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SU M M A R  Y

N u clear m agnetic  reso n a n ce  techn iques have been applied  to  
the study of two b io log ica l sy s te m s . S pecifically , 1̂ C nm r 
sp in - la ttic e  re la x a tio n  tim e s  (Ti s )  have been applied  to  a m odel 
b iom em brane and a lso  to  the  sub jec t of pro tein  denatu ration .

In the fo rm e r c a se , av a ilab le  C en rich m en t techniques have 
been u se d  to c o n c en tra te  the  iso tope in a b a c te r ia l  phospholipid.
Using Tj. a s  an index of m o le cu la r  m otion, it h a s  been possib le  to 
obse rve th e  "dynam ics" of the ca rbon  skeleton of the en rich ed  
phosphatidyl e thanolam ine in a m ixed  phosphatidyl ethano lam ine -  
phosphatidyl se r in e  sy s te m , o v er the  te m p e ra tu re  ran g e  of 
30-85°C . The r e s u l ts  obtained fit suggested  m otional g ra d ie n ts  
typ ical of the type of s tru c tu re  fo rm ed  in m edia of low to high 
d ie le c tr ic i ty . H ow ever, changes w ith te m p e ra tu re  in the m ixed  
lipid sy stem  may be le s s  d ram a tic  than have been  rep o rte d  fo r 
single com ponent m o d e ls . The e s tim a ted  energy  of re la x a tio n  
p ro ce sses  show th a t a h ig h e r ac tiva tion  energy  is a s so c ia te d  w ith 
those nucle i in the  m iddle of the acy l re s id u e s .

13
A m ethod is d esc rib ed , fo r the f i r s t  tim e, fo r the high C 

specific  en rich m en t o f phosphatidyl choline acy l re s id u e s . T he 
m ethod is based on the p red a to ry  grow th  of a c ilia te  on an E. co li 
s tra in  which is designed  to in c o rp o ra te  a c e ta te  e ffic ien tly .
T etrahvm ena pyrifo rm  is w hich w as the c i lia te  used, w as found 
to m etab o lize  the E. co li lip id s re su ltin g  in a lipid d is trib u tio n  
that is c h a ra c te r is t ic  in n o rm a l g row th . The en richm en t le v e ls  
found in the ex tra c te d  lip id s of T etrahym ena a re  in te rp re te d  in 
te rm s  of the p ossib le  m ech an ism s of som e s te p s  in lip id  m e tab o lism .
The a t tra c tio n s  in th is  a re a  a re  tw o-fo ld ; f irs tly  the high en richm en t 
(20-50%) in 1^C o f phosphatidyl choline which is u sua lly  the m a jo r  
lipid com ponent o f eu k ary o tes ,an d  secondly  th e  p re se rv a tio n  of an 
"a lte rn a te -c a rb o n ” en rich m en t m aking subseqi^gnt ^ y d y  by 1^C 
nm r s im p le r  than it would have been if d ire c t C- C spin 
coupling ex is ted .

13
In the  sub ject of p ro te in  dena tu ration , C T x v a lu es a r e  

rep o rted  a s  a function of concen tra tion  of a p rotein  d ena tu ran t in 
the p re se n ce  and ab sen ce  o f a fixed protein concen tra tion  . No d irec t 
evidence is ava ilab le  fo r stro n g  "lig an d -ty p e"  p ro te in -d en a tu ran t 
a sso c ia tio n . W eaker in te rac tio n s  cannot, how ever,be equally  ru led  
out. M ore in te re s tin g ly . U rea whicli is  the denaturing  agent in question 
is d ire c tly  im p lica ted  in su b s tan tia l a s so c ia tio n s  with w ate r via hydrogen 
bond fo rm a tio n . An in c re a se  in " la ttic e "  d iso rd e r  o r  " s tru c tu ra l  
te m p e ra tu re ” of th e  w a te r  is invoked to explain  the "so lu b iliza tio n "  of 
the p ro te in . T h e  possib le  ro le  o f d iffe ren t in te rm ed ia te s  of 
den a tu red  pro tein  c o n fo rm ers  is d isc u sse d .
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CHAPTER I 

INTRODUCTION

A . B iom em branes.

It is  not an ea sy  task  to  evolve a definition fo r the b io log ica l m em brane 

based  on s tru c tu re  a n d /o r  function , that w ill have any m eaningfu l g en e ra l 

app lica tion . T h is  is  so fo r  the sim ple reason  that co n s id e rab le  v a ria b ility  

in s tru c tu re  and function m a y  be found from  one m em brane type to  an o th er. 

The two m a jo r  b iom em brane co n s titu en ts , i . e .  p ro te in  and l ip id s , a re  

found in the re sp e c tiv e  r a t io s  of 20% and 80% in m yelin  and 49% and 44% in 

e ry th ro cy te  m em b ran e: the m ye lin  envelope of nerve  f ib re s  is  functionally  

d is tin c t a s  an e le c tr ic a l in s u la to r  a s  con trasted  with the "p e rm ea b ility -  

b a r r i e r "  ro le  of red blood c e lls  o r  the energy-linked ox idative phosphory lation  

in the m em b ran es  of the in n e r  m itochondrion. I t  is  not s u rp r is in g  th e re fo re  

that d esc rip tio n s  such a s  "T h e  surrounding  envelope of c e lls  and cell 

o rg an e lle s  " a re  s ti l l  f req u en tly  found in the li te ra tu re  when a g en ra l 

re fe re n c e  to m em b ran es  is  in tended.

The a rra n g e m e n t, o r  m o re  specifically , n a tu re  of the a s so c ia tio n  

between the p ro te in s  and lip id s  m ay be a c r it ic a l fac to r  in d e te rm in in g  the 

functionality  of m e m b ra n e s . U nfortunately, little  is known about the 

deta iled  s tru c tu re s  of the m e m b ran e  re la ted  p ro te in s  and th e re  a r e  s till 

d iffe ren ces of opinion on th e  valid ity  of c ru c ia l is su e s  such a s  the 

d istinction  betw een in te g ra l and p erip h e ra l p ro te in s  (Singer and N ico lson , 

1972 ). Some of the p o ss ib le  ways in which m em brane lip id s  and p ro te in s  

m ay in te ra c t include hydrophob ic , e le c tro s ta t ic ,  d isp e rs io n , p o la risa tio n  

and covalent in te ra c tio n s . One m ay expect that fo r a co m p le te ly  in teg ral 

p ro te in  in the m em brane lip id  m a tr ix , hydrophobic and d isp e rs io n  fo rces  

may play a m o re  im p o rtan t ro le  in determ in ing  the n a tu re  of th e  associa tion
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with lip id s, w h ereas fo r  a p u re ly  p e r ip h e ra l p ro te in , p o la r in te rac tio n s  

should be m ore  im p o rtan t. It is  in th is  kind of com parison  that the 

problem  of d istingu ish ing  betw een the in teg ra l and p e rip h e ra l p ro te in s  

re s id e s . Because it is  not w h eth er a p a r tic u la r  p ro te in  in te ra c ts  with 

the lipid m a tr ix  a lm o st exc lu siv e ly  by one kind of fo rce  but to w hat extent 

a l l  the possib le m odes of in te ra c tio n  a re  p artic ip a tin g : in o th e r  w o rd s , 

how deep into the lipid m a tr ix  m u st a p e rip h e ra l p ro te in  p en e tra te  

before it can be c lass ified  a s  an  in te g ra l p ro te in . F igure 1 is  an 

illu stra tio n  of the "b o rd e r lin e "  prob lem  in c lassify in g  m em brane 

p ro te in s as  e i th e r  in teg ra l o r  p e r ip h e ra l.  Caution is  n e c e s sa ry  in 

applying the c r ite r ia  (cf T able 1) fo r  d istinguish ing  between th ese  c la s s e s  of 

m em brane p ro te in s  a s  it h a s  been shown that depending on the se v e rity  

of the trea tm en t used fo r  in te rac tio n , ce rta in  in te g ra l p ro te in s  m ay 

deceptively behave like p e r ip h e ra l p ro te in s  (B urger et a l . ,  1968).

B. M em brane M odels

R obertson (1960) postu la ted  a un iv e rsa l unit m em brane theory  

em bracing  the D an ie lli-D avson  (1935) b im o le c u la r  leaflet lipid m odel 

and p ro jec ted  it to a ll ce ll and ce ll o rg an e lle  m e m b ra n e s . T oday p erhaps 

the m ajo rity  opinion of r e s e a r c h e r s  in the field  is  that functional m em b ran es 

a re  a kind of tw o-d im ensional "so lu tion" of g lobu la r in te g ra l p ro te in s  

d isp ersed  in a fluid lipid m a tr ix  (Singer, 1972). F u rth e rm o re , th e re  

is support fo r the so -ca lle d  " s e p a ra te  m o le cu la r  biology ap p ro ach "  to 

m em brane re se a rc h , w hereby  the s tru c tu re  and p ro p e r tie s  of the m em brane 

lipids o r  p ro te in s  a r e  co n s id ered  se p a ra te ly , hoping u ltim ate ly  to decide 

how these  these  two com ponents m ight affect each  o th e r on being brought 

toge ther in the m e m b ran e . G iven the num erous re p o rts  on m odel 

m em branes and the m o re  re c e n t ones at m em brane  rec o n stitu tio n , it is  

quite likely that th is  app roach  h as  been followed e ith e r  d e lib e ra te ly  o r  

acciden ta lly .



P ossib le lip id -p ro te in  a s so c ia tio n s  in 
m em brane (b) com pletely  p e rip h e ra l 
(d) com pletely  in te g ra l.

(a) c ro s s -se c tio n  of a to ta l t r a v e rs a l  of 
b ila y e r  by p ro te in  .

In re a lity  (c) m ay be m o s t rea so n ab le .
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T able 1: C r ite r ia  fo r d istingu ish ing  p e r ip h e ra l and in te g ra l

m em brane  p ro te in s .

P roperty P e r ip h e ra l p rotein In te g ra l protein

1) R equ irem en ts 
fo r ex trac tio n  
from  m em brane

M ild tre a tm e n t, e .g .  
in c re a s e  in ionic 
s tre n g th

S trong  so lub iliz ing  
a g e n ts , e .g .  d e tergen ts  
ch ao tro p ic  agen ts.

;2) N atu re  of lipid 
i a sso c ia tio n  when 

solubi lized

Soluble fre e  of 
lip id s

S trongly  asso c ia ted  
w ith  lip id s when 
so lu b ilized

¡3) In terac tion  with 
w a te r

Soluble in aqueous 
b u ffe rs

U su a lly  aqua phobic 
w ith  re g a rd  to 
n e u tra l  buffers
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The f irs t  experim en tal ev idence fo r m em brane flu id ity  w as 

p ro v id ed  by Chapman and o th e rs  (Chapm an e t a l . , 1966) u sing  a 

v a r ie ty  of physical techniques includ ing  d iffe ren tia l th e rm al an a ly s is ,

X -ra y  d iffraction  and n u clea r m agnetic  resonance spectro scopy  ( n .m . r . )  

S ince then, it has been possib le to d em o n stra te  a re la tio n sh ip  between 

the te m p e ra tu re  (Tc) at which the o rd e r t- id iso rd e r  (crysta lw liqu id  - 

c r y s ta l  o r  Chapman) tran sitio n  o c c u rs  and ce rta in  p ro p e r tie s  of the 

lipid m a tr ix  such a s  the degree of sa tu ra tio n  of the fatty acy l res id u e s , 

the length of the chains and the n a tu re  of the head group (Chapm an, 1968). 

F u r th e rm o re , these tran s itio n s  have been shown to occu r in som e 

n a tu ra lly  occu rrin g  m em branes (Steim et a l . ,  1969; O verath  e t  a l . ,  1970; 

W ilson  and Fox, 1971; Blazyk and S teim , 1972).

The tran s itio n s  observed  in the n a tu ra l m em branes are 

g e n e ra lly  b ro ad e r and le s s  defined than those in the single lipid sy s tem s .

It is  thought that th is  is  m ere ly  the re su lt of overlap  of d iffe ren t tran sitio n  

te m p e ra tu re s  from the m u lt i- sp e c ie s  in these  m em b ran es , although it has 

been  suggested  (Chapman, 1973) tha t ch o leste ro l m ay a c t a s  a "fluidizing" 

ag e n t of m em brane lip id s. This conclusion  was reached  from  observa tions 

th a t in (1:1 ) ch o leste ro l-lip id  m ix tu re s , the proton n .m . r .  linew idths 

o b se rv e d  showed a rem ark ab le  lack  of te m p era tu re  dependence a f te r  an 

in i t ia l  broadening and a s  com pared  to the case  with no c h o le s te ro l p re se n t, 

cf F ig u re  2.

Among the techniques of investigation  m entioned above, o the r 

p h y s ic a l stud ies in th is  sphere of re s e a rc h  have included v isco sity  

m e a su re m e n ts  (Z im m er and S c h irm e r, 1974), sp e c tro -f lu o r im e tr ic  

tech n iq u es (Trau  ble and O verath , 1973; Sims et a l . ,  1974) and e lec tro n  

m ic ro sc o p y  (N’ozawa e t a l . ,  1975). As judged by the quality  of inform ation 

o b ta in ab le , the technique of n . m . r .  is  undoubtedly the m o st pow erful 

of th e  physical approaches that have been applied to m em brane  stud ies 

so f a r .



\vie.

Effec;: of fh o le s te ro l on the te m p e ra tu re  varia tio n  of the 
220 MHz H n .m . r .  spectrum  of sphingom yelin .

( a ,b ,c )  sphingom yelin 205c, w /v  d isp e rs io n  in D 2 O.

( d , e , f , ) sph ingom yelin -cho leste ro l (1 :1), 20% w /v  
d isp e rs io n s  in D2 O.



C. A pplication o f N .M .R . in M em brane Studies.

The app lica tion  of n u c lea r  m agnetic  reso n an ce  spectroscopy

to m em brane s tu d ies  m ay be b roadly  subdivided into two p arts :

on the one hand w e have (i) the o b se rv a tio n  and experim en tation

with the " in tr in s ic  n . m . r . "  o r  the a c tu a l com ponent(s) of the

m em b ran e , and on the o th e r  hand we h av e  ( i i ) the  study of the

"e x tr in s ic  s ig n a ls” a r is in g  from  N .M .R , probes that a r e  not

norm ally  p art o f the m em brane  co n s titu e n ts .

( i ) T h is  is the  m o re  g e n e ra l kind of approach,and both

s tru c tu ra l  and dynam ic in form ation  abou t the m em brane can be

obtained. Specifically , co n fo rm atio n al an a ly sis  of lec ith ins
13in v e s ic le s  has been deduced with C n . m . r .  (Batchelor and

P re s teg a rd , 1972 ); a lso , the d em o n stra tio n  of the  Chapman
1 13

tran s itio n  in le c ith in s  , using  both H a n d  C, (F igure 3 ) .

S im ila r tr a n s itio n s  have a lso  been picked  up with the aid of 
13C n . m . r .  in m e m b ran es  of A cho lep lasm a laidlaw ii (M etcalfe  31

31e t a l . ,  1972). P n . m . r .  has a lso  been successfu lly  used  to

d em o n stra te  th is  tra n s itio n . An in te re s tin g  contribution  in th is

field  is  the  d em o n stra tio n  by B ergelson  and o th e rs  that

reso n an ces  from  th e  " in s id e ” and "o u ts id e"  m ono layers of a

b ila y er can be se p a ra te ly  o bserved  if ap p ro p ria te  sh ift rea g en ts

a r e  em ployed. Such sh ifts  have been rep o rted  for the re so n a n ce s  
1 13 31of a l l  th re e  nucle i ( H, C, P) in m odel m em branes (Bystrov 

e t a l . ,  1975). C onsiderab le  light h a s  been thrown on the 

dynam ics of m em b ran e  and m em b ran e  a sso c ia te d  phenomena by 

the d ire c t m easu rem en t of s p in - la ttic e  re laxa tion  tim es (M etcalfe 

e t a l . ,  1971a; Lee e t a l . ,  1972; B ird sa ll e t a l . , 1971).



