES ST STATE AND A CARLES AND A

A STATE OF A

WHY WHY BE

TABLE (Measurements by electron diffraction)

COMPOUND	ANGLE
(H ₃ Si) ₃ N ²⁴	119.7
(H ₃ Ge) ₃ N ¹⁵⁵	120
(H _z C) _z N ²⁵	110,6
H_Si-O-SiH3 168	144.1
H_C-O-SiH_ 167	120.6
H_C-O-CH_ 149	111.5
H ₃ Ge-O-GeH ₃ ¹⁶⁹	126.5
H_SINCO 164	151.7
F ₃ SiNCO ¹⁶⁴	160.7
Cl_SINCO 165	138
NezSiNCO 44	150
si(::co) ₄ ¹⁵²	146 .4
H_SINCS 166	163.8
Me ₃ SiNCS 44	154
si(xcs)4 166	172 .5 (X-ray)

and the second second

1.47、是是
This is borne out by experimental results.

Studies of the electronic spectra of the GroupIV(b) ketimines show considerable stabilisation of the antibonding (π^{*}) orbital by interaction with a Group IV(b) element, as discussed in Chapter 1⁴². There is also much evidence for the involvement of lone pair electrons in d_{π^{-}}-p_{π^{-}} bonding, frequently causing rehybridisation to produce lone pair orbitals of high p character. Unusual bond angles are found mainly for Si-N= and Si-O- species. The angle variations in various GroupIV(b) amines, oxides, isocyanates and isothiocyanates are tabulated in Table 5.6. Cruickshank¹⁵ was the first to correlate the variations in bond angles and bond lengths in X-O-X systems, where X contains an vacant 3d orbital. His results show the X-O-X angle decrease in π interaction).

36

A similar correlation may be applied to the GroupIV(b) ketimines. As the angle at nitrogen increases from 120° the contraction of the M-M bond length from the hypothetical single bond length increases (see Table 5.5), implying increasing T interaction from the lone pair orbitals.

The C=N bond length in the silicon and germanium ketimines is very close to the estimated C=N double bond length, suggesting little or no interaction with the bonding π orbital. The C=N bond length in the tin analogue is apparently lengthened, but does not differ from the calculated value by more than 3σ . A slight lengthening of this

bond is possible without implying d-T interaction, as the σ inductive effect will be greater for \tan^{163} and the subsequent increase in the electron density of the nitrogen will affect the C=N bond.

Summarising the results, the GroupIV(b) ketimines chow interaction between the d orbitals on M with the antibonding (\mathbb{T}^*) orbital and with the orbital containing the nitrogen lone pair. The extent of the latter interaction is demonstrated by the variations in the nitrogen angle. The \mathbb{T} -acceptor ability of the GroupIV(b) elements is confirmed as Si>Ge>Sn.

Experimental Techniques

Owing to the air/moisture sensitivity of many of the compounds handled during this work, special techniques were necessary.

a) The Dry Box

Manipulations under an inert atmosphere were carried out in a steel glove box which was continually flushed with a supply of dry, oxygen-free nitrogen. Two dishes of P_2O_5 were kept in the dry box to remove residual traces of moisture; these were regularly replaced. Entry was provided via an 'air lock' type entrance port which was continually flushed with a rapid, independent supply of nitrogen.

For the handling and mounting of air/moisture sensitive crystals a dry box was modified by insertion of a binocular stereoscopic microscope (magnification x20) sealed into the perspex window, to allow inspection of the crystals. A heating wire, operated by a foot switch, was available for cutting and sealing the capillaries. The inlet nitrogen passed through a copper coil which could be immersed in liquid nitrogen to cool the dry box.

b). The Vacuum Line

Many of the manipulations required use of a standard, all glass, high vacuum system, as illustrated in Figure A.1.

11 444

24 white

The vacuum was produced and maintained by use of a Genevac double stage rotary piston vacuum pump (type GRD2), and an electrically heated mercury diffusion pump.

c) Praction Vessel

Reactions were carried out in a glass ampoule as shown in Figure A.2. Reactants and solvents were loaded into the reaction vessel and sealed under vacuum at point A. On completion of the reaction the ampoule was opened under vacuum via the breakseal (B), which was broken by impact from the magnet C.

Product Isolation

The reaction vessel was placed on the extraction system of the vacuum line (see Figure A.3), and the system was evacuated. The reaction vessel was opened (at the breakseal), the solvent distilled out, and a suitable solv nt, for the extraction of either the product or excess starting material, was distilled into flask A. The system was closed at tap 2, and the solution decanted through the glass sinter into flask C. The solvent was then distilled back into flask A and the process repeated until complete extraction was achieved. The solvent was removed from the system and the product pumped in vacuo for about a day. The product was stored by sealing samples into glass vials under dry nitrogen.

The second se

Electronic Spectra

Solution spectra were recorded using sealed 1 cm silica cells, as shown in Figure A.4. The sample was loaded into flask A in the dry box. Solvent was distilled into the flask in vacuo and the system sealed, under vacuum, at point B. This system allows ready dilution of solutions to be carried out in situ. Half the solution from the cell is tipped back to the reservoir A and pure solvent is then distilled back into the cell, thus diluting the solution.

Solvent Drying

All solvents were rigorously dried by heating under reflux with CaH_2 , $LiAlH_4$, or P_2O_5 under nitrogen. The use of specially designed solvent stills (see Figure A.5) readily allowed rapid reflux, collection and removal of solvents to be achieved. The incorporation of a glass sinter also allowed for efficient deoxygenation of solvents by passing dry nitrogen, via tap A, through the solvent during collection.

Crystallographic Results

The full results of the crystal structure analyses are presented here as atomic positions, temperature factors, interatomic distances, interatomic angles, and comparison of observed and calculated structure factors, for each structure in the order that they appear in the text; i.e. Tables B1-B5 contain all the relevant data for the cyclotitanazane, $(Cl_2TiNSiMe_3)_2$; Tables B5-B10 contain the data for the silicon diphenylketimine, Si(NC(C₆H₅)₂)₄; Tables B11-B15 contain the data for the germanium diphenylketimine, Ge("C(C₆H₅)₂)₄; and finally, Tables B16-B20 contain all the data for the tin diphenylketimine, Sn(NC(C₆H₅)₂)₄.

Figures B1-B6 show the numbering scheme for each molecule. In the phenyl rings only 'C1' has been given an individual number (taking its first number(s) from the non-phenyl carbon attached to it); the remaining carbon atoms are labelled systematically (as 'C1') with the final figure changing (2-6 or 8-12).

ΛΤΟΜ	X	<u> </u>	<u>Z.</u>
m 1	-0.03817	0.03767	0 20200
111	0.07846	0.02707	-0 07713
T12 T12	0 47151	0.28206	0.07228
T127	0 47156	0 27243	-0 11357
mi4A	0.55015	0 22041	-0 08466
1148	0.551.1	0 21882	0.10151
0111	-0 13115	-0.00726	0.20322
0112	-0.11.64	0 12026	0.41418
0121	-1 050 2	0.00388	-0.26695
0122	0 11020	0.12330	0.00372
0122	0 38976	0.36688	-0.05255
	0 37784	0.25586	0.20099
CISB	0.46711	0.24810	-0.27273
C141	0.52750	0.13310	0.04574
C144	0.53928	0.24880	0.23795
C148	0.55815	0.25681	0.26245
511	0.11381	0.12120	0.520
Si2	-0-12112	0.12094	-0.04845
Si3	0.39520	0.12534	-0. 04541
Si4	0.61631	0.38013	0.03476
N1	0.06026	0.04428	0.50166
N2	-0.05628	0.04159	-0.01519
N3	0.4562	0.19854	-0.02296
N4	0.55285	0.30211	0.01749
C11	0.21707	0.06963	0.53744
C12	0.10123	0.18071	0.85406
C13	0.10234	0.17006	0.38285
021	-0.21391	0.06500	-0,106%8
C22	-0.09749	0.17450	-0.17873
C23	-0.11672	0.17306	0.08354
C31	0.43-92	0.06070	-0.14702
032	0.41877	0.07058	0.10554
C33	0.2 8692	0 .1 58 5 6	-0.08637
C41	0.58637	0.44001	0.13905
C42	0.71947	0.34681	0.07599
C/+3	0.58749	0.43312	-0.11744

Final Atomic Positions For (Cl₂TiNSiMe₃)₂

The second se

ANTE M

ATOM	<u>B11</u>	<u>B22</u>	B33	<u>B23</u>	B13	312
Ti1	2.30586	1.44557	0.6275	0.08487	0.19187	0.1:560
Ti2	3.57795	1.84979	0.43900	0.29712	0.40573	-0.13582
Ti3A	3.13204	3.65687	5.68244	-0.44226	1.28672	0.13561
TIJB	6.39529	7.43527	6.64471	0.62507	1.95734	0.12216
Ti4A	3.87807	3.65393	4.30030	0.10678	1.84457	0.75303
Ti43	5.21633	5.04823	7.49475	0.23168	1.63854	- 0.2602jj
C111	3.34168	4.49041	1.95713	0.02031	0.17973	-0.55026
C112	4.80036	3.46523	5.61379	0.18353	2.01141	1.354-1
C121	2.84928	3.96721	0.82784	-0.50014	0.5457	-43292
C122	4.64259	3.07371	5.09114	-1.21362	0.41665	-1.45571
0131	8.10659	6.5310 ³	12.05634	2.64995	2.32113	3.24261
C13A	3.21439	6.69321	3.54101	1.26648	0.44591	1.02 99
C13B	3.42023	8.59392	5•373 34	1.48435	1.04672	1.7770
C141	5.94369	6.32425	14.64266	-1.36812	2.01665	2.34073
014A	3.21149	6.16062	4.0 5711	-1.12480	1.37249	-5306.
C14E	4.55332	°.89584	6 . 712 33	0.80074	1.96548	-0.3310
Si3	5.31454	7.10835	8.18364	-1.54814	2.3532"	-1.25516
Si4	8.22118	4.26-13	7.17694	0.63296	1.23873	-2.24057
N1	7.84964	5.57020	4.68503	-0.01078	1.51757	2.01003
N2	9.29307	6.07373	6.22180	2.54470	1.63013	<u>-2.05737</u>

Anisotropic Temperature Factors For (Cl₂TiNSiMe₃)₂

Isotropic Temperature Factors For (Cl₂TiNSiMe₃)₂

ATOM	В
Si1	2.06603
Si2	3.07715
N3	0.18210
N4	1.29538
C11	6.00107
C12	3.52850
C13	4.16039
C21	8.59986
C22	1.47634
C23	3.94993
C31	9.09801
C32	6.74023
C33	5.73052
C41	7.59691
C42	2.16492
C43	5.81488

CARLES STATE AND A SHE WAS A SHE

775	TOT	10	73	-
	6,034	tir.	D	. 2

Internuclear Distances In (Cl_TiNSiNe_).

Ordered ch	ain	Disordered	chain
	Distrace(?)(d)		$Distance(%)(\sigma)$
Ti1-0111	2.501(10)	Ti3A-C131	2.365(18)
Ci1-0112	2.209(10)	Ti3A-Cl3A	2.531(23)
Ti1-0121	2.427(9)	Ti3A-Cl4B	2.432(29)
T11-11	1.942(32)	Ti3A-N3	1.895(23)
Til-N'1	1.834(33)	Ti3A-N4	1.736(24)
Ti2-0111	2.452(11)	T13B-C131	2.468(21)
Ti2-0121	2,449(10)	T14A-C141	2.414(19)
Ti2-0122	2.217(10)	T14A-C13B	2.411(25)
Ti2-N2	1.986(36)	Ti4A-N3	1.978(22)
Ti2-N'2	1.685(31)	Ti4A-N4	1.914(25)
Si1-11	1.782(34)	Ti43-C141	2.287(20)
Si2-N2	1.861(38)	Ti4B-Cl4A	2.419(27)
Si1-C11	1.930(46)	T14B-N3	1.976(24)
Si1-C12	1.950(40)	Ti4B-N4	1.844(27)
Si1-C13	1.861(39)	S13-N3	1.712(32)
Si2-021	1.893(57)	S14-14	1.809(13)
312-022	1.926(32)	Si3-C31	1.812(72)
S12-023	1.806(42)	Si3-C32	1.897(50)
Sic Sig		Si3-033	1.999(45)
		S14-C41	1.777(55)
		Si4-C42	1.900(31)
		Si4-C43	1.903(43)

94

Ordered chain.		Disordered chai	n.
	Angle ^o (d)		Angle ^o (J)
C111-211-C112	90.38(38)	C13A-T13A-C131	95.22(60)
0112-Ti1-0121	137.32(41)	C131-Ti3A-C14B	143.61(08)
C111-Ti1-C121	79.21(32)	C13A-Ti3A-C14B	73.17(78)
0112-Ti1-N1	106.26(104)	Cl31_Mi3A_N3	102,98(04)
0111-711-N1	159.18(101)	C131-Ti3A-N4	95.03(100)
C121-Ti1-N1	30.06(99)	013A-T i3A- N3	98.34(91)
N1-T1-N11	87.6 (20)	013A-Ti3A-N4	165.37 113
C111-Ti2-C122	89.56(37)	C14B-Ti3A-N3	103.32 101
0121-Ti2-0122	137.33(41)	C14B-Ti3A-N4	87.65(100)
0111-Ti2-0121	78.75(31)	N3-Ti3A-N4	89.43(105)
0122-Ti2-N2	103.81(106)	C141-T14A-C13B	149.61(93)
C111-Ti2-N2	163.66(1.3)	C141-T14A-N3	92,48(67)
C121-Ti2-112	84.02(100)	C141-T14A-14	103.38(97)
N2-T12-N'2	84.9 (25)	C13B-T14A-N3	87.09(4)
Ti1-11-Si1	126.9 (19)	C13B-T14A-N4	105.64(101
Ti'1-31-Ti1	92.5 (18)	N3-D14A-N4	82.10,40)
Ti2-12-312	122.3 (15)	C131-T13B-N3	102.30 901
Ti'272-Si2	141.3 (22)	C131-T13B-N4	87.54(90) 95.75(005)
Ti2-N2-Ti'2	95.1 (18)	N3-T13B4	
N1-Si1-C11	97.2 (18)	0141-2148-0142 ant 4 million NZ	
11-Si1-C12	109.8 (15)		410 27 6 1
11-Si1-013	108.6 (16)	C147-T148-R4	167 00(113
2-Si2-C21	94.6 (21)		101 70(105)
12-312-022		NZ	83 99(110)
1 12-512-023	110.7 (17)		90.62(90)
011-S11-012	120.1 (10)	TIJA-NJ-II WA	03 39(105
031-021-015	112 7 (16)	Ti34_N3_Si3	137.0 (13)
	107 1 (20)	Ti3B-N3-Si3	133.2 (14)
021-012-022	$107 \cdot 1(22)$	Ti4A-N3-Si3	131.5 (12)
C22_Si2_C23	114.6 (15)	Ti4B-13-Si3	132.5 (13)
022-312-02)		Ti3A-N4-Ti4A	97.34 113
		Ti3B-N4-Ti4B	93.95 117
		Ti3A-N4-Si4	132.6 14
		Ti3B-N4-Si4	132.2 (14)
		Ti4A-N4-Si4	129.4 (14)
		Ti4B-N4-Si4	133.3 (14)
		N3-Si3-C31	110.0 (24)
		N3-Si3-C32	107.1 (17)
		N3-Si3-C33	108.8 (10)
		N4-S14-C41	108.0 1993
		N4-S14-C42	100.4 (12)
		N4-514-042	102 0 (28)
		071-012-022	117.1 (27)
		031-513-033	111_4 (20)
			114.2(20)
		CH1_S14_C43	104.1 (22)
		C42_S14_C43	115.5 (18)

.

(論意)で

					TABLE E	.5						<u> </u>
Coz	par	ison c	of obser	ved	and ca	lçula	ted Fs	for	(C1 ₂ Ti	NJiMe	3)2	15
		2	X= 1		-7	110	138	8	=2	429	491	3
		1	1 1 2 -	7	2	123	131	.5	2	578	521	3
	7	270	283	ŕ	4	272	270	5	3	120	119	4
	-	2/7	200	-		204	707	7	4	230	209	5
	0	1 11	1/5	<i>c</i>	0	3.7	371	'	7	210	270	7
•	+=	0	K= 2		9 H =	1	KE J	_	P	242	204	6
	5	400	407	ť	- 4	676	705	2	ø	3.19	290	à
٠	**=	0	K= 3		~ ~	629	648	3	* 번루	1	K= 12	
	2	655	646	7	2	445	439	- 5	-3	175	161	4
	4	382	337		6	290	288	7	-1	1.75	208	2
	11=	0	K= 4		* 년후	1	K= 4		1	153	158	2
	2	1894	1935	7	-5	293	323	6	3	154	223	4
	4	414	363	1	-3	118	143	4	7	2.17	207	ö
	2	615	.14	-	-1	152	171	2		1	K= 13	
	· -	017	2 - 5		-	154	152	2	=2	2.46	132	3
		717	750	-,	ź	671	561	4	5	255	255	3
	2	351	320	3	5	647	540	6	7	200	297	4
	4	551	212	1.1	-	040	049			200	260	8
	6	149	169	7	/	220	201	0	· · · ·		2	0
٠	+=	C	K= ó		* 뒤로	1	K= 2	-	# H=	-	N= 14	
	1	296	270		-4	263	303	5	- 4	440	4/2	2
	5	135	258	é	-2	44H	424	3	-2	026	641	3
		0	K= 7		-1	128	139	2	Ð	558	556	1
	2	301	393	3	1	190	131	2	2	344	372	3
	2	1 90	150	1.	2	355	359	S	4	377	321	5
	-	272	301	1	4	334	269	>	0	208	328	7
	2	4/4	10 L		a U =	1	K= 6			1	K= 15	
	H=		N= 0			686	716	7	-6	172	152	7
	u	13.30	1423	1	-0	000	247		7	206	255	6
	S	237	214	3	- 4	4000	4480	ś		1	K= 18	
	4	729	709	-		12.4	1103	-		204	271	7
	6	240	237	7	3	1447	1,404	- 7	-0	121	261	5
	+1=	0	K= 9		2	233	100	3			101	
	2	711	684	3	+ H=	1	K= 7		U	^ <i></i>		-
	4	510	482	- <u>5</u> -	-6	374	336	1	• H=	6	K= 11	-
	11=	0	K= 10		-5	142	106	6	2	525	321	5
	5	510	508	1	-2	320	353	- 5	4	1170	1317	5
	5	341	304	£	-1	142	66	2	0	975	611	7
	ú-	0	2= 11			570	476	5	ĉ	301	436	9
	-	475	430	1	3	121	146	4		2	K= 1	
	-	- 32	161	2	4	UAF	346	5	3	079	722	4
	3	1.0	100			1	k= 8		4	176	154	5
	4	378	310			205	200	6		200	306	7
	++=	0	K= 12			2.10	204	2	7	1 4 1	16.2	8
	0	854	645	1	* 1	216	640 641	2	2	5-6	573	ŭ
	2	1272	1245		- 2	271	209			2.0	2 = 2	
	+(=	0	K= 13		7	435	440		• •	05.0	2.4	
	2	239	233	3	+ H=	1	K# 9		2	5.6	144	-
	H=	0	K= 14		-5	255	263	0	2	519	354	2
	3	150	171	4	- 4	395	364	5	7	373	365	8
		0	K= 16		-2	540	518	ى	• H=	5	K= 3	1.1
	2	272	248		2	464	471	5	-4	047	661	5
	3	504	557	ĩ.	4	278	226	5	-2	573	535	3
	-	224	757	-	5	1 4 2	54	0	-1	200	222	2
	6	368	353	/		147	164	1	ī	204	256	2
•	H=	0	K= 20	-	, ii-	4 709	K= 10		2	156	135	3
	0	413	406	5			140	1	3	244	306	4
	2	304	308	.*	= 0	210	174	4	5	103	131	6
) (=	1	K= 1		- 4	44()	407		-		200	7
	3	371	405	4	-2	478	224	С	0	0.70	200	0
	5	242	232	- (С	166	164	1	0	2.00	202	à
	6	194	171	7	2	586	613	3	+ H=	2	K= 4	
	7	180	198	0	4	130	152	>	-4	7-1	709	2
	g	221	222	9	+ 1{z	1	K= 11		-2	1041	1120	3
			X= 2		- 4	548	558	>	0	1318	1314	1
	1.1											

10 m

TABLE B.5 (continued)

2	1038	1007	3	-6	254	254	7	5	749	812	6
ļ.	276	257	1.	-3	169	125	4	7	417	449	8
>	337	395	7	2	272	303	5	# 번드	3	K= 5	
(=	2	K= 5		3	170	102	4	-5	116	R.4	6
2	275	246	3	4	211	193	>	= 4	252	265	5
	103	161	5	7	231	255	8	-2	274	227	3
2	445	441	2	* <u> </u> =	2	K= 14		С	171	125	1
5	212	198	4	-1	159	188	2	ż	453	453	5
4	459	425	1	1	232	259	2	3	571	544	4
5	117	139	ć	3	180	161	4	4	308	408	5
	172	179	7	* H=	2	K= 15		5	173	110	6
1=	2	K= 6		= 6	187	223	7	7	201	157	-1
	238	200		3	139	168	4	# jj=	3	K= 0	
3	108	170	٠.	7	269	321	8	=2	176	173	3
5	470	518		+ .i=	2	Ks 16		ō	477	487	1
, ,	506	484		-6	377	379	7	2	415	419	3
	200	2= 7		- 4	680	670	5		157	203	5
	740	704	7	0	205	217	1		3	K= 7	
÷.	240	308		2	123	280	3	-6	4.9.7	465	7
-	220	200	-	- 11-	2	x - 10			330	353	5
	100	100	-		165	177	4	-2	547	496	3
5	551	401	2	- 11-	200	2- 20		-1	118	04	2
2	102	193			220	200		2	1.77	514	3
•	510	505	-		200	224		-	2. 7	310	4
25	150	105	/		207	204	1	2	5.15	568	5
	2	K= 5				220	-	2		167	
5	150	205	?	4	201	ELU D	-		1 .	1 - A	C.
4	1139	1151	1	* 11=	3	N= 0	-	- 4	.52	122	5
-	125	147		4	11/		-	- 7		151	4
2	229	267	1	• 11=	3	N= 1		-0	377	214	
2	515	495	3	= 3	27/	204	-	-		224	4
4	056	864		-2	11/	06		2		400	2
6	323	276	7	1	240	214	4	2	2014	770	6
=	2	K= 3	10	2	120	15/	3		2.0	J- 0	0
4	711	720		3	895	090	-	• H=	5	7.7	r
2	621	577	2	4	126	100	2		3 6	2	7
1	184	171	:	5	202	215	Q	-2			
2	454	419		6	190	199		Ú,	1 52	104	÷
6	297	295	7	7	163	145	8	>	341	327	2
8	217	207	Ċ,	★ 귀두	3	K= 2		•	176	109	í
	2	K= 13		- 4	160	102	2	* H=	3	K= 10	
4	169	203		- 2	244	264	3	- 6	1 6	177	-
3	324	301	4	C	1039	1016	1	*4	672	277	2
1	525	542	7	2	717	689	3	-2	3-8	321	3
1	553	516	:	3	98	64	-4	Q	512	522	1
3	399	413	4	4	647	044	5	2	373	278	- 2
5	625	645	e	+ 서비	3	K= 3		4	219	210	2
7	315	309	£	-4	348	357	>	Ó	107	140	7
11=	2	K= 11		-2	236	223	3	* 서북	3	K= 11	
4	449	430	5	-1	291	239	2	-4	475	472	9
2	444	411	.7	0	138	139	1	-3	175	130	4
2	157	193	2	3	680	o59	4	~2	102	246	3
6	269	315	7	4	14ń	134	2	1	211	236	5
7	239	253	ř	5	183	199	6	5	169	170	0
	2	K# 12	1.1	6	216	212	7	Ó	201	350	7
6	278	272	7	►]]=	3	K= 4		7	241	259	а
2	933	974	3	-5	409	426	6	* H=	3	K= 12	12
C	476	487	1	-3	731	667	4	-1	311	348	2
4	392	383		-1	877	792	2	1	422	425	5
6	446	470	7	1	1011	905	2	4	106	144	5
	2	K= 13		3	594	600	4	5	2°2	310	6

12.0

			T,	BLE B.	5 (co	ntinued)				98	
7	277	241	8	3	731	656	4	-3	124	125	4	
+ +=	3	K= 13		4	312	291	5	-2	245	259	3	
-3	239	250	4	* !!=	4	K= 6		1	344	354	2	
1	167	181	5	- 5	169	219	6	7	252	254	8	
2	144	220	2	- 3	237	190	4	* HE	4	K= 14		
7	317	354	E.	_ 2	177	112	3	=1	218	224	2	
	2	X = 1.4			167	205	2	4	307	349	2	
	777	767	r	-	307	354	4	÷	220	224	6	
	104	4 9 2	-	5	0.05	004	~	- L-	6	267	~	
	194	100	2		0-0 440	464		- <u>-</u>	154	274	2	
5	234	209	7		046	7	0		478	177	4	
• **=	5	5- 15				N= /		3	1.4	200	-	
	212	21/	- 24		1/0	1/1			1.14	6.6.0	0	
• 11=	3	A= 16		- 4	3//	3/0	2	후 거루	10		7	
-3	144	1/1	4	- 3	192	21/	7	-0	6 7	700	7	
1	238	213		-2	211	4/4	3	~ ¢	3.53	3/6	3	
+ 11=	3	K= 17		-	260	197	2	0	100	115	-	
3	188	185	**	2	253	24/	<u></u> з	"	41 L	492	3	
5	222	213	t.	3	430	437		+ H=		N 20	5	
+ H=	3	K= 18	_	4	257	340	?		200	274	7	
-0	325	293	7	5	311	289	0	2	4	232	5	
-4	360	357		* 단호	4	N= 5	-		2	N= 11	e	
-2	153	127		-6	240	243		= 4	101	147	2	
0	395	361	1	-4	358	313	2	* <u>H</u> =	>	K= 1		
. 11=	4	K= 0		- 2	6°2	659	3	-5	220	109	6	
-4	752	827	5	0	1169	1139	1	- 3	024	833	4	
-2	440	512	3	2	590	800	3	1	310	217	5	
0	1548	1593	1	4	751	76 7	5	2	145	165	3	
2	568	681	3	8	173	138	9	3	543	747	4	
4	573	588		* H=	4	K ≈ 9		5	243	283	- 6	
6	237	314	7	- 4	300	310	5	★ 서도	5	K= 2	_	
	4	K= 1		-2	227	202	3	= 4	759	775	5	
-5	252	232	€.	0	151	163	1	-3	212	112	4	
- 4	136	140	5	1	227	218	2	-2	671	576	3	
-3	694	727	4	3	187	218	4	Ũ	<u>6</u> ≦3	545	1	
-1	145	122	1	5	167	185	6	3	141	114	4	
2	121	123	3	6	154	109	1	4	151	100	5	
3	902	565	4	+ 11=	4	K= 10		속 뭐두	5	K= J		
4	368	339	,	-7	297	279	8	-5	253	265	5	
6	120	100	7	-5	407	505	6	~4	1^4	130	5	
	4	K= 2	-	-3	272	304	4	-3	577	525	4	
-5	337	339	t	-1	571	535	2	-2	207	244	- 3	
	456	394	4	1	716	c76	- 2	2	145	177	3	
-1	350	275	2	3	145	155	4	3	1006	970	4	
3	351	379	4	5	348	353	Ð	8	223	215	9	
5	332	366		# 11±	4	K= 11		 + H H 	5	K= 4		
	2	XZ 3		-3	126	155	4	-5	611	564	6	
- 3	105	21.5	d.	-2	140	102	5	-3	348	361	4	
	1 7 0	149	4	-1	238	207	2	-2	195	147	3	
3	0.32	032	4	1	247	225	2	-1	270	314	2	
5	202	107	1	5	222	236	6	3	443	495	4	
	4	1 2 2 X	•	ž	243	287	8	5	523	600	ő	
- 2	4570	1624	3	- a 11=	4	K= 12		ó	204	73	7	
-2	1270	1949	4	- 6	140	80	1	7	346	365	8	
5	1009	1684		-4	314	306	5	♦ H=	5	K= 5		
6	1216	1200	Ē	22	474	404	3	- 4	248	276	5	
	213	224	+	-6	243	274	1	=3	200	457	4	
		740	r		679	633	3	-2	215	215	3	
-4	343	317	-	іс. А	200	265	5	-1	202	266	2	
2	074	0.3/			4	K= 13	-	Ĉ	127	112	1	
1	199	292	" "7	- 11+ _ A	271	315	5	1	181	91	2	
					r 1 1		-					

122.1

			٣A	BLE B.	5 (co	ntinued))	- *			77
2	158	117	3	+ 11=	5	K= 15		2	244	243	3
3	810	777	4	-4	227	246	7	3	172	191	4
5	148	133	Ē.	-2	161	180	3	4	270	225	5
+ 11=	5	K# 6		1	237	275	2	6	109	213	7
-6	179	174	7	3	146	185	4	Ö	207	247	- 9
-2	434	413	?	6	177	160	7	= 년 =	0	K= 5	
0	452	402	1	# <u>{</u> !=	5	K= 16		- 2	174	227	7
3	119	117	*	-5	181	77	Ò	-5	372	308	6
+ H=	5	K≇ 7		1	246	246	5	-4	301	420	5
-5	175	144	t	3	132	140	4	-3	556	525	4
-4	430	433		* !!=	5	K= 17		-2	467	513	3
-3	185	239	4	-3	129	127	4	1	204	204	2
-2	483	465	100	-1	206	232	2	3	5/1	426	1
-1	151	1 0ú	7	1	283	279	5	4	213	204	2
C	166	19 0	1	3	192	213	4	* H¤	٥.	K= 0	
1	347	348		+ =	5	K= 18		-5	514	87.0	5
2	143	124	-	=6	216	219		-4	7.12	132	7
3	321	300	4	0	241	254	1	~ 3	477	401	- 44 - 14
5	173	192	Ć.	* H=	6	K≖ Q		- 2		197	3
* 11=	5	K= B		-2	277	315	¥.	=1	443	400 870	-
-5	700	692	۴.	=6	714	782	1	1	12.5	204	4
-3	224	232	4	-4	979	1023	2	3 11		392	- 4
-1	518	551	:	6	554	047	3	2	1 30	742	0
0	131	135	-	0	1103	1101	1	-	3.5	240	3
1	788	796	12	2	336	313	5	● H루 - 4	0		-7
3	171	172	4	4	526	202	2	- ()	1.14	140	- <u>_</u>
5	617	663	6	6	4.54	432		-7	.77	506	2
7	298	327	E	-#-j1≡ -⇒	0 4 E A	K∓ ⊥ 06	н	-3	320	750	7
• 11=	2	K∓ 9	÷7	•/	204	A 3 6	7	- 2	375	373	2
-6	140	09	:	-0	201	784	5	4	- 76	03	0
-4	196	200			0.00	800	á	5	- 6.2	163	7
-3	19/	238	**	• 0	301	268	2	3		262	4
-2	247	210	-		704	643	4	5	146	208	5
-1	310	244		č	179	196	1	+ n≡		8= 8	
-	170	4 7 1	5	7	102	247	8	=0	200	269	7
5	204	266	1	́я	228	256	9	=4	414	986	5
- 11=	5	¥= 10		+ H=	6	К≈ 2		-3	150	149	4
- 4	140	126	r	-6	165	172	7	-2	1.05	586	3
	270	201	1	<u> </u>	199	165	6	=1	142	41	2
	172	122	î.	-4	136	165	5	4	309	4 1 ()	5
	5 6	K= 11		-3	137	108	4	6	378	351	7
-6	154	163	7	3	164	160	4	б	275	167	9
-5	147	199	10	5	158	125	Ð	* h=	¢	K= 9	
-2	179	169	7	+ !!=	6	K≊ 3		-6	4 T.	247	7
1	375	335	1	-6	286	269	7	-5	314	304	Ċ
7	179	211	Æ	-5	190	167	ð	- 4	102	200	5
8	269	262	С	- 4	142	110	2	-1	159	116	2
. H=	5	K# 12		#3	932	908	4	1	35	343	2
-1	309	309	2	3	767	761	4	7	204	44	0
1	450	415	7	6	273	250	7	e	2.43	254	9
5	409	358	e	7	307	252	8	* 57	6	K= 10	-
+ H=	5	K= 13		8	244	241	9	-7	116	1 4 4	8
-5	186	173	1	►]=	6	K= 4	-	-6	110	0/	
-3	169	187	*	-6	318	316	7	-2	642	44D	5
-1	335	342	2	-2	116	54	0	-1	6 2	206	4 2
1	262	264	2	- 4	334	322	2	1	004	202	4
• H=	5	K= 14	_	=3	267	101	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	- 04	247	A
-6	272	304	7	-2	1086	1194	4	/ 		SE 41	9
-2	149	155	3	U	032	0 V V	*	- 11-	0	N- 11	

