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Abstract

The behaviour o f waves in stable and unstable media in  the nonlinear 

regime is of considerable in terest and relevance to many physical systems.

New, tractable techniques are required to account fo r the possible interac

tions of dispersive, d issipative and modulational e ffects  and their e ffe c ts  

on the propagation o f nonlinear waves. The reductive perturbation technique 

an asymptotic expansion in multiple time and space scales — is  extended to 

apply to wave propagation in unstable media in both one and two dimensions.

I t  is shown that, to lowest order, the wave amplitude s a t is fie s  a form of 

nonlinear Schrddinger equation and the va lid ity  o f this equation is  estab

lished fo r a much wider class o f systems than was previously supposed. 

Explicit expressions are given fo r determining the complex ■coeffic ien ts of 

this equation from the coe ffic ien ts of the system o f equations describing 

the original physical system.

These general methods are applied to two physical systems. A nonlinear

theory o f the propagation o f acoustic waves in p iezoe lec tr ic  semiconductors

is presented and an ex p lic it  solution of the relevant generalised nonlinear

SchrSdinger is found using a perturbation technique. This solution is

found to be an envelope so liton  and theoretically confirms domain propagation

in p iezoelectric semiconductors. A nonlinear theory o f a two-stream
state

in s ta b ility  in a marginally stable^ is given and the wave equation is  found 

to be a d ifferen t form of the nonlinear Schrddinger equation. The nonlinear 

e ffects  are found to enhance rather than suppress the in s ta b ility  in agree

ment with previously published results.

A discussion is given o f the s ta b ility  of inhomogeneous plasma streams 

in mutually perpendicular e le c tr ic  and magnetic fie lds  and suggestions are 

made fo r the development of a nonlinear theory o f such systems using the 

general techniques developed.
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Chapter 1

General aspects of nonlinear wave propagation and 

the reductive perturbation technique

1.1 Introduction

Many results have been published in recent years of theoretical work on 

the propagation o f nonlinear waves. A progression from a simple linear 

analysis to a nonlinear small amplitude analysis is the natural sequence o f 

events for considerations of systems which are capable o f supporting wave 

motion. Many examples o f such systems are found in plasma physics, hydro

dynamics, so lid  state physics etc.

The analysis o f nonlinear wave propagation has led to interesting new 

concepts such as, fo r example, the rediscovery o f the so lita ry  wave, the 

existence o f in f in ite ly  many conserved quantities, the p o ss ib ility  o f nonlinear 

in s ta b ility  o f linearly  stable systems and phenomena such as amplitude disper

sion. We w i l l  consider these in more de ta il la te r.

The analysis o f systems in the nonlinear regime is generally much more 

complex than linearised analysis and many d ifferen t theoretica l techniques 

have been developed for solving the complex nonlinear equations that arise 

from such an analysis. One particu larly fru it fu l approach has been not to 

attempt to solve these equations exactly but to reduce them to a single non

linear equation which can then be analysed in d e ta il. This approach has proved 

to be so useful because i t  has been found that wide classes o f nonlinear 

systems can be reduced to one o f three equations depending on the balance bet

ween the nonlinearity and other e ffects  such as dispersion and dissipation.

These three equations are: the Korteweg-de Vries equation (Korteweg and de 

Vries (1895)), the Burgers equation (Burgers 1954), and the nonlinear 

SchrUdinger equation (Landau (1944)). For the sake o f b revity  we w ill  re fer 

to these equations as the KdV equation, the B equation and the NLS equation 

respectively. These equations can be derived in a number o f d ifferent ways
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The KdV equation was derived by Korteweg and de Vries (1895) fo r the 

problem of long surface waves in a rectangular channel o f constant depth. The 

general form of this equation is given by:

and before we discuss these methods we w i l l  consider these equations in more

d e ta il and ind icate fo r  which systems they are v a lid .

3
3u .. 3u , 3 u_  + a U -  + b _  = o

l/q “ I /3
where we can see that by means of the scaling £ ■+• £b J and u ■+• u/ab that 

the coeffic ien ts a and b may be assumed to be of value unity. Here u repre

sents a wave amplitude. This equation was rediscovered by: Washimi and 

Taniuti (1966) when considering the propagation o f disturbances near the ion 

sound speed in a co llis ion less plasma o f cold ions and warm electrons, Zabusky 

(1963) and K'ruskal and Zabusky (1963) fo r the propagation o f one dimensional 

acoustic waves in anharmonic crystals, Gardner and Morikawa (1960) for the 

long-time behaviour o f disturbances propagating perpendicular to a magnetic 

f ie ld  with a ve lo c ity  near the A lfv in  wave ve loc ity  in a cold plasma hydro- 

magnetic model, Karpman (1967) fo r flu id  flow in two dimensions around regular 

bodies in dispersive media.

The important characteristic of systems for which the KdV equation has 

been found to be va lid  is that they are weakly dispersive in the long wavelength] 

lim it. This in mathematical terms means that the linear dispersion relation 

takes the form

a> = X k ± ak  ̂o

where u and k are the frequency and wavenumber respectively, i . e .  in the lim it

k -*■ o the phase ve loc ity  is constant and for short wavelengths the correction 

3is 0(k ) .  I t  is  obvious that fo r these systems that the nonlinear steepening 

associated with these systems is  balanced by dispersive e ffe c ts , i . e .  wave 

breaking, the point at which the characteristics o f the orig inal system cross 

and the amplitude becomes double valued is prevented by the dispersive e ffe c ts .
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This gives rise to the so lita ry  wave or so liton  orig ina lly  discovered by Lord 

Rayleigh (18 76). To see how this arises we note that i f  the third terms o f 

the KdV equation is ignored then the resulting equation has the im p lic it 

solution

and must lead to physically untenable multivalued solutions. The existence

at this stage d issipative e ffects  are not included in the discussion.

The so lita ry  wave solutions o f the KdV equation were rediscovered numeri

ca lly  by Zabusky and Kruskal (1965) and analytica lly  by Gardner, Greene, 

Kruskal and Miura (1967). The analytic solutions were found by treating the 

KdV equation as an inverse scattering problem fo r arbitrary in i t ia l  conditions 

and a good discussion o f this method is  given by Davidson (1972) . By in te

grating the KdV equation twice, by insisting that u and its  derivatives vanish 

as | X | -*■<*> and by loo.-.ing fo r solutions as functions of X where

which is the so lita ry  wave, i . e .  a moving pulse where the pulse amplitude,

interesting properties of the so liton  are discussed in 1 .2 .

The second equation, the Burgers equation we w ill  only b r ie f ly  mention 

as i t  is the least relevant to physical problems o f the three equations.

This equation was derived by Burgers (1954) fo r  a simple hydrodynamical system 

and analysed in considerable deta il in subsequent papers. This equation 

takes the form:

u( 5 , t) = u(£ -  u( 5, t ) t , o)

Therefore any in it ia l  disturbance w i l l  steepen in regions where 3u(g,o)/3C < 0

3 3of the third term i . e .  the 3 u/3£ term prevents this occurring. We note that

X = £ -  ex

we see that

3x'
-  0
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where we consider the last term as being a "viscous" term. This term is 

therefore characteristic o f a dissipatiaSr system. The B equation has a solu

tion o f the form

u ' = u“* tanh£-(u ' „ x ' ) / 2 h ]

where u' = u(x-Xt) -  X

and u-* = u '(x ' -  » )  , x * = X -  Xt

and a  has been put equal to unity.

This is  a shock like solution since u' increases monotonically from 

|u 'J to u- as x increases from -«• to +°>. Therefore, the nonlinearity and 

dissipation balance, to prevent wave breaking and a steep but smooth wave 

develops and progresses. We can therefore conclude that the B equation is  

characteristic of weakly dissipative systems and this has been shown to be 

va lid  for a number o f systems by Su and Gardner (1969) . Before we consider 

the NLS equation we note that attempts have been made to consider both d iss i

pative and dispersive e ffe c ts  and modified KdV equations have been found by 

Ott and Sudan (1969,1970).

The third equation, the NLS equation is the mo^t important equation as far 

as thid thesis is  concerned and was o r ig in a lly  proposed by Landau (19A4) as 

being a general equation describing nonlinear systems. Since then i t  has 

been derived by a number o f authors: Taniuti and Washimi (1968) fo r  the 

self-trapping in intense ligh t beams when an electromagnetic wave is  trapped 

by the polarisation induced by i t s e l f ;  Chiao, Garmire and Townes (1969) fo r 

a sim ilar system; Hocking and Stewartson (1972) and Stewartson and Stuart 

(1971) for a s ta b ility  study of plane para lle l flows in flu ids; Zakharov and 

Shabat (1972) fo r general self-focussing problems; Asano, Taniuti and Yajima 

(1969) fo r the electron plasma wave in an isothermal electron flu id  and for 

a model nonlinear Klein Gordon equation and many other authors . The common 

characteristic of a l l  these systems is that now nonlinear self-modulation 

e ffe c ts  are important and hence the systems are a l l  strongly dispersive. The 

general form of the NLS equation is  given by

4



+ 6<t> + Y<(> I «(> 12 = 0a

where a,B and Y are constants,  ̂ is  a wave amplitude and t and £ are suitably 

chosen coordinates. This equation admits solutions which include the s o li

tary wave, the shock and different types of periodic nonlinear waves. This 

equation is considered in more deta il but at th is point we note that Zakharov 

and Shabat (1972) have shown that the so lita ry  wave fo r the NLS equation 

d iffers from the KdV so lita ry  wave because even though both waves are character 

ised by four parameters for the NLS soliton the characteristic amplitude and 

ve locity  are independent. The two so lita ry  waves are more fundamentally 

d ifferent since the NLS soliton is an envelope so lita ry  wave, i . e .  the 

envelope of a modulated quasi-monochromatic wave whereas the KdV soliton is  

a pure so lita ry  wave.

We can conclude at this point that the KdV, the B and the NLS equations 

have been shown to be the equations sa tis fied  by the amplitude in weakly 

dispersive, weakly dissipative and strongly dispersive systems i f  these 

e ffects  are of equal significance to the nonlinearity of the system. When 

the va lid ity  of this result was established attempts were made to demonstrate 

their va lid ity  for more general systems using more general methods. The 

most important techniques used were a wave packet formalism, a Lagrangian 

formalism, Whithams method of slowly varying amplitudes, the multiple time 

scale formalism and the reductive perturbation technique (in  future referred 

to as the RP technique). The RP technique, which belongs to a general 

class o f multiple time scale methods w ill  be considered in more deta il in 1 .2 

and we w i l l  b r ie fly  describe the other techniques here.

Karpman and Kruskal (1969) using the concept of a wave packet, localised 

in space and with a varying phase were able to show that the NLS equation is  

valid fo r nonlinear wave modulation in dispersive systems but were unable to 

give ex p lic it  expressions for the co e ffic ien ts . Kono and Sanuki (1972) 

extended this method and were able to derive the KdV equation and the NLS 

equation from the Vlasov equation.
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Dewar (1972) showed, by deriving a Lagrangian fo r  the slowly varying 

complex amplitude o f an almost monochromatic e lec tros ta tic  plasma wave in an 

unmagnetised plasma and by a technique o r ig in a lly  proposed by Whitham (1967, 

1965) that variations with respect to the amplitude o f this Lagrangian lead 

to the NLS equation. This was again va lid  fo r the case o f nearly mono

chromatic waves. Whitham himself, Whitham (1967) considered a Lagrangian 

method and used an averaging procedure to derive a single nonlinear equation. 

However, the result he obtained was not a NLS equation as his o rig ina l 

method was only va lid  for systems where the nonlinearity exceeds the disper

sion. Dewar has therefore extended the app licab ility  o f the Lagrangian 

method to include systems where the two e ffe c ts  are o f equal importance.

Whitham (1967) using results o f Whitham (1965) and L igh th ill (1965) 

considered an exact uniform periodic wave train and assumed that the ampli

tude and wave number were slowly varying functions o f space and time. By 

averaging over the loca l oscilla tions of the medium he was able to fin d  an 

amplitude dependent frequency which as we w i l l  see la te r  can be deduced from 

the NLS equation. Tam (1969,1970) has used this concept o f amplitude dis

persion to consider nonlinear dispersion in cold plasma waves but has’ not 

considered modulational e ffe c ts .

The multiple time and space scale method has proved to be a very powerful 

technique fo r considering nonlinear systems. This technique consists of 

introducing a number o f d iffe rin g  time and space scales and by treating these 

as independent variab les. Then, i f  a correct choice is  made fo r the scaling 

o f these variables a sequence of linear equation is  obtained which describe 

the behaviour o f the system on d ifferen t time scales. Normally, to second 

order secular terms arise and by insisting that these terms vanish we derive 

the equation obeyed by the f i r s t  order amplitude on the slowest time and 

space scales. Discussions and details o f this method can be found in 

Sandri (1963) and Sturrock (1957) and Davidson (1972) has showed how the KdV 

equation may be derived for the nonlinear ion sound wave using the multiple 

time scale method.
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The problem with using ordinary perturbation methods for nonlinear modu

lated waves is  that they treat a l l  interaction terms as small quantities and 

do not distinguish between s e lf  and mutual interactions, and between interac

tions due to nonlinearities or dispersion or dissipation. Therefore new 

methods are required which remove secular terms which can lead to divergence 

and which iso la te the d ifferen t interactions in order that their re la tiv e  

e ffec ts  can be separately id en tified .

The RP technique and its  modifications has been the most successful 

single technique which is able correctly to account fo r the interactions of 

dispersive e ffe c ts , dissipative e ffects and modulational e ffe c ts . This 

technique was o rig in a lly  proposed by Taniuti and Wei (1968) and Taniuti and 

Yajima (1969) and is  called the RP technique since i t  reduces a system of 

nonlinear equations to a single tractable nonlinear equation using a singular 

perturbation expansion. As w il l  be seen the method is elegant and re la t iv e ly  

simple and is based on a multiple time and space scale method (by using 

coordinate stretch ing). This technique correctly predicts the v a lid ity  of 

the KdV, the B and the NLS equation fo r the respective dominant interaction 

for a very general system of coupled nonlinear d iffe ren tia l equations.

This class o f equations includes a ll the physical systems for which these 

equations have previously been deduced which we have already referred to . 

Although this method has proved very powerful i t  has not yet been applied to 

unstable systems, marginally stable systems, inhomogeneous (spatia lly  and 

temporally) systems and two-dimensional systems which are strongly dispersive 

i . e .  where dispersion and wave modulation are also important. I t  is  the 

aim of this thesis to make some of these extensions and to demonstrate their 

use on physical systems.

Before we consider the RP technique in more deta il we note that i f  

solutions of the fin a l nonlinear wave equation can be found then a statement 

can be made about the nonlinear s ta b ility  or in stab ility  of a system. The 

p oss ib ility  that a system may be linearly stable and nonlinearly unstable

7



(or vice versa) is one of the interesting properties o f the nonlinear wave 

as was mentioned at the beginning of this section. An excellent example 

of this is  the s ta b ility  of plane para lle l flu id  flows as considered by 

Diprima, Eckha s and Segel (1971), Stewartson and Stuart (1971) and Hocking 

and Stewartson (1972) who by deriving the NLS equation were able to deduce 

a nonlinear s ta b ility  cr iter ion  which was the converse o f the linear c r iter ion . 

We w i l l  consider such a system in subsequent Chapters but w i l l  now outline the 

principles o f the RP technique.

where u is  a column vector w ith n components _û  . . .  (n > 2) and A, ,
8 ’

are nxn matrices, a ll functions of u and p > 2. A ll these matrices are

assumed continuous and analytic .

The dispersion relation in the long wavelength approximation fo r  1.2.1 

is obtained by linearising around a stationary state This dispersion

relation may then be solved to  give the phase ve lo c ity  by using the long 

wavelength approximation. This phase ve loc ity  is  then given byi

8



m/k = A + akp_1 + bk2(p_1) + ck3(p_1) + . . .  1.2.2o

where m is the frequency, k the wavenumber, Aq is  a real eigenvalue o f A(u°)

and tne a,t> and c are functions of tue l e f t  and right eigenvectors o f A(u°)

8 6(corresponding to the eigenvalue A ) and the matrices H p(u ) ,  K p(u ) .o —a —o —a —o

Conversely i f  jj is expanded as a power series in terms o f a small parameter 

e then we may write

u = u + EU. + 2e u_—0 —1 —2

A = A + eA, + £2A-—0 —1 —2

where A  ̂ = M i^ ) . This implies that the phase ve loc ity  may be expanded as

A = A + eA. + e2A0 + ........ 1.2.3o 1 2

where the A^, A2 are again proportional to A  ̂ and its  eigenvectors.

The two approximate expansions 1.2.2 and 1.2.3 may now be equated by order. 

We note that 1.2.2 is an expansion which represents the e f fe c t  o f dispersion 

whilst 1.2.3 represents the e ffe c t o f the nonlinearity. We may therefore 

conclude that the interaction between the nonlinearity and the dispersive 

e ffects  is greatest when the time of interaction is longest, i . e .  when

0(k) = e“

where a =* l/ (p - l)  1.2.4

providing A  ̂ j* 0 and a / O. From 1.2.4 we see that ea x wavelength are o f 

the order o f unity in the frame of reference moving with the wave and so we 

can write

5 = e“ (x-Aot) 1.2.5

as one of the stretched coordinates. The other independent variable t o f

1.2.1 must now be stretched in a consistent manner as follows: The character

is t ic s  o f 1 .2.1  in terms o f the orig inal variables x and t ( i f  the nonlinearity

9
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is  ignored) are given by dx/dt =* Aq. We expect a deviation in these character-] 

is t ic s  to order e when the nonlinearity is included and so expect the character

is t ic  Â  to be written as Â  ** dg/dx where t is now a stretched time variable. 

This gives immediately,

a+1
t = e t 1 . 2.6

The two stretched coordinates 1.2.5 and 1.2.6 are now consistent with the balancj 

between the nonlinearity and dispersion or dissipation. As we have already 

noted these new coordinates apply only when Â   ̂ 0 and a ^ O .  I f  a = 0 but 

b i1 0 and Â  j  0 then the nonlinearity and dispersive e ffe c ts  are coupled to 

next highest order in the dispersion i . e .

0 (k) = ea

where now a = l/2 (p -l) 1.2.7

The stretching 1.2.5 and 1.2.6 is now s t i l l  appropriate with a  now being given 

by 1.2.7.

We now return to the model equation 1.2.1 and make two assumptions. We

assume that the constant unperturbed solution uq exists and that the ja, A,
Q

and may be expanded as power series as follows:

6

u =2 U * eu. + e u- + .—O —1 —2

A A + eA. + e2A + .
-

—o —1 —2

8 and K $ . Now since A

1 .2.8 as

A^ + eVA° .u1 + e2 (VA°.u2 + ■|77A°:u1u1)

+ e3(7A°.u3 + VVAtu1̂ 2 + -|v77A°:u1u1u1) + 1.2.9

where we have adopted the notation.

r>«° 17A .u
3A
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V7A:u1u1 Z Z
i  j

32A

3u.3u. 
i  J

1 1u. u.
I  J=„o

Similar expressions hold for higher derivatives. (This notation is  used 

throughout the remainder o f this th es is ). These expansions assume that the 

u^, U£ are p times d ifferen tiab le with respect to x and t .  Secondly we assume 

that the eigenvalues o f A  ̂ are rea l, that at least one non-degenerate eigen

value Aq ex ists and the eigenspace of A  ̂ does not have any invariant subspaces. 

This last assumption was made by Taniuti and Wei without explanation and they 

considered the case when A  ̂ has invariant subspaces as an exceptional case.

We can now see that these conditions on A are necessary to ensure that the 

dispersion re la tion  has the form given by 1.2.2 with Aq J  0 and a J  0. Their 

"exceptional" case arises when a = 0 as we shall see la te r .

We now introduce the stretched coordinates

Ç = e (x-AQt)

a+1T = E t

where a =■ l/ (p - l)

together with the expansions 1.2.8 and 1.2.9 into 1.2.1 to obtain

00 . 3ll. 00 <» 9u. 00 00 . . .. 3u.
Z 01 ( -A  -¿p-) + Z Z e1+JA. + Z Z el+ J + 1 A.

i= i o 3Ç i =0 j= l  - 1 3^ i =0 j= l —i  3t

+ r £ £ ï  e ^ + V . u .
8 q=0 j - 1  i -0 ql J

1 . 2.10

g
where is  formally defined by

n(H 8 4  + K 6 4  ) = 0pa l  Z 0k+ q de.
a =? 8t =? 3x q«0 k-0 qk

1 .2 .1 1
0 thi  .e . d”k is the k term in a power series expansion o f the operator on the 

le f t  hand side o f 1.2.11. We now equate powers o f 0 in  1.2.10 to second order 

to obtain the following two sets o f equations:

» r



s p
+ Z l  (-X H . 0 —1O -CIO + KP ) ---- 1 = 0

= °°  3çP

+ <™ °-“ i> âç
3_u

1 . 2 .

1 . 2 .

We w ill  now solve 1.2.12 and by means o f a com patibility condition that must 

be sa tis fied  by 1.2.13 (so that has a n on -triv ia l solution) deduce the

equation sa tis fied  by jj. . We note that i t  is a feature o f the reductive 

perturbation technique that such a compatibility condition gives the required 

resu lt. This is  d irectly  comparable to the technique of removing divergent 

terms in the multiple time scale method (discussed in 1.3) but in this formula

tion the compatibility condition arises naturally and is  not externally 

imposed.

Since by assumption Xq is an eigenvalue o f Aq we may define a le f t  1. and 

right R eigenvector o f A corresponding to this eigenvalue as:

where <K£,t) is  a scalar function o f 5 and t and V (t ) is  a vector function of T 

which appears as a constant o f integration and which is  determined i f  in i t ia l

Since we in s is t that 1.2.13 has a non -triv ia l solution for we

consider 1.2.13 as the inhomogeneous form o f 1.2.12 (with respect to the matrix

the compatibility condition. The ex p lic it  form o f this condition is readily 

deduced by multiplying 1.2.13 on the le f t  by L  to obtain,

(A -  X I )  R =■ 0—o o — —

L(A -  X I )  = 0—o o —

Equation 1.2.12 may be imnediately solved to give

Uĵ  =* R()>(£,t) + V (t) 1.2.14

conditions are imposed on û

operator (- ^Q I, + Aq)) and so see that the inhomogeneous terms must satisfy
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3u„ 3u1 3u
L(-X I  + A ) T7 + L A -r- + L(VA° .u. ) —  — o — —o 3 5 ---- o 3t — — —1 35

s P R 3P“ i
+ L Z Z (-X HB + KP ) ----

~  „  S ° =“ ° = “ ° 35P

By defin ition  the f i r s t  term vanishes and leaves the equation that must be 

sa tis fied  by We substitute from 1.2.14 and a fter some manipulation

obtain:

°5
1.2.15

where the constants c^, and are given by:

L(VA.R)R

x lTo ----

s P « «
L Z n (~X„ H° + Kp )R — ft „  o  r-ao stto —

X L R o ----

<=4 -  k  (VAo-V^R
X L R 

o  —  —

and the vector i-3 given by:

-3 L
lTr

Taniuti and Wei now simplify 1.2.15 by elim inating the la st two terms by use 

o f a coordinate transformation and a variable transformation which is seen to 

be a loca l Galilean transformation as follows:

4>(£»t ) “  i)>(5>t) + c3 V

n = 5 + CjC,J 'v ix 'ìd x ' -  JTc4 (x ')d x '

f in a lly  obtain

e* A/ n ***
l i  + c r | t  + c , i ! i  -  O 1.2.16
3t 1¥ 3n 2 3np
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For p = 3 this equation reduces to the KdV equation and fo r p = 2 the B

• . ^  ^  equation. We can see that i f  <p is  specified at some (no »To) then $ is

determined fo r a l l  n > n and t > t .o o

Taniuti and Wei then proceed to examine the case when A has invariant
Z°

subspaces. I f  this is the case then the matrix given by the d ^  also has 

invariant subspaces which are interchanges of the subspaces o f A^. Conse

quently C2 vanishes and the method can be seen to have fa iled . Taniuti and 

Wei now assume the coordinate stretching given by 1.2.5 and 1.2.6 with the 

defin ition  o f a given by 1.2.7 and derive the equation 1.2.16 in the form

rv ?D- 1  ^
| 4  + c j p .  ♦ c ,  3- T 4  = 03x 1 v 3n 2 „ 2p-l3n

where the constants c^ and C2 are defined by expressions sim ilar to those

given above. We w ill  not give any further consideration to this case other

than point out that the analysis proceeds exactly as given above with two
+ -  + _ T

equations to each order for two vectors 1̂ and xi where 1̂ = (ji ) and where 

the dimensions o f u+ and hence _u depends on the re la tive  dimensions o f the 

invariant subspaces of A^. Taniuti and Wei then apply the method to the ion 

acoustic wave in a cold co llis ion less plasma and a hydrodynamic wave in an 

isothermal flu id . They found that the KdV equation is  appropriate to the 

la tter  system whereas the B equation is appropriate to the former. They 

confirmed the result o f Washimi and Taniuti (1966) fo r the ion acoustic wave, 

a result which had been obtained using a less general form of coordinate 

s tretching.

The assumptions o f the general RP technique presented above indicate 

that i t  is most applicable to systems in the long wavelength approximation in 

the presence of dispersion or dissipation. This is  evident from 1.2.2, the 

dispersion relation which was derived in the long wavelength lim it. We 

therefore must have a dispersion relation of the form,

X k + 0 (k ) o

14
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fo r a non-dissipative system. This restriction  also applied to the work 

of Su and Gardner (1969) who also concluded that the KdV equation was the 

appropriate equation describing nonlinear dispersive systems whilst the B 

equation was appropriate for d issipative systems. Similarly we must have 

a dispersion relation of the form

u) = X k + O(k^) o

for d issipative systems. The method is  not applicable to systems having 

dispersion relations o f the form

2
u = m + X k + 0(k ) + ........o o

where there is  a fundamental frequency a>Q. Systems having dispersion rela

tions o f this form allow the propagation of a nearly monochromatic wave and in 

addition to nonlinear, dispersive and dissipative e ffe c ts , self-modulation 

e ffe c ts  must also be considered. Hie next sign ificant development in the 

RP technique was given by Taniuti and Yajirna (1969) and Asano, Taniuti and 

Yaj ima (1969) who indicated how the technique may be applied to systems having 

a dispersion relation which admits, in the linear approximation a plane wave 

with a characteristic osc illa tion  frequency uo . Again, these authors stated 

their assumptions without ju s t ific a tio n  and before we discuss the method in 

deta il we w ill  indicate why their choice o f expansion and coordinate stretching 

is appropriate.

I f  the linear system admits a plane wave solution then we expect the 

e f fe c t  of the nonlinearity and/or dispersion to modulate the wave to produce 

a nearly monochromatic wave. The envelope o f this wave can then be considered 

as a long wavelength wave i f  the deviation from a monochromatic wave is 

su ffic ien tly  small. We now consider an expression sim ilar to 1.2.2 fo r this 

wave in the long wavelength lim it as follows: Consider the group ve loc ity  o f 

the wave consisting o f two plane waves characterised by wavenumbers and wave

lengths k, a) and k ',  u>'. I f  the differences between these are su ffic ien tly

15 '
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small, i . e ,  i f  K = k '-k and U = u'-w are small then the resultant wave has an 

envelope o f wave number K and frequency ft subject to the dispersion relation :

U . i 4 !
° 2 3k2 6 3k2

where Xq is the group ve lo c ity  of the carrier wave. In the long wavelength 

lim it we write the group ve loc ity  o f the envelope as 3Q/3k = A and so write

A Xo + 1
2

+ 1.2.17

We may now compare 1.2.17 with 1.2.3 in the same way as we compared 1.2.2 with2 21.2.3 and conclude that providing X̂  4  0 and 3 oi/3k  ̂ 0 that the choice o f 

stretched coordinates 1.2.5 and 1.2.6 is  s t i l l  appropriate since fo r maximum 

interaction the nonlinearity and dispersion must be of the same order, i . e .  

the envelope wave is a function along the characteristic curve given by 1.2.5. 

However, this simple coordinate stretching must be combined with a method of 

accounting for the interaction of the fundamental mode with i t s  own harmonics. 

The nonlinear self-in teractions of the plane wave w ill  give r ise  to higher 

and lower harmonics. These harmonics w ill  f i r s t  appear to second order in 

the amplitude of the plane wave as the second harmonic mode and a slow mode 

with no harmonic content. These then couple with the fundamental mode to 

give a nonlinear modulation. This nonlinear e ffe c t  then only appears to 

third order in the amplitude. We note that now a calculation to third order 

w ill  be required to determine the behaviour o f the lowest order amplitude.

The combination o f these arguments ju s t if ie s  the follow ing choice of 

perturbation expansion and was o r ig in a lly  suggested by Taniuti and Yajima 

(1969):

oo oo

^  + E Z eau“ (£,n)exp[ii.(kx-n)t)J 1.2.18
a*l i »-°°

The va lid ity  of this expansion and subsequent modifications are the crucial



assumptions o f this thesis, 

stretched variables:

We note that the amplitude is  a function of the

£ = e (x -  Xt)

x = e2t 1.2.19

with X = loi/3k

(where we have now restricted the choice o f systems to those having a disper-

2sion relation with terms o f order k ) .  However, the o s c illa to ry  part is  a 

function of x and t .  Therefore, as is required we have "decoupled" the rapid 

oscilla tions o f the wavemotion with slow variations of the amplitude and have 

chosen the slow variables to give the correct balance between the nonlinear 

self-in teraction  and the dispersive e ffe c ts .

For any choice o f system we now wish to derive an equation which describes 

the modulation of the wave and following Taniuti and Yajima consider the model 

system o f equations:

3u 3_u
■at + + £<.“ > “ 0 1 .2.20

where is a column vector with n components u^, ........un and where the n x n

matrix A and the column vector II are continuous and d iffe ren tiab le  functions o i

the u’ s . We assume that there ex ists a constant solution u° which sa tis fies  i  —

B(u°)

Then equation 1 .2.20 linearised about u becomes:

3u

"at

3u
+ A -r- + VB u —o 3x —o— 0

where the operator 7 was defined follow ing equation 1.2.9. This linearised 

equation allows a plane wave solution, i . e .  varying as exp ± i(kx-wt) subject 

to the dispersion relation :

detITiw liikA + 7B I »  01 + — —o —o'
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We now assume that this dispersion relation gives at least a single real root 

to fo r a real k. Further, we assume that l u  where l  is  a positive or negative 

integer is not a root of this dispersion rela tion , i .e .