F ig .3 High resolution  of H a n d  'C  n .m . r .  of phospholipids
a s  a function of te m p e ra tu re .

(C) data of Chapman e t a l . (Chapm an, 1973 ) showing 220 MHz 
i
H n . m . r .  of d im yristoy l d isp e rs io n s  in D2 O.

13_
(M) data  of M etcalfe e t a 1. (Levine e t a l ,  1972a) showing C 

n . m . r .  of son icated  d ipalm itoy l lecith in  in D^O b u ffe r.
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(ii) n . m . r .  p ro b es  that w ill, s tr ic t ly  speaking, c lassify  u n d e r 

th is  heading have not been fully developed. The re q u ire m e n ts  of such  

p ro b es  m ay have to include (a) high sen s itiv ity  and a re la tiv e ly  s im p le  

spec trum  of the nucleus of in te re s t,(b )  sm a lle s t p o ssib le  p e rtu rb a tio n  

of the system  and (c) ea sy  a c c e s s  into the lipophilic reg ions of the 

b ila y e r . M etcalfe and cow orkers (1971b) have com pared  the s tru c tu re s  

o f native m ycoplasm a and e ry th ro cy te  m em b ran es  to  those of th e ir  

co rrespond ing  reag g reg a ted  m em b ran es .

It has been shown that the p a rtitio n in g  of benzyl alcohol into 

these  n a tu ra lly  o c c u rrin g  m em b ran es  exh ib its  a b iphasic  resp o n se  w ith 

in c re as in g  alcohol concen tra tion ; the second phase co rrespond ing  to  

in c re ase d  p erm eab ility  to the probe a s  a re su lt  of a l te re d  m em b ran e  

a rc h ite c tu re  which m ay be p receded  by an in itia l m em brane  s ta b iliza tio n  

aga in st ly s is . In te res tin g ly  enough, the m em b ran e  rea g g re g a te s  do not 

show th is  b iphasic  re sp o n se , indicating  probably  tha t the ren a tu ra tio n  

of m em brane p ro te in s  fa ils  to occu r during  the rea ssem b ly  p r o c e s s e s .  

The lim ita tion  of p ro b es  such a s  the g en e ra l an a es th e tic  a lco h o ls , is  

tha t although they m ay sa tis fy  conditions (a) and (b) above, they m ay  

fail (because of th e ir  am phiphatic n a tu re )  to p en e tra te  the lipid b ila y e r  

to any reasonab le  ex ten t,so  that only in form ation  about even ts in th e  

in te rfac ia l boundary is ob ta ined . It h as  been rep o rted  (Colley and 

M etca lfe , 1972) that th e re  is  an up-fie ld  sh ift a s so c ia te d  with the choline 

headgroup resonance in v e s ic le s  of DPL w ith in c re as in g  co n cen tra tio n  

of benzyl a lcohol. F u rth e rm o re , only a ro m a tic  a lco h o ls  p roduce th is  

sh ift which d e c re a s e s  a s  the num ber of m ethylene g ro u p s between the 

a ro m a tic  ring  and the hydroxyl function in c re a s e s .  T h is  is  good 

evidence that it is  the a ro m a tic  ring  c u rre n t which induces the sh ift 

and can only m ean that fo r a m olecu le like benzyl a lcoho l, m ost o f  the 

probe p en e tra te  only to the extent of the lip id -w a te r  boundary. T h u s , 

although these  am phiphatic p ro b es m ay have a physio log ical re le v a n c e ,



6

th e ir  ab ility  to m o n ito r  deep -sea ted  m em brane ev e n ts  is lim ited . 

U nsuccessfu l a t te m p ts  in our labo ra to ry  to develop  an n .m . r .  "lipophilic 

region p ro b e"  , th a t can be introduced into n a tu ra l m em b ran es without 

d isru p tin g  the m e m b ra n e s  by sonication o r  d e te rg en t so lub ilization  

a re  b rie fly  m en tioned  in the genera l conclusion.

The d is tin c tio n  between the " in trin s ic "  and  "e x tr in s ic "  n .m .  r .

app lica tions m en tioned  above is  not to be reg a rd e d  as  a rig id  one. On

the c o n tra ry , it h a s  been a rb it ra r i ly  chosen to fa c ilita te  a b r ie f  and

co llec tive  review  of som e of the rep o rted  ap p lic a tio n s . Indeed, m any

investiga tions em body both approaches s im u ltan eo u sly . Godici and
13L an d sb e rg er (1974) have rep o rted  C re lax a tio n  tim es  of egg yolk 

lecith in  m odified w ith  s te a r ic  acid  sp in -la b e ls .

D. F ac to rs  in fluencing  the n .m . r .  sp ec tra  of m em b ran es

L’n so n ica ted  aqueous egg yolk lecith in  d isp e rs io n s  contain p a r tic le s  

w ith d ia m e te r  ran g in g  from  ~  0 .5  - 2 um and c o n s is tin g  of concen trica lly  

a rra n g e d  la m e lla e  of lipid b ila y e rs  sep ara ted  by  la y e rs  of w a te r  (Bangham 

and H o m e, 1964; Chapman et a l . ,  1968 ). L ack  of reso lu tion  of the 

peaks due to p o ss ib ly  a com bination of overlap  o f reso n an ces and the 

g e n e ra l m a c ro m o le c u la r  aggregate natu re  of th e  p a r tic le s  m akes these  

sy s tem s  u n su itab le  for conventional n . m . r .  s tu d ie s . One of the rea so n s 

thought to acco u n t fo r these  observed  line b ro ad en in g s is  incom plete 

av e rag in g  of d ip o le -d ip o le  in te rac tions a s  a r e s u l t  of slow m o le cu la r  

m otion (Veksli e t  a l . ,  1969). A nother a l te rn a tiv e  reason  could be that 

of m agnetic  f ie ld  inhom ogeneities as  suggested  by the repo rted ly  

o bserved  dependence of the tra n sv e rse  re laxa tion  tim e (T 2 ) and the 

sp e c tra l width on the applied m agnetic field (H ansen and Law son, 1970; 

Penkett e t a l . , 1968).*



E xposure of these  p a r tic le s  to u ltra so n ic  irra d ia tio n  ca u se s  a 

reduction  in p a r tic le  s ize  and weight (Chapman et a l . , 1968a; Attwood

and S aunders, 1965; Huang, 1969). The resu ltin g  p a r tic le s  have an
. 6

av e ra g e  d ia m e te r  o f about 230A and weigh between (2 -4 .5 )  x 10

d a lto n s . T hese p a r t ic le s  a re  sm all enough to y ie ld  high reso lu tion  

' h  n . m . r .  although only th ree  g roups of reso n an ces , co rrespond ing  

to  the head group m e th y ls , the te rm in a l m ethyl o f the fatty  acy l 

cha in  and an envelope fo r a ll the m ethylene p ro to n s a re  s ti l l  reso lved  

in  the case  of le c ith in s . The m echanism  by which a high reso lu tion  

sp e c tru m  is obtained a f te r  sonication  is s ti l l  f a r  from  being 

conclusively  reso lv e d . The m ost obvious m echanism  fo r th is  narrow ing  

a  sp e c tra l lines is  the ro tational Brownian m otion of the v e s ic le s  in 

the aqueous m edium  a s  argued  by F in e r  (1974). O ther w o rk e rs  (Sheetz 

and Chan, 1972) have argued that the c o rre la tio n  tim e asso c ia te d  with 

v e s ic le  tum bling is  m uch too long to account fo r the sh a rp n e ss  of the 

o b se rv e d  lin e s . T h is  has encouraged Chan and c o lla b o ra to rs  (Seiter 

and Chan, 1973) to propose that th e re  is considerab ly  m ore  s tru c tu ra l 

d is o rd e r  asso c ia te d  with the fluid s ta te  of the lip ids in the b ila y e rs  of 

th e  sm a lle r  v e s ic le s  than in the m u lti- la m e lla e  sy s te m s . It is  thought 

th a t th is  is  a d ire c t consequence of the in c re ase d  a re a  ava ilab le  to  each  

lip id  m olecu le a s  the su rface  cu rv a tu re  of the v es ic le  in c re a s e s , i . e . a s  

rad iu s  of cu rv a tu re  d e c re a s e s  (F igure 4).

13In a se n se , the C n . m . r .  sp e c tra  of lip ids in both sonicated  

and unsonicated  aqueous d isp e rs io n s  exhibit s im ila r  phenom ena in that 

the  sp ec tra  from  the sm a lle r  p a r tic le s  show g r e a te r  line narrow ing . 

H ow ever, the sp e c tra l reso lu tion  is  a considerab le  o rd e r  o f m agnitude 

b e t te r  than in the co rrespond ing  c a se s  of *H n .m . r .  The sp e c tra  of 

som e n a tu ra lly  o cc u rrin g  m em b ran es a re  shown in F igure  5 and 

com pared  with the prdton sp ec tra  in F igure 3, the reso lu tion  can be 

seen  to be quite im p re ss iv e . T h is  sp e c tra l reso lu tion  is  in p a rt due



a 200 400 600 800

F ig . 4 . V aria tion  of ra tio  of charged  head group 
to acy l chain with rad iu s of v e s ic le .
Data of Sheetz and Chan (1972).
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F ig . 5
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m em b ran es

Data of Keough et a l . ;  Taken from  Chapman (1973).
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to the w ider chem ical sh ift range of the C nucleus ~  200 ppm a s  

com pared  with only 10 ppm fo r pro tons and a lso  the low er m agnetogyric
13

ra tio  of th e  C nucleus ~  1 /4  that fo r the p ro to n .

13The theory  of C chem ical sh ifts  has been d ea lt with e lsew here

(Cheney and G ran t, 1967; R am sey , 1950). Suffice it to say h e re , that 
13

the C chem ical sh if ts  resem b le  those obtained fo r p ro to n s; downfield

sh if ts  being caused by e lec tronegative  su b stitu en ts  ( ~  9 ppm fo r

m ethy l and 48 ppm fo r  hydroxyl) and by in c re as in g  £  c h a ra c te r  of

hyb rid isa tion  (100 ppm fo r - HC = CH - re la tiv e  to -C H ^). The

inductive sh ifts  due to  e lec tro n eg ativ e  su b stitu en ts  a r e  expected  to fall

off rap id ly  with d is tan ce  and contribu tions from  m agnetic  an iso tropy

a r e  expected  to be the sam e size a s  in p ro to n s . H ow ever, lin e a r

e le c tr ic  field sh ifts  a r e  thought to be m uch la rg e r  in carbon  than for
13p ro to n s . A nother im portan t fac to r in C sh ifts  m ay be the s te r ic

sh if ts  and esp ec ia lly  the s te r ic  shift which is  thought to a r is e  when

two m ethyl g ro u p s, se p a ra te d  by th ree  bonds (the c e n tre  bond being in

a gauche conform ation) in te ra c t .  A th ird  fac to r  of im portance 
13influencing C sh if ts  m ay be the solvent d isp e rs io n  sh ifts  thought to 

a r is e  from  fluctuating  m o lecu la r d ip o le s . It has  been shown, how ever, 

(Batchelor e t a l . ,  1972) , that fo r  lipid w ork , only the s te r ic  sh ift 

need be considered  se rio u s ly  a s  the bulk of the carbon  nuclei "bu ried" 

in the m ethylene envelope of the lipophilic in te r io r  of the b ila y e r  a re  

effec tive ly  rem oved from  charge e ffec ts . The s te r ic  sh if ts , because  

of th e ir  additive n a tu re , a r e  thought to be usefu l in p red ic tin g  the num ber 

of gauche - tra n s  ro ta tio n a l iso m e rs  p re se n t in a m o lecu le .
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D. A pplication of S p in -L a ttice  Relaxation T im e CTi) to M em branes

(i) D efinition :

S tandard  textbook defin itions ( F a r r a r  and B ecker, 1971; Levy 

and N elson , 1972) show tha t T j c h a ra c te r iz e s  the av e rag e  tim e that a 

nucleus can rem ain  in any one of two o r  m ore  energy  le v e ls  ava ilab le  

to it ,  a f te r  the rem oval o f the source of p ertu rb a tio n .

At equ ilib rium , nucle i a r e  not equally d is tr ib u te d  in a ll the 

availab le energy  le v e ls ,b u t obey a Boltzmann d is trib u tio n  p a tte rn  a s  in

equation (1) :

- a e /k t

N = N
U i

(1)

w here N and N a re  th e  nuclei populations in the low er and u pper energy
1 u

levels resp e c tiv e ly , £E is  the energy separa tion  betw een the two energy

levels,K  is  the Boltzm ann constant and T  is  the abso lu te  te m p e ra tu re . The

absorp tion  of rad io frequency  energy , fo r exam ple , w ill lead to a d is to rtio n

of th is  ra tio  and subsequently  the spins w ill tend to re tu rn  to equ ilib rium

in a tim e T j depending on the efficiency of energy  exchange w ith th e ir

environm ent: - hence the  te rm  sp in -la ttic e  re la x a tio n .T t va lues m ay v ary  
-4  4over a wide range , "TO - 10 s e c s . F o r a sm all d iam agnetic  m olecule 

typical values a re  of the o rd e r  of 10 - 10 se c s  although a value of
o

— 33s h as  been reco rd ed  for a 2M degassed  aqueous u rea  solu tion  at 30 C 

(see C hap te r 6).

(ii) The app lica tion  of * 1H T j to m e m b ran es  has la rg e ly  m et 

with o b s ta c le s  d e riv in g  p artly  from  the fam ilia rly  low reso lu tion  of the 

p . m . r .  sp ec tra  of v e s ic le s ,  espec ia lly  the unsonicated  o n es , and also  

possib ly  from  a fairly- s tro n g  diffusion influenced re laxa tion  m ech an ism .



The d iffe rences of opinion on rep o rted  II T j 's  in the li te ra tu re  (Chan 

et a l t 1971; B arra t, 1970; Lee et a l . , 1972) have highlighted the 

d isag reem en t on the issu e  of the dom inant relaxation  m echan ism .

On the one hand, the f ir s t  two re p o rts , because they suggest a 

com mon relaxation  tim e  fo r a ll the protons in the b ila y e r , imply that 

sp in-diffusion is the dom inant re lax a ti p rocess  in th e se  sy s tem s.

In the th ird  rep o rt, the au tho rs have in te rp re ted  th e ir  r e s u l ts  to m ean 

th a t a heterogenous d istribu tion  of ' l l  T . s in the b ila y e r  is 

c h a ra c te r is tic  of the type of s tru c tu re  to be expected, and tha t 

sp in-d iffusion  is not the dom inant re lax a tio n  p ro c e ss . T h is  

obse rva tion  was m ade on a sonicated m odel. It is questionable 

w hether th e ir  conclusion is equally applicab le to the unsonicated  

m odel to which the fo rm e r au thors ap p ear to have r e s tr ic te d  th e ir  

in te rp re ta tio n .