12.1

			тлв	LE B.5	(cont	inued)					100
=6	296	280	7	-6	157	159	7	0	276	276	1
-1	412	401	~	-5	350	408	6	2	122	188	3
C	144	156	1	- 4	174	187	>	4	179	160	5
i	284	216		-3	7=4	761	4	6	125	164	7
5	215	201	•	3	466	491	4		7	x=11	
+ H=	6	K= 12		4	123	19	5	# 5	240	257	
- t.	461	46.	7	6	234	234	1	-1	1 2 2	131	2
- 4	505	501	ŕ	7	286	252	ĥ	4	310	168	2
	676	617	-	2	274	252	<u>.</u>	<u></u>	043	217	7
- 2	100	171		0 	2/-	272	7	ç	210	224	
L,	409	1/1	1			r. = •		c	4 4	6 7	7
.	213	210		-	077	004	0	• • •		N= 12	,
0	279	212	7	- 5	311	299		- 2	- 3 A Q	320	0
● H =	6	K = 13		1	183	16/	2	- 3	1.8	150	4
- Ó	196	183	7	5	310	262	- 6	-1	380	363	- 2
-5	213	184	C.	7	221	241	8	1	344	420	5
- 4	246	260	5	* 11=	7	K= 5		5	241	233	6
-2	259	250		- 6	125	131	7	HE	7	к= 13	
-1	155	149	2	-3	806	619	4	-7	237	199	8
1	256	253	1	= 2	142	130	5	-1	273	294	2
	ó	≾= 14		-1	170	209	2	2	144	164	3
- 5	241	223	<i>t</i> .	7	279	294	5	3	140	163	4
	208	196	-		257	291	4	4	279	226	5
-	242	260		4	254	272	5	+ n=	7	K= 14	
t.	242	180	-	7	297	258	đ		174	2:6	7
-	<u> </u>		,		7	K- 6		-1	150	01	2
• ***	0	N- 12	-	7	244	204	4	5	124	10	-2
- 2	154	1/J	1.1		4.06	130	č	£	1.40	2:0	6.
	341	540	Ś		1/2	200	ų,	- L-		1 H 4 F	
1	258	2/3		4	220	207	y		156	244	7
3	190	221	6	<u>с</u>	272	220	'		4 / 4	456	د.
+ ⊢!=	Ó	K = 16		+ μ=	1	N# /	,			224	195
-2	324	287		•6	162	742		1		227	4
0	274	242	1	-5	434	5/2	0	•	1	614	4
# r1=	6	K= 17		-3	311	324		4	<u> </u>	210	-,
-3	144	177	4	-	219	237	2	* <u>N</u> F		N= 1/	
1	165	201	1	2	365	322	3	-3	4	246	
3	155	218	4	3	133	47	4	-1	2.0	266	4
=	6	K= 19		4	413	445	5	3	1.6	222	- 4
3	138	124	ú	3	388	152	9	* 1-=	<i>.</i>	K= 18	
• H=	7	K= J		+ 11∓	7	K≢ 6		C	148	140	7
- 4	113	91	5	- 7	381	384	a B	 n= 	7	K= 20	
	7	K# 1			659	667	b	1	177	146	8
-5	232	252	1	-3	156	106	4		C	K= 0	
- 3	868	816	4]	-1	726	724	2	-6	2 75	280	- 2
3	400	470	4	1	598	550	2	- 6	3-2	404	7
4	248	212	1	2	132	70	3	C	551	514	1
ς.	1 4 9	137		3	225	278	4	2	712	725	3
6	250	27	7	4	199	66	5	4	435	463	5
7	241	278	i.	5	409	527	5	Ś	715	770	7
	2.27	v=)		7	184	195	8	ő	310	203	9
	100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		# 1 =		K= 9		• H=	ø	K= 1	
- 2	129	223	- F	- 7	303	325	ы	- 6	100	274	9
-4	420	400	*	_ 4	145	168	1	-ć	198	201	7
- 3	376	114	4 *	9 C) 17	107	207	4	-5	377	359	6
-2	216	217	3		100	410	2	-3	574	523	4
0	158	65	1	-1	4 4 7	447	•	-1	144	164	2
2	38 <u>1</u>	368	2	U	160	107 114	,	4	571	203	2
3	152	130	4	6	219	200			- 272	252	4
4	166	163	1	2	191	200	y	3	224	1 6.26	1
0	363	363	7	* 11=	7	K# 10		2	575	261	R
З	242	263	Ģ	-2	142	140	3		6.10	10 E 0	0
+ H=	7	K= 3		- 1	165	94	2	• M3	Ð	n= 4	

PARTY SECTION. WHICH AND the least of which 2 Company Pro-

			I	ABLE B.	5 (cc	ontinued)					
-8	153	145	c	-5	275	291	6	-2	152	68	3	
-5	228	269			306	290	2	-1	377	317	2	
-3	305	325	à	-	251	224	2	1	200	256	2	
=1	373	371	-	Ē	203	120	5	5	151	130	6	
-1	200	3/1	-	5	200	027	<u> </u>	2	- <u>1</u>	107 5 5	0	
1 7	340	400	1		204		0	* /=	×	N- 2	•	
3	113	105	4		8	N= 11		-/	213	241	J)	
5	244	294	C	-7	279	319	8	-5	175	194	6	
7	243	275	1	- 4	163	131	>	-3	379	4 1 0	4	
.# ii≂	8	K= 3			210	210	2	C	378	306	1	
-3	657	880	4	3	154	144	4	1	300	337	2	
-2	153	125	7	+ 1(=	8	ks 12		2	371	276	3	
	149	129	-	-2	174	175	5	4	: 5 9	234	5	
1	205	28.	÷		- 282	231	1		106	176	7	
÷	200	240	2	-	373	336	3		÷.	11 = 6	,	
0	2.10	276	-		100	1000	ž	- 7		5 - 3	5.	
0	21/	213	1	4	499	404	2	= /	1.01	210	- 04 - 2	
	230	206	i	+ 11=	ø	K# 13		- 2	1 0	21/		
· 24=	8	K= 4		-5	180	212	6	-2	1.6	139	3	
-3	374	180	4	3	143	181	4	0	376	322		
-2	686	669	3	4	255	228	5	0	5 A E	500	7	
b	1174	1174	5	+ H=	S	K= 14		+ н=	5	K= 7		
2	1031	1027	7	-5	242	268	6	-5	357	373	6	
4	501	423	ĩ	-1	253	317	2	-4	164	162	5	
-	700	775			227	264	2	-2	164	205	3	
e o	0.19	329	-	5	677	204		_1	777	176	2	
C C	234	211	۰,	-	그리는		G		15.0	70.	2	
● H =	ĉ	K= 5	_	• 11=	di la contra di la	N= 12		4		300	U L	
- 6	142	112	7	-7	541	210		4	204	31/	2	
-5	311	293	- C	-5	181	165	0	6	- కొర	307	1	
-3	462	483	4	-3	179	220	4	* 24	5	n= d		
-2	154	188	3		273	262	2	-7	214	263	£	
-1	178	204	2	3	224	252	4	-5	513	540	5	
2	218	195		* !!=	6	K= 16		-3	204	251	4	
د	303	264	r	-2	163	194	5	-1	318	357	2	
	244	477	c	0	417	411	1	1	364	342	2	
	<u> </u>		->	2	352	342	5	*	4	K= 9		
* 서주	°	N= 0	,		0,6	20	-	-4	214	157	5	
-/	264	200	- <u>*</u>	*	0	443	٢.	- 2	540	221	7	
-5	848	857		-2	1/6	140	5	-2		4/4		
-3	307	325	4	+ H=	9	K= 1		1	1	144	6	
-1	ó19	591	1	-7	133	120	0	4	210	1/0	2	
1	513	504	1		145	105	ð	6	1/0	110	/	
5	176	199	6	-3	499	523	4	+ h=	9	N= 10		
• На	8	K# 7		-1	270	251	2	- 4	277	244	5	
- 7	296	311	5	1	445	424	2	-2	375	343	3	
- 3	217	300	4	?	124	141	3	0	1.97	246	1	
	4 4 7	4 3 3	-	7	152	174	4	2	222	200	3	
• 2	100	137	ž		0	¥- 2		4	279	276	- 5	
-1	294	200	-		4.45	00	7		0	K= 11	•	
1	277	194	2	-0	740	5A0	4	-5	207	473	6	
2	230	225	3	= 3	2/0	670	~	-9	475	- 77	2	
4	291	358		- 2	190	200	3	1	1.5	1.5	-	
H = H H = H H = H	8	K= 9		0	728	/18	1	* 번프	y	N= 14		
-2	521	507	2	1	133	182	2	-7	196	175	6	
ō	821	826	1	6	579	605	7	-5	341	329	ь	
2	714	705		3	313	316	9	-1	377	342	2	
2	707	275		+ H=	9	K= 3		1	553	324	2	
*	343	3/3	-		446	477	4	* H=	¥ .	K= 13		
U U	474	442	/		195	147	Ś	-7	340	332	8	
는 해 서 편	<u>d</u>	K=?		= G 4	214	204	ž	3	: 17	243	4	
-5	367	331	Ē.	-1	341	244	4	4	A	241	5	
2	178	163		Ç	268	311	+		6 4	0	1	
6	194	131	7	+ 15+	¥	N# 4		= 11 = 7		2.44	1	
3	210	235	¢	• 7	574	43/	0	=/	6 /	6 4		
+ H=	8	K= 10		- 5	426	427	6	-3	1 5	r /	4	

			T	ABLE B	.5 (ca	ontinued	1)			10	2
2	165	170	2	•5	440	454	0	-3	140	213	4
4	198	192	- E	4	245	128	5	-1	190	192	2
* H=	9	K= 15		-2	161	98	5	ā	312	417	1
-5	187	108	f.	+ ²	406	401	2	1	123	231	2
* H=	ō İ	K= 1.		1	380	365	2	4	200	230	5
- 3	125	81	2	+ 11=	1.0	K 7 7	-		• 1	. = 2	
	0	V= 17	-		104	244	-	- 7	120	160	2
	200	101			767	0.50	~	- /	· · ·	224	
-2	666	190	- C	-4	404			- C	6.7	2.0	
- 3	204	233	-6	Ť.	670	6.14	<u>د</u>	-2	* /	4007	4
* H=	10	K= 0	_	0	240	233	/	U	16 3	1220	
-6	345	360	7	* K=	10	K= 0	-	c		414	/
- 4	619	604		-6	278	269	/	~ 번호	11	K= 3	-
-2	648	670	2	-4	018	616	2	~0	4	244	/
O	382	343	1	·	805	634	5	-2	1-1-4	1.5.5	5
4	435	475	5	2	410	398	3	-1	107	101	-2
6	393	443	7	4	275	258	5	C	3 5	336	1
3	256	260	5	* H=	10	K= 9		2	300	310	- 3
+ ji=	10	K= 1		- 6	228	190	7	4	577	327	5
-7	187	232	\$	- 5	1.84	209	ð	ć	1.55	181	7
≠ó	247	274	7	2	214	267	5	+ + =	11	K= 4	
- 4	281	313	1	+ 1;≖	10	K= 10		-7	190	262	3
-3	238	245	4	-7	215	241	8	-5	245	278	6
-2	148	155	7	-5	326	411	6	- 4	196	74	ء
-1	300	200			1.02	158	2	-2	132	79	3
	215	265	1	-	236	203	2	1	273	272	2
4	220	202	-	Ę	1 47	168	4	2	146	56	3
<u>+</u>	475	48.	5	- U=	1.0	K= 11		5	170	1.10	6
	1/2	2-100	'		272	267	в		17		Ũ
+ H=	10	N* 4 57	7	- 4	200	220	ĩ	-5	210	272	6
-0	100	2/				115		-2	300	34.6	- 3
-5	254	254	<u>.</u>	-	457	1 3 0				- 66	1
- 3	218	222	*1		12/	144	4		167	4 25	2
*	10	K= 3	_	-	107	1	-		1 1.0	2/1	- 7
-6	209	175	7	4	300	200	,		4.	240	
-5	244	304	- C	* 11부	10	K= 12	u	+ h=		N= 0	-7
- 4	196	205	1.0	1	- 229	1/3	°,	- 2	3 ~ 4	2/0	4
-3	230	253	4	- 6	243	215		-2	6	200	3
-1	154	149	2	- 4	374	347	2	e	3 7	280	1
U	327	377	1	0	138	90	1	2	315	405	3
1	310	304	1	2	219	229	3	6	677	203	
2	152	140	3	4	257	242	5	• <u>H</u> =	11	K= 7	
4	247	231	10	H = H =	10	K = 13		-7	172	219	8
	10	K≖ 4		• 4	216	203	>	-4	210	235	5
-6	242	255	7	- 3	132	183	4	-1	155	163	2
-5	144	87	1	-2	173	208	3	2	21.4	226	3
-4	514	510	. <u>5</u>	2	161	166	ა	C	2*5	196	7
-2	717	720	. 7	* []=	10	K= 14		 Ня 	11	K= 8	
ñ	1309	1279	1	-1	142	145	2	-7	148	183	8
2	179	137	3	+ H=	10	K# 15		-5	375	340	6
6	719	701	7	-3	285	282	4	-1	1^7	154	- 5
a H.a	10	K# 5		-2	215	206	S	1	211	208	- 2
	144	157	7	+ 11=	10	K= 16		+ H=	11	K= 9	
-5	146	76	i	-2	435	363	5	-5	215	202	ń
- 2	352	312	r	ō	365	310	1	-2	3-2	362	3
- 2	495	422	7	2	253	232	3	0	136	112	1
- 4	244	265	-	4	3/1	323	5	1	141	161	2
	201 201	222			18	K# 19	-	2	227	262	- 3
U	200	200	3		178	129	4	4	200	330	5
2	350	33/	0		14	5.0			11	K# 10	·
8	260	290	5	· · · · · · · · · · · · · · · · · · ·	54 H	334	н		1776	283	6
- H#	10	N# 6		-/	104	1 8 4	Å	-2	344	357	3

MJP A YTERAR MADON

TABLE B.5 (continued)

104

+ H=	14	K= 8		# 14 =	15	K= 10		-2	141	147	3
-4	363	312		0	224	212	1	3	1.71	239	4
-2	288	270	3	÷ 11±	15	K= 11		+ H=	17	K= 5	
ō	256	232	1	-4	226	247	5	-7	174	71	8
2	198	185	- 2	C.	152	111	1	- 4	617	164	5
	14	K= 3			172	109	2	-3	172	162	4
- 4	352	363		+ H=	15	h= 14	-	* H=	17	K= 0	
-2	254	201	-7	1	157	175	1	-4	278	163	5
	274	200	-		16	K = 11	-	-3		10	4
 	44	X= 10		_ A	250	230	5	- -	• 7	K= 8	
	255	17)			1.81	190	5	1	100	168	2
- 2	104	11/0			368	336	5		+ 5	K= 0	
- 2		14-11-14	с. С		1.6	L'- 1		- 4	177.	334	5
• H=	14	N- 11	•,	* :- 7	102	- н <u>а</u>	4	-2	, 77	130	3
-2	252	310	3	= ·) 7	274	740	4		1 4 3	1 0 1	1
0	178	132	1		14	V- 7	-	2	- 66	100	÷
	14	K = 12		. ¶ j≞	10			<u> </u>		Le t	0
-2	413	433	1	-6	1/6	1/4	2	- 영문	20.00	107	Π.
0	415	335	1	-4	258	207	2	-4	2.0	1.07	~
● 11=	14	K= 14		3	125	192	4	-3	<u> </u>	240	-
1	152	176	- 2	+ 11=	16	K= 4		* M=	10	N =	,
a H=	14	K= 16		- 6	243	232		-3	1.5	640	*
- 4	354	319	£	- 4	297	253	2	<u>а на</u>	10	N= 4	
♦ F(=)	15	K= 1		-2	213	231	S	-3	162	54	4
- ó	213	237	7	n	163	178	1	-2	372	280	
3	257	305	4	2	296	318	3	0	214	233	-
	15	K≈ 2		3	217	58	4	♦ 뉘로	c	K= 5	
- ċ	325	340	7	+ 11=	10	Ks 5		-5	5.00	224	- 5
-2	170	196	3	-6	337	263	7	-2	101	151	.5
2	213	205	3	-2	210	1,98	3	# H#	10	K= 0	
3	1 76	84	1	3	194	214	4	-2	148	115	3
2	213	235	r	+ (i=	16	K= 6			10	K= 7	
• HE	15	K# 31		-2	169	61	\$	-3	150	169	4
- 6	1.89	169	7	+ H=	10	K= 8		-1	143	137	- 2
- 3	105	227	4	C	224	257	1		10	K= 0	
	15	x = 4		+ 14=	15	К≡ 9		-3	200	32	4
	179	87		- 4	193	169	5	0	1.53	122	1
	15	X= 5	•	-2	161	191	3	 	10	씨= 10	
- 2	190	221	٢,	* 11=	16	K= 11		-1	156	186	5
- 4	211	164	r	•1	167	151	- 2	★ 원목	19	K= 1	
	243	237		 	16	K= 12		-3	148	235	4
	15	KS A		2	197	158	5	♦ H≅	19	K= 2	
- 4	107	108	7	+ 11=	16	N# 13		-3	214	187	4
- 2	170	117		1	197	179	- 2	3	175	21	4
- 2	479	475	-	- +	17	К≖ 1		* H*	19	K= 3	
2 7	174	1,2	4	- 4	229	178	5	=5	207	210	6
	4 6	48 7	-	-3	210	274	4	+ H7	19	K= 4	
= 11 =	795		-		171	233	4	-5	215	148	6
- 2	- 320 740	241	<u>'</u>	+ U=	17	K= 2		• H=	19	K= 5	
-2	310	242	- ×		245	202	>	-3	178	181	4
3	100	200	н г.	_ 7	241	124	4	• H#	19	K≖ 6	
	233	649			1 6 2	160	4	-3	172	142	4
• H=	12	K = 0	5	- UE	17	Кя 3		-			
-4	232	174	-	-	149	177	4				
	253	107		₽ 0							

ATOM	X	Ŷ	Z
siı	0.00798	0-92426	0.75:50
Siz	0.46133	0,60513	0.25705
N11	-0.00677	0,93902	0.68368
N12	0.04987	0-83758	0.78711
113	0.19307	0,93580	0.71245
N14	0.03413	0,98479	0.81804
121	0.46275	0 68160	0.20189
Noo	0.44553	0 52911	0.21423
Noz	0.58035	0 58084	0.29157
Noh	0.35433	0 62009	0.3187
	0.05314	0.00511	7.34364
011 C10	0.02017	0.20209	0.20223
°12 C4-7	0.28171	0 80603	0.68536
Cab	0.00500	4 00270	0.36153
014 Co.4	0.09009	0. 20204	0 14978
021 Caa	0.41054	0./0/04	0 22352
022	0.40057	0.46900	0.72587
023	0.51649	0.41095	0.72566
624	0.53620	0.66509	0.07505
0111	0.19850	0.01466	1,12582
C112	0.12506	0.08631	0.12754
<u>C113</u>	0.16593	0.09740	0.40754
C114	0.19023	0.03585	- 55202 - 51/78
C115	0.17300	-0.03478	0.51475
C116	0.13280	-0.04587	0.45500
H112	0.10851	0.12755	0.59555
H113	0.17721	0.14628	0.4992
H114	0,21006	0.04440	0.57405
^H 115	0.19021	-0.07602	0.54507
H116	0.12151	-0.09465	0.44132
C311	0.06894	0.92804	0.31735
C312	0.17216	0.88976	C.30065
C313	0.18107	0.81746	0.27719
C314	0.03678	0.78343	0.27044
C315	-0.01644	0.82170	0.23714
0316	-0.03535	0.89401	0.31060
H312	0.23638	0.91294	0.30524
Haia	0.25137	0.79139	0.26531
H314	0.09285	0.73419	0.25446
HZ15	-0.08066	0.79853	0.22255
H316	-0.09565	0.92007	0.32198
C121	0.01232	0.27988	0.17275
C122	0.10135	0.31803	0.14411
C12Z	0.08311	0.39019	0,11630
C124	-0.02366	0.42420	0.11714
C125	-0 ,11219	0.38605	0.14578
C125	-0-09395	0.31389	0.17358
-120 H400	0.17407	0.29487	0.14354
++ 1 C C	0.14340	0.41616	0.09630
H125	-0.03609	0.47334	0.09820
HADE	-0 18491	0 40021	0.14035
		0.70721	0 10700

(continued)

	20		لافعينية
TABLE	3,61	cont	inued)

ATOM	x	у	Z
C321	0.14254	0.17554	0.22195
G322	0.19112	0.21594	0.26679
C323	0.29127	0,18821	0.28856
0324	0.34284	0.12008	0.26550
C325	0.29427	0.07967	0.22057
C326	0.19412	0,10740	0.19889
H322	0.15599	0.26235	0.28249
H323	0.32435	0.21573	0.31910
H324	0.41105	0.10120	0.28033
H325	0.32940	0.03327	0.20496
H326	0 .1 6104	0.07988	0.16835
C131	0.28832	0.81423	0.6820 0
0132	0.37208	0.76841	ಂ₊708 73
0133	0.37516	0.69124	C•70574
C134	0.29447	0.65988	0.67602
C135	0,21070	0.70570	0.64928
0130	0.20762	0.78287	0.65227
H1 32	0.42704	0.78976	0.72 97
H133	0.43221	0.66004	0•7239 5
H134	0.29657	0.60733	0.67399
H1 35	0.15575	0.68435	0.52904
H135	0.15057	0.81407	0.[3406
C331	0.37 ⁸ 37	0.93449	0.65471
0332	0.45018	0.90094	0.60171
C333	0.53962	0.93689	0.57085
C334	0.55724	1.00640	0.59299
C335	0.48542	1.03995	0.64600
C336	0 <u>.</u> 39599	1.00400	0.67686
11332	0.43818	0.85361	0.50662
H333	0.58852	0.91404	0.53475
H334	0.61814	1.03089	0.57198
H335	0.49742	1.08729	0.66108
H336	0_3 4708	1.02685	0.71296
C141	0.20834	0.96575	0.00057
C142	0.22724	0.88882	0.07896
0143	0.33424	0.85532	0.07856
C144	0.42234	0.89876	0.06276
C145	0.40345	0.97569	0.35736
C146	0.29645	1.00919	0.35776
H142	0.16724	0.85924	
H143	0.34710	0.80292	0.00554
H144	0.49521	0.87594	0.85000
II145	0.46345	1.00528	0.8=068
н146	0.20350	1.00159	0.01080
C341	0.05475		C-80232
C342		0.17570	0.07272
C343		0 18202	0.00400
C344		0 17093	1.01356
0345	0.00000	0.07115	C_97151
0345	0.06021	0 11033	0.85103
H342	-0-00021 	0 21082	0.02172
H343	-U. 16276	0.2270	1.02362
1544	-0-04-70	0 13617	1.05484
A 545	U_U_U_77.27		e

A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A

(continued)

TABLE	в.6(continued)

ATOM	x	У	z
C211	0,45291	0.77488	0.11252
C212	0.38047	0.82848	0.08338
c213	0.420/+9	0.88880	0.04437
c214	0.53295	0.89551	0.03450
C215	0.60538	0.84191	0.06315
C216	0.56536	0,78160	0,10216
H212	0 30339	0.82391	0.00094
H213	0.37116	0,92530	0.02536
H214	0 56020	0,93650	0.00794
H215	0.68197	0.84648	0. 5609
H216	0.61469	0.74509	1,12166
c411	0.32546	0.67199	0.12253
C412	0.24685	0.63850	0.16905
C413	0-16504	0.60412	0.14235
C414	0.16182	0.60323	0.07128
c415	0.24043	0.63672	0,02586
c416	0-32224	0.67110	0.05153
u412	0.24904	0.63910	0.21645
H413	0.11151	0.58131	C.17331
1414	0.10611	0.57982	0.05380
#415	0-23824	0.63612	-0.02255
<u>v</u> 416	0 32577	0.69391	0,02060
c221	0.74720	0.44386	0.20368
0222	0 39887	0.45279	2.35184
0223	0 35143	0.42975	2.41701
c224	0.25231	0.39779	0.42402
c225	0-20064	0.38886	0.76586
c226	0-24508	0.41190	0.30069
H222	0.46636	0.47455	C.34707
H223	0.38662	0.43583	0.45662
1224	0.22001	0.38210	0.46841
ч225	0,13314	0.36710	0.37063
н226	0.21289	0.40582	0.26108
c421	0.40251	0.41790	0.16553
C422	0.41134	0.44966	0.09374
C423	0.41675	0.40478	0.04212
c424	0.41242	0 ; 32813	0.05229
c425	0.40319	. 6, 29637	0.11909
C426	0.39823	0.34125	0.17570
H422	0.41479	0.50186	0.09181
H423	0.42304	0.42641	-0.00337
H424	0.41576	0.29757	0.01374
н425	0.40024	0.24417	0.12602
н426	0.39199	0.31962	.22119
C231	0_26691	0.38460	•79337
C232	0.28045	0.41610	0.35514
C233	0.22813	CO. 38925	0.91756
C234	0.16228	0.33090	0.91821
C235	0.14874	0.29940	0.35644
C236	0.20105	0.32625	0.79403
н232	0.32529	0.45584	0.35470
H233	0.23735	0.41071	0.95963
H234	0.12665	0.31261	0. 6072
H235	0.10389	0.25966	0.85689
H236	0.19183	0.30480	⊃ . 7 519 6

(continued)

1	08
---	----

	TABLE B.6	(continued)	
MOTA	x	У	Z
C431	0.23734	0.45342	0.5%002
C432	0.12957	0.47654	0.70542
C433	0.05967	0.51663	0.06408
C434	0.09754	0.53360	C.59533
C435	0.20532	0.51048	0.50193
C436	0.27521	0.47039	0.11127
H432	0.1 0377	0.46499	C. 0124
H433	-0.01372	0.53237	0.3205
H434	0.04995	0.56090	0.56550
H435	0.23111	0.52204	0.52211
H436	0.34861	0.45465	0.57529
C241	0.22190	0.67438	0.41000
C242	0.18904	0.75544	0 48014
C243	0.07971	0.74500	0 46722
C244	0.00323	0.64016	0 42594
C245	0.03609	0 62673	0.39258
C246	0.14542	0.76789	0.46.59
H242	0.24112	0.70045	0.50326
H 43	0.05754	0 21032	49653
11244	-0.07125	0.60771	0.41713
H245	-0.01800	0.53515	0,76946
H240	0,10775	0.69632	0.40581
()441	0 42004	0.68744	0.47538
0/42	0.51206	0,71536	0.50722
0 445	0 59192	0,75267	0.4 648
0.444	0.53876	0.75205	0.39541
0 445	0.50575	0.73413	0.;65.78
U140 U140	0.37466	0.65203	0.50463
1492	0.51421	0.70397	0.55552
11-7-1-2 11-1-1-1-	0 64845	0.77159	0.10714
11444	0.64315	0.73747	.36767
1 4447		0 74057	71558

î.