Having defined a system which is  characterised by a single real frequency u we 

are now able to consider the nonlinear interaction of this wave with its  own 

harmonics. We substitute the expansion 1.2.18 into the model system 1.2.20 

and change the independent variables to the stretched coordinates 1.2.19. Then 

equating powers o f e of the same harmonic gives an in fin ite  set o f equations 

o f which we w ill  require the f ir s t  three ,which are given as:

detW  ̂ J  0 for |i.| i  1 1 . 2 .21
where -  -iJhal + i£kA + VB

1 .2.22

1.2.23

a
1 2+ VVB :<u u >

1.2.24

Q »  Z <Q>^expiS,(kx-ut)

Combining 1.2.21 and 1.2.22 gives

18



<f> ( t , e) r 1*1 -  i 1.2.25a

and 1.2.25b

where R is the right eigenvector o f corresponding to zero eigenvalue i . e .

WjR = 0

and <)>(t ,S) is a scalar function of the stretched coordinates which is  determined 

to higher order. In view o f 1.2.25a and 1.2.25b we see that

for any integers p and p ' • Hence equation 1.2.23 fo r  £al  sim plifies to

Taniuti and Yajima show that this condition is automatically sa tis fied  by 

d iffe ren tia tin g  1.2.28 by k. In view of the defin ition  o f Wĵ  and by multi

plying the result on the l e f t  by L we can see that 1.2.27 is automatically 

sa t is fied . This condition is only sa tis fied  i f ,  and only i f ,  X ”  3u/3k and 

so we could consider the compatibility condition as defining the ve loc ity  X in 

the coordinate stretching 1.2.19. They then show that 1.2.26 may be solved 

to g iv e :

is  matrix which may be determined from the cofactors of detW^. We w i l l  not

19

<E I  P exp i(!+*.-) (kx-wt)>^ “  0
1 l '

K 1

W.u? + (-X I + A )R || -  0—1— I — —o — ac,
1.2.26

Since detW  ̂ = 0 this equation must sa tis fy  a compatibility condition in order

2that i t  may be solved for u t. This condition is found by multiplying 1.2.26 

by JL, the le f t  eigenvector of i . e .

L(-XJi + A )R = 0 1.2.27

where L Wx = 0 1.2.28

whe re <p is another scalar function (to  be determined to higher order) and

I
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go into the detailed analysis given by Taniuti.and Yajima needed to determine 

since we w i l l  present an alternative and more elegant form for 1.2.29 in 

Chapter 2.

For |i.|  ̂ 1 1.2.23 immediately gives:

u2 ”  0 fo r |it| »3  1.2.30

since we can easily  v e r ify  that

<u^u^>  ̂ = 0 fo r 11 1 ^ 3 .

2 2 .The remaining non-zero terms are and ^2 which are determined by d irect 

matrix inversion of the 4. = 2 and 4 = 0 forms of 1.2.23, i . e .

u2 = - W~1 Tik( VA .R*)R - ik  (VA .R)R*

+ ( VVBi0 :R R*)^ I <}> 12 1.2.31

and u2 = -W^O-kCV^.R)^ + - iw ^ tR  Rj(<t) 2 1.2.32

This completes the determination of a l l  components o f the f i r s t  and second
2order amplitudes in terms of <(> but leaves û  a function of the unknown scalar

function . However when we consider the third order equation which deter-
( 2 )

mines the equation sa tis fied  by 4> we find that the term depending on <j>

vanishes automatically. We therefore consider 1.2.24 fo r 4 m 1, mulitply by1 2  2 2L on the l e f t  and substitute for u^, u^, û  and from 1.2.25a, 1.2.29, 1.2.31 

and 1.2.32. The f ir s t  term disappears as a result of 1.2.28 and hence

eliminates the term depending on 3ij>̂ 2^/35. Again since “ 0 the term

(2)depending on '  disappears and a fter some manipulation we fin a lly  obtainj_

a | i  ♦ e + y 4,|*|2 = 0 1.2.33
3T 35

where the constants a , 8 , Y are given by: 

a • I. _R

B -  L (-A I + A^ZC-XI + A^) R 
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y = L| ik {2 (V A  .R * )R .2 -  (VA . R 2)R * + (VA .R 2)R

+ (V V ^rR  R*)R -  -|(VVAo :RR )R*}

+ VVB : (R R 2 + R*R 2) + -ivWB :R R*R —o ---- o -----Z Z —o -------

2 2where and are defined by:

R 2 = -W ^ U M V A  .R)R + 4-VVB :R R }—2 —2 ----- * —° -----------

R 2 = -W_1 {ik (V A  .R *)R  -  ik (VA  .R )R* + VVB :R R *}—o —o —o — — —o ----  —o ----

Taniuti and Yajima then assume that a is pure real and that 3 and Y are real 

and fin a lly  obtain

q <1> 14> 12 =* o 1.2.34

where p - S/|ct| and q =■ Y/|a| . This equation they called the nonlinear 

SchriJdinger equation. We w i l l  show in Chapter 2 that the assumption that ot rs 

pure real is valid  and w ill  give simpler forms fo r the coeffic ien ts p and q. 

Certain solutions of 1.2.34 are known and may be written down by inspection.

I t  ,(i -*■ 0 for | C| -*■ <■> and p and q are o f the same sign, then a solution of 

1.2.34 is the so lita ry  wave given by:

<j> =■ ( - 2v/q) sech{(-p/v) Ç )exp(-ivr)

fo r  arbitrary v.

I f  (j> -^0, a constant fo r  |ç| -*• "  then the solution is given by a plane

wave

i)> = <j>oexp{i(pÇ -  Et ) }

2 2where E = py - q<j>Q

fo r  arbitrary p. These plane wave solutions have been considered by Karpman 

and Krushkal (1969) who found that i f  p and q are of like sign that this plane
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wave is  unstable. Conversely i f  p and q are of opposite sign then the plane 

wave is  stable.

A serious fa ilin g  of the RP technique as presented above is that in most

physical systems the condition 1.2.21 is  vio lated fo r i. = 0. I f  th is arises

1 . 1  2then the solutions fo r u i . e .  u = 0  and u given by 1.2.31 are not va lid .— o — o —o

Taniuti and Yajima noted this and suggested that extraneous conditions such as 

boundary conditions and subsidiary equations must be used to determine these 

components. This approach is  used by Asano, Taniuti and Yaj ima (1969) when 

they apply the RP technique to the problem of an electron plasma wave in an 

isothermal electron flu id  and to a nonlinear Klein-Gordon equation. An 

additional equation, Maxwell's f ir s t  equation is used to bypass the d if f ic u lty  

fo r the electron plasma wave, a problem which is  in principle completely des

cribed by the continuity equation, the momentum balance equation and Poisson's 

equation. For the Klein-Gordon equation a suitable choice of independent 

variables is found to be su ffic ien t.

We w ill  show in Chapter 2 that the d if f icu lty  encountered above is  not as 

serious as was suggested by Taniuti and Yaj ima and present a general method fo r 

determining the i  =» 0 components when detW  ̂ vanishes.

This concludes the survey o f the state o f development o f the RP technique 

at the start o f this work. We can summarise by noting that the technique has 

been shown to be applicable to systems where nonlinearities are balanced by dis-j 

persive or dissipative e ffe c ts  and where dispersive e ffec ts  are o f the same ordej 

as self-modulation e ffe c ts . The NLS equation has been shown to be an equation 

fo r the development of the lowest order amplitude in a perturbation expansion 

fo r systems where modulation e ffects  are important. This equation can there

fore be considered as the fundamental equation describing the nonlinear develop-! 

ment of such systems in the same sense as the B equation and the KdV equation 

are fundamental equations fo r weakly dissipative and weakly dispersive systems 

where self-modulation e ffects  are not relevant.

We note that both Taniuti and Wei (1968) and Taniuti and Yaj ima (1969) use 

a model equation (1.2.1) to demonstrate the RP technique. Although this
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equation describes a wide class of physical systems there are large numbers o f 

physical systems that cannot be described by such a model equation. We must 

therefore enquire as to the va lid ity  of the analysis fo r  these other systems. 

Further, equation 1.2.1 or even more complex model equations can describe 

equations o f hyperbolic, e l l ip t ic  or parabolic type, depending on the exact 

nature o f the coe ffic ien ts . We must therefore exercise great care in assuming 

that the asymptotic expansion 1.2.18 is va lid  for a l l  time. I f  fo r  instance,

1.2.1 is  o f hyperbolic type then even though the appropriate NLS equation may 

admit solutions va lid  fo r a l l  time these solutions w i l l  only be va lid  fo r  a 

certain time fo r the o r ig in a l system 1.2.1. This is  a feature o f a l l  hyper

b o lic  systems.

We have seen that the method re lies  heavily on the choice o f stretched 

coordinates and asymptotic expansion. As we shall show in subsequent Chapters 

d ifferen t stretchings and parameter orderings are required for d iffe ren t phys

ica l systems. There appears to be no general method o f generating the correct 

choice o f orderings and stretchings. Rather, each physical system must be 

individually examined and the correct ordering o f parameters made such that the 

balance of nonlinear dispersive and dissipative e ffe c ts  is  correct. The 

starting point is normally the dispersion rela tion . The expansion parameter e 

must be chosen to give this consistent ordering and is  normally defined and 

related to other parameters of the system by this choice.

Using the general principles outlined above we are now in a position to I 

discuss extensions of the RP technique fo r systems with nonlinear wave modulatid

In particular, we wish to extend the technique to systems which are unstable 

and marginally unstable and where dispersive and modulation e ffects  are import

ant. A further extension is  also required to apply to systems where a spatia lj 

dimension other than the direction of wave propagation is  important. These 

extensions and their applications to physical systems are discussed in subse- 

quen t ch ap te rs .

Before we consider these extensions we w ill  b r ie f ly  consider the interac-
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Zabusky and Kruskal (1965) showed, using numerical solutions of the KdV equation 

fo r weakly dispersive nonlinear media, that when two solitons in teract they do 

so without losing their shape or iden tity , i . e .  i f  two solitons of d iffe r in g  

amplitudes (and consequently d iffe r in g  ve lo c it ie s ) are w ell separated at some 

time then the faster soliton overtakes the slower soliton  and after the non

linear in teraction  both solitons have preserved their shape and v e lo c it ie s .

This problem was considered analytica lly  by Zakharov and Shabat (1972) who 

considered the interaction o f two solitons, (described by solutions o f the NLS 

equation) when their re la tive  ve lo c it ie s  are small. The technique these 

authors used was to solve the NLS equation using the inverse scattering method 

of Gardner, Greene, Kruskal and Miura (1967) and derived equations describing 

the so liton  interaction. Sim ilarly Davidson (1972) has verified , using the 

same technique, the result of Zabusky and Kruskal. We can therefore conclude 

that so liton  interaction is  understood both numerically and analytica lly  for 

KdV solitons in weakly dispersive systems and for weak interactions o f solitons 

in strongly dispersive systems. Considerations o f the KdV soliton as described 

above have the further res tr ic tion  that they apply only to systems o f interactin 

solitons which move in one d irection .

Oikawa and Yajima (1973) have considered the problem of the interaction of 

two so lita ry  waves in weakly dispersive media when the solitons move in opposite 

d irections. Using an extension o f the method of Benny and Luke (1964) they 

give an expression fo r the phase sh ift between the two solitons i f  th eir ampli

tudes remain constant. Using a variation o f the RP technique they then 

consider the interaction of n solitons and find that the lowest order amplitudes 

o f the solitons sa tis fy  e ither the KdV equation or the B equation. These 

authors in  a further paper; Oikawa and Yajima (1974) consider again the interac

tion o f two so lita ry  waves but in a strongly dispersive system. This interac

tion is  therefore the interaction of envelope solitons which are given by

tions o f some o f the nonlinear waves which are solutions o f the KdV and NLS

equations. We w i l l  consider in  p a rticu la r the s o lita ry  wave so lu tion s.
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solutions of the NLS equation. Using a further modification of the RP 

technique, they confirm that the two envelope solitons pull against each other 

as they approach, change their amplitudes, frequencies and ve loc ities  during 

the interaction and regain their original forms and ve loc ities  a fter the 

interaction. This again confirms the results o f Zabusky and Kruskal (1965) 

and Zakharov and Shabat (1972) but is a more general result as i t  is va lid  fo r  

solitons moving with arbitrary rela tive v e lo c it ie s .

1.3 Description of Text

The orig ina l stimulus fo r  the work o f this thesis came from a study o f the 

flow o f plasma streams in crossed e le c tr ic  and magnetic fie ld s . Preliminary 

work on this system showed that linear theories o f the in s tab ilit ies  that e x is t  

in these systems -  the so-called crossed f ie ld  in s ta b ilit ie s , were w ell docu

mented in the literature but that a number of in s ta b ilit ie s  existed which were 

often not id en tified  separately. These in s ta b ilit ie s  were c lassified  in to 

three types: long-wavelength, magnetron and cyclotron and striking s im ila rities  

were found between the simplest of these, the long wavelength in s tab ility  and 

a common, more tractable plasma in s ta b ility , the two-stream in s ta b ility . These 

considerations are described in Chapter 6 . The system of the crossed f ie ld  

plasma stream was found to be dispersive, unstable and non-uniform. Therefore, 

any nonlinear theory o f crossed f ie ld  in s ta b ilit ie s  must account fo r the 

interaction o f e ffec ts  resulting from these three characteristics and the non

lin ea r ity . In it ia l  considerations showed that conventional perturbation 

expansion methods and conventional multiple time scale expansions would be 

intractable fo r this system and that a d iffe ren t approach was required.

The RP method of Taniuti had proved to be an extremely powerful method 

for both weakly and strongly dispersive systems and an extension of this method 

to include dissipative or in s tab ility  e ffe c ts , non-uniform steady state e ffe c ts  

and two-dimensional e ffe c ts , was required i f  i t  were to be of use fo r the 

crossed f ie ld  system.
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In Chapter 2 we consider the extension of the RP technique to include

dissipative or in s tab ility  e f fe c ts .  We consider a much more general system 

of equations than the model equation o f Taniuti and his co-workers and show how 

to include the e ffects  o f in s ta b ility  or dissipation on the propagation of small 

amplitude waves in the nonlinear regime. The e f fe c t  o f the additional terms in 

the orig ina l system of equations is found to be minimal and merely increases the 

complexity of the coeffic ien ts o f the SchrUdinger equation that was expected.

The e f fe c t  of the in s tab ility  is  found to be the addition of an additional term 

to the SchrBdinger equation and the change o f the coeffic ien ts  from being purely| 

real to being complex. Thus the generalised NLS equation is  found to be the 

equation describing the nonlinear evolution of the wave.

The general theory developed in 2.1 is  tested and demonstrated in Chapter 4| 

by applying i t  to a well-known physical problem, i . e .  the development o f a 

nonlinear theory o f the propagation o f waves in p iezoe lec tr ic  semiconductors. 

Starting from the equations describing the propagation of acoustic waves in 

p iezoe lec tr ic  semiconductors, a system of three second order d if fe re n t ia l 

equations is deduced which completely describes the system in closed form.

This system of equations is solved using the general theory and the generalised 

NLS equation is  derived with e x p lic it  relations given fo r the coeffic ien ts in 

terms o f the coeffic ien ts o f the orig ina l equations. These coeffic ien ts are 

evaluated in the long wavelength approximation. The re la tive  magnitudes of 

these coeffic ien ts in the lim it of small p iezoe lec tr ic  coupling enable us to 

solve this equation using a conventional perturbation expansion and proceeding 

to third order. We find this solution to be a so lita ry  wave with a small 

osc illa tion  superimposed upon the general shape. Using this solution we 

examine the behaviour of relevant physical parameters o f the system and find 

the solution confirms the existence of a high f ie ld  domain propagating through 

the semiconductor. This domain, is an "envelope so liton " since i t  is  the 

envelope of a rapidly o sc illa tin g  wave.
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In 2.2 we consider the extension of the technique to apply to systems near 

a marginally stable state. A new coordinate stretching is presented which is 

adequate fo r such systems and using the algebra of the RP technique an equation 

o f the NLS type is derived. This equation has the roles of the stretched time 

and space coordinates reversed compared with the generalised NLS equation 

derived in 2.1. Under the assumption that the coeffic ien ts of this equation 

are real we present its  solutions using an analogy between this equation and the 

equation of motion o f a point particle in a central f ie ld .  From these solutio 

we are able to show whether such a system is stable or unstable in the nonlinea 

regime, which depends on the rela tive signs o f the coeffic ien ts of the equation

This general theory is applied to a two-stream plasma in s ta b ility  in 

Chapter 5. The two-stream in s tab ility  considered is shown to be relevant to 

the crossed fie ld  system in Chapter 6 and is  found to have a marginal s ta b ility  

point. In Chapter 5 follow ing a general discussion o f two-stream in s ta b ilit ie  

the general theory is  applied to the five  equations describing the system in th 

hydrodynamic lim it. The NLS equation is  derived and expressions are given fo r 

the coe ffic ien ts . The system is shown to be unstable in the nonlinear regime, 

irrespective o f whether the system is stable or unstable in the lin ea r regime.

We show that this is  in agreement with previous theories.

We show in Chapter 3 how the RP technique may be extended to systems where 

two-dimensional e ffec ts  are important. We consider a simple system of equa

tions with two space coordinates to avoid algebraic complexity. (We note tha 

this extension automatically applies to systems having a non-uniform steady 

state which is the third extension necessary as mentioned above). The simple 

matrix algebra used in Chapters 1 and 2 now becomes more complex and the 

problem is reduced to one o f solving systems o f d iffe ren tia l equations. The 

compatibility conditions of Chapters 1 and 2 now become integral relations 

instead of matrix relations. A fter considerable manipulation we show that

27



the equation describ ing the nonlinear evolution o f the system is  again a

complex in tegra ls .

Finally in Chapter 6 we consider the crossed f ie ld  in s ta b ility  in some 

deta il and indicate how the extensions developed in Chapters 2 and 3 may be 

applied to give a nonlinear theory of the long wavelength crossed f ie ld  

in s ta b ility .

generalised NLS equation and expressions for the coe ffic ien ts  are given as

28.3
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Chapter 2

The reductive perturbation technique in weakly unstable 

and marginally unstable systems

2.1. Introduction.

In Chapter 1 we considered the reductive perturbation technique as 

orig in a lly  presented by Taniuti and Yajima (1969) and discussed the 

characteristics of systems fo r  which the method may be used. We now 

consider how this technique may be extended to apply to weakly unstable 

and marginally stable systems. We further show that the technique may 

be applied to systems governed by a much more general system of d if fe r 

en tia l equations than the model equation consistently used by Taniuti 

and his co-workers. This extension is shown to be va lid  fo r weakly 

unstable systems but in view o f the algebraic complexity introduced by 

this generalisation we return to a model equation fo r the extension to 

marginally stable systems. We also indicate how certain coefficien ts 

which have to date been considered indeterminate may be determined 

without assuming that they vanish iden tica lly  or without resorting to 

additional subsidiary conditions. Again, in view o f the algebraic 

complexity that would be introduced with a general proof o f this extension 

only an indication of the method is given and the v a lid ity  is demonstra

ted in Chapters 4 and 5.

In it ia lly  we consider a system of nonlinear partia l d iffe ren tia l 

equations which have a weakly unstable solution, that is , in the linear 

approximation the plane wave solution has a complex frequency fo r a 

real wave vector. Further, the imaginary part o f the frequency is 

small so that the in s ta b ility  may be counterbalanced by nonlinear e ffec ts . 

This allows an ordering o f the stretched coordinates and the imaginary 

part o f the frequency which is  consistent with the balance between the 

nonlinear and dispersive e ffe c ts .
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The equation describing the variation o f the lowest order ampli

tude on the stretched time and space scales is found to be a nonlinear 

Schrbdinger equation with complex co e ffic ien ts . This w i ll  be called 

the generalised nonlinear SchrSdinger equation and is o f the form:

2
i  + a ——̂  + 0<(> + <t> | ̂  = 0 2 . 1 . 1

3t h

where 0 and 6 are complex and a is rea l. General expressions are 

given for the coe ffic ien ts  in terms o f coeffic ien ts of the orig inal 

system of equations and its  stationary solution. The imaginary part 

o f 0 is found to be the growth rate o f the linear theory and an e f fe c t 

ive nonlinear growth rate

y e f f  = Y ( 1 + j5 | <fi | 2)
Y

may be introduced as suggested by Whitham (1967).

The s ta b il ity  o f the nonlinear wave can be investigated by examin

ing tne solutions of the generalised nonlinear Schrodinger equation. 

General solutions of this equation have not been found although some 

special solutions are known, and no attempt is made to discuss the 

general solutions of this equation here. Some of the special solutions 

are given in Chapter 5 .

In 2.3 we consider systems that are marginally stable, that is 

the linear dispersion relation has a double root u fo r a given wave 

vector k. I f  D(m,k) is the dispersion relation  for such a system then

D(u,k) = 0 and 9D(co,k)/3u = 0

A typical dispersion relation for such a system is given by:

(m - u>Q(s ))^  = a (s) 2 . 1.2
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where s is a parameter which represents the s ta b ility  or in s tab ility  

o f the system. The coordinate stretching as suggested by Taniuti 

and Yajima (1969) is not now appropriate to such systems since in a 

marginally stable state the group ve locity  X = 3io/3k is not defined.

An alternative stretching is  suggested which is consistent with dis

persion relations having this form. The equation describing the varia

tion of the lowest order amplitude is again found to be o f the nonlinear 

SchrSdinger type having the general form

3r

where 5 and x are suitable stretched space and time coordinates and 

a ,8,Y are constants. These constants are easily  related to the linear 

growth rate and i t  is shown that i f  the linear theory shows the 

stationary state to be stable then the system may or may not be stable 

in the nonlinear system. Sim ilarly, a system which is unstable in the 

linear theory may have the linear growth enhanced or suppressed in the 

nonlinear regime. The s ta b ility  or in s tab ility  o f the nonlinear 

system is shown to be dependent on the re la tive  signs o f the constants

This class of in s tab ility  has recently attracted much attention 

and has been suggested as a possible description o f turbulence in flu id  

systems (fo r  example see Ruelle and Takens 1971). The occurrence of 

a double root o f the dispersion relation is an example o f an inverted 

bifurcation in the sense o f the Hopf bifurcation theorem. This 

theorem states that in the neighbourhood o f a neutral s ta b ility  point 

at which a complex conjugate pair of roots o f the linear s ta b ility  

problem crosses the real frequency axis there is a one parameter 

family o f lim it cycle solutions. I f  this lim it cycle occurs for

3 <(>2 2a 2 Y<i> -  34>|<t>| 2.1.3

Y and 0
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values of a parameter smaller than the value required fo r neutral 

s ta b ility  then th is point is called an inverted bifurcation. In 

this case the lim it cycle is unstable and i f  the system is released 

in a state within the lim it cycle then i t  decays into the stable 

state. I f  the system is released outside the lim it cycle then the 

stable state is  never reached and the system is unstable. The inv

erted bifurcation may be described by 2.1.2 and 2.1.3 in the following 

way: consider a value of s such that a (s ) > 0 in 2.1.2. Then the

frequency is pure real and so the system is stable as the in fin itesim al 

perturbations do not grow with time. At s such that a (s ) = 0 the two 

complex roots o f 2 . 1.2 cross the real axis and for s such that a (s ) < 0 

si has a positive imaginary part and so the linear system is unstable. 

This would be re flected  in 2.1.3 by the constant g being positive .

I f  Y is positive then the linear system is  unstable and the nonlinearity 

enhances this in s ta b ility . I f  Y is negative so the linear system is 

stable then the nonlinear system is now unstable. A good discussion 

of the relevance of marginally stable states and inverted bifurcations 

as applied to turbulence problems is given by Mclaughlin and Martin 

(1975). Although the result 2.1.3 is derived for a simple model equa

tion the extension to more complex model equations is evident in view 

of the results deduced in 2.2. I t  is also shown that the method 

applies to systems where the marginally stable state is defined as a 

transition from m being pure imaginary to  in being zero. A ll the 

results developed in 2.3 are equally va lid  in this special case. The 

theory of marginally stable states as developed in 2.3 is applied to a 

marginal two-stream instab ility  problem in  Chapter 5, which corresponds 

to this special case.

2.2. Weakly unstable systems.

We consider a system which can be described by a set of coupled
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nonlinear d iffe ren tia l equations of the following form:

32u 32u 3u 3u
a ' ( u) + b ’ ( u) ---- =■ + c ' (u )  -r— + D (u) t t  + E (_u) = 0 2.2.1
=  “  3x2 =  ~  3t2 =  -  3x =  “  3t -

t •
where u is a column vector with n components u^, Uj . . . .  u , A (ji) . . . .  JO (u)

are nxn matrices and j£ (ti) is an n component vector a l l  being functions

of u. We make few assumptions about the existence or singularity of 

any o f these matrices. We merely in s ist that one o f A and £  exist 

and that one o f _b ' and C * exist and that the vector Je ' ( u) ex ists.

We assume that a ll matrices that ex ist are continuous and d ifferen tiab le 

functions o f ii.

We consider a constant solution u o f the system 2.2.1 which is—o

given by a solution of

e ' = e '(u ) - 0 2.2.2—o — —o

We now look for plane wave solutions o f 2.2.1 about the constant solution

u of the form:—o

u  = exp i(kx-a)t) + c*c

Then 2.2.1 when linearised becomes

23 u, t — I + B
3 _û

-  3t 3x + D
» 3“

— 1 + VE u, 3t -o  - 1
2.2.3

where the A . . . .  D are defined as in 2.2.2 and VE is  a matrix —o —o —o

whose ( i , j ) t h  component is defined by:

(VE ) . .—o 1J

3E.—l
3u.

J

Then the system 2.2.3 admits a plane wave solution subject to the 

dispersion relation:
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det H = O

where

H = - k V  - m V  + ike! -  imD + ve'— —o —o —o —o  —o

We assume that the dispersion rela tion  gives a complex frequency m 

for a real wavenumber k. Further we assume that this complex freq— 

uency m has a small imaginary m .̂ This imaginary part m̂  is ordered 

as 0 ( e 2) where e is  the expansion parameter o f the coordinate stretch

ing. The coordinate stretching to be used is the same as was used in 

Chapter 1 for stable systems, i . e .

t = e2t 2.2.4

5 = e(x-At) 

where now A = 3mr/3k

mr being the real part of the frequency.

This choice o f ordering can be ju s tified  as follows: we expect 

the fin a l result to be a modified SchrBdinger equation with additional 

terms to take account of the in s ta b ility . I f  we res tr ic t the choice

of the in s ta b ility  to be a weak in s tab ility  then we expect the non

lin earity  to be o f the same order as the in s tab ility  in order that the 

two e ffec ts  are comparable and interact on the same time and space 

scales. The nonlinear SchrBdinger equation was found to be exact to 

third order with a nonlinear term proportional to <J> | <f> |2. We consider

this to be a term proportional to 4> with an e ffe c tiv e  "growth" or 

"decay" rate proportional to |<j>|2, i .e .  of second order.

Conversely, i f  the nonlinearity were not present to lim it the 

in s tab ility  then the time development o f the wave amplitude must be 

given by
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jMjt
3t

UK ij>

i .e .  a term proportional to <|> must be present with a coe ffic ien t

equal to the growth rate. In order that this be exact to third
2

order leads to an ordering ok 'v 0(e ) .  We therefore assume that

the nonlinearity and in s tab ility  balance each other on the same time
2

and space scales and combine the ordering 2.2.4 with uk being 0(e ) .

We may now derive the equation governing the behaviour o f the 

lowest order amplitude. However, we stress that the decomposition 

of the complex frequency into a real and small imaginary part must be 

achieved before any expansion can be made. This res tric ts  the class 

o f problems that may be solved by this method to those having a dis

persion relation which enables this analytic decomposition to be made. 

This implies a good knowledge of the in s ta b ility  mechanism and the 

a b ility  to reduce a stable system to a condition o f in s tab ility  by 

modifying a parameter or set o f parameters (e .g . some in it ia l  or 

boundary conditions) . As w il l  be seen, this is possible in the case 

o f the acoustoelectric in s ta b ility  but has not yet been achieved for 

the crossed f ie ld  in s ta b ility .

This may be formally written by e x p lic it ly  including these crucial 

parameters into the original statement of the problem, i .e .  we write

3 2 ii 3 2u 3 ii 3_u
A(u,p) — j  + £ ( “ »P) — J + + £ ( “ »P) + E(u>P) = 0 2.2.5
— 3x — Dt —

where the parameter p characterises the imaginary part o f the frequency

which is obtained from the dispersion relation  of the system 2.2.5.

Assuming o>. is 0(e ) indicates p * e p where p is  of order unity and
»

allows an expansion o f uk in powers o f p , i .e .

39



2 . 2.62e + 0 (e4 )

This formally expresses the condition to be imposed on the dispersion 

re la tion .

We now proceed as in Chapter 1 and look for solutions of 2.2.5 

of the form:

u = u + £ Te“ u“ (T ,C )e xp (iJ l(k x -a )r  t ) )  2.2.7
~° a=0 4=-"

where x and e are given by 2.2.4 and wr is  the real part o f the frequency 

given by the solution o f the dispersion relation  for p=0. The ampli

tude u” ( r , 5) is now more complex as i t  im p lic itly  contains the factor
. 2exp(S.oi^r) which arises from the substitution o f u =■ » r + le  m the 

harmonic part o f the expansion. This dependence w ill  not be written 

e x p lic it ly . The matrices A(ti,p) . . .  IJ(u,p) and the vector j5(ju,p) are 

now expanded as:

A(u,p) = A° + e A0 .uX + e2(VA°.u2 + j|VVA0:u u1

+ A° ) + .........  2.2.8
-  P

B(u,p) = B° + e V.B°.u1+. .......

e tc ., and

E(u,p) = e VE°.u1 + e2 (VE°.u2 + JVVE0; ^ 1)

+ £3(VE°.u3 + VVE^u2 + ¿VVVE0:^1 ^1^1 + VEp.uX)

+ ................  2.2.9

where



VA°.u1
n
Z

i “ l

3A

3u. 2 . 2.10
u=u°,p=0

VVAru1^1 = Z Z
i  j

32A

3u.3u. 
i  J

1 1 
ui uj

u=u°, p=0

2.2.11

A
-  P

3A

3pJ P
u=u°,p=0

2 . 2.12

Substituting these expansions together with 2.2.7 into 2.2.5 and equat 

ing powers of c o f the same harmonic to zero, gives, up to third order 

the following system of equations:

0 (e ) Ŵ uJ = 0 2.2.13

Su1
0(e2> W?u2 +■ (2iS.kA° + 2XUu>rB° + C° -  XD°)

VA°.<Z Z (ink) V u 1 P P >.— —m—n ma i .— ma

- VB°.<Z Z 
— ma

2 1 1(ina) ) u u P P > v r '  —m—n ma i .