13(iii)  C T x m e asu rem en ts  in s im ila rly  sonicated  v e s ic le s  c lea rly

indicate a g radation  in m olecu lar m otion along the hydrocarbon

chain . The in c re a se s  in m o lecu lar m otion a re  thought to be from

the g ly c e ro l backbone tow ards both the te rm in a l m ethy ls of the chains

and th e  choline head g roup  in the c a se  of lecithin b ila y e rs , (Levine

et a l . ,  1972a). T h e  problem s m entioned above w ith the proton T

values a r e  not n ea rly  alw ays as  p re se n t in the re lax a tio n  p ro ce sses  
13of the C nucleus in these  sy s tem s . F o r exam ple, because  of the

13low n a tu ra l abundance of the C nucleus, ~  1. 1%, spin-diffusion 

cannot be a dom inant relaxation  p ro c e ss  fo r th is  nucleus.

F. Models for M olecular Motions in M em brane B ilay e r .

Iso trop ic m otion is one which is u n re s tr ic te d  in space  with 

re sp e c t to the p rinc ipa l axes. It can be c h a ra c te r is e d  by a 

single co rre la tio n  tim e ( t c ) •



w hich can be roughly defined as  the tim e requ ired  to  execute one tu rn .

An an iso tro p ic  m otion o c c u rs  when a body is  s till tum bling  free ly  but 

has  d iffe ren t ra te s  of reo rien ta tio n  about d iffe ren t p rin c ip a l axes: In 

the lim it, the body is no longer tum bling p erfec tly  f re e ly  in space and 

the m otion m ay be re fe r re d  to a s  " r e s tr ic te d "  m o tio n . In a phospholipid 

d isp e rs io n , the tum bling of the sp h e ric a l vesic le  i s  c le a rly  iso trop ic  

The m otions of the lipid m o lecu les  in the b ila y er su rround ing  the 

v e s ic le  m ay how ever, be r e s tr ic te d  to vary ing  d e g re e s .  The n . m . r .  

linew idths of an o rien ted  b ila y e r  sam ple have been shown to depend on 

the angle of the lipid chains to the applied  m agnetic  field  : the so called  

phospholipid "m agic ang le" (F in e r e t a l . , 1972; De V rie s  and B erendsen, 

1969) suggesting  that c e r ta in  segm en ts  of the cha in s in the b ilay er m ay 

be m o re  m otionally  h in d e red . The S eite r-C han  (1973) trea tm e n t has 

tended to favour a m odel of m otion in which chain p ro to n s undergo rapid  

m otion around the chain ax is  w hile perfo rm in g  r e s tr ic te d  o ff-ax is 

flexing m o tio n s. T hese rock ing  m otions a re  thought to be re s tr ic te d  to 

ang les  ab o u t 60-70° from  the long ax is  of the m o le c u le s . It is  the 

lack of ro tation  about a ll p o ssib le  ang les that is  thought to p revent 

n arro w in g  of the sp e c tra l lin e s  to the deg ree  o b se rv e d  in lip id s . Gauche - 

G auche ro ta tio n s o r  kink fo rm ation  is  invoked to explain  th is  segm ented 

m o tion . F u rth e rm o re , it is thought that th is  m ode l f its  the "so lid -like  

o rd e r "  packing c h a ra c te r is t ic  of unsonicated  b ila y e r s  in the gel phase .

If the rep o rted  abrupt v isc o s ity  d e c re a se  (Z im m er and S ch irm er, 1974) 

and a p a ra lle l  volum e in c re a se  (T raub le and H ay e s , 1971) thought to be 

a s so c ia te d  w ith the Chapm an tra n s itio n  in lipid b i la y e r s ,  a re  assum ed  to 

re f le c t s im ila r  changes in the im m edia te m ic ro -e n v iro n m en t of the 

lipid m o le cu le s , then it is  obvious that a s im ila r  in c re a se  of m o lecu lar 

m o tions w ithin th is  "o rd e re d "  fram ew ork  will accom pany the c ry s ta llin e— 

liq u id -c ry s ta llin e  tra n s itio n . We would expect to  obse rve an enhanced 

s p e c tra l  reso lu tion  above the phase tra n s itio n  te m p e ra tu re .
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T ran sla tio n a l m otion o r  la te ra l diffusion along the b ita y er is

thought to be m o re  im portan t fo r  in te rm o lec u la r  re laxation  p ro c e sse s
i . 13an d  would th e re fo re  affect H T* va lues m ore  than C T j t im e s . 

T ra n s la tio n a l diffusion m ay yet be one of the m ost u nderestim ated  

e le m e n ts  of m em brane phenom ena. Saffman and D elbruck (1975) have 

re c e n tly  showed that a s  a consequence of the an iso tro p ic  environm ent 

in  the b ila y e r , tran s la tio n a l d iffusion  may be up to four tim es  fa s te r  

in  re la tion  to ro ta tional diffusion than in an iso tro p ic  sy s tem . O ther 

m o d es  of m otion in the b ila y e r  m ay occu r but a re  p robably  of le s s  

sign ificance than those d esc rib ed  above. P recessio n  about the long 

a x is  of the chain , fo r exam ple (F igure 6) m ay a r is e  from  a com bination 

o f  the stro n g  charged-g roup  in te rac tio n s  at the b ila y e r  su rface  and the 

tendency of the whole m olecule to  ro ta te  about its  long a x is . T ra n sv e rse  

d iffusion o r  the so called  "flip -flop" of phospholipids usually  invoked 

to  explain the red is tribu tion  o f charged  lip ids between the two halves 

o f the b ila y er in an excitab le m em b ran e  (McLaughlin and H a ra ry , 1974) 

m ay  p roceed  at v e ry  slow ra te s  (K om berg and M cConnell, 1971), as 

to  have no m a jor physio log ical conséquence. Indeed, the ex is ten ce  of 

s ta b le  a sy m m etrica l d is trib u t ions of p ro te in s  and lip ids a c ro s s  a 

m em brane  b ila y e r  im plies th a t these  com ponents do not ro tate  from  

one su rface  of the m em brane to  the o th e r a t significant r a te s .  It has 

been su g g ested a lso  that the p assag e  through the hydrophobic m em brane 

in te r io r  of the p o la r head g roups and ionic resid u es of lip ids and p ro te in s  

is  therm odynam ically  a highly unfavourable p ro c e ss  (Singer and 

N icholson, 1972).

G . Mixed Lipid M odels.

The single lipid m odels that have been used so ex tensively  have 

contribu ted  a significant am ount to our knowledge of m em brane p ro c e s se s .
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F ig . 6  P ossib le  m o lecu la r re -o rie n ta tio n s  in the b ila y e r
(a) ro ta tio n  about lipid long-axis

(b) tr a n s la tio n a l diffusion

(c) t r a n s v e r s e  diffusion

(d) iso m eriza tio n  of ro tam ers

(e) precession about long ax is

t = tim e for one event , 6  = angle of precession , N = norm al

to b ila y e r  s u r fa c e .
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The Chapman tra n s itio n , a s  d isc u sse d  p rev iously  and undoubtedly one 

of the m a jo r  con tribu tions to the f ie ld , w as f i r s t  d em o n stra ted  in one 

of these  sy stem s and has subsequently  been shown to occu r in n a tu ra l 

m e m b ran es . H ow ever, som e of the equally  im portan t m em brane 

phenom ena could not have been understood  if we stuck to th ese  sim ple 

m o d e ls . The re la tiv e ly  low cooperativ ity  a t the tran s itio n  te m p e ra tu re  

resu ltin g  in b ro ad e r tra n s itio n s  in na tu ra l m e m b ran es  w as in fe rred  

from  investiga tions on le c ith in -c h o le s te ro l m ix tu re s  (Oldfield and 

Chapm an, 1971). The in te re s tin g  phenomenon of m em brane asy m m etry  

a t the m o le cu la r level has  no m ean ing  in a sing le lipid sp ec ie s  m odel. 

Phase seg regation  into d iffe ren t c la s s e s  of phospholip ids e i th e r  a c ro s s  

o r  along the b ila y e r  m ay not have a d ire c t equ ivalen t in a one lipid 

sy s tem . The consequences of the  la te r  phenom enon in n a tu ra l m em b ran es 

m ight be very  g rav e  indeed: if we a re  to assu m e tha t lip ids fu lfil both 

a s tru c tu ra l and functional ro le  in m e m b ran es , then lipid asy m m etry  

could lead to considerab le  "functional d isco n tin u itie s"  in the m em b ran e .

It will p robab ly  be m any y e a r s  yet befo re  we understand  the

p re c ise  role of each  c la s s  of phospholipids found in biological m e m b ran es .

U sually , it is assu m ed  that the d iffe ren t phospholip ids a ll fulfil som e kind

of s tru c tu ra l ro le , but th is  need not be so . The num ber of enzym es

showing various degrecsof phospholipid dependence fo r ac tiv ity  is grow ing.

A rec en t review  (Colem an, 1973) lis ted  som e 26 enzym es that fulfil the

two c r i te r ia  fo r lipid dependence, v iz -a -v iz , lo ss  of ac tiv ity  following

rem oval of lipid and reac tiv a tio n  on adding lipid to the inactive en zy m es.

A sch em e , recen tly  published by Goldman and A lb e rs  (1973) im p lica te s
+ +

d iffe ren t phospholipids in p o ss ib le  ro le s  in the (Na - K ) -A TPase 

ac tiv ity  of m em b ran es  :
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Ej + ATP

E ,P

EZ P +  Hs O -

Na+
E,

2 + 1

Mg

, 2 +
Mg

*
EaP

+
K _ +

1 —* E 2

. .  2+, Mg 
' 2 Ei

Ei P + ADP (phosphatidyl se rin e )

(phosphatidyl ethanolam ine 
phosphatidy l choline?)

(phosphatidyl se rin e )

(phosphatidyl ethanolam ine)

In conclusion , because  of the need to ex tra p o la te  m eaningfully 

the re su lts  from  the m odel and in fe r  m em brane  b eh av io u r, it is  d e s ira b le  

that the m odel sim u la te  conditions in the m em b ran e  a s  closely  as 

p o ss ib le . The m ixed  lipid b ila y e r  is  a m o re  re le v an t system  than the 

single lipid sp e c ie s  m ode l.
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CHAPTER 2

MATERIALS AND METHODS

A. M a te r ia ls .

Egg yolk phosphatidyl cho linet egg yolk ethanolam ine and the

m onosodium  sa lt of o x -b ra in  phosphatidyl se rin e , a l l  a t the G rade

I p u rity  level, w ere  obtained from  Lipid Products,(South N uthfield,

N r. R edhill, S u rre y ) . Thin la y e r  chrom atography  of th e se  lip id s

(see  m e th o d s) gave sing le spo ts and they w ere  subsequently  u sed

w ithout fu rth e r  purifica tion . Synthetic d ipa lm ttny l lec ith in  (DPL)
13

w as purchased  from  K och-L ight L ab o ra to rie s  L td. Sodium [ 1 -  C -]
1 3a c e ta te  and u rea  C a t the 98 and 92 atom  %  en richm en t lev e ls

re sp e c tiv e ly  w ere  purchased  from  P rochem , The B ritish  Oxygen

Com pany L td ., (Deer Park Road, London, SW19 3 U F ). Sodium 
14

[ 1 -  C-] ace ta te  w as obtained from  the  R adiochem icals L a b o ra to rie s ,

A m ersh a m . Bovine serum  album in (F rac tio n  V ) w ith an album in 

con ten t o f 9 7 %  was purchased  from  Sigma C hem ical C o ., (U .S .A . ).

S epharose 4B, MN silic a  g e l and F lo r is i l  (60-100 m esh ) w ere  

ob ta in ed  from  (Pharm acia, U ppsa la), M acherey, N agel and C o ., 

D uren , G erm any), and (F lo rid in  C o ., Chadwell H eath, E sse x ) 

re sp e c tiv e ly . A ll so lven ts fo r ch rom atography  w ere  A. R . g ra d e , and 

w e re  fresh ly  re d is tille d  in an a l l  g la s s  d is tilla tio n  s e t-u p  b e fo re  u se . 

C olum n dim ensions w ere  (2 .0  x 40 cm ) and (2. 5 x 40 cm ) fo r  s il ic a  

g e l  and ana ly tica l sieve ch rom atography  re sp e c tiv e ly . P re p ara tiv e  

T L C  p la tes w ere 20 x 20 cm .

A ll nuclea r m agnetic reso n an ce  (n m r) sp ec tra  w ere  ob tained on 

a B ruker WH90 with bu ilt-in  F o u rie r  tran sfo rm  fa c ilitie s  co n tro lled  

by a fast an a logue-to -d ig ita l c o n v e r te r  (ADC) com pu ter based  on the 

B ru k er data system  B-NC 12. C hangeable probe fa c ilitie s  w ere  

av a ila b le  and the opera ting  freq u en c ies  fo r the nuclei o bse rved  w ere
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1 31 13
90 .02 , 36.43 and 22.63 MHz fo r H, P and C re sp e c tiv e ly . A 

data s to rag e  disk system  (Diablo data s y s te m s)  w as a lso  av a ilab le .

A v a r ia b le  te m p e ra tu re  un it (-150°t° + 200°C ) was a lso  p a r t of 

the a c c e s s o r ie s .  D eu te ria ted  so lven ts; CDC10, CD^OD each  a t 

99. 8  atom % isotope abundance w ere  obtained from  A ldrich C hem ical 

Co. Inc. (M ilwaukee, W isconsin, U .S .A . ) and D^O a t 99 .8  atom  %  

w as obtained from  F luorochem  L td . (D e rb y sh ire ) .

E scherich ia  co li K12 (aceF , g ltA ) designated  a s  s tra in  CY2 

w as provided by P ro fe sso r  J . E . Cronan J r .  o f th e  D epartm en t of 

M olecu lar Biophysics and B iochem istry , Yale U n iv ersity , New Haven, 

C onnecticut 06510, U .S .A . T etrahym ena p y rifo rm is  s tra in  W w as 

provided by M r. R obert Hanks of th is  d ep a rtm en t.

B. M ethods.

( i ) Growth of E. co li CY2.

S train  CY2 w as u sua lly  grown in 15 l i t r e  ca rb o y s  containing 10 1

cu ltu re  m edium , w ith v igo rous ae ra tio n  a t 30°C . The grow th medium

co n sis ted  of medium  E (V ogeland  Bonner, 1956,) ava ilab le  a t 50 x streng th

a s  a stock so lu tion . T he medium  w as supplem ented with 0.4%  g lu c o se ,

0.04%  sodium L -g lu tam ate , 10 m g s / l i t r e  each  of L -leucine, L -iso leu c in e
13

and L -valine; 0.01%  th iam ine , 35 m g s / l i t r e  sodium [1*90% C ]

a c e ta te  and 0.1%  c a se in  h y d ro ly sa te . F o r th e  purposes of quantita tion ,

esp ec ia lly  during the  ex trac tio n  and purifica tion  of lip ids, a tra c e  
14am ount of sodium [1 -  C] a c e ta te  w as u sua lly  added to th e se  la rg e  

c u ltu re s . F o r  th e  10 m l cu ltu re s , how ever, su ffic ien t hot a c e ta te  to
4

produce counts of the o rd e r  of 1 0  /m in /m l w as used  to d ilu te  cold 

a c e ta te  befo re  g row th . Growth was usua lly  in itia ted  by innoculation 

w ith a sm all am ount o f o rg an ism s from  a pure c u ltu re . In the c a se  

of the 1 0  m l c u ltu re s , a w ire  loop-fu ll from  a so lid  ag a r  s trea k  in 

a p e tr i dish w as enough, but fo r the 1 0  1  c u ltu re s  up to 1 0 0  m l of
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s ta tio n a ry  phase liquid c u ltu re s  w ere  req u ired  to  avoid unduly 

prolonged lag phases.