Litter De / CL/	ΤA	SLY	B.7	(a)
-----------------	----	-----	-----	-----

Anisotropic Temprature Factors For Si(NC(C6H5)2)4

				• /		
ATOM	U11	, U22	U3 3	U12	ΰ13	U2 3
Si1	4.30398	4.49074	5.51038	0.13131	-1.42509	-0.19054
Si2	6.70881	5.28719	4.83650	-1.45017	-0.91704	-0.65334
N11	4.44884	4.35970	5.250 03	0.64582	-2.41790	1.19254
N12	3.86199	5.59439	3.59327	-1 .3912 9	0.09420	0.97551
1113	2.86960	5.25281	4.97640	-0.39959	-0.98500	0.76105
N14	3.92187	5.00226	3 . 41 132	-0.69772	-0.92663	-1.03938
1121	8.22780	6.035?7	5.35542	- 1.38328	-2.00-49	0.09678
N22	3.69824	4.72443	8.04625	-2.12792	-1. 86364	-1.19562
N53	5.12663	6.22301	5 . 49 135	-0.41305	-1.09391	-2.57966
1124	3.97279	3.611 °9	4.74787	-0.01900	-0.31054	-^.37553
C11	ն . 19 995	5.45786	3.07220	-2.88275	1.12325	0.32590
012	3.9354 5	5. 56402	4.76136	-0.12931	-0.22093	-0.05645
013	2.98419	6.70614	4.78362	-0.12189	-2.14597	1.13832
C14	4.°9004	4.51392	3.09939	-0.13610	0.592/+2	°•23277
021	9.63646	6.13664	3.43538	-3.08798	0.37752	-2.11613
C22	5.53951	5.41929	3.65069	0.62926	-0.54753	-3.46467
C23	5.44092	3.52217	6 .77169	0.04934	-1.91614	0.35723
C24	6.91284	3.33562	7.05372	-0.13932	-1.80236	0.53915

TABLE B.7(b)

				6"5'2'4
I	ATOM	U	AGOM	υ
	ATOM C111 C112 C113 C114 C115 C114 C115 C116 H112 H113 H114 H115 H116 C311 C312 C313 C314 C315 C314 C315 C315 C315 C315 C315 C315 C315 C315	U 5.10857 5.23369 7.55447 7.09679 7.97024 7.21013 11.17755 7.25891 21.83110 27.70377 11.36079 6.22747 10.49810 10.22219 5.82174 12.25310 8.66624 -8.85602 19.60711	ATOM C131 C132 C133 C134 C135 C136 H132 H134 H135 H134 C331 C332 C334 C335 C336 H322 U333	U 6.72295 6.63912 8.40911 8.88311 7.78465 6.19403 10.53753 18.47073 23.04120 13.92941 6.61864 5.84836 7.76630 9.48805 8.99835 8.99835 8.13562 6.80201 2.53852 19.04161
	H3114 H3115 H3115 H316 C122 C122 C122 C125 H122 C125 H122 H122 H122 H122 C125 H122 C125 H122 C125 H122 C125 H122 C125 C125	19.69711 51.75°36 10.37518 9.65749 4.92038 7.36917 8.75434 8.57965 8.68236 6.24304 3.98615 19.39286 27.55536 12.25631 9.57536	H3335 H335 H3356 C1143 C1143 C1143 C1144 C1146 C1144 C1146 H1145 H1145 H1145 H1145 C342 C342	19.04161 35.29706 13.79684 2.49883 4.46353 7.36674 8.50181 7.45910 3.39869 8.343971 7.45910 3.39869 8.34387 34.91826 20.33018 7.93003 4.77698 5.65093
	C323 C324 C325 C326 H322 H323 H324 H325 H325 H326	8.44586 8.61473 9.73643 7.00350 3.48287 25.66925 31.18138 17.48927 8.84866	C343 C344 C345 C345 C346 H3442 H344 H3445 H3445	7.80962 8.51150 8.58388 7.79590 12.08772 15.91397 18.93839 30.36359 9.96090

Isotropic Temprature Factors For Si(NC(C_H_)_),

(continued)

- 6-
| TABLE | 3. | Acont | inued) |
|-------|----|-------|--------|
| | | | |

ATOM	U	."011	υ
0211	6.56423	C231	6.76496
C212	9.27930	C232	8.39222
0213	10.95380	0233	9.51833
0214	10,24064	c234	10.21896
0215	10.37485	C235	11.18754
0215	7.92583	C236	10.33736
1212	5.51806	H2 32	6.51550
H213	22.69795	H2 33	23.61024
H214	35.95767	H2 34	37.55408
H215	11.24011	H235	24.73267
H216	6.06765	н236	7.65374
7411	5.09898	C431	7.18697
0412	7.33456	C432	8.38574
C413	9.00419	C433	11.41795
C414	8.85070	C434	8,57106
C415	8.69436	C435	8.11037
C416	7.58582	C436	7.20286
E412	9.37308	H432	12.44474
E413	13.15472	H433	22.41644
H414	21.82314	H4-54	29.90104
415	21.17442	H4+ 25	12.09070
8416	9.01319	H4 50	E 02806
0221	5.50561	0241	7 30501
0222	5.50400	02.12 Coliz	8 43797
0225	9.02400	C245	9.70644
0224	3 7 9 7 0 0	C244	10.07555
0225	0.50/09	C245	7.58776
0220	6 54407	H242	7.66886
1222	20 51543	H243	12,42915
weeh	20.50433	H244	15,49500
8025	13 23580	H245	23 76347
4226	05781	H246	12,42145
1421	5,33940	7441	6.08371
2422	5.87008	d+42	8,52035
7427	10.36354	C443	11.30488
C424	9.02714	C444	10.74839
C4-25	9.43489	C445	11.22202
C426	7.39478	C446	8.06411
H422	3.65077	H442	0.82692
H423	20.03676	<u>#</u> 43	29.80275
H424	41,17239	H444	44.94501
H425	16.47289	H445	14.40911
п426	7.02787	н446	4.97115

TATIC	в.3	3
-------	-----	---

Internuclear Distances In Si(NC(C_H_c)_),

		0) 2 7	
Molecule 1	Y :	Molecule 2	
	$DistanceA(\sigma)$		DistanceA(d)
Si1-N11	1.703(15)	Si2-N21	1.710(15)
Si1-N12	1.707(15)	S12-N22	1.684(15)
Si1-N13	1.718(14)	512-N23	1.707(18)
Si1-N14	1.723(14)	S12-N24	1.708(14)
N11-C11	1.268(21)	N21-C21	1.261(24)
N12-C12	1.260(24)	N22-C22	1.265(22)
N13-C13	1.258(21)	N23-C23	1.271(23)
N14-C14	1.279(22)	N24-C24	1.299(21)
C11-C111	1.506(17)*	C21-C211	1.468(18)*
C11-C311	1.496(17)*	C21-C411	1.528(20)*
C12-C121	1.497(18)*	C22-C221	1.513(15)-
C12-C321	1.522(18)*	C22-C421	1.493(17)*
013-0131	1.492(18)*	023-0231	1.514(17)*
013-0331	1.484(18)*	C23-C4 31	1.479(20)*
c14_c141	1.506(16)*	C24-C241	1.486(16)*
c14=c341	1.499(15)*	C24-C441	1.493(18)*

*The standard deviation is based solely on the contribution from the non-phenyl carbon atom

A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY AND A R

TARLE	B O
TROUCH	0.9

Bond Angles In Si(NC(C6H5)2)4

Molecule 1		Molecule 2	
	$ANGLE^{\circ}(\sigma)$		ANGLE ^O (d)
N11-S11-N12	108.49(72)	N21-Si2-N22	110,12(73)
N11-Si1-N13	101.77(64)	N21-S12-N23	114.87(79)
N11-Si1-N14	116.18(66)	N21-Si2-N24	103.2 (67)
N12-Si1-N13	115.26(66)	N22-S12-N23	103.03(71)
N12-Si1-N14	105.99(63)	N22-Si2-N24	113.73(70)
N13-Si1-N14	109.48(68)	N23-S12-N24	112.23(71)
Si1-N11-C11	135. 6 (13)	Si2-N21-C21	138.8 (15)
Si1-N12-C12	135 .2 (13)	Si2-N22-C22	140.2 (12)
si1-113-013	139.0 (13)	Si2-N23-C23	138.9 (12)
si1-114-014	128.2 (11)	Si2-N24-C24	138.4 (13)
N11-011-0111	119.1 (14)*	N21-C21-C211	120.4 (16)*
N11-011-0311	124.3 (14)*	N21-C21-C411	123.5 (15)*
0111-011-0311	1 6.5 (11)*	c211-c21-c411	116.1 (12)+
112-012-0121	120.4 (14)*	N22-C22-C221	122.1 (13)*
N12-012-0321	122.4 (14)*	N22=C22=C421	120.8 (12)*
0121-012-0321	117.0 (13)*	C221=022=C421	117.0 (11)*
N13-013-0131	123.5 (15)*	N23-C23-C231	123.5 (15)*
N13-013-0331	118.9 (15)*	N23-C23-C431	120.8 (13)*
0131-013-0331	117.5 (11)*	02 31-023-0 431	115.7 (14)*
114-C14-C141	124.2 (12)*	N24-C24-C241	117.7 (14)*
114-014-0341	120.3 (12)*	N24-024-0441	122.1 (13)*
0141-014-0341	115.5 (11)*	C241-C24-C441	120.2 (11)*

"The standard deviation is based solely on the contribution from the non-phenyl carbon atom. Comparison of observed and calculated Fs for $Si(NC(C_{5}H_{2})_{2})_{4}$

	0,0,L		16	240	262	1	918	=91.u	- 1	967	977
			19	187	-176	2	745	7 9 1	1	141	-131
-18	191	-145				3	2046	-2000	>	512	-477
-15	165	151		0,2,1		5	442	4 - 4	3	1 % 1	140
-13	145	-115				6	1272	12:3	4	367	- 164
-11	445	-469	-18	205	-204	7	745	156	5	477	-474
-10	287	302	-17	29	11^	×	174	112	*	42 1	-450
-8	124	-105	-14	261	290	9	600	-616	7	562	493
-7	910	478	-14	301	-267	1.0	716	- ~ L V	- 8	184	-150
-6	179	204	-11	\$57	-342	11	234	-21	10	161	-142
-5	1174 -	1168	-9	4311	375	12	242	? ∿ ∩	11	433	520
- 4	927	-914	- 8	267	-202	10	542	230	1 3	27	-146
-2	1358 -	1355	- ^	152	120	18	260	-241	14	254	265
2	1363 -	1353	-5	528	532						
4	9114	-914	- /.	1114	-1584		0,4,1			1, n, t	
5	1176 -	1168	- 5	3 4 3	- 514						
6	214	204	- ?	134	-702	-17	212	550	-16	179	-90
7	396	878	- 1	946	864	-16	501	-1-2	-15	229	215
ĸ	1 49	-105	+1	5 y X	587	-11	193	-141	-14	171	133
10	247	502	1	1026	-1900	-10	343	-363	-12	345	+259
11	418	-41.9	2	216	-216	÷0	102	144	-10	275	238
13	26	-115	×	14 40	1403	- *	601	442	- *	169	-156
15	18	151	4	105	6.0.9	-7	433	-300	-t	271	268
16	1 * 4	-145	5	128	-237	- 4	140	1-1	- '	5 G R	474
			~	221	-217	- 3	1245	-11/5	- 4	400	-464
	6,1,L		7	644	411	-2	491	527	- 3	575	-5-96
			ж	124	-104	- 1	1224	-114	- 1	186	196
-15	145	105	9	126	190	0	×75	- 472	۰ ۱	501	-257
-12	132	141	1.0	46 M	-317	1	1730	-1740	1	F.4.6	621
-11	244	-252	11	475	-469	2	145	+175	2	341	374
-10	245	586	12	545	381	3	527	\$4.5	4	3 J H	- 343
- 7	326	205	14	187	254	4	7 * 4	-7/2	5	879	828
- X	24	141	16	1:02	-267	r.	860	* 5 3	<u>^</u>	162	168
- 7	272	212	17	225	-231	7	159	134	7	11	-725
-0	4 3	306				*	272	-225	8	340	-3/2
-5	1470 -	1435		0,5,1		1.0	242	234	11	194	-197
- 4	214	213				11	537	52.5	12	101	157
- 3	1141 -	1153	-14	5 ×	-111	14	215	100	1 र	231	100
-2	130	115	-14	274	-274	15	148	144	14	201	2.52
- 1	1 3 3	144	-12	14 *	137	16	245	-274	15	251	207
1	1 ~ +)	-355	-1)	243	-228					_	
2	430	412	- A	176	-180		0,511			0.7.1	1
3	13-1	1 377	- 7	242	-254						
4	7471	757	-1	384	393	-16	160	-225	-11	145	-164
5	513	>46	-5	418	363	-15	174	167	-9	195	-175
6	337	311	- 4	2089	-2055	-9	443	-663		1.	64
*	114	+7	- 3	3 57	-331	- X	356	365	-/	567	128
¥	345	330	,	275	297	-0	74	- 4 /	- 6,		217
1.0	430	-418	-1	2.91	195	- 5	377	572	- 4	211	-/4/
15	27	70	^	1305	1374	-2	499	-467			

and the set

	(,7,L		>	300	-345	- 4	213	-255	- 4	429	-403
			4	51.4	-523	-2	140	-100	- 5	272	251
- 3	445	-907	~	219	728	- 1	28	- 2	- 4	7. () 7	346
-2	247	230	7	147	188	0	348	5.10	- 3	141	-195
- 1	5771	594	4	1.91	-183	>	263	-2.5	- >	211	= 222
U	147	-123	1	241	350	4	190	112	0	253	264
2	240	2+4	1 1	11.2	=173		192	212	1	20	-86
3	290	-279	1.2	275	-189	6	236	-21.1	۲	146	214
4	61.0	-596				7	226	-211			
•	479	450		0.10	. 1	8	28			110.	
*	243	223				ÿ	28	1 - 5			. 1
4	236	-232		230	-237	10	237	-142	- 7	2.16	-157
12	161	-140	- 3	251	Rug	12	24.0	216	- 6	1 4 4	170
1 4	27	-71	- 2	171	170	1 6	240	2.10	- 5	24.2	204
45	15.0	104	- 6	21.2	-1-1		0.47		- 7	267	- 25/
15	1,4	100	- 3	100	-1-0		11 2 1 4 2	ι.		217	- 404
			- 1	1.40	1 2 0		260	- 4 /		564	
	1. 1. A. 1.				120	7	200			2.2	471
	272			104	P04		642	300		7.7	-134
= 1 1	212	281	1	130	140				5	2.0	520
-10	10.0	177		474	-101		10,10,	l	۲ ,	272	-/00
- 7	277	-622		1.2.4	= 200		4.75	• • •		2.2	204
- (215	255	4		-226	- 7	1/5	1.72	יו	297	791
- 7	2.6	00	1 4	100	-161	-/	211	-1//			
- 6	244	241				- 1	28	157		1,=9,	1
- 5	1 7 4	-135		0,11,	1	- 0	160	184			
- 4	374	- 389				4	190	191	-12	255	519
- 5	ትላት	114	- 11	147	-109				-10	227	-249
-2	724	646	- *	11	205		1,-14,	L	- 2	212	175
- 1	194	-164	- 1	5:2	516				- 7	31 4	-425
Ú	522	-575	- 1	243	-350	-0	237	-2: *	- 5	224	319
3	51 3	-486	7	100	-194	- 4	32	174	- 4.	282	-269
4	273	-280	5	340	4 U ^Q	5	149	213	n	5 8 4	-614
5	512	545	7	252	-238				1	350	-746
8	26	67	11	550	-225		1,-13,	I.	>	\$22	- 335
9	2 @ (e	270	1 3	217	185				2	571	5 3 1
10	345	-322				- 1	251	-23.	4	274	288
11	443	-428		0,12,	1	5	221	224	5	21	-281
14	28	-189				0	211	510	9	1 ് 1	-170
10	117	187	-10	153	-107						
			-9	23	-208		1,=12,	t		1,-4,	1
	·, 0, L		- H	155	-142						
			0.1	1 * 1	178	-0	31	-175	- 8	330	-276
-14	28	-174	2	278	-334	- ?	250	-215	- 7	\$.10	715
-13	202	-176	4	344	315	1	208	- 25 4	- 4	224	308
-10	147	190	*	505	-228	4	273	13-	- 5	171	170
-4	27 M	-228	11	24	-550				- 4	414	=416
-2	290	245					1,-11,	ι	- 3	252	225
-1	233	-215		0,13,	L.				- 1	561	-583
Ū	25	78				-11	31	232	Λ	1.6.4	174
1	404	384	= ^	165	-159		30	- 34			1

	1,-8,1		1 5.1			- 6	266	277	- 2	1202	-1847
				11-11	1	-5	600	-612	-1	50	-566
1	161	164	-14	200	3.1.1	- 4	794	-140	0	567	6.2.7
2	201	305	-11	324	-317	_ 3	1400	1571	1	1 3 4 4	1845
4	470	-435	-10	205	274	-2	167	=100		1363	1304
4	216	-226	- 6	212	240	-1	220	-221	5	50.	-577
13	197	-241	-5	754	710		242	\$ 1 -1		101	1.8.0
. 2	• •	- /	-4	220	-205	1	163	-141	7	56-	=522
	17.	1	-1	214	257	2	457	869		225	-143
		-	Ó	-74	878	3	2364	-2355	4	647	617
-13	203	217	1	215	190	4	240	224	1 1	407	402
-11	20	-140	2	502	588	5	419	920	1 1	204	251
-4	300	361	4	- 4+	-839	6	500	- 511 5	15	215	-234
-7	325	-309	5	153	171	7	244	-224			
-5	540	532	10	150	267	8	578	=419		1.0.1	
-4	232	218	11	221	-747	ų	435	401			
- 3	260	-277	12	577	-359	10	308	-272	-12	275	310
- 2	376	-360				12	174	106	- 5	814	826
-1	52%	352		1,-4,		-			- 5	1040	1461
U	671	-094					1,-2	, L	- 4	201	-210
1	555	562	-15	148	218				- 3	247	-270
2	500	327	-13	241	-288	-14	247	-251	- 2	124	-270
3	204	-198	-12	515	3.51	-12	314	347	_ 1	114	49
4	3115	-785	-11	300	385	-11	24	-124	195	111	97
5	453	-420	- •	. 1 5	-409	-4	325	-517	1	51	-19
6	539	513	 H	-16	-272	- 7	314	-317	2	113	
12	370	-340	= 7	066	-654	- 5	515	-5-4	3	602	-595
			- 4	27	-140	- 3	510	-516	4	4 4	1008
	1,-0,	ι	- 5	1.01	594	-2	403	3.00	5	1099	-1975
		-	- 4	554	557	- 1	474	- 4 3 4	4	22 X	=208
-14	31	166	- 7	1.17	-400	1	379	- 34 5	7	412	435
-13	275	-221	- 2	17	916	2	1438	1420	2	517	=451
-11	1-4	194	- 1	201	-269	3	414	414	ÿ	40.2	5.11
- 15	455	455	n	1229	-1288	4	323	-314	10	540	255
-7	185	151	1	1 3 6 5	1335	5	865	545	11	180	146
-0	347	306	2	278	-298	6	293	5-1	16	239	219
-5	7 4 4	722	۲	467	-4()3	×	271	21.1			
- 4	235	-241	4	570	540	11	203	-227		1,1,1	
- 3	168	1 ~ 4	•	288	246	14	366	- 52 5			
-2	329	517	\mathcal{E}_{i}	495	427				-16	214	240
= 1	549	-549	1.0	578	-615		1,-1.	, L	-14	275	-272
0	228	-276	14	123	=130				-12	257	284
1	221	213		1.00		-14	79	100	- 7	5 5 1	= 134
3	241	-246		1,-3,	4	-11	167	204	- 7	180	-170
5	332	310		1.0		-9	632	-674	- ^	1244	1/01
6	740	-746	-15	200	-278	-7		-106		176	- 15/
¢	447	-464	-14	208	157	- 6	673	-0/2	- 5	107	- 44
10	30	211	-11	233	299	- ?	4054	475	- 2	246	-270
			-10	199	/ 21	-4	1970	- 4.14.9		1744	1911
			-0	678	-400	- 3	- 1 U U Z	- 1003		11770	

122.1

	1,1,1	Ł	- 7	444	- S Ü A	3	655	- 153	-3	454	-945
			- 1	594	482	- 5	602	500	-1	453	459
1	5-2	-275	0	1050	-1054	7	161	-150	0	282	-312
5	614	-615	1	120	869	Ř	278	-205	1	517	-500
5	1262	1264	2	1.78	1114	9	264	257	2	730	231
7	1527	1526	7	145	-853	11	250	261	4	720	-708
5	65.4	-681	4	415	-038	12	506	-444	5	301	276
6	523	-522	ς	015	-825	13	317	-371	7	316	-300
7	222	215	7	214	366	14	669	632		20	-124
~	274	212	μ	150	-192	15	423	4 4	10	265	271
Q.	403	403	10	. 1 A	-528	• •			11	232	2 4 5
14	210	-205	12	- 12	186		1.6.1		1 7	235	-246
	-		4 5	345	737		• • • • •				-/ / /
	1.2.1			• •		-10	175	-141		1.4	1
		-		1.4.1		- 7	201	54		1	
-11	296	-232			•	- 4	6.5	6		τ,	1 80
-10	469	378		170	-157	- 4	295	-224	-10	21	- 14
	284	-212	76	347	-3.7		241	200	- 2	240	207
	574	-571		101	-/9/	- 1	6/1	611		816	2.10
-7	500	5.60		1.1		1	602	-30-	- /	125	127
	1154	1136	- /	25.2	320	2	31.8	- \$7.4	-4	82.	-326
	014		- 4	255	223	2. 1	762	7	2	1.5	- 170
-,	32.	-0-0		2.14	-287	د ر	642	- 2 - 7		4 m/	-554
	974) 2540	-702	1	7	- ()	5	4,13 1914	- 7 - 1	2	204	- 2/7
•)	204	204		1. 1. 2	-/57		5/1	636	.0	<i>~</i> 4	-/4/
-2	0.00	-(3)	- /	4 7 1		n 7	744	340			
- 1	998	- 1 () () - - () () () () () () () () () () () () ()	- 1	1 × 44 (1 () - 14	-1240	Ś	7.4	244		1,10,	'
0	¥ Z () •	プロ4				0 0	101	10	- 2		10
ר	1975	1020	-	4.5	4/07	4.7	475	-470		200	3:4
4	111	-115		1.04	1445	13	89	-140	- /	776	- 2 30
>	1866	-10/5	4	545	505				- 2	1 7 4	201
<u>ن</u>	1642	-1619	<u>ר</u>	11	-120		11/11		- ?	7.4	7.41
1	148	-14()		1.4.2	477		407	31.3		540	- 552
6	5114	673	м.	162	50A	-11	747	264	1	105	109
9	016	592			- 05/	÷9	511	-247	4	122	140
11	18	1/5	11	100	246	- r	6 4 4	= <u>2</u> 4 1)	4 3 ⁴ 6 7 1	-4/0
12	277	-257	13	∃ ∀ 0	-125	+ D - L	24/	3/7	<i>i</i> . ▲	243	
14	791	-245				= 7	214	1/0	7	C 1 **	764
16	401	427		1/2/1		-4	005		~	247	-//6
	-					- 5	277	-244		21/	741
	1,3,1	•	-14	\$ \$2	571	0	271	-284	12	22'	-757
	_		-8	564	511	Ž	652	055			
-15	279	-301	-7	1/10	-974	5	047	-002		1,11,	
-14	344	- 39 4	-5	510	496	2	601	A24			24.6
-13	145	230	- 4	552	539	7	375	- 35 *	-9	184	-210
-11	500	-140	_ Z	0/8	-656	4	528	30.9	- /	556	343
-9	303	284	- 2	410	-400	13	31	-214	- 1	122	785
- 8	599	616	= 1	2/1	752				n	525	\$29
-6	26	-112	0	129	-433		1,8,1		4	267	249
- 4	735	-724	1	247	-312		_		6	215	= 201
- 3	656	-6×5	2	12/4	1241	-6	29	201			

The second se

100

	1,12,	L	6	235	-210		27	. L	5	149	167
			7	211	210				*	640	-612
-6	501	162	9	255	-276	- 6	313	245	7	399	369
- 3	301	324				-5	282	278	1 1)	178	138
1	465	465		2,-10,	1	-4	272	23-	11	50	-78
3	313	-300				- 3	525	-557			
5	189	142	-9	234	-271	-2	392	343		24	1
6	201	-258	- 4	196	-142	-1	281	-219			
7	267	-309	- 4	327	322	0	445	443	-14	210	253
8	253	198	- 4	242	-267	1	341	370	-10	190	197
9	312	291	- 1	332	296	4	326	-332	- 8	50 4	-526
			n	186	200	6	255	231	- 6	636	602
	1,13,	L	1	201	-180	9	102	-199	- 1.	785	-785
			5	195	196	13	207	216	- 3	210	-199
-3	30	151	×	371	389				0	1935	1937
			11	31	-183		2,-6	, L	1	255	265
	1,14.	ι							3	25 -	223
		5.0.2		2,-9,	L	-14	31	215	4	1071	-1080
2	334	-323				-13	109	135	6	\$30	366
4	377	393	-7	204	-172	-11	207	-204	7	451	-457
5	205	138	- 4	200	-274	-10	276	274	0	38 1	-367
7	196	-129	- 3	2*	-66	-9	480	446	10	454	443
			-1	214	206	-7	746	-7+2	11	177	-165
	214.	1	0	202	-174	-5	28	197	12	20	-100
			1	340	343	-4	525	510	14	334	282
0	202	208	2	20	-146	-2	616	-627			
~			z	211	251	-1	349	- 392		2,-3	.1
	213.	1	7	471	461	0	229	-243			
			11	200	185	3	466	4 * 5	-13	307	-321
-7	224	253				4	468	- 4 4 1	-12	34+	345
-4	143	176		2 4,	1	5	145	140	-9	304	-285
-2	284	-320				7	103	234	-7	237	-225
-1	219	-244	-10	243	-258	8	543	-569	- 6	52	94
0	311	311	-0	214	176	11	538	552	- 3	624	-596
6	203	-201	- 8	7.44	390	13	228	-2+4	- 2	412	-451
	-		-7	244	-233				- 1	1460	-144
	2,-12.	L	-5	140	180		2,-5	L	0	708	
		7	-4	29	-191				1	600	- 4 56
-4	234	223	- 3	680	684	-13	304	-407	2	1420	1421
-2	301	-279	-2	519	-498	-11	266	275	3	672	668
4	252	-239	0	301	-309	-7	261	-208	4	259	-264
5	262	283	1	548	-568	-6	197	557	5	554	-198
7	273	-295	2	101	132	-5	633	579	•	475	470
			6	454	-383	-4	106	203	7.	317	- 310
	211.	1	7	434	437	-2	217	175	0	401	436
		•	8	232	193	-1	1236	1250	10	284	-292
-5	30	266	9	186	-215	0	1411	-1378	11	183	163
0	203	320	12	204	228	1	272	-505	14	289	-343
1	337	-344	13	31	-173	2	459	- 4 - 1			
4	315	261				4	224	-225			
-											

where 22

118

	2,-2	<i>,</i> L	-11	152	208	- 7	348	- 51-1	n	430	-452
			- 9	321	322	- 5	861	-344	1	263	-201
- 8	281	-301	= 7	17.6-	-187	- 4	476	- 4711	>	397	-414
-7	331	323	-+	574	-613	- 3	617	512	5	5 - 1	-566
-6	227	180	- 5	216	219	- 2	2104	-2161		557	508
- 5	621	+603	- 1.	471	384	- 1	1299	-1359	7	470	-487
- 3	1563	1552	- 3	ch	-111	0	507	-500	н	55)	-5/1
-2	1445	1445	- 2	617	-633	1	1057	1002	Q	175	164
- 1	515	520	0	750	737	2	249	-274	1.0	47%	680
U.	224	209	1	936	912	2	1448	1487	11	534	558
2	1497	-1512	2	12.3	1276	4	443	570	1 ₹	201	-297
3	472	-464	3	347	- 354	6	648	-663	14	31	-260
4	1549	=1550	٤,	618	598	7	294	-284	16	21/0	:74
5	1577	1017	~	4 . 4	435	4	270	200			
7	341	-333	7	4 - 1	-305	10	404	- 39 4		2.5.1	
ň	258	-264	o	117	281	11	510	4 × ×			10.00
ç	24.8	217	12	111	347	12	176	131	-9	307	241
10	29.5	-279	14	165	-215				- 8	23	241
11	143	-156					2,3,1	L.	- 7	201	-152
12	310	276		7,1,1					- 4	335	= 311
16	213	-208					347	= 57.8	- 4	27	166
			-10	221	164	- H	402	-377	_ 7	234	-274
	2,-1,	1	-9	646	-437	-7	660	675	- 1	42:	L () 7
			- 25	355	-342	-6	212	-261	n	621	600
-12	150	174	-7	644	745	-5	715	=643	1	1145	-1144
-11	2.5	-179	- 6	3.10	258	-2	1933	=1477	>	21.	-93
-16	472	455	- 4	$\phi \in \mathbf{F}$	-966	- 1	595	-540	4	230	-254
- 8	564	-523	- 3	1231	1250	.,	420	345	5	426	-421
-7	215	292	-2	1 125	975	1	549	-555	7	189	1 + 7
-6	22	-179	- 1	8 p. C.	340	2	151	-152	<u>e</u>	324	3110
- 3	1161	1196	n	11.7	1192	3	449	-471	3	267	26.0
-2	1175	-1169	1	152	-855	5	276	272	11	*32	290
- 1	10/3	1721	2	2.44	-203	1	935	907	15	210	218
Ū.	820	624	2	203	258	Q.	507	-502			100
1	1166	-1180	4	117	302	10	393	- 3× 7		21016	
2	1242	1252	5	11.44	1066	12	190	195			1.70
3	0.14	6.16	6	ANA	-702	15	518	-280	-14	343	353
Ĩ.	1440	-1482	7	1. 11 %	- 383				-12	234	-235
5	643	661	S,	5 5 m	-515		7,4,1		– 1 P	31 4	380
6	545	548	10	4.57	-468					310	- 325
7	210	-261	11	541	340	-15	264	- 314	-7	220	207
Ģ	351	550	12	44 I) 44	435	-13	227	263	- 6	668	,6.22
11	214	-275				-11	\$28	-255	= 5	662	547
12	29	115		2.2.1		-9	500	311	- 4	172	133
	,	-				- 7	100	224	- 3	865	-806
	2,0.1	-	-14	202	-27×	-7	494	-44 4	-2	4 = L	472
		_	-12	1.58	169	- 5	708	712	- 1	332	-274
-14	243	-280	-11	142	-271	- 4	398	366	1	507	642
-13	275	-298	-10	133	=335	- 3	013	-924	?	414	=4.20
-12	202	179	- 0	431	447	- 2	936	- 14			

	2.6.1		- 5	321	242	र	497	-410		4,	
				230	-709	5	239	20			
3	2311	-206	- 2	1 14	171	-			- 2	147	215
4	308	288	1	442	-352		2,14.	1	- 4	254	258
5	245	222	>	1.51	937				- 2	1 - 11	-187
*	312	-339	4	534	-553	- 1	۲1	1	A	6	455
4	240	-315	٤.	104	205	i.	267	-2-1	1	19 -	-143
10	177	-144	5	280	211		~		6	2.0	- 283
14	312	545	2	5 11	-335		2.15.	I.	1	26.5	217
			12.1	565	- 303				n	553	785
	2.7.1		ر.	250	233	- 2	226	-2	9	2.0	-43
			12	51	-113	2	278	-200	10	434	-447
-7	273	-200	17	220	-271	-	••			-	
-6	3+0	324					3 14.	t		3~.	, 1
-5	479	450		2.10.	1			-			
- 4	422	400		26.00		-2	219	-235	-7	270	-302
-1	279	275	-11	51	165	-1	31	=21.4	- 5	231	359
0	150	133		220	-247	2	32	201	- 4	3.12	345
1	564	-586	- '	50	182	•	-		- 3	644	-455
ż	227	251	- 4	1/4	-132		313.	1	- 1	15.4	-201
3	317	342	-4	2.15	192				0	412	-457
L	34.6	-297	- 1	191	169	- 3	250	2 -	۲	220	343
	241	201				- 1	274	-231	4	14.5	-263
6	274	-283		2.11.		- 1			5	270	-280
11	501	214					312.	1	7	249	205
12	322	- 308	- 4	2.51	178				9	24	145
15	316	-2.00	- /	2.01	-470	- 8	198	164		•	
	2 5 1			221	266	- 1	241	-274		< . = ⁷ .	1
			-2	246	286	ò	477	424			
-0	302	-200	-1	275	-230	2	402	- 377	- 9	5 . 4	512
- 8	507	- 127		3.54	297	-			- 6	244	411
-7	128	232	;	144	202		311.	ι	- 6	221	-233
	162	173	4	220	190				- 3	212	230
-5	104	-205	4	24	-181	- 8	31	-144	- 1	216	233
-4	210	-214	7	401	-409	-7	30	-40	Δ	361	348
-3	540	549	4	259	234	-5	208	-52-	1	174	183
-2	51 8	508				- 3	219	191	2	623	-450
-1	307	262		2.12.	1	-2	499	-55 a	7	501	-500
1	3.8.2	-360				7	230	=1×7	4	230	- 274
2	540	-536	-5	144	-199	ų	452	675	5	202	-410
2	253	-252	-2	271	-264				6	504	-448
4	228	221	5	30	-82		3,-10,	ι	7	791	775
5	\$40	-336	~	230	249				9	44 >	=472
	251	246				-9	385	360	11	360	567
11	313	-327		2,13.	L	-7	266	-242	1 3	454	- 444
12	308	-313				- 5	181	144			- 1
13	241	-181	-5	212	-234	6	30	-152		5,-4,	t
			- 3	148	254	9	31	-167			
	2.9.1		-1	51	-192				-12	200	-147
			1	245	243				-10	211	193

