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Abstract: Transdermal drug delivery (TDD) is widely used for painless dosing due to its 

minimally invasive nature compared to hypodermic needle injection and its avoidance of the 

gastrointestinal tract. However, the stratum corneum obstructs the permeation of drugs into 

skin. Microneedle and nanoneedle patches are ways to enhance this permeation. In this work, 

terahertz (THz) imaging is utilized to compare the efficacy of different TDD methods 

including topical application and via a needle patch. Our work shows the feasibility and 

potential of using THz imaging to quantify and evaluate different transdermal application 

methods. 

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Terahertz (THz) radiation lies between 0.1 to 10 THz and has a wide range of potential 

applications in biomedical areas [1]. Based on its non-invasive and non-ionizing nature, THz 

imaging is desirable for in vivo human diagnosis and monitoring. Research has shown that 

THz imaging is able to evaluate the water content of skin in vivo [2,3]. Hernandez-Cardoso et 

al. demonstrated that due to water content changes, THz imaging can be used to detect early 

signs of vascular deterioration caused by diabetic foot syndrome [4]. Wang et al. used THz 

imaging to monitor the effect of silicone gel on human skin and proved that THz radiation can 

be used for real-time monitoring of treatment efficiency [2]. Other work including burn scar 

imaging and corneal hydration sensing have also attracted interest for investigation with THz 

radiation [5,6]. Aside from in vivo measurements, ex vivo measurements of biomedical 

samples with THz imaging also play an important role in understanding the biological and 

medical mechanisms at work. He et al. measured dehydrated porcine samples extracted from 

different regions and applied effective medium theory to quantify the water concentration in 

fresh porcine skin [7], this is of particular interest due to the similarities between human and 

porcine skin. Woodward et al. used THz imaging to differentiate between basal cell 

carcinoma and healthy skin, this has the potential to aid surgery in the future [8]. Further 

research into the potential for ex vivo studies and endoscopic developments of THz systems 

will continue to broaden the range of applications in biomedical areas. 

Transdermal drug delivery (TDD) has recently attracted interest as it is possible to avoid 

the gastrointestinal tract and is painless, unlike alternative drug application methods such as 

oral and hypodermic needle applications [9]. However, due to the resistance of the stratum 

corneum (SC), poor drug transport is limiting the development of TDD. Micro/Nano needle 

patches are one of the methods used to enhance TDD efficiency by creating small conduits in 

the SC to enable transport through the bio-membrane. Microneedle patches are arrays of 

needles on the micro scale which can easily penetrate the SC and deliver drugs to the 

epidermis or dermis layers in the skin without disturbing nerves. Solid microneedle patches 

are used to create temporary channels in the skin surface and after removing it, the drug is 

then applied directly to the target area allowing it to diffuse to inner layers of the skin through 

the created channels [10,11]. However, repeated applications of a microneedle patch may lead 
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to skin irritation. Nanoneedles provide another option as they are extremely small [12]. To 

understand the drug delivery efficacy, different imaging methods have been used to reveal the 

TDD process. Apart from biopsy and histological staining, optical coherence tomography 

(OCT) and fluorescence imaging are two common methods to evaluate the efficiency of 

TDD[13,14]. OCT can be used to study the structure of the skin, and fluorescence imaging is 

able to analyze the penetration depth of fluorescent-labeled drugs. There are also other 

emerging techniques like photoacoustic microscopy and laser speckle contrast imaging in this 

area[13,15] To further facilitate the study, label-free techniques that can provide in vivo 

imaging and can quantify drugs are in high demand.  

THz imaging could be a way to help monitor the delivery of drugs in vivo. Its high 

sensitivity to liquids means it can easily track drugs dissolved in water, glycerol or other 

solutions. Moreover, it enables us to acquire the THz spectrum of the target area which would 

also assist in detecting characteristic peaks or troughs in the frequency domain for certain 

drugs. Kim et al. used THz imaging in an ex vivo study to monitor ketoprofen dissolved in 

dimethyl sulfoxide (DMSO) applied to the surface of an excised skin sample. Imaging in 

reflection geometry of the underside of the skin sample showed that the amount of drug that 

penetrates through skin can be determined by the THz signal [16]. Their further studies also 

show that THz imaging can even distinguish different concentrations of drugs on the skin 

surface [17]. To further utilize the spectrum information, Naccache et al. used the spectrum 

peak of ibuprofen at around 1.04 THz for THz thermometry and imaging [18].  

Glycerol is routinely used as a component in cosmetic products [19] and Lashmar et al. 

show that 50% w/v glycerol/water mixture causes no discernible histological changes in nude 

mice skin [20]. Oh et al. used glycerol to enhance the THz imaging contrast [19]. Therefore, 

using an adequate concentration of glycerol/water mixture as the solvent can give a good 

contrast and in the meantime cause very little damage to skin. Aspirin is known as an 

antipyretic, analgesic and antiplatelet drug. However, oral administration of aspirin has 

gastrointestinal side effects [21]. Transdermal delivery provides a more convenient, safer 

alternative to avoid gastrointestinal side effects [21]. Here, in this work, we use THz imaging 

to detect transdermal aspirin solution delivery and compare different administration methods. 