(ii)  M ono-axenic grow th of T etrah y m en a P y rifo rm is .

10 l i t re s  of a la te  log phase E . co li s tra in  CY2 cu ltu re  w ere  

h a rv ested  by cen trifugation  a t 7 , 500 g . A septic conditions w ere  

m ain ta ined  during cen trifu g a tio n  by ensuring  tha t the cen trifu g e  

bo ttles had been prev iously  s te r i l iz e d  by autoclaving. The tr a n s fe r  

of cu ltu re  medium from  the la rg e  1 0  1  carboys was e i th e r  achieved 

with the aid of prev iously  au toc laved  siphon tubes a ttached  to an 

evacuation pump w ith a i r - f i l t e r s  a t the ap p ro p ria te  junc tions o r  

a lte rn a tiv e ly  the co n ten ts  o f th e  pots w ere  poured out in a s te r i le  

cabinet attached  w ith a m ic ro -m e s h  a i r  sc re e n . In th is  w ay( the 

E, coli c e lls  w ere  co llec ted  an d  w ashed in s te r i le  d is tille d  w a te r 

th re e  successive  tim e s  be fo re  being finally suspended in ano ther 

10 1 flask containing s te r i le  d is t i l le d  w a te r . 100 m l of T etrahym ena 

pyriform  is s tra in  Wt tha t had been previously cu ltu red  axenically  

a s  describ ed  by Nozawa and T hom pson (1971 ) w ere  s im ila rly  

W’ashed and resuspended  in 100 m l of w a te r . To avoid ly s is  of 

the te trahym ena c e lls , cen trifu g atio n  W'as c a r r ie d  out a t m uch 

reduced speeds ~  2, 000 g an d ,b efo re  t ra n s fe r  into the E. co li 

medium .phase c o n tra s t m ic ro sco p y  was used to check that the 

c e lls  w ere  s ti l l  in ta c t. T he 100 m l of T etrahym ena p y rifo rm is 

suspension was then u sed  to  innocu late  the 10 1 E. co li suspension 

and the carboy  se t up on the fe rm e n to r . A ir was passed  in through 

the s te r i le  a i r  f i l te rs  a s  in th e  grow th of the E, coli except th a t the 

s tir r in g  ra te  of the fe rm e n to r  w as kept at m uch reduced  speeds,

( 1 1  r e v s /m in )  owing to the d isc o v e ry  that the te trahym ena c e lls  

quickly b roke open w ith v ig o ro u s  s ti r r in g . The th e rm o sta t w as 

adjusted to  the 28°C m ark  an d  sam p les  w ere reg u la rly  taken off

for phase co n tra s t m ic ro sc o p e  o bserva tion . A fter no E. co li w as
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v is ib le  the cu ltu re  w as allow ed to continue for an o th er four hou rs »
so tha t the ingested  b ac te ria  could be fully d igested  befo re  

h arv estin g . T his w as usua lly  c h a ra c te r iz e d  under phase m ic roscopy  

by the decline and d isap p ea ran ce  of no rm ally  abundant food vacu o le s .

The c e lls  w ere  then subsequently  h a rv e s te d  by cen trifugation  at 

about 2, 000 x g fo r 2 ho u rs , and then ex tra c te d  by the  Bligh and 

Dyer (1959) m ethod.

( iii)  E x trac tion  of lip id  m a te r ia l .

The m ethod of Bligh and D yer (1959) em ploying a b iphasic so lvent 

system  of ch lo ro fo rm , m ethanol and w a te r  was u se d . The c e lls  w ere  

f ir s t  spun down a t about 7, 000 g and the  wet c e ll p as te  ex trac ted  

d irec tly  a f te r  the determ ina tion  of th e ir  w ater con ten t. F o r  sm a ll 

quan tities, it w as a lrig h t to u se  the approxim ation  of 80% w ate r 

content in t is su e s , but for the  la rg e r  ex tra c ts , a  p ro p e r d ry  weight 

de term ination  v ia f re ez e -d ry in g  of a sm a ll aliquot o f the c e ll 

suspension  w as perfo rm ed .

(iv) P urification  of lip ids by colum n ch rom atography .

The com plex lipid m ix tu re  w as fu rth e r  purified  into lipid c la s s e s  

by colum n chrom atography  on an a c id - tre a te d  f lo r is i l  adsorben t 

(C aro ll e t a l .  1968). An a l l  g la s s  colum n with a teflon  stop-cock 

(2 x 40 cm ) w as loaded w ith a s lu r ry  of the ad so rb en t in ch lo ro fo rm  

(30 g dry  w t. of f lo r is i l ) .  Bed height a f te r  equ ilib ra tion  w as 30 cm .

About 300 g of lipid m a te r ia l was in troduced a t the top  of the 

colum n bed in 5 m l of ch lo ro fo rm , and elution with in c re as in g  ra t io s  of 

m ethanol in ch lo ro fo rm  c a r r ie d  out a s  outlined below . T he e luen t was 

continuously m onito red  by an a ly tica l th in -d ay er ch rom atog raphy  on s ilica  

g e l ad so rb en t m ounted on (2. 5 x 7 .  5cm  ) m ic ro sc o p e  s lid e s . F o r  the
o

non-po lar lip id s, the  eq u ilib ra ted  tank contained petro leum  e th e r  (b. p . 6 0 - 8 0  ) - 

ethyl e th e r -a c e tic  ac id  (90 :10 :1 ,v /v )  and for the phosphatides, a solvent
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system  ch lo ro fo rm -m eth an o l-w a te r (65:25:4, v /v )  was u sed . T he 

spo ts w ere  detected  by a d es tru c tiv e  non-specific  m ethod em ploying

F rac tio n  1.

C hloroform : n eu tra l lip ids such a s  s te ro ls ,  g ly c e rid e s .

F rac tio n  2 .

C hlo ro fo rm -m ethano l (90:10, v / v ): c e re b ro s id e s , phosphatid ic 

ac id  and ca rd io lip in .

F rac tion  3 .

C hlo ro fo rm -m ethano l (3:1, v /v )

F ra c tio n s  3 and 4, pooled to g e th er, w ere  alw ays found to  contain  

~  88 of the s ta rtin g  m a te r ia l (w /w ). The phospholipids w e re  

fu rth e r purified  by concen tra ting  th e ir  re sp e c tiv e  frac tions and  

chrom atographying these  on p rep a ra tiv e  th in - la y e r  ch ro m a to g rap h y .

(v ) T h in - la y e r  ch rom atography .

F o r p re p a ra tiv e  th in - la y e r  ch rom atography , the ad so rb e n t w as 

p re-w ashed  w ith CHCl^-MeOH (1:1) and d ried  in an oven a t 110 C 

for 2  h o u rs  a f te r  an in itial overn igh t a ir-d ry in g  in a d u s t- f re e  

cab ine t. The la y er th ickness w as a rran g e d  to be 0 .7 5  mm u sing  an 

au tom atic  sp re a d e r . The solvent system  used  w as ch lo ro fo rm -m eth an o l 

w ater (65 :25 :4). An in itia l t r ia l  experim en t with a m ix tu re  o f  four 

co m m erc ia l phospholipids (PC, PS, PE, DPG ) showed tha t su ffic ien t 

reso lu tion  of th ese  lipids under the conditions of our la b o ra to ry  w as 

possib le, ( P late 1 ). Up to 50 m gs of lipid m a te r ia l in a 10%

chloroform  w /v ) solution w as usually  applied with an au to m atic  

s tre a k e r , about 2 . 5 - 3  cm  from  one end of the ( 2 0  x 2 0  cm ) p la tes  

and, a f te r  evaporating  the solvent off in a n itrogen  a tm o sp h e re ,

(usually 0 .5  m in ), the p la te  w as developed in an ascending so lven t

40> H SO and h ea t. Flow ra te  w as m ain ta ined  a t 3 m ls /m in .  
2 4

F rac tio n  4.

M ethanol

T ra c e s  of c a rd io lip in  plus 
phosphatidyl e thano lam ine 
phosphatidyl g ly c e ro l.



P late 1

P re p a ra tiv e  TLC of a phospholipid m ix tu re  on 
s i l ic a  gel MN SF, C l, PE, PS, PC & O
sta n d  for solvent fro n t, ca rd io lip in , phosphatidyl 
e thano lam ine , phosphatidyl s e r in e , phosphatidyl 
choline and o rig in  resp ec tiv e ly . Spots w ere  
developed with a ch lo ro fo rm -m eth an o l-w a te r 
(65 : 25 : 4, v /v )  m ix tu re  and viewed with 0.1%  
Rhodam ine 6 G.



flow in a p re -eq u ilib ra te d  tan k . A fter elution, th e  a re a  co rrespond ing  

to the R j of each lipid was sc ra p e d  into a beaker and the lipids 

re -e x tr a c te d  with a ch lo ro fo rm  m ethanol (2:1) m ix tu re . The 

phospholipids w ere  fu rth e r  shown by m ic ro s lid e  TLC to be of the 

sing le sp o t-p u rity  g ra d e  in two d iffe ren t so lvent sy stem s: 

ch lo ro fo rm -m eth a n o l-w a te r (65:35:5, v /v )  and ch lo ro fo rm - 

m e th an o l-a ce tic  a c id -w a te r  (25:15:4:2, v /v ) .

In the sep ara tio n  of the lip id s  from  T etrahym ena pyriform  is , 

a so lvent system  com prising  ch lo ro fo rm -a ce tic  ac id -m eth an o l- 

w a te r (75:25:5:2.2, v /v  ) was u sed  for the developm ent of the 

po lar lip id s and the n e u tra l lip id s  w ere  developed in a petroleum  

e th e r  (b .p . 40-60°C )-d ie th y le th e r-a c e tic  acid  (70:30:1 , v /v )  

so lven t s y s te m .

(v i) M olecular s ieve  chrom atography : v e s ic le  s iz e  d eterm ina tion .

A g la s s  colum n (2. 5 x 40 cm ) fitted  w ith a teflon tube at the 

draw n-ou t end w as packed w ith  sep h aro se  4B. The top of the 

colum n w as connected  to an eluan t r e s e rv o ir  and the column left 

to run  overn igh t to  en su re  c lo se  packing. A buffer (0.04M  T ris -H C l 

pH 9 .0 )  w as used  a s  the elu ting  so lven t. A fter equilib ration  of the 

colum n, the top su rfa c e  w as p ro tec ted  w ith a p lastic  cup with a net 

in the bottom and fitting  c lo se ly  around th e  inside of the colum n. 

(A dsorbent bed height ~  30 c m . ) 8  m l of a 3 %  (w/v ) d ispersion

of the m ixed  lip id  system  in the sam e buffer w as sonicated  un til 

o p tica l c la r ity  and then in troduced  a t the top of the bed with the  aid 

of a d raw n-ou t p as teu r p ipe tte . Elution of the colum n with buffer 

w as com m enced a t a flow r a te  o f 0 .5  m l/m in  and 5 m l fractions 

w ere  co llec ted  on an au tom atic  frac tio n  c o lle c to r . The abso rbance  

w as re a d  on a UV sp e c tro p h o tm e te r, (Beckman Model SP1800).



The void volum e w as determ ined  a s  th e  elution volum e of

Dextran blue 2000 (Pharm acia, U ppsala, Sweden). The in te rn a l

volum e w as d e te rm in e d  from  the elu tion  volum e of tr i t ia te d  w ate r

(R adiochem ical C en tre , A m ersham , G re a t B rita in ) and g lycine.

The two colum n co n s tan ts  a and b w e re  de term ined  from  theo o
elution p ro files o f Y-globulin and tom ato  bushy stunt v iru s  

(mean Stokes ra d iu s , 52A and 150A re s p e c tiv e ly .)

The ab so rb an ce  w as de term ined  at 300 nm for the colum n 

effluent of lipid m a te r ia l .  280 nm w as u sed  fo r Y-globulin and 

570 nm for g lyc ine  w hile the v iru s  and D extran  blue w ere  m onitored  

a t 260 nm . T r i t ia te d  w ate r w as d e te rm in e d  by liquid sc in tilla tio n  

(Packard M odel).

(vii) Lipid d e te rm in a tio n .

A ll non-phosphorus containing lip id s  w ere  determ ined  d irec tly  

by th e ir  d ry -w eigh t e s tim a te s . U su ally , a sm a ll aliquot of the 

ch lo ro fo rm -m eth an o l (2 : 1 , v /v )  so lu tion  w as evaporated  to d ry n ess  

in a fre ez e  d r ie r ,  and the  d iffe rence in  the  constan t w eights o f the 

flask with and w ithout lipid m a te r ia l r e g a rd e d  as the  d ry  weight of 

the sam p le . Phospholipids w ere  d e te rm in e d  by both a s im ila r  

d ry-w eight m ethod and an inorganic phosphorus a s sa y  based  on 

the m odified p ro ced u re  of Allen (K ates, 1972). U sually , an aliquot 

of the lipid sam p le  containing up  to 2. 5 m g of phospholipid 

(estim ated  from  th e  d ry  w eight) w as ev ap o ra ted  to d ry n ess  in a 

ca lib ra ted  s tra ig h t-w a lle d  'p y re x ' g la s s  tube. The sam ple w as 

d igested  with 2  m l of p e rch lo ric  acid  by heating o v er a g as  b u rn e r  

un til the co lou r d isap p ea red  co m p le te ly . 10 .5  m l of d is tilled  

w ate r, 2 m l of A m idol so lu tion  and 1 m l of m olybdate solution w ere 

each added to  the  cooled  d igest, with m ix ing , on a v o rtex  m ix e r in 

that o rd e r . 25 m in u tes  w as then allow ed  fo r the molybdenum blue 

co lour to develop, and then 9 .5  m l of d is tille d  w ate r finally  added
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with m ixing. The abso rbance  w as rea d  at 680 nm ag a in s t a 

reagen t blank and the phosphorus content e s tim a ted  from  a ca lib ra tio n  

cu rve  determ ined  un d er id en tica l conditions, using 30 ug and 60 p,g 

phosphorus s ta n d a rd s . The phospholipid content w as obtained by 

m ultiplying the am ount of phosphorus p rese n t a f te r  d igestion  by 

25 as  the average phosphorus conten t of phospholipids is  about 4%.

(v iii)  P reparation  of fatty  ac id  m ethy l e s te r s .

50 m g of phosphlipid in ch lo ro fo rm -m eth an o l (2:1 v /v )  was 

taken into a 25 m l round-bo ttom ed  flask , and the solvent rem oved  

by vacuum over n itrogen . 5 m l of a 5% KOH solution in 50% 

aqueous m ethanol w as added and the flask fitted  to a reflux  

ap p a ra tu s . The sam ple  was h ea ted  under reflux  for 1 hour.

The aqueous phase w as ac id ified  with HC1 and the fatty  ac id s 

ex trac ted  with e th e r . The e th e r  solution w as then d r ie d  over 

anhydrous sodium su lphate  b e fo re  evaporation  under n itrogen .

The fatty ac ids w ere  then  taken up in 1 m l of light petro luem , 2 m l 

of ac id  m ethanol (1% v /v  ) and 3 m l of 2, 2 -dim ethoxypropane 

(Radin et a l . ,  1960). A fter 1 hour a t room  te m p e ra tu re , 5 m l of 

d is tilled  w ate r w as added, and the  se p a ra te d  upper la y e r  co llec ted . 

The aqueous phase w as su ccessiv e ly  w ashed th re e  tim e s  with 

petroleum  e th e r  and the com bined fra c tio n s  with anhydrous 

Na2S04.