	3,-6,	ι	14	201	184	-8	28	102	1	640	615
						- 5	28	-170	2	575	-600
-1	212	-226		33.	1	- 4	319	-315	र	174	-160
- 0	418	403				- 3	1138	1141	4	231	249
- 5	564	314	-13	248	-229	-2	1071	-1046	6	162	164
-4	237	-248	-11	248	260	-1	345	-305	7	577	-526
- 1	3 ^ 1	500	-0	218	-388	1	2279	2313	ø	343	-346
Ú.	157	170	- 9	1.59	-220	2	594	572	Q	422	416
2	656	671	-7	1.5	164	3	293	-2+4	1.2	201	204
i.	15.5	151	- 6	174	152	4	515	-532	13	1 8 1	212
	364	- 317	-5	301	-417	6	205	5/5	15	201	157
1.	22.	- 1 / 7	- /	240	-31/	7	288	المحيد ا	16	31	200
1 4	2/7	-;4/	- 7	500	-) 4 A U /	Н	1.24		• • •		
	7 _ 6		- 1	217	205		3.7			3.2.1	
	·,-),	۱			-917	4 2	241	2. 2		2767	1.0.1
				120	-017	47	2113	232	. 4 7	7 .	- 201
-14	1	171	1	1.7	247	1 1	273	- 2	-15		-7114
-10	227	293		745	201	1)	211	- 2111	- 10		-/36
- 6	251	-2/1	4	141	709	10	51	210	-4	175	174
-7	387	-344	~	N 7 X	687				- 4	112	150
- 6	317	328	7	430	419		3.0.1		- 4	2,205	-415
- 5	525	537	ىر	111	-600				- 3	151	-172
- 3	443	-462	9	2 14	190	-14	280	-332	- 2	1240	-1309
-2	402	402	1 1	217	262	-10	342	315	- 1	444	382
- 1	503	-518	11	221	-230	-9	179	123	- A	155	-157 -
0	155	167	14	1 4 6	165	÷ 8	713	-604	1	014	048
5	100	-128	15	414	-400	-7	301	3.11	2	357	327
7	467	428				-6	440	434	3	134	-121
י א	673	-667		3 2.	() ()	-5	308	= 394	4	327	-324
10	\$73	574		<i>,</i> ,,,,	÷	_4	209	-22.4	4	203	163
1.4	212	276	-0	268	-257	- 3	1248	1234	7	585	-555
4.3	274	- 256	-7	376	-325	- 2	474	-637	4	232	227
12	417	200	_ 5	1.15	421	-1	1174	1144	10	537	-527
13	547	- 342	-,	4 <u>(</u>)	-670	- 1	220	.23.	11	1 4 1	
14	208	221	- 1.		459	2	9 6 6	-951	14	254	->>7
	- ·		- `	66	613	5	1.12	ت <i>ر با</i> ـــ	1.4		· . ·
	×,=4,	L	-/	202	406	,	208	2110		3.3.1	
			• 1	~ 07	- 193	0		201		51511	
-13	31	-165	1	242		У	273	£ * 4	_ 1 4	344	-616
-11	207	189	2	225	-727		7 4 .		_ 1 1	2.0	-249
-9	313	-321	र	284	- 500		2011		-10	344	-320
-7	28	-176	4	177	125		207	376	0	277	747
-6	192	-215	4	552	-547	=12	247	217	- 4	201	-774
- 4	416	-408	4	26	106	-11	2.2	1.55	- /		- 131
- 3	278	284	7	275	308	-9	436	-427	<u>ر</u> =	700	744
- 1	528	514	ų	c.63	664	-8	394	425	- 5	541	- 502
1	478	504	10	24H	254	- 6	790	-/*>	-2	1086	-1080
2	345	326				- 4	438	453	-1	161	-180
7	444	412		3,-1,	1.	- 3	186	-160	0	214	-196
8	211	-199				- 2	1652	-1681	1	761	-758 1
Ŷ	356	-354	-11	173	105	=1	252	225	,	201	-243
11	241	-222	-9	165	180	0	138	127			2
											1

and the second second

dense is a

	3.3.1		-11	211	212	6	1 # 1	1 10	- 3	855	178
	,,,,,,		-10	132	-720	7	466	44.5	- ?	227	233
4	462	-455	_ ·	164	-107	н	372	- 51 /	- 1	194	-186
6	161	-129	- 7	1 6 1	-170	13	31	-200	1	561	561
•	•										1.6.3
											1.22.9
											1.1
											1.1.1
,	177	-222	- 4	143	213				2	329	352
10	606	-401	- 3	547	536		2,9,1		7	324	-271
12	215	226	_ 1	17	120						1.00
	/		6	416	584	- 7	267	230		3,13,	1-52/8
	2,4,1		2	5 4 7	294	- 6	177	19()			- , 518
			4	<15	379	- 5	242	-207	- 3	217	-240
-7	236	-202	¢	218	-693	- 4	29	-115	5	204	211
- é	712	710	~	316	-221	- 1	216	-5. 2	7	217	-252
- 5	364	353	2	245	296	1	317	-214	9	31	183
- 3	640	-711	,н	5 5 6	511	2	246	264			
-2	250	-775	1.0	254	-270	4	520	- 50 7		5,14,	L- 19
e	330	-329	11	222	203		Z ()	-2.15	2	2 4 7	297
3	266	-253	1 ×	234	-202	17	5611	- 37 11	- /	767	-701
4	61.5	622					7 40			227	224
5	512	481		5.7.1			21101	ι	7	228	-314
•	411	-407				0	7 / 1	- 5.5	?	71	220
7	525	- 577	-1	7 4 /	170	- 4	215	-2 -7	5	252	243
~	197	186		2.40	- 3 V C		266	255			
	394	- 59 5	- [263	224	-2	234	227	*	3.15.	1
10	175	-152	-,	70.2	-247	- 2	566	+552			
11	242	212	- 2	236	256	3	453	+4/1	>	32	-252
12	175	204		555	242	4	171	244			
14	6.10	- 6 6 3		28.7	-277	5	310	-2 1		4,-13,	1
	2 6 1		2	215	235	6	225	1 ~ 5			1. 10 10
			2	165	-156	×	228	-21 .	- 3	31	-153
	373	-376	4	100	152	9	203	14.5	0	244	-230
	518	-519	5	ROK	340	11	۲1	265			1.00
-7	150	160	7	250	238	12	274	-215		4,-17,	L
- 6	791	779	\$	255	-225						al set
-5	334	352	14	24	134		3,11,	L	- 3	322	294
-4	300	356	12	146	-198				- 2	277	-276
-2	228	-210	1 4	243	-322	-9	531	- 34 7	- 1	21.5	-247
-1	345	325				-4	180	14 5			147
6	27 x	203		5. n.L		-2	179	-7/5		4,-11,	C
1	291	-320				0	40¥			1	207
3	28	-118	-12	1:4	245	4	241	• > (>	- 7	107	703
5	245	254	- <u>-</u> 2	1 4 9	257	/ 2	793	-24.5	0	340	246
6	1 - 5	181	-7	534	- 564	6	2.0			410	
7	246	271	-/.	135	251		8.12			-,-,0,	
4	2 = 0	-500	- 5	241	- 204		5,121	L	-4	221	205
13	11	-185		11	-130	_ A	207	275	- 3	194	194
15	308	243	-/	1.57	-157	-7	228	220	-1	365	-345
				1.50	447	- 5	217	-265	0	180	161
	-										

and the state of the second

						_					
	4,-10,	L	- 7	215	-185	7	491	-5 2	_ 0	233	224
			- 5	223	210	10	278	ろノス	- 7	252	26Ri
1	200	-177	- 7	204	-178	14	524	316	- 4	273	288
ç	2×9	369	- 2	514	523				- 5	27	-169
			(1	112	-186		4,-3,	L	-4	674	-448
	49.	I Contraction	1	270	231			-	- 2	159	1671
		-	,	624	-400	- X	216	-255	-2	225	-297
	315	316	4	231	-241	- 6	250	-2-11	- 1	793	694
-/	526	20	ε,	223	-230	-5	218	-215	4	145	-1.4
_ 1	572	538	,	202	145	- 4	187	271	2	7.5	-73-
- 1	267	-261		445	-430	- 3	169	-17.	z	1 . 1	16-1
2	256	245	1.0	1 6 6	19.5	- 1	526	441	4	14.	-1811
	2	203	3.1	1.5.1	248	- 1	302	- 41	5	17.	16-
	1 - 4		17	2.0	-268	, L	436	6	,	5 . 1	533
	·····	L	1 '	201	- 7 4	5	250	2. 2	Q	570	-5401
	16.7			1 - 5		4.	745	- 23	1.0	222	220
- 10	277	- 222		4,=),	(27	1/-	1)	21.1	-2171
- (206	-172			343	<u>_</u>	671	4	17	286	250
-0	/9	-149	-12	200	-196	0	503	-5/-			
9	47/	449	•		- +		373	22/		1.0.1	
1	218	201	- ··	4//	-407		276	274		47070	
3	2 K	-129	• *·	1.9.1	144	74	113	~	11	1.40	-117
5	ገሥኝ	-165	= 4.	120	1//		<i>,</i> , ,		- 14	246	- 77
0	142	-231	- 7	F + 4	-0/1		6,-6,	ι	- 1 1	717	244
1	240	181	- 1	590	201		900		1.0	1 .	2001
8	323	380		5116	545	=12	220	+ 210		28	161
Ŷ	31.8	-526	2	121	220	- 1 1	1.0	1		22	-122
10	574	-345		108	487	-10	240	- 277	- /	6 8 4	615
11	266	248	4	514			2/5	-100	-7	6.0.6	640
12	203	145	4		-400	- 1	701	- 7 - 1	- 2	632	- 6 7 8
				758	170		500	- 5 2 -		882	-863
	L,-7,	L		24.1	-706		547	- 325		20.9	- 342
			н	5 6:4	307	-4	203	- 2 - 7		157	171
-0	324	406	0	214	332	- 3	(/Y		2	307	- 227
-4	225	168	1 3	51	-14/	- 2	272		2	247	
- 5	555	-232	14	2.50	239	-1	150	= 1 ()	6	601	5 17
- 2	219	-254				1	1174	17.2	2	2.21	510
- 1	451	-468		4,-4,	1			11	9	120	10
0	251	-261				5	451	4	6	4 3 4	-419
1	622	-415	- 2	177	-167	4	740			671	24.2
2	4+7	452	- A	301	312		5.0	- 5(-A	10	14	.431
5	2 H	-7		1/1	177	6	110	151			
*	177	131	- 4	310	-379	7	111	156		41711	
Ŷ	24	-167	- 3	104	-309	8	204	-1/-	~	3.0.2	
13	212	-230	- 2	103	180	4	174	= 1 - 5	-9	200	167
			- 1	101	263	12	192	-233	- *	7//	- 546
	6,-6,	L.	٦	159	-156	13	211	114		101	575
				+ 12	615	15	195	-124		7/1	
-11	275	-303	7	144	214			1	- 5	54 -	4114
-4	454	459	1.	.65	-448		4,-1,	L	-/	4.4.1	- 4 20
	184	161	*	244	250						

Million i Commence

1.100

	4 ,1, L		7	776	-761		4,6,1		13	362	-301
			9	591	360						
-1	670	613	10	\$7.0	-409	-8	267	-263		4,4,1	
Ú	370	371	11	236	-212	-5	783	74 %			
1	512	343	12	₹ 5 8	346	-4	658	670	-11	144	-120
Ś	287	-256	17	221	196	- 3	294	716	-0	275	510
4	527	-497		C .	• • • •	-1	174	-200	-8	1 - 3	-177
7	346	-403		4.4.1		0	234	-220	-7	2016	-296
ċ	164	-173				1	785	-725	- 5	253	211
10	295	281	-10	269	-284	2	544	490	-4	305	-280
15	266	-247		24	82	5	232	232	0	200	-205
	2.0	-1.41	- 5	1.12	168	6	225	203	5	248	-191
	1.21		- 3	606	-412	7	345	341			18
	~ / < / L		-2	361	-377	ģ	186	-207		4,10,1	
	70	-200	-1	205	179	11	263	246			
_ 22	21.6	-2.00		525	-318	15	230	213	-10	203	255
-0	200	534		236	-260	1.1	F . V	• •	_ 8	427	-4.21
- (6/1	- 505	2	2.10	210		6.7.1		-7	260	-292
-0	414	- 212		2.65	255		4717L		- 1	171	-166
- 5	045	-001	,	550	-545	-10	274	-22.1	0	210	142
- 2	146	-107	6	150	- / 4 3	_0	284	224	1	254	299
0	194	-194		25.1	- 767	- 6	28	- 47	Å	337	-359
2	560	-475	19	- 74	- 374	- 6	120	822	, R	1 7 7	204
3	406	= 344	17	1. 10 1	231	-;	707	241	1 1	1.1	1015
4	415	458	17	- 74	2747	- 4	393	-1-5	12	3.2	-611
5	28	-119	1 *	$c c \gamma$	- / / "	- 3	116	- 16 P		<i>,</i> .	
7	575	-203				ן כ	910	-14		6.11.	
9	169	173		4 . * . t			20				
10	556	-183		1.4.7	460	,	413	- 25 1	- 9	4.1	-264
11	175	-1/2	-12	215	124		746	- 3/2	-7	226	148
1.5	239	501	-15		744	, ,	466	- 15	- 6	2	310
			=0	200	-/45	, r	2=	47.	_ <	13.7	-226
	4,7,1		- "	178	100		755	219	0	ζ	-1.26
			-7		n 3 h 4 0 h	71	ライン	- 21 4		1 . 7	167
-13	285	-353	-	207	- 1 9 0	2 7 3	220	- 21 -	ו	2.1	225
-11	4×2	491	- 5	295	525	74	231	-614		247	250
-8	002	-601	- 4	215	255				•	247	. 279
- /	39 M	-403	- 3	- 26	-57		4, * + L		• •	276	171
- ^	218	-219	0	105	-109	-		- 3 / 4	4.4	317	1.4.8
- 5	179	167	?	143	-209	- /	147	- 21 7			410
- 4	969	660	2	242	287	- ?	401 374	ن بيه		1. 1.)	,
- 3	205	-308	4	241	×67	-4	2/0	- 4 (- 2		~, ,	
-2	472	-442	٩	104	-174	- 2	200	147	1.0	222	201
- 1	434	-460	7	553	-751	=1	140	- 1 /	1.0	616	201
U	506	-304	۶	470	479	0	656	- 2 / 1		4.17	
1	320	-31ă	10	150	-200	1	106	- 76 -		41151	
2	280	272	12	275	222	5	476	4 4 4	-1	401	1.24
- 3	375	355	1 *	214	-257	2	773	-367	- 4	241	-275
4	391	= 391	14	178	-151		676	- 1 - 4		20	-125
5	473	485				11	210	-276	4	272	281
6	223	232				12	219	-610	'	617	601

elition a

	4,13,1	L	-0	268	189	11	299	312	5	542	-560
	•	-	- F	10	-178				6	24	-5
2	172	190	-5	237	244		5,-4,	ι	7	197	140
-	182	-158	- 4	24	120				11	242	240
5	306	301	- 3	168	-141	-12	241	-235			
6	227	235	2	24	171	-9	184	223		5,-1,	
7	487	-538	0	117	140	-8	222	-152			1.1.1.1
•			5	293	-295	-7	200	-215	-12	445	-491
	4.14.	1	7	168	189	- 4	142	-144	-10	382	408
	-,,					- 2	233	-140	-0	304	-4()9
-3	233	-328		57.	1	1	375	- 59 ?	<u> </u>	5	-186
- 2	203	197		C	•	3	271	240	-7	270	271
τ	30	-49	-10	287	-304	4	771	751	- 5	452	-641
6	306	-295	- 8	267	283	5	231	-214	- 3	716	760
ν.			>	268	221	6	142	-130	-?	430	-411
	512.	1	۰. م	2×4	-344	7	207	145	- 1	4*4	-464
	// ·E/	-	1.	234	-207	8	. 159	157	0	421	- 395
,	452	-600	7	187	183	Ŷ	312	320	1	437	415
- C 15	215	-276	, R	216	218	10	218	-212	>	594	505
2	312	340	9	28	-128	12	207	1 1 7	3	343	-342
د ۲	20	120	11	214	174				4	420	-444
2	79	110	•				5,-3,	L	5	366	- 373
	L _11			5 6.	1				6	651	673
		L			<u>.</u>	-13	238	214			
z	227	107	-14	19	171	-10	203	214		5,0,1	
= 3	277 359	340		29	-183	-9	173	-261			
	310	176	-7	3/1	-348	-8	311	-214	- 4	157	-148
<u>ک</u>	274	-110	_ <	252	226	-7	28	-145	- 3	24	-102
2	340	201	- 2	240	211	-6	330	31.4	-?	251	212
2	200	-230	- 1	106	-190	- 4	184	-105	- 1	212	-194
	20)	-200	6	212	234	1	246	-277	n	*63	865
	4 - 10		7	484	-500	2	874	×7 ~	1	224	286
	2,-10,	ι	6	216	195	3	4 ۲ 3	45.0	5	422	-424
1	2.47	214	4	225	-328	4	372	-346	6	224	227
_ 5	217	_ 327	Ú.	1 - 7	215	5	417	-421	7	254	-263
- 2	261	286	-			6	340	374	8	421	-463
27	294	182		5,-5.		A.	415	- 391	10	232	219
2	1 . 2	196				9	214	213	11	150	194
4	1.1.2	,,,,	-0	116	202				12	285	-243
	60		-7	468	-487		5,-2	, L			
	~,-4,	L	-1	214	172					5,1,1	
- 1	\$22	-307	-5	602	623	- 8	206	-221)
- 1	171	168	_ 1	407	-40A	- 7	186	-264	- 1 3	254	-270
2	182	-207	1	414	465	-6	402	5 () M	-12	186	154
С — —	272	-316	2	1.06	522	-4	431	444	<u> </u>	27	107
0 8	407	436	2	236	262	- 3	317	-327	- 7	234	555
о 4	2~2	144	4	363	243	-?	205	-208	- 6	352	327
-	c ·· č		5	271	-241	U	550	-513	- 5	692	-713
	58.		ч	242	-251	2	235	3/12	- 4	710	696
			0	236	-230	3	319	242			3

and the second second

	5,1,1		14	171	-191	4	675	6 * 5	2	223	-223
						5	142	104	4	297	266
-2	456	-476		5.4.1		7	28	-115			1000
-1	308	-337				10	225	-1+7		5,10,	
n.	143	156	-11	217	236	11	201	2.1.5			
1	26	140	-7	4.1.1	421	12	455	410	-9	20	96
5	26	-158	-5	182	-272				_ 7	224	-191
ž	645	-610	- /-	307	513		5.7.1		- 4	303	-313
.,	340	-010	. 7	> 2 2	-277				- 7	207	-189
- 4 - C	471	- 606	- 2	273		-11	244	-2 2	- 2	243	3.75
)	257		-1	50	271	-10	1 7 7	126	- 1	177	165
7	2,4	- 1 2 0	-	320	282		233	275	1	311	-317
ſ.	1.17	-167	1	440	-345		4.50	- 4 + 1	2	20	120
<u> </u>	413	960	,	5.4	- 100	- 7	202	-27%	6	384	-307
	214	-279	ź	2011 2017	-260	-5	154	2 .		142	-206
11	277	- 107	,	71) Ma . u 72		-,	2/3	2/1	10	246	100
15	245	244	4	2.4			150	156	1 1	251	269
			7		201	-)	7.77	2	• •	ς,,	1.01
	21216		4.0	619	220	-1	714	2.2.		5.11.	
			16	1/0	-10-		1/0	4.2.6		20110	
-12	180	-142	11	415	-404	י ר	147	-1.2	- 4	202	254
-11	216	-251	12	500	197		7.07	25.7	- /	2.16	- 287
-10	277	266	14	\$ 51	791	?	3 4 4	• • • •		5.24	7.17
-8	223	-203				4	231	- 2 1	1	530	102
-7	181	-1.52		5,5,1		, ,	2/2	6.2	<u> </u>		146
-6	27	224				0	223	197			
-5	551	-505	->	238	244		140			31101	·
-2	4 3 1	-414	- 4	1/1	=162		512	-/ /		3.07	3.45
-1	556	-360	- 4	226	585	15	145	1/5	- 4	2017	
U	142	165	- X	267	240				- 3	243	
1	574	504	-7	345	-340		5,8,1		-/	367	4 1 4
>	244	-249	-1	105	709	-			-1	4.75	-140
6	330	<u>3 39</u>	0	27	-60	=7	314	- 51.6	1		-144
1	510	-523	1	5 6 6	-544	= 5	1 2 6	144	1	2.2.2	170
11	450	-414	2	240	197	- 1	21.4	214	-		10
13	201	210	3	40 8	474	0	364	= 57 h	-	175	-1/1
15	291	-2×8	4	1.48	-440	2	21	=125	2		141
			6	244	35×		1 * >	104	*	261	-15/
	5,3,6		0	468	-475	5	242	207			
						7	149	152		213.11	1
- ×	174	155		5,6,1		Ŷ	ZOK	-2//			
-7	2.42	262				10	230	-221		25.	275
-6	282	-284	-10	2111	-195	11	257	544	-1	~	-149
- 4	244	145		255	251		_ .		<u> </u>	144	150
-2	551	-536	- /	266	-280		5,9,1		7	167	-253
-1	26	44	- 5	340	347			- G. (
1	834	-792	- 4	1.28	636	-10	180	140		5,14,	1
3	130	-170	- 7	303	271	-8	372	-354			
4	701	737	-1	368	377	-7	104	- ?	n	192	177
Ŷ	446.	-426	0	514	-474	- 1	192	114	3	184	-99
12	190'	174	2	1 ~ 3	184	1	154	132			

and the Philippine a C

Man

											19
	A, -11,	ι	*	205	176	u	314	-254	- 3	261	257
			11	360	423	11	359	305	-1	A20	-620
-2	145	-171				13	29	2.5	n.	500	+472
1	210	-224		4,-5,	1				5	166	177
							A 2.	t	7	541	- 360
	··-10.	1	-9	255	314		•		*	274	-232
			- 7	18	- 17	-10	223	2 .	10	163	140
- 4	352	342	0	2:9	-202	-6	257	243	19	212	218
- 1	211	280	1	1.50	166	-5	302	= 3 / 1			
	220	-296	4	233	276	-3	450	-421		6,1,1	
<u>د</u>	221	250	6	120	-340	- 2	255	245			
Ţ	2/4	315	۲	1.2	122	- 1	5 2 3	-514	-8	200	-180
2	121		1 1	29.6	250		796	- 01 5	- 6	\$ 9 2	3 2 3
,	474	•)• 0	1.			2	A 2	47.6	- 4	270	237
						c z	ZUA	80	- 7	211	-100
	~,=4,	L			· · · ·		217	213	-2	242	206
		467		2 1 7	244	2	225	21 ~	_ 1	1.22	-612
- ^	29	-17/	-	2 1 7 3 - 4	- 7/6	, r	217			242	120
-/	275	-145		7.51	= 544	<u> </u>	244	- 2 - 2	4	141	21.0
- 1	256	209	-/		- 711 5		€ 3 1	- 4 7 1		214	244
4	180	182		20	145	11	100	• 1 / 2	2	217	-217
6	230	-194	- "	<21	526	1.5	144	14.5	ر	0.14	-/43
4	29	67	- 4	2.1.)	169				11	201	770
			- X	137	- 35		∧, - 1,	L	14	2110	1 5 V
	- 4 , - M ,	L	- 2	4/1	473		=				- 3
			- 1	3.5.4	39 A	-10	273	243		6,2,1	100
-0	259	-2×0	0	122	-360	<u>-</u> 4	24	~ 5			
5	1 49	213	1	211	219	= X	108	-237	-11	29	190
4	142	115	2	174	-114	-7	257	-237	-5	245	-733
	28	152	4	1 / 14	150	= 6	322	324	- 4	5 5 5	597
Ŷ	29	-210	5	21	-87	- 4	437	462	- ?	27	145
1 u	144	-244	*	1 34	161	- 5	202	-230	- 1	215	777
			7	371	543	- 1	210	-255	n	205	210
	A, -7,	L	•)	₹ _{C1} #	-381	1	26	105	?	252	-266
			14	110	172	2	477	-41-	3	487	-481
- 4	543	301	11	4 <u>5</u> 4	344	3	208	-2411	4	212	-209
-1	237	-227	12	107	-133	4	234	-227	5	560	257
- 4	29	108	1 *	128	267	5	307	240	6	314	-315
-2	28	158				6	171	142	7	163	-133
3	242	-271		0,-5,	1	Ŷ	274	- 3115	ç	2.0 ×	->50
4	309	319				11	261	215	12	24	156
11	199	191	-9	29	160	14	219	-161			
			- 7	455	-496					6,3,1	1.1.1
	6,-6.	ι.	+ 5	216	-213		6,0,1				
		-	- 5	340	331				- 5	240	-217
-8	534	330	-2	234	223	-12	204	-214	- 1	361	-366
-0	345	- 379	- 1	219	-189	-11	244	236	1	420	447
-4	28	227	1	347	-407	- 8	173	174	2	26	151
2	215	256	×	2711	228	-7	180	198	3	142	1/3
5	39 A	- 563	6	129	181	- 5	5.90	-584	4	21 1	-217
7	283	264	7	\$19	-320	- 4	363	374			

											_
	6.3.1		- 4	457	451		6.11.	L	- 2	162	-152
			- 1	159	157			-	-1	166	-185
5	236	229	0	248	216	-6	252	278			1.1
6	198	.195	2	229	=194	- 4	248	-208		7 5.	1 4 1 1 1
7	602	-586		150	-157	-2	3 3 0	31.1			
	287	- 252	4	206	224	- 2	577	-260	_0	1.4.1	1.15
10	173	- 1 2 7	7	261	2/4	2	126	-219	- 4	197	1.89
4.5	307	465	, ວ	1.5.6	450	ó	225	- 257		174	-172
4.7	2113	- 1 3 3	• •	774	יינו פנר	*	640	-234	- /	1114	104
13	104	179		4	-120		4 4 2		- 7	217	-258
								ι.	- 1	54.2	208
	r,4,L			0,7,1		-	224	342		170	-148
100				• • • •	.	- 2		215	-		7.14
-10	272	-296	- X		514	-1		174		2110	
-7	23	104	- 6	575	+415	7	520	579		6	-131
- 5	247	545	- 14	145	552		213	-200	11	256	576
- 4	192	174	- 2	225	-215	5	178	17 🗧			
- 3	146	-148	- 1	. 1 .	132					1,-4,	1
- 1	5~5	-328	()	213	231		6,13,	L			
(,	17 4	158	7	3 (j. (j.	24 A				-9	31	218
1	421	418	۶	324	247	- 1	1×5	-2=0	- X	147	-175
3	349	5×1	10	124	-234	0	321	- 32 ~			
4	259	237	11	<23	312	1	521	544		×,-4,	F I
1	333	513	12	1 5 2	151	2	191	174			
10	207	-214				2	525	-225	5	244	-190
1.5	207	-207		~, ~, L					9	313	=258
							7,-10,	L			
	1.5.1		- 2	221	-223					8,=3,	E .
			-7	142	-195	- Ø	29	177			
_0	2415	-232		200	-165	1	244	- 253	>	325	-327
- 8	້ວບ	1×5	- 1	564	327	2	263	-252	4	224	250
-7	2 2 4	363	2	4 57	-404	•					- 10
-1	1.82	157	7	174	-154		79.	ι		н,-2,	1
	162	170	•					-			
	124	-215		1		1	171	14 *	- 7	144	-168
- 2	174	155				•	• •		- 4	213	-774
- :	1.7	15/	- 7	256	-214		78.		- 2	27%	252
4	170	-202	- 5	117	243			~	n.	300	-778
2	17.0	499	- 7	2 2 2	-280	- 6	276	-307	1	322	-346
2	21.7	- 1 - 0	- 1	1.13	202	- 3	196	132	>	12	118
2	100	1/0	-	3 4 6	-150	5	20	1 7 3	2	195	122
>	504	298		121	-175	,	27	•••	5	40.81	- 440
<u></u>	184	1/5	-	370	- 7 - 9		7 -7		,	224	275
-D (169	-107	2	//4	-200		· , = · ,	L	'n	70	0
8	290	253	7	195	120	. 7	270	26.7	*	3.1	-04
10	315	-296		572	- 29/	- 1	204	-3117		d . = 1	
12	200	212	1 0	יאיא	190		300	- 201		······	
						- 2	24	- • • >	. 7	220	- 2
	- 1, n, L			5,10,	1		7 4			241	-277
							11-01	L	-,	614	-160
			-								
• 9	140	194	C C	241	-/85	_					

and the Michigan

	*,-1,1	L		-, 4, L			P,11,	ι	-4	31	-218
		5 / F	,	1	7	2		7.	1	226	-205
- 5	272	245	- 4	2011	101	-	11	0.0	<u>_</u>	1.7	775
4	247	-252	= 7	249	-250		0 (74	
7	171	*7	2	124	743		V,=0,	ι		0.4.1	
			D	.51	257	_				V , 1 , t	
	8,0,L					1	X ()	34		• •	4.00
				3151L					- 5	32	=189
-8	214	-238					9,-5,	L	- 5	767	741
-0	317	336	1	2016	232				-7		(77
- 4	207 -	-232	3	194	-163	1	506	-135	- 1	5 1	20
- 3	252	275	5	351	364	2	218	-172	n	3.1	-191
-2	301	310	1	254	-182	3	31	1 H S	1	21.5	279
Q.	342	-387	¢.	247	263				3		-347
4	1 2 1	-178	11	214	-243		0,-4,	t	5	252	247
~	229	-176							7	267	241
				51516		1	211	240			
	5.1.1					3	259	-241		41211	
			- *	203	-317	6	31	-11-1			
_4	102	211	>	2.16	156				- 6	322	-344
- 2	257	324	9	251	223		0,-3,	1	6	274	-725
- e.	5.50	_508					-		2	272	351
	31.9	- 100		8.7.1		1	214	-223	7	30	-187
1	171	- 1 - 0				3	401	6×5	5	3 1	-107
	254	277	- 5	116	-243	6	274	-216	6	314	310
2	2.1	200		, , ,)	215		•		7	245	248
4	1 ~ 4	-209		1 4 2	-137		0	1	بر	453	-427
6	248	200		1.02	-7×4		, , ,		10	227	277
8	201	-145	<i>_</i>		- 207	- 2	30	-26 -	1 -		
11	169	-210			- / 0/	-2	20	-14-		Ú. 8. I	
			4	1.65	- 224	1	216	261		.,,,,,	
	~,?,L		<u></u>		7/21		4.9 %	-21-4	٥	21	258
			ч	\$ 5 (1	501	7	226	37.4	2	245	-235
- 8	245	-258				6	407	2.5	5	240	207
- 4	195	147		- 87 M M		2	14 3	- 7 7		24.1	218
- 5	387	577				•	2.72	• • • •			
- 1	274	-230	ч	51	-151						
U	183	209					9,=1,	1		4,4,1	
1	470	371		- 7141L		~			,	4	
4	525	-245				- 5	250	2113	- `	7.4	- 20
10	210	-231	- *	213	-245	-4	257	+145	- (31	101
			- 1	140	-168	-2	330	5/4	è		-199
	A, 3, L		2	274	-251	0	249	- 274	12	47	619
			4	255	237	1	275	=1×2	7	17 1	-/ 5/
- 1	231	-149	5	250	-213	4	242	-203	ų	21 1	192
1	191	231	4	768	-204	9	214	-2. 4			
2	274	219								4141	
4	364	+307		8,10,	1		9,1,1		-		
5	3.0	150							- 1	52	-19K
	291	-248		32	-23n	-0	240	-251			
11	۲ ۹	154				- 5	242	190			1

allow and thereintics

	4,+,1		*	32	-152		10,1,	L		10,3,	L
3	214	-201		4,4,1		-1	202	254	- 1	243	385
5	274	242				1	2×3	-247	3	452	-492
*	3+3	376	2	202	-190	4	309	-202	4	218	-219
						6	207	214	6	281	259
	4,7,L			10,-1,	1.						
							10,2,	L		10,4,	U 1
-1	249	-249	-?	415	-422						1.1.1
				300	300	1	361	411	n	300	376
	4,8,L		5	4.56	-500	2	240	24.1			1.1
						4	244	-144			
2	264	-262									