- VC°.<Z Z (ink )uV ; P P >.— —m—n ma i ,— m a

+ VD°.< Z Z 
— ma

x 1 1
r —m—n p p > ra n a

-  JWE°:<Z Z u V ; P P > — —m—n ma i . 2.2.14

0 (e3) Ŵ u3 + (2UkA° + 2XiS.u>r B° + C° -  XD°) -g- 1
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where the

-  J VVC°: <E E E (iqkju 1^ 1^ 1 PBV q>,
— m n q

+ VD°.<E E Xu1 3-  n P P >— — m -r— m n l— m n 35

+ VD°.<E E (inu)r ) u1 u2 P P >„— r — m— n m n l— m n

+ VD°.<E E (inur )u2 P P >.— r — m -  n m n l— m n

+ i VVD°: <E E E ( iq ^ lu 1^ 1^ 1 P ^ P  >
— m n q

- VVE°: <E E u1 u2 P P >.— — m— n m n £ m n

- ivWE°:<E E E U1 U1 U1 P P P >.6 — • — m— n - q m n q i .m n q

notation is as used in Chapter 1.

These equations are written in simpler form as

where:

“  0

—i,—2f. + “ t “  A

W u3 + M 3-  l  + N 3-  + 0 3 -  l
- l ~  1 - l  J l  - l ! R

+  i £ < L  -  s2i
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z *  =
(ii.k) 2A° + (iJUor ) 2B° + (U k )C ° - (ii.ior )D° + 7E°

2.2.16

( 2Uk)A° + 2Xifa)rB° s’ £ °  ~  X£° 2.2.17

h  - ( - 2Uur)B° + D° 2.2.18

o?
o

il A° + X2B° 2.2.19

h  = (ii,k )2A° +
rP

(if.ur ) ‘'B°
ZP

+ (if.k)C° - 
- P

( ii.0)_)D° + VE° r _p _p

2 .2.20

where S ^ , S2  ̂ are given by the right hand sides o f 2.2.14 and 2.2.15 

respectively .

We note the following relationships between these matrices:

* 1

2 t

. 3W 
1  _=*, 

l  3 k

3M_ = l
3X

2 .2 .21a

2 .2 . 21b

2 .2.22

We proceed as in Chapter 1 but with certain important differences. 

The real frequency mr is given by

det W = 0
— ±1

i . e .  det | ±k 2A° ± u2B° ± ikB° ± iu>D° + VE° | - 0.
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which by assumption gives a single real root tor . Further we assume

that

det W£ 1 0 H O

This condition ensures that only a single mode exists and that a l l  

harmonics o f this mode are stable. Unfortunately fo r most physical 

systems this condition is  violated fo r i  =  0 and Taniuti and Yajima 

(1969) resorted to subsidiary conditions to overcome this d if f ic u lty . 

Sim ilarly Kako (1973) and others assume that the 1 =  0  components of 

_û  vanish. We w ill  also adopt this procedure for the sake o f 

sim plicity and c la r ity  and w ill indicate la ter how these 1 = 0  

components may be determined. A general proof o f this method has 

not been found but in a l l  systems considered so far has been found to 

be applicable.

We therefore assume

where R is the right eigenvector o f Ŵ  as before and evidently sa tis fies

det W+Jl j* 0 for l  J  ± 1

which from 2.2.13 gives

1 l  ± 1u

and 2.2.23

Wx R = 0 2.2.24

and where $ is  a scalar function being the lowest order amplitude



a function of the slow time and space variables only. 

To next order 2.2.14 for l  = 1 becomes

1

where

—i —i

+ Mi - 1 «*-1
35

= 0 .

from 2.2 .10

»
-  i 3Wi

3k 35

l!

But d iffe ren tia tin g  2.2.24 with respect to k g ives:

R
3k

_ w 3«
- 1  v-— dts.

and substituting this result together with 2.2.23 gives

* < = S * ‘ S *  ■ «

This equation is sa tis fied  i f

2 . 3R . .  p
iii + 1 J Z  i l i  a  _

1 3k 3 5

and so we may write

OR - i ^  3d> 
3k T l

where is a scalar to be determined to higher order.
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The other components required to second order are ^  aiu* .Ho* 

These are in principle obtained from the i  = 0 and 1 = 2 components 

of 2.2.14 i . e .

where

and

—2 -2 ¿2
2.2.26

« 0 ^ 2  = ^ 2.2.27

s i  -  (V+ •R*)R|<t’ |2 + (V_ - R) R* | <»> 12

- (VVE°:R R) 4̂ |2

S_̂  = (V+ -R)R(<t>)2 “  i ( V V E ° : R  R)($)2

The operators V+ and V_ are defined by:

V+ = -VA°(ik ) 2 -  VB°(iur ) 2 -  VC°(ik) + VD°(imr)

V- = -VA° (ik ) 2 -  VB°(iur ) 2 + VC°(ik) -  VD°(iwr )

We again encounter d if f ic u lt ie s  since det vanishes, however, again

we w i l l  assume the existence o f det and indicate la te r how the 
2 "7

1 =  0  component o f may be determined. So formally:

± 2 W- '*' s2 - 2  - 2

and ^0
w“ 1

We can therefore w rite
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The other components required to second order are an<̂  Uq* 

These are in principle obtained from the 1 = 0  and 1 = 2  components 

o f 2.2.14 i . e .

—2 -2 —2

W u° %  -2

2.2.26

2.2.27

where

s j »  (V+-R*)R|<f|2 + (V_ .R)R* 14> |2

-  (VVE°:R R)}<t>|2

a n d  ¿ 2  = (V+ . R ) R (*)2 -  i ( W E ° : R  R)(<j.)2

The operators V+ and V_ are defined by:

V+ “  -VA°(ik ) 2 -  VB°(imr ) 2 -  VC°(ik) + VD°(iur)

V- = -VA°(ik ) 2 -  VJ3°(iur ) 2 + VC°(ik) -  VD°(imr )

We again encounter d if f ic u lt ie s  since det vanishes, however, again

we w ill  assume the existence o f det W and indicate later how the—o
2 —

i  = 0 component of u may be determined. So formally:

—2

and H o w"1 s1H o  H o

We can therefore write
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2.2.28

and H o

¿ W 2

¿\*\2 2.2.29

where

J*2 = - 2 1 C(V + * - ) -  "  1 (V V E ° :R  R ) ]

■Ho = ii^1 [ ( v+ .R*)R + (V_.R)R* -  (7VE°:R*R)]

We are now ready to determine the generalised nonlinear SchrOdinger

We consider 2.2.15 for l = 0:

3
L-l ♦ M, + nJ ^ I  + 32uJ

-  K — 3t — "¡I1
Z i h \ = *1

where

*5 + (W .R*)u2<|>*

(Z+ :R R*)R<j> | $ | 2 + ¿(Z_:R R)R

(7VE°:R*u2)(f.* -  (77JE°:R u^) ij>

* , i , i 2

-  J (777J5°: R R R*>$|$|2

where the operators V_, V+ are as defined before and

VV = -VA°(2ik) 2 -  VB°(2io)r ) 2 -  7C°(2ik) + 7D°(2iur )

Z+ -  -77A°(ik) 2 -  77B°(iwr ) 2 -  VVC°( ik ) + V7D°(iur )
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Z_ = -VVA°(ik) 2 -  VVB°(i0)r ) 2 + VVC°(ik) -  VVD°(iur)

1 2  2 2Multiplying on the le f t  by I, and substituting for u^, Uj, jUj and Uq 

from 2.2.23, 2.2.25, 2.2.28 and 2.2.29 gives

“  I t  + ~ 2 + Y<t> + = 0
3T 3g2

2.2.30

where

a = L NjR.

6 = l o .r - l ^ i 3̂
-  -  3k 3k

Ï  »  L P R

6 = (LV_.R2)R* + (W .R*)R 2 + (Z+ :R R*)R

+ ! (Z _ :U )R *  -  (VVE°:Rx;r2) -  (V7E°:R r£)

-  j(VVVE°:R R R*)

These coe ffic ien ts may be put into simpler form by considering the 

defin itions o f the matrices II, (), £ and W.

D ifferen tia ting 2.2.16 i .e .  the de fin ition  o f W twice with respect 

to k gives

2 2 3 W. ,  „  3 u
= -  2A° -  2X2B° -

3kZ -  -  dV.
ĵ üJrB° + i  D°J

t
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„.o  ~ ,2„o . 3 a)- „2A -  2\ B -  i   Ÿ  2il
-  -  3k -

20 -  i  -^|r N 
3 k -

2.2.31

Now d ifferen tia ting 2.2.24 twice with respect to k gives

3W 3R

a  * + z u t

32Wt 3W. 3R 32R

7 ?

3k 3k
I L ^ U

3k2

Therefore premultiplying 2.2.31 by ^  and postmultiplying by R gives:

32W a2
L ~ ^ =  R = - 2L 0.R - i  - Z - j T  L N R 

3k -  3k -

and substituting into the expression for B shows

-2
B =■ -  i  i  L N R

3k -

, . 3 Ur-  J i  — =-r a
3k

2.2.32

The coeffic ien t Y is found to have physical sign ificance by expanding 

2.2.16 in powers of e, i .e .

Wx = -k2A° - mr 2B° + ikC° -  iu)rD° + VE°
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ia)rD + VE 
_P
,o ,o

p

2io) îoi B° + lOjl) +,o

which gives

7 L Px R M i L N j R a 2.2.33

Combining these results gives

i 6
a <(> I <i> 12 * o 2.2.34

which is  called the generalised nonlinear Schrödinger equation since

General solutions of this equation have not been found and no 

attempt to derive the general solution w ill  be made in this thesis. 

Special solutions have been derived by assuming 6 to be pure imaginary 

e.g . Rowlands (1974), but to date no solutions have been presented fo r 

6 being complex and having non-zero real and imaginary parts. In 

Chapter 4 we w ill  see how solutions may be obtained provided a certain 

ordering o f coeffic ien ts can be made.

We now return to the d if f ic u lt ie s  arising from the vanishing 

determinant o f W .̂ A3 discussed previously, a general proof o f how 

this d if f ic u lty  may be overcome has not yet been derived. We w ill  

now g ive an indication of the technique used fo r real physical systems 

in Chapters 4 and 5.

Since det Wq vanishes in most physical systems the number of 

components of u* which may be determined from

the coe ffic ien ts  o f <f> and <)> | <}> | ̂  are in general complex.
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1 0

depends on the rank and degeneracy o f W . By inspection i t  is seen

supposed that a number o f components of û  may be deduced from the 

above equation or at least that an expression fo r a linear combina

tion o f these coeffic ien ts is  derived. In the f ir s t  case i t  is 

conjectured that the remaining components may be deduced from a compati

b i l i t y  condition as described below. In the second case i t  is  con

jectured either that a) this compatibility condition gives a further 

relationship between the components which enables an algebraic solution 

to be found with the previously deduced relationship or b) the 1 =  0  

components that are required to higher order appear only in the combina

tion found above.

The compatibility condition to be sa tis fied  arises i f  the

assumption _û  = 0 is not made in evaluating in the derivation of 

2û  leading to 2.2.25. Without this assumption we obtain

In view of the defin ition  o f then multiplying this equation by h  

from the le f t  immediately gives:

which is an exp lic it  form o f the compatibility condition and gives a 

relationship between one or more o f the components o f û  as required.

that this reduces to the properties o f the matrix VE°. I t  is 

,  ̂ 1 . . . . ,

(V .u1)u 4> -  (77E°:R u1)*  + —o — — — —o

L (V .u1)R -  (77E°:R U1) = 0— + —o — — — —o

We do however note that û  is  equal to a constant and can have no T—o

or £ dependence. We can now assume that û  is known and proceed as

before.
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The d if f ic u lty  encountered to second order in determining

is overcome by proceeding to th ird  order and integrating. Again we
2

assume that 2.2.27 gives either some of the components o f or a 

linear combination of them. Then we consider the 1 = 0  component 

o f 2.2.15, i .e .

I t  can now be seen that provided has a particular form, i . e .  rows

containing a l l  zeros then by integrating the scalar equation derived
2 .from this row an exp lic it form fo r  the corresponding element o f ^  is 

found. This w ill  in general necessitate the use o f boundary or 

in it ia l  conditions.

This indicates how a ll the components required fo r the evaluation 

of the coeffic ien t 6 may be found. The usefulness o f this approach

+ M

where

+ (V_.u*)R%* + (V+.u f1 )R4i

+ (Z.+ u ^ *) |(j)|2 + (Z_:R U1) I <j> I2

(VVVji0:R R*u^) |<j>|2 -  •|(VWE°:u\i^u^)
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is  demonstrated in Chapters 4 and 5 where, in view of algebraic 

complexity the general method presented above is  not used but the 

derivation is carried out using the coeffic ien ts  o f the orig ina l 

equations e x p lic it ly .

2.3. Marginally Stable Systems.

In view o f the algebraic complexity encountered in 2.1 with the 

complex model equation 2 .2 .1  we w ill  consider a simpler model equation 

describing a marginally stable system. The va lid ity  o f the result 

obtained here for more complex model equations w ill  be assumed without 

proof. The extension o f the orig ina l result o f Taniuti to weakly 

unstable systems and more general systems was demonstrated in 2 .1  and 

the same extension would apply fo r marginally stable systems.

We therefore consider the model system

^  + A '(u ) ^  + B '(u) = 0 2.3.1
3t — 3x

where u is a column vector with n components u^, U2 . . .  and A ' ( u )  

is  an n x n matrix, j3' is  an n component vector, both being functions 

of u. We assume A ', b ' ex ist, are continuous and su ffic ien tly  

d iffe ren tiab le .

As in 2.2 we consider a constant solution which sa tis fies

B' -  B' (u ) -  0—o — —o '

and look for plane wave solutions of 2.3.1 o f the form 

u = + ii^exp i(kx-u t) + c.c

Then using the notation o f Chapter 2 we see 2.3.1 admits plane wave
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solutions subject to the dispersion relation

det H -  0 2.3.2

where H —ico I  + ik A' + VB’ — —o —o 2.3.3

we now make the assumption that the dispersion relation gives a complex 

frequency for a rea l wavenumber but that this complex frequency is a 

double root o f 2.3.2. This defines a marginally stable s ta te . The 

dispersion relation  must therefore sa tisfy  the condition

We assume that the frequency u) which sa tis fies  2.3.2 and 2.3.4 may be 

written,

where we do not in s ist that <or 4 0. The method developed in this sec

tion is  valid even for systems where m is pure imaginary and the method 

is used in Chapter 5 for a problem where ur = 0. We note that now cur 

is ordered 0(e) fo r  the follow ing reasons. We expect the dispersion 

relation  to have the form:

u = . . .  represent stable modes such as space charge waves and the

root

SdetH
0 2.3.4

“  <■ 2
II (u-a )((w -b ) + c)

P-1
0

where the ap, b, c are functions o f k and uq The n-2 roots m *» a^,
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is the marginally stable root. Since c represents the parameters

which lead to in s ta b ility  i t  must appear in the equation fo r the lowest

order amplitude u s  a term proportional to <|> and as th is is  a third

2 . . .order equation i t  imposes a maximum order o f e on c. This implies

that must be o f  0 (e) and ior o f 0 (1 ). Conversely in  the sp ir it  of

the reductive perturbation technique must be at least 0 (e ) and 
2

hence c must be 0(e )■ We can therefore conclude that the parameter

2which induces the in s tab ility  is o f 0 (e ) and the in s ta b ility  is  0 ( e ) .

We must now select the appropriate coordinate stretching for this 

type of system. The stretching used in 2.2. is  not appropriate here 

since the group ve loc ity  A is  not now defined. The group ve loc ity  

can be defined as

3k
3detH /SdetH

3k 3b)

and since in this case 3detH/3oj = 0 i t  is  now apparently in fin ite .

I f  the nonlinearity were not present then the time development o f 

the amplitude which reproduces the in s ta b ility  given by 2.3.5 is given 

by:

i ±  = «?♦
3 i 2

and since cj> is 0 (e ) and b)£ is  0 (e ) this requires

t = et 2.3.6

Since we now no longer have a well defined group ve lo c ity  and the spatial



variation must be of a lower order than the temporal variation, the 

choice

2. 2.3.7

seems appropriate for the spatial coordinate stretching.

Having defined the marginally stable state through 2.3.2 and 

2.3.4 and chosen the stretched coordinates through 2.3.6 and 2.3.7 

we can now derive the equation of motion of the lowest order amplitude 

o f the expansion. We again emphasise that the in s tab ility  mechanism 

must be isolated in order that the controlling parameter or parameters 

may be ordered to give the appropriate growth rate. This -is possible 

for a large class of two—stream in s ta b ility  problems, one of which is 

considered in Chapter 5.

As in 2.2 we formalise the knowledge o f the in s ta b ility  mechanism 

by rewriting the model system of equations as:

where p characterises the imaginary part of the frequency and is  of

where t , £ are the stretched coordinates given by 2.3.6 and 2.3.7 res-

The matrix A and the vector j3 are expanded in a manner analogous to 

2.2.8. Substituting these expansions together with 2.3.9 into 2.3.8 

and equating powers o f e o f the same harmonic gives, correct to third

+ A(u,p) + 15(u,p) “  0 2.3.8

order e2

We look fo r solutions of 2.3.8 of the form

u u + E
a=o £=-”

Z e a u“ (T ,ç)ex p i) l(k x -ü > r t ) 2.3.9
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order the system of equations

e = 1 * Z t H t  = 0

e = 2: 3u^£ + W u2{. 
3t -

-  VA ,<I£u inku P P >Jl— — m — n m n— mn

-  ìvvb° :< z:ì: u 1 u 1 p p > i  2 — — m- n m nmn

e = 3: (ii.kA° + VB Ju1«. + A0 8-  1 + 3-  i  + W u3*,
=P - P -  =  “ 35 “ 37 =*“

VA°<ZS u2 inku1 P P > i  -  V V B ° : < X L  u1 u2 P P  >1— — m — n m n — — m—n m n— mn

JVVA°:<EEE u1 u1 ipku1 P P >Z  2 — — m—n r — p m n— map

ilEB0: <eie u 1 u 1 u 1 p p P >1  6 — — m— n— p m n p

These are rewritten in concise form as:

= 0 2.3.10

9 1 0,
W u £ + 3 u £ »  £

3t 1

2.3.11

W,u3l  * »¿2l ♦ A° 3A  + C° u1*
=*"■ ST" =  3 T  =  “

S" 2.3.12

where + i£kA + VB

and C° = UkA° + VB-  —P -P



where I  is the unit matrix.

We now assume

detW = 0

i . e .  l - iw ^  + ikA° + VB°| = 0  2.3.13

This by assumption gives a single real root oir . As mentioned previously 

th is method is  va lid  i f  2.3.13 gives cor = 0. Then 2.3.13 represents 

an additional condition which must be imposed on the equilibrium state 

uq and the equivalent condition would be

det|ikA° + VB°| = 0 2.3.14

However, a real non-zero frequency u>r is assumed to ex ist since this 

is  required in the following algebra. The condition oor = 0 may be

imposed on the fin a l result. 

Again we assume;

detW  ̂ f  0 for *  ̂ ± 1

and so conclude

2.3.15

u1* = 0 |i.| 4 1 2.3.16

where ŴR. = 0 2.3.17

The d if f ic u lty  encountered fo r  l  = 0 in 2.2 arises in this case and 

we assume

Hr



detW j  0

Considering the second order equation fo r l  = 1 gives

Substituting fo r tij in this equation from 2.3.15 and 2.3.16 gives

2.3.18

Since detW  ̂ = 0 a compatibility condition must be sa tis fied  in order 
2 ~

that û  is unique. Multiplying this equation by the le f t  eigenvector

L o f W on the le f t  gives this condition, i . e .

i . e .  the scalar product o f the le f t  and right eigenvectors o f W must 

vanish. We now show that this compatibility condition is automatic

a lly  sa tis fied . D ifferen tia ting the identity  2.3.17 with respect to 

a) gives:

But from the de fin ition  of

and hence R = -iW 3R 2.3.19

and multiplying on the le f t  by L gives immediately
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L.R 0

In view of 2.3.19, 2.3.18 may be rewritten as

W. (u? -  i  ^  l i )  = 0
-  3w 3t

which may be immediately solved to give

U2 -  OR + i± 1  ~ *  + 1 3  ̂ 37

( 2 )  ■  ■  where <jr is to be determined to higher order. The remaining

order components are determined by direct solution of the i  =

forms o f 2.3.11, i .e .  for i. = 0

W u2 = S °

i(VA°.R)R*ik - (VA°.R*)Rik

V7B : (R R ) } | <|> I

2u—o w”1 s°—o —1

,2 . , ,2

where R2 -  W_1 {(7A°.R)R*ik -  (7A°.R*)Rik + V7B°:(R R * )!

and once again we have assumed W  ̂ ex ists. Sim ilarly,

u2 -  £2 W 2
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0 , l = 2

2.3.21

2.3.22



where -2 = ~̂21 I (VA°.R)R + J(WB°:RR)

Finally, we consider the i, = 1 form of 2.3.12 and substitute fo r u  

from 2.3.15,16 fo r u2 from 2.3.20, 2.3.21 and 2.3.22 to obtain

3R
” l “ l + | x^ 2( t >5>R + 1 + i f

+ C°R<t> s ^ U I 2

where

|-(V A °.R ^ )R ik + (VA°.R2)R * ik  + i (W A ° :R  R )R *ik

-(77A °.R  R *)R ik  -  (77B°:R R p  -  (77B°.R*R^)

-J(777E'E°:R R R*)J

Mulitplying on the le f t  by L we see the f ir s t  two terms vanish and 

fin a lly  we are le f t  with

3R 2
i L f  + L A ° R H  + L C°R<t> -  L Ŝ<J> 14> |2 = 0— 3m _ 2 ------- 35 ------- ----------z

a T

which may be rewritten as:

a *  b <|> |
3x

2.3.23

where
L 3R/3m

L A°R

L A °.R
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L.A°.R

We may now derive more general expressions fo r the coe ffic ien ts , a 

and c. We consider the linear dispersion relation  2.3.2

detH = 0

which may be rewritten as

2
detH =* D(to,k,p) = D(oor + ieu>£,k,pc + e p^) = 0

where we have included formally the small imaginary part cô  o f to and 

the parameter p which characterises the in s ta b ility . We expand 

D(io,k,p) in a Taylor series around (<o ,k,pQ) to obtain

D(tor + ieu)£,k, pQ
2

+ e px) D(oor ,k,po) + ieoj£ 3D
3a)

“ r »k»PQ

2 2 32D 

3d)
+ e2p

^r>k >̂ 0

15
1 3p

“r »k>P0

But: D(ior + ietoi ,k,po 2 . e P i ) 0 from the dispersion relation

and

D(ior ,k,p0) = 0

j/su) I
/ ,k»P0

3D,

which gives immediately

from the subsidiary condition on the equilibrium 

0 from the condition of marginal s ta b ility

uj£ = A/p1 3D/4p|32D/$to2'  2.3.24

We now state the following two results for which a general proof has not been 

found:
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a a  32D/3m2 c a p  3D/3p

where the constant o f proportionality is equal in both cases. (These results 

have been ve r ified  d irectly  fo r 3 x 3  matrices of the form o f 11 and in the 

problem considered in Chapter 5 ).  Then 2.3.24 gives

We may now consider solutions of 2.3.23 using the analogy o f a point 

pa rtic le  moving in a potential f ie ld  as suggested by Asano, Taniuti 

and Yajima (1969). We consider periodic boundary conditions consistent 

with some fundamental wavevector k and therefore only look fo r  solutions 

of

2
a + b<f> | cj> |2 + c$ = 0 2.3.25

3t

We attempt solutions in a polar representation of the form

<J> ( t ) =■  0 ( T ) e x p ( i ^ ( x ) )

where 9 (f ) and i|i ( t ) are rea l. Substituting this into 2.3.25 and equat

ing real and imaginary parts gives

329
3t2

-  0 i l l 2 + £
3tJ a 03 + -  0 a

■ °

2.3.26

2.3.27

Equation 2.3.27 may be integrated immediately to give

e;2 h
3t

= f  = constant 2.3.28

I f  we consider 9 as a "radial coordinate" and i|i as an "angular



coordinate", i . e .  ( 0,i|/) as a "polar coordinate" pair then 2.3.26 and 

2.3.28 are seen to be equivalent to the equations o f motion o f a 

point partic le in a central f ie ld ,  Kibble (1966), i . e .  we rewrite 

2.3.26 and 2.3.28 as

¡Sm(r2 + r 202) + V (r ) = E

mr 6 = J

where V (r) is the central f ie ld ,  E the tota l energy and J the tota l 

angular momentum. The central f ie ld  fo r 2.3.26 is given by

V(0) t  e4 -  -I 024a 2a 2.3.29

and so the complex amplitude is considered as a "partic le " moving in 

a two-dimensional potential w e ll. We therefore look for solutions 

o f (0, ip) as a function of T.

We consider separate cases and represent the two-dimensional poten

t ia l  well in the V (0), 0 plane. The fu ll potential function is merely 

obtained by rotating the curve through 180° around the V(0) axis.

1. b/4a > 0, c/2a < 0.

i-jTgr

A  V(9)

©
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We note that the condition c/2a < 0  in the linear theory represents 

either an exponentially growing or exponentially decaying solution, 

i . e .  s ta b ility  or in s ta b ility . I f  c/2a > 0 the linear solutions 

are osc illa to ry .

To analyse the nonlinear behaviour o f the waves we must impose

in it ia l  conditions and we w il l  now show that the in it ia l  conditions

are c r it ic a l for the time evolution of the wave. From the dispersion

relation 2.3.3 we have n roots oi, . . . .  u> . We w ill  consider the case1 n

when we have two modes and near the marginal state and suppose 

that the remaining modes are a l l  osc illa to ry . We can therefore write 

for u (x ,t ):

sponding to the jth  mode and the aj are complex amplitudes. Since, 

by assumption the modes R̂  and are close to the marginal state we 

may expand these as

n

Ri(“i )  = R(w + im̂ )

“  R(io) + it 3R cm. +l

and R2 (m2) = R(io -  irn.)

R(u>) -  ie -  u. + — -s— 1da)

since the roots and i»2 are complex conjugates. Therefore substitu-



u (x ,t) = Uq + e C a ^ i 1 + a2e ‘i )it )R(a))expi(kx-uit)

+ e2 (a 1e“ i t  -  a2e i  -|̂  expi(kx-wt)

n
+ e £ a.R-expi(kx-wt). 2.3.31

j=3 J J

We may now compare th is result with the expansion 2.3.9 where we 

1 2substitute for from 2.3.15 and from 2.3.20, i . e .

u = ^  + eR<(>expi (kx-ut) + e2i  -|̂  expi(kx-ut) 2.3.32

Comparing the expressions 2.3.31 and 2.3.32 fo r x = 0 gives

<j>("c = 0) = a l  +  a 2

| i (x  = 0) = (ax -  a2)m. 

which constitute the boundary conditions.

We therefore see that the in it ia l  conditions fo r  <(> and 3<(> 13T depend 

on the amount o f stable and unstable modes in the in it ia l  value o f JJ. 

The constants a  ̂ and a2 are in general complex but without loss of 

generality the in i t ia l  conditions may be rewritten as

<t> ( x = 0) = A

(X = 0) = B

where we assume A is  real and B is complex. We may now discuss the 

four cases separately.
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2. b/4a < 0, c/2a < 0. This case corresponds to linear in s tab ility . 

The potential function is a simple h i l l  and therefore irrespective 

o f the in i t ia l  conditions the growth of the in s tab ility  is enhanced 

by the nonlinearity. The nonlinear waves do not saturate and 

additional mechanisms must be introduced to obtain a f in ite  amplitude 

saturated wave.

3. b/4a < 0, c/2a > 0. This case corresponds to linear s ta b ility . 

The potentia l function is a h i l l  with a depression at the centre.

The development o f the wave is  dependent on the in it ia l  conditions.

I f  the amplitude is  su ffic ien tly  small then we have a constant 

amplitude solution with a frequency sh ift . The magnitude o f this 

frequency sh ift decreases as the amplitude increases. The solution 

is given by

where

d> = <t>Qexp {- ia r )

£
a

which is  va lid  for c

This frequency sh ift becomes zero when the amplitude becomes /c7b.

Any further increase in the amplitude makes the wave unstable. This 

is equivalent to the "p a rtic le " starting at the origin  in the well and 

acquiring su ffic ien t energy to climb out of the well and be accelerated 

to in f in ity . This is consistent with choosing the amplitudes of the 

in i t ia l  wave to be

2a

2i 6miB



or in terms of the amplitudes o f the orig ina l waves

a  + iB

a2 = a -  id

This indicates that in it ia l ly  the wave is composed o f two linearly  

independent modes o f equal amplitude but with a phase difference of jr 

giving a small to ta l amplitude. As this phase difference decreases 

with increasing amplitude the system becomes unstable a fter the

Therefore, a wave that is stable in the linear theory becomes 

unstable against f in ite  amplitude perturbations in the nonlinear theory.

4. b/4a > 0, c/2a > 0.

The potential function is an in f in ite ly  deep well and so whatever 

the in i t ia l  nature of the wave in the nonlinear case the wave w ill  

always be stable.

1. b/4a > 0, c/2a < 0.

The potential function is a well with a small peak in its  centre. 

Suppose in it ia l ly  that the wave consists o f a single unstable mode.

Then, the boundary conditions fo r this situation become

where a is small. The solution in this case is then

where tq is im p lic itly  defined by
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In this case the amplitude grows with the linear growth rate and reaches 

the maximum value at x = x0 . For times longer than xq the amplitude 

decreases. This corresponds to the motion o f the pa rtic le  from 0 to 

Y through X and then a return to 0 asymptotically.

we again have a constant amplitude wave with an amplitude dependent 

frequency sh ift , i .e .

We can therefore summarise these results as follows. I f  the signs of 

the coefficien ts in 2.3.25 are such that b/4a < 0 then regardless o f 

whether the system is stable or unstable in the linear theory the 

nonlinear system always exhibits in s ta b ility . I f  b/4a > 0 then once 

again irrespective of the s ta b ility  or in s tab ility  o f the linear 

system, in the nonlinear case the system is always stable.

Even though a general expression has been given fo r  the coefficien ts 

a,b,c we^only know the re la tiv e  sign of the coeffic ien ts c and a, since 

the sign determines the s ta b il ity  or in s tab ility  o f the linear theory. 