(ix) D eterm ination  of fatty a c id .

The fatty ac id  content w as es tim a ted  by the hydroxam ate a s sa y . 

U sually, 0 .1  ^m ole of the fatty  ac id  sam p le  was taken  up in 0 . 5 m l 

of a m ix tu re  of EtOHiEt^O (3:1 v /v  ). 0 . 2 m l of a lkaline

hydroxy lam ine (2 p a r ts  NHjOHM part NaOH v /v )  w as added and m ixed 

on a v o rtex  m ix e r. T he rea c tio n  m ix tu re  w as left to stand a t room
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te m p e ra tu re  fo r 20 m in and 0 .1  m l of a 5M  HC1 so lu tion  added 

w ith m ixing. T h is w as then followed by the addition  of 0 .1 m l 

of an acid  fe r r ic  ch lo ride  solution (10% F eC l^ ’hH^O in HC1, w /v ) 

and, a f te r  m ixing, the abso rbance  w as  re a d  a g a in s t a  reagen t 

blank a t 520 nm . A stan d ard , em ploying la u ric  hydroxam ate 

(mp 91-93°) o r  s te a r ic  hydroxam ate (mp 9 9 -106°) in 6 6 % EtOH 

was used  throughout the p ro ced u re .

^  = 1  • 1  O .D  u n its /^ m o le  ( 2  )

(x) N m r sam ple  p rep a ra tio n : non -p o lar so lu tio n s.

A ll no n -p o lar so lu tions fo r n m r ru n s w ere  p re p a re d  in 

d eu teria ted  chloroform  as  solvent w ith the deu terium  signal 

providing a h e te ro n u c le a r  f ie ld /freq u en cy  lo ck . O ccasionally , a 

sm a ll am ount of d eu te ria ted  acetone ( ^  5 /  v /v  ) w as found 

n e c essa ry  to provide a m uch s tro n g e r  lock than the CDCl^ signal 

espec ia lly  when long accum ulation  tim es  w ere  d e s ire d  for the 

n a tu ra l abundance m a te r ia l .  C oncen tra tions w e re  in the range 

1 0 - 2 0 % w /v  fo r the n a tu ra l abundance lip id s, and as  li t t le  a s  0 .5%  

(w /v) w as found sufficien t to obtain m eaningful sp e c tra  from  e n r ic h e d  

lip id s . A ll re la x a tio n  data for lip ids in n o n -p o la r so lu tions w ere  

obtained for to ta l lipid concentrations of 1 0 % (w /v ) so tha t in a m ix e d  

lipid system  of a ( 1 : 1  m o la r  ra tio  ) betw een en ric h ed  and 

unenriched  lip id s , th is  w ill am ount to app rox im ate ly  a 5% so lu tion  

of en rich ed  lip id s in te rm s  of length of run .

When ch em ica l sh ifts  w ere  d es ire d , TMS w as u se d  as  in te rn a l 

s tan d ard  and the concen tra tion  u sed  ranged  betw een ( 1 - 1 0 % v /v  ) 

depending on w hether en rich ed  o r  n a tu ra l abundance m a te r ia l w as 

being ru n .

(xi) N m r sam ple  p repara tion :aqueous d isp e rs io n .

A known quantity  (150 m g ) of lip id  m a te r ia l  in ch lo ro fo rm -
o

m ethanol (2:1 v /v )  w as evapo rated  to d ry n ess  a t 35 C over a s tre a m



of nitrogen and the d ry  lipid m a te r ia l then shaken w ith 1 .5  m l of

buffer (40m M T ris -H C l/1 0 0  nM edeta te  in 20% D20  in tr ip ly

d is tilled  w ate r pH 9 ) to  give a c o a rse  lipid d isp e rs io n . Sonication

w as perform ed in sp e c ia lly  cut (2 .0  x 5. 5 cm ) pyrex g la s s  tubes

w ith a probe type (M S E ) so n ica to r. The sonication w as c a r r ie d

out a t  30°C and un d er a steady s tream  of pure n itrogen  and the

tip  of the soniprobe w as  im m ersed  to about half the depth of the

d isp e rs io n  in the tube and the power supply then tuned to m axim um

cav ita tion . F or the PE/PS m ix tu re s , the sonication tim e  fo r the

d isp ers io n  to a tta in  optim um  tran sp a ren cy  was u sua lly  not m ore

than 8  m in , w h ereas fo r  the PE/DPL m ix tu re s , up  to 15 m in was

re q u ire d . The egg yolk phosphatidyl choline was son icated  for

1 0  m in  with the g la s s  tube w ell im m ersed  in a b ea k er of ice .

No significant in c re a s e  in absorp tion  a t 234 nm w as observed

a f te r  sonication and TLC  of the sonicated  lip ids showed no

evidence of h y d ro ly s is  products. The son ica tes w ere  then u sually

filte re d  through a O . U  M illipore f ilte r  and t r a n s fe r r e d  into a

10 mm n m r tube. N itrogen  was bubbled through fo r  about 3 m in

b efo re  the 'a n tid iffu s io n 'cu rren t plug was fitted  into th e  tube.
13

F o r a re fe re n c e  s ta n d a rd , a 10% 1 ,4-d ioxane so lu tion  (for C)
31o r  an 85% o rthophosphoric  acid  solution (for P) in a cap illa ry

2
rube w as co -ax ia lly  m ounted. The 20% HHO con ten t was found

1
to be adequate to p rov ide  a fie ld /frequency  lock. H nm r sam p les

2
w ere  p repared  in a  s im ila r  buffer m ade up in 99.8%  atom HHO

and w ere  run  in 5 m m  tubes. U rea so lu tions w ere  m ade by adding
13a 2% stock solution o f BSA to weighed quan tities of C u rea  and then 

ru n  in a 1 0  mm tu b e .

(x ii) S p ec tro m ete r operation .

All sp ec tra  w e re  obtained in the F o u rie r  tra n sfo rm  (F T ) m ode.

An 8  K (8,192 sam p lin g  po in ts) data se t was used, m aking it p ossib le  

for the com puter to  m e asu re  chem ical sh ifts  c o r r e c t  to ± 0 .0 5  p .p .m .
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F o r the m easu rem en t of re lax a tio n  tim e s , a pu lse m ethod 

(F reem an  and H ill, 1971) em ploying a ( n - t - n /2 )  sequence w as 

used w here  t, the in te rv a l between the 180° and 90° pu lse ,w as 

v a rie d  in such a way a s  to  include tim e s  on e i th e r  s id e  of the 

'n u ll ' spectrum  of any p a r tic u la r  peak. A m inim um  rec o v e ry  

tim e for the sp ins of 5 x the la rg e s t T x in the sam p le  w as 

allow ed between su c ce ss iv e  pulse c y c le s . T yp ically , 150-300 

scans w ere  accum ulated  for each spectrum  of th e  p a rtia lly  

re lax ed  F T  block. A p rog ram m e allow ing each  FID  to be s to red  

as  part of the block so th a t the block a s  a whole could  be p ro cessed  

at once w as u sed . T x w as ca lcu la ted  from  the slop>e in equation (3) 

below.

In (A -  A ) = In 2 A - t / T 1
0 0  t ; c d

(3)
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CHAPTER 3

13C BIOSYNTHETIC ENRICHMENT OF THE FATTY ACYL RESIDUES 

OF PHOSPHATIDYL ETHANOLAMINE
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CHAPTER 3

A . INTRODUCTION

With the developm ent of the technique of Pulsed F o u rie r  T ra n sfo rm  
13n . m . r . ,  the observation  of the C n . m . r .  of a lipid m a te r ia l a t the na tu ra l 

abundance level is a re la tiv e ly  sim ple m a tte r .  This a p p lie s ,s tr ic tly  

speaking, only to the organic solu tions of such m a te r ia l.  The fo rm ation  of 

highly populated m acro m o lecu la r ag g re g a te s  by lipids in o rgan ic  so lven ts is 

very  sm a ll com pared with th e ir  aqueous d isp e rs io n s . F o r  exam ple , in 

CDC1^> lecithin ex is ts  a s  inverted  m ic e lle s  containing 60 - 70 m o lecu les  and 

only below the boiling point of a m ethanol solution of the sam e lipid do t r im e rs  

begin to ap p ear. (Price and L ew is, 1929; E iw orthy and M acintosh, 1961). A 

well d isp e rse d  aqueous solution of the sam e lipid, how ever, will contain about 

3000 m olecu les p e r  v e s ic le , a rran g e d  in a b ilay er . (This e s tim a te  is  based on 

a v es ic le  average weight of about 3 x 10^ D altons, and an average m o lecu la r 

weight of about 750). This fac to r is in p a r t  responsib le  fo r the d ec reased  

reso lu tio n s and also  the longer tim es  req u ired  to a tta in  m eaningful s ig n a l/n o ise  

ra tio s  in going from  the solution to the d isp e rs io n . Although it is  p o ssib le , in 

p rin c ip le , to in c re ase  the s ig n a l/n o ise  ra tio  indefinitely  by accum ulating m ore 

free  induction decays (FIDs) it becom es uneconom ical to  accu m u la te  data fo r 

m o re  than 1 0  hours and w orse s t i l l ,  th is  w ill m ean up to  1 0 0  ho u rs  if spin- 

la ttice  relaxation  (Tj ) tim e m easu rem en t is  req u ired .

13
One obvious solution to th is  prob lem  is the C en richm en t of n .m . r .

sa m p le s . Both chem ical and b iosyn thetic  techniques fo r  concen tra ting  the
13C isotope in lipids a re  availab le and have been used in conjunction with each

o th e r  (M etcalfe et a l ,  1972). Although any carbon of choice along the fatty

acyl chain can be se lec tive ly  labelled by chem ical m ethods, th is usually  involves
13

arduous sy n th esis . On the o th e r  hand, grow th of algae  on CO^ . although 

econom ical, re su lts  in a ll the carbons o f the chain being labelled , thus 

y ield ing a com plex sp ec tru m .
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The a lte rn a tiv e  is  to cu ltu re  b ac te ria  on ace ta te  labelled  on only one ca rb o n , 

so as  to obtain  fatty  ac id s  labelled only in a lte rn a te  ca rb o n s . T h is  e lim in a te s  

the com plex sp in -sp in  sp littings m entioned above, but su ffe rs  the d isadvantage 

that If w ild-type b ac te ria  a re  u se d , m ost of the added a c e ta te  is w asted  in 

the m edium  because the in te rn a l production  of ace ta te  from  pyruvate in the 

b iochem ical pathway of the o rgan ism  is  qu ite efficien t.

At about the tim e I w as em bark ing  upon my re s e a rc h  p ro g ra m m e , 

Cronan and B atchelor (1973), had ju st rep o rted  a m utant of E sch e rich ia  coli 

designed to  u tilize  ace ta te  e ffic ien tly  fo r the syn thesis  of its  fatty  a c id s . It 

Is my p le a su re  to have spent the e a r ly  s ta g es  of th is  w ork at the la b o ra to ry  

of P ro fe sso r John E .C ro n a n , J r .  (D epartm ent of M olecu lar Biophysics and 

B iochem istry , Yale U n iversity , New Haven, Connecticut 06510, L '.S .A .)  

w orking w ith th is s t r a in .  The o rg an ism  used was E .c o li  K12 s tra in  CY2 

(ac&F, g ltA ) .

B. LESIONS IN STRAIN CY 2

Added a c e ta te  In c u ltu re s  of E ■ coli growing in g lucose m in im al 

medium  is  la rge ly  incorporated  Into fatty  acid and p ro te in  (R oberts et a 1,1963). 

A large p ropo rtion  of the ace ta te  is  a lso  converted  to CO^ and re le a se d . In 

o rd e r  to achieve a high level of inco rpo ra tion  into the fatty  acid  a lone , the 

inco rpo ration  of ace ta te  into p ro te in  and the oxidation to CO^ would have to 

be b locked . The re levan t p a r t of the K rebs cycle is  shown in figure 7.

The enzym e c i tra te  syn the tase  ca ta ly ses  the condensation of oxalace ta te  with 

aceta te  to  form  c i t r a te .  M utants of E ■ coli defective in th is  enzym e can be 

iso lated  a s  s tra in s  req u irin g  o -K etog lu tara te  o r  g lu tam a te . T hese m u tan ts 

a re  ca lled  git A m utan ts and have been prev iously  shown to be unable to 

oxidize exogenous ace ta te  to carbon dioxide (Gilvarg and D avis, 1956;

A shw orth et a l ,  1965). A lso , it has  been shown (H arder et a l ,  1972) that 

when git A s tra in s  a re  grown on m edium  supplem ented with leucine, 95%
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of the ace ta te  inco rpo ra ted  into c e llu la r  m a te r ia l Is found in fatty  ac id s . 

H ow ever, in even th is  s tra in , the in co rpo ra ted  ace ta te  would be d ilu ted  by 

endogenous ace ta te  produced from  the g lucose carbon sou rce  by the action 

of the pyruvate  dehydrogenase com plex. T h is  would lead to a m ark ed  

d e c re a se  in the specific  en richm en t of the fa tty  acid  com pared  to that of 

the ace ta te  p re c u rs o r .  The in troduction  of a m utation  in the a c e F  gene 

would lead to the production of a defective pyruvate  dehydrogenase com plex 

a s  has  been shown p rev iously  (D ietrich  and H enning, 1970). The resu ltan t 

o rgan ism  h a s  lesions In both the git A and ace  F g en es, Is unable to 

syn thesize ace ta te  endogenously and unable to  condense ace ta te  with 

o x a lace ta te . It re q u ire s  exogenously added ace ta te  and g lu tam ate  fo r 

g ro w th .

C . INCORPORATION OF ADDED ACETATE 

14
T r ia l  runs with rad ioactive [ 1 - C ] -ac e ta te  w ere  p erfo rm ed  in 

an a ttem p t to standard ize  the optim um  cu ltu re  conditions for CY2. A 

ty p ica l se t of read ings obtained is. p re se n ted  in tab le 2  and p lotted in 

figu re 8 . The plot of the percen tage of label ex tra c te d  in the lipid

frac tion  ag a in st the concen tra tion  of ace ta te  in jected  Into the m edium  before 

grow th re v e a ls  that at high ace ta te  co n cen tra tio n s, the p ropo rtion  being 

u tilized  d ro p s . It seem s probable , th e re fo re , that som e endogenous 

sy n th esis  of ace ta te  s ti ll o c c u rs . T h is w ill account fo r the d ec re a se d  

u tiliza tion  of the added ace ta te  at the h ig h e r concen tra tions , s ince  the 

o rg an ism  can p resum ably  u tilize  only a given quantity  of a c e ta te  at any one 

stage in i ts  growth phase , ir re sp e c tiv e  of the m ain pool.

The a lte rn a tiv e  argum ent that a su b stan tia l am ount of ace ta te  m ay 

have been d iv e rted  to p ro te in  sy n th es is , im plying the fa ilu re  of the git A 

gene m u ta tio n , does not seem  valid , since sufficient count to account fo r m ost 

of the un incorporated  ace ta te  w as usually  found in the grow th m edium  a f te r  

ce ll sedim entation* cf tab le  2 .
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T able 2: Efficiency of incorporation  of added sodium [1 -  C]

ace ta te  into fatty ac ids of E . c o li.