Figure B.5 Ge Exc. Ge(NC(C6H5)2)4 . i Wildiama'

Final	Atomic	Positions	For Ge	(11 C ((CGH_),)	Ц
-------	--------	-----------	--------	----------	-------	-----	---

ATOM	x	у	z
Ge	0.00000	0.13104	0.25000
N1	0.05733	0.22155	0.23767
::2	0.05828	0.04332	0.35682
22	0.03727	0.30756	0.19538
22	0.09039	0 25300	0 37069
221	0.09836	0 10758	0.30408
1022	0.08614	0 78210	0.38700
022	0.08070	0.70219	0.20799
023	0.0000999	0.79277	0.12010
024	0.10724	0.09222	0.1-049
652	0.12214	0.90011	0.19975
026	0.11657	0.96041	0.20068
027	0.12117	0.39100	0.45806
C23	0.08636	0.89855	0.49438
029	0.11245	0.84012	0.57465
0210	0.17413	0.77771	0.61985
C211	0.2119	0.77110	0.58690
C212	0.18394	0.82683	0.50528
0111	0.08765	0.37825	0.19416
0112	0.071/29	0.43487	0.11769
0113	0,12312	0.49894	0.12669
CARL	0.19229	0.51097	0.21247
0115	80905.0	0.45577	0.28940
2116	0.15837	0.38905	0.23026
2112	-0-04404	0.34676	0.11759
6- 18	ND 06310	0.45606	0,12030
0110	-0.13558	0.49411	0.06225
1120	-0.1 ²⁰ 93	0.42329	-0.00223
0121	-0.17302	0.31676	-0.01132
0122	-0.10105	0.27717	0.04912
10122	0.07119	0.73861	0.31654
n22	0.08161	0.65743	0-21414
HZ2	0 11772	0.75535	0.14030
r.24	0 13568	0 95675	0.17201
123	0.12/07	1 04210	0.27014
H25	0.000	0.02818	0 46139
HZO	0.04+37	0 84133	0.59273
H29	0.00423	0.77505	0 67974
H210	0.19557	0.72540	0 61473
H211	0.20090	0.2049	0 47831
H212	0.21167	0.02240	0.06101
H112	0.02645	0 57158	0.07231
H113	0.11180	0.55179	0 21783
H114	0.22919	0.551/0	0.21/05
H115	0.25520	0.4005/	0.32872
H116	0.16902	0.59521	0.16628
H119	-0.02406	0.50520	0.06305
H119	-0.14313	0.30300	0.00000
H120	-0.23570	0.47972	-0.05405
1121	-0.21226	0.2/2/7	-0.03-03
H122	-0.03947	0.20037	0.04170

ATOM	B11	B22	B33	B23	B13	312
Ge	2.11306	1.20436	2.11929	0.00000	1.42543	0.00000
N1	2.01502	1.19337	3.16576	-0.21905	1.96780	-0.95780
N2	3.27914	0.97818	2.58962	0.48293	1.99 96	0.30102
C1	2.80852	1.19604	2.24638	-0.17947	2.05703	-0.26725
C2	1.96152	0.71394	2.21056	0.06550	1.12390	0.12456
021	2.11574	2.29517	2.54336	0.76557	1.46345	0.96078
022	2.8:591	1.82173	3.41259	-0.3 0380	2.09286	0.17571
023	4.03436	2.75853	5.04919	-1.19099	3.01007	0.03207
C24	3.86273	4.56362	4.00649	-0.25789	2.75541	1.36382
025	4.47585	4.33894	4.89576	1.42295	3.71743	2.07175
C26	3.19382	2.98253	4.18718	0.38151	2.715+9	0.95794
027	2.85495	1.06402	2.99818	-0.12459	1.79083	0.04398
028	4.08853	2.22246	3.94331	0.54305	2.83094	0.12850
C29	6.09057	2.36273	4.76281	-0.06595	4.1 918	-0.87571
0210	4.48305	2.8/694	3.05963	0.78054	1.97 41	-1.29636
0211	3.48410	2.83650	3.71913	.77250	1.73728	0.65914
0212	3.20407	2.33081	3.20146	0.31100	1.89391	0.43076
0111	3.48404	1.53768	2.77674	0.03243	2.246-4	0.37143
0112	3. 6333	2.04103	3.03498	0.12355	2.17754	-0.40412
01:3	91904	2.15819	4 . 3410 1	0.31211	3.56811	-1.21063
0114	4.46774	2.25479	6. 2108	-0.37341	4.36732	-0.74709
0115	3.69726	3.49304	3.92378	-0.70317	2.50015	57038
7716	3.80224	2. 39700	3.58993	-0.00295	2.9395	-0.32011
0117	3.30901	2.34972	2.43578	0.42394	2.141 °6	-1-77435
0113	3.10956	3.2658	3.01545	0.49633	2.05541	0.83260
C119	4.57367	4.63534	4.59329	1.08230	3.3710	-31495
0120	4.20656	6.99479	4.91249	2.41208	3.12472	1.51574
0121	3.63952	6.02515	3.98414	0.60070	1.83491	-1.60764
2222	3,90144	2.67497	· 68659	0.91780	1.9 912	-0.395-7

Anisotropic, Temperature Factors For $Ge(NC(C_{6}H_{5})_{2})_{4}$

Isotropic Temperature Factors For Ge(NC(C6H5)2)4

ATOM	В	ATOM	В
H22 H23 H24 H25 H26 H28 H29 H210 H211 H212	-1.325 ⁸ 7 2.91434 2.97645 1.29298 0.00442 0.50835 2.28470 2.22192 3.19577 0.63293	H112 H113 H114 H115 H116 H118 H119 H120 H121 H122	1.03046 1.68423 -0.71075 0.37025 -0.15714 3.21570 1.03577 4.99047 1.95793 -0.27317

Children .

m	17.00	P		-	
20	1.4.4.1	ь.	. 1	2	

133

Internuclear Distances In Ge(NC(C6H5)2)4

and Marthlenes

and i

	Distance $\binom{9}{4}(\sigma)$		Distance $(\hat{A})(\sigma)$
Ge-N1	1.833 (4)	0119 -012 0	1.365 (14)
Ge=N2	1.859 (5)	C120-C121	1.374 (15)
N1-C1	1.275 (8)	C121-C122	1.399 (13)
N2-C2	1.258 (8)	C122-C117	1.393 (110)
C1-C111	1.474 (9)	C21-C22	1.405 (10)
C1_C117	1.492 (10)	022 -023	1.380 (8)
02-021	1,523 (7)	C23-C24	1.379 (11)
C2-C27	1.492 (8)	C24-C25	1.383 (12)
C111_C112	1.403 (8)	C25-C26	1.388 (9)
C112-C113	1.368 (10)	C26-C21	1.389 (9)
c113-c114	1.381 (12)	c27 -c 28	1.395 (8)
C114-C115	1.393 (10)	C29-C29	1.385 (9)
C115-C116	1.372 (10)	c29-c210	1.388 (13)
C116-C111	1.399 (10)	C210-C211	1.396 (11)
C117-C118	1.397 (10)	C211-C212	1.385 (9)
c118_c119	1.371 (12)	C212-C27	1.385 (10)

Bond Angles In Ge	$(NC(C_{6}^{H_{5}})_{2})_{4}$		
	Angle ^o (σ)		Angle ^o (σ)
W1-Ge-N2	111.15 (23)	C117-C118-C119	123.17 (76)
N1-Ge-N2*	106.75 (25)	c118-c119-c120	119.34 (83)
N1-Ge-N1 *	109.31 (25)	C119-C120-C121	119.33 (84)
N2-Ge_N2'	111.25 (25)	C120-C121-C122	120.70 (35)
Ge-N1-C1	123.7 8 (45)	C121-C122-C117	120.32 (10)
Ge-N2-C2	130.08 (48)	C2-C21-C22	119.58 (50)
N1-C1-C111	116.89 (58)	C2-C21-C26	120.55 (60)
21-01-0117	127.13 (53)	022-021-026	119.75 (55)
C111-C1-C117	115.96 (50)	021-022-023	119.83 (61)
021-02-027	116. 51 (51)	C22-C2 3-C2 4	120 .2 8 (72)
01-0111-0112	122.17 (59)	023-024-025	120.07 (58)
C1-C111-C116	120.35 (50)	C24-C25-C26	120.62 (66)
C112-3111-C116	117.46 (61)	c25-c26-c27	119.36 (73)
0111-0112-0113	121.49 (67)	c2-c27-c28	119.25 (60)
c112-c113-c114	120.50 (58)	C2-C27-C212	122.52 (52)
C113=C114=C115	118,92 (65)	C28-C27-C212	118.22 (5 5)
c114=c115=c116	120.81 (72)	C27-C28-C29	120.00 (70)
c115-c116-c111	120.78 (58)	c28-c29-c210	119.94 (64)
c1_c117_c118	121.22 (60)	C29=C210=C211	120.91 (61)
c1=c117=c122	122.35 (6 3)	C210-C211-C212	118.65 (74)
C118-C117-C122	116.43 (69)	C211-C212-C27	121.40 (62)

an an Michigan

TAPLE B.14

Comparison of observed and calculated Fs for $Ge(NC(S_5H_5)_2)_4$

			-,	204	208	4	6	4.6.3	11.3	
			- ;	100	200	-	0		100	5
4	3 19 615	-	•		112	-			4.0.3	2
-	472 475	1	- 4	F 7.	89	1		- 1	1.19	-
0	174 174	1		124	135	1	- 11	- 13		-
0	301 308	1	•	149	163	1	1.2	- 1 P	122	-
10	217 182	.		115	103	2	1.4	1	20	2
	0 K= 2		+ 11=	J.	K= 12		1.6	75	50	5
	73 65	2	-4	95	と4	1	+ +i=	1	K= 5	1.1
-13	151 162	2	-2	194	215	1	-15	ിട	81	5
-12	23 99	0		120	127	1	-1.3	- 3	74	5
-11	299 290	2	0	185	197	1		1.5	03	5
-12	42 41	2	3	101	63	2	- 7	- 0	70	5
- '}	261 254	2		1	K= 1		-7	170	1 00	1
- 3	25 49	1	- • 7	75	66	2	-3		355	1
- 7	327 332	1	= + ^t 5	138	138	2	-2	5.9	60	1
-r.	30 66	-	-13	80	162	2	-1	104	109	1
-5	332 310	1	= 1 2	121	128	2	Ũ	222	231	1
- 4	242 235		- 1 1	1.82	179	8	1	377	352	1
	32 112	ŝ	-10	278	206	2	2	113	57	1
- 2	58 44	4	_ ')	123	121	2	5	122	224	1
= 0	350 770	4	. 7	284	264	1	4	215	273	1
	17 17	-		340	359	1	5	340	314	1
	-+3	*		240	427	1	7	170	122	1
	0 1 4	~		25	58	ĩ	1.5	113	110	2
	103 104	-		320	316	1	1 1	72	54	2
-14	10 X5	*	1	106	190	1	12	14	63	2
11	40 45	-		24 3	192	1	13	24	91	2
- /	05 93 64 05	1	4	610		1	1 4		78	2
- 0	84 95	2		177	177	1		· · ·	K= 7	
-7	275 190	2	4	1.0	1.5.4	÷	-14	775	73	2
-5	215 199	1	4	4	400	-		A	04	-
- 4	377 376	1	0	100	110	-	- 1.0 • 1.0	F 6	103	
-1	317 302	1	1	200	210	2			100	2
0	64 61	1	8	187	104	1		T	1 25	2
16	101 82	2	2	178	1/6	-	= 2.0	119	401	6
+ H=	J K= υ		3.0	C C	102	4	- 7		100	-
-13	75 79		11	73	78	4	- 4	1.1	1.24	-
-12	50 68	2	• 2	139	156	2	-/	1.7		-
-11	101 113	1	53	73	17	- 2 -	-0	1.1	100	-
- ?	112 115	1	1 5	<u>ې ب</u>	93	2	-2	111	117	1
-7	159 159	1	+ h=	1	K= 3		-4	4 4	41/	-
-5	131 131	1	-16	65	46	2	-3	114	14/	-
-3	162 161	2	4	49	56	4	-2	*	7.9	-
-2	67 46	1	-13	ć7	17	2	1	-	0.0	
-1	170 167	1	-12	65	78	2	3		21/	-
0	79 60	2	- 1 C	67.	63	2	4			
15	125 110	2	- 5	206	199	2	5	7.0		-
	6 = X 0		- 8	7 41	6	1	0	134	134	
-1/	109 119	:	-7	250	252	1	7	-	140	1
019	55 51	2	- Č.	402	395	*	Y	13	57	2
- 7	140 171	3	-4	212	212	1	1.4	~ á	25	2
- 1	234 227	1	3	377	323	1	2.1	1 -	73	4
- 4	211 213		+2	143	140	1	1.2	173	121	2
-3	77 6	1	- 1.	285	274	1	1.4	1 15	35	2
-2	222 222	1	0	379	355	1	* H=	1	N= 9	
1	157 162	1	1	131	171	1	-1.3	48	53	2
+ 4	81 66	2	2	257	248	1,	-11	174	101	2
	6 x=		4	244	230	1.	-9	100	119	2
-10	93 77	2	5	55	46	1	-7	1 1	102	1
-9	113 11	2	6	125	126	1	-0	117	134	7
-5	142 159		7	117	141	2	-5	115	129	-

and the second second second

.

- 4	172	747	1		. 40	617	1		1 1 4	201	-
	4 / C 4 A A	120	***	-		- 2 P	4.				4
- 4	1.44	161		-	010	000	4	-2	.0	24.2	-
- 1.	125	192	1	3	155	2.47	1	- 4	2 14	414	-
5	74	39	3	<i>'</i> .	554	544	l	- 5	15	4/	1
1	150	163	1	L	331	200	1	-2	- 3	0.5	1
2	23	95	1	~	198	199	1	-1		04	1
3	8:8	76	1	2	220	282	2	0	122	120	1
5	103	25	-1	11	232	234	2	2	144	153	1
7	114	97	1	13	105	116	2	4	372	317	1
	75	91	2	* H=	2	K= 4		5	3.23	152	1
- 2	1.7	52	:	-16	132	120	2	1.0	112	105	2
	-	X = 13		- 14	120	129	2	4.2	1 * 1	114	2
	* 54	5.° x x - 5.	,	- 1 2	10	91	2	• n±	2	x= ¹ •0	
-10	105	121			160	173	<u>,</u>		3.43	119	2
-11	147	121	2		456	165	1	-10	1.17	123	-1
-0	140	100	5	- 0		110	1		1.02	07	2
- 3	111	12/	1	• (110	1,1,1,0	4			0.4	1
-4	45	93	1	-0	21/	200	-			17.1	
- 5	100	115	1	- ']	S20	229	1	72	174	1.24	-
-2	133	155	1	- **	215	213	1	-3	1 12	1.42	*
5	166	165	1	· · ·	<u>ч</u> о	83	1	76	*	104	-
2	215	222	T 1		258	243	1	-1	115	110	1
3	112	105	1	-1	152	124	1	Ç	P 2	20	1
ó	132	123	1)	374	314	1	1	1-4	192	1
10	135	125	2	2	76	73	1	3	274	217	1
	1	K= 13		.2	137	134	1	4	63	116	1
-1	141	163	1	4	- 62	72	1	5	113	110	1
Č.	34	79	1	3	237	238	1	0	153	168	-
1	110	123	1	7	117	112	1	7	194	100	1
	118	143	1	9	32	53	1		113	131	1
	2	к= 0		0	174	99	2	9	2/3	162	2
-10	173	164	~	• •	4 ()	Ġ	- 2	5.1	156	171	2
-14	174	1 30		+ 1	17	45	2	+ 71=	2	K= 12	
-12	103	134	3	10	29	102	2	-10	177	165	2
-10	772	35.	-	• 4	70	73	2	-0	100	118	2
-10	0	115	1	a 11=	2	K= 6		-5	117	108	1
-0	265	350	4	-16		44	2	- 4	20	120	1
-0	240	247	-	-15	95	93	2	-2	251	200	1
	617	677	4	- + 4	53	54	2	-1	• 3	52	1
-6	555	570	1		106	111	2	0	153	179	1
	280	2/4	-		1 1 1	143	2	3	141	173	1
2	043	0.01	1		247	210	2	4	1-9	110	1
4	170	1/3	7		054	263	1	7	0.1	20	1
0	13/	155	3	** /	407	1 5 0	1		03	PI	2
23	278	215	1	1 C	67	77	1		2	R= 14	
10	123	1.52	5			4.23	1	-1	1 2 8	110	. 1
14	177	1/5		- 3	1/0	258	- Î		-	x = 1	-
16	135	102	×		200	170	,	-1.	63	34	2
	2	K= 5		1	 	74	-	-17	25	R.H	2
-15	47	59	- 2	2	20	7-	-	-16	100	140	5
-12	4 \$	40	2	2		76	-			44	2
-11	105	204	7	4	73	18	-	-		1.21	2
-9	35	42	- 6	5	149	159	1	-	1.12	4:0	2
- 8	152	155	1	5	135	119	1			170	2
-7	243	244	1	7	54	112	1	- 1	1.5	100	2
-6	63	53	1	• 3	77	79	2	-	2.0	2.54	6
-5	105	204	1	# 년두	2	K= 8		-9	1.3	140	2
- 4	398	394	1	-14	77	73	5	-0	63	404	1
-3	830	770	1	- • C	39	94	5	-6	116	106	1
-2	139	129	1	-11	88	66	2	-4	560	200	1
-1	410	390	1	2	47	54	5	-3	375	309	1
0	5.6	4.15		- 1	1.14	106	1	-2	407	485	

and the first the same

i

- 1	271	274	1	7	97	82	1	2	07	97	4	
	0.04	320	-			100	-	-		112	-	
0	352	333	1	4	150	129	+	4	1.0	116	+	
1	318	305	1	5	118	115	1	5	179	140	1	
2	53	50	1	7	150	142	1	* H=	3	K= 13		
7	744	207		3	176	145	1	-7	04	02	1	
3	210	671	-	0	1.50		-	-7			-	
4	33	98	1	1 4	00	101	2	-3	. 7	20	1	
5	302	293	1	13	79	60	2	-1	102	112	1	
6	144	149	1	• 4	69	71	2	3	120	125	1	
7						×- 7			4	K= 0		
/	71.2	119	1	• 11-		- 00	.,		22	70	2	
3	151	145	1	-1.3	110	40	2	-10		/0	-	
9	162	160	2	-15	54	55	2	-1.4	177	113	5	
	43	61	5	4	37	98	2	-12	271	218	2	
10		6.4			40	70	2	-10	343	334	2	
12	20	00	~	1.0		1.17			1 2 2	1 7 1		
13	87	83	5	-11	101	103	4	- 2	1.0	101	-	
15	59	54	2	-10	50	59	2	-0	07	0.5	1	
	7	X= 3		- 0	20	55	2	-4	100	183	1	
		47		.,	100	130	1	-2	5 . 7	579	1	
- 1	22	43	6		106	100	-	-		775	-	
-15	106	117	2	- 5	217	414	1	U	111	100	+	
-14	30	99	:	-5	87	98	1	2	29	75	1	
. 7	100		-	- 4	81	100	1	4	258	247	1	
-10	100		-			124	1	6	376	332	1	
-12	72	87	ć	- 3	100	124	-	0	200	373	-	
-11	102	112	5	-2	143	121	1.	0	60	216	1	
-10	149	143	2	-1	74	66	1	1.2	1.45	165	2	
-0	1 27	125	0	a	253	250	1	1.4	115	107	2	
	101	251	•		76	73	1		4	X= 2		
-0	260	224	7	+	740	710	-	. 17	F. K.	67	2	
-7	138	137	1	2	311	310	-				5	
- 6	439	444	1	4	74	52	1	-1.0	1.4	24	4	
- 4	435	425	-	5	182	168	1	-1.5	00	107	S	
		120	5	6	05	99	1	-13	170	130	2	
-2		92	-	0	105			-12	47	59	2	
-1	155	154	1	a	155	120	-		~~~		-	
0	177	175	1	10	83	91	2	-9	6.9	620	6.	
	603	572		: -	52	52	2	-8	1 " 0	143	1	
+	276				2	¥- 0		-6	163	151	1	
2	422	402	7	*	5			- 5	5 0 0	582	1	
3	144	137	1	-13	61	52	4	-9			÷	
4	229	223	•	-11	120	114	2	-4	4 .	430	+	
E	150	151		- 7	195	190	2	-3	405	479	1	
2	190	153	-	0	108	144	1	-1	7	710	1	
7	155	122	-	- 0		147	-	6	154	154	1	
o	126	131	1	-7	156	1.40	-	v		277	-	
9	118	120	:	- 6	158	1.05	1	1	0.0	3/3	+	
10	173	175	2	-5	96	98	1	3	3.3	345	1	
		1 4 3		- 4	103	97	1	4	137	124	1	
12	1 30	1.42	e			147	1	5	42	82	1	
14	74	73	2	- 3	1.04	100	-	5	. 30	1 26	1	
15	57	44	2	-2	152	160	-	-			5	
	3	K= 5		-1	163	178	1	9	1.0	114	4	
	107	87		0	135	142	1	1.1	106	113	5	
-1/	107			-	87	72	1	12	156	51	2	
-16	39	00	•		07	03	1	14	47	20	2	
-15	97	107	2	-	47	73	-			v		
-13	83	91	2	3	125	132	1	+ h=	"	A	-	
10	07	02	5	4	104	111	1	-1.8	45	67	2	
-14	0/	07	-	7	178	197	1	-1.6	134	137	2	
-11	80	97	"			117	2	-14	150	162	2	
-9	243	235	5	9	11/		-			1.01	2	
-7	97	93	1	10	64	59	4			101	-	
-1	1 . 7	185	1	11	85	95	2	-11	78	6/	4	
-0	201	200	-		3	K= 11		-10	288	278	2	
-5	201	209	1		1 45	120	2	-0	50	51	2	
-3	107	108	1	1.6	145	107		- 0	200	201	1	
-2	246	229	1	-10	12:	118	4	-0			-	
-1	60	5.1	1	- 3	97	94	5	-7	140	103	-	
	105	440	-	- 4	200	226	1	-0	311	200	1	
U	102	110	-		170	195	1	-4	73	63	1	
1	137	180	1	- 4	-10		-	- 7	0.0	47		
2	37	82	1	0	110	150	-					

an all Michigan .

MJP A YT3.4A2 MAGON

- 1	57	67		-7	108	109	1	-4	n**	580	•
Č.	1 2 3	193	4		116	136	1	- 3	246	240	1
1	211	203	1	- 1	120	85	ī	-2	300	312	1
-	364	760	1		171	174	-	-1	1 7 7	4 + 5	1
<u>.</u>	1 4 7	130	-1			102	÷	-1		166	-
	14/	109	-		4 5 6	140	÷.			100	÷.
	140	142	1		100	104	-	4		0.3.9	-
0	137	193	2		192	140	4	6	474	67.1	-
/	117	89	1	-	5-8	228	1	3	1.0	11/	1.00
d	230	23C	1	5	122	204	1	4		99	1
10	144	155	5	0	36	105	5	5	2.26	228	1
11	112	<u>1</u> 10	2	* 1 =	4	K≓ 12		٤	<u>64</u>	0,3	-
12	31	87	2		115	95	2	ò	1*4	120	-
13	50	37	2	- 8	5 Q	41	2	9	153	153	2
+ ∺=	4	K= 0		2	175	123	1	1.0	3 3	100	2
-17	29	35	2	2	100	87	1	11	4.4	47	2
=15	110	110	2	1	٥S	96	1	1.2	P2	83	2
-14	7.3	76	2	5	131	149	1	* H=	5	K= 5	
#13	110	122	2	+ H=	4	K= 14		-18	^ 6	56	2
-11	142	150	~	-3	07	98	1	-17	50	63	2
-10	- 59	85	2	* H=	5	K= 1		-15	173	132	2
-9	120	125	5		45	33	2	-14	1 4 2	105	2
	70	70	4	-17	72	70	2	-13	100	106	2
-7	: 21	20.6	-	5	58	07	2	-12	05	99	2
- 5	273	200	-	4	132	136	2	.11	100	103	2
	2.3	20.0	-	-13	£1	75	2	-1a	186	185	2
_ 7	200	200		0	153	157	2	-9	289	271	2
-0	409	200	4	1	0.1	104	5	-8	103	126	1
- /	104	149	-		- 37	134	5	m7	157	58	1
-		400	1	- <u>-</u>	458	156	4	= 5	124	124	i
	1.51	120	2	+0 4	477	433	1	-5	11	82	1
1	374	320	1	- 3	9.07	400	•	-4		174	-
2	160	154		1.5	294	476	4		407	207	-
3	221	228	1	- 9	1.57	100	-	- 2	4 /	200	-
5	146	156	1	- 5	322	350	4	2	. 47	176	-
9	- 5 á	69	5	• 6	112	114	-	<u>ຼ</u>		170	-
10	5 3	65	2	-1	273	202	1	2	1.07	107	-
12	50	34	2	С	332	313	1	5		00	-
* H=	4	K= S		1	510	533	1	y y	1 4	112	2
-14	74	74	2	2	113	101	1	21		20	4
-13	131	131	2	3	349	352	1	12		41	-
-12	109	114	1	4	118	100	1	2.5	-	/ 3	<i>c</i> .
-11	198	107	2	5	249	254	1	* 22	2	HF /	
-1 0	97	95	2	5	107	120	1	-17		29	4
-9	174	133	:	7	179	161	1	-10	119	197	14
- 8	220	231	5	8	ço	113	1	-14	1.5	147	2
-7	167	173	1	ò	- 52	53	5	-1.2	114	149	2
-6	194	203	3	10	127	129	2	-9	11	50	2
-5	136	197	1	• 2	43	53	2	-6	143	14.5	1
- 4	133	142	1	• 3	n (r	75	2	~ 7	°2	79	1
-2	154	165	1	• 4	25	72	2	-6	112	119	1
- ū	31	72	1	+ 11=	5	K= 3		-5	172	140	1
2	132	140	1	-+3	83	71	5	-4	1"?	184	1
3	112	112	1	-15	113	116	5	-2	175	119	1
4	132	120	1	3	71	75	5	-1	76	79	1
5	132	161	1	- 12	51	55	2	0	272	221	1
6	126	121	1	-11	170	107	2	1	143	154	1
a	143	136		-10	121	119	2	2	317	314	1
0	- 10	21		-0	158	143	2	3	1 6	104	1
10	122	127	-	-3	370	357	1	4	271	223	1
# LI=	4	K= 13		- 6	205	292	1	9	62	75	2
-11	20	7.		. 5	207	283	1	1.0	70	02	2 .
 	- 11		(-	-			1 million of	dia na superior	Statement in the local date	No. of Concession, Name

an and Michigan .

	,	12- 14		- 0		740	•	- 7		4 4 3	-
* 11 =	2	A= 9		- C	2.1	Soy	1	-/	÷ •	102	+
- 2 -	56	41	2	-1	377	366	1	-0	1.0	175	1
-13	69	6.8	1	1	334	372	1	-3	-47	159	1
-11	1 21	116	-	~	153	154	1	-2		154	1
-14	424	1-0	-				-		1 17	4.53	1
-19 	110	109	e	~	1.0	104	-	U U	÷ 1	± ' ±	+
-9	234	229	2	T .	140	100	1	2	2	275	1
- 3	1 35	141	4	c	172	102	1	5	n4	61	1
7	1 0 1	4 6 7			140	- 22	4		: 05	224	
- /	7.21	100	1	2	- 1. C.	162		C,	The .	1.4.13	-
- ó	1,95	191	1		106	109	2	e	-	1-0	-
-5	183	187	5	Z	01	73	2	\$	-	71	2
- 7	1 82	19,		 11± 	ė	53 4		1.0	13	110	-2
		1 01		- 1 2	45	7.9	2	4 bi 2	0	K= 10	
- 1	17/	Loz	-			76			54	54	2
	109	112	3		2.0	0.5	<i>e</i> .		-		3
5	170	123	1	- 1 <u>1</u>	77	63	2		176	100	2
~	03	8 m	1	- 14	56	110	2	-11		F.3	2
	5.40	. 7.		- 1 7	164	169	2	-4	:0	マプ	2
1	147		1		077	0.25	5	- 4		15.1	4
5	20	94		1.3	2.01	660	<i>e</i> .		-		-
1 7	72	60		– S	472	459	1	-4		1.12	1
	5	K= 11		-6	418	400	1	-3	Τ6	4.2	1
1	<u></u>	104	-	_5	190	190	1	-2	2.7	113	1
• • •	41	104	-		0.4.1.		-			170	4
+ +	59			- 41	6 · ···	661	-	-		4.7.7	-
+10	88	- F- C	- 2	- 0	371	3/6	1	-		1 2 . 2	+
- 4	128	152	-		133	756	1	3	141	15.5	1
- 1	118	1 1 3	-	c	271	286	1	4	105	113	1
- 2		44.5	-	-	217	225	1	 H= 	с	K= 12	
	21		4	**	1004	1.50	•	- 10	70	63	2
	151	155	1		477	2.50	-		5. 7	E.e.	
	25	2.5	1	ú	155	157	1	- 2			4
4	119	112	4	7	25	111	1		-1	45	2
		. 2	-	5	04	94	1	-4	115	125	1
ئ	T 10	4 C 4	-			163	5	a Le	7	. = 1	
• ···=	3	K= 15			1.00	100			200	2+3	2
-1	113	63	:	1.1	40	- 2	<i>c</i> .		6 9	610	2
	1 19	102	1	• 2	47	02	- 2	- 1.5	- 9	0.1	1
·	200	517	-4	w 11≢	c	K= 0		-11	1 5	107	
2			-		ັດປ	93	2	-1.0	215	109	2
+ · · =	5	K= U		-	77		2		250	220	
-1-	41	4.9	4	• • u	11		·,			77	
-12	258	253	:	-15	102	111	4	-/			
- 11	134	170	1	7	175	105	2	- C	375	374	-
	200	224	7	- 1 1	138	192	2	-5	1 .5	104	1
-0	22.9	64.7	-	0	124	152	2	- 4	217	210	4
- 6	276	295		-		1.4	-	- 3	255	247	1
- 4	716	710	-	- · ·	104	100	-	-0	0.90	202	
n	278	250	1	• 4	172	125	<u>i</u> .	- 2		644	÷.
	6.0	50		- 5	278	291	1	→1	161	150	1
-	1 7 7	163	-	- 3	249	255	1	0	212	198	1
<i>'</i> -	1/2	104	-		100	183	1	1	26	87	1
E,	278	205	2	-6	1 10	100	- î	5	247	320	1
5	- 152	164	1	-	271	102	-	<i>с</i> ,	0.00	204	4
1.0	73	81	1	C	243	240	I.	3	270	204	-
	1 17	147	~	1	94	111	1	4	102	17/	7
± °				3	268	272	1	5	125	128	1
• 1 =	0	n - 4	-	,	- 74	150	1	ć	30	106	1
-19	110	99	•		1/-	140	- 7	7	07	34	
-18	54		2	:• •	135	139				07	
- 7	127	132	1	1.2	42	32	6	ø			2
_1.C	105	114	2	11	110	111	2	9	33	35	6
-10	140	400	;	a 14 ±	6	K= 8		10	0.3	6.5	2
-1 2	1/0	1 6	;		64	73	2	. Hz	7	x= .5	
-13	156	103	i i	-10	60			-14	1.	71	21
-11	71	81	2	- 1 4	9.6	00	C.				-
= ⊨10	76	74	2	-12	124	139	2		1.0		4
	347	71.3	-	-11	43	47	2	-17	1 17	129	2
-0	000	017	1	-+ 0	2.11	202	2	-10	110	125	2
-/	220	23/			70	70	5	-14	1 73	111	2
- 4	413	477	1.	- ''			-			4 7 4	
-3	156	140	1	• •	1 .	100	1	1.88	-		-

ing all Mitchilding .