2. Methodology 

2.1 THz system and experimental procedure  

The Menlo TERA K15 THz time-domain system was chosen for this project. Fig. 1 (a) shows 

our reflection geometry setup which has a z-cut crystalline quartz window to help align the 

sample (porcine skin). THz light is focused onto the quartz-sample interface by the focal lens. 

The detector records the time-domain pulses and by using a Fourier Transform, the frequency 

domain information can also be obtained.  

 

Fig. 1 (a) Experimental setup for the imaging. Diagrams of the treatment process for the (b) NT group (c) PT group 

(d) NN and MN groups. 



For our study, we synthesized a drug solution by adding 10% aspirin/ethanol (50mg/ml) to 

a 50% w/v glycerol/water solution. The solution is used for transdermal drug delivery by 

different methods. Due to the potential risks of conducting in vivo measurements on humans, 

we have conducted ex vivo experiments on fresh porcine skin. Only hairless areas on the skin 

were chosen. The porcine skin was cut into 3×3 cm2 pieces and cleaned with a moist cotton 

pad. Cling film was then used to prevent the porcine skin from dehydrating before the THz 

measurements. In total, we divided the samples into 5 groups and for each group, we repeated 

the protocol 10 times. Table 1 and Fig. 1(b)-(d) detail the groups and their corresponding 

treatment protocols. For the treatment groups apart from NT, the drug-soaked cotton pads 

were applied to the porcine skin for 5 minutes, and then removed. This controlled the dose 

level so that the drug would be absorbed without leaving a residue. This was checked using a 

microscope. However for the NT group, the residue was wiped off prior to imaging. Each 

piece of porcine skin was imaged before and after applying any treatment. Each image is 2 ×
2 cm2 with 0.5 mm2 for each pixel. After performing the measurement, data processing 

methods described below were used to analyze the results. 

Table 1. Groups and Corresponding Treatment Protocols 

Control Normal Transdermal 

Drug Delivery 

(NT) 

Transdermal Drug 

Delivery by Pad 

(PT) 

Nano-Needle Drug 

Delivery 

(NN) 

Micro-Needle 

Drug Delivery  

(MN) 

No drug 

applied. 

5 μl of the drug 

solution was applied 

to the surface of the 

porcine skin. A 

rubber ring was used 

to confine the liquid. 

80 μl of the drug 

was dripped onto a 

1 cm diameter 

cotton pad and then 

the pad was applied 

to the porcine skin 

surface.  

A nano-needle patch 

(Nano needle, Konmison) 

was used to create 

nano-scale holes on the 

surface of the porcine skin 

and then a cotton pad with 

80 μl drug was applied. 

Same as NN 

but used a 

micro-needle 

patch (9-pin 

microneedle, 

Konmison) 

instead. 

2.2 Data processing 

There are two reflections in our measurement due to the use of quartz window: one from the 

air-quartz interface and one from the quartz-sample interface. Detailed information about 

eliminating the uneven thickness of the quartz window is previously reported in [22]. Air is 

measured as the reference. The sample to reference ratio (M) is defined as 

( ( ) ( )) cos cos cos cos
= =

( ( ) ( )) cos cos cos cos
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air baseline qa q q s s q q a a
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where 𝐸𝑠𝑎𝑚𝑝𝑙𝑒  and 𝐸𝑎𝑖𝑟  are the reflection from sample and reference (air). Note that the 

reflection from the air-quartz interface is called the baseline (𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) and is subtracted from 

the reflected signal of the sample (𝐸𝑠𝑎𝑚𝑝𝑙𝑒) and air (𝐸𝑎𝑖𝑟). Then by applying the Fresnel 

equations in Eq. (1) and Snell’s Law given by 

sin sin sina a q q s sn n n     (2) 

the refractive index of the sample (𝑛𝑠̃) can be extracted from the measured sample to 

reference ratio (M). Note that 𝑛̃𝑞, 𝑛̃𝑎, 𝜃𝑞, 𝜃𝑠, 𝜃𝑎 are the refractive index of quartz and air 

and the incident angles in quartz, sample and air respectively. The refractive index is a 

complex number and its imaginary part is called the extinction ratio (k). The absorption 

coefficient (α) can be calculated via  

= 4 fk c   (3) 

where f and c are the frequency and speed of light respectively.  

3. Results and discussion 

3.1 Drug spectrum 



In Fig. 2, the frequency spectra of the drug solution and porcine skin are compared with water, 

glycerol and glycerol/water solution. Note that M in equation (1) is a complex number: in the 

following we show both the amplitude and phase information of M. In Fig. 2(a), from the 

amplitude spectrum data, we can see that the spectra of glycerol/water and drug solutions are 

significantly lower than porcine skin in the low frequency region due to the properties of 

glycerol solution. This result confirms the feasibility of using THz imaging to monitor drug 

solutions inside the skin. However, for the phase, the differences are small. For the refractive 

index, the drug solution shows little difference from the porcine skin but for the absorption 

coefficient, the difference is significant. However, at high frequencies, the standard 

deviation (error bar) of the porcine skin increases due to a possible air gap between the 

imaging window and the sample. The amplitude ratio (|𝑀|) and the absorption coefficient (α) 

are significantly different for several frequencies and provide useful classification parameters. 