I

Amt a c e ta te  
in m edium  

(ug /m l)

c p m /m l
befo re
grow th

c p m /m l
afte r
grow th

c p m /m l 
in lipid 
m a te r ia l

14
%  to ta l C 
incorporated

Amt 
F . A
H.mole/ml

1 0 3.61 x 1 0 4 3 .63  x 1C4 2 .16  x 1 0 4 60 .80

2 0 3 .70  x 104 3 .6 8 x  104 2 .1 5  x 104 58 .93

30 3 .22  x 104 3 .26  x 104

4
1.73 x 10 53 1 . 2 2

40 4 .0  x 104 3.91 x 104 1.93 x 104 50 2 . 0 2

50 3.41 x 104 3.43 x 104 1.65  x 104 48 2 . 1 0

60 3 .5 5  x 104
4

3 .52  x 10
4

1.79 x 10 51

I

i 2 .09

) lipids 

ction of

function
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The value of only 50% inco rpo ra tion  fo r the concen tra tion  range 

(30- 40 tig/m l ace ta te  added) is  ra th e r  low com pared  with the p rev iously  

rep o rted  data of C ronan and B a tc h e lo r ,(1973X T h is is  p robab ly  due to 

d iffe rences in cu ltu re  conditions like h a rv es tin g  of c e lls  a t d iffe ren t 

stages in the log p h ase . Low er values than 50% have been rep o rted  

e lsew here  (B atchelor, 1974). The plot of the fatty  acid  content of the 

ex trac ted  lip ids shows the opposite tren d  to the p e rcen tage  ace ta te  

in co rp o ra ted . The fatty  acid concen tra tion  se em s to  depend m arked ly  

on the am ount of a c e ta te  p re se n t in the m edium , although it tends to 

p la teau  off above the 40 Mg/ml ace ta te  co n cen tra tio n . T h is  is  good 

evidence that the lesion  in s tra in  CY2 is  au then tic , at le a s t to the extent 

that the m a jo r  p a r t of the ace ta te  in the m edium  is  channelled  into 

fatty acid sy n th e s is . P re sen ta tio n  of the data in an o th er fo rm , using 

the calcu lated  abso lu te  quan titie s of exogenous ace ta te  ingested  by the 

o rg an ism , helps to il lu s tra te  th is  point b e tte r  .(F ig u re  9 ).

T his does not upset the argum ent of in te rn a l dilu tion  of the ac e ta te , 

because fo r in te rn a l dilution to o c c u r , each  o rg an ism  w ill p resum ab ly  

syn thesize ace ta te  only to the extent to which the m utation  in its  genes 

has re v e rte d  to the w ild type o r  is incom plete in the f i r s t  p la ce . In 

o th e r  w ords, the am ount of endogenous ace ta te  p roduced from  pyruvate 

w ill be the sam e, ir re sp e c tiv e  of the quantity  of added a c e ta te . T hus, 

depending on the th resh o ld  a c e ta te  req u ired  by the o rg a n ism , the am ount 

o f fatty acid  produced m ay v ary  with added a c e ta te . The endogenous 

production of a c e ta te  by the o rgan ism  is  sh o rt of the th resh o ld  requ irem en t 

fo r growth by about 40 u g /m l, hence we have fatty  acid sy n th esis  

in c reasin g  with added ace ta te  up to th is  point and g rad u a lly  levelling  off 

subsequently . The plot at the top of F igure  8  show s that the 

am ount o f ace ta te  p re se n t in the m edium  before and a f te r  cu ltu re  grow th 

is conserved , ind icating  that little  o r  no ace ta te  w as lo s t a s  CO^.



Added ace ta te  p.g/m l

F ig . 9 Amount added ace ta te  that is  incorporated  
d ire c tly  into lip ids of E .c o l i CY 2
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D. FACTORS INFLUENCING YIELD OF
13,

IN FATTY ACIDS

From  the point of view of n . m . r .  , it is  the specific  en richm en t 
13in C of the fatty a c id s  which is m ost im portan t. T h is  is  the d eg re e  to

13
which the en richm ent in the ace ta te  p re c u rs o r  [ 1 - 90% C] -a c e ta te  is 

p re se rv e d  in each labelled  carbon a tom . It is  d e s ira b le  to obtain a high 

proportion  of inco rpo ra tion  of the added a c e ta te , but a s  has been 

d em o n stra ted , the advantage m ay be offset if a high quantity  of endogenous 

aceta te  is equally av a ilab le  to the o rg an ism , since th is  m ay reduce the 

specific en richm en t considerab ly  in the fatty ac id .

A nother fa c to r  which m ay lead to significant am ounts of ace ta te  

being endogenously m ade is  insufficient oxygenation of the cu ltu re  during  

grow th. E . coli h a s  been shown to grow  under anaerob ic  conditions by 

sw itching to the pho sp h o ro clastic  pathway (S treck er, 1951). The phosphoro- 

c lastic  pathway involves the anaerob ic  decom position of pyruvate into 

ace ta te  and fo rm a te . The ace ta te  produced m ay then e n te r  into the 

tr ic a rb o x y lic  acid cy c le . It w as to avoid th is  danger that c u ltu re s  w ere  

gen era lly  grown u nder v igorous ae ra tio n  and te rm in a te d  in late log phase 

so as  to prevent the lim iting  oxygen conditions of s ta tio n a ry  phase cell 

d en s itie s .

In F igure 10 the exponential grow th of E .c o l i K12 s tra in  CY 2 

is  plotted on a se m i-lo g a rith m ic  sc a le . P lots a re  shown for d iffe ren t 

ae ra tio n  conditions. The advantage of good ae rob ic  conditions is c le a rly  

borne out given tha t th e re  e x is ts  approxim ately  a 5 hou r tim e sep ara tio n  

fo r both cu ltu res  in reach ing  iden tical cell d e n s itie s , w ith the le s s  

ae ra te d  cu ltu re  being the s lo w er. It is with th is and o th e r  a rg u m en ts  

p resen ted  above in m ind that the standard  conditions fo r subsequent 

experim en ts w ere  chosen .



3

T urb id ity  
a t 660 nm

C u ltu re  life in hours

F ig . 10 Growth cu rve of E .c o li  s tra in  CY2 (a) 5L cu ltu re  in 

au tom atic  fe rm e n to r . (b) 5L cu ltu re  w ithout 

v igorous ae ra tio n  .



T urb id ity
a t 660 nm

C ultu re  life  in hou rs

F ig . 10 Growth curve of E .c o li s tra in  CY2 (a) 5L cu ltu re  in 

autom atic fe rm en to r. (b) 5L cu ltu re  without 

vigorous ae ra tio n  .
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A th ird  fac to r that m ay reduce the sp ec ific  en richm en t in the fatty

ac id s  is  if significant sc ram b ling  of the label o c c u rre d  during  any stage
13

in the b iosynthetic in co rp o ra tio n . The C n . m . r .  linew idths observed

in CDCl^ fo r the en riched  lip ids w as typ ically  of the o rd e r  o f~ 5 H z .

T h is  is  only ^  3Hz g r e a te r  than the co rrespond ing  linew idths in the
13 13

unenriched  m a te r ia l and at w orst can only be due to  a l te rn a te  C- C
13 jo

sp in -coup ling  (B irdsall e t a l . , 1974). T h ere  w as no o bserved  C -  C 

sp littin g s  (J “  ~  100Hz ) which would have provided d ire c t

ev idence for p re -b io sy n th e tic  incorporation  sc ram b lin g  of the label.

A ll cu ltu res  w ere  grown subsequently  with v ig o ro u s ae ra tio n  and 

u sually  stopped in la te  log-phase - typ ically  c h a ra c te r is e d  by a K lett 

read ing  of about 160 u n its . A concen tra tion  of about 35p,g/ml of the 

labelled  ace ta te  w as added in the grow th m edium , b ea rin g  in m ind the 

balance to be struck  between the econom ic cost and high y ield  in the 

ex p e rim en t.

E . DETERMINATION OF SPECIFIC ENRICHMENT IN

THE PHOSPHOLIPID FRACTION OF THE LIPID EXTRACT

Phosphatidyl ethanolam ine is the m a jo r  lipid found in E ■ coli . It

accoun ts fo r about 80% of the c e llu la r  phospholip ids which in tu rn  account

fo r  m o re  than 95% of the ce llu la r  lipid m a te r ia l (Law, 1961). D eterm ination

of the en richm ent in the PE fatty acy l chain re s id u e s  should th e re fo re  give

a good indication of the level o f en richm en t of a ll o th e r  lipid m a te r ia l .  The

en rich m en t w as d e te rm in ed  by both n . m . r .  and m a ss  sp e c tro m e try  on the

m ethyl e s te r s  of the resu ltin g  fatty ac id s  a f te r  alkaline h y d ro ly s is  of PE.

The fatty  ac ids w ere  sep ara ted  into individual sp ec ie s  by p re p a ra tiv e  gas
13

ch ro m ato g rap h y  . F igure  11 is a com parison  of the C n .m . r .  spec trum  

of m ethyl palm ito lea te  fo r both the n a tu ra l abundance and iso top ically  

en rich ed  c a s e s . On p red ic tion  (based on the su ccess iv e  condensation of 

a c e ta te  units in fatty  ac id  b io sy n th esis ), we would expect to see  a
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13F ig .11 C n . m . r .  of m ethy l p a lm ito lea te  from E .c o li
showing o d d -ca rb o n  en richm en t p a tte rn  (top com pared  to 
bottom ) when o rg an ism  is  grow n on [ 1 * ^ C  ] a c e ta te .
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sign ifican t signa l/no ise  enhancem ent in only the odd carbon atom s of the
13

en ric h ed  m a te r ia l, if [ 1 - C ] ace ta te  has been u se d . T h is is  indeed

th e  case a s  shown in F igure 1 1  • C orrobo ra ting  evidence has now been

obtained (Birdsall e t a l . , 1974) to show that only the even num bered  carbons 
13

a r e  enriched  when [ 2 - C ] ace ta te  is  the s ta rtin g  m a te r ia l.

A nalysis of the ca rbon-13  en richm en t level by n . m . r .  can be

achieved by a ra tio  m ethod involving hydrogen a tom s bonded to c a rb o n - 1 2

and spin coupling with neighbouring ca rbon -13 . The carbon-13  m ay be

d ire c tly  bonded to the proton observed  ( ) o r  ju st m e re ly  coupling
i s

o v e r  a longer range of m ore  than one bond 0 q- x - h ' * ”̂ le Proton spec trum

o f the fatty e s te r s  shows th re e  reg ions identifiable w ith the o lefin , the

-OCH^ and the re s t of the fatty  acyl chain . The la t te r  region is m uch

m o re  complex due to the p re se n c e  of m u ltip le  sp in -sp in  in te ra c tio n s . The

coupling constant of the olefin  p ro ton -carbon  (Jl g _ H ) is  e s tim a ted  on the 
2

b a s is  of the sp c h a ra c te r  of the C = C bond to be about 160 Hz (Shoolery , 1959) 

w hile that of the sp litting  betw een the OCH^ pro tons and carboxylate  

carbon  ( J 1 S(;(o)o-C-H - is  e s tim a ted  t 0  be about 3 .5  Hz (K arab a tso s , 1960).

F igure  12 is the proton sp ec tru m  of the m ethoxy resonance of the m ethyl 

palm to leate . The cen tra l peak is that due to the p ro tons d ire c tly  bonded 

to  carbon-12 . It is unsplit due to the z e ro  m agnetic c h a ra c te r  of ca rb o n -1 2 . 

T he two surrounding peaks a r is e  from  the long range coupling with the 

en riched  carboxylate carbon and a coupling constant of about 3 .7  Hz is  

o bse rved . A com parison of the a re a s  of th is  doublet w ith that of the ce n tra l 

peak should y ield the re la tiv e  abundance of carbon-13  o v e r ca rb o n -1 2 . O n  

the b as is  of th is  ca lcu la tion , we obtained values of 50% fo r  both reg ions 

typ ically . The experim en ta l e r r o r  in m easu rin g  the carbon - 13 abundance 

w as ± 1 0 %.

M ass sp e c tro m e tric  determ ina tion  of the ca rbon-13  abundance on 

the gas chrom atographically  pu rified  m ethyl p a lm ita te  yielded a value of 

49 ± 2% .



F ig . 12 Proton n . m . r .  of -OCH 3  resonance of fatty acid

m ethy l e s te r s  from  E .c o li  PE showing long range 
13

coupling ~  3 .6  Hz to C a t carboxy late  .

—  X 100% ~
(2 a + b)

4 7 %



F . Phospholipids of E. coli . (Evidence for differences in enrichm ents).

Phosphatidyl e thano lam ine is the the m a jo r phospholipid found in

E . co li, (Cronan and V ag e lo s> 1972). It m akes up about 70-80% of 

the c e llu la r  phospholip ids. The p resence in th is  lipid of ethanolam inet 

phosphate, g ly cero l and ac y l e s te r  m o ie ties  in the m o la r  ra tio  of 

1:1:1:2 has previously  been  dem onstra ted  , (Kaem asa et a l . ,  1967 ;

De S iervo, 1969; A m es, 1968). O ther phospholipids found in E. coli 

include card io lip in  o r d iphosphatidy l g ly cero l (5-15% ), phosphatidyl 

g ly c e ro l (5-15% ), phosphatid ic acid  ( <1%) and tr a c e  am ounts of 

phosphatidyl se rin e , lysophosphatidy l ethanolam ine, phosphatidyl 

g ly c e ro l phosphate, cy tid in e  diphosphate d ig lyceride , phosphatidyl 

inosito l and an a s  yet un iden tified  phosphatide designated  lipid Y ,

(Cronan and V agelos, 1972).

The fatty ac id s  u su a lly  found e s te r if ied  to the g ly c e ro l in the 

phosphatides have been shown, by co -chrom atography  with synthetic 

analogues, to co m p rise  m a in ly  of m y ris tic , palm itic , palm ito leic ,

9, 10-m ethyleue hexadecanoic, c is-v accen ic  and lac tobacillic  ac id s , 

(K aneshiro and M arr, 1962; Hsu and Fox, 1970). P alm itic  alone 

co m p rise s  about half th e  to ta l fatty acid  and is c le a rly  the m ajo r 

sa tu ra te d  acid  with m y r is t ic  com prising  only 2 % of the  to ta l fatty 

ac id , (S ilbert and V agelos , 1967). U nder the conditions in which 

we have cu ltiva ted  o u r c u l tu re s , cyclopropane fatty  ac id  sy n th esis  is g re a tly  

su p ressed , and the m a jo r  fatty  acid u n sa tu ra te  is likely  to be the 

palm ito le ic , (Cronan, 1968).

The sp ec tra  of the ca rd io lip in  and phosphatidyl ethanolam ine 

lip id  frac tio n s a re  shown in F ig u res  16 and 18 . T he sp e c tra  a r e
13

typ ica l of 'C  chem ica l sh if ts  of acy l re s id u e s  of phospholipids. The

m ethod of com paring th e  in teg ra ted  a re a s  of th e  o lefin ic proton
13

reso n an ces of the en ric h e d  m a te r ia l and th e ir  C-H  sa te l lite s  g ives



only the enrichm ent at the olefine carbon. S im ilar ly , the m ethod of 
13the —OCH^ with its C sa te l l i te  g ives  the enrichm ent a t  only the 

carboxylate  ca rbon .  The m a s s  sp e c t ro m e try  method we have used 

gives only the "diffuse" o r  av e rag e  value for  a l l  the en r iched  ca rbons .  