-12	64	7.;	2	0	169	171	1	-9	74	75	2	
-11	275	261	7	1	138	144	1	-8	62	82	1	
-10	148	152		2	214	209	1	-7	440	450	1	
-9	266	242		3	145	158	ĩ	-0	200	236	1	
-7	145	148	-	4	143	103	ĩ		174	193	1	
-6	101	117	4	6	107	114	1	-4	174	128	1	
-5	446	456	-	ñ	202	- Ūn	5	-3	- 40	75	1	
-4	116	106	4	10	51	50	2	=1	250	244	-	
- 7	205	200	-	+ 11=	7	V - U	-		177	114	-	
-3	2.0	6.76	-		71	68	2	- 1		37	-	
	201	21.4	-		50	44	5	2	4 7 8	142	-	
- +	1 2 5	116	-		6.4	52	5	4	1-2	106	-	
	252	110	્ય	-11	- 02	161	5	5	 	7.4		
î	202	272	-	1.00	12		5	7	5 6 6	161	-	
2	2.2			0	1 4 4	7 C A	5	<u>'</u>	1		5	
0	50	- 3	-	-,	- 1 1 A -	1 5 4	4					
		9 J	1.00		140	104	4	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		2.0		
1.	145	117	5	- ')	140	100	-	• H=	~ ~ ,	<u> </u>	6	
11	54	15	1	- 3	210	626	-	- 9		446	-	
10	58	53	18		1 - 0	121	1	.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	110	1.	
* . =	/	K= 5		2	9.0	100		- 10	-		12	
-12	29	3 J		3	- 245	12	2	- 14 4 - 1			5	
-17	36	90	1	* 1=	/	n = 11		=1.2	1.3	100	-	
-10	63	87	1	-•2	11	75	2	-11	1.5	0.74	~	
-15	99	100	2	•?	67	13	2			275	2	
-14	127	132	1	• 7	24	102	1	-9	11/	1.0	-	
-13	71	77	2	= G	54	/0	1	-0	177	105	1	
-12	127	120	2	3	103	110	1	-7	174	125	+	
-11	155	162	2	2	111	119	1	- 2	514	510	+	
-14	253	240	2	4	122	245	1	- 4	515	317	1	
	160	153	2	5	C 4	75	1	-3	46	67	1	
• 11	1.51	160	1	4 12	7	K= 13		-2	475	453	1	
-7	390	403	1	•	111	98	2	Ú	274	277.	1	
- 6	104	97	1	- -1	c (i	96	1	1	71	72	1	1
-9	97	100	1	- 3	105	101	1	2	2.55	222	1	
-3	141	133		# · #	ö	K= 0		4		132	1	
-:	346	341	1	0	67	59	2	6	147	151	1	
Ċ	246	243	1		135	135	2	7		91 <u></u>	1	
	198	200	1	-15	107	110	2	0	F 3	60	1	
2	121	135	1	-14	275	275	2	1.0	4.0	55	2	
2	121	115	1	-12	275	243	2	11	F. 4	47	2	
4	05	91	1	-10	353	335	2	* +=	ε	K= 6		
5	139	144	1	-3	110	114	1	-17	173	135	S	
é	127	200		- <u>5</u>	357	370	1	=1.0	16	84	5	
7	26	75	1	-4	110	148	1	-15	175	114	5	
9	05	1 22	2	-2	313	302	1	-1.3	159	167	2	
11	68	65	2	0	51	57	1	-12	* 7	65	2	
	7	X= 7		2	150	150	1	-11	173	157	2	
-14	128	129	12	4	192	198	1	-10	r 3	8 d	2	
-12	210	21.8		6	245	243	1	-9	177	171	2	
-11	70	73		8	125	69	1	-0	1.03	120	1	
-10	1.61	159	-	13	191	186	- 2	-5	105	135	1	
-10	101	61	-	+2	60	57	-2	-4	112	194	1	
	275	241			6	K= 2		-3	25	л II	1	
-0	1 4 2	140	1	- 17	63	77	2	-2	74	2.0	1	
-/	140	182	-	-16	49	44	2	-1	277	242	1	
-0	100	407	-	-15	91	105	2	0	23	87	1	
- 2	100	214	4	3	157	168	2	1	277	200	1	
	7.40	204			10	39	2	3	203	306	1	
-3	22	.00	2	-11	125	131	2	5	2.42	193	1	
-2	141	170	4		60	62	2	7	. 7/	110	•	
• 1	140	1.9.3										

	2	113	120	2	-14	49	54	2	-2	178	138	1	
*	+=	8	K= 8		-13	93	92	2	0	142	147	1	
- 1	16	2'6	94	2	-12	130	131	2	1	7.0	77	1	
-1	15	101	90	:	-11	168	161	2	2	1 3	149	1	
- 1	4	64	60	2	-10	50	17	2	3	75	53	1	
- 1	3	46	48	2	-9	113	103	2	4	105	110	1	
- 1	2	87	76		- 7	196	184	1	5	00	78	1	
- 1	0	161	164		-6	71	84	1	6	130	150	1	
		202	304	-	-5	244	233	1	0	56	63	2	
	- 6	110	175	-	- 3	460	430	1		9	K= 9		
	- 4	180	177	1	-2	156	168	1	-15	77	80	2	
	-2	100	112	-	24	73	75	1	-13	16	71	2	
	1	275	234		0	344	308	1	-12	40	47	2	
	-	176	151	-	Š	03	84	1	-11	5.9	52	2	
	÷	130	x- 101	.1	-	127	123	1	-0	. 7	60	2	
•		75	N- 10		4	100	108	1	- 5	4	139	1	
	12		04	-	0	14	30	5	-6	186	220	1	
	12	94	00	:		60	67	5	-5		115	1	
- 3	1.	110	108		10	. 7		2	-3	149	170	1	
	-9	114	102	1	1	00	U- 5	6	-3	100	-04	1	
	-7	100	/0	1	* 11=	4 4 5	141				148	-	
	-0	91	111	2	-1/	140	141	5			07	1	
	- 4	136	155	2	-10	90	90	5	+	1 0 7	1 2 2	-	
	-3	118	115	1	1.5	911	100	2	3	1.47	130	-	
	-2	86	100	1	-14	93	. 20	5	5	1.47	114	-	
	3	132	143	1	-13	114	144	-			V- 11	+	
	4	101	123	1	-12	89	101	4	• H=	- 20	100	0	
*	1 2	8	K= 12		-11	178	102	5	4		104	5	
	-8	72	57	2	-10	184	109	<	-1.5		0/	2	
	- 4	175	196	7	• 9	355	324	4	-1.4	1	40	2	
	11=	9	K= 1		- 3	170	1/4	1	-1.0	.4	49	4	
- 1	20	56	49	5	- 7	331	334	1	-7		06	2	
-	19	73	66	2	- 6	196	206	1	-0	1.40	100	4	
-	17	62	62	2	-5	228	240	.,	-0	1.2	1/4	1	
-	16	158	170	2	-4	70	02	1	* =	9	4= 10	~	
-	15	74	50	2	-3	109	112	1	-9	73	6.0	6	
-	14	217	226	2	-1	288	300	1	- 0	74	87	4	
-	13	115	113	?	0	251	245	1	-4	09	102	1	
-	12	107	105	2	1	224	233	1	-3	175	141	1	
-	11	132	177	2	2	177	170	1	* =	10	K= 0		
	-9	232	211	2	3	142	145	1	-20	91	0.8	4	
	- 5	57	95	1	4	175	166	1	-1.8	126	129	2	
	-6	132	133	1	7	126	123	1	-1.6	223	226	2	
	-5	280	277	1	9	93	97	2	-1.4	20	109	2	
	-4	105	127	1	10	60	48	2	-1.2	1º3	190	2	
	-3	84	80	1	* 11=	9 .	K= 7		-10	129	127	5	
	-1	- 8	61	1	-13	58	45	5	-6	5.56	231	1	
	C.	336	321	1	-17	56	53	2	-4	339	340	1	
	-	140	127	1	-15	64	54	5	-2	115	114	1	
	5	251	250	1	-15	47	42	2	0	429	432	1	
	4	176	179	1	-14	96	106	2	2	5.0	210	1	
	6	145	146	1	-13	70	06	2	4	317	319	1	
	6	114	114	1	-12	130	127	2	* H=	10	K= 5		
	11	106	88	2	-10	293	293	2	-1.7	1.11	107	2	
	- H=	9	K= 3		-9	203	190	5	-15	47	63	2	
	20	64	60	2	-8	170	176	1	-1.3	233	244	5	
	19	57	52	2	-7	225	233	1	-11	72	75	2	
	18	62	101	2	- 6	163	171	1	-10	372	304	2	
	17	0.8	94	2	-5	94	87	1	-9	443	379	5	
	14	90	89	2	-4	194	211	1	-8	205	214	1	
	10	01	47		-3	100	102	1	-7	259	267	1	

	1.	0.00	0.5		· · ·		4 8 4						
	-5	255	2 h J	2	- 4	1.4	129	1	U	1.0	150	-	
	-5	506	505	4	- 2	195	202	1	1	142	172	-	
	- 4	133	128	1	-1	6.6	58	1	2	4	169	1	
	-3	73	39	1	3	149	170	1	3	107	203	1	
	-2	111	93	1	1	98	94	1	5	1.25	135	1	
	-1	170	130	1	* 11=	10	K= 10			11	K= 5		
	0	50	67	1	-+5	67	64	2	-19	143	115	2	
		60	6.3		7	63	74	2	-17	:5	93	2	
	-	22	нн	-	= 1.1	175	175	2	-15	6.7	56	2	
	2	100	102	4		67	79	>	-14	n •	85	2	
	-	1.00	103	4	2	140	154	2	-17		83	2	
	2		90]	-	100	124	5		101	167	2	
	1	173	135	1	-3	4 (1		<i>c</i>	-14	~ ~	150	5	
		10	K= 4		- '	160	1/3	1			1-10		
-;	8 Q	158	143	2	- 5	120	121	1	-10	-		4	
		54	51		- 4	141	160	1	-9	4.7	111	4	
	1.3	124	131	2	- 3	179	- 150	1	-3	177	115	1	
	17	25	93	1	1	08	69	1	-7	77	67	1	
	15	169	170	2	 ∃ ∃ = 	10	n= 12		-0	269	257	1	
-	14	31	32	î	-12	70	51	2	-5	53	7 2	-	
	12	175	186	2	-1.	101	96	2	-4	124	112	1	
	10	101	194		-• ()	20	54	2	-3	677	236	1	
		22	66	5	-3	66	64	2	-2	173	124	1	
	1	77	87		-0	103	132	1	-1	102	204	1	
		9.4	3,	121	+ 11=	11	x = 1		1	2 13	230	1	
		79	× 0 0		-01	۰ <u>۸</u>	62	2	2	174	36	1	
	- 4	184	Tob	-	1.5	00	75	2	3	1 2 2	126	1	
	- 2	179	101	-	-1/	5.	5 H	5	4	5.40	149	1	
	-1	142	132	1	-10	100	4 11 4	5	5	110	1 22	- ÷.	
	0	153	170	1		196	100	6			k = 7		
		151	167	1	-10	2.30	242	<u>د</u>			5.0	,	
	5	0 j	85	1	-15	138	143	5		0.5	20		
	*	37	30	2	-14	170	101	2	-10	-	10		
	3	172	113	1	-12	168	100	6			74	-	
	10	7)	61	1		555	216	2		112	20		
	14=	10	ζ= ο		-10	241	218		-1.5	+		ć	
-	10	60	60	5	- ?	224	209	5	-12	1 1	130	*	
-	15	36	04	12	- 3	227	238	1	-10	543	254	- 2	
-	13	155	152	2	-6	234	236	1	-9	1.0	23	4	
	12	6.3	6.1		-5	1 - 2	190	1	-0	514	221	1	
_		124	196	2	-3	75	65	1	-0	213	209	1	
	27	273	71		-1	70	52	1	- 4	154	150	1	
	- 2	202	26.1	1	2	154	173	1	-2	1:3	111	1	
		2.53	243	-		50	31	1	-1	155	155	1	
	-/	230	243	-	5	74	79	1	2	147	152	1	
	-0	1/0	100	4	5	47	56	2	1	75	76	1	
	-5	154	140	-	+ 11=	1.1	k z 3		4	17	92	1	
	- 4	23	6.5	-	-00	<u>-</u>	66	2	5	26	8	1	
	-3	174	104	-			54	2	6	113	113	1	
	-1	135	192	-		16 06	1 11 1	- ij			K= 9	•	
	1	253	27 J	5	-10	12	- 04	- G	-17	- 2.2	72	>	
	3	152	171	2	-14	97	2,60		-15	0.4	02		
	5	145	142	1	-13	1.44	747	<u> </u>		. 70	1 20	5	
	7	113	107	3	?	155	12/	2		1.10	140	5	
	9	124	127	2	- 1	e û	38	2	-1.2	1'5	112	-	
		10	X= 8		- ?	73	03	2	-11	1 1	96	~	
	1.6	1 39	34	:	- 2	130	240	1	-1.0	175	122	2	
1.12	15	148	121	1	-6	75	79	1,	-9	13	44	-	
	14	75	74	2	- 5	264	207	1	-5	172	186	1	
1.12	12	0.6	83	1	- 4	525	225	1	-3	177	140	1	
	16	40	27	2	-3	238	233	1	1	100	105	1	
	10	47	60		-2	138	151	1	3	4.4	122	1	
	-9	101	105	2.	-	175	145	1		1.	V= 11		

-14	120	195		₩ [1#	12	K= 6		* 4	7.55	1.50	1
-13	68	61	2	- • •	67	58	-2	-2	1.00	125	1
-10	33	73	?	-: 8	47	37	-2	-1	73	113	1
-8	139	125	5		67	71	2	a	77	69	1
	145	444		-1.0	7 1	62	2	1	~ ~	88	
4	10	110				114	5		1.50	150	-
	12	K = 0		-12	117	1 <u>1</u>	2	2	+74	1.24	-
=20	118	121	1	/.	110	112	-	2		11	-
-16	190	190	-	-11	264	268	2	+ n=	13	R= 3	
-14	91	104	1	•• ij	56	77	2	-20	5	105	S
-12	177	177	2	÷9	244	275	2	d	42	65	2
-10	6.8	70		-7	173	171	1	-17	r. 's	56	2
- A V	370	76	5	- En	175	115	1		4.2	77	2
-0	100	500	-	17		+ 2A	-	-15	1 4 -	163	2
	140	197	-	- 4	440		-		1.1	0.67	2
0	122	120	-2	-1	- 775	762	*		2. 0	200	4
2	200	212	-	c	74	62	1	-1.2		1	6
4	175	177	1	7	112	126	1	₩ 1.0	£.	219	4
í.	111	105	2	+ 11=	12	K= 8		- 'y	17	40	2
	12	K= 2		-15	109	93	2	-0	174	530	1
- 1 Q	113	113	1	-16	62	60	-2	-0	1/4	173	1
	76	82			123	121	2	-5	00	102	1
- 10	26	02	÷		46	45	2	- 4	100	200	1
-1/	00	76	-		116	112	2	- ÷	154	148	
-12	209	203	-	- 2	12.0	04	1	-1	7.7	133	1
-14	79	12	4	- D	100	1 6 2	-	··· 4	1.70	282	-
=13	120	122	1	- 4	150	1.92	-		100	1 1 1	-
-11	173	173	1	- 42	421	K 1 7	-	4	,	J. J. I.	-
-10	1^1	27	2	C	114	103	1	3	175	105	-
- 7	214	205	4	-	1.28	100	l	2		142	4
- c.	30	63	1	4	113	115	1	+ +1 =	13	NP D	
-7	275	265	1	+ 11=	12	K= 10	1.1	-20	12	50	- 2
-	03	61	1	-15	112	97	5	-1.9	04	P7	-2
- 5	221	218	-	-16	72	72	2	-10	13	42	2
	242	26.	-	7	127	117	2	-13	15	62	2
	202	00			75	63	2	-12	1 = 2	196	2
-2	98		-		07	74	2	-11	100	206	2
5	150	117	3	-10	224	1175	5		26	82	2
1	223	233	1		614	. 76				175	2
4	01	109	1	-7	1.32	100	-	- 4		1.0.1	
5	134	143	1	• 0	Fb	25	1		1.00	140	
9	107	95	:	.5	109	1.21	1	-5	105	120	1
+ 11=	12	K= 4		+ !!=	12	K= 12		-4	100	186	1
	35	85	2	-10	79	74	2	-3	542	262	1
-15	24	100	•	- 2	72	65	5	-1	115	110	1
- 17	75	77		-3	123	116	2	. 11=	13	K= 7	
-1/	1 2 4	128		-0	100	1.44	1	-19	67	57	2
-10	140	11.0	6		13	K= 1		-18	57	47	2
-12	37	007	1		70	74	2	-17	53	57	2
-12	208	203	č			127	5	-16	117	110	2
-11	71	59	1	=1 2	110	447		-15	70	74	
-10	110	119	2	+13	10	0/	-		70	70	5
- 9	117	110	1	-17	72	11	-			74	-
- 8	154	161	5	-15	63	76	•	-1.5			12
-6	1 37	153	1	-+5	247	253	5	-11	1.5	1.1/	6
 -5	02	71	1	- 14	63	58	5	-1.0	74	71	5
-4	200	291	1	-13	231	234	5	-8	1.3	112	1
- 7	L 1	7	1	-12	50	55	2	-0	114	109	1
	257	262	-	-11	200	189	2	-2	114	144	1
- 2	227	602	-	-10	62	67	2	-1	107	1.32	1
•1	07	00	4	_0	102	106	2	0	212	125	1
0	210	619	4		337	330	1	2	123	117	1
2	141	144	3	- 0	1 24	197	1		96	40	1
3	114	115	3	-/	100	1.00	-				-
4	33	106	1	-6	100	109				77	
				- Pro							

-15	97	9.3	5	- 16	237	240	2	-11	266	262	2	
-14	64	6.5	~	- 1 2	450	150	5	-1.5	177	128	2	
-1 2	1 2 2	110	-	-11	50	26	5			16.4	5	
	100	100	1		165	155	5			5.3	1	
	50	201	<i>.</i>			1.9	5	-7	140	250	1	
	1 2 2	0.2	;	- 3	24.0	240	1			113	i	
- 35	152	1 4 3	-		164	1.62	1	- 4	1.70	170	1	
- 7	4 4 7	17.	4	- 4	103	162	î			110	- ÷	
- (1.1	1.00	1		4 7 4	1 3 6	÷	20	- 22	174	÷	
-0	410	100	1	-6	1.1	100	-			-07	1	
- 2	1/2	104	1		9.0	100	1	-1	- 4 13	1 7 0	-	
- 4	(37	14		-		130	-	7	+ 77	470	;	
- 3	125	123	7	-	1.0	104	4	0	J J	4.0	+	
-1	31	60		4		/0	1		10	A =	2	
3	30	. 21	Ĩ.	8 - F (=	14	N = 0			1 X	~ 6	2	
-	112	101	1		<u>n</u> _	27	5	- 10		4 7 4	6	
3	112	104	1	1.5	55	01			1 7 7	101	2	
•)=	13	K= 11		-•4	54	47	6	- 22	4.10	2.1	-	
-14	7 5	75	2	-11	70	/1	2	-14	1	97	6	
-12	83	82	5		171	118	~	-11	13	45.3	<	
-11	70	53	1	• ?	117	112	. 2	- 110	112		4	
- 2 1	175	165	2	• 7	131	123	1	- c		6.44	+	
- 8	159	142	2	-3	144	140	1	-/	1	244	-	
-4	25	26	1	••	144	129	1	-0		220		
 H= 	14	K= 0		* 11=	44	K= 8			4	260	+	
-55	85	50	2	-15	G 1	05	4	= Z		1.44	-	
-50	64	65	2	-16	110	111	4	ç	6.00	2	1	
-10	1^3	100	2	H1 4	121	128	-	1	7.45	155	1	
-10	55	42	5		220	228	2	* 0=	15	KF 7		
-14	- 92	112	2	-10	152	151	2	-19	0	90	-	
-12	107	112	1	- 2	221	222	-	-16		61	4	
+10	265	285		-0	106	97	1	=1.5	272	202	6	
- 8	340	342	1	- 7	170	195	1			16	1	
-6	403	424	1	-4	767	209	1	-11	1.07	142	-	
-4	159	185	4	-2	n7	89	1	0	-	00	2	
-2	279	204	1	-0	100	113	1	-4	1	5.0	2	
2	133	148	1	1	110	39	1	-2	111	119	÷	
	14	K= 2		◆ 뒤포	14	K= 10		-4	16	64	1	
-21	67	65	2	-15	9.6	83	2	- 3	1.9	121	1	
-20	60	40	2	- 4 2	70	54	-	=2	175	92	-	
+19	164	164	2	-12	93	55	2	3	1	102	1	
-17	136	155	2	-11	125	114	2	2		105		
-10	50	44	2	-:0	72	78	2	응 커트	15,,	K≡ /	,	
-15	241	252	2	-9	100	112	~	-1.9	23	27	2	
-13	116	122	5	•7	114	132	1	-1/	- 4		2	
-12	203	191	ĩ	-5	120	143	1		15	107	2	
-11	178	189	2	1	01	90	1	-12	172	12/	5	
-9	79	88	2	* 11#	14	K= 12		-14	1.02	100		
-7	114	116	1	-10	68	52	2	-2.5	001	24.3	2	
-0	174	170	1	+ ?	119	103	2	-11	6.00	2.10	-	
-5	70	99	1	-3	146	133	2	-0	1.44	4.44	÷	
-3	123	137	1	* 11=	15	K= 1	.,	-3	1-0	140	-	
-1	193	209	1	-71	68	10	1	4		01	.L	
0	26	84	1	->0	44	68	4	우 너희	17	107	2	
1	127	155	1	-12	81	00	2	-1./	173	104	2	
3	142	167	1	-18	156	127	2	-1.2	1.0	100		
5	101	100	1	-17	130	130	4	- <u>1</u>		41		
	14	K= 4		- 1 5	123	123	2		0 =	0.3		
-10	89	93	6	- 1 1	51	00	4	1		02	2	
-10	68	7 0	2	-12	237	240	4	-2.5	4 13	4 4 52	3	
•15	43	7 3	-	•• 7	73	/1	e.	-	3		1.17	-

-8	103	107	1	-11	53	63	2	-1.9	00	86	2	
-7	119	130		-10	57	53	2	-18	01	99	2	
- 6	173	1.5.0		- 2	57	58	2	-17	45	42	2	
-6	1	117	-	24	221	231	1	-15	64	59	2	
	1 4 4	157	-	-	64	77	1	-14	00	08	2	
-4	141	193	*	-0			-			470	2	
+ +1=	17	K= 11		- 2	140	104	-			1 77	-	
-12	124	109	2	-0	180	140	7	-11	TUN		-	
-11	116	107	2	* 11=	10	K= 8		-2.0			4	
-10	215	200	5	-18	103	45	-	-/		114	1	
- 8	111	107	5	-10	121	12/	4	-2	1.3	1/0	+	
-2	106	104	1	-14	142	141	4	-3	1.1	107	7	
* 1=	16	K= 0		-12	88	96	4	+ H=	1/	K= /		
-22	99	91	2	-10	155	158	4			16	4	
•20	74	77	~	- 9	85	10	-	-1.5	1.5	110	4	
-13	137	140	2	-2	100	78	1	-1.2	P.4	30	2	
-16	106	117		* #=	10	K= 10		-1.0	e 4	13	4	
-14	153	157	2	-15	105	91	2	-9	44	49	2	
-12	139	200	?	-12	105	109	2	-5	03	100	1	
-10	247	242	2	-11	08	88	S	-4	150	130	1	
-8	352	372	1	- 9	57	61	5	-3	125	135	1	
-6	236	240	1	-3	110	127	1	0	100	57	1	
-4	142	159	1	* =	17	K= 1		+ +=	17	K= 0		
C	125	138	1	-21	91	09	2	-1.7	110	91	2	
4	88	73	1	-20	78	78	5	-1.6	75	51	2	
	16	X= 2		-19	45	47	5	-1.5	112	112	2	
-21	54	61	2	-18	108	110	5	-1,4	143	130	2	
-15	96	98	:	-16	44	54	5	-1.3	120	118	2	
-18	56	61	:	-15	43	25	S	1	76	84	2	
-17	209	223	2	- 1 1	91	93	5	-1.0	124	122	2	
-15	71	81	2	- 13	77	67	2	-9	°6	00	2	
-14	51	01	2	-1?	124	124	5	+ H=	17	K= 11		
-13	74	51	2	-11	78	93	S	-1.2	107	6.9	5	
-12	67	74	2	-10	267	267	2	-11	52	20	5	
-11	132	140	2	-9	185	195	2	-10	121	102	2	
-10	71	73	2	-7	252	270	1	-9	110	86	5	
-0	138	144	2	-0	119	119	1	-0	170	144	2	
-7	115	134	1	-5	P3	107	1	-6	106	132	1	
- 5	87	98	5	- 4	170	102	1	+ +1=	10	K= 0		
-1	100	129		-3	128	139	1	-22	1 1 8	117	2	
- 3	104	190	-	-?	185	161	1	-20	142	143	2	
-1	276	250	1	- 0	104	111	1	-1.8	121	137	2	
-	08	100		- 1	120	125	1	-1.6	155	162	2	
	1 3 1	136			17	K= 3		4	300	308	5	
÷	110	125		-21	73	63	2	-1.2	200	218	5	
- 11-	16	X= 4		-+ 3	100	116	,2	-1.0	127	132	2	
-20	1006	102	2	-17	107	127	2	-8	176	167	1.	
	90	68	0	-10	231	249	2	-6	226	236	1.	
-10	44	60		-14	144	152	2	0	00	116	1	
-15	247	235	0	3	92	104	2	2	100	128	1	
-14	101	125		2	1.01	108	2	. HE	10	K= 2		
-10	101	100		-11	66	64	2	-21	50	39	2	
-12	104	122		-10	F8	59	2	-1.9	78	93	2	
-10	100	133		-9	70	74	2	-17	147	156	2	
-0	100	112		-8	88	106	1	-1.5	42	75	2	
-4	114	112	-	- 7	84	78	1	-1.3	70	87	2	
-1	04	102	-	-6	89	103	1	-11	106	201	5	
		4= 4		-2	135	139	1	-9	193	189	2	
• H=	10	71		0	120	130	1	-7	162	194	1	
#1p	(3	63		+ 11=	17	K= 5		-4	09	97	1	
-17	174	130	-	- *. *		50	2	-3	2.04	180	1	
			a second second									
46

-1	93	121	4	- 17	54	58	2	-3	04	69	1
5	26	4.3		6	103	146	2	-1	01	97	1
4 11 -	4 8		-		1 4 10	157	5		2.1	N= 4	•
- 20	10 80	62	•		107	130	5	- 21	6.4	62	2
- 1 4	55	52	1		14 C O	100		-9.6	4.1	60	2
-10	20	20			1.7.4	1 2 4	5	-4.4	70	0.0	-
-15	44	94	2		107	130	5	-1-	140	157	2
-13	60	00		- /	1//	100	-	C 			5
-12		00	-	- 5	100	110	+		24	107	5
-10	148	150	7		23	102	7	- 16		103	2
-7	- 39	70	2	+ [1 =	19	N= 2		-:.2	7.	10.0	-
-6	113	132	3	-50	2.8	94 94	<u> </u>	•31	4.0	70	5
- 2	1.1.6	104	3		57	40			107	170	-
4	- 38	95	3	1	107	105	~	-0	1	1.74	-
• 11=	18	K= 6			120	124		- 2	10	1.50	-
-19	111	102	1	1	120	102	2	-2	2 0	103	
-17	145	144		- • 4	22	86	4	- 북 너무 - 카스	24	A= 0	-
-15	127	131	2		142	149	4	-20		00	4
-13	159	163	2	-+2		90	2	-1.9		100	4
-12	60	53	2	-11	75	/5	6	-1/	1.13	124	1
-11	63	74	2	-12	53	61	4		•	130	5
-10	45	33	1	- 0	100	118	2	-1.4	14	53	-
- 9	119	103	2	-7	168	1/4	1	-1.5		104	-
- ü	101	84	1	-5	128	153	1	2		100	-
	146	160	1	# !i=	19	N= /		-9	* *	126	4
-3	102	125		-13	131	114	-	•0	-	4.3	-
+ .!=	18	К= Ч		-15	9.9	91	5	# 11= 			2
= <u>t</u> ⊙	- 66	52	- C	_ = 1 ₹	11/	110	<u> </u>	=:0	76	82	-
-17	64	51	?	-10	140	744	2	- 4.45	0.0	103	2
-16	22	83	2	- '?		00		-44		7.3	5
-14	150	141	ï	-7	178	112	1		6	72	2
-13	19	50	2		100	120	4		27		1
# 12	26	98	1	- 11		70	1	 	22	V= 10	-
#11	28	99	2		41		-		5.45	120	2
-1 0	108	115		- 4- 14 =	19 00	6 T	.,		10%	74	3
-5	_96	131	1		0.1	83	2			70	2
* H=	13	K= 10	~	+	75	07	2	-8	- 67	55	2
-13	158	140	4		2.0	79	2	+ 11=	2	.= 1	
-12	77	79	•		4.0	7.2	2	-21	0.0	01	2
-11	70	76	1	- 11-	2.1	L =	••	4.4	2.	67	2
-9	100	94	1			5 × ×	ر	_17	74	75	2
- 8	71	66	2		1 1 1 1	116	5	-10	6 2	87	2
• i1=	17	K= 1		-	1.17	54	- 2	-15	14	70	2
-21	38	87	-		100	107	5	-14	P 1	87	2
-2.	60	69	2		105	120	2	-12	65	77	2
-12	- 60	50	2	- 7 4-	2014	200	2	-11	53	57	2
-13	110	114	~		6 17	93	1		123	125	2
-10	204	210	-		197	200		=b	97	95	1
-16	73	470	1.	- 4	184	192	1	-5	141	140	1
- 1 -	130	134		2	127	136	1	+ 4=	21	K= 3	
=12	17/	159			20	k= 2	-	-?1	- 45	50	2
-10	159	124				76	2	-20	75	66	2
- 7	125	123			70	76	ž	-10	100	115	2
-7	150	12/	2	7	117	122	2	-17	2	57	2
-2	244	220		- 4	E L	53	2	-1.0	4 1	58	2
#3	119	17.9	-	1	70	62	2	-15	45	72	2
-2	80	24	-	7	137	152	2	-13	143	155	2
n Î	43	n 100			110	125	2	-1.2	1'3	125	2
1		2 2	-		194	198	2	-11	117	171	2
₩ 11 =	19	N- 3			- + 3	120	1	-17		174	2

nd in the in

-9	94	108	2	+ 11=	!2	K= 8		-1.0	120	115	2	
-4	112	124	1	-16	130	114	2	-15	63	58	2	
=	21	X= 5		- • 4	119	103	2	-14	171	158	2	
-20	70	82	•	"	30	65	2	-12	55	51	2	
-14	52	50	-	2	77	69	2	-10	27	94	2	
-17	32	85		-10	70	74	2	* 4=	24	K= 6	-	
-1.6	62	53	-		50	¢	2	-17	115	102	2	
-15	1.40	145	5		17	×- 1	•	-16	25	84	2	
	147	145	-	-10		03	2	-14	72	70	2	
-10	6	70			44	56	5	-11		110	2	
-1-	00	94	-		101	96	2		112	103	2	
- 4	50	00	4	112	5.6	47	5			- 1	-	
-/	11/	101	7	-10	1 4 8	154	5	-20	500	100	2	
+ +1=	21	N= /			140	1.04	5	-12	77	- 66	2	
-10	111	97	8	-10	-0	50	5	0	05	05	2	
-16	115	115	2	11	62	- 74	4		51	4.5		
-15	86	92	2	-8	132	130	-	-20	70	72	3	
-14	86	83	2	- 4	99	101	1	-1.5	15	10	5	
-12	154	154	2	* 112	13	K= 3		-1.4		22	6	
-10	115	122	i	- 7 1	101	81	2	-10		10	4	
- 9	59	60	?	-20	95	10	2	-12	/0	15	2	
* *=	21	K= 9		-15	88	11	2	-11	49	46	6	
-13	92	63	?	-10	91	89	2	-10		85	~	
-12	87	63	2	-17	01	93	2	+ H=	25	K= 3	~	
-11	140	123	2	• 1 ! ,	05	65	2	-1.0	- 3	20	2	
-9	123	106	2	-12	110	110	2	-1.2	03	10	2	
+ 1=	22	K= 0		-12	171	105	2	4	48	47	2	
-20	165	159	?	-11	100	120	2	-1.3		45	2	
-10	34	88	2	-10	104	111	2	-1.2	52	55	2	
-16	103	103	2	* !!=	23	K= 5		-1.0	74	81	t.	
-14	51	52	2	-19	72	71	5	* +=	25	K= 5		
- 3	127	109	1	-15	80	74	2	- 1.7	10	104	-	
-4	92	114	1	-17	74	62	5	-1.0	62	61	2	
-2	85	97	:	-16	70	80	5	-1.5	53	60	2	
+ 11=	22	K= 2		-15	135	127	5	- 1.4	40	52	2	
-21	52	44	2	-12	79	83	S	-1.3	62	63	2	
-18	74	66	2	-10	69	75	5	-11	56	59	5	
-15	127	130	2	-9	94	90	2	-9	125	111	5	
-13	152	159	2	-7	121	108	1	+ ri=	20	K= 0		
-12	51	62	2	+ 11=	23	K= 7		-1.8	72	69	2	
-11	145	148	2	-17	97	90	5	-1.6	02	92	5	
-0	123	121		-16	62	61	2	-1.4	125	114	2	
-6	00	74	-	-15	89	74	2	-1,2	78	76	2	
+ 1i=	22	K= 4		-14	110	112	2	-10	°2	70	5	
-21	- 86	68	2	-12	131	125	2	+ H=	26	K= 2		
-20	121	105	2	-10	113	102	5	-1,9	03	80	2	
	119	102	2	+ 11=	24	K= 0		-1.7	69	67	2	
-16	135	145	0	-20	57	42	5	-1.4	-3	. 39	2	
-14	145	147	2	-13	111	102	2	-1.2	74	58	5	
-12	138	145	2	* 1:=	14	K= 2		* H=	20	K= 4		
-0	34	75		-21	60	46	2	-1.8	79	70	2	
	155	190		9	50	64	2	=1.6	128	114	2	
- 4	143	139		-15	140	142	2	-1.4	00	98	5	
	22	X= 6		-13	160	1.67	5	-1.3	63	39	2	
-10	100	90	2	-12	47	51	S	-1.2	102	100	2	
-17	114	110	2	-11	173	1.74	2	-11	00	79	2	
-16	51	47		-10	90	95	5	-10	177	142	5	
-15	77	8.0		-9	47	56	2	-9	61	35	5	
-14	67	58		+ 11=	24	K= 4		* H=	27	K= 1		
- 4 4	177	141	-	-20	133	11.6	2	-19	55	47	5	
	- 35	0.	•	1	117	11.4	2	4.6	e 5	55	5	
	-								the second s			