The coeffic ien t b may, in general, be positive or negative and must 

be separately evaluated fo r  each system. We may, however, suggest 

that the coefficien t b w il l  be a function of k and other parameters of 

the system. The system w i l l  therefore be stable or unstable in the 

nonlinear theory only for a range of wavenumbers and parameters. The 

two-stream instab ility  considered in Chapter 5 gives values o f the

I f  the amplitude is larger than the c r it ic a l value

ip = (}>oexp {-iaT }

where a £
a

\



coeffic ien ts such that b/4a < 0 and so is always unstable fo r  a l l  

wavevectors. This may not always be true i f  a more complete model 

is considered.

F inally, the discussion at the end o f 2.2. regarding the dériva-

tion of the coeffic ien ts of ua is equally va lid  fo r the stretching—o

suggested here. Although a proof o f this is  not available we demon

strate in Chapter 5 that the suggested method is successful in deter

mining these coeffic ien ts for the system of equations considered in 

that Chapter.
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Chapter 3

The Reductive Perturbation Technique for 

Two Dimensional Systems

3.1 Introduction

In Chapters 1 and 2 we considered one dimensional physical systems 

and developed the reductive perturbation expansion method to study the 

nonlinear behaviour o f monochromatic waves propagating in these one 

dimensional systems. Using a model equation in Chapter 1 and a more 

general equation in Chapter 2 we showed that the amplitude of this wave 

must sa t is fy  a nonlinear SchrOdinger or a generalised nonlinear SchrSdinger 

equation i f  nonlinear self-interactions are to be taken into account.

The model equations 2.2.1 and 2.3.1 can be used to describe a wide class 

of physical systems, e .g . the electron plasma wave in the hydrodynamic 

approximation Taniuti, Asano and Yajima (1969), waves in a cold plasma 

in an external magnetic fie ld , Kako (1972) , and a wide range o f flu id  

dynamic problems. The extensions o f the method as presented in Chapter 2 

extend th is class o f problems to include the propagation o f acoustic waves 

in semiconductors (Chapter 4) and marginally stable plasma streams 

(Chapter 5).

A natural extension of the reductive perturbation technique is a 

modification to include the e ffe c t of two dimensions on the propagation 

of plane waves. Such an extension would broaden the class of physical 

systems that could be studied using the perturbation technique and inc

lude inhomogeneous plasma stream systems, Zhelyazkov and Rukhadze (1972), 

MacFarlane and Hay (1950) and two dimensional flu id  dynamics systems 

Stewartson and Stuart (1971).

An attempt to do this was made by Hasegawa (1970) who considered 

modulational in s tab ilit ies  o f plasma waves in two dimensions and the
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problem o f self-focussing of laser beams. Hasegawa used stretched 

time and space scales in both spatia l coordinates and hence assumed that 

the e ffe c t  of the additional spatia l dimension was only significant to 

second order. This excludes the majority o f the two dimensional 

problems described above since in these the additional spatial dimension, 

normally perpendicular to the direction o f wave propagation has a s ig n if i

cant e f fe c t  to f ir s t  order. The equation that Hasegawa derived was a 

linear SchrSdinger equation of the form:

i i t  + I  ¿JS lit  + a -2-̂  + k ,
3T 2 3k2 3£2 3n2

0

where £ is  the stretched coordinate in the direction  o f the wave propagation 

and n is the stretched coordinate perpendicular to  this wave direction.

The use o f the stretched variable n avoided a lo t  of the algebraic complex

i t y  that we encounter in this chapter and essen tia lly  required only a minor 

modification of the original method of Taniuti and Yajima (1969).

Stewartson and Stuart (1971) consider plane Poiseu ille flow in an 

incompressible viscous flu id . They found the the amplitude of a small 

but f in ite  wave sa tis fied  a nonlinear Schrddinger equation when the 

Reynolds number exceeded s ligh tly  the c r it ic a l Reynolds number. This 

was found to be an asymptotic solution a long time a fter the in it ia l  dis

turbance. The method they used was a combination of coordinate scaling 

and multiple time scale analysis. In view of the discussion in Chapter 1 

and the extensions proposed in Chapter 2 i . e .  an asymptotic solution fo r 

a weakly unstable system, appears to be idea lly  suited to a reductive 

perturbation technique in two dimensions. The method o f Hasegawa is  not 

applicable to this system as the unperturbed state around which an expan

sion is  made is a function o f the coordinate perpendicular to the direc

tion o f wave propagation.
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An analogous problem in plasma physics is  the so-called crossed 

f ie ld  in s ta b ility  as orig ina lly  considered by Macfarlane and Hay (1950) .

A wave with wavelength greater than some c r it ic a l value in an electron 

plasma flowing between parallel conductors in crossed e le c tr ic  and 

magnetic fie lds  is  found to be unstable. The unperturbed steady state 

in this case is a function of the second spatial variable and i t  is 

believed that this additional dependence o f particu larly the velocity  is 

a direct cause of the in s ta b ility . (Further consideration is given to 

this problem in Chapter 6) .  Again this system would appear to be suited 

to an asymptotic expansion as the strength o f the in s ta b ility  could be 

"con tro lled " by a particular choice o f wavenumber.

In this chapter we extend the reductive perturbation technique to 

apply to systems that have two spatia l coordinates x,y where x is the 

direction  o f wave propagation and y is perpendicular to this direction.

The unperturbed steady state around which the expansion is  made is 

assumed to be a function o f y. For the sake o f c la r ity  and algebraic 

s im p lic ity  we consider a system o f f ir s t  order equations as a model 

equation. In 3.2 the general properties o f UQ are considered and the 

dispersion relation is derived by using a simple linearised theory. A 

nonlinear expansion is considered in 3.3 and through the general theory 

of lin ear systems of f ir s t  order d iffe ren tia l equations (Appendix) the 

amplitude o f the wave is found to  sa tis fy  the generalised nonlinear 

SchrSdinger equation. In the discussion o f 3.4 an indication is given 

o f how the method may be extended to apply to more complex higher order 

systems o f equations and further consideration is given to the problems 

discussed above.

3.2 Solutions of the linearised systems

We consider the following systems o f equations:
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0 3.2.1
3t — 3x — 3y

where = ^ i(x ,y ,t) is a column vector o f n components u >̂u2 ••• un and 

A,B are continuous nxn matrices being functions o f u and is  an n 

component vector; also a function o f u. We assume that these vectors 

and matrices ex is t, are non zero, are d ifferen tiab le  and sa tis fy  certain 

conditions as indicated la te r. Further, we assume that the system is 

unbounded in the x direction but is  bounded in the y direction, i . e .

where a and b are constants. In order that the problems be w ell posed 

we add the following boundary conditions

where u(a) -  u (x ,y ,t) at y = a and M, N are nxn constant matrices.

We suppose that there exists a solution o f 3.2.3 subject to 3.2.4 which 

can be e x p lic it ly  determined.

We now look for solutions around this steadystate of the form:

■00 < X < +°°

a i  y <  b.

M u(a) + N u(b) = 0 3.2.2

We look fo r a time independent steady state solution ji° (y ) where ^i° 

is defined by being a solution o f

3.2.3

subject to the boundary conditions

M u° ( a) + M u° (b ) = 0 3.2.4

u (x ,y ,t ) -  u°(y> + (y )exp (i(k x -u t)) + C.C

Substituting this expression and linearising about u°(y) shows that u*(y)
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must sa tis fy  the equation

(W -  col) u (y) - - 3.2.5

where is the matrix d if fe re n t ia l operator defined by:

i  B° 4  -  i  V.B° W 1  .  kA° -  iV.E‘ 
=  ^  =  —  =

3.2.6

where the same notation is  used as in Chapter 2, i .e .

« i
3u.

J

and
V.B° ^  

3y
-  2 3Bik 3uk

. . k 3u. 3y 
t.J J

From 3.2.2 we see that u (y ) must satisfy  the boundary conditions

M ji^(a) + tJ (b) = 0  3.2.7

We have now reduced the problem to a linearised eigenvalue problem for a 

matrix d iffe ren tia l operator and suppose that 3.2.5 gives a single real 

eigenvalue u>r o f the operator W. This assumes that the problem is w ell 

posed and admits a non -triv ia l solution.

The exp lic it evaluation of cor is  now reduced to the solution of a 

matrix equation provided solutions of 3.2.5 can be found. This is 

achieved as follows:

Equation 3.2.5 is a system o f n f ir s t  order ordinary d iffe ren tia l 

equations with n lin early  independent solutions jlj (y )f j = 1 . . . .  n 

where (y )  is an n component vector with components denoted by 

( y ) * •••• rnj ( y ) • The general solution of 3.2.5 is given by a 

linear combination o f these solutions as indicated in the appendix, i . e .
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m ultip licative constant and so can write

C(mr )

We 'nave therefore solved 3.2.5 fo r J'Cy) and so have deduced the eigen

value a>r . ju^iy) is now given by

n
£

i= l

j>(“r>y) Ç

tjRCy) 3.2.13

where K(y) is defined by:

R(y) = £ c^(ur )R^(y)
i

Having determined the linearised dispersion relation  and having solved the 

linearised system for a small perturbation we are now ready to consider 

the fu ll nonlinear expansion. I t  must be emphasised that the dispersion 

relation 3.2.10 and hence the linearly independent solutions of 3.2.5 

must in principle be known i f  progress is to be made.

3.3 Solutions o f the nonlinear system

We again consider the model system of equations

0
3t — 3x — 3y

and assume the follow ing form for u:

u £ eau“ (T ,t,y )exp (ii.(kx-o )t)) 3.3.1

Ä
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where ? = e(x-Xt)

T = e2t

X = 3a) /9k r

and , a.* 
(^ >

a
=

We expand the matrices A, j3 and the vector

A° + eVA°.u3 + e2 (VA°.u2 +

+ e3 (VA°.u3 + VVA°:u1u2

IS as follows: 

JVVA0:^1̂ 1)

+ ¿WVA0 )

e tc ., and substitute these expansions together with 3.3.1 into 3.2.1. 

As before, equating powers o f e o f the same harmonic to zero gives an 

in fin ite  system of equations the f i r s t  three o f which are given by:

0 (e )

0 (e2)

0 (e3)

W u = 0 3.3.2

W u2 + (-XI + A°) ^  l
1

, o 1 3u . , „ . o  l. i-  <E£( 7B .u — n + ink VA .u u— — m —  — — n— m
o i l

mn — 3y

+ JVVE°:u1 u1 ) P P > .  — — m~ n in n 3c
3.3.3

„  3 + ( + A° ) +
1 -  -  H  3t

1 2
-  -  <ZZ(VB°.u^m n + VB°• n + inkVA°.u^u^ 3.3.4

mn — 9y ~  9y —

2
+ inkVA°.u^ u* + VA°.u* n + V V E ° : u *  )P P >«— — m— n — — m -r-r — — m n m n x,— — ot, —

-  <E!:J:{(VVB0:u1nu1n ^  r ♦ V V A ^ u ^ ^ i r k u ^ P ^ P ^  
mnr — 3y —

\
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These equations are w ritten  in  more concise form as

W.u = 0~e— i

i d  % + ■ - i *— <3 s

w*“ 3* + I t 4 + * ■ l a 4
■'* * -  35 35 2

where W is a matrix d iffe ren tia l operator defined by:rvA

W. = B° 4  + V.B° d-  (y ) + ifkA° + V.E° - i t o  I
=  3y =  a? =  -  r=

and _F„ is  a matrix given by

- l  "  “  Xi  + -

and S ^ ,  are given by the right hand sides o f 3.3.3 and 3.3.4.

In i t ia l ly  we consider 3.3.2 for l  = 1. This equation then reduces 

to the eigenvalue problem of section 2 i . e .  equation 3.2.3. We may 

therefore write

where

u^Cr.É .y) “  )R (y)

R(y) = £ Cl i (mr )Rl i (y )

3.3.5

and the additional subscript 1 has been added to denote that the and

R. are defined fo r  i  =* 1.—l

We now assume that fo r 3.3.2 with 2^1, is  not an eigenvalue of Ŵ .

This immediately gives:

u l  ( t ,5 ,y) 3.3.60 for Jl  ̂ 1

This is  considered to be va lid  even for We note that substituting
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These equations are w ritten  in  more concise form as

W.u = 0i

*  F ? d l  * ■ i 2l
-  3C ac

where W is a matrix d iffe ren tia l operator defined by:r>Jd

W = B° 2  + V.B° d— (y ) + i2.kA° + V.E° -iJho„I
Z  3y =  d^ =

r—

and _F is  a matrix given by

XI + A

and S ^ , are given by the right hand sides o f 3.3.3 and 3 .3 .A.

In it ia l ly  we consider 3.3.2 fo r l  = 1. This equation then reduces 

to the eigenvalue problem of section 2 i . e .  equation 3.2.5. We may 

therefore write

where

u1 1 (T i? »y ) = ^ (T . s W y )

R(y) -  E c l i ( “ r ) - l i (y>

3.3.5

arid the additional subscript 1 has been added to denote that the and

are defined fo r 1 = 1 .

We now assume that for 3.3.2 with 1, Zur is not an eigenvalue of Ŵ . 

This immediately gives:

u i  ( t ,5 ,y ) 0 for l  J  1 3.3.6

This is considered to be valid even for ¿=0. We note that substituting
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3.3.1 in to the boundary condition 3.2.2 gives

M u“ ( t , ç , a) +N  u“ (T ,ç ,b ) -  0

for a l l  a and £.

We now substitute 3.3.5 and 3.3.6 into 3.3.3 for i. = 1 to obtain

W u  ̂ + F ^  1 = 0
-  3Ç

& H Î  + l i « y >  If  -  0
3.3.7

We note that

F jR (y) . 3W, . . .. 3R
1 Riy) = 1 W.t —

3k 3k

and rewrite 3.3.7 as

2 . 3RU. + 1 3 » i
3k 3Ç

Since the (y ) are eigenfunctions o f Vi .̂u  ̂ must be proportional to the 

R . (y ) but 3.3.7 admits a n on -triv ia l solution only i f  a compatibility 

condition is sa t is fie d . This compatibility condition is given in the 

Appendix by A .13. We put the equation 3.3.7 into the form of A .9 and 

replace the inhomogeneous term _f by the second term o f 3.3.7 to obtain 

b
| l . J ^ $ (a )  ~ N I (b )J  B ^ V 1(s)W 1(s )  ^ (s )  ds = 0

where $ is the fundamental matrix o f the system 3.3.2. To evaluate this 

integral we note the following iden tity  va lid  fo r any vector function ja(y)

W,u(y)
— "fy <y>ü<yfl
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Substitution then gives

d
ds

-  iL(M _£(a) -  N ^ (b ))

(j* ^(s) 3R(s))

3k

( s ) ^ ( s ) 1 b .

J a

ds

0

= 0

-  i  L M $(a) -  N $(b) ; - l (b) ^ < b> -  _£_ 1 (a ) 3R( 
-  3k -  3k

)R(af

)k

Evaluating this expression and substituting expressions fo r  ^ (a ) , ^ (b ) 

and their inverses from the boundary conditions then gives

+ 2iL M ♦ N ! | (b)"
¿ 3 k  -  3k

0

Since M and are constant matrices i t  immediately follows that

«= 0

which is sa tis fied  since the expression in brackets is zero as i t  is an 

expression of the boundary conditions.

Therefore, the compatibility condition fo r 3.3.7 is  sa tis fied  and 

3 .3.7 may immediately be solved to give:

2iL 4i,— dk M RR(a) + N R(b)

.u, 2 -  “  i  3£i 3.3.8
3k 3̂

where is another function o f T,g analogous to and can be deter

mined to higher order.
. 2 2

The remaining non-zero components to second order i . e .  ^  and ^  

are given by the direct solutions of the £=0 and *.=2 forms of 3.3.3.

These are formally given by
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u22 = R22(D-1( t , ç' ) 2 3.3.9

= r02 K ( t ’ ^ I : 3.3.10

These solutions are obtained by using the Green's matrix A .16 given in 

the Appendix, i . e .  substituting 3.3.5 and 3.3.6 in to the right-hand side 

o f 3.3.3 for 1 =0  and 1 = 2 ,  multiplying by the appropriate Green's matrix 

and integrating gives

x
- 1 , 1 ,„  o ,  1 » , 14 (3)D_1M 4 (a)$“ 1 (x 1 )S1° (x 1)dx 

— o — o —  — o — o — I

where

and —2

+ I $ (¿)D-1N 4 (b)0_ 1 (x i )S 0 (xA)dx —o —o— —o —o —1
-1 , ls „ O, 1NJ 1

f(VB°.R) + ( 73° . R* ) 3*  + ik(VA°.R)R*
I----- 3y - 8y

ik(VA°.R*)R + VVE°:R R ĵ

J£2( ^ —21— I 2 (a)-Î2i ( x l ) - l Z (xi)dx
2, 1 » .„I

+ f ^ (x^D ^N  $2(b)$21 (x 1)S12 (x 1 )dx1 

'x

where S 2 = -  [~(VB°.R) + ( ik ) (VA°.R)R + \  (VVE°:R R)|
1 *----- 3y — — -*

In these expressions _4̂  is the fundamental matrix fo r the operator

and the matrix D is readily obtained from 4 and the boundary conditions. 
—° ~

4>2 is sim ilarly defined for the operator W2-

Finally we consider the 1=1 form o f 3.3.4:
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H A ' (-AI+A0) ^ 1  -  * ± 1  -  (VB°.u2o)
-  3y3t

1
11

3y
(VB°.u2, )  3-  -1 - (VB°.u1. )  3-  o -  (VB°.u1_ 1) ^  2 

------ 2 —  =  _  3y -  3y

2ik (VA°.u1_ 1) u22 + ik(VA°.u22)u^1 -  ik  (VA°.u2o)u1 1

(V A °.u \ ) -  ( VA° •u1_ 1> -  (V V liu 2^ 1^
-  3y -  3y

-  (VVC°:u22u1_1) +

+ VVB°: (u1 u1 . 3- \  + u 1 ,u1. ^ - 1 )  -  ik (VVA^u1 
=  '  1 3y 3y

+ ik (W A °:u ^u 1 1 )u l _1

Substituting for u22> u2q, î2  ̂ and ji  ̂ from 3.3.10, 3.3.9, 3.3.8 and 

3 .3.5 respectively we obtain

W.u, 3 - i ^ l  R ^ - i ^ l ^ ^ - R f f l 3.3.11
M -l 3k 35 3k 3k „ 2

(-VB°.R2 + V\7B°:R R*) 3-  + ( “ VB°.R2 + VVB°:R R)
- =  " °  _ _ _ _  -  2 _  3y

(—VB° .R -  VA°. R) 3-  o + ( - VB°. R" - VA° . R" ) _̂ £ 2O * _ »O n* \ SR

sy

+ (-ikVA°.R2 + ikVVA°:R R*)R + (ikVA°:R2 -  ikV7A°:R R)R^

- 2ik(VA°.R*')R22 -  (V ^ 0: ^ 2̂ ) -  (W£.°:R22R*)ji)<1 I ^ T

This equation is again the inhomogeneous form for the o p e ra to r^  and so
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the compatibility condition A .13 must again be sa tisfied  where is  

now the right-hand side o f equation 3.3.11. We consider each term separ

a te ly  and apply the compatibility condition to each.

Term 3:

l Ĵ  4(a) -  N $ (b )]_B °"V 1(s )R (s ) ds

l i l
9t

3.3.12

where a M 4(a) -  N 4(b) B°_14 1(s)R (s)ds

Term 1:

M 4(a) -  N 0 (b )l^O_1̂  1(s ) ~ k ^ R (s )  -|̂ 2 ds
r  z  -  3k *

with the relation

3W, „~d. R
3k

Wl
3k

3.3.13

this term becomes 

b
4(a) -  N $ (b ) jB ° 'V 1(s)W(s) ®|(S) f^ 2 ds

which is identical to the compatibility condition for 3.3.7 which was 

found to be sa tis fied  and to be iden tica lly  zero.

Term 2 : 2
. ”1 o - l  - l . . 3Wt ( s ) 3R(s ) 3 if11 j  O 3.14

M 4(a) -  N 4(b) B 4 (s) ~1 2 dS "* J
; ;  : :  J :  :  sk sk sç

Now d iffe re n t ia t in g  equation 3.3.13 w ith respect to k gives



3WX 3R 

3k "3k

Substituting this rela tion  gives

b
1
2

a

'  a

By the same reasoning that led to the compatibility condition fo r  3*3.7 we

Combining 3.3.12, 13, 14 and 15 gives the generalised nonlinear SchrBdinger

where 8 = B^/a. We note that i t  is  not possible to prove generally whether 

B is real or complex but i t  w il l  be assumed that B is in fact complex.

3.4 Discussion

We have again shown that, to lowest order, the amplitude of a wave 

propagating in a system described by the model equation 3.2.1 must satisfy  

a generalised nonlinear SchrHdinger equation given by 3.3.17. The method 

used was an extension o f the work of Taniuti, Asano and Yajiraa (1969) and,

see that the f ir s t  term of this expression vanishes and the second term is

given by:

3.3.15

Term 4:

M 0(a) -  N $ (b )lB °"1*_1(s ) S (s )*1|*1|2 ds = 8’

where S(s) is the right-hand side o f 3.3.11

equation

• 3*1 . 1  32“r I j h  + I* I2
1 2 3k2 352 1 1

0
3.3.17
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despite the added complexity o f a further spatial dimension followed much 

the same pattern. The two f ir s t  coeffic ien ts o f 3.3.17 were found to be 

identical to those derived fo r other systems, as fo r example in Chapter 2 

and the only sign ificant difference arose in the third term i . e .  the coef

fic ien t o f the nonlinear term. To determine this coe ffic ien t now requires 

the knowledge o f the fundamental matrix o f the system o f equations consid

ered. This requires an ex p lic it  solution o f the linearised problem to be 

known in order that the integration in 3.3.16 may be performed. I t  must 

be emphasised that the dependence on the additional spatial coordinate was 

not assumed to be weak, as was done by Hasegawa (1970) and fu l l  account 

was taken of this strong dependence. I t  is interesting to note that 

despite this strong dependence a to ta l decoupling of the y dependence and 

the stretched x and t dependence was found, and that a nonlinear Schrddinger 

equation with only two independent variables T and £ was found. This 

reduces the problem o f determining the s ta b ility  o f certain classes o f two- 

dimensional problems to the problem of determining the s ta b ility  o f the 

nonlinear SchrSdinger equation.

As in Chapter 2 we again encountered the problem of the vanishing of

a determinant. In this case the matrix in question was _B° and its  inverse
— 1 2

was required for the determination of the d .c. components and ^  .

For most physical systems this condition is not sa tis fied  and the components

u and u cannot normally be determined by the inversion o f the operator —o —o
W . In 3.3.we assumed that u  ̂ was iden tica lly  zero and that det B° did ~o —o ~

2 . . .not vanish and so u was obtained by direct inversion. The assumption —o
that u  ̂ = 0 is physically tenable since we are considering the modulation 

of the wave U ^ e *^ *  + complex conjugate. We may however speculate

that, as in Chapter 2, certain components of u * may in fact be determined 

bv d irect inversion of W and that the remainder are determined from the 

compatibility condition fo r the i  = 1 form o f the second order equation. 

Sim ilarly certain coeffic ien ts of ^  may be determined by direct inversion
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and the remainder determined by the integration o f  the l  = 0 form o f the 

third order equation. Although this has not been proved generally, physical 

systems where this method has not been successful have not yet been found.

The model equation 3.2.1 can be used to describe a large class o f 

problems, e .g . the propagation of waves in a cold plasma between conducting 

plates with no magnetic f ie ld  and the propagation of sound wave in a bounded 

gas. This class could be greatly extended i f  model equations o f the form

A ^ + B +
—  2 —  "2 —  23x 3y 3t

+ G 0 3.4.1

could be considered. Then problems such as the two-stream in s ta b ility , the 

in s ta b ility  o f plane Poiseu ille flow etc . could be considered. This requires 

the extension of the work of 3.2 in the same way as the results o f Chapter 

2 were found by extending the original work of Taniuti and Yajima (1969).

An equation o f the form of 3.3.1 was not considered in 3.2 and 3.3 as this 

would have added considerably to the algebra and complexity o f the coef

fic ien ts  so obtained. Differences would arise in that the operator^W. would 

become a second order matrix d iffe ren tia l operator. The ensuing algebra 

would follow a sim ilar line with this additional complication. However, 

results sim ilar to those given in the Appendix can easily  be written down 

for second order se lf-ad jo in t matrix d iffe re n tia l operators and i t  is 

anticipated that the following generalised nonlinear SchrBdinger equation 

results

i  111 
3t

2 2 J. _3_ur j L l l  
+ o 2 2

3k 35
iw. <pi T 3.4.2

The app licab ility  of this result can be supported by considering a simpler 

form of the one-dimensional system 2.2.1 without the second derivatives.

The result 2.2.34 again follows with algebra ica lly d ifferent, coe ffic ien ts . 

From these one-dimensional results we conclude that the addition o f higher 

than f i r s t  order derivatives in the model system of equations preserves the
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form o f the fina l result, i . e .  a generalised nonlinear SchrBdinger equation. 

We therefore assume that the result 3.3.2 would follow  fo r the system 3.3.1.

As in Chapter 2 the in s ta b ility  mechanism for 3.3.1 would have to be w ell
2

understood in order that the ordering on ~ 0(e ) could again be made.

Although the result 3.2.17 has been derived fo r a general model equa

tion, in practise i t  would be easier to take a less general approach when 

attempting to solve a set o f equations describing a real physical system. 

This is  a result o f the large numbers o f zeros appearing in the matrices 

A to G for real physical systems and the resulting redundancies occurring 

in integrations necessary fo r the determination of the coeffic ien ts .
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Appendix

Systems of f i r s t  order d iffe ren tia l equations

We shall consider the general properties o f systems o f n f ir s t  order 

d iffe ren tia l equations and follow  John (1965). In it ia l ly  we consider a 

f ir s t  order system with an in it ia l  condition and then extend this to s e l f -  

adjoint two-point boundary value problems. Suppose A is a continuous 

nxn matrix of complex functions of a real variable x on an open in terva l 

o f the real line I .  We then consider the system

exists a unique solution <|> of A .l subject to A.2. The zero vector is  always 

a solution of A .l and is called the t r iv ia l solution. The set of a l l  

solutions of A .l on I  forms an n dimensional vector space over the complex 

f ie ld .  This indicates that there exists a set of n linearly independent 

solutions . . . .  such that every other solution of A .l is a lin ear 

combination of this set, i . e .

where the are in general complex constants. The cjK are called the basis 

or fundamental set of solutions o f A .l.

We define a matrix $ whose n columns are n linearly  independent solu

tions of A . l .  This is called the fundamental matrix and sa tis fie s :

We now consider the inhomogeneous problem equivalent to A .l, i . e .  given a

= A(x)jr xel A .l

with the in it ia l  condition

¿ (x 1) = A.2

for any and x *e l, where y is  an n element column vector. Then, there

n
T C.6. A .3

i — 1

dx
xel
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continuous nxn matrix A (x ) , a function o f real x on an open in terva l i  

and given a continuous vector M x) on 1 we write

^  = A(x)^r + l>(x) xe l
dx — —

A .4

There exists a unique solution of A .4 subject to

¿ (x 1) = £ A .5

given any £ and x*e l. Given the fundamental matrix for A .l i t  is  

possible to write down the solution of A.4 subject to A.5 i . e .
x

where ^ ( x )  is a solution o f A .l satisfying

Equation A.6 is derived by the method of variation o f constants as fo llows. 

Suppose that a solution o f the inhomogeneous problems A.4 is  given by

= jS _c

where c is a column vector and a function of x. D ifferentiation  then gives

3\|> 3$ ... . 3c— = =  c + $ -r—-r- -r— — — 3x3x 3x —

and substituting from A .l and A.4,

One integration and applying the condition A.5 leads immediately to the 

result A.6.

We now extend the results given above to se lf-ad jo in t problems on 

f in ite  intervals o f the rea l lin e . We shall in particular be interested in 

eigenvalue problems and therefore consider the f i r s t  order eigenvalue problem

3c



A (x)^  = 9.y_* 1  -
3x

A .7

subject to the boundary conditions

U(a,b) = M ¿ (a ) + N y (b ) = 0 A .8

where x £ [a ,b j and ¿ i s  an n component column vector. The system A .7 and 

A.8 always has the t r iv ia l  solution ^  = 0. I f  l  is  chosen so that A .3 

has a non -triv ia l solution then i  is  an eigenvalue o f A .3 and these solu

tions are the eigenvectors .

We suppose the eigenvalues and eigenvectors o f A .7 with A.8 are known 

and now we consider the inhomogeneous problem

-  A (x)^ = ^  A .9
dx —

where we retain the boundary conditions A .8. I f  A .9 with _f = 0 has a

non-trivia l solution then unique solutions to A.9 exist only fo r  a certain 

class of functions of f  and we w ill  now determine the condition that _f 

must sa tis fy .

We suppose that the fundamental matrix for A.9 with f  * 0 is  denoted by

0. Then we again use the method o f the variations of constants by looking 

for a solution of A.9 o f the form ¿ (x ) to obtain:

x

jj/(x) ”  J>(x) j  _£ \ s )^ (s )d s

and so we can write

x

i|>(x) = ^ (x ) [ <S *(s)_f(s)ds + E c . 4• (x) A .10
-  }  -  i-1'  a

and j/(x) -  $(x) 4> (s )f (s )d s  + E C i i i «  
i= l

A .11

where we have added solutions of the homogeneous to give the general solution
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Multiply A .10However, iji(x) must sa tis fy  the boundary conditions A.8. 

by N fo r x = b and A .11 by M for x = a

N i|)(b) 10(b) ( 0 ^(s)f^s)ds + N Ec. 6. (b)
-  J =  —i-1J a

M jjj(a) -  M 0(a)

b
_0 1(s)f^(s)ds 

• a

n
+ M_ E c._£. (a) 

- i = l  1 1

Adding these gives

M jj*(a) + 14 j/(b) M H a )  ~ N 0(b)Jj>_1 (s ) f  (s)ds

+ Z N̂ci 4>i (b) +Mci 4>i (a)

( h
M jO(a) -  N ji(b)Jji 1(s)f^(s)ds A .12

+ D C

where D and £ are defined in 3.2.11 and 3.2.12. Now in view of A .8 applied 

to j)(x ) the L.H.S. of A .12 vanishes. Also, since det D vanishes, multiplying 

A .12 on the le f t  by L where L is  the le f t  eigenvector o f the matrix D 

corresponding to zero eigenvalue we obtain the compatibility condition for 

the solution of A .5 as:

H a )  -  N 0(b) 0 * (s )f (s )d s A .13

We can now consider the case when the homogeneous form of A .9 has only the 

t r iv ia l  solution, i .e .  we exclude the eigenfunctions. Then, there exists 

a matrix G(x,x*) continuous for a 4 x £ x  ̂ .£ b and a ^ x i  x  ̂ b such that

G(x,x*)_f (x^)dx1 A .14

• a ~
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The existence of thisis  the unique solution of A .9 subject to A .8.