In an a t tem pt to de te rm ine  the enr ichm ent a t  each en r iched  s i t e > I 

have ra t io ed  the  intensity of each peak to th a t  of solvent (Table 4 ), 

introduced approp r ia te  co r re c t io n  fac to rs  fo r  concentra tion  

d isc repanc ie s ,  and com pared  th e se  with correspond ing  v a lu es  from 

natura l  abundance egg-yolk PE. The en r ichm en t  on each  carbon  

nucleus is  consis tently  lower for  card io lip in  than in the co rrespond ing  

case  in PE. F u r th e rm o re ,  m o r e  na tu ra l  abundance peaks ap p e ar  to 

be reso lved  in the card io lip in  spectrum  w h ere  none a r e  o b se rv e d  in 

the PE spec trum , (cf. peaks m a rk e d  n, F ig u re  18 ). T h e r e  is, it 

appears ,  rea son  to believe tha t  the fatty acy l  chains a r e  d iffe ren tly  

en r iched  in the two lip ids .

If th is  observa tion  is t r u e ,  then it is  r a th e r  su rp r i s in g  since 

ca rd io lip in  syn thesis  and phosphatidyl ethanolamine syn thes is  a r e  

thought to have a common p r e c u r s o r  up to the cytidine diphosphate 

d ig lycer ide  (CDP-diglyceride) level, (Cronan and Vagelos, 1972). 

Another point of note is the fa ir ly  high en r ichm en t  level of the 

te rm in a l  m ethyl (ao); ~  5% a n d ~  10% fo r  PE and card io lip in  

re spec t ive ly .  Since we have e a r l i e r  on discounted the ex is te n ce  of 

any s ignificant sc ram b ling  of the label,  th is  may probably be due to 

the p re se n ce  of t r a c e  am ounts  of odd-num bered  fatty ac id  r e s id u e s  

e s te r i f ied  to these  lip ids .  Apparently, on purely s ta t is t ica l  grounds 

ca rd io lip in  can accom odate  four of these  (a fac tor  of 2 m o r e  than PE) 

per  m o lecu le .



Table 3: 1̂ C chemical shifts of E. coli lipids in CDCl^

i
! Resolved resonances 8  p . p .m .  from TMS at 45 C

I along acyl res idue PE DPG
----------------------------* ----------------

:

c* 173.8 173.1

I C 1  B 173.6

C3 25 .4 24 .8

t C5 29.9 29 .8

i C7 30 .6 3 0 .2

C9 130.1 129.3

C 1 1 27 .2 27 .3

i C13 29 .5 29 .3

C15 (cu-1 ) 23 .2 22 .6

C16 ( w  ) 16.0 15.9



TABLE 4

; ENRICHMENT AS ESTIMATED FOR EACH CARBON 

IN E .  COLI LIPIDS

Resolved
R esonances
along
acyl
chain PE

% 13C ENRICHMENT

CL

Cl c

C3

C (5, 7 ,  13)

C9

Cll

C15 ( w-1)

C16 (¡V )

65

60

47

24

70

28

50

27

41

19

46

26

41.6

14
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CHAPTER 4

N .M .R .  STUDIES OF PHOSPHATIDYL ETHANOLAMINE -

PHOSPHATIDYL SERINE



37

CHAPTER 4

A. INTRODUCTION

In gen e ra l ,  when Che ex tracted  lipids from any n a tu ra l ly  o ccu rr ing  

m e m b ran e  a re  analyzed, th e r e  is found to be a d is tribution of  d iffe rent lipid 

types.  T hese  will range f rom  long chain fatty ac ids  to the m o r e  complex 

phospholipids. It is  unlikely that any naturally  occu rr ing  m e m b ra n e  known 

o r  unknown, will contain only one lipid type. Indeed, cons iderab le  

d if fe rences  ex is t  at a sti l l  lo w e r  level within the lipid type. F o r  exam ple ,  

two different fatty ac ids  can b e  a r ranged  on a g lycero -phosphate  moiety 

in eight d iffe rent ways to g ive four different 3 - sn -phospha t ides .  Four 

fatty ac id s  will lead to tw e n ty -e ig h t  different phospholipids. The nature  

of this s t ru c tu ra l  d ive rs i ty ,  th e  guide lines along which it is  es tab l ished  and 

its  implication on the functionality  of the m em brane  a s  an en t ity  a r e  some 

of the ques tions being asked by  m em branologis ts  today. It is  unlikely that 

th is  m ult ip lic ity  of s t r u c tu re  has  no consequence on the physiological 

behaviour of the biological m e m b r a n e .

The development o f  appropria te  model m e m b ra n e s  (Chapman 

and Dodd, 1971; Yost et a l ,  1971; Thompson and Henn, 1970; Sessa and 

W eissm an ,  1968) has  s t im u la ted  a wide var ie ty  of r e s e a rc h  into the 

s t r u c tu re  and function of b io logica l m em branes .  A wide range of physical 

techniques such a s  X -ray  d if frac tion  (Engleman, 1972; Wilkins e t .  a l . ,1971-  

Levine and Wilkins, 1971), sp in- labell ing  (Komberg and M cConnell ,  1968) 

and n u c lea r  m agnetic  re so n a n ce  (Chapman and M orrison ,  1966; Metcalfe 

et a l . ,  1971) has  been app l ied  with the hope of co rre la t ing  between s tru c tu re  

and function. But perhaps th e  m ost a t trac t ive  of the techniques cu rren t ly  

ava ilab le  to the r e s e a r c h e r  in the field of m em brane  stud ies  is that of 

n . m .  r .  Some of the r e a s o n s  for this have been advanced in the
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introduction and in addition to th e m > we have the com para tive  r ichness

of the information der ived . For example, the Chapman o r  c ry s ta l l in e

to l iqu id -c rys ta l l ine  phase trans i t ion  in a lipid b ilayer  can  be

dem onstra ted  by proton n . m . r .  (Sheetz and Chan, 1972; Lee et a l . ,

1972) in a m a t te r  of m inutes .  F u r th e rm o re ,  this  t ran s i t io n  has been
13„

observed in a na tu ra lly  occurr ing  m em brane  using C n . m . r .  

spectroscopy  among other techniques (Metcalfe et a l . , 1972).

Lipids in b iological and model sy s tem s  exhibit both the rm otroph ic  

and lyotropic m e so m o rp h ism . The phenomenon of 'm el t ing '  in the 

bilayer is an endotherm ic one and is pa r t icu la r ly  su itab le  to 

investigation by th e rm a l  tecliniques. D ifferentia l scanning ca lo r im e try  when 

applied to these  sy s tem s  has been quite inform ative (Ladbrooke and Chapman, 

1969). A ppropria te  therm odynamic data derived from the  heat involved 

in these  melting  p ro c e s s e s  (Philips el a l . ,  1969) have led to conclusions 

about the r e la t iv e  amount of d iso rder  nciated with th e se  t ran s i t io n s .

The te m p e ra tu re s  a t  which the phase t ran s i t io n s  occur and perhaps the 

sharpness  o r  ran g e  of these  transi t ions may depend on a var ie ty  of 

var iab les .  T h e se  include the nature of the headgroup, the hydrocarbon 

chain length, the degree  and type of u nsa tura tion  p resen t  and also  the 

mixing p ro p e r t ie s  of the lipids p resen t (Chapman, 1973).

The obse rva tion  of d isc repanc ies  in the proton sp in - la t t ice  relaxation  

tim es in liposom es and sonicated ves ic le s  has  been d iscussed  in the 

gene ra l  in troduction.  T hese  data, toge ther  with the d ila tom etry  studies 

of Sheetz and Chan (1972) would seem to suggest that th e re  is no bas is  

for the com par ison  of r e su l t s  obtained with sonicated v es ic le s  with those  

from unsonicated liposom es.  More recen tly ,  however, d ifferential 

scanning c a lo r im e t ry  studies have been used to d ispe l doubts about the 

suitability of v e s ic le s  a s  models for biological m e m b ra n e s .  The 

relevant fea tu re s  of these  r e su l t s  of Radda and c o -w o rk e rs  (De Kruijff 

et a l . ,  1975) a r e  d iscussed  in Section C and in the conclusion, together  

with our  r e s u l t s  on the cha rac ter iza tion  of the PE-PS (1:1 ) ves ic le s .

Most n . m . r .  studies have tended to concentra te  chiefly  on the 

m e asu rem en t  of relaxation  t im es .  As mentioned above, questionable
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conclusions can be reached  when cons ider ing  r e su l t s  f rom  both the

liposomes and sonicated  s y s te m s .  It m us t  be pointed out tha t this

d iscrepancy  observed  with proton T 1 ' s  may not apply equa lly  to

studies of o the r  nuclei.  If the  inconsis tency  of r e p o r te d  H in

liposomes (Barrat, 1970; Chan et a l . ,  1971 ) and in v e s ic l e s  (Lee et

al.  1972) is  the d irec t  consequence of a spin-diffusion dominated

relaxation m echan ism > then th e re  is no re a so n  to b e l ie v e  tha t  a
13s im ila r  problem will bese t  C T  ' s  in th e se  sy s tem s .  Unfortunately,

the low sp e c t r a l  reso lu t ion  assoc ia ted  with unsonicated liposom es has
13

discouraged investiga tors  f rom  com paring  C T  va lues  in both

sys tem s .
13C T  values have been rep o r ted  for sonicated d ipa lm ity l  

lecithin b i la y e rs  (Metcalfe et a l . , 1971a). However, it i s  not known 

if and how th is  heterogenous d is tribu tion  of T ' s  will be p r e s e rv e d  over 

a wide range  of te m p e ra tu re .  The re levance  of this  in form ation  to 

biological s t ru c tu re  and functions is u n c le a r .

In an a t tem pt to an sw e r  so m e o f  these  ques tions,  we h av e  observed 
13the C sp in - la t t ice  re laxa t ion  t im e (T ) behaviour for a  mixed lipid

13
system o v er  a wide te m p e r a tu re  range .  C T  ' s  have been  m easured

for al l  reso lvab le  ca rbons  in a phosphatidyl ethanolam ine-phosphatidyl

se r in e  ( 1 : 1 ) sonicated b i la y e r  system  o v e r  the t e m p e r a tu r e  range of

30-85°C. The r e su l t s  a r e  com pared  with the deu ter ium  magnetic

resonance  studies of Seelig and Seelig (1974) on nonsonicated  liposomes 
13and with the C T x data of Heatley (197b) on iso t ro p ic a l ly  tumbling 

po lym ers.  It is concluded tha t the m obil ity  g rad ien t  is  a  consequence 

of a spec ia l  sym m etry  c h a r a c te r i s t i c  of the type of s t r u c t u r e  formed. 

F u r the rm ore ,  the changes with te m p e ra tu re  a r e  s im i la r  in both the 

ves ic les  and liposomes es tab l ish ing  the fo rm e r  as  a r e le v a n t  system  for 

m em brane  s tud ies .

Pure PE does not fo rm  stable b i la y e rs  (Papahadjopoulus and Miller, 

1967; Litman, 1973). Luzzati  (1968) has shown that PE and PC 

exhibit d ifferent phase behaviour.



Steim (1968) showed that PE has a h igher  endotherm ic transition  te m p e ra tu re  

than PC and Philips et a l .  , (1972) have dem ons tra ted  that PE is  m o re  

tightly packed than PC, suggesting a difference in m o lecu la r  m obility . 

E le c t ro n  m icroscopy  has revealed  that sonication of PE resu l ts  in la rge 

m u l t i - l a m e l la r  "onion-like" s t r u c tu re s  (Michaelson et a l . ,  1974). To 

obtain v e s ic le s  suitable f o r n . m . r .  s tud ies ,  it is  d es irab le  to c o -d isp e r se  

PE with  appropria te ly  chosen lip ids. Gent and P res tega rd  (1974) found 

that co -son ica t ion  of PE and PC re su l ted  in s in g le-she l ied  spherical  

v e s ic le s  whose radii inc reased  a s  the mole f raction  of PE inc reased .  It 

is f a i r ly  well es tab l ished  now that the m a jo r  lipids can be considered  

roughly falling into two groups in t e r m s  of th e ir  packing c h a r a c te r i s t i c s .  

Those with a ' tape red '  geom etry ,  l ik e  PC, PS and sphingomyelin and 

those with  a "frayed" geom etry  like PE and cho les te ro l  (Israelachvili and 

M itche l ,  1975). F u r th e rm o re ,  it is  thought that frayed lipids might 

p re fe ren t ia l ly  pack with tapered  lip ids .  Thus it is r a th e r  unsettling to 

see  so m uch  attention given to the PE-PC system  although it has  been 

shown that PE-PS associa t ions can o cc u r  a lm os t  to the exclusion of o th e r  

lipids in biological m e m b ran es .  F o r  instance,  the m a jo r  phospholipids 

of the in n e r  half of the e ry th rocy te  m em brane  a r e  PE and PS (Bretscher ,  

1972; Zw aa l,  e t .  a l . ,  1973).

B. VESICLE SIZE CHARACTERISATION

The resu lts  obtained fo r  the m o le cu la r  sieve behaviour of the 

PE-PS d ispe rs ion  a re  p resen ted  in Table 5 and F igures 13 & 14.The 

p a r t i t io n  coefficient a of the m ixed  lipid v es ic le s  and those for the 

c a l ib ra t in g  s tandards used w ere  deduced from exper im en ta lly  m e a su re d  

p a r a m e te r s  according to equation ( 4  ) over lea f .



TABLE 5 DATA FROM MOLECULAR SIEVE EXPERIMENTS

Partic le Elution Volume (Vc) m l

Dextran 2000 52 ± 2

H 2 °
155 ± 9

Glycine 153 ± 5

Y - globulin 132 ± 4

a T .B .S .V . 93 ± 5

PE/PS ( 1 : 1 ) 112 ±  5

* m eans of 3 readings

a tomato bushy stunt v i r u s .
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Ve = Vo + a  V 1  --------------------- 4

w here  Ve is  the elution vo lum e, Vo is  the void volume of the g e l  and 

V1  i s  the in te rnal volume of the s ta t iona ry  ph ase .  T hree  c a l ib ra t in g  

s tandards  of known m ean  Stokes rad ius  w ere  em ployed in d e te rm in in g  

the column constants a s  given by the A c k e r ' s  (A ckers ,  1967 ) equation .

a = Ao + bo e r c f  * a -----------------  ( 5 )

w here  a , i s  the m ean  Stokes rad iu s  of the e lu ted  component, Ao and  bo 

a r e  constants for  the column and e r f c  is  the e r r o r  com plem ent function 

in a

On the b as is  of equation ( 5 ) above , the mean M o le cu la r

Stokes radius de term ined  for  the PE-PS v e s ic le s  was e s t im a ted  a t  

105 i  5 A ■ T h e re  w as o b se rved  only a m in o r  t r a c e  (Figure 14 ) of 

the fraction (1 ; s p e c ie s ,  c la im ed  to elute with PC ves ic le s  (Huang, 

1969; H auser  et a l .  ,1970; Johnson et a l .  ,1971; H auser  , 1971 ). 

T h e re  o cc u r re d  ac tua lly ,  a d is t r ibu t ion  of p a r t i c le  size  ranging from 

93 a to 128 A , The inorganic  phosphate content found in the 

m a in  fraction a f te r  a l l  the 5 m l f rac tions  had been pooled to g e th e r  was 

usually  of the o r d e r  of 2  90% of that in troduced into the colum n. 