Final Atomic Positions For Sn(NC(C6H5)2)4

ATOM	<u> </u>	<u>¥</u>	<u> </u>
Sn	.00000	.25000	. 12500
N	.07123	. 30830	. 20 9 34
С	. 04698	•34 5 33	_ 28218
C11	•099 ⁴ 7	•375 ⁸ 9	•34995
C12	.01828	.43468	• ⁴ 0533
C13	.1 3414	.46163	• +5749
C14	.20135	.42791	.47395
015	.21898	•3696 9	.41732
C16	.16936	.34241	•35709
C21	.03250	.14022	.30221
C22	.06510	.16401	.37918
C23	13 743	. 15534	•3956 5
c24	.17925	.11658	•33123
C25	.14932	.0905 1	•253 7 8
C26	.07590	.10134	•236 51
H12	.02695	•44725	.39057
н13	.11540	•50035	-9875
H14	21892	. 43876	• +9745
H15	.26668	.33 839	4 202 0
н16	.16954	. 29606	•33418
H22	.03108	. 209 17	•39195
H23	15654	.17624	• ⁴ 4942
H24	20391	. 12 1 05	.32874
H25	16934	•07 347	. 21930
¥25	04828	.09511	<u>19729</u>

Anisotropic T	emprature	Factors	For	Sn(NG (C2	H.)	ຸ)	ь.
---------------	-----------	---------	-----	-----	------	----	-----	----	----

				0 _	<u> </u>	
ATOM	<u>011</u>	<u>U22</u>	<u>U33</u>	U12	<u>U13</u>	<u>023</u>
Sn	3.40252	3.40252	3.1+4502	0.00000	0.00000	0.00000
N	2.87359	3.50661	5.44439	-1.25409	-1. 46679	-1.27916
c	3,14964	1,79888	7.25620	-1.05325	0.00336	0.62085
lo11	3,70112	4.27902	3.80840	-2.04128	-0.64251	0.17469
C12	5,98239	5,79374	5.83330	-2.33526	-0.39156	-0.69074
C13	10.48335	6.57758	7.04460	-2.82176	0.40948	-1.92075
C14	9,95752	12.06681	8.29332	-6.71429	-4.01342	,2.77689
C15	7.82405	6.48150	8,90454	-1.56779	-2,21738	0.93666
C16	4.00346	7.33963	4.81011	-2.37996	-1.95708	0.95772
C21	4.28442	2,28945	5.47432	0.49608	0.60363	0.39675
021	5 50031	4.95218	3,55161	1.67868	-1.17357	-0.37720
022	8 11331	5.82561	4.28263	0.37023	-1.81894	-0.83769
025	7 71922	7,13812	10,20634	1,41019	-3.20527	-0.15445
025	6 08057	11 20963	7.64334	3,13572	0.19503	-2.39826
025	z 80510	6.21112	7.56993	-0.24110	-1.20843	-0.22878

Isotropic Temprature Factors For Sn(NC(C6H5)2)4

ATOM	U
H12	7.32688
H13	5.26998
H14	4.17112
H15	11.72865
H16	13.00354
H22	5.79186
125 1924	8.88146
925	6.76051
H26	7.57717

	Distance (Å)(o)		Distance	(⁹) (σ)
Sn-N	2.069 (37)	C15-C16	1.347	(49)
N-C	1.330 (36)	C16-C11	1 .410	(38)
C-C11	1.470 (36)	C21-C22	1.332	(36)
C-C21	1.492 (30)	C22-C23	1.343	(37)
C11_C12	1.37 4 (40)	C23-C24	1.392	(51)
C12-C13	1.402 (49)	C24-C25	1.332	(56)
c13=c14	1.376 (63)	C25-C26	1.369	(43)
c14=015	1.374 (62)	C26-C21	1.421	(41)

TABLE B. 18

Bond Angles In Sn(NC(C6H5)2)4

	Angle (o)		Angle ^o (o)
N-Sn-II'	107.7 1 (67)	C13-C14-C15	120.7 (38)
N-Sn-N"	110.36 (64)	C14-C15-C16	120.8 (34)
Sn-N-C	121.5 (13)	C15-C16-C11	119.4 (28)
N-C-C11	120.2 (1°)	C-C21-C22	122.4 (20)
N-C-C21	124.0 (18)	C-C21-C26	119.3 (20)
014- 0-021	115.7 (18)	C22-C21-C26	118.3 (20)
C-C11-C12	121.3 (20)	C21-C22-C23	1 23.0 (22)
C-C11-C16	118.2 (20)	C22-C23-C24	118.2 (26)
C12-C11-016	120.5 (22)	C23-C24-C25	121.3 (33)
011-012-013	118.7 (26)	C24-C25-C26	119.9 (33)
c12=c13=c14	119.8 (32)	c25-c26-c21	119.2 (26)

Comparison of observed and calculated Fs for $Sn(NC(C_6^{H_5})_2)_4$

	0,0,1	5	1200	490	12	411	474		U,17,	
,	3. 47 4970		1031	949				4	222	-116
4	1007 -1034			-~47		6,11,	L.	, ,	2.2 1	7 2 4
<u>н</u>	1931 1745	11	343					, è	207	- 1/1
12	1109 -936	15	.41	616	1	7/7	6.0.7	г	247	חזי
10	547 245				2	742	507		0.43	
	1		0.016		2	700	/ /		V / 1 ? /	
	(,1,1					571	-468		107	6.10
		n	14A	- 653		570	6.9	. 0	2.40	- 3/0
1	2025 -2826	4	741	000	11	444	747	4	.0.4	44
5	520 -011	<u></u>	2.14	201	15	316	- 4 1 3			
5	173 709	Я	474	-1074					9,19,	1
7	412 819	12	243	315		0,12,	L			
9	402 -670							1	575	414
11	574 -815		11.61		6	962	1099			
13	3⊁0 4?2				2	196	161		0,20,	'
15	275 318	1	1320	131)4	4	493	-1117			
		۲	457	452	<u>8</u>	859	1057	n	370	457
	(1,2,L	5	1418	-1299	12	594	-477			
		7	374	-295					1,0,1	
U	3432 -2240	9	525	5 8 1		0,13,	t.			
2	517 -435	1 र	214	-316				1	1781	5+34
4	3074 1970	15	5.5 =	-302	1	473	- n 11 h	٦	327	-611
6	314 -245				3	476	-625	5	154	-7-19
ð	1414 -1067		11, 3, 1		7	280	415	7	397	+10
12	1228 1090				9	609	-545	ç	352	470
16	527 -462	- A	2.12	433	11	209	-331	11	532	
		2	1038					13	371	- 4 2 2
	0.3.1	1.	1552	-1557		0,14,	i L			
		4	250	221					1 + 1 + 1	
1	4(1 730	۹	niele	733	•)	721	-91a			
i.	216 926	12	355	-602	4	472	544	2	424	839
5	1354 -1565	•			6	334	-407	4	1147	-1159
7	1140 -1192		0.4.1		ĸ	580	-747	*	1374	4.66
j.	256 381							9	305	-115
11	591 662	1	404	-1051		0,15,	L	1 1	991	10
12	516 -531	3	1.55	-1553			<u>*</u>	14	762	5 5 3
		5	1 161	1158	1	366	450	16	274	-128
	C / 1	7	546	692	3	645	880			
	() <i>y</i> = y =	9	519	-582	5	233	-332		1,2,1	1.1
	2224 -2202	11	487	-480	7	230	-225			
2	4740 4066	12	4116	460	9	246	328	1	2284	-2436
ć	44/8 _202	•			11	323	514	र	211	660
**	676 -672		0.10.	1				5	463	H12
4.2	777 _7×4					0,16	L	7	555	-561
12	111 -100	0	1159	-1257				9	427	-589
	0.5.1	4	1442	1605	0	495	584	11	823	445
	9919C	4	200	270	4	4 8 1	-651	13	429	460
4		<u>1</u>	618	-715	8	314	370			
7	בוכ היכ 1076 – 1070	10	205	-306						
2	1023 -727	• • •								

	1,3,1 1	7	1.34	721		1,15,	t	Q	342	-597
		0	7 5 8	846				11	411	-547
4	410 -471	11	240	-281	2	606	794	13	615	5 N C
6	2085 -1652	1 र	247	-430	6	219	-204	15	534	444
1 0	915 613				10	577	504			
14	5+2 -497		1.4.1		1.6				2.2.1	
• •						1.16.	. F			
	1.4.1	2	1.132	-1670			2	0	3414	-2444
	17-71	Ĺ	517	-613	1	268	321	7	1347	1347
1	470 975	4	1435	1693	3	400	-581	4	1332	10.011
į	2412 -2118	1.0	5.05	-651	5	245	-235	•	1205	P43
5	1084 -1017	14	200	433		344	359	ы	1346	-1117
,	(000 - 1017 	14		~ , ,	1.1	344	2	12	1125	023
	564 646		1 10			1.17	4	14	423	408
	250 - 270		11101					16	523	-433
7.5	51 - 51		920	- 105	2	572	-704			
כר	374 401		6	509		187	695		2.3.1	
		2	51.7	100		3.07				
	7,7,6	ר	1.2.6	-5-8		4.18.	4	1	1021	1149
		<i>,</i>	202	- 12/		11191		2	2360	2250
2	17FN -1780		210	-434		320	-612	4	1145	-1163
4	1368 1041	11	202	200		352	3.2	7	625	-715
6	1911 1000				5	790	514	0	به سو تہ	208
×	377 285		1,11,		2	7/7	- 264	1 4	551	614
10	875 -964	-	*8	0.00	'	343	- 5/1	17		-761
14	766 725	2	(7)	0.04				15	A Q 1	-571
		4	176	108		1,14	<i>.</i>			
	1,1,L	6	202	=741	2		5 2 11		2.6.	t
		~			2	4 1 2	<i>,,</i> ,,,			
1	1428 -1245	1.0	474	490		4 36		ő	2121	20.69
3	1467 1286					1120		2	272a	2520
5	546 645		1,12,	, [295	200	4	2173	-2001
7	1028 -1042			6 -		343			1130	051
ų	061 -855	1	447	487	5	676	- 2 10	4.2	150	-465
11	486 429	3	540	- 104		2 0	C			
13	616 652	¢	517	-011		· · · ·			2.5	
15	31.4 -236	7	153	807		74.05	336.5			,
		2	4 50	575	0	175	75		751	216
	1.7.1				2	7370	-1070	ż	2806	-2670
			1,15	, 1	-	200	-265	5	141)	1270
2	1943 1961				2	1 398	1 1 1 2	,	1622	1625
4	345 339	2	111	-1015	- 2	11700	-1000	a	480	-520
6	1383 -1447	10	412	-4/*	14	507	662	11	352	-420
10	714 857				10	3-1		1 र	400	458
14	407 -466		1,14	<i>i</i> (2 4		15	450	696
				131		· • • •	•	, ,		
	1,7,6	1	400			1004	-1807			
		3	~17	1457	1	076	284			
1		.,	3.08	-440		~ ~ ~ > >	100			
	513 -272			7 4 4	E	274	676			
3	392 -417	ó	\$24	-382	5	274	674			

	2,6,1		5	67 P	-752	4	273	309		3,4,1	
	1416	2162	7	346	-357		2 40	4	1	697	1.86
4	144.3	102		776	7.35			•	,	1.10	6.6.2
0	204	-440	11	26.0	204		2 3 4	7 7 7	- ·	265	710
Ö	1042 -	CCIT	15	101	- 264	ļ	370	363	, ,	760	764
10	505	544				2	676	-000		5 7 4	-577
12	300	325		2.12,	!				11	221	
							2,20,	L	15	407	- 588
	?,7,L		0	925	1030				רו	280	111
			4	140	-1056	0	571	221			
1	5 08	821	¥	200	P40					51510	
3	617	753	12	654	-554		3,0,1			-	
5	891	-919							2	546	- 4.90
7	735	-829		2,13,	1	1	345	730	4	1020	-201
Ŷ	726	793				3	635	-974	•	444	527
13	405	-447	1	424	-694	5	1305	-1545	10	740	-956
15	243	-204	र	5 5 8	-663	7	1240	1192	14	661	488
			7	221	253	11	532	-662			
	2.8.1		¢,	310	-432	13	511	-531		3,6,1	
			11	287	-340	15	375	295			
0	25.9	524	•						1	1362	-1296
2	1.23	- 485		2.14.			3.1.1		3	879	236
с. /	326	-428			•				5	71+	570
•	045	4460	0	997	-1053	2	3915	-3730	7	824	-854
- . .	201	-260		916	1185	4	170	-76	9	607	-561
10	2003	547		6.03	-768	6	1497	1316	11	287	249
٦ ٢	452	-217	0		-101	8	426	-352	13	392	643
	2 4 1			2 1 5		10	930	-997			
	₹,º,t			6111		12	407	440		3.7.1	
					627	4.6	686	368			
1	1457 -	-1222	1	549	623				2	1473	1515
.5	474	-4/4	2	205	-234		3.2.1		4	443	478
2	5-1	((1	_		-112				6	1283	-1646
7	4-5	4 ~ 4		504	- 3 4 2		470	-673	я	324	-352
9	214	-641		2, 117-	n 4 4	7	4 1 7 9	1 4 8 4	10	415	528
11	426	-48Z				2	4403	1231	14	436	-521
13	5.40	286		21101	, 1	7	1 5 4 4	-621			
						6	540	-644		3.8.1	
	2,10,1	L	n	407			200				-
			4	200		11	745	347	1	1013	042
U	875	-1008	R	558	241	13	202	547	रं	1162	-1211
2	267	290					7 7		, c	1307	-1771
4	649	746		2.1/1	, 1		11.11		7	800	900
ĸ	510	-624				-	6 4 T		ú	566	675
10	406	-432	1	504	-464	2	763	-584	1 1	222	- 306
12	378	444	٦	\$ 57	-496	4	172	- 107	17	224	
			4	283	391	6	1 591	#1607 650	17	¢ 3 1	- 133
	2,11,	L		1.13		*	010	344			
				2,18	, 1	70	241	-16.2			
1	453	623				12	5/0				
2	679	855	()	<57	-444	14	760	-042			

155

TABLE B.20 (continued)

									100		
	3,9,1			3,15,	1		4,7,1		3	982	957
									5.	580	-613
4	220	241	2	515	678	9	1963 -	-1882	7	451	- 444
6	1186	1428	4	203	-264	2	1494 -	-1517	4	545	770
8	207	-127	10	\$ 53	529	4	Q 83	1016	11	6 k n	5 51
10	428	-691				F	1032 -	1144	13	32 -	- *56 '
14	291	360		3.14.	t.	12	496	6:15			
	2 .									4, 7,1	
	3.10.1		1	300	457		4.3.1				
				200	-136				Δ.	1+23	1897
	6.0.4	004	,	• /		1	1776	1721	٤	523	-/17
1	908			1 17	1	ź	1944	1452	6	414	-415
3	747	())		20110	1	ŝ	472	1.000	8	172	250
2	115	075	-		706	, 7	487	-772	10	233	7 8 2
7	1095 -	1351		007	-/45	6	4307	47/ 5	• •	1.20	-562
9	412	-510	6	679	רני		1243	1 3 4 7	5 P		- /
11	305	449				11	405	5 D /			
13	236	304		3,17,	I.	15	441	-724		4 . 7 . (
						15	545	- 4 4 4		6.97	
	3,11,1		1	320	-340				1		-1
			2	259	254		4,4,1		2		6110
2	819	1052	5	244	455					200	762
6	9114 -	1077	7	307	- 370	0	1439	1708	11	235	- 532
10	452	672				?	285	377	1 3	2 4 1	192
				3.1%,	t	4	1947	-2144			
	3,12,1					ĸ	1431	1583		4,10,	. F
		•	2	366	300	12	395	-447			
,	¥7.0	464							n	¥ 3 A	-979
ž	865 -	1031		3.20.	1		4,5,1		2	627	550
5	525	-701							4	582	773
ן י	8 1	364	1	349	279	1	1357	-1222	q	628	-497
ι - μ	5.26	636	•			3	2254	-21-4	12	451	518
	170	-/ 20		4.11.1		5	1682	1529			
11	240	-42V		47970	•	7	631	614		4,11,	i t
			^	2.57	-2202	9	×47	-952			
	547541	-	2		-1004	11	241	-308	1	A=4	740
_			1	0.25	- 823	13	274	3+5	3	224	272
2	4 5 4	-004	4	2.6	477	45	648	39.4	5	519	-477
4	540	300	×	7.07	-784		4.12	<i>.</i>	7	61-	-136
6	523	3//	17	.60	=/05		4.6.1		11	377	441
10	284	-372							13	313	-277
				41711	•	0	1200	-1276			
	3,14,1	L				, y	872	-695		4.12	
			1	1-25	-1402		1415	1542			
1	372	-514	3	1001	-1424	4	702	-782	n	785	947
3	542	790	5	300	511	с Ц	100	-1053	2	233	-234
5	356	408	7	400	509		643	-1075 ALO	Ĺ	830	-1029
9	335	-407	ç	935	-421	77	316	0.00	~	24.9	456
11	325	357	11	550	-6.4.4				q	325	454
			13	560	614		41/1		17	510	-573
			15	427	376		754	295			
						1	10	107			

4

	4,13,	L	र	471	-939		5,6,1			5,11,	ι-	
			5	1181	-990							
5	370	-449	7	1177	949	1	971	-765	2	*87	RHQ	
5	346	1065	Q	443	845	3	800	778	6	1033	-1040	
7	513	332	11	538	-507	5	1201	1118		893	-945	
ų	342	-465	13	368	-255	7	659	= 145	1.0	377	396	
			15	\$79	276	9	539	-474				
	1.14.				•••	11	446	3 4 7		5.12.	1	
		ι.		5.1.1		12	441	607				
0	17.	-444				15	637	-362	1	631	662	
		4 / 1 8 5	2	2511	-2550	.,		540	3	753	-7×2	
	367	2/3	í	<u> </u>	-8.77		5.7.1		5	609	-663	
0	274	242	4	100	24		,,,,,		ć	285	304	
ð	21.4	-010		1906	670	2	6.34	0.4.2	4.1	36.0	-710	
			10	1174	- 471		471	67/				
	4,15,	1	14	124	470	4	010	- 374				
						6	1274	-12/0		21121	1	
1	445	553		5.2.1		ĸ	345	3//	-			
3	46.1	520				10	623	741	2	545	****	
5	421	-524	1	1/14	-1440	14	581	-512	4	1.66	674	
7	422	-504	٦	3.17	395				10	615	-421	
4	374	445	٢	11/2	963		5,8,1					
			7	- 35	-*16					5.14,	1	
	4.15.	ŧ	9	114	-+86	1	1731	1502				
		-				- 3	780	-406	1	49.4	-745	
n	5-8	737		5,5,1		5	573	-5-1	٦	2×2	270	
Ĺ	31.5	-408				7	940	946	7	200	-143	
7	657	515	2	1312	1463	9	513	620	Q	508	-548	
0	• • • •			1.55	950	11	578	-578	11	346	323	
	/		-	256	-314	13	476	- 4 4 1)				
	4	L	9	3.18	238					5,15,	. E	
	704	(05	4.0	117.	1055		5.9.1					
1	575	-445		200	-643				2	654	651	
5	5-4	=470	14	1017	- 4 (7)	2	813	- 5 7 0	4	280	-257	
7	373	547		• • •		,	242	194	6	502	-506	
				7,61			1059	1046	1.0	549	466	
	4,1%,	I				4.0	464	-58-				
			1	1 4 5 1	1167	10	471	374		5.15.		
Ú	545	-542	3	544	-///	14	4 7 1	, · ·			1	
4	342	379	5	(15	-005					112	6 4 4	
			7	257	~ 5 ~		5,10,	L	,	1 6 0	- 177	
	4,19,	L	9	797	530				2	4.7.7	-431	
			11	530	-442	1	777	-645	2	503	-/4/	
3	3.14	327	13	533	-499	- 3	1158	1186		587	1.57	
		< .				5	854	754	0	505	244	
	4.29.	L		5.5.1		7	652	-025				
						9	538	-506		5,17,	1	
0	540	519	2	1855	-1421	11	587	633				
U.			4	244	-200	13	324	336	,	633	-114	
	5.0.1		6	723	820				4	574	5 4 7	
			1.0	500	-546							1
	630	-646	96	525	488							

. . .

in the second second

	5,18,L	۲	1545 -	1560	13	423	300	4	409	-354
		R	952	1054				9	575	469
3	276 13	5 10	317	-256		6,10,	ι			
5	433 41	1 12	7.5	-743					6,17,	L
2		•			0	1743	-1778			
	5 10 1		6 5 1		2	491	405	1	337	- 327
					,	725	75 .	5	200	240
•	2			0 U E	4 5	440	-7/2	7	444	262
e	343 34	1 1			• •	242	777	,		
4	525 10	5 5	7459 .	-1517	12	126	()(
		5	5014	SZM					01101	
	f , f , L	7	533	6.79		6,11,	L			
		Ċ,	~ 31	-825				C,	A 54	- 3.57
0	5/3 65	3 11	514	-528	1	818	766	2	540	644
4	711 -66	Ú 15	てちい	\$30	3	240	1 - 9			
~	554 50	2			5	843			A,17,	1
8	1155 107	4	0, 1, L		7	533	-557			
12	254 -31	Ś			11	413	414	1	503	4 5 1
	<i>, - 2</i> (0	1244 .	1271				۲.	451	200
	A 1 I	2	467	-807		6.12.	ι			
			A. 4 M	740		•	-		7,0,1	
•	91162 - 87	<u>a</u> <u>A</u>	601	509	0	851	#15			
2	12#7 -170	7 R	479	-847	Ĺ.	722	-7.2	1	1 \$ \$ \$	1304
	4412 456	6 12	A14	708	ы	440	67.1	2	444	-1.52
	.	5 17	•		12	326	-341	5	1441	-1299
, y	10.9 =100	6	6 / 1			3.0		7	037	445
11	9 3 mr)ti 24.4 74	, ,				A. 13.	1	Q	633	541
15	5-5 51		4 Jun 2	028		• • • • •	-	13	563	-714
15	4 - 5 - 44	4 7	1.11	1.28	1	401	-401	15	427	342
		, E	0.17	-843	ż	509	-575			
	e , ∠ , (, ,		-752	5	792	815		2.1.1	
			2.1.4	756	· ·	8.21	421			
U	1497 =150	1				2.8.0	-313	2	1321	-1212
4	1799 185	0 11	4 7 4	401		2.00		4	1474	1405
6	540 -57	0 15	471	⇔¢û4		4 44		1.0	1.21	-161
8	350 -95	6				01141	c	16	57	368
12	562 51	6	5. A.L		•	516	-505	1.4		
					3	704	-1.64		1.2.1	
	6,2,L	n n	1759	1059	č,	7-1	505			
		4	1 4 2 2	- 1431		408	-457	1	306	-341.
1	738 03	y	226	- 77 -			- / -	2	813	729
3	1701 157	1 8	574	639		4 45		5	562	832
5	424 =48	1 12	n 5 ()	-1127			r.	7	HSA	-849
7	756 -79	8				643	557	á	562	-544
Ŷ	667 71	0	6,4,L		5	212	- 260	1 1	955	817
11	617 60	4			7	342	-740	4.5	5 7 4	- 717
15	398 -37	0 1	940	-1003		408	- 207	• •	, , , ,	
		3	279	-251	4	400	323		7.3	
	A,4,L	5	769	796					11211	
		7	441	538		6,10,	•	2	696	714
U	1518 144	0 0	243	-238	_		4.77	4	015	
2	216 10	1 11	545	-324	ა	670	024			

	7,8,1		7.416		3	446	- 574	0	1981	1988
					5	613	-526	4	1169	-1280
4	563 537	>	5.54	-559	7	322	300	-	607	664
6	4/13 -855	4	512	620				12	778	-704
1.0	426 437	10	552	-536		7,17.	L			
14	441 -436								8.5.	
			7.10.	1	2	347	- 5			
	7.4.1				6	623	6116	1	737	-668
		1	142	- 656		4.5		2	201	-281
•	U		6.26	- 4 / 4		7 4 2			600	477
1 7	1214 -1775	2	751	777		1,10,	L	7	540	510
, ,		, ,	7 . /	417		7 3 5	255		405	()0
2	347 -947		3.9.4	-+40	1	3/3	- 277		6.47	
	0 2 003		2.7	-/34	2	547	ט כ כ	11	747	
	4.5 4.12	11	10.2	410				11	4/ 1	410
11	//2 -689	15	548	541		8,0,1				
13	424 = 349								5,0,	l
			7,11,	1	0	347	433			
	7,5,1				2	992	498	()	1233	-1254
		2	TUR	676	4	1557	-1557	2	364	371
2	1490 -1508	6	782	-776	ă.	915	735	4	618	937
0	1047 1097	1.6	550	656	12	545	=402	D	×114	-770
10	71.3 -009							12	795	143
14	555 332		1.12.	1		8,1,1				
									8.7.	
	7.6.1	1	756	305	1	734	-741			
		7	515	518	3	936	-987	1	1025	971
1	1631 -1611	ò	623	493	5	1089	1027	र	455	
7	1011 - 1011 - 1057	4 4	600	-400	7	822	424	5	441	-1.47
2	202 204	, ,			ů.	367	-457	7	645	-1.44
7	(1) 576		7 18		4 9	402	- 575	0	553	510
	477 = 551		1,121	'	••			11	510	606
	4/1 - 309	-	550	-0.20		8 2.1		1 3	320	- 3111
1 1	415 450		6.10	- 4 3 4		~ • • • • •			26	
13	4/5 379		7C3 A	C 1) R		4 2 3 3	4 30 4			
		10	יי ק ר	= 617		1322	4447			-
	7,7,1				4	1000	1047	0	1615	1545
			7,14,	1	0	540			07/	1000
2	1444 1437				*	(1)	-015	4	4/4	647
6	578 -012	1	X = 1	-3/3	12	606	4/5			017
10	505 577	٦	014	555				12	347	-010
14	4 () -418	5	2112	281		8,3,1				
		7	52n	- 5 2 8					8141	
	7.1.1				1	1225	1211			
			7,15,	1	- 3	914	932	1	1004	-4 56
1	863 824				5	775	-790	3	625	-580
ž	A1.8 -A24	2	740.	836	7	5 29	-635	5	353	328
ŝ	711 -727	6	742	-783	Ŷ	374	239	7	401	368
7	434 LTR				11	4 9 1	501	0	582	-614
	175 -176		7.16.	1				11	535	-482
4 2	4 × 7 = 4 7 5					× . 4 . L		13	463	375
13	514 -475	1	541	586						