 

Fig. 2 Spectra of different solutions and fresh porcine skin. (a) Amplitude of M (b) Phase difference (c) Refractive 
index (d) Absorption coefficient of different solutions. 

3.2 Imaging results 

Imaging results can give a better indication of how effective THz imaging is when applied to 

investigate TDD. However, to eliminate the effect of the variance between different pieces of 

porcine skin, the results after treatment need to be normalized to the original result before any 

treatment. Here, we first average the results before treatment from the central 25 points to get 

|𝑀|𝑏𝑒𝑓𝑜𝑟𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , this is used to normalize the result after the treatment (|𝑀|𝑎𝑓𝑡𝑒𝑟) to get the 

normalized result as shown in Equation (4).  

ij beforeafter

ij norm

before

M M
M

M


  (4) 

 
Fig. 3 Imaging result of 5 groups (a,f) control group (b,g) NT group (c,h) PT group (d,i) NN group (e,j) MN group. 

|𝑀|𝑛𝑜𝑟𝑚 at 0.3 THz is plotted here. Table 1 specifies the treatment for each group. 

Fig. 3 (a)-(e) show the different treatments carried out on fresh porcine skin and Fig. 3 

(f)-(j) show representative imaging results corresponding to the treatments. Fig. 3 (g)-(h) 

show that the |𝑀|𝑛𝑜𝑟𝑚 decreases in the site where the drug was applied. Though we cannot 

accurately map the amount of drug solution inside the skin from the current data, we can 



estimate the relative amount of drug delivered based on |𝑀|. We expect that the drug 

solution will mainly displace water inside the skin and that the more solution delivered into 

the skin, the more |𝑀|𝑛𝑜𝑟𝑚 decreases. (This can be shown quantitatively using effective 

medium theory by setting the initial skin composition to be 30% biological background and 

70% water, and replacing different proportions of water with drug solution.) However, if we 

first apply a nanoneedle patch onto the skin and then use the soaked pad for TDD, as shown 

in Fig. 3 (i), |𝑀|𝑛𝑜𝑟𝑚 decreases more significantly compared to Fig. 3 (g)–(h). This is due to 

increased permeability of the skin caused by the nanoneedle patch. The microneedle patch 

(Fig. 3 (j)) does not show much improvement due to the small number of microneedles in one 

patch. 

3.3 Data analysis 

The 5 groups were repeated 10 times and the averages of |𝑀|𝑛𝑜𝑟𝑚(represented by |𝑀|𝑛𝑜𝑟𝑚
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 

in the central 25 data points in the image/drug applied site for each group are used in the 

subsequent analysis. Fig. 4(a)-(b) shows the representative |𝑀|𝑛𝑜𝑟𝑚 images of control and 

NN groups. The normality of |𝑀|𝑛𝑜𝑟𝑚
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is checked by the Shapiro-Wilk Normality test [23]. 

We use the one-way analysis of variance (ANOVA) and Tukey-Kramer test [24] in matlab to 

check for a significant difference between the groups. The results show that there is a 

significant difference between the groups (F=85.05, p<0.05). Fig. 4(c) shows that after 

treatment all 4 groups are significantly different compared to the control group. However, 

|𝑀|𝑛𝑜𝑟𝑚
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ of the NN group is significantly smaller compared to the other treatment groups 

which indicates that the nanoneedle patch can better increase the TDD efficiency compared to 

the other applications. Note that the error bars are not the standard deviation in each group but 

the Tukey’s minimal significant difference, calculated with the parameter αTukey=0.05. The red 

dashed line indicates that the NN group does not overlap with any of the other groups. 

|𝑀|𝑛𝑜𝑟𝑚
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ of the MN group not as low as for the NM group due to the small number of 

microneedles in one patch. 

 

Fig. 4 |𝑀|𝑛𝑜𝑟𝑚 at 0.3 THz from (a) the control group and (b) the NN treatment group. (c)Tukey’s Honestly 

Significant Difference Test of |𝑀|𝑛𝑜𝑟𝑚
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Error bars are Tukey’s minimal significant difference with αTukey=0.05. 

4. Summary 

In this work, we use THz imaging to monitor TDD via topical and micro/nano needle patches 

and compare the differences between application strategies. We also use several statistical 

methods to evaluate whether there is a significant difference between groups. Our work is the 

first attempt to compare different methods of TDD using THz radiation as a quantitative 

imaging technique. The results show that with a nanoneedle patch, the TDD is significantly 

increased compared to the other TDD approaches studied. However, further investigations are 

still needed for example to test the effect of different sizes of the molecules being applied and 

to accurately model the amount of drug permeated into skin. Ultimately we envisage that THz 

imaging could be used to monitor and evaluate TDD in vivo, and be useful for the 

development of TDD techniques and treatments. 
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