Green's function matrix Gix.x1) is v e r if ied  by inspection as follows. 

Consider the fundamental matrix $ fo r A.9 with f  ** 0 and le t

0(x)$_1(x1) + $ (x )J (x1) x1<x

G(x,x )
0 (x )J (xA) x^>x

A. 15

In order that the boundary conditions A .8 be sa tis fied  we substitute A .14 

and A. 15 in A .8 to obtain:

M jK a )J (x ) + N 0(b)0_1(x 1) + Ni-CbjJCx1) = 0

which defines J(x ) as

JCx1) = -  ^  H a )  + N J>(b) N ji>(b)j> 1(x1

The Green's matrix ^3(x,x ) then becomes: 

<Kx)D-1M $(a)<t” 1(x1) x^<x

G(x,x ) A .16

-<t(x)D-1N $(b)<Kx1) X >̂X

\
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Chapter 4

A Nonlinear Theory o f the Propagation of 

Solitary Waves in P iezoe lec tr ic  Semiconductors

4.1. Introduction

The interaction of an acoustic wave with mobile charge carriers 

in solids has been of interest fo r some considerable time. The term 

"acoustoelectric e ffe c t"  used to describe this interaction was f ir s t  

used by Parmenter (1953) in a study of the e ffe c t  in metals. The 

e ffe c t  in semiconductors was f i r s t  considered by Weinreich (1956,1957).

Interest in the interaction grew when the poss ib ility  o f attenua

tion or amplification was rea lised by Hutson et al (1961). The 

attenuation or amplification arises due to the energy exchange between 

the acoustic wave and the conduction electrons. I f  the wave ve loc ity  

is greater than the average d r i f t  ve locity  of the electrons then the 

net e ffe c t  is a reduction in both the amplitude and ve loc ity  of the 

acoustic wave due to the absorption of energy by the electrons from the 

wave. Conversely, i f  the wave velocity  is  slower than the d r ift  

ve lo c ity  then energy is transferred from the electrons to the wave and 

the wave is amplified. The simplest way to achieve this is to increase 

the average electron d r ift  ve lo c ity  by the application of a d.c. e le c tr ic  

f ie ld  .

The mechanism of interaction can be thought o f simply as the mech

anical oscilla tion  o f the atoms of the so lid  induced by the acoustic 

wave which modifies the e f fe c t iv e  potential in which the conduction 

electrons move, thus giving the interaction. Both long and short range 

potentials are affected. In metals and in non ionic materials, the 

principal change is in the short range part o f the potential. This is  

ca lled  the deformation potentia l coupling. In ionic semiconductors and 

particu larly in so-called p iezoelectric  semiconductors, the dominant



e ffe c t is a change in the long range Coulomb interaction due to the 

motion o f the ionic charges. This potential change can be represented 

as a polarisation wave in the material. This e ffe c tiv e  polarisation 

may be expanded as a series in the strain produced by the acoustic 

wave. In semiconductors with no inversion symmetry, the term propor

tional to the strain is  nonvanishing and becomes the piezoelectric 

tensor o f the material.

In p iezoelectric materials the f ie ld  associated with this interac

tion, called the p iezoelec tric  f ie ld , causes the mobile charge carriers 

to move in such a way as to screen this f ie ld .  The extent of this 

screening may be described by the d ie lec tr ic  relaxation frequency 

where,

oo = -  o/ec

and a is  the conductivity. The coupling is  smallest when m/uc >> 1, 

where oo is the frequency of the acoustic wave. Then, the carriers 

are unable to respond quickly enough to the fie ld . The interaction 

is greatest when oj/û  << 1. This is the basic reason why this e ffec t

is dominant in semiconductors -  the d ie lec tr ic  relaxation time is small 

-12(typ ica lly  10 sec.) because of the low conductivity. Given a 

typical acoustic frequency o f a few MHz gives the condition for maximum 

interaction. The net e f fe c t  is to produce bunching of the electrons 

and i t  is this e ffe c t which is responsible for the acoustoelectric 

amplification as w ill  be seen in the linear theory of 4.2. Diffusion 

opposes the build up of these space charge waves and this e ffec t is 

illu strated  by considering the diffusion frequency oĵ , given by:

“U = Vs2/Dn
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where v is the acoustic ve lo c ity  and D the d iffusion  coe ffic ien t. 
s n

I f  u>/iô  >> 1, the space charge modulation is  least as then the charge 

carriers diffuse away most rapidly. So for maximum amplification 

the condition u>/cô  << 1 must also be sa tis fied .

The work o f Weinreich (1956) is considered as the f ir s t  recogni

tion o f the poss ib ility  o f amplification in semiconductors. The f i r s t  

amplification was observed by Hutson et al (1961) who demonstrated the 

e ffe c t  in cadmium su lfide. Hutson and White (1962) derived the small 

signal theory fo r the propagation o f acoustic waves and White (1962) 

derived a small signal theory o f the amplification process. White's 

theory agreed w ell with the experimental findings o f Hutson et al (1961) 

and most work since then has been concerned with nonlinear e ffects  in 

acoustoelectric interactions.

The f ir s t  observation o f a nonlinear e ffe c t was the demonstration 

o f current saturation by Smith (1963) and McFee (1963) . Although this 

particular e ffe c t  is not considered in this Chapter we b r ie fly  outline 

how i t  arises. The saturation is attributable to the acoustoelectric 

current, i .e .  the current arising from the presence o f the acoustic 

wave. When the e lec tr ic  f ie ld  across the material is  increased, the 

ohmic and acoustoelectric currents both rise as the acoustic waves are 

amplified. However, the acoustic gain is at the expense o f the 

electron system and so opposes the ohmic current. These two e ffects 

occur simultaneously and approximately at the same rate , giving rise 

to the current saturation.

The nonlinear e ffec t that w ill  be considered in 4.3 concerns an 

e ffe c t  observed in high conductivity p iezoelectric m aterials. I t  was 

observed (see for example Haydl and Quate (1966)) that i f  the conditions 

fo r amplification were sa tis fied , i .e .  a su ffic ien tly  large voltage was 

applied across the sample that the current o sc illa te s . These oscilla tions

..
\
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were demonstrated to be due to propagating domains o f high acoustic 

flux and d .c . e le c tr ic  f ie ld . The domains were found to move with a

ve locity  approximately equal to the ve loc ity  o f sound and to move 

without a change of shape or s iz e . These domains are however not the 

simple domains as observed by Gunn (1963) and theore tica lly  confirmed 

by Butcher (1965), associated with current oscilla tions in  semiconduc

tors having a bulk negative d iffe ren tia l conductivity. The equations 

relevant to the Gunn e ffe c t can be solved in the nonlinear regime by 

conventional techniques of nonlinear analysis (see fo r example Minorsky 

(1962)) and these solutions include domain-like modes o f wave

propagation. We show in the Appendix that the equations relevant to 

the acoustoelectric e ffe c t do not have a simple domain solution. We 

show in 4.2 that acoustoelectric domains are "envelope - domains", i . e .  

the envelope of the wave has the shape of a domain and moves without a 

change o f shape or s ize . Within this envelope the behaviour o f the 

flux or the e le c tr ic  f ie ld  is rapidly o sc illa tin g .

I t  is  obvious that a simple linear theory cannot describe the 

creation o f an acoustic domain nor demonstrate current saturation and 

hence a nonlinear and/or large signal analysis of the amplification of 

noise to form domains is required. This is a problem o f great 

complexity and no complete theory has yet been given.

The many nonlinear theories presented to date can be roughly divided 

into two distinct classes. The f ir s t  class consists o f macroscopic 

theories concerned with nonlocal processes leading to the build up o f 

acoustoelectric current, i . e .  theories concerned with how acoustic 

waves in teract a long time and a long way away from the point of 

generation. The acoustic waves are assumed to be w ell formed and propa

gating in a part o f the semiconductor where further wave generation is 

not taking place. In this sense these theories can be considered 

asymptotic. The second class consists o f theories concerned with the



local microscopie processes leading to the development o f the acoustic 

waves themselves, i . e .  theories concerned with how the acoustic waves 

build up from thermal noise and how they interact close to the point 

o f generation.

The majority o f published work has been concerned with the micro

scopic local processes and generally the assumption o f a slow wave 

evolution is  made. Examples o f this are the work o f Tien (1968),

Butcher and Ogg (1970). Wonneberger et al (1969) and Gay and Hartnagel 

(1969). These results, which are va lid  at large amplitudes are 

generally in agreement with experimental work.

The macroscopic nonlocal theory has proved more d if f ic u lt .  Not

able attempts at th is, Ridly and Wilkinson (1969), Ridley (1971), have 

indicated a domain-like solution by including the e ffe c ts  o f the macro

scopic build up of space charge. However, Butcher et al (1971) showed 

that the basic assumptions of the Ridley and Wilkinson work were incon

sistent with this conclusion. Thus there is no satisfactory theory of 

domain formation for even a single acoustic mode.

The work o f this Chapter w ill  be concerned with a nonlocal nonlinear 

theory of the propagation o f a single acoustic wave in a p iezoelectric 

semiconductor. The wave w ill  be assumed to exist in the semiconductor 

and i t 's  nonlinear theory w ill  be predicted using the general theory 

as given in Chapter 2. In this sense the system analysed may be con

sidered as a p iezoelectric  semiconductor driven at a particular frequency.

Section 4.2. outlines the formulation of the problem and summarises 

the well known linear theory. In 4.3 we show that the equation of 

motion o f the envelope of the acoustic wave is the generalised nonlinear 

SchrBdinger equation and expressions for the coe ffic ien ts o f this equa

tion are given. The method used in 4.3. is not the general method as 

given in 2.2. but a more direct approach is taken by working with the
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matrices relevant to the problem and so avoiding algebraic complexity. 

The equation is  solved in 4.4 using a perturbation analysis and by 

ordering the coeffic ien ts in a particu lar fashion and so the envelope 

domain solution is obtained. In 4.5 the coeffic ien ts are ex p lic it ly

have the ordering assumed in 4.4. An expression is given for the d.c. 

e le c tr ic  f ie ld  and is found to have the correct domain lik e  form.

An e ffe c tiv e  linear amplification constant is deduced which shows the 

correct decrease of growth rate in  the presence o f flux. The results 

are discussed in 4.6 and suggestions for further work are made.

4.2. Formulation and linear theory

We w ill  consider the propagation of an acoustic wave in a piezo

e le c tr ic  semiconductor in one dimension. Although this problem should 

be treated in three dimensions due to the tensor nature o f the piezo

e le c tr ic  equations of state for the sake of sim plicity we w il l  assume 

that there is only one p iezoelec tric  constant. This implies that the 

e le c tr ic  f ie ld , e le c tr ic  displacement and strain have only one component 

in the direction of propagation. The semiconductor is assumed to be 

n type, extrinsic with electrons o f charge e and mass m. Following 

White (1962) we consider the relevant equations describing the semi

conductor.

The p iezoelectric equations o f state are:

2 . .evaluated in the long wavelength K , small k lim it and are found to

T = cS - eE 4.2.1

D 4.2.2

where eD is the d ie lec tr ic  constant at constant strain

e is the p iezoelectric  constant

c is  the e la s tic  constant at constant e lec tr ic  f ie ld

*
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and

D is the e le c tr ica l displacement, 

T is  the local stress,

S is the local strain ,

E is the e le c tr ic  f ie ld .

The strain is defined in terms o f the local mechanical displacement 

u by:

S '= —  4.2.33x

where + x is  the direction of propagation o f the wave. 

D ifferen tia ting 4.2.1 with respect to x gives:

3T 3£ 3E
9x C 3x 6 3x

32u 3E 4.2.4

The equation of motion of an e lastic  so lid  is given by:

32u 3T

312 3x
4.2.5

and combining 4.2.4 with 4.2.5 gives the wave equation:

2 2 3 u = c 3 u e 3E

3t2 P 3x2 p 3x

is the ve loc ity  of sound

4.2.6

These equations are now combined with, Gauss’ equation

3D
3x

4.2.7

and the charge conservation equation
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in equation 4.2.9. In the linear theory the term n ^  which arises 

when solutions 4.2.11 are substituted into 4.2.9 is neglected. In 

order that 4.2.11 sa tisfy  the above set of equations the following 

cubic dispersion relation is  obtained:

m3 + to2 {pfE k + ico } -  u {v  2k2 + K2k2v 2} o c s s

-  V 2k3pfE -  iu v  2k2 - K2pfE k3v  2 = 0 4.2.12s o c s O S

Here < = e /e^c and is known as the electromechanical coupling constant*

k is very small, typ ica lly  'vlO for commonly used p iezoelectric  materials 

such as ZnO and CdS and is  used as an expansion parameter in la ter 

sections.
2

In the lim it K = 0 equation 4.2.12 has two roots:

w/k = vs

and 0) = uE k -  i (u  + H o c

where 2Vs = p/c

and wc ■ ^ no/eD

The second root corresponds to damped space charge waves and is  not

relevant to the present discussion. We now look for a solution of
24.2.12 around the f ir s t  root u> »  kvs in the lim it of small < . Using 

Newton's method we obtain

..
i
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where mD v 2/fD s n

Y = 1 + 4.2.14vs

2
la deriving 4.2.13 only terms to 0(< ) were retained. The parameter 

Y is important, being a measure of the ratio o f the electron d r ift  

ve loc ity  to the ve loc ity  of sound. I f  Y < 0 ( i . e .  the electron d r ift  

ve loc ity  exceeds the sound ve loc ity , then the imaginary part of m is 

positive and amplification occurs. Conversely i f  Y > 0 the wave is 

attenuated.

I t  is the dependence of Y on the e lec tr ic  f ie ld  through 4.2.14 

that ju s t ifie s  applying the general theory o f Chapter 2 to the fu ll non

linear problem. I f  we assume that the tota l external d .c. f ie ld  is 

given by:

E = - Vs - e2E' 4.2.15
°  ~~rvif

where e is a small parameter, then 4.2.13 may be expanded as:

where

and

2 4a) = u> t  i t  ii). t  0(e ) r j.

kvs 1 1 +V o/ , 22 . /'  2 (o i m +k v ) •cD  s

,, 2, 2 2V K k v Y ______s
2(i> \ “ c“ D /

4.2.16

4.2.17

I f  the modulus of the e le c tr ic  f ie ld  is s ligh tly  larger than the c r it ic a l

value -v /uf but to order e then the growth rate o f the in stab ility  is s

also of order e2.

We have therefore sa tis fied  a ll the conditions necessary for the 

va lid ity  of the general theory of Chapter 2 when considering the nonlinear



2problem, i . e .  the imaginary part o f m is  small, 0(e ) where e is  the

magnitude of the nonlinearity. The parameter p o f 2.2.5 has been 

found ex p lic it ly  and an analytic expression for the growth rate has 

been obtained.

4.3. Derivation of the nonlinear SchrDdinger equation

Equations 4.2.1 to 4.2.10 may be combined to give three equations 

in three unknowns, i .e .

The equilibrium state X̂  around which the expansion is  made is  taken 

as u = n = 0  and E = Eq, the tota l external d.c. e le c tr ic  f ie ld . 

Substituting 4.3.4, expanding and equating powers o f e of the same

3E
3x 0 4.3.1

O 4.3.3

where a l l  quantities are defined in 4 .2 .

We look for solutions of these equations of the form

OO 00

X 2 e°x“ (T,£)exp[iJl(kx-mt)] 4.3.4

where

Ç = e(x-Xt)

and X = u
E
ns

harmonic to zero gives an in fin ite  set of equations on which the f ir s t

three are given by:
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0(e) ÿ ï j  - 0

0 (e2) 2 -
-a + “ t T T  = i f « 1!?

0 (e3) ÿ -
3 >

5 + ^ a T  +
» '  - 1* .  0-

aM

— ü  9t  —& i ï 2 Î 2 - «

where ü.2 (ck2-po)2) eiî.k 0

ÿ  - e (ii.k) 2 e i£k o q

0 pn i£k o
2

ijtüj+pfE i£k-v o s

2pXii.u>-2cii!,k e 0

2ei5.k eD 0

0 yno* JlpfE +ÀÎ.+2i£kv o s

-2 Pii.ii) 0 0

ÿ  -
0 0 0

0 0 -1

2À P-c 0 0

*

% . 0 0 0

0 0 v 2/u) s D

and the source terms are given by

. . . . .
»
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Lq>£if<4> = -“f(̂  ̂ s p ^ p Y *  + <E f s ^ V

4 < 4 ’4 >  ” “U f ( <E ^ SP + <2 EipknspEî PpPq ^

4.3.5

P q p q

p q
+ <£ £ ipkn1 E2P P > . + < £ £  n* - ^ q  P_P_> sp q p q l p q

l  ^ ir
sp H ‘ *p‘ q' i

<£ £ n2 iqkE1P P >. + <£ £ n1 iqkE2P P >+ sp H q p q S .  p q  s p n q p q i 4.3.6

where <........denotes the coeffic ien t o f the ¿th harmonic and Pp

denotes exp | ip(kx-uit) | .

The linear dispersion relation 4.2.13 is regained by in s is tin g  

that the f ir s t  order solution is non -triv ia l, i . e .  x j j  0. Thus 4.3.5

gives

det W = 0

I t  can easily  be seen from 4.2.14 that

det 4 0

for H 4 1 i .e .  a l l  harmonics o f the fundamental are stable.

Now applying Che condition 4.2.15 and expanding the matrices 

w ',M’ ,N ' and 0 ' gives the following set o f equations

*  °

il Û  + Ü1 TV* s ^ x 1«,)

4.3.7

4.3.8

and

3X2 3X1 32x\  j

Ï »  ¿ i  + ^  T T  + ~  + = 1  + P" x-- l  - l

4.3.9
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where

- l

* 1

-H

and

—i

where

/ 2, ,2  2. i  (ck -pu ) eiJlk

0 \, 2 2 -ek X,
’

0
un i&k o

2 2 2 / iS.u)r- v giXk-vg k X /(UjJ

2pAiXa)r-2ciS,k e
°  \

2iXke go 0

\ °
»*nol

5, A-Jl vg+2 vg 2k2 i.2/wj^

—2piS.u)r 0 0 \

0 0 0

\ 0
0

1

/ X2P-c 0 0 \

e 0 0

°
0 vs2/ud y

/ 0 0 0 ^

0 0 0

\  °
0 -p fE 'ik  ,

i t .  '  i> . * e2=*

4.3.10

4.3.11

4.3.12

4.3.13

4.3.14

and M' - + 0 ( e )

N"* »  N + 0(e )—x, —x.

eCc
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The ur and o)£ are now given by 4.2.16 and 4.2.17 and X “  3<i>r/3k.

The only additional term is the  ̂ term in the third order equation.

The condition for a nontrivial solution of the f ir s t  order equation is 

now

det W = 0

which gives
. 2 2k vs

to = kv I 1 +  --------- o— or  3 V  2(mc V k2vs27)
as in 4.2.16.

Again,

for l  4 1.

det 4 0

We define X î, -  $ 4.3.15

where K is the right eigenvector o f and is given as

-eik

(ck -pior ‘ )

-unQik
2 2iw -v ik- v k r s s

The le f t  eigenvector is given by

ek2
, . 2 „ 2.(ck -Pui )

(iw -v ik-v 2k2/m_) r s s D
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The e = 1 f ir s t  order equation then gives:

X1-1

x1-  I

)R

0 for |i.| 4 1» °*

4.3.16

At this stage we are unable to determine a l l  the components o f X̂  

From the f ir s t  order equation for l  = 0, i . e .

W X1 = 0—o —o

we see that = 0so

However the second order equation for £ 3 1 is

where

- p f i k ( E h \  + n^ E ho si so 1

In order that X̂  is  unique the compatibility condition

.1
ì -1

must be sa tis fied ,

L.W

and L.Mj .̂R

By direct evaluation and using n

.1

1
so

E =* 0.o
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Although u* is undetermined i t  is not required in future calculations. 

The second order equation fo r l  = 1 may now be solved to give

X2- l R<T(t ,€) • 3R a*'1 3 <j>
3k 3 §

0

where P ( x  ,5) is another scalar function which is not relevant to our 

solution and is eliminated la te r.

Now =-1 0 for i > 2

and since det J 0 for a > 2

i t  may be concluded that

X2 = 0 for i  > 2.

2 2 2 2 The only other components o f X̂  that are required are X,,, X2 and

These are formally given by:

and

2W .X = s°(x*—o —o

w„.x2 = ŝ Cx1—2 —2

X2-2 = (xf2)
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1 {unQE2 + uf(R2R* + R*R3)|^|2}
3Ç

which gives

<r 2R3 + R2R 3) l ^ l 2 + s ( t )M o
4 .3 .1 7

where g(x) is an arbitrary function of T and is determined by applying
. . 2the initial value condition E = -E .o

The nonlinear SchrSdinger equation is now obtained by considering 

the i  = 1 component of 4 .3 .9 .

* £  + Mx dA  * lx  *A  + + - £ 2 < i .4 >_  35 _  3x _  352 -

Multiplying on the le f t  by 1, eliminates the f i r s t  term and substituting
? 2 2 1 

for X| in tiie second term and for X2 and in the source term j>2 §lves:

W + L O.R
3k -  3k J 35

3 4p + L N R _3i + L i>R<t>
2 -  3t

R1L,(ufik)2f2R*(w“1) + 2CW"1) + 1 (R,+R*)<TUJ,|
33  L 3 2 2 3  2 33 Un  i k  J  J

+ pfikR^LjE
']

4 .3 .1 8

with the relation previously determined

®  - 1 L 32air R
3k —1 3k 2 ' , 2 -3k

we can now write:

2 /
i  £1 + X — j  + + 60 I <i> [

3 5'
4 .3 .1 9

which is t;he generalised nonlinear Schrödinger equation and where
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X 4.3.20

4.3.21

and

6 = i (i ifk ) 2 -2ipu>.i

4.3.22

The coe ffic ien t x is always real and 6̂  is always imaginary. A

knowledge o f $"*, i . e .  the solution o f 4.3.19 gives a l l  physical quanti

Of particular interest is the to ta l d.c. e le c tr ic  f ie ld  which is 

given by:

With the appropriate 4>' this correctly predicts the high f ie ld  domain. 

Expressions for a ll  other A.C. and D.C. components can sim ilarly  be 

derived. We now look for the solution of 4.3.19 for this particular 

problem.

4.4. Solution o f the generalised nonlinear SchrBdinger equation

The nonlinear SchrBdinger equation derived in 4.3 is now solved using 

a further perturbation expansion. An exact solution of 4.3.19 with 

arbitrary coe ffic ien ts is not known. General solutions o f the nonlinear 

SchrBdinger equation, i .e .  with 8 and 6 real are w ell known, Rowlands 

(1974) and consist of three types o f nonlinear wave, the so lita ry  wave 

and the shock. S tab ility  analyses of these solutions have also been

ties of in terest, since they can a l l  be expressed in terms o f <f>

bTOTAL E'APPLIED

= Eo (R3+R*)|<f,'i2 4.3.23
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made, Rowlands (1974) and the techniques of that work form the basis o f 

this analysis.

We expect the solution of the generalised equation to be sim ilar to

that obtained for the real B, real 6 case and we use these solutions as

a starting point about which a perturbation expansion is  made. This

expansion re lies  heavily on an ordering of the co e ffic ien ts . I t  is

d if f ic u lt  in general to ju s tify  the ordering assumed and the coe ffic ien ts

must in general be ex p lic it ly  evaluated before anything can be said about

their re la tive  s izes . For this particular problem the ordering assumed
2

in this section is found to be va lid  in the long wavelength small K 

lim it. Until the coeffic ien ts are evaluated we w i l l  assume that they 

may be ordered as is assumed and a general notation is adopted.

In it ia l ly ,  we look for solutions of 4.3.19 o f the form

<p' = <J>(g)exp{-iBrT} 4.4.1

where Br is  rea l. In terms of the new function <p 4.3.19 reduces to

2
X -^-1 + (B +iB-)<t> + (6 -*-i6 . ) 4> |<J> |2 = 0 4.4.2

3Z

Although 8r as used here is arbitrary at this point i t  w ill  be seen later 

that, in order that the solutions $ be bounded, 8r is in fact uniquely 

determined by the other coefficien ts o f 4.4.2. In fact 8r i t s e l f  must 

be expanded as a series , for which a condition is  deduced such that this 

expansion is va lid  to second order. Immediately we merely assume that 

8r is positive. This w ill in fact be ver ified  when the coeffic ien ts  

are e x p lic it ly  evaluated.

We suppose that 8̂  and 6̂  are small compared with the other 

coeffic ien ts and introduce a small imaginary part to the wave amplitude 

ip. This imaginary part is assumed to be of the same order as the
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We now attempt the perturbation expansioncoeffic ien ts 8̂  and 6^. 

about ij> which is a solutionof 4.4.2 with 0. = 6. = 0 and <|> rea l, i . e .O 1 1

a solution of

X 8 <j> r To + 6 0

One integration gives:

X
2 + 0 = 0 4.4.3

The d iffe ren t classes of solution now depend on the re la tive  signs of 

8r and <5r and the value of the constant o f integration 6. For the time 

being we assume that 8f  and 6̂ . are o f opposite sign, which w ill  be 

ju s t if ie d  la te r. The only non tr iv ia l bounded solutions which have 

the correct asymptotic behaviour is given by choosing:

1 2 2 0 = - j  bV

where

B2 = 8r /2x A2 »  ~3r  /<$r  4 . 4 . 4

With these definitions one further integration of 4.4.3 gives

4>o = A tanh [b£ + d] 4.4.5

where d is an arbitrary constant. I f  8r and are of opposite sign 

then

(J>o = A sech2 [Be + d]

and the analysis proceeds in the same way.

We now assume solutions o f 4.4.2 of the form:

2 2 iif> = (<(»o + + n $2 + ...)exp|i(n ')i1 + t> + . . . )|

where the <p. and are real functions and p is a small expansion parameter
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o
la te r  iden tified  with < . The coe ffic ien ts 6̂  and 6̂  are ordered as 

0(r|). Substituting into 4.4.2 and equating powers of n gives the 

following series o f equations.

2
0(1)  X -¿ -f0 + Br <t>0 + = 0

3 £
4,4.6

0(n) X -^-f1 + = 0
3 £

4.4.7

» o  -  -  Bi*o  -  V o3 s
4.4.8

0 ( n 2) X 7 7 f2 + Br*2 + 36r*o*23 s

* ( B 1) 2 * «  - 3w 2i
4 . 4 . 9

3 t 2 + 2y l i o  1 Î 2
*• 7? * !x 3Ç 3Ç

4.4.10

A ll high order equations have the same form, i .e .  the same d iffe ren tia l

operator on the le ft  hand side is repeated with d iffe rin g  right hand sides

depending only on lower order solutions. *̂n Present context only
2solutions to order n are required.

We shall now systematically solve equations 4.4.6 to 4.4.10. The 

solution of 4.4.6 has already been found and is given by 4.4.5. 

D ifferentiating 4.4.6 gives:

X
l i o ]
H  J

2
36 <T r o 0
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which comparing with 4.4.7 gives:

or 4.4.11

where G is determined by boundary conditions.

The solutions o f the remaining equations 4.4.8 to 4.4.10 are readily 

determined using the general theory o f d iffe ren tia l equations (e .g .

Moroe and Feshbach 1953). I f  we know one solution o f a homogeneous 

second order d iffe ren tia l equation then the other solution is readily 

obtained, i . e .  i f  y^ is one solution o f the homogeneous equation, the 

other solution is given by

The Green’ s function is now readily determined and hence the solution 

o f the inhomogeneous equation i .e .

is  a solution of the equation when the inhomogeneous term is  given by

The f ir s t  equation that must be solved is 4.4.8 for i^ since solving 

4.4.9 and 4.4.10 depends on knowing ij^. The details o f the solution 

o f equations 4.4.8 and 4.4.9 are given below.

Equation 4.4.8 is readily expressed as

x
4.4.12

y (x ) = yx(x) | f ( x ' ) y 2(x ')d x ' -  y2(x ) j  f ( x " ) y 1 (x ')dx"

4.4.13

f  (x) .

o v.

and substituting for <J>o gives



3_
35

One integration then gives:

2 2 A tanh [B5 ♦ d] ||1 »  f e i
*  L  BX

2 An-0 .AZ 6 .A ni  -  l
BX

[B5 + d]

^ß.A2 6.Al  -  l
An

BX BX

. r_^ n 6.A** tanh fB5 + d] tanh [B5 + dj + _ i_________hr- -----i
BX

Integrating again gives:

-B.-6.A' l  l
2-,

B2X

log| sinh [b5 + d] I + 5i A log| cosh [gC + d]|
2

ßB̂ X

[(B£ + d )2 -  (Be + d) tanh [Be + d]]

(B5 + d )Z -  log  I cosh [Be ♦ d] |] A . A . 14

This corrects the result given by Pawlik and Rowlands (1975) .

This solution is divergent and the divergence cannot be removed by adding 

solutions o f the homogeneous form of A.A.8. However, this is not a diverg

ence in any physical sense as occurs only in the argument of an expon

entia l function and so is merely a phase factor. But, the i)k must a l l  

be bounded and i t  is necessary that a ll but one of the terms in the 

expression for vanish in order that this be sa tis fied . This then 

gives the defin ition  of Br .

Before we actually solve A .A .9 we w i l l  use i t  to derive this condition. 

Rewrite A.A.9 as

D#2(5) -  F(S)

* ù  :
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where D is  the operator

and

* - 2 + 3 + 36 <j>r* r TnL i

,  ,2
F(Ç) = X(^f1) 'f’°  "  3Bi^o^l

I t  is easily  shown that D is  a linear s e lf adjoint operator and in order

that <(>2 be bounded the condition

j y(e)F(&)c£ = 0
— GO

must be sa tis fied , where y (g ) is a solution of 

Dy(C) = 0.

As we h.ive seen already y (g ) =* and so

CO

I  F (0  |lo df; = o

Substituting i|(. in the expression fo r F(£) and performing the integrals 

leaves nine integrals which do not identica lly  vanish i . e .  a ll integrals 

that are premultiplied by the factor 3* Therefore,

(-e.-a.A^)

which defines the constant Br introduced in 4.4.1 since

fi
6.l

4.4.15

This therefore dliminates a ll but the second term in 4.4.14. I t  can 

generally be concluded that the greatest divergence that can be allowed 

in the 6. is  linear in £ so that to next lowest order the remain bounded.