	8, *0.L		5	185	375		9,5,1			Ÿ,12,	L
0	1 548 -1	403		8.18.		2	1042	-1063	1	366	241
4	823	941			•	6	557	546	3	550	-579
	49.8 m	575	a	866	-75/	1 0	677	-700	5	567	-589
4.2	27/	258	,	550	178		(17)		7	512	671
16	5/4	2 2 2	4		470		0 4 1		6	5.1.7	503
									•	,,,,	
	8,111,L			99091	•		4.34	- 71/		0 4 2	
	25.4					1	770	776		*****	'
1	0-1	176	1	1.47	1001	2	779		2	76/	- 777
5	40 10 ()	3/2	5	1771	-1-25	2	50	64 in 64		7 3 4	- / / /
5	823 -	745	5	1115	-115×	(410	- 54 4		121	7,70
7	5-5 -	380	7	646	442		548	- 542	1.0	412	- 107
4	314	357	Ŷ	N.15	582	11	561	445			
11	314	215	11	r×1	-489	15	432	372		4,14,	1
			13	600	-460				1.5		
	81216						9,7,l		3	502	474
				9,1,1	-				5	568	568
U	578	673				2	1054	1114	7	364	-429
4	4.2 -	484	2	656	-689	0	471	-447			
ĥ	512	535	4	515	549	10	534	510		9,15,	1
	•		6	1245	1328						
	8.13.1		10	162	-643		9,8,1		2	489	503
			14	740	487				<i>ŧ.</i>	550	-585
,	678 -	415				1	595	500			
, ,	224 -	777		9.2.1		5	865	-462		4.14,	L
2	2/2	1.91				7	531	504			
2	343	101	4	5 4 7	-476	Q	331	371	7	434	341
	4-1	155	7	872	890	11	433	-41)			
Ŷ	514 -	(())	È	440	863	13	350	-283		10,0,	1
			7	722	-740						
	6,14.L		0	512	-520		9.9.1		n	1263	1257
					47/				4	1580	-1645
4	59.5	3/3	47	637	494	2	1068	-996	9	710	715
. 8	465 -	448	1.	· · · ·			410	485	12	75 R	-476
	Q			0 Z .		4 0	723	=768			
	8,15,L			41211	-					10.1.	1
	5.6		-		1070		0.40				
3	342	341	~ ~	11.09	1074		*****		τ	520	-577
5	445 -	-463	4	442	- 347		4442	-1071	Ś	935	1056
7	423 -	.449	6	1001	-1055	-	543	677		722	275
			10	250	- 2-	2	216	1.75	÷.		
	8,10,L					2	604	- 44.2		10.2	
				9.4.1	-	ſ	511			1.0.000	
0	373	296				Ŷ	371	-,	0	1051	-1066
4	177 -	-654	1	1167	1237					1175	424/
			3	585	-125		Y,11,	L .	44 14	764	-755
	F, 17.L		5	1406	-042	-	047	1007	45	774	5 2 7
			7	413	368	2	473	-644	10		
1	5 - 5 -	-391	\$	578	644	0	221	-744			
3	324 -	-312				10	128	134			

	10.3.	t- 11	1	622	-373	1	449	-403	1	475	-466
			3	+ 5+	-794	3	500	- 549	3	641	607
1	1050	1002	5	inc	405	-	-		5	428	271
Ľ.	452	-478	ç	r 21	-162		11.0.	1	7	614	-467
,		- 5 2 4		5.7	-/48			L.	0	659	- 470
	26.	- 127	1 '		-41/	4	044	323		195	635
	417	472				2	711	-127	, ,	. .,	
15	453	- 2 . /		10,010,0	1	2		- 5 (1 7		4 4 7	
						· ·	272	- 747		11.1.1	
	11,4,	L	0	\$ \$ }.	= 5 5 0		457	440		420	0.08
		_	2	525	5/1		747	644		7	7.10
v	1741	1655	8	612	-601	11	115	-547			
4	565	-619							10	020	P. 4 ()
6	341	-356	•	10,11,	1		11,1,	L			
8	7 5	815								11, *,	, t
12	7 4 1	-648	1	662	420	2	634	- 6 6 1			
			3	r.17	600	6	771	727	1	542	577
	10.5.	1	7	\$42	-287	8	475	514	3	410	- 313
			0	517	537	10	567	-546	5	387	- 399
•	1111	-1 304							G	661	425
1	1441	-618		10.12.			11.2.	Ł			
5					1					11,9	, i
2	471		,	1.34	-727	1	1262	-1202			
	450	404	ы. О	7.7.	547	7	67.9	825	2	1294	-1250
	422	-403	~	10	,,,,,	.7	602	625		597	604
11	5/4	->>4				, ,	402	- 730	1 ()	39 -	-507
13	412	350		10,15,	. 1		749	- 4 2 7		, .	
						Y	(16	-0.17		11.10	. 1
	10,6,	ι	1	471	-420						
			3	517	-532		11,31	L	4	406	- 318
0	1611	-1545	5	352	568				2	606	618
4	1054	1051	0	450	-759	2	11/9	1998	-	463	661
r d	74 %	-754				4	247	- 342	,	44/	14
12	5+3	570		10,14,	, L	6	11×9	-1211			
						10	524	222			, '
	10.7.	L	n		-366						
			4	× 14 4	P42		11,4	, t.	1	194	5.74
1	1120	1154	8	506	-423		_			777	- 18/
ż	1250	1244				1	768	736	10	474	676
2	521	-485		10,15	, 1	3	802	-825			
	1.1.2	430				5	649	-968		11,12	, 1
		484	1	sn?	340	7	545	528		_	
	4-7		5	515	-1.94	9	590	544	र	710	-595
	4 M - J		7	371	-334				5	650	-590
	10101						11,5	i L	7	524	443
	057	#72		10.10	, 1				Q	427	350
	7 1 C 4 2 7				-	2	903	-946			
4 5	0//	452	0	629	\$77	6	647	630		11,13	.1
8	0.1	1 2		\$ 7.	-554	1.0	643	-625			
12	5511	= 4 (1) 1	4	.,.					2	407	-415
				4			11.6	L L	+	4.= 4	486
	10.91	• L		1.12.9.1.4	e (

	11,14,	ι		12,5,	1	×	474	416		13,4,	1
•		- 372	4	245	-885		12.14.		1	675	-601
2	414	308	7	725	635			L	3	614	5 4 1
) 5	41	502				0	759	-632	5	504	514
ר. ג	574	, 57		12 6			420	647	,	460	-408
) - I	- 4) (1.6.4.6.4	T	-	-70	•			
	11.15.	1	0	1286	-1317		12.16.	ι		15,7,	1
		r.	1	215	710			-			
2		273	-	7.54	-787	0	492	445	2	520	453
۲ ۲	50 6	- 477				Ċ.			*	614	-623
0	, ,			12.7.	1		13.0	1	* 10	479	415
	12 11	,						•			
		L	1	007	610	1	541	60.6		13,4,	. 1
	1076	1040	7	54 -	557	3	579	-625			
,	1 10 7 0 1 10 0 0	-1117	5	561	-498	ý.	587	505	1	51 ×	444
4	3/4	201	7	Se?	- 462				र	390	- 470
	5 11 9 2	1057	9	58.1	581		13.1	i t	5	444	-428
- C - 1 0	27.3	-472		. c.a							
	-			12.0.	1	2	1081	-1120		13,9,	1
	4.2.4					6	517	600			
	12,1,	Ľ	0	1. 1. 2	419	10	512	-516	2	742	-752
	613	540		268	-855	1.0			4	41%	662
,	210	- 340	~ 9	612	564		13.2	. 1			
2	2:6							-		13,10,	. •
	5711	747		12.9.	1	1	547	-558			
	47.11	767				3	865	914	7	476	- 4.19
15	0.50	5.5	4	576	-488	5	622	657			
			7	1.154	-979	7	590	=5×3		13,11	, E
	1217.0	<i>,</i> 1	5	291	694	9	566	-527			
		4477	7	244	340				2	57*	513
, v	10-4	771	ò	560	-501		13.3	, L	*	557	-539
4	017	777	4.4	202	-236						
0	257	- 2 3 2		1000		2	1142	1209		13,12	, 1
	470	-475		12.10.	1	6	923	-10×5			
12	2.4.9					10	031	605	1	645	564
			4	703	761				5	454	-456
	12,7	, L	8	477	-484		13,4	, L	7	490	367
4	6611	503	-								
7	24	230		12,11,	. 1	1	545	543		13,13	, L
	110	-410				3	557	=50a			1.0
••	5.5.1	506	1	501	455	5	449	-649	2	525	-462
11	1.1	2000	τ.	305	263	7	774	777	4	426	-201
	42.4	. 1	5	341	-328	Ŷ	475	453	6	502	477
	1614		7	4 50	- 403						
43	۽ ري	**7					13,5	<i>i</i> L		13,14	• 1
י) כ	201	-382		12,12	, 1						
2	200					2	803	-770	1	524	+477
	612	533	0	041	596	6	0 3 3	908			
0				728	-040	10	558	-509			

	13,14,1	L	2	635	628	9	523	323	1	5,11,	l i
			8	1.1.1	-529						
5	613	503					15,1,	ι	•	463	- 394
-				14.7.	t.						
	13.15.1					2	1036	-1103		15,12,	L.
		•	5	564	-525	6	446	4 4 3			
,	616	662	7	453	-544				1	630	541
2	0111	4-6	0	503	474		15.2.	1			
	1/		•					•		15,13,	1
	14111	L		16.8.	1	n	381	-41.5			
	9.1.2					z	6.26	452	>	530	-243
9	64.	710	0	6-11	196						
4	714	- 740		9.000	-714		15 3			15.0.	1
8	1.4	101	4		571			L			
			0	660	171	2	612	640	0	529	554
	14,1,	L					2.79	- 7 4 /	,	608	-651
				14,9,	i i	C	nra	-//4	- 4		
1	734	-725	-				45 /			16.1.	
- 3	451	-498	<u>۲</u>		-084		12,4,	L			·
9	571	-542	7	15 (5) (5)	127			6.56		6.4.4	- 4 5 3
						5	202	-26-	1 6	1.1.2	748
	14,2,	ι		14,11,	. 1					44.7	100
							15,5,	L			
0	417	-398	0	1.52	-506					10161	1
4	4 % :)	383	2	545	-518	5	590	- 59 1			. 777
×.	577	-546	4	- 50	やわち	6	1014	941	а	700	-131
			R	567	-444				4	7 (1-1	
	14.5.	ι					15,6,	L	1	127	+ 1 ()
				14,11,	, 1						
1	72.0	655				5	695	626		10101	L
3	376	346	र	577	463	1.1				774	1.2
5	431	-624	5	シャル	-407		15,7,	L	1	· 51	6.6
7	4-2	-445							1	5/5	-0-
				14,12,	, 1	2	768	656	2	<u>יכר</u>	= 4 5 7
	14.4.	E.				6	831	-724		201	• 4 5 1
		••	6	1.70	883				0	525	235
0	41.3	412	4	5 11 2	-394		15,8,	L			
2	622	-359								15,4,	. 1
6	657	-697		14,15	, (1	919	7~1			
Ä	44.0	1344				3	556	= 4 + 4	h	1079	
			1	052	-461	1	553	346	4	P. 4 L	-/11
	16 5.								4	<u> 61 m</u>	667
	, , ,	•		14,14	,1		15,9	, L			
4	864	-756								15,5,	
12	470	- 197	0	~24	-404	2	587	-545	121		
2	772	687				6	617	534	3	576	-151
7	1.74	663		15,0	. 1				5	724	151
'	470				-		15,10.	, L			
	91. 6		1	457	450						
	14101	L	र	7=4	-880	1	817	-634			
0	979	-987	5	627	-332	7	459	-322			

162

an a lat . . .

	16,7,L	6	534	-462		18,0,	L		18,8,	L
5	546 -497	1	7.4.1		0	509	520	0	666	439
					4	530	-443	4	819	-505
	16,0,1	3	434	-372						
		5	563	-523		18,1,	L		19,1,	t i
0	477 305									
		1	7,5,		3	690	-4**	2	569	-436
	16.10.1				7	545	341			
		2	614	-525					19,2,	t
0	1025 -831		721	660		18,2,	ι			
1	607 676							1	720	-437
•	0.7 4.0		7.6.		0	956	-869			4
	16 12 1				4	529	543		19,3,	L
	10,1611		513	-492						
	717	7	.25	- 629		18.3.	1	2	658	419
0	044 /1/		116 3				-			
			7.7.		1	467	392		19,5,	t
	17,0,1					4.7.				
	512 116	2		795		18.4.	L	>	609	-477
1	347 440	4	808	-611			-			
3	454 -5/1	a.	SUC 2		0	626	545		19,6,	
			7.8.		4	697	-576			
	17,1,1							3	655	456
		7	190	-414		18.6.	. 1			
2	5-0 -500	5	517	-322			-		20,0,	1
		`			4	592	437			
	11.2.1		2 10					0	673	452
		1		A		18.7.	. 1			
5	458 414	1.1	574	-101			•		20,2	L.
		1	250	- 404	2	697	455			
	17,3,L				3	0.1		0	579	-452

REFERENCES Shine and the second
- 1. H.Burger, Angew.Chem.Internat.Edit., 12, 474, (1973)
- 2. C.J.Attridge, Organomet.Chem.Rev., <u>A5</u>, 323, (1970)
- 3. E.A.V.Ebsworth in 'The Bond to Carbon' ed. A.G.MacDiarmid Dart 1, Dekker, N.Y., 1968
- 4. C. Paborn, 'Organosilicon Compounds', Butterworths, London, 1960 pp91-113
- 5. D.P.Graig, A.Maccoll, R.S.Nyholm, L.E.Orgel, L.D.Sutton, J. Chem.Soc., 332 (1954)
- 5. D.T.Clark, Tetrahedron, 24, 2663, (1968)
- 7. D.S.Urch, J. Inorg. Nucl. Chem., 25, 771, (1953)
- 3. D.A.V.Ebsworth, Chem. Commun., 530, (1966)
- 9. S.Cradock, G.Davidson, E.A.V.Ebsworth and L.A.Moodward, Chem. Commun., 515, (1955)
- 10. L.D.Pettit, Chem. Soc. Quart. Rev., 25, 1, (1971)
- 11. K.A.R.Mitchell, Chem. Rev., <u>69</u>, 157, (1969)
- C.F.Bell, 'Syntheses and Physical Studies of Inorganic Compounds', Pergamon, 1970
- 13. H.H.Jaffe, J.Phys. Chem., <u>58</u>, 185, (1954)
- 14. D.P.Craig and E.A.Magnusson, J. Chem. Soc., 4395, (1956)
- 15. D.W.J.Cruickshank, J. Chem. Soc., 5486 (1961)
- 16. E.V.Abel, D.A.Armitage and G.R.Willey, Trans. Farad. 30c., <u>(0</u>, 1257, (1964)
- 17. C.G.Pitt and M.S.Fowler, J. Am. Chem. Soc., 89, 6792, (1967)
- 13. A.M. Jarvie and D.Lewis, J. Chem. Soc., 1073, (1963)
- 19. A.H.Egorochkin, N.S.Vyazankin, N.S.Ostasheva, O.V.Kuz'min, H.S.Nametkin, I.F.Kovalev and M.G.Voronkov, J. Organomet.

Chem., <u>59</u>, 117, (1973)

20. A.N.Egorochkin, S.Ya.Khorshev, N.S.Ostasheva, J.Setge, P.Riviere, J.Barrau and M.Massol, J.Organomet.Cham., <u>75</u>, 29,(1974)

- 21. C.Cradock and C.A.V. Ebsworth, Chem. Commun., 57, (1971)
- 22. 1.J.Bassett and D.R.Lloyd, J. Chem. Soc. (A), 641, (1971)
- 23. D.C.Frost, F.G.Herring, A.Katrib, R.A.N.McLean, J. Drake and W.P.C.Yestwood, Chem. Phys. Letters, <u>10</u>, 347, (1971)

- 24. H.Hedberg, J. Am. Chem. Soc., 77, 6491, (1955)
- 25. A.Almenningen, H.H.Seip and R.Seip, Acta Chem. Scand., 24, 1697, (1970)
- 26. B.Beagley, A.G.Robiette and G.M.Sheldrick, J. Chem. Foc. (A), 3002 and 3006, (1968)
- 27. A.Almenningen, K.Hedberg and R.Seip, Acta Chem. Sound., 17, 2264, (1963)
- 23. B.E.Douglas and D.H.McDaniel, 'Concepts and Models of Inorganic Chemistry', Ginn, Boston, 1965 p58.
- 29. -. Fink, Angew. Chem. Internat. Edit., 5, 760, (1966)
- 30. ".A.Andrianov and J.N.Khananashvili, Organomet.Chem. Rev., 2, 141, (1957)
- 31. I.Haiduc, 'The Chemistry of Inorganic Ring Systems' Part 1.
- 32. M.A.Andrianov, I.Haiduc and L.M.Khananachvili, Zh. Obshch. Khim., 33, 2790, (1963)
- 33. C.R.Kruger and E.G.Rochow, Angew. Chem., 74, 491, (1962)
- 34. D.P.Craig and N.L.Paddock, J. Chem. Soc., 4118 (1952)
- 35. D.P. Graig and N.L. Paddock, Nature, 181, 1052, (1958)
- 36. U.J.S.Dewar, E.A.C.Lucken and M.A. Whitehead, J. Chem. Soc., 2423, (1960)
- 37. D.P.Craig and K.A.R.Mitchell, J. Chem. Soc. 4682, (1965)
- 38. M.Yokoi, Bull. Chem. Soc. Japan, <u>30</u>, 100, (1957)
- 39. W.Fink, Angew. Chem. Internat. Edit., 5. 760, (1956)

40. C.Kruger, E.G.Rochow and U.Mannagat, Chem. Ber., 95, 2132, (1963) 41. 2. Mest, J. Organomet. Chem., 3, 314, (1965) 42. 1-H.Chan and E.G.Rochow, J. Grganomet. Chem., 9, 231. (1957) 43.J.Jump and U.Wannagat, Ann. Chem., <u>652</u>, 21, (1962) 44. H.Himura, K.Katada and S.H.Bauer, J. Am. Chem.Soc., 22,416, (1965) 45. P. West, R.H.Baney and D.L.Powell, J.Am.Chem.Soc., 22, 6269, (1960) 46. N.A.Matwiyoff and R.S.Drago, J. Organomet. Chem., 3, 393, (1965) 47. P.Thayer and R. Yest, Inorg. Chem., 3, 889, (1964) 48. A.L.Allred and E.G.Rochow, J. Inorg. Nucl.Chem., 5, 264, (1958) 49. H.Burger and H.J.Neese, Chimia, 24, 209, (1970) 50. D.C.Bradley, Adv. Inorg. Chem. Radiochem., 15, 259, (1972) 51. D.C.Dermer and M.C.Fernelius, Z. Anorg. Chem., 221, 93, (1035) 52. G. Chandra and M.F. Lappert, J. Chem. Soc. (A), 1940, (1958) 57, A.D.Jenkins, M.F.Lappert and R.C.Srivastava, J. Organomet. Chem., 27, 165, (1970) 54. D.J.Cardin, S.A.Keppie and M.F.Lappert, J.Chem.Soc.(A), 2594,(1970) 55. M. P.Lappert and A.R.Sanger, J. Chem. Soc.(A), 1314 (1971) 56. G.Chandra, T.A.George and M.F.Lappert, J.Chem.Soc.(0), 2569, (1969) 57. G.Chandra, A.D.Jenkins and R.C.Srivastava, J. Chem. Soc.(A), 2550, (1970) 58. K.Jones and M.F.Lappert, J. Organomet. Chem., 3, 295, (1965) 59.0.0.Bradley and M.H.Chisholm, J. Chem. Soc.(A), 2741, (1971) 60e. E.C.Alyea, D.C.Bradley, and R.G.Copperthwaite, J. Chem. Soc. Dalton Trans., 1580, (1972) 60b. D.C.Bradley and M.H.Chisholm, J.Chem.Soc.(A), 1511, (1921) 61. D.C.Bradley, M.H.Chisholm, C.E.Heath and M.B.Hursthouse,

52. C.Heath and M.B.Hursthouse, Chem. Commun., 143, (1971)

Chem. Commun., 1261 (1969)

63. H.Burger and U.Wannagat, Monatsch. Chem., <u>94</u>, 1007, (1963)
64. H.Burger and U.Wannagat, Monatsch. Chem., <u>95</u>, 1099, (1964)
65. C.Bradley, M.B.Hursthouse and P.F.Rodesiler, Chem. Commun., 14, (1969)

167

- 65. D.C.Bradley, M.B.Hursthouse and C.W.Newing, Chem. Commun., 411, (1971)
- 67a. I.C.Bradley and I.M.Thomas, J. Chem. Soc., 3857, (1960)
 7b. C.Bradley and N.H.Gitlitz, J. Chem. Soc.(A), 9 0, (1969)
 68. N.C.Alyea, D.C.Bradley, M.F.Lappert, and A.R.Sang r, Chem. Commun., 1064, (196))
- 69. T.C.Alyea, D.CBradley, R.G.Copperthwaite and K.D.Sales, J. Chem. Soc. Dalton Trans., 185, (1973)
- 70. E.C.Alyea, D.C.Bradley, R.G.Copperthwaite, K.D.Salos, 3.W. Fitzsimmons, C.D.Johnson, Chem. Commun., 1715, (1970)
- 71. A.Stock and K.Somieski, Chem. Ber., <u>54</u>, 740, (192⁻)
- 72. S.D.Brewer and C.P.Haber, J. Am. Chem. Soc., 70, 3833, (1948)
- 73. I.Ruidisch and M.Schmidt, Angew. Chem., 76, 689, (1964)
- 74. W.Eisenhut and J.R.Van Wazer, Inorg. Chem., 7, 1642, (1968)
- 75. K.Jones and N.F.Lappert, Proc. Chem. Soc., 353, (1962)
- 75. K.Jones and M.F.Lappert, J. Chem. Soc., 1944 (1965)
- 77. D.Hanssgen and I.Pohl, Angew. Chem. Internat.Edit., 13, 607 (1974)
- 72. G.R. Willey, J.Am. Chem. Soc., 3362, (1968)
- 79. J.Hughes and G.R.Villey, J. Am. Chem. Soc., <u>95</u>, 3758, (1973) and J.Hughes, Ph.D. Thesis.

N.F.Lappert, and G.Srivastava, Inorg. Nucl.Chem.Letters, <u>1</u>,53,(1965)
 D.C.Bradley and E.G.Torrible, Canad. J. Chem., <u>41</u>, 184, (1963)

82. K.A.Andrianov, and T.N.Ganina, Zh. Obshch. Khim., 29, 505, (1959)

⁹3. A.Feltz, 3. Chem., <u>1</u>, 274, (1963)

84. A.Feltz, Z. Anorg. Allgem. Chem., 332, 35, (1964)

25. A.N. Nesmeyanov, O.V.Nogina, V.A.Dubovitskii, Izv.Akad. Nauk. C3SR, Ser. Khim., 1047, (1968)

168

- C.Skapki, P.G.F.Troughton, and H.H.Sutherland, Chem. Commun., 1413, (1968)
- 97. H.Burger and U.Vannagat, Monatsch. Chem., 94, 761, (1963)
- 37a. P.J.H. Clark, 'The Chemistry of Titanium and Vanadium', Disevier, Emsterdam, London, N.Y., 1968
- 83. L.Anagnostopoulos and D. Nicholls, J.Inorg.Nucl.Chem., 27,339,(1965)
- 2. H.Burger and H.J.Neese, Z. Anorg. Allgem.Chem., 265, 243, (1969)
- 20. D.C.Bradley and ".W.Gitlitz, Nature, 213, 353.(1968)
- C1. M.F.Lappert and M.P.Sanger, J. Chem. Soc.(A), 874, (1971)
- 32. E.J.H.Clark, Spectrochim. Acta, 21, 955, (1965)
- 93. G.S.Kyker and D.F.Schram, Inorg. Chem., 8, 2313, (1969)
- 94. . M.Ghosh, J. Inorg. Nucl. Chem., 34, 1456, (1972)
- 95. H. Werner and R. Prinz, Chem. Ber., 100, 265, (1967)
- 96. R.Mathieu, and R.Poilblanc, C.R. Acad.Sci.Paris Cer.C.,
 - 264, 1053, (1967)
- 97. B. V.Harril and H.D.Kaesz, J. Am Chem. Soc., <u>90</u>, 1449, (1965)
- 38. P.J.H.Clark, and C.C. Villiams, Inorg. Chem., 4, 350, (1905)
- 99. R.P.Cooney and D.B.Fraser, Aust. J. Chem., 27, 1°55, (1974)
- 100. W.L.Lehn, J.Am. Chem. Soc., <u>86</u>, 305, (1954)
- 101. R.Pettit, J. Am. Chem. Soc., <u>81</u>, 1266, (1959)
- 102. D.A.Skoog and D.M. est, 'Fundamentals of analytical Chemistry' Holt, Rinehart and 'inston Inc., 1963, p262.

103. P.J.H.Clark, Inorg. Chem., <u>11</u>, 56, (1972)

104. I.R.Beattie and M. Webster, J. Chem. Soc., 3507, (1964)

105. .Lee Smith, Spectrochim. Acta, 16, 87, (1960)

106. M.J.Buerger, 'X-Ray Crystallography', Miley, M.Y., London, 1960

107. M.J.Buerger, Crystal Structure Analysis', Wiley. F.Y., London, 1960

103. M.J.Buerger, 'Vector Space', Wiley, N.Y. London, 1 59

109. C.M.Stout and L.H.Jensen, 'X-Ray Structure Determination', Nacmillan, London, 196°.

110. M. Moolfson, 'X-Ray Crystallography', Cambridge Univ. Pres 1970 111. N.M.Alcock, Acta Cryst., <u>A26</u>, 437, (1970)

112n. N. .. Alcock, Acta Cryst., 25, 513, (1969)

1125. H. M. Klcock, 'Crystallographic Computing', 1969, p 271.

113. International Tables for X-Ray Crystallography' Vol III, The Kynoch Press, Birmingham, 1962.

114. L.L.Patterson, Phys. Rev., 46, 372, (1934)

115. A.L.Patterson, Z. Krist.(A), <u>90</u>, 517, (1935)

116. D.Harker, J. Chem. Phys., 4, 381, (1936)

117. .M.Woolfson, 'Direct Methods in Crystallography', Clarendon Dress, Oxford, 1961.

119. D.Harker and J.S.Kasper, J. Chem. Phys., 15, 882, (1947)

119. D.Harker and J.S.Kasper, Acta Cryst., 1, 70, (1943)

120. D.Sayre, Acta Cryst., 2 60, (1952)

121. J.M.Stewart,, 'Crystallographic Computing', 1969, p 21.

182. J.Karle and I. Karle, Acta Cryst., 21, 849, (1965)

123. G.Germain, P.Main and M.M.Voolfson, Acta Cryst., <u>B25</u>,274, (1970)

125. J.Faxos and D.Mootz, Z. Anorg. Chem., <u>380</u>, 196, (1971)

126. U.Serpone, P.H.Bird, D.G.Bickley and D. M.Thompson, Chem. Commun., 117, (1972)

127. H.Hoppe and W.Haass, Acta Cryst., <u>B24</u>, 281, (1963)

12². X. Watenpaugh and C.N.Caughlan, Inorg. Chem., <u>5</u>, 1732, (1965)
12⁹. H.Hess and D.Forst, Z.Anorg.Allgem.Chem.,<u>342</u>, 240, (1966)
13⁰, L.G.Hoard and R.A.Jacobson, J. Chem. Soc.(A), 12 3, (1966)
131. M.Lister and L.B.Sutton, Trans. Farad. Soc.,<u>37</u>, 793, (1941)

- 132. U.Ereigsmann, E. Anorg. Allgem. Chem., 298, 223 (1959)
- 133. H.Burger, M.Schulze and U.Wannagat, Inorg. Mucl. Chem. Letters, 3, 43, (1967)
- 134. H.A.Andrianov, B.I.Fedin, G.V.Kotrelev, and I.V.Gorskaya, Dokl. Akad. Nauk. 135R, 163, 877, (1965)
- 135. L. Breed and R.L.Elliot, Inorg. Chem., 3, 1622, (1964)
- 136. C.H.Yoder and J.J.Euckerman, Inorg. Chem., 6, 103, (1957)
- 13". P.J.Wheatley, J. Chem[®] Soc., 1721, (1962)
- 138. G.S.Smith and E.Alexander, Acta Cryst., 15, 1015, (1963)
- 139. Lienhard and E.G.Rochov, Z. Anorg. Allgem. Chem., 331, 307, (1954)
- 140. C.Summerford and K.Made, J. Chem. Soc.(A), 1487, (1969)
- 141. International Tablec for X-Ray Crystallography, Vol I, The Kynoch Press, Birmingham, 1962.
- 142. J.A.M.Peterse and J.H.Palm, Acta Cryst., 20, 147, (1966)
- 143. V.Schomaker and D.P.Stevenson, J. Am. Chem. Soc., 63, 57, (1941)
- 144. A.F.Wells, J. Chem.Soc. 55 (1949)

145. L.Pauling, 'The Nature of the Chemical Bond', Cornell Univ. Tress, N.Y., 1960 p 93.

146. N.A.Fineman and R Daignault, J. Inorg, Nucl. Chem., <u>10</u>, 205,(1939)
147. R.D.Kross and V.A.Fassel, J.Am.Chem.Soc.,<u>77</u>, 5858, (1955)
149. L.E.Sutton, 'Interatomic Didtances', The Chem. Soc., London, 1953
148. V.Cordy and V.J.Orville-Thomas, J. Chem. Phys., <u>24</u>, 439, (1955)
150. D.V.H.Rankin, A.G.Robiette, G.M.Sheldrick, B.J.Aylett,

I.A.Ellistand J.J.Monaghan, J. Chem. Soc.(A), 1224, (1969)

151. L.V.Vilkov, and N.A. Parasenko, Chem. Commun., 1176, (1969)
152. H.E. Hjortas, Acta Chem. Scand., <u>21</u>, 1381 (1967)
153. D.Bright and O.S. Mills, Chem. Commun., 245, (1967)
154. H.Kilner, Adv. Organomet. Chem., <u>10</u>, 115, (1972)

155. C.Glidewell, D.".H.Rankin and A.G.Robiette, J. Chem. Soc.(A), 2935,1(1970)

156. N.A.Forder and G.M.Sheldrick, J. Chem Soc.(A), 1107, (1971)
157. R.A.Forder and G.M.Sheldrick, J.Organomet. Chem., <u>21</u>, 115, (1970)
15⁹. D.A.Forder and G.M.Sheldrick, J.Organomet. Chem., <u>42</u>, 611. (1970)
159. D.P.Graig and C. auli, Gazz. Chem. Ital., <u>90</u>, 1700, (1960)
160. D.M.J.Cruickshank, B.C. Webster and D.F.Mayers, J. Chem. Phys., <u>40</u>, 3733, (1964)

161. J.Anderson, D.S.Brown and A.H.Norbury, Chem.Commun., 396, (1974)
152. H.Bock and H.Seidl, J. Am. Chem. Soc., <u>90</u>, 5694, (1963)
153. U.Yates and F.Agolini, Canad. J. Chem., <u>44</u>, 2229, (1966)
154. W.Airey, C.Glidewell, J.G.Robiette and G.M.Sheldrick, J.Nol. Struct., <u>8</u>, 435, (1971)

155. R.L.Hilderbrandt and C.H.Bauer, J. Nol. Struct., 3, 325. (1969)

- 165. G.M.Sheldrick, Proc. Chem. Soc. Ann. Meeting, Edinburgh, 1970
- 157. C.Glidewell, D. .H.Tankin, A.G.Robiette, G.M.Sheldrick, B.Beagley and J.M.Freeman, J.Mol. Struct. 5, 417, (1970)
- 16°. A.Almenningen, O.Bastiansen, V.Eving, K.Hodberg and M.Traetteberg, Acta Chem. Scand., <u>17</u>, 2455, (1957)
- 159. C.Glidewell, D. .H.Rankin, A.G.Robiette, G.H.Sheldrick, D.Eeagley and S.Cradock, J. Chem. Soc.(A), 315, (1970)