An apparent contradiction now arises with the above relationship 

between the coeffic ien ts o f 4.4.2. Since, multiplying 4.4.2 by <(>* 

and integrating gives

which may be sim plified further to give

oo CO 00

xj ff «  + <Br + i3.)J U t2dÇ + (6r + i6.)j |*| d Ç

where we have used (j)*d()i I d£ I "Now, equating real and imaginary parts and eliminating the | | d> |d£ 

term from the resulting two equations gives:

d4 = 0

which i f  4.4.15 is correct implies

. 2
d€

However, by inspection i t  is  seen that this condition is v io lated . I t  

can be seen that this arises because Br should in fact be expanded as a 

series in  n f i r s t .  Each term in this expansion could then be determined 

using the compatibility conditions as has already been shown. I f  this 

is done and the expansions fo r ((> included in the above analysis then the 

contradiction disappears. However, this is  unnecessary i f  we work to 

order n2 only, and i t  is su ffic ien t to retain only 8r as defined by 4.4.15.
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We now solve 4.4.9. By inspection one of the solutions o f the homo

geneous form o f 4.4.9 is  given by

<j>2 a sech^QBÇ + d]

Hence, by 4.4.12 the other solution is given by

$2 a sech2 [B4 + dl I ------r--------- dx
L J sech4 [>x+d]

= 7- sinh [j34+dj cosh [b4m3 + -g |tanh[B4+d]i + Q?5+d]J

Having obtained the two independent solutions o f the homogeneous form of 

4.4.9 the solution o f 4.4.9 is now obtained through integration using 

4.4.13. The solution of 4.4.10 follows a sim ilar pattern.

We now summarise the solutions o f equations 4.4.6—4.4.10.

*0 “ A tanh|j34<-d3

*1 = G sech2 [BÇ)-d[]

2
-G2 sech2 |É4+d] tanh [B4+d] - Bi tanh[B4+d]

A 902r

*1 = -26^ log [cosh Qi4+d[f] 

3Br

-26^ 0 tanh[Ê4+d] 
3Br A

We now note that

ip a
34

and that the f ir s t  term o f c(>  ̂ is proportional to 3^/34. Hence, in 

retaining terms to order n only we may consider as the f ir s t  term in
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a Taylor expansion of ant* ^2 as t*ie term ° f  an expansion of <J>̂.

So with this assumption we substitute the above in the expansion fo r <j> 

and fin a lly  obtain:

Comparing this with the solution of the nonlinear SchrSdinger equation 

we see the e ffe c t o f generalising the coeffic ien ts to have small imaginary 

parts leaves the solution essen tia lly  unchanged except fo r  a small decrease 

in amplitude, a physical translation and an osc illa tion .

4.5. Results

Having obtained the solution of 4.4.2 in a general form we can now

calculate the coefficien ts o f 4.3.19 ex p lic it ly  in terms of the variables

o f sections 4.2 and 4.3. For algebraic sim plicity we consider the long

wavelength approximation in the lim it of small k . A ll coefficien ts o f
2 2

4.3.19 are expanded in power series under the condition »  k Vg

and terms are retained as far as k only. These coeffic ien ts then

x exp 4.4.16

become

.2 2 2 . k k v yfE 1 s

6 + i6.r 1

2 CZ  2 . 2,2, 2 4—U f  ip fTt
6v U , 2s c  6uc

with A'2

and
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2 2 2 K k v pfE s
c

s
X

The remaining coeffic ien ts o f 4 .A. 16 are now given by:

and -  2n6i s
3 a)c

2
where the iden tifica tion  of n with k has been made

We can now calculate a ll variables o f physical interest since we have 

an ex p lic it  expression for In particular we w ill e x p lic it ly  calculate

the to ta l d .c. e le c tr ic  f ie ld  which w ill show the expected domain—like 

behaviour. Substituting fo r $ in 4.3.23 gives

to lowest order.

The constants G and d can now be determined by requiring that at

The e ffe c t  o f the nonlinear saturation is  seen to be a feedback of

The height o f the pulse is d irectly  proportional to E*  i . e .  proportional 

to the magnitude of its  cause as would be expected.

The e ffe c t  o f the saturation on the linear gain can be deduced from 

the nonlinear SchrSdinger equation. Multiplying the time dependent form 

by <(>* and subtracting the complex conjugate form gives:

4.5.1

T e 0 the tota l DC e le c tr ic  fie ld  is only the applied external f ie ld

e le c tr ic  f ie ld  2e^E  ̂ across the sample as a whole as well as a domain
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+ 2iei |<|)|2 + 2i6i  14.1A 0 A .5.2a (j) * _ a fY X _ _Y
2 *  »  r2

2,*

The second term may be written as

where

The resulting equation

2 + 2i6i |<(1|4 - 4.5.3

can easily  be interpreted by considering the instantaneous energy density 

and flux density.

The instantaneous energy density is defined as:

N 9
o u r  1 f au
a t j  2 c [ ax

and the instantaneous flux as

$ = 4.5.5
IN 3x 3t

We define the to ta l energy density W and the tota l flu x  density by averages

where < ...>  denotes an average which w ill  be defined later. Substituting
2

4.3.4 into 4.5.4 and 4.5.5 gives to order e

W

+ I  c ÏZ(u1pipku1qiqk)PpPq
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These expressions contain terms rapidly osc illa tin g  at the fundamental 

frequency and its  harmonics through '.he factors fo r |p| 4 |q| 4 1

as well as terms which have variation only on the slow time and space 

scales through the amplitudes uP̂  and u ^  when |p| = |q| = 1.

We now define the average < > as the removal o f a ll  rapidly o sc illa -

ting terms and keeping only the slowly varying ones, i . e .

w = <wIN>
p+q = 0

1W p+q = O

This gives

* = 2ckr Ò L. u i 2
(c k '-P ./ r

and W =
2.2, 2 ,2 ,e k (pis +ck ;
, .2 2.2(ck -pmr>

with the relationship

W

? ? 
(PwSck )

2coik
4.5.6

Hence 4.5.3 may now be interpreted as the energy equation fo r the system 

with the 3j/3e term representing the dissipation of energy.

We can now investigate the e ffe c t iv e  growth rate i . e .  the e ffe c t of 

the nonlinear wave saturation on the linear growth, i . e .  since

. 3J
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2 2+ u.i
e f f

e f f 6 . 2whe re 4.5.7b).1

Since is  u., the linear growth rate, and ô^/B  ̂ is  negative 4.5.7 

shows how the growth rate is reduced in the presence o f flux or energy. 

This is in agreement with Butcher (1971) .

I t  is common practice to try and derive a modification of the linear 

gain which is va lid  in the nonlinear regime. We w ill  now show that 

the saturation of the in s tab ility  is  due to a modification of the local 

d .c. f ie ld  and the equilibrium electron density nQ.

The linear growth rate given by 4.2.14 depends on the local f ie ld  

through Y. As we have shown, in the small Y long wavelength lim it

which disagrees with the result 4.5.7. Hence i t  must be concluded that, 

in the nonlinear regime the linear gain formula is not valid  even when 

the tota l local DC e lec tr ic  f ie ld  is used. However, 4.5.7 is reproduced 

i f  we write

where < ...>  is defined as the removal of rapidly o sc illa tin g  terms as 

before. Substituting for y and uc where u>c -  qpn^and performing the

(0 . l Y 1 + p fE

vs
o

and using 4.3.17 we see that

4.5.8

averaging reproduces 4.5.7
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4.6. Discussion

We have shown that the amplitude of a single acoustic wave excited 

in a p iezoelectric  semiconductor under conditions such that system is 

amplifying, saturates. The equation obeyed by the amplitude is to lowest 

sign ificant order the generalised nonlinear Schrddinger equation. 

Solutions to this equation were derived using a perturbation expansion 

based on the re la tive  magnitude o f it s  coe ffic ien ts . This solution was 

found to be domain-like and an e x p lic it  expression for the e le c tr ic  f ie ld  

domain was derived.

I t  has therefore been shown that domain-like solutions of t..e 

governing equations, White (1962) do ex ist in the sense that the domain 

is the envelope of the nonlinear wave. I t  is  therefore not necessary 

to include e .g . hot-electron e ffe c ts  or non-electric loss mechanisms in 

the governing equations (Ridley and Wilkinson 1969) to obtain the domain 

solution.

There are few experimental results with which the present work can 

be compared. Schulz and Wonneberger (1970) obtained a p ro file  for a 

stationary acoustoelectric domain in GaAs. They found that the single 

mode domain had a lower saturation fie ld  than a multimode case and that 

the single mode domain had a constant saturation fie ld . Although no 

comparison of theory and experiment can be made for the multimode case 

i t  has certainly been shown that the saturation fie ld  is constant.

However, the theory presented in this chapter cannot claim to be d irectly  

comparable with experiment even in the single mode case since rea lis t ic  

boundary conditions have not been used. The only boundary conditions 

that have been assumed are that the amplitude tends to zero at in fin ity .

I t  is w ell known that the boundary conditions resulting from a fin ite  size 

specimen can a ffect the fin a l domain shape considerably.

A comparison against other nonlinear theories can however be made. 

The approaches of Butcher (1971) and Tien (1968) consisted o f treating a ll
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nonlinear terms as second order compared to the linear terms. This 

is  unsatisfactory as, in the nonlinear regime the nonlinear terms must 

a l l  be of the same order as the linear terms and any perturbation expan

sion should take account of th is. No attempt was made to derive domain

lik e  solutions but expressions fo r the nonlinear saturation o f the gain 

o f time periodic waves were deduced. These are in broad agreement with 

the results found here. Slechta (1972) attempted to solve the fu ll  

nonlinear equations using a many time formalism. In view o f the 

comments in Chapter 1 this should in principle have led to the results 

found here. However, Slechta considered the problem of acoustic waves 

arising from thermal vibrations and showed that certain wave-wave interac

tions lead to saturation. This saturation is less fundamental than the 

saturation mechanism indicated here since we have shown that the satura

tion mechanism is inherent even in the case o f a single acoustic wave.

Within the present formalism Slechta ignored the feedback o f d .c. components 

to second order and investigated the e ffe c t o f higher order components only. 

Thus his work can be considered incomplete.

In view of the large number o f modes excited in a high f ie ld  domain 

a single mode theory as presented here can be considered as being to ta lly  

inadequate. In addition, the boundary conditions used were very sim plistic 

and again inadequate. An extension of the present work to include many 

wave interactions and rea lis t ic  boundary conditions is therefore required. 

The problem o f the interaction o f modulated plane waves through nonlinear 

interactions has been considered by Oikawa and Yajima (1973,1974). This 

work can be extended to nonlinear interactions in strongly dissipative 

systems and would lay a foundation for the study of the many wave interac

tions during domain formation.
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Appendix

We w ill  show that stable solutions o f the set of nonlinear equations 

describing the acoustoelectric e ffe c t , i . e .  equations 4.2.1 to 4.2.4, pf 

domain-like behaviour do not exist in the conventional sense.

Equations 4.2.1 to 4.2.11 can be reduced to a single th ird  order 

d iffe ren tia l equation fo r the e le c tr ic  f ie ld  E. Attempting solutions 

of the form:

In order to see whether stable periodic solutions o f A .2 exist we use 

standard techniques o f non-linear analysis (Minorsky (1962)). Equation 

A .2 is an autonomous system since le ttin g

E(y) = E(x - vdt)

gives

2V A.ls

D

where

2e - eh D

One integration then gives

a A.2

where a is a constant o f integration

Z
3E
ay

and so ¥  = Q(Z,E)

= R(Z,E) = Z 
dy

we see that
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A(Z,E) and R(Z,E ) have no e x p l ic i t  dependence on y . I t  is  evident that

Q(Z,E) =
vs

2

Equation A .2 has one c r it ic a l point (Z°,E °) defined by

R(Z°,E°) = Q(Z°,E°) = 0

where Zo 0

and E ha/oo

In order to investigate the existence o f stable periodic solutions o f A .2 

we use the w e ll known phase plane analysis. I f  stable solutions exist 

then Liapunov's second theorem must be sa tis fied , i . e .  given a d iffe ren tia l 

system with a single singular point the equilibrium is asymptotically 

stable i f  i t  is  possible to determine a function W whose Eulerian derivative 

W is of the sign opposite to that o f L.

By inspection i t  can be seen that such a Liapunov function can be 

chosen to be:

s

Then:

a s

and substituting from A.2 gives



Assuming

1 > 0

and h > 0

a > 0

then shows that L is indeed a Liapunov function since i t  is de fin ite  L > 0, 

vanishes at the c r it ic a l point and dL/dy < 0 .  The phase plane diagram 

fo r the system appears as:

where the d ifferen t curves correspond to d ifferen t values o f the constant 

o f integration.

Since we have found a Liapunov function we may conclude that solutions 

of A .l are asymptotically stable. However these solutions are not periodic 

since dL/dy  ̂ 0 and so the contours L = constant shown above are not 

tra jectories of the system. Since dL/dy < 0 any trajectory moves to 

decrease L and hence w ill  always spiral to the c r it ic a l point giving 

asymptotically stable solutions that are not domains.
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Chapter 5

A Nonlinear Theory of a Two-stream In stab ility  

in a Marginally Stable State

5.1 Introduction

Systems of d r ift in g  and interpenetrating plasma streams have received 

considerable theoretical attention during the last twenty years. There are 

two main reasons for th is:

a. Two-stream in s ta b ilit ie s , as the in s ta b ilit ie s  o f these systems with 

two streams are normally called are some o f the simplest plasma in s ta b ilit ie s  

and lead to particu larly simple and tractable dispersion relations.

b. Two-stream in s ta b ilit ie s  are in principle ve loc ity  space in s ta b ilit ies

i  .e . in s tab ilit ies  associated with the departure of the ve loc ity  space d is tr i

bution function from a Maxwellian distribution. They can however be equally 

well analysed using a macroscopic or microscopic formalism. By macroscopic 

we mean an electron flu id  hydrodynamic description and by microscopic a 

description using a k inetic equation such as the Vlasov equation. Two—stream 

in s tab ility  analysis therefore provides a good testing ground and comparison 

between the two descriptions of a plasma.

Further, the analysis in the linear theory is particu larly easy since 

the in s tab ility  is e lectrosta tic  in nature i . e .  associated with bunching and 

separation of charge and is easily  extended to apply to more complex model 

systems. We note however that magnetic f ie ld  e ffec ts  are normally excluded 

from the analysis but some studies o f two-stream in s ta b ilit ies  in magnetic 

fie lds have been made by Neuffield and Wright (1963).

In it ia l ly  we w i l l  consider more general aspects o f two-stream insta

b il it ie s  in terms of basic plasma theory without reference to any particular 

model. The number o f  possible in s ta b ilit ie s  is  quite large since the beams 

may be electron beams or ion beams, may be neutralised or current carrying, 

warm or cold and streaming or counterstreaming. Following this general 

discussion a b r ie f summary of previously published nonlinear theories is given.
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The linear theory is w ell understood and for cold plasma streams was 

orig in a lly  given by Haeff (1948) . A good discussion o f the e ffe c t  o f beam 

temperature on linear theory is given by V81k (1967) and a complete discussion 

is given by Clemmow and Dougherty ( 1969 ) .  Generally speaking, c r ite r ia  

are deduced for the s ta b ility  or in s ta b ility  o f linear waves depending on 

beam ve lo c it ie s , thermal spreads and boundary conditions.

Nonlinear theories have been concerned with three d ifferen t nonlinear 

mechanisms depending on the exact nature o f the system considered. These 

are the resonant particle-wave, non-resonant particle-wave and wave-wave 

interactions which w ill  be considered in turn.

a. Resonant wave-particle interactions. When the thermal spread o f the 

distribution function is such that the partic le  distribution overlaps the 

regions o f the phase ve locity  o f unstable waves resonant partic le  e ffects  

must be considered. These interactions occur when a wave in the system is 

resonant with some part of the partic le  distribution. This nonlinear 

interaction is analogous with Landau damping in the linear theory and is 

called nonlinear Landau damping (or growth) . The damping may change to 

growth and so lin early  stable or unstable systems may change to unstable 

or stable systems in the nonlinear regime. The interaction fundamentally 

consists of the interaction between electrons moving with nearly the same 

ve loc ity  as the wave. The partic le therefore sees an e ffe c t iv e  e lectrostatic  

potential well and oscilla tes in the w ell whilst moving along with the wave 

i . e .  partic le trapping. Depending on the exact properties o f the linear 

distribution function energy may either be transferred from the waves to the 

partic les or vice versa giving either enhanced growth or suppression of the 

in s ta b ility .

Partic le wave interactions are normally modelled using the Vlasov 

equation and quasi-linear theory or by examining large amplitude stationary 

states. Numerical studies by Armstrong and Montgomery (1967) and Berk 

and Roberts (1967) showed that waves which are unstable in the linear theory
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approach stable BGK waves in the long time lim it .  These nonlinear waves 

discovered by Bernstein, Greene and Kruskal (1957) are a d irect consequence 

o f partic le  trapping. I f  electrons are assumed to have a continuous d is tr i

bution of k inetic energy then some w ill  always be trapped in the potential 

wells discussed above. Bernstein et al showed that the localised  potential 

could be made consistent with the excess trapped electron density. This 

nonlinear equilibrium shows e lectrostatic  f ie ld s  which are spatia lly  periodic 

and are called BGK waves. A consequence o f this is  that there is no contin

uous flow o f energy into higher harmonics (which are stable by appropriate 

choice o f boundary conditions) and so allows the nonlinear state to be a 

single BGK wave rather than a highly turbulent state.

The quasi-linear theory o f the Vlasov equation w ill  not be considered 

here but w ill be considered in more deta il la te r . The resonant partic le 

wave interaction is not the dominant nonlinear process in most streaming 

in s ta b ilit ie s . The reason for this is that essentia lly no partic les have 

ve loc ities  near the phase velocity  of unstable waves and so nonresonant 

interactions are more inportant.

b. Non-resonant wave partic le interactions. I f  the distribution function 

is such that an overlap does not occur between unstable waves and the d is tr i

bution function then these interactions dominate. In most forms of the 

two-stream in s tab ility  the phase ve loc ity  o f unstable waves lie s  between 

the ve loc ities  of the interpenetrating streams,' the growth o f the in s ta b ility  

is not proportional to the number of resonant partic les . Instead, the 

in s tab ility  can be explained in terms o f charge bunching o f non-resonant 

particles as follows: a local in increase in  charge density w i l l  induce a 

charge perturbation in a plasma stream passing over i t .  Electrons passing 

over this bunch w ill  be slowed down due to the e lectrosta tic  f ie ld  induced 

by the bunch and these electrons w ill  therefore add to the perturbation.

We note that nonlinear BGK waves are s t i l l  possible when non-resonant 

partic le interactions are dominant but we w i l l  only discuss quasi-linear
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theory here. The quasi-linear theory consists o f solving the Vlasov 

equation by a perturbation expansion. The average distribution function, 

to lowest order, is assumed to have a slow temporal variation (two orders 

o f  perturbation h igh er). The perturbation distribution function to next 

order is then calculated as in linear theory. This procedure leads to the 

quasi-linear d iffusion  equations which describe the evolution o f the d is tr i

bution function in ve loc ity  space. Using the quasi-linear analysis fo r 

the two-stream in s ta b ility  shows that non-resonant partic le  d iffusion  does 

in  general lim it the growth. This however is only va lid  when fin ite  

temperature e ffec ts  are taken into account since quasi-linear theory has no 

meaning fo r cold plasmas.

The re la tive  unimportance o f resonant wave partic le  interactions demon

strates the essen tia lly  hydrodynamic nature o f the in s ta b ility . I f  a flu id  

description is to be used then there is  no mechanism fo r wave partic le  

interactions, resonant or non-resonant. Therefore wave-wave interactions 

must be considered.

c . Wave-wave interactions. Wave-wave interactions are considered in the 

hydrodynamic approximation in either cold or warm plasmas. Nonlinear e ffects 

are considered by studying possible nonlinear states following linear insta

b i l i t y  and by determining whether these nonlinear states are stable.

Analytic attempts at this have been made by Freidberg (1965,1967) and Knorr 

(l96i$ and w ill  be considered in 5.3. Numerical calculations have also been 

made by Buneman (1959) .

The nonlinear problem attempts to answer the question whether there exists 

a range o f wavenumbers which are linearly  unstable but which s ta b ilis e  at 

large amplitudes due to nonlinear e ffe c ts . We w ill  now b r ie f ly  discuss 

published work which attempted to answer this question. With the exception 

o f Stringer (1964) a l l  the theories discussed are within the framework of a 

warm or cold flu id  model with wave-wave nonlinear interactions.
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Stringer (1964), using the Vlasov equation obtained a nonlinear d is 

persion relation using an itera tive  procedure based on a WKB analysis. He 

applied his method both to current carrying and counterstreaming plasmas.

I f  his results are specialised to the system that w i l l  be considered in

5.3, i . e .  cold beams with equal masses and equal but opposite streaming 

ve loc ities  then the conclusion may be drawn that there are no linearly  

unstable modes which are nonlinearly stable (a further condition must be 

imposed to derive this result -  the spatia l average of the e le c tr ic  f i e ld  is 

zero. This is often referred to as the short circu it case).

Freidberg (1968) looked for trave llin g  wave solutions of the hydro- 

dynamic equations and again derived an amplitude dependent nonlinear disper

sion relation. From an analysis o f this dispersion relation he deduced 

that with a condition o f conservation o f to ta l current, i . e .  so-called open 

circu it boundary conditions, that a number of modes did exist which were 

linearly  unstable but nonlinearly stable. With short c ircu it boundary 

conditions Stringer's result was reproduced.

Freidberg and Armstrong (1968) in an analytic and numerical approach 

considered the nonlinear behaviour o f a single unstable mode which was excited 

by an appropriate choice o f boundary conditions. Again, they found that the 

nonlinear development o f the in s ta b ility  was strongly dependent on the choice 

o f boundary conditions fo r the e le c tr ic  f ie ld  and the same conclusions as 

Stringer were reached. The modes which stabilised were found to g ive a 

single nonlinear so lita ry  wave equilibrium. However, the system they con

sidered consisted of two interpenetrating electron ion streams. I f  th e ir  

method is applied to the model discussed in 5.3 then they conclude that a ll 

linearly unstable modes stay unstable in the nonlinear regime.

The main deficiency of a ll  the above theories is that the time development 

o f the system is not ex p lic it ly  considered but the state o f the system after 

a long time is deduced. The nonlinear theory presented in 5.3 again suffers 

from the same deficiency but does provide a test for the reductive perturbation



expansion against previous theories. In 5.2 we consider the linear theory 

for the particular choice o f two-stream in s ta b ility  and in 5.3 consider the 

nonlinear theory of the system near a marginally stable point using the 

expansion developed in Chapter 2. In 5.4 a comparison of the result is  made 

with the theories discussed above and suggestions are made fo r  further work.

5.2 Linear theory ,

We consider two one-dimensional electron flu ids , distinguished by the 

suffices a and 6 d riftin g  with some uniform ve loc ity  in the +x d irection .

The electron beams are neutralised by a uniform background o f ions which are 

assumed to have in fin ite  mass. This restricts  the va lid ity  o f this analysis 

to high frequency oscilla tion s only. Further we assume that both electron 

beams are "cold" and so ignore fin ite  temperature e ffe c ts . With these 

assumptions the relevant equations describing the system become, in one 

dimension, Continuity equation:

to give a closed system of equations. In these equations n  ̂ is the electron

e and m the electron charge and mass, eQ the d ie lec tr ic  constant and nQ the 

unperturbed electron density. In view o f the right-hand side o f 5.2.2 we 

see the only coupling between the two-streams is through the e le c tr ic  f ie ld  

E and see from the right-hand side of 5.2.3 that there is no unperturbed

i  = a ,6 5.2.1

Momentum transfer equation:

5.2.2

which are coupled with, Poisson's equation

5.2.3

density, v^ is the electron ve lo c ity , E is  the self-consistent e le c tr ic  f ie ld ,

e lec tr ic  f ie ld .



We now look for solutions of 5.2.1 to 5.2.3 o f the following form:

V.1 = V. + V.,exp i(kx-u t) lo  l l  r i  -  a ,  B

n.l = nQ + n ^  exp i(kx-mt) i  = a,S

E = exp i(kx-ut)

Substituting and linearising we see that in order that these solutions satisfy  

5.2.1 to 5.2.3 the following linear dispersion relation must be sa tis fied :

5.2.4
(u-kV ) ao

2 2 = e r 3

k and complex frequency u). To simplify the analysis we le t :

where w “ = e n /me • We now look for solutions o f 5.2.4 fo r a real wavevector p o o

V U + Vao

V„ U - Vgo

and by expanding 5.2.4 determine the quartic equation sa tis fied  by to, i . e .

(m-kU)4 -  (oj-kU)2 (2k2V2+2m 2)
P

which has the solutions
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re la tive  ve loc ity  of the two streams is less than the c r it ic a l ve loc ity  Vc . 

Conversely, for beams moving with a re la tive  ve lo c ity  V then perturbations o f 

a wavevector k less than a c r it ic a l value, given by 5.2.6 are unstable.

However, the growth rate goes to zero as kV •> 0 and we must distinguish between 

systems which may or may not be unstable. For a f in ite  system where, fo r  

example, periodic boundary conditions impose a res tr ic tion  on permissible 

values o f k we may or may not have in s tab ility  depending on the particular 

choice o f V. For in fin ite  unbounded systems where an in fin ity  of modes with 

d iffe r in g  wavevectors k may be excited there w ill  always be a class o f unstable 

modes and a class o f stable modes, whatever the value of V.

We wish to consider an in s tab ility  somewhat d iffe ren t to the ve loc ity  

induced in s tab ility  introduced above and w ill  consider an in s ta b ility  induced 

by a small charge imbalance in two streams moving apart with equal ve lo c it ie s  

at the c r it ic a l ve loc ity  Vc> I f  the electron beams are counterstreaming at 

the c r it ic a l ve loc ity  then a small perturbation in this ve loc ity  w i l l  cause 

in s ta b ility  and since then u has a double root according to 5.2.5 this system 

is marginally stable. We now see that i f  the in s ta b ility  is  induced by a 

s ligh t imbalance of charge between the beams and ion background in a marginally 

stable state then the complex frequency to goes from pure real to pure complex, 

through zero as the s ta b ility  boundary is crossed. This is therefore an 

example o f the inverted bifurcation as discussed in  Chapter 2, and we may use 

the nonlinear theory as given in 2.3. We w ill  see that this analysis is 

va lid  for a single mode perturbation at a particu lar wavevector kc and there

fore corresponds to an in fin ite  system driven at a particular frequency.

We look for solutions o f 5.2.1 to 5.2.3 o f the form:

Va — Vc

V8 =>" Vc

n a
S n 1 o

ne
3 no

E 3
E i‘

T al ' 

0 + ng l t 

Ejexp i(kx-rnt)
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where A is  a small parameter. I t  is easily  seen that the linearised dis 

persion relation now becomes:

where we have substituted for w from 5.2.7. In the lim it of small A we

Therefore, the frequency w fo r a real wavevector k is  either pure real or pure 

imaginary. We are only concerned with the pure imaginary solutions as the 

real solutions only represent space charge waves. We note that 5.2.10 gives 

only one solution which is unstable, i . e .  the positive square root which 

gives a growth rate o f:

We now have a situation where the magnitude o f the in s ta b ility  is proportional 

to the square root o f a small but arbitrary parameter A. Therefore the 

ordering necessary fo r the va lid ity  o f the general theory of Chapter 2 may

We have now completed the linear theory o f this particular two-stream 

in s ta b ility  and have derived an expression fo r the linear growth rate. 

Further, the conditions necessary for the va lid ity  of Chapter 2 have been 

sa t is fied . This general theory cannot be applied d irectly  as the equations

(m-kVc) 2 (m+kVc) 2
1 5.2.8

which again gives a quartic in <i>:

m4 -  (i)2 (3k2V 2 + AV 2k2) -  k4V 4A = 0c c c 5.2.9

P
can solve 5.2.9 to give:

5.2.10

or 2 5 .2.11

5.2.12

2now be achieved by assuming that A is 0(e ) and hence that uî  is  0(e)

o f the system 5.2.1 to 5.2:3 cannot be put in the general form 2.3.1. We



w ill  however show that despite this the same result is  obtained and as in 

Chapter 4 we w ill  work with the matrices o f the problem ex p lic it ly .

5.3 Derivation o f a nonlinear SchrSdinger equation

We look fo r solutions of 5.2.1 to 5.2.3 o f the following forms

00 +oo

IJ = Ĵ° + Z t  eYUY (x,5 )exp(ii.x)
Y=1 5.=—°° *

5.3.1

where t = et

5 = s x

and

The stationary state U° around which the expansion is made is  given by

+V

-V

n (1+E 4) o

n (l+e^6) o

we do not need to specify the value o f V at this stage and w i l l  see that i t  

given to f ir s t  order.

Substituting 5.3.1 into 5.2.1 to 5.2.3 and equating the i.th harmonic and y th 

order terms gives up to third order.

,1
l

5.3.2

5.3.3
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where

s / n + s , M 2. .
3t -  3£

s / *  = - 2 1

Vink 0 0 0 e/m

0 -Vi nk 0 0 e/m

l l  = n i  i,k o 0 ViHk 0 0

0 n ink o 0 -vink 0

0 0 e/eo e/eo ink

1 0 0 0 0

0 1 0 0 0

h  - 0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

' V 0 0 0 0

0 -V 0 0 0

1 i
s n0 0 V 0 0

0 no 0 -V 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

St =
n Alik o 0 0 0 0

0 n Aink o 0 0 0

0 0 0 0 0

5.3.4

-  <v* iqkv^ P P >.ap aq p q n
1 . , 1 ___-  <v. iqkva P P >.Bp Bq p q l

-  <(v* ipkn* + n1 ipkv* ) P P >ap v  aq ap  ̂ aq p q l

1 1 1 . 1-  <(v„ ipkn„ + n„ ipkv. ) P P >.
'  Bp v Bq Bp p Bq p q l
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! 2*

-  <(v^.iqkv^ + iqkv^ ) P P >„ap n aq ap  ̂ aq p q 1
1 2  2 1-  <(v„ iqkv. + v . iqkv. ) P P >.Bp 4 Bq Bp H Bq p q l

-  <(v^ ipkn^ + v* ipkn^ + n* ipkv^ + n  ̂ ipkv^ )P P >ap v  aq ap v  aq ap  ̂ aq ap r aq p q-  < (Vgpi p k n ^  + v ^ i p k n ^  + n ^ i p k v j^  + n j ^ i p k v ^ P ^
Bq Bp 

0

‘Bq Bp F Bq Bp

The same notation has been used as in Chapter 2. 

We impose the condition that

det Wx = 0 5.3.5

This immediately gives

V2k2 2to

or from 5.2.7

We note that 5.3.5 is only the requirement that there should be no rea l part 

of the frequency u, i . e .  had we looked fo r solutions proportional to 

exp iX,(kx-ut) then the matrix W? would have been a function o f ti>r which 

would have reduced to 5.3.5 under the condition ur •* 0. Therefore the choice

V => V is consistent with the assumptions o f the model. Equation 5.3.5,c

together with 5.3.2 gives

U \ -  <t>(f,ç)R i. = 1 5.3.6

u1̂  = 0 a. 4 i,o

where R is the right eigenvector o f Ŵ .

1

-1

-n  /V o

-n /V o
-Vik/(e/m)

We see by direct evaluation that
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and also note fo r completeness that the le f t  eigenvector _L is given by

V2ike
L = (1, 1, -V/n . V/n , )

We are again confronted with the d ifficu lty  of determining jU q since det Ŵ  

This only gives

E1 = 0o

and 1  ̂ 1n + n„ ao 8o
5.3.7

But considering the l  = 1 component of 5.3.3 gives

WU2! + 5.3.8

-ik <)>

v 1 R. ao 1

v j  R- Bo 2

nL Rl  + vaoR3 

nÎoR2 + VJoR4

Multiplying 5.3.8 by L on the le f t  gives

L.S - = 0

since by defin ition  L.W  ̂ = 0 and by inspection L.N^.R - 0. 

Direct evaluation o f this compatibility condition gives

ik * { vL>R1L1 + VBoR2L2 + naoRl L3 + vaoR3L3 + nBoR2L4 + V8oR4L4 }

which is  equivalent to

2<vL  -  VL> -  <nao + n8o)
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-  v l = 0. 5.3.9ao So

In order to complete the determination of we consider the l  = 0 component 

of 5.3.3. We consider each row o f this equation to obtain

(e/m)E 2 + 4^ao = 0 5.3.10a
O d T

- Sv1(e/m)E ‘  + 4^“ ° = 0 5.3.10b
O dT

iĤo = o 5.3.11a3t

iHgo = o 5.3.11b
d T

This, combined with 5.3.7 gives

, 2  ̂ 2 and n + n. = ao po 0 5.3.12

From 5.3.10(a) and (b) we obtain

3 / 3 t  ( v 1 -  V g  )  =  0ao So

and one integration together with the in it ia l  conditions v*q (£ = 0) 

v j (5 = 0) = 0 gives

1 1
V ■  V Q 

a o  $0
= 0

Integrating 5.3.11a and b, using the in it ia l conditions n* ( 5 = 0 ) =  nj (5 = 0)ao po

= 0 and combining this with 5.3.7 gives

1 1 „ n = n_ = 0ao So

We therefore conclude that:

U1 = 0 5.3.13— o

From the defin ition  of j3 . we now see that 5.3.8 reduces to
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0W ^ !2 + | f  =

which may now be solved for 

By inspection we see

and therefore



—x/v

—2

+1/V

.22n /V

„ Vo
2in e o

(♦ ) ' 5.3.15

Some o f the components of Û 2 have already been found, i . e .  5.3.12 and 5.3.10 

give

E 2 = 0

2 2n + n = 0  aoo go
5.3.16

As in Chapter 4 we consider the l  = 0 component o f 5.3.4. The f i r s t  two 

rows combined give

3 , 2  2 . „— (v — v ) = 03t ao go''
2 2Integrating and using the boundary conditions v^C ç = 0) = v ^ fÇ  = 0) = 0 gives

2 2v “ V. ao po
5.3.17

2
Although we have not exp lic it ly  determined the components of we need go

no further as we shall see that when these components are required to next 

order they occur only in the combinations given by 5.3.16 and 5.3.17 and so 

these terms may then be equated to zero. We are now ready to determine the 

nonlinear SchrHdinger equation. We require the l  = 1 component o f 5.3.4 

and multiply on the le f t  by 1. to obtain:

2 1
L W. U,3 + L M. -  1 + i  N, ^  1 + i  2 Æ 1 L S X 5.3.18

By inspection:
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s ,2

R1*” L * * + v L *R2* v , 2** + V i « *V ' L * * + V a o *  + R3Vao* + R1„  * 2 .*  R4 V62* + V e o *  + R4V6o<*> + R2
and so

¿•¿1 = - ik  {2 (v‘ 2 - v j , ) * *  + 2(v^q -  v*Q)*

v , 2  ̂ 2 v . V , 2  _ 2 v . x ,---- (n + nQ )<J>---- (n 0 + nQO)<i> }n ao 3o r n a2 32 o o

where we have substituted for R and Ij, We can now v e r ify  that the components

o f U 2 appear only in the combinations given by 5.3.16 and 5.3.17. Substi-
2tuting these results and substituting for _U2 from 5.3.15 gives

We now consider each o f the terms on the left-hand side o f 5.3.18.
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LM.
-  3?

. dq)(VR1L1-VR2L2+noL3R1+VR3L3+noL4R2-VR4L4+R5L5) ^

« t

by d irect evaluation using the de fin ition  of the matrix

L OjU 3 = L OjR. <f>

= nQAik ^ l L3 + R2LÂ

= -  2AikV

Combining these terms and a fter some rearrangement gives the required equation

„2,
i  Ü

3Ç a — £ -  b 4> I 4> I 2 -  c<{> 
3t

where

2V2k

b =
2k
2

we note that

A  -
the linear growth rate and that

1 f la = 2 (2

and c =

»



where H is the linear dispersion rela tion , i .e .

0) ^(1+A) uj ^(1+A)
H = -2------- -  + -E------- -  -  1

(o)+kV V  (w-kV )*c c

5.4 Results and Discussion

We have derived the equation sa tis fied  by the lowest order amplitudes 

and rewrite i t  fo r  convenience as

1 H  “  a ^ 2  ‘  ia I * ! 2 + y2\* 5.4.1H  3£.2 la

2
The co e ffic ien t Y represents the linear e ffe c t  due to the deviation of the 

system from the marginally stable state and is the square o f the linear

growth or attenuation rate. The derivation of 5.3 that led to 5.4.1 did
2

not assume that Y was either positive, or negative and hence 5.4.1 is

va lid  for the two-stream in s ta b ility  i f  the linear system is  stable or
2

unstable. I t  is  easily seen that b/a = 4k /3 is always pos itive .

Following the discussion o f 2.3 we may immediately conclude that i f  

the system is  stable in the linear theory then i t  shows in s ta b ility  in the 

nonlinear theory. Also i f  the system is  linearly  unstable i t  remains 

nonlinearly unstable.

This resu lt could have been deduced from the discussion in 5.1 and from 

the general resu lt of Chapter 2. In Chapter 2 (part 3) we showed that systems 

described by a particular set o f nonlinear d iffe ren tia l equations and having 

a marginally stable state lead to an equation such as 5.4.1 in the nonlinear 

theory. We also suggested that in view of the general result o f 2.2, and 

the example o f Chapter 4 that 5.4.1 is va lid  fo r systems described by more 

general systems of d iffe ren tia l equations (providing a marginally stable 

state e x is ts ). Therefore an equation such as 5.4.1 should be va lid  for the 

two-stream in s ta b ility  in cold plasmas.

In 5.1 we discussed previous attempts at nonlinear theories and found 

that the general conclusion reached, fo r cold plasma streams was that the



linearly  unstable system remained unstable in the nonlinear regime when wave- 

wave interactions are the only available mechanisms for nonlinear interaction.

Combining these two results would immediately have given the equation 

5.4.1 with the signs o f the coe ffic ien ts to be the same as in 5.3.19. We 

have therefore confirmed this result and deduced ex p lic it  forms fo r the 

co e ffic ien ts .

I f  thermal e ffe c ts  are included then the p oss ib ility  o f nonlinear s ta b ili

sation does exist according to previous theories. We therefore suggest that 

the method used in 5.3 when applied to the two-stream in s ta b ility  fo r  warm 

plasmas should confirm this. The simplest modification to the system of 

equations 5.2.1, 5.2.2 and 5.2.3 to include f in ite  temperature e ffects  would 

be the replacement o f 5.2.2 by

Ï ï x
at

3v.
Vi 3xl n.l

i)n -j 
3x -  -  E m 5.4.2

where v is  the sound ve locity  in an electron plasma. This equation is 

va lid  under the assumption o f isothermal compression. The system described 

by 5.2.1, 5.4.2 and 5.2.3 again allows a marginally stable state.

Then an equation o f the form 5.4.1 would be va lid  fo r  this system where 

the coe ffic ien t b would be a complex function of <a, vs , V and k. I f  there 

exists a range of wavenumbers fo r which stabilisation  occurs then the sign 

o f b w ill change from positive to negative as k moves in to this range.
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Chapter 6

The Crossed F ield In stab ility

6.1 Introduction

Crossed f ie ld  devices, i . e .  devices whose mode of operation depends on 

the presence o f an electron beam and mutually orthogonal e le c tr ic  and magnetic 

fie ld s  have received considerable theoretical and experimental attention 

during the la st fo rty  years. These devices, normally called magnetrons 

have been important sources o f microwave power for radar systems and 

communication systems. The magnetron is  a cylindrical device having a 

re-entrant beam and resonant cavities around this beam to extract the power 

from the beam. The majority o f the work during and a fter the second world 

war was concentrated on the cylindrica l magnetron. The attraction of the 

magnetron was the fact that in principle i t  should provide higher sources of 

power than trave llin g  wave tubes or klystrons because the beam current 

density can be increased without lim it simply by increasing the magnetic 

f ie ld .  However, i t  was soon found that magnetrons were inherently noisy 

and unstable devices at a l l  levels o f operation. These drawbacks were over

come to a certain extent to provide useful devices. Since magnetrons are 

re-entrant devices analysis of their mode of operation is d i f f ic u lt  and 

during the last twenty years attention has been focussed on a linear version 

of the magnetron, normally called the crossed f ie ld  linear am plifier. These 

devices consist of an electron beam flowing between paralle l electrodes in 

crossed e le c tr ic  and magnetic fie ld s . They have in turn become of some 

coinnercial and m ilitary in terest as microwave amplifiers and a high le v e l 

of research has been maintained in recent years.

Although the discussion above has concentrated on the microwave device 

aspect o f crossed f ie ld  electron beam flow the problem is of more general 

in terest. Plasma confinement schemes and the possib ility  o f crossed f ie ld  

interaction in the ionosphere have provided motivation for a study of
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crossed f ie ld  flow in systems other than microwave devices. However, as 

the orig ina l stimulus fo r this work came from an in terest in microwave devices 

and as the approximations necessary fo r studying these other systems d i f fe r  

considerably from those necessary fo r microwave devices we w i l l  give no 

further attention to these systems other than c ite  Dysthe, Misram and 

Trulsen (1975) and Weng and Ma (1975) as giving good discussions of these 

systems.

We w ill  now b r ie f ly  review the literatu re re la tin g  to crossed f ie ld  

electron beam flow . Hull (1921) considered the e f fe c t  of a superimposed 

magnetic f ie ld  on the flow of electrons between coaxial cylinders. He 

predicted that below a c r it ic a l anode voltage no electrons should reach the 

anode and the flow would be cut of f .  He found a rough agreement between 

his theoretical and experimental findings. Very l i t t l e  work was done on 

crossed f ie ld  flow between the time of publication of this orig ina l paper 

and the early 1940s. The magnetron work done during the subsequent few 

years was c la ss ified  and l i t t l e  was published until 1951. Summaries o f 

this c lass ified  work were published by Buneman (1951,1957). The main 

features found were that a cu t-off of beam current did not occur as was pre

dicted by Hull and that magnetrons were unstable and noisy under certain 

conditions. A considerable amount o f work was done on anode—cathode 

configurations to u t il is e  the amplification properties of crossed f ie ld  

beams for microwave beams in magnetrons.

Sustained in terest in crossed f ie ld  flow led to the linear electrode 

configuration and the p oss ib ility  of using these linear beams as an ampli

fying medium was f i r s t  realised by Buneman (1950). As with the circu lar 

magnetron the device was found to be highly unstable and beam turbulence was 

found to set in very rapidly. Again, anomalous anode currents were found 

below the theoretical anode cu t-off vo ltage. A good summary of the early 

findings of linear crossed f ie ld  research is  given in Okress (1961) .

162



Theoretical work was concentrated on the problems of amplification of 

slow waves at the expense o f beam energy and in deriving the dispersion rela

tion fo r  d iffe r in g  electrode configurations. A great deal of confusion has 

arisen because, as we shall see in 6.3, there are a number of d iffe ren t 

d istinct in s ta b ility  mechanisms in crossed f ie ld  flow and these were never 

correctly isolated and id en tified . The term "crossed f ie ld  in s ta b ility "  was 

used to describe a l l  these in s ta b ility  mechanisms. The problem of explaining 

the anomalous cu t-o ff current has received less attention. The work of 

Mouthaan (1965) aimed at predicting this current on the basis o f a diffusion 

theory based on the Fokker-Planck equation. Mouthaan used one of the dis

persion relations derived by Buneman (1961b) and obtained a value fo r the 

anomalous current when the beam was unstable. This was found to be in 

rough agreement with his experimental findings. Lindsay (1960) and in many 

subsequent papers, attempts to explain this current by systematically inte

grating the equations of motion for an electron in a ve loc ity  space des

crip tion . He predicts the anomalous current i f  the electrons on leaving the 

cathode have a wide distribution of thermal v e lo c it ie s . However, under the 

e le c tr ic  and magnetic fie lds normally used in linear am plifiers, the thermal 

ve locity  distribution must be considered neglig ib le in view of the rapid 

particle ve loc ities  achieved on emission.

In this chapter we wish to concentrate on the problem of in s ta b ilit ie s  

in crossed fie ld  flow rather than the problem of predicting the anomalous 

anode current. We also, as fa r a3 possible, concentrate on the plasma 

e ffects  in devices rather than the interaction of the beam and complex slow 

wave structures. This is found to be d if f ic u lt  as the boundary conditions 

are shown to play an important role in the behaviour o f the system. The 

electrodes are assumed to be plane para lle l structures throughout the chapter.

In 6.2 we consider the possible steady state flows of a plasma in 

crossed e le c tr ic  and magnetic fie lds  and discuss the assumptions necessary 

to develop the theory. With reference to microwave devices the hydrodynamic
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description of the plasma is found to be appropriate. A number o f d ifferen t 

flows are found to be possible, the most lik e ly  being the plane para lle l flow 

with a ve loc ity  gradient across the beam, ca lled  Brillou in  flow . We then 

show how the beam may be placed between plane para lle l electrodes and deduce 

the theoretical I-V characteristics o f the system. We find that fo r  the 

emitting cathode configuration that a beam in  contact with the cathode and 

with one free surface is the only possible flow . However, fo r  beams 

injected into a crossed f ie ld  device the beam may be positioned anywhere 

in the interelectrode space by varying the electrode potentials and the 

beam current. This finding is significant, as we shall show la ter that the 

former beam configuration is  not unstable to certain perturbations which 

cannot be said fo r the la tte r .

In 6.3 we consider a linear theory of the electron flow based on a 

conventional Fourier expansion. In 6.3.2 the dynamics of the beam are con

sidered separately from the boundary conditions and a d iffe ren tia l equation 

describing the behaviour of ve locity  perturbations along the e le c tr ic  f ie ld  

is  derived. The choice of this variable as the dependent variable is d is

cussed and i t  is found to be the most physically meaningful variable that 

can be considered. By an appropriate choice o f parameters the ve loc ity  

s lip , a crucial parameter in the theory, is  carried through and is not 

confused with other parameters o f the system as has so often been done in 

the past.

In 6.3.3 the boundary conditions for the d iffe ren tia l equation are 

considered and a general method for determining them is given, fo r d ifferen t 

confining electrodes. In 6.3.4 the d iffe re n tia l equation o f 6.3.2 and 

the boundary conditions of 6.3.3 are combined to give the dispersion relation . 

Although the dispersion relation is general in the sense that solutions of 

the d iffe ren tia l equation are not known the s ta b ility  of the system can De 

determined and three separate in stab ility  mechanisms are id en tified . In 

6.3.5 one of these in s ta b ilit ie s , the long wavelength in s tab ility  is



considered in great deta il and an ex p lic it  expression for the growth rate is 

given.

Finally in 6.4 the long wavelength crossed f ie ld  in s ta b ility  is  

related to the two-stream in s ta b ility  considered in Chapter 5 and suggestions 

are made as to how a nonlinear theory o f the in s ta b ility  may be developed 

using the general theories of Chapters 2 and 3.

6.2 The steady state

We wish to consider the possible steady state flows o f an electron beam 

in crossed e le c tr ic  and magnetic f ie ld s . Since we are particu larly  interested 

in crossed f ie ld  microwave devices we w i l l  in it ia l ly  consider the assumptions 

necessary to develop a linear theory consistent with this in terest. The 

geometry of the system to be considered is  shown below.

Anode ---- y

Q B
* a

Region 3

/  /  /  / A / ¥ ° / ¥ ¥ / - * / . / / e g i > y /

Region 1

Cathode Vc

FIG. 1

The following is a l i s t  of the necessary assumptions, both for the steady

state theory presented here and for the linear theory o f 6.2.

1. R e la tiv is tic  e ffec ts  are ignored. Since electron ve lo c it ie s  attained 

in most microwave devices correspond at most to energies of a few keV 

re la t iv is t ic  e ffec ts  may be ignored. (This is  consistent with 6 below).

2. The system is treated as being two-dimensional only. A ll variables 

are assumed to be independent o f the z coordinate, i . e .  along the 

superimposed magnetic f ie ld .  Buneman (1961b) has considered the e ffe c t  

of variations in the z direction and found no additional e ffects  in the 

steady state analysis and only small e ffects  in the perturbation analysis.
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We therefore assume no z dependence which considerably s im p lifies  the 

analysis.

3. Thermal e ffe c ts . No thermal motion of electrons is  assumed and the 

plasma is assumed cold. Thermally emitted electrons from a cathode 

are drawn into crossed fie ld  flow and the distances that electrons 

travel at thermal ve loc ities  are insign ifican t with distances trave lled  

in s ign ifican t time periods fo r the system, e .g . r . f  periods, plasma 

frequencies and cyclotron frequencies.

4. Collis ions. Given typ ical charge densities in microwave devices c o l l i 

sions between electrons are infrequent enough to be neglected.

5. The plasma is  unneutralised. We assume that electrons are the only 

charged partic les present in the system. Gould (1957) has shown that 

i f  the plasma is neutralised then the in s ta b ilit ies  discussed in  5.4 

are a l l  suppressed.

6. The magnetic fie ld  associated with the electron motion is ignored. I t

is well known that the self-magnetic f ie ld  induces forces that are smaller 

by a factor of v2/c2 than forces created by sta tic  externally applied 

fie ld s  or space charge fie ld s . Buneman >(1961a) has considered s e lf-  

magnetic interactions on a certain class of space charge flows in 

cylindrica l systems. I f  these results are extrapolated to lin ea r 

systems then there are no s ign ifican t differences in the analysis.

This assumption is consistent with L. above since r e la t iv is t ic  e ffe c ts  

are comparable with self-magnetic e ffects  and i f  one e ffe c t is  neglected 

then the other must also be neglected.

I t  is evident from the above considerations that the hydrodynamic des

cription o f the electron stream is appropriate for this system. The hydro

dynamic equations for a plasma of only one species with no co llis ion s  and 

zero pressure gradient are given by the momentum transfer equation:

+ eE + eVA B = 0 , 6.2.1
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and the continuity equation:

+ V.(pV) = 0 6.2.2o t

These equations may then be coupled with Maxwell's equations to give a closed 

set o f equations:

V.E = -p/eo 6.2.3

V.B = o 6.2.4

Va E = -a  B/at 6.2.5

VoVa B = e 3-  + pV 6.2.6
°  at

Since self-magnetic fie ld s  are neglected 6.2.4 may be neglected and the righ t- 

hand side of 6.2.5 may be equated to zero. The e lec tr ic  f ie ld  then becomes 

curl free and consequently an e lectrostatic  potential <f> may be used.

in the steady state we assume the following forms o f the e le c tr ic  f ie ld , 

the magnetic fie ld  and the ve loc ity .

B = (0 , 0, -  Bo)

E = (0 , Ko(y ), 0)

V = (V (y ) , 0, 0)

Substituting 6.2.7 into 6.2.1 immediately gives 

V(y> = Eo (y)/BQ

i .e .  the x directed v e lo c ity  has a shear or gradient in the y direction and 

each electron d r ifts  in  the x direction at the local E/B ve lo c ity . In this 

flow the force on the electron due to the e le c tr ic  f ie ld  is balanced by the 

Lorentz force. Poisson's equation 6.2.3 gives:

dK (y)
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and i f  the charge density is  assumed constant then:

E Q(y) = ~ (p/eo)y -  cL

and the potential becomes:

o

where and Ĉ  are constants. These constants may be determined by the

boundary conditions at the anode and cathode but at this stage i t  is  su ffic ien t 

to note that the potential <j> has a minimum. The ve loc ity  s lip  or shear A is 

given by:

We note that this solution is not unique but is a special case o f a class of 

more general flows. Other possible space charge flows include Double Stream 

Flow and Benham Flow which are discussed in deta il by Smol (1971). These

other flows w ill  not concern us here but i t  is interesting to note, as Smol 

(1971) has shown, that under certain conditions a ll these d ifferen t space 

charge flows lead to the same relationship between beam current and applied 

p o ten tia l.

A = d-v-̂ - = 4 (E (y)/B )dy dy o J o

1 dK (y)
B -----3---o dy

P

'which in terms of

given by

A 6 . 2.8

whe re 2 e P 
meP o

eBoc
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We now note some further consequences o f the space charge flow described 

by 6.2.7 and 6.2.8 fo r electron beams between confining electrodes. This 

space charge flow, i . e .  a stream of electrons flowing between confining 

electrodes is only possible i f  electrons have come an in f in ite  distance (since 

there is no ve loc ity  component in the y d irection . I f  the electrons leave 

a cathode a fin ite  distance away then they must have le f t  th is cathode with 

no thermal emission energy (this is  im plicit in assumption 3 ). This implies 

that the electrons leave the cathode with zero ve lo c ity  and that there is  no 

component of magnetic f ie ld  normal to the cathode surface. This implies 

that the curl o f the canonical momentum or action function is  zero in i t ia l ly ,

i .e .  VA(mV) = ed 6.2.9

Gabor (1945) has shown that i f  the curl of the canonical momentum is  zero 

in i t ia l ly  then i t  must remain zero at a ll points between the emitting cathodes 

and in the fina l equilibrium distribution. This result is  used in the 

Hamilton Jacobi formalism used by Macfarlane and Hay (1951). The j  component 

of 6.2.9 then gives

- »  = A3v ----  c

i . e .  u ) = o ) = A  6.2.10
P c

The electron beam flow described by this condition is called Brillouin flow 

(B rillou in  (1945)) and is  normally considered to be a too res tr ic tive  

stationary state for a study of crossed fie ld  in s ta b ilit ie s  although in 

principle i t  is the only possible flow with a ve lo c ity  gradient under the 

assumptions 1-6 given above.

Plasma streams where 6.2.10 is not sa t is fied , i .e .  with unequal plasma 

and cyclotron frequencies and consequently through 6.2.8 with arbitrary 

ve loc ity  gradient are possible i f  some of the assumptions are not made. For 

instance co llis ions may change the canonical momentum by changing the ve loc ity
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and hence in a dense plasma in a su ffic ien tly  high magnetic f ie ld  the condi

tion 0)̂  < uic may be sa tis fied  giving a small ve loc ity  gradient. Sim ilarly 

i f  self-magnetic e ffe c ts  are not ignored then curl (mV-eA) is not zero 

in i t ia l ly  and the conditions assumed by Gabor (194b) are then not sa tis fied . 

Therefore in the fin a l equilibrium distribution curl (mV-eA)  ̂ 0 and conse

quently Up  ̂ uc . We note that < a>c and the equality represents a 

lim itin g  case.

A number o f authors, including Smol (1971) have given much consideration 

to the problem of launching a Brillouin team between suitable electrodes 

(A good bibliography of this problem is given by Smol) . For our purposes 

i t  is  su ffic ien t to note that devices exhibiting an unstable Brillouin 

beam have been constructed and re ly  on creating a Brillouin beam from a 

sp ec ia lly  shaped electron gun and launching this beam into a crossed f ie ld  

confi guration.

In 6.3 i t  w i l l  be shown that the position of the beam re la tive  to close 

or distant electrodes is c r it ic a l in determining the s ta b ility  or in s tab ility  

of a Urillouin beam (or a beam with arbitrary ve loc ity  p ro f i le ) .  I t  is 

therefore instructive to show how a Brillouin beam may be placed in any 

position re la tive  to the confining electrodes and to derive the I-V 

characteristics o f Brillouin beams.

We suppose tnat the confining electrodes are perfectly  conducting plates 

located at y »  y^ and y = y^, being at potentials Vc and respectively 

where is positive with respect to V^. The beam lies  between the plates 

y^ and yc where y^ may be coincident with ya and yc may be coincident with 

y^. We must now solve Poisson's equation in regions 1,2,3 of F ig . 1 and 

match potentials and e le c tr ic  fie ld s  at the boundaries. Without loss of 

generality we assume yfl = 0.

In region 1,

.2 .
“ ?1 = 0 with <(1. ( 0) = <p
~~2 Cdy

170



which gives

«(^(y) “  aiy + ij>c 6.2.11

for yb >  y 0

In region 2,

.¿ i|2(y ) = p/e
dy2

which gives

<t|2(y) = § e “ c2y2 + a2y + a3 6.2.12

for yb -s y * yc

where we iiave used Che equality o f 6.2.10 to define a Brillouin beam.

In region 3,

^ - j 3 ^  = 0 with <J>3(ycl) = <t>a
dy

whicii gives

‘t> 3 ( y ) -  a4(y -yd) + <t>a 6.2.13

for yc i  y < yd

We must now determine the coefficien ts a^-a^. In region 2 we have one further 

relation , i .e .  conservation of energy.

mV2(y ) = e<(>2(y ) 6.2.14

wnere the Brillouin ve loc ity  V(y) is given by:

V(y) — w^y + c 6.2.15

where c is  a constant.

We can now determine the I-V characteristics o f this system and determine

\





We may now rela te ttie parameter c to the beam current J as follows. The 

beam current is defined by:

i C= j upV(y)dyyb
where to is the beam width in the z d irection . Evaluating this in tegra l gives

(yc2_yb2) + c (y c"yb)}  6.2.23J = to_

We normalise this current with respect to the maximum beam current attainable

when the beam f i l l s  the space between the electrodes. In this case

v, = 0, y = y and c = 0 which gives ■'b ’ 1 c b

JMAX “  “ p i = £ )
and so we define

-* “ '"MAX 

Combining 6.2.23 with 6.2.22 gives:

2 2 +co y (o y, 2 2  2 2 0 2 2e ✓ . , \
cyc ^  yh -  un y , + 2“ c ydyc m ~ ^a Vc ■'b c 'c

(yc “  yb>

With ti>e defin itions

2co Yj c7 d

yb

yd = d

this relation may be sim plified to give

d) 2e
( ♦ . - O2 .2 Ta Yc' niio a c

We define a potential <f such that
,k



and normalise with respect to th is poten tia l

^ = $/<l>k

The physical significance of this normalising potentia l is that a single

electron leaving the cathode at zero potential w i ll  ju st fa i l  to reach the

anode when this is at the potential <(> .K
With the further de fin ition  

6 = t/d

i . e .  6 represents the ratio o f beam width to interelectrode space we obtain

j  = |Zb 62 + 63 -  62 + 6.2.24

We can now eliminate y  ̂ by squaring 6.2.23, normalising and equating the 

result to 6.2.20 which a fter some algebra gives

lb  = l &2 [aCj-a2) - (<53-262 + (2(iJ.a-i|>c) + j)6  - 2jJ 6.2.25

F inally, combining 6.2.24 and 6.2.25 gives the required relation , i . e .

65 - 264 -  j C2(<|»a- * c) + j }  5 + 2 j2 + 2 (*a+t|<c)62 = 0 6.2.26

which is a quintic equation fo r  the beam thickness given particular values 

o f the beam current and anode and cathode potentials • I t  is  easy to see that 

this equation has at most two positive roots, i . e .  physically meaningful roots 

Solutions of 6.2.2fe are known i f  <fc is set to zero. Then 6.2.26 

factorises to give:

(S2- j ) (S 3-2<52 + (2i|>a+ j)6 -  2 j) = 0

with solutions

62 = j 6.2.27

63 -  262 + (2i|/a+ j) -  2j = 0 6.2.28
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where we have the conditions 0 £ 6 ^ 1 and j  {  1.

I f  6.2.27 and 6.2.28 are both simultaneously sa tis fied  then from 6.2.25

yb “  0

and from 6.2.28

,pa  “  *T (2 -  /T )

This represents a beam in contact with the cathode and displaying the IV 

characteristic o f iirillou in  flow as demonstrated by Smol (1971). For this flow, 

condition 6.2.20 shows that c = 0 and that the ve loc ity  p ro file  of the beam 

is  given by:

V(y) = mcy

The beam thickness varies as the square root of the beam current according 

to 6.2.27 and in the lim it j = 1 the beam current is  a maximum as would be 

expected with 6 = 1, i  ,e . the beam f i l l s  the inter-electrode space.

I f  6.2.27 only is sa tis fied  then the lower edge of the beam is not in 

contact with the cathode but this edge is  at the cathode potential. This

type o f flow  is probably non-physical. I f  6.2.28 only is  sa tis fied  then the

beam lie s  somewhere between the electrodes with the beam edge potentials 

lying at some value between 0 and The position of the beam and its

width depend on the value of <)> and on the current density J. The most lik e ly

type of flow fo r  an emitting cathode crossed f ie ld  device is  given by the

simultaneous conditions 6.2.27 and 6.2.28 since fo r  these c = 0 which is  

consistent with the assumptions o f the system (particu larly  assumption 3 ).

For the case when 6.2.28 only is sa tis fied  the flow can be achieved by in jec t

ing an electron beam into a crossed f ie ld  configuration.

Although we have only discussed in deta il configurations which can arise 

under the conditions o f Brillouin flow we have already noted that i f  any 

assumptions are neglected more general types o f flow are possible.

We can therefore in general consider systems with the following character- 

is t ic s :
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1. A plasma stream flowing in a fixed direction with a ve locity  s lip  

gradient of this ve locity  s lip  is generally given by:

The

where the plasma frequency and cyclotron frequency are not equal. (In

fact a) «  m can be attained and provides an interesting exactly P t
solvable system in the linear perturbation analysis in 6.3).

2. At least one conducting plate some distance away from the beam. The

conducting plate is  required to support the positive charge necessary to 

neutralise the negative charge of the beam. I f  two such electrodes ex is t 

then they f ix  defin ite potentials at some distance from the beam. The 

plates may be su ffic ien tly  distant compared with disturbances in the 

system to have neglig ib le e ffe c t  on the system. Conversely they may 

be comparatively near and have a profound e ffe c t  on the behaviour o f the 

system. (In  a crossed f ie ld  amplifier an emitting cathode and an anode 

capable of supporting a slow wave would be present) .

Civen the above two characteristics enables us to consider a l l  the insta

b i l i t ie s  that have been called crossed f ie ld  in s ta b ilit ies  and to iden tify  the 

parameters responsible fo r the in s ta b ilit ie s .

6.3 Linear analysis of crossed f ie ld  in s ta b ilit ies  

6.3.1 Introduction

Following the discussion of 6.1 we consider the following system :

©  B

z
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with a steady state defined by

E - (0, E (y ), 0)

B = (0, 0, -Bq)

V = (VQ(y ),  0, 0)

2
where dV(y)/dy = /wc

p = p = constant o

I t  is convenient to consider the system from a frame o f reference moving 

with the ve loc ity  of the centre o f the beam. In this frame o f reference the 

top and bottom edges of the beam appear to be moving in opposite directions 

with equal ve loc ity .

We w ill  consider the perturbations of the system propagating in the +x 

direction and consider these perturbations to be o f the form

. . i(kx-u t)
<j>(y) exp

since we cannot Fourier analyse in the y coordinate due to the dependence of 

the steady state on this coordinate.

I f  oj and k are real then the perturbations move in the x direction with 

phase ve locity  m/k. However, electrons moving in the x direction w il l  in ter

act with the wave at a frequency m-kV(y), i . e .  at the Doppler sh ifted freq

uency. Interaction w ill be strongest when this frequency is  aero since 

then the electrons stay in phase with the wave and so have a longer time to 

interact with i t .  We therefore expect some interaction when

m-kV(y) = 0

which is called the synchronous interaction . Sim ilarly energy exchange is at 

a maximum when the Doppler frequency is equal to the cyclotron frequency, i . e .

m-kV(y) =» u>c

wnich is called gyroresonance.
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We would also expect an interaction when the wave frequency coincides

with the plasma frequency However, no resonances have been found at

this frequency and this fact ultimately governs the choice of equation

describing the dynamics o f the beam (this point is discussed more fu lly  in

6 .3 .2 ). (For a true Brillouin beam when id = id the two resonances coincidep c

and cannot be distinguished but since in systems when  ̂ ioc the plasma 

resonance is  not found we assume that in the Brillouin beam the resonance is 

a gyroresonance rather than a plasma resonance).

Having defined the system we are to consider we now divide i t  into two 

d istinct but interacting parts. The f ir s t ,  the internal dynamics of the beam 

leads to a d iffe ren tia l equation for the perturbed variables of the system.

The second, the behaviour of the velocity and e le c tr ic  f ie ld  outside the beam 

provides the boundary conditions for this d iffe ren tia l equation. Therefore, 

combining the two parts gives the solutions o f the d iffe ren tia l equation and 

hence its  eigenfrequencies.

6.3.2 Electron beam dynamics

We consider equations 6.2.2 and 6.2.1 in component form and look for 

solutions o f the form:

uX = Uxo(y) + “ x l (y *t ’ x)

uy - uy l (y »t ,x )

uz = 0

p - PQ + p 1(y »t ,x )

EX = Ex l (y ,X ,t )

Ey = Ey0(y ) + Ey l (y ,t ,x )

Bz = Bo

where the subscript 1 refers to perturbed quantities. We define

3U (y) xo
3y A /idc
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Substituting the assumed forms into 6.2.1, 6.2.2 and 6.2.3 and linearising 

gives the following equations:

3Ux l + U 3U

3t
x l + U , A =yi3x “ i  <Exl U . B ) y l o '

3U 1 + U 3U
i  “ "  “  (£..1 + Ux l V

3t 3x m y l
6.3.2.1

3Pl + po
f 3U .  ̂ 3U ,] xl + y l + U 3pl  = 0

3t 3x 3y XO 3x

3E - 3E . „ ,__xl + y l = Pĵ /e
3x 3y

We now suppose that a ll perturbed quantities vary as exp i(kx-mt) and define

U . x l = U(y) exp i  (kx-uit)

U iy i
= V (y) II

pi = p(y) II

Ex l =* EX(y) II

V => EY(y) II

Substituting these expressions into the set 6.3.2.1 gives:

U(-iu) 

V (-idl 

P (-id)

+ ikU ) + V(A -  w ) = - £  EXxo c m

+ ikU ) xo
+ Uu)c

_ e
m EY 6 .3 .2 .3

+ ikU ) xo
+ p i n  + iku]

o [3 y  J
ss 0 6 .3 .2 .4

ikEX
 ̂ 3EY

3y
p /e 6 .3 .2 .5

where we have omitted the functional dependence of a l l  quantities for the 

sake of c la r ity . One further equation is required to solve fo r the fiv e  

variables U, V, EX, EY and p . This relation is :

ikEY SEX
3y

6.3.2.6
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which follows from the z component of 6.2.5 under the magnetostatic approxima

tion. We may now eliminate EX, EY, U and to obtain a single second order 

d iffe ren tia l equation fo r  the variation of the perturbed ve loc ity  V in the 

y direction. A fter some algebra we obtain:

We have chosen V to be the dependent variable of this analysis fo r two 

reasons. F ir s t ly , as we shall see in 6.3.3 when boundary conditions are 

considered that only V appears in the expressions matching the e le c tr ic  f ie ld  

at the beam edges. Therefore, V appears to be the most physically significant 

variable. Secondly, the equation 6.3.2.7 exhibits no singu larities at the 

plasma frequency Similar d iffe ren tia l equations to 6.3.2.7 are easily

derived for Û , P and the potential $ and these formed the basis o f the 

analysis of Gould (1957), Macfarlane and Hay (1950), Dombrowski (1957) and 

Knauer (1966). These equations a l l  exhibit singularities at the plasma 

frequency u> . The analysis used by these authors was unnecessarily complex 

due to the presence of this additional singu larity. As mentioned in 6.3.1 

no manifestation of any physical phenomena occurs at the plasma frequency 

and so in this sense singu larities of the d iffe ren tia l equations fo r the 

system at m must be considered as anomalous. Singularities of d iffe ren tia l 

equations that are not singu larities of the solution are known as apparent 

singu larities and are discussed in Coddington and Levinson (1955).

Following Macfarlane and Hay (1950) we transform the independent variable 

o f 6.3.2.7 as:

2A(-iw+ikU ) xo 6.3.2.7
^  F(-im+ikU ) 2+to 2 1 *- xo c J

-k2V 1 +
2A(2A-ooc) 4A2(-iio+ikU ) 2XO

s = (-<*> + kuox)/“ c 6.3.2.8

to obtain:
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2
2s 3V

2
c i V «= 0 6.3.2.9

Following Buneman (1961a), we consider the new variable s as a variable des

cribing spatial variations in the y direction, since, by defin ition  i t  is  a

ate is the layer with m = 0 and so s measures the "distance" from the Synchro-

One further sim plification is possible and that is  the elimination of the 

f i r s t  derivate term of 6.3.2.9 by means o f an integrating factor. This 

fin a lly  gives:

This equation therefore describes the propagation of not the ve locity

following Buneman (1961a) we note that this equation is  sim ilar to the equa

tion describing the propagation of ligh t in a nonlinear refractive medium. 

The right-hand side of 6.3.2.10 can therefore be considered as the square of 

an e ffe c tiv e  refractive index.

We may write the boundary conditions in terms of the variable s, i . e .

sT = u/ioc + aki/iDc

s_ = w/o) -  akA/w D c c

where a is the ha lf width of the beam. I f  such sT and sB can be found so 

that the solutions o f 6.3.2.10 equal the boundary conditions at sT and sB

linear function of y through UQX« The reference point fo r  this new coordin-

nous layer in normalised units o f (kA/mc) Synchronism and gyrorésonance

are therefore defined by:

s 0 synchronism

s ±1 gyrorésonance

A<3A_u,c) 3A2s2 6.3.2.10
2 lu v' asc

where

of i t ,  across the beam. Again
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simultaneously then the s ta b ility  of the system may be determined from the 

complex frequency m which is given by

a) = -  (sT + SB) “ C 6.3.2.11

F ina lly, we note that i f  there is  no ve loc ity  s lip , i . e .  A = 0 then 6.3.2.7 

reduces to:

4  -  k2»  -  0
dy

i . e .  Laplace's equation appropriate to describe incompressible flow. Similarly 

i f  the magnetic f ie ld  is  su ffic ien tly  high so that mc dominates a ll other 

frequencies then Laplace's equation is again obtained.

Having derived the equation of motion fo r the beam we now turn to the 

boundary conditions.

6.3.3 boundary conditions

The boundary conditions for the electron beam are given by the exact 

nature of the surface perturbations of the beam density, the e lec tr ic  f ie ld  

in the space between the beam and the electrodes and the nature of the con

fin ing electrodes. In it ia lly  we w ill  consider the surface o f the perturbed 

beam and use the mean fie ld  approximation as o r ig in a lly  proposed by Hahn (1939).

We suppose the beam, due to perturbations in the flow has surface perturba

tions in the forms of ripples of excess charge. We must match the tangential 

and normal e le c tr ic  fie ld s  inside the beam to those outside. The tangential 

component of the e lec tr ic  f ie ld  is continuous. The normal component varies 

by an amount proportional to the excess charge density a at every point.

We may therefore write:

EXT „INT , , ,  ,  ,E ,  — E , — o/£ 6.3.3.1y l y l

where EXT and INT re fer to fie ld s  outside and inside the beam. This condition 

must be sa tis fied  at the top and bottom o f the beam:

E ^ T(+a) “ E ^ T(+a) = a(a)/eQ

-  E j f ( - a )  -  o (-a )/e0
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Since the perturbed y ve locity  V gives a displacement o f V/(-iw+ikUQx) this 

leads to the following form fo r the density o

a =  ± PQV (y)

f-iui+ikU 1 *■ oxJ

6 .3 .3. 2

which follows from the continuity equation, and the plus and minus signs 

refer to the top and bottom o f the beam respectively. We therefore have

„EXT, . INT, .
y i  (+a) "  y i  ( a)

„EXT
Eyi (-a ) TN T

V (-a )

+ P V(a) ______o____

[j-iw+ikAa]

+ P V (-a ) ____ o_______

[j-ia)-ikAa)3

6 . 3 . 3 . 3

The external f ie ld  is given by solving Laplace's equation in the gap between 

the beam and the electrodes and the internal f ie ld  is given by solving fo r 

V as discussed in 6.3.2 and then solving fo r E ^ . At this point we note 

that the boundary conditions depend only on the ve loc ity  V and Eyj_ which is 

readily derived from i t .  This ju s t ifie s  the choice o f V as the dependent 

variable in the discussion of beam dynamics in 6.2.2.

The external f ie ld  w ill  only be considered in the case where the conduct

ing electrodes are plane conductors. The case when the anode is  a slow 

waveguide is  more complex and a discussion of this case is given by 

Macfarlane and Hay (1950).

Since the space charge between the beam and electrode is  zero equations 

6.3.2.5 and 6.3.2.6 may be combined to give

1-P- - k2EY = 0
3y

which may be integrated to give

EY = Aeky + Be ky 

and using 6.3.2.5 we also obtain
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EX = - i(A eky -  Be_ky)

where the constants A and B are determined by the behaviour o f the fie ld  at 

the electrodes and the beam edge.

I t  is  common practice to combine both components o f the e le c tr ic  f ie ld  

into a single parameter called the normalised E-Mode admittance by

Y EY
EX

which in this case becomes

6.3.3.4

Y Aeky

Ae-ky
+ Be~ky 

-  Be_ky

and is  pure imaginary. The advantage of 

easily  shown that i f  the admittance is 

Q2 at y -  y^+d across free space is given

0 + tanh (kd)

’l' 1 + tanh(kd)Q^

This powerful result concludes this discussion. I f  the admittance o f the 

lower electrode is  known then 6.3.3.5 immediately gives the admittance and 

hence the e le c tr ic  f ie ld  at the lower beam edge. The same result is true 

between the upper electrode and upper beam edge. We may then use 6.3.3.3 and 

the results o f 6.2.2 to relate these fie ld s  to the fie ld s  inside the beam 

and hence deduce the dispersion rela tion . We note two important results. 

F irscly  the admittance of a conducting plate is  in fin ite  and hence the admit

tance of the upper and lower beam edges is given by icoth(kd) and -icoth(kd) 

i f  the beam is  a distance d away from the electrodes. Secondly, as a direct 

result o f the f i r s t  result the admittance is e ffe c t iv e ly  unity i f  kd is  

su ffic ien tly  large. This is va lid  i f  kd £ 4, i . e .  i f  the distance between 

the electrode and beam edge is greater than a quarter of the wavelength of 

the perturbation.

We now combine the results o f 6.3.2 and 6.3.3 to derive the dispersion 

re la tion .

using this admittance is  that i t  is  

at y = y^ say then the admittance 

by:

6.3.3.5
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6.3.4 The dispersion relation

In this section we give some consideration to the general dispersion 

relation and consider d ifferen t forms o f this relation with approximations 

that give an analytic dispersion re la tion . We return to the d iffe ren tia l 

equation describing the beam and summarise i t  here fo r convenience where we 

have dropped the prime on V' for the sake of c la r ity .

We now follow  and correct Buneman, Levy and Le "son (1966) . The general

conditions 6.3.3 may now be written in terms o f the variables V and s as 

follows. We write 6.3.3.3 in the form:

EY and EX in favour o f the variable V using 6.3.2.2 and 6.3.2.3 to obtain:

A'
2 V . 2 3s

solution of this equation is given by

V

where and are the two linearly  independent solutions. The boundary

EY

where T B again re fer to the top and bottom of the beam. We now eliminate

(-im+ikll ) xo T ,B
= ± 1

and substituting fo r V and s gives

6.3.4.1

We define a function hT(s) at the top o f the beam which is  given by
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and a sim ilar function hg(s) at the bottom of the beam which d iffers from 

h^(s) by a change o f sign in the third term of numerator and denominator. 

These functions h^,(s) and hg(s) are defined by substituting the expression 

fo r V into 6.3.4.1 and a’aluating the ratio -B/A . Since both h^,(s) and 

h g (s ), evaluated at the top and bottom of the beam both equal -B/A we may 

immediately write

hT(sT) = hfi(sB) = -B/A 6.3.4.2

which determines s„ and s_ and hence the complex frequency u through 6.3.2.11.I D
The two solutions V1 and V2 are related since the orig ina l d iffe ren tia l 

equation is even in s . We therefore immediately write:

V2(s ) = V ^ -s )

and examination o f the defin itions of hT and hg shows the following form 

fo r 6.3.4.2:

hT( s T) h g ( -s B) = 1 6 .3 .4 .3
We may now examine possible forms fo r the dispersion relation  using this 

result. I f  s is  small, a condition sa tis fied  by either thin beams or
2

perturbations o f a long wavelength then both ĥ , and hg vary as 1 + 0(s ) .  

6.3.4.3 then gives

ST2 + SB2 = °

which combined with 6.3.2.11 shows

oj. -  ± ikaA 6.3.4.4
i

i . e .  the longwavelength perturbations are unstable, with the growth rate 

being proportional to the beam width and the ve loc ity  s lip . This particular 

in s tab ility  is readily iden tified  and w ill  be discussed in more detail in

6.3.5. Buneman et al (1966) give an elegant discussion o f the behaviour
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of 6.3.4.3 fo r increasing s and we merely summarise their conclusions here.

As s increases i . e .  either the beam thickness increases or the wavelength 

decreases, then the system remains unstable u n til a c r it ic a l value o f s is

reached, when the growth rate vanishes. This c r it ic a l value is found to be 

2 2s = 2A /ioc . Further increase in s gives a rea l frequency and hence s tab ility  

until the next c r it ic a l value is reached. At this c r it ic a l value a new 

in s tab ility  mechanism is found, which we la te r  identify with the gyrorésonance 

and the c r it ic a l value is given by 1 -  2kaA /(oc .

These results are summarised in the follow ing figure:

The system has been shown to exhibit in s ta b ility  in two distinct regions with 

d iffe rin g  wavelengths and beam widths . The intermediate region with m real 

as shown above is not always stable. I f  the beam is confined by a plane 

electrode and a slow wave structure than this region also exhibits in s ta b ility . 

We choose to ca ll this in s tab ility  the magnetron in s ta b ility .

We now note the confusion that has arisen in the literature when insta

b i l i t ie s  in plasmas in crossed fie lds  are discussed. Knauer (1966), Gould 

(1965), Gould (1957, Pierce (1956) derived the dispersion relation fo r  region 

1 and called the in s tab ility  they found the diocotron or slipping stream 

in s ta b ility . (We shall see in 6.3.5 that th is in stab ility  depends least on 

the presence of a slipping stream). Macfarlane and Hay (1950), Buneman
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(1961a,b,1957), Chen (1959) and others derived the dispersion relation for 

region 3 and called i t  the slipping stream in s ta b ility . ilacfarlane and Hay 

(1950), Dombrowski (1957) and Gould (1957) considered the e f fe c t  o f a slow 

wave structure on the s ta b ility  and derived the dispersion relation  fo r 

region 2, again ca lling  the e ffe c t  the slipping stream in s ta b ility .

We can therefore conclude that the crossed fie ld  in s ta b ility  or diocotron 

in s ta b ility  is a generic term describing a number o f possible in s ta b ilit ies  

and iu the next section give a discussion o f the physical mechanisms leading 

to these in s ta b ilit ie s .

6.3.5 Results and Discussion

We wish to discuss the long wavelength in s ta b ility  and the gyro instability|  

in more deta il but w ill  not give any further consideration to the magnetron 

in s ta b ility  which has received considerable attention in the past.

io consider the long wavelength in s ta b ility  we in i t ia l ly  ignore the 

ve lo c ity  s lip  and le t  A 3 0 in equation 6.3.2.7. This gives

i(-im+ikU ) 2 + u 2 [_• xo c
i q  -  k2v|
-3y2 J

which has solutions

(is-kU ) 2 = u 2' XO c
6.3.5.1

and

k*V = 0
3y

I t  is more convenient to consider the e le c tr ic  f ie ld  and, in view o f 6.3.2.2 

and 6.3.2.3 with A *> 0 we see that V a EX and so we can write

-  k2EX
3y

6.3.5.2

The dispersion relation 6.3.5.1 shows two stable waves in the bulk of the beam. 

The electrons move in circular oroits at the frequency uc . The other waves
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described by 6.3.5.2 are waves associated with propagation in free space since 

tiiere is no charge density and hence represent surface waves on the surface 

o f an incompressible flu id .

I t  is a simple matter to derive the dispersion relation corresponding 

to the two surface waves 6.3.5.2 for a beam with a single surface. This is 

done by matching an exponentially decaying e le c tr ic  f ie ld  outside the beam 

to a corresponding f ie ld  below the surface. Using the equations 6.3.2.2 

to 6.3.2.4 with the condition A = 0 leads to the two waves with the dispersion 

relation

The wave when the plus sign is taken is a fast wave and is a manifestation of 

the bulk wave 6.3.5.1 at the surface. When the minus sign is chosen, the 

wave is a slow wave which arises when the e le c tr ic  and magnetic forces 

oppose each other. (This is in contrast to the fast wave when the two 

forces act together) . I t  is easily seen from 6.3.2.2 and 6.3.2.3 that i f  

the slow surface wave is present that

i . e .  the motion o f the electrons is pure guiding centre motion and the 

electrons move with their RxB d r ift  v e lo c it ie s . This may appear to contra

dict the original assumption o f zero ve loc ity  s lip  since the guiding centre 

motion exhibits a ve loc ity  gradient. Closer examination of 6.3.2.2 and

6.3.2.5 snows that the unperturbed ve loc ity  distribution has been retained 

as a slipping stream but that the derivative o f the y directed ve lo c ity  has 

been neglected. This is consistent with the conditions o f incompressible 

flow in the beam and the presence of surface waves. The argument given 

above, under the assumption of zero ve loc ity  s lip  merely gives an indication 

of how an in s tab ility  may arise and a more rigorous argument is given below.

6.3.5.3

V EX/B and U = — EY/Bo 1o



The argument above is found to be va lid  fo r a small ve loc ity  s lip  or a thin 

beam such that the gradient o f V is small, i . e .  kAa is small.

I f  we now suppose that the beam has two surfaces and that each surface 

supports such a slow wave then we find, under the assumption kAa << 1, that 

tne two surface waves in teract across the beam and become unstable. This 

is  the long wavelength in s ta b ility  for thick beams and small ve loc ity  grad

ients or a universal in s ta b ility  for thin beams such as considered by 

Pierce (1956) and Gould (1957). We can now derive the dispersion relation 

fo r  this in s tab ility  using the formalism developed in 6.3.3.

Equation 6.3.3.3 relates the fie lds  across the beam edges. We substitute 

V (y) = EX/Bq in the right-hand side and immediately see the sim plification  

that arises, i . e .  the rela tion  is now en tire ly  between e le c tr ic  f ie ld s .

Since the electron beam and the space on either side are now e ffe c t iv e ly  

charge free we can immediately write:

EY^^  ̂ (iibove beam) = Be ky 

EYEXT (below beam) = Aeky 

Inside the beam v/e have

EY1151 - Ceky ♦ De_ky

Since the divergence of the e lec tr ic  f ie ld  is zero we also have

EXEXT (above beam) = -iBe ky 

EXEXT (below beam) = iAe+ky 

EXINT -  iCeky -  iDe_ky

The component of e le c tr ic  f ie ld  paralle l to the beam surface must be contin

uous and applying tnis condition at both beam surfaces gives

_ -ka -Be Ceka ■

a “ ka Ae = Ce_ka

6.3.5.A

6.3.5 .5
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Since we must elim inate the four constants A, B, C and D we require two

further relations between them and these are given by 6.3.3.3 evaluated at 

both surfaces, i . e .

EXT, . INT. . PQEX(a)
EY (a) -  EY (a) = t

and

EYEXT(-a ) -  EYINT(-a )

-iBe (u-kAa) o

ÜVEXT, . p EX (-a ) o
-iBe (m+kAa) o

EXT INTSubstituting fo r EY and EY from above gives:

„ ka t „  -ka . kaCe + De = Ae

„  -ka „  +ka Ce + De -Be

£ u-kAa^l

ka i 1 - - J—  \[  m+kAa J

6.3.5.6

6.3.5.7

We now combine 6.3.5.4 to 6.3.5.7 and eliminate A, B, C and D to give the 

dispersion relation:

.24 (m/A) ‘
-4k a(1 -  2ka) “  e 6.3.5.8

This dispersion relation was derived by Gould (1955). Gould's dispersion 

relation was derived under the assumption of a thin beam whereas we have 

assumed a thick beam with a small ve loc ity  s lip  and long wavelength perturba

tions. His dispersion relation also d iffered from 6.3.5.8 in that instead 
2o f A, u> /ij)c appeared. Although the two results are equivalent the 

appearance of A in 6.3.5.8 shows that the in s tab ility  is a result o f the 

slipping stream and not a simple space charge e ffe c t  as could be interpreted 

from Gould's equation.

For small ka the right-hand side o f 6.3.5.8 vanishes at ka »  0.64. We 

therefore have a marginally stable state at la * 0.64 with in stab ility  occurrin 

i f  ka < 0.64. The growth rate is then given by

u = ikaA

w'nicn may be rewritten
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°  ~2 k x ve loc ity  s lip  across beam.

This result is identica l to the result that would be obtained fo r the insta

b i l i t y  o f two electron streams interacting e le c tro s ta tica lly  or o f a classica l 

incompressible flu id  flow with a velocity  p ro file . This point is  discussed 

further in 6.4.

We can now show that the in stab ility  arises from the interaction o f two 

surface waves. The tota l excess charge flow consistent with the discontin

uity at the upper surface C can be written as:

- ( —in) + ikV (a )) a -  iAae 2^a

where a is  the excess charge. This result is proved by ex p lic it ly  evaluating 

the coeffic ien ts C and D of equations 6.3.5.4 and 6.3.5.5 and substituting 

into 6.3.3.3. The dependence of this excess charge on the top surface on 

the second term arises from the dependence of the co e ffic ien t B on the 

coe ffic ien ts C and D. The f i r s t  term arises so le ly  from the charge flow 

as a result o f the surface wave on that surface. The second term arises 

from the e le c tr ic  f ie ld  created by the excess charge on the other surface,

i . e .  i f  there is an excess o f charge a on this opposite surface this induces

—2ka • •an x directed f ie ld  iae . This f ie ld  produces an additional ve loc ity

perturbation V' = -iae~2ka/Bo which gives the excess charge flow -iAae 2!ca.

In conclusion we note that these surface perturbations induce meander 

or sausage-like distortions in the original linear beam. I f  the in s tab ility  

is not lim ited then these meanders grow larger and larger, fin a lly  creating 

a turbulent beam.

The cyclotron resonance in stab ility  does not lend i t s e l f  to a simple 

analysis as is possible fo r the long wavelength in s ta b ility . We b r ie fly  

discuss the behaviour of the beam equation near the cyclotron resonance 

defined by s »  ±1 following Buneman et al (1966). By considering the 

ind ic ia l equation fo r 6.3.2.10 enables us to w rite series expansions for 

the two solutions V. and at s = 1. These series solutions are dominated



by terms proportional to loge ( l - s ) .  The equation 6.3.2.10 is then solved 

in the WKB approximation and these two sets o f solutions are then matched 

at the points s = ±1. Expressions are then deduced fo r h^,(s) and hfi(s ) which 

are complex functions o f exponential in tegrals. A criterion  is  established 

for the onset o f in s tab ility  and an exp lic it  expression is derived fo r the 

complex frequency:

2 2
ui = kAa -  |  A + i(ir/2e)e

The imaginary part o f the frequency is small and equal to 0.06 fo r  Brillouin 

flow, a result f ir s t  deduced by Macfarlane and Hay (1950).

The analysis leading to this result is complex and obscures the physical 

origins o f  the in s ta b ility . At the cyclotron resonance condition s = 1 the 

wavelength of the in s ta b ility  is su ffic ien tly  small, so that the Doppler 

shifted frequency at the beam surface coincides with mc . The interaction 

takes place between the surface wave on the resonant edge o f the beam and 

one o f the compressive waves in the bulk of the beam. The surface waves 

then in teract not through an incompressible flu id  as in the long wavelength 

in s ta b ility , but through a compressible flu id  having a resonant layer. The 

analysis is  therefore dominated by the beam dynamics, i .e .  the d iffe ren tia l 

equation 6.3.2.10 and not the surface waves.

6.4 Towards a nonlinear theory

We have demonstrated that the so-called crossed f ie ld  in s tab ility  is in 

fact a single name that describes three in s ta b ilit ie s , i . e .  the long wavelength 

in s ta b ility , the magnetron in s tab ility  and the cyclotron in s ta b ility . The 

occurrence of these in s ta b ilit ies  depends on the value o f the product o f the 

wavenumber and the beam width. For a true double—sided beam a l l  three 

In s ta b ilit ie s  can occur but for a single—sided beam, i .e .  with the lower edge 

in contact with the cathode only the last two in s ta b ilit ie s  can occur. In 

6.3 we gave greater attention to the long wavelength in s ta b ility  than the 

otner two since i t  can be discussed analy tica lly . The other two instab il—
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i t ie s  require a much more complex numerical analysis. The disadvantage of 

considering the long wavelength in s tab ility  is that i t  is the least like ly  

in s ta b ility  to occur in microwave devices. This is  primarily because the 

wavenumbers encountered in crossed f ie ld  tubes are beyond the value where 

the long wavelength in s tab ility  ceases. In addition, we showed in 6.2. 

that the most lik e ly  beam configuration to be found in emitting cathode tubes 

is  that with the lower edge of the beam in contact with the electrode.

However, the long wavelength in s tab ility  can be studied analytically and holds 

most promise fo r nonlinear analysis and so we w i l l  devote tie  remainder o f 

this chapter to considering future work on a nonlinear analysis of one of 

the crossed fie ld  in s ta b ilit ie s .

The growth rate o f the in s tab ility  was shown to be, equation 6.3.4.4 

kaA where 6 is  the ve loc ity  s lip . This growth rate can also be written 

as j x k x tota l ve loc ity  s lip  across the beam and as discussed in 6.3.5 

is iden tica l with the growth rate that would be found from a velocity induced 

in s ta b ility  between two interacting plasma streams. The in stab ility  is 

therefore hydrodynamic in nature and in the nonlinear regime wave-wave 

interactions would dominate to lim it the growth (this point was discussed 

in the introduction to Chapter 5) . The crossed fie ld  instab ility  also 

exhibits a marginally stable point, a situation already encountered with the 

two-stream in s ta b ility .

We therefore suggest that a nonlinear theory o f the long wavelength 

in s ta b ility  can be formulated using the general techniques developed in 

Chapters 2 and 3. Indeed, the realisation that this in stab ility  is closely 

related to the two—stream in s tab ility  stimulated the work which led to the 

general result Qf Chapter 2 and the more spec ific  result in Chapter 5. Further 

the two-dimensional nature of the equations va lid  for this instab ility  stimu

lated the general theory of nonlinear wave propagation in two dimensions as 

described in Chapter 3. Both these general results must now be combined 

and applied to the crossed f ie ld  plasma equations. This analysis might
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lated the general theory of nonlinear wave propagation in two dimensions as 

described in Chapter 3. Both these general results must now be combined 

and applied to the crossed fie ld  plasma equations. This analysis might
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be expected to lead to a single nonlinear equation for the wave amplitude, 

o f nonlinear SchrSdinger type, which w ill  enable a de fin ite  statement to 

be made about the nonlinear s ta b ility  or in s ta b ility  of a crossed f ie ld  plasma 

in the long wavelength lim it. This analysis would not be complex due to the 

great sim plification  that arises in the equations describing the system under 

the guiding centre approximation.

We also suggest that the two-dimensional theory o f Chapter 3 may be 

applied to the fu ll  equations o f motion and so provide a theory of the 

nonlinear behaviour of the cyclotron in s ta b ility . This analysis would be 

much more complex since the solutions of the linear equations must be known 

to enable the analysis to be carried out. However, analytic approximations 

to these solutions are in principle known and the necessary integrations 

could be performed analytically or numerically.
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