Estim ation  of the phosphorus content of the m in o r  lipid that e lu te d  with 

the void column volume showed that th is  frac tion  constituted a va r iab le  

3 - 8  % of the total lipid in jected .  As a p recau t ion ,  all n . m .  r .  

sam ples  w ere  sieved through a 0 . 1  p, m i l l ip o re  f i l te r  before being 

run on the s p e c t ro m e te r .
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The effect of u l t rason ic  i r rad ia t ion  on coa rse  lipid d isp e rs io n s  

in aqueous m ed ium  has been well investigated (Sheetz e t .  a l . ,  1972;

F in e r  e t .  a l . ,  1972; H ause r ,  1971 ). It is  generally  ag reed  that provided 

sonication is c a r r i e d  out under an inert  a tm osphe re  and reasonably  low 

te m p e r a tu re s ,  significant chemical degradation  can occur  via a free 

rad ical  m ech an ism  in a se lf-ca ta lysed  oxidation of the acyl res id u e s  of 

the lipids. T h in - la y e r  chromatography of the lipid m ix tu re  before and 

a f te r  sonication  showed only two m a jo r  spo ts  due to the PE and PS.

T here  was a fa in t trac e  behind the m a jo r  PS spot which might suggest a 

m in o r  degradation  of the PS fatty acyl res idues  to lyso-phosphatidyl 

se r in e .  If any  auto-oxidation has o c c u r re d  at a l l ,  it will p robab 'y  

o ccu r  p re fe re n t ia l ly  at the acyl residues of the PS , since the acyl 

res idues  of PE from E .c o l i  a r e  known to be  predominantly mono 

unsa tura ted  and  a lso ,  given that auto-oxidation req u ire s  the p re se n ce  of 

m o re  than one olefinic function. Another effect of sonication is to 

break down the  large m acrom olecu la r  m u l t i la y e rs  of lipids into sm a l le r  

ves ic le s  bounded by a single b ilayer .  It is  thought (Atkinson et a l . ,  

1974) that the m ean  Stokes radius of the v e s ic le s  formed v a r ie s  with the 

ionic s treng th  of the d ispers ion  medium fo r  PS. Specifically, they 

repo rt  that the rad ii  d ec rease  from 125 A in 0 . 1M NaCl to approxim ately  

82 V  in s a it f r e e  w ate r .  Given that I have used a buffer strength  of 

0.04M T r i s - H C l ,  the resu l ts  I have obtained with gel f i l trat ion  a re  in 

good ag re e m e n t .  On the b as is  of theory , an inc rease  in size of the 

r e su l t in g  v e s ic l e s  is p red ic ted  for phosphatidyl choline when co-sonicated  

with phosphatidyl ethanolamine (Israelachivili  and Mitchel,  1975). A 

m ean  Stoke’s rad ius  of about 165 k  is p red ic ted  for a 0 .5  mole 

fraction P E /PC  d ispers ion .  This in c re ase  is not as  d ram a tic  a s  that 

as soc ia ted  w ith  a s im i la r  m ole  fraction of  cholestero l of 250X ,



provid ing  ev idence,  th e re fo re ,  that the size  of the phosphatidyl choline- 

phosphatidyl ethanolamine ves ic le s  is about the sam e a s  that of phosphatidy l­

choline.  The s ize  reported  h e re  for the PE-PS v es ic le s  a t  a 0 .5  m o la r  

frac tion  does not seem to deviate cons iderab ly  from that rep o r ted  for  

p u re  phosphatidyl se r in e  v e s ic le s .  This  is  probably ind irec t  evidence 

tha t the p re roga t ive  of size determ ina tion  m ay not r e s t  with the 

g eo m etry  of the phosphatidyl ethanolamine spe c ie s .  P erhaps  the 

phosphatidyl ethanolamine is m e re ly  accom m odated within a p red e te rm in e d  

f ram ew ork  of phosphatidyl se r in e  v e s ic le s .

C . LIPID DISTRIBUTION IN VESICLES

In the formation of ves ic le  b i la y e rs  by a mixed lipid sy s tem ,  

th e re  a re  two m ain  ways that the lipid d is tribu tion  can o c c u r .  E i th e r  

th e re  is total m ixing at the m o le cu la r  level,  o r  th e re  is  incomplete mixing 

to some degree  leading in the lim it ,  to the phase separa tion  into regions 

containing only one type of lipid. This phenomenon, known as  m e m brane  

asym m etry  with re sp e c t  to i ts  lipid content is  known to o c c u r  in 'in vivo' 

m e m b ra n e s  and has  been c le a r ly  dem onstra ted  in e ry th ro cy te  m e m b ran es  

(B retscher ,  1973). Although the significance is  .not c l e a r ly  understood , it 

is  unlikely that it has no biological consequence. It is  thus n e c e s s a r y  to 

look out for lipid segregation  and es tab l ish  to what extent it ex is ts  in 

labora to ry  m o d e ls .  Segregation of the lipids can o ccu r  in a v a r ie ty  of 

w ays :-

(a) into patches within the layers  of a b i la y e r ;

(b) into ves ic le s  homogenous in th e ir  lipid content ;

(c) into d ifferent b i layers  of a m u lt i la y e red  v es ic le ;

(d) into d ifferent la y e rs  of b i la y e rs .
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A lternative (b) can be ruled out on the grounds o f  ( i)  the slow exchange ra te  

of l ip ids , espec ia lly  of PE (Wirt and Z ilve rsm it ,  1970) between ves ic le s  in 

the absence of the phospholipid exchange protein  fac to r  (PEPF), (ii)  the 

correspondingly low level of incorporation  of exchanged phospholipids in 

the absence of this fac to r  and (iii)  the  fact tha t in te rv es ic u la r  phospholipid 

exchange will tend to lead to b i la y e rs  homogenous in PE. Such b ilayers  

will be unstable (Litman, 1973) and lead to r e a d y  flocculation which was 

not obse rved .  On the b as is  of the  m o lecu lar  S toke 's  rad iu s  determ ined 

above for  the PE-PS (1:1 ) sys tem , it is unlikely tha t  th e re  is a significant 

contribution from large m u lt i - lay e re d  ag g re g a te s  a s  suggested in 

a l te rna t ive  (c) .

Lipid phase separa tion  into types ( a ) o r  (d )  a r e  c lea r ly  possible however. 

It has been shown tha t mixing of d ifferent polar hea d g ro u p  containing lipids 

can re s u l t  in a mixed solidus liquidus sys tem  (Clowes et a l . ,  1971;

Chapman, 1973). With widely d ifferent chain  lengths, monotetic mixing 

leading to pronounced phase separa t ions  can o c c u r .  However, with such 

natura lly  occu rr ing  lipids having a v a r ie ty  of cha in  lengths in between 

the two m o s t  d iffe rent acy l  chains, it is  likely th a t  cons iderab le  mixing may 

occur .

T he  data of Radda and co -w o rk e rs  (De K ru i jff  e t  a l . , 1975) illustrating

la te ra l  phase separa t ions  in v e s ic le s  com posed  of mixed phospholipid
31

species ,  (figures 15 (a -d )) .  F igu res  15 (a) and (b) a r e  the P n . m . r .

spec tra  of 18:1c/ 18:1c and 16:0/16:0 - PC v e s ic l e s  respec tive ly .  The

spectra  have been r ec o rd e d  at 10°C which is  found to be below the

o r d e r — d iso rd e r  t rans i t ion  te m p e ra tu re  of the la t t e r  sy s tem .  The

inc rease  in linewidth assoc ia ted  with the re so n a n c e  of th is  system  is

the re fo re  probably due to  r e s t r i c t e d  motion of the  head g roup  in the gel

phase. F igure 15(c) is  a s im ila r ly  re c o rd e d  spec trum  of the mixed

lipid ves ic le s  containing a ( 1 : 1 ) m o la r  ra t io  of the  two different lipids.

PC m olecules  of the C 16 va r ie ty  in the gel phase  a r e  thought to be

responsib le  for the b road  component in th is  s ig n a l ,  while the n a r ro w e r

components a r e  a sc r ib e d  to liquid c ry s ta l l in e  C 18 spec ies  in the inside
2+and outside of the v e s ic le s .  The addition of Co broadens the resonances  

from the outside b i layer  resu lt ing  in the sp e c t ru m  shown in F igure 15(d)
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which s t i l l  co m prises  a n a r ro w  peak superim posed on a b roader  

component. It is thought th a t  this  is indicative of phase separation  

of the lipids in the inner ha l f  of the ves ic le  b ilayer ,  p resum ably  in 

the nature of solidus C 16 PC molecules coexisting with liquidus C 18

species .
31Our r e su l t s  with P n . m . r .  spectrum  of the PE-PS (1:1 ) system

did not show any s im i la r  phase  separa t ions .  F igure 15(e) is a 36 .4  
31MHz P n . m . r .  spec trum  of the PH-PS ves ic le s  above th e ir  phase 

trans i t ion .  We could not re so lv e  resonances  from the inside and 

outside halves of the b i la y e r  separa te ly .  The narrow  peak observed  

shows that to a l l  intents and purposes the resonances  due to the PE 

and PS phosphate m oie ties  have identical chem ica l  shifts  suggesting 

s im ila r  environm ents for the  resonating nuclei. T h is  is probably 

indicative of a significant deg ree  of 'mixing ' in this sy s tem . The 

resonance is found not to be  considerably shifted from the signal 

from the ex terna l  re fe re n c e  standard  (8 5 f  H^PO^) a t  2.043 KHz and 

which had to be rem oved so that the spectrum  could be recorded .  

Attempts to reso lve  the re so n a n ce s  from the inside of the v es ic le s  by 

the addition of sm all  am ounts  of non-perm eating  broadening agents 

w ere  unsuccessful .  Addition of sm all  am ounts of MnSO, ~  10 M 

re su l t e d  in rap id  flocculation of the  v es ic le s .  The ease  of 

destabilisa tion  of these  v e s ic le s  by ionic reagen ts  is probably 

indicative of the im portance of charge  effects  in the formation of the 

bilayer .

13D. Quality of C s p e c t r a .

(i) Spectra in organic so lven ts :-  
13The C n . m . r .  s p e c t ra  of lipids in iso tropic solutions show sh a rp  

resonances,  < 3 Hz w ide. Linewidths observed  a l l  throughout these  

experim ents  w ere  in good agreem en t with this  value. Linewidths 

obtained in deu teriated  ch lo ro fo rm  a s  solvent v a r ie d  on the average  

f r o m ~ 3  - 5 Hz. Bearing in mind that fa ir ly  large inverted m ice l les
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E 3 6 .4 ’ MHz ^1 P M ®  a p a c tra  a t  10^3 o f ( a ) 18 : 1c/ 13 : 1c PC 
(b) 1 .6 :0 / 16 :0  PC, (e ) 1 6 : 0 / 1 6 : 0  PC -18: 1c/ 1 8 : 1 c PC(1 : 1 ) ,  (* ) sane

2-4*
¿ 3  ( e )  p lu s  6mM Co v e s i c l a s .

“ (D ata o f Da K r u i j f f  e t  l a ,  1975)
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(6 0 -  70 m olecu les )  are formed In this  solvent, in o ther  w ords ,  the solution

depa r ts  considerab ly  from ideal iso trop ic ity ,  we can begin to see  the

im press ive  quality  of some of these  sp e c t ra .  On the o the r  hand, the small

in c re ase  in line width assoc ia ted  with some of these  spec tra  — 2Hz,

could possibly be due to coupling between a l te rna te  ca rbons ,  a s  has  been
13

mentioned in C hapter  3. The C n . m . r .  spec tra  of some of the

phospholipids in CDCI3  a r e  p resen ted  in figures  (16-18 ) . It has been

estab lished  in C hapter  3 that only the resonances  due to en r iched  carbons

(in this ca se ,  a l l  odd carbon a tom s s ta r t in g  from the carboxylate  end 
13since [ 1 - C ] - aceta te  was util ized ) will be obse rved .  On these 

grounds,  we expect  the spec tra  from enr iched  PE alone and that from 

enriched PE plus PS m ix tu re s  to be s im i la r ,  un less  the p re se n ce  of PS 

in the m ix tu re  leads to considerable chemical shift changes. As can be 

seen from figures  ( 16 & 17) th e re  a r e  no noticeable d if fe rences  in the 

two spec tra .

T h ree  d is t inc t  resonating regions a r e  observed  - ( i )  The 

low field region shifted about 173 ppm from te tram ethy l silane is  due 

to the two ca rboxylates  of the e s t e r  m o ie tie s  to the g lycerol backbone. 

Because of th e ir  slightly different chemical environm ents ,  positions 

s n - 1 . and s n - 2 , re spec t ive ly  on the molecu le , they a r e  resonating  at 

slightly d ifferent f requencies .  The lower field peak being due to the 

carboxylate at position sn -1 .  The peak resonating  a t  ~  130ppm is 

that due to the only enriched  carbon of the olefinic ca rbons .  This  will 

be the C (9) carbon  in the p resen t  nom encla tu re ,  see  F igure 19 

The main m a s s  of peaks resonating up field between 6  1 5  - 3 5  ppm is 

the contribution from the r e s t  of the acyl chain ca rbons .  The assignm ent 

of these resonances  was based on those of model compounds and on the 

in tensit ies  of the resonances  expected from the fatty acid composition.
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As a m a t te r  of convenience, peaks have been labelled assum ing

palmitoleic  acid the principal fatty ac id  of the E .c o l i  PE (see chap te r  3).

Since chemical shift is  la rge ly  de term ined  by adiacent functionality, the

peaks labelled C(15) co rrespond  to a l l  uu-1 ca rbons  of fatty acyl c h a in s ,

C (9) co rresponds  to all odd-num bered  ca rbons bear ing  a c is -o le f in ic

function with sa tu ra ted  chains a t tached ,  C ( l l )  co r resp o n d s  to al l  odd-numbered

m ethylenes or to a single olefinic function, C (3) co rre sp o n d s  to all

carbons S to the carboxylate  carbon and of cou rse  C ( l)  co r re sp o n d s  to
13all  the carboxylate  ca rbons .  The observa tion  that the C shifts  due 

to the C = 0  and te rm in a l  methyl o f  fatty ac ids  is  independent of chain 

length for  fatty ac ids  with m ore  than nine carbon a tom s has  previously  

been reported  (Levine et a l . ,  1972 a).

T here  is  no indication that the g lycero l  and e thanolam ine ca rbons
13

have been en r iched  in the p repa ra t ion  of PE [1 - C - Ac ]. The head

group resonances  a r e  s t i l l  at th e ir  na tu ra l  abundance level o r  a r e  not

sufficiently enr iched  to give a com parab le  s ig n a l /n o ise ,  the inference being

that aceta te  incorporation  is probably at a "sub-phospho lip ld"  level; the

g lycero -e thano lam ine  m oie ty  is  synthesized  independent of ace ta te  and at

a la te r  stage in phospholipid syn thes is  is  used to e s te r i fy  the fatty ac ids

derived  from ac e ta te .  It has been rep o r ted  , however, that from the 
13prepara tion  of PE [ 2 - C -Ac] of the sam e o rgan ism , the 

is enriched  to about 50% of the level in o th e r  enr iched  ca rbons ,  suggesting 

that e i th e r  the re  a r e  two modes of incorporat ion  of ace ta te  o r  that sc ra m b lin g  

of the label has  taken place (Birdsal! et  a l . ,  1974). (ii)

(ii) Spectra of aqueous d isp e rs io n s  

13
The C spec tra  of sonicated  lipid ves ic le s  in aqueous d isp e rs io n s  

(d iam eter  £ 3 0 0 k  show fair ly  sh a rp  resonances  though somewhat b roadened , 

28Hzsl2Hz. Large lipid b i layers  (d iam ete r  2  10 k )  p roduce spectra



with much b ro a d e r  r e so n a n ce s ,  2 25Hz (Levine et. al , 1972). D ipolar 

coupling with nearby  n u c le a r  sp ins , which unlike the applied magnetic 

field, lead to o r ien ta tion-dependent local magnetic f ie lds ,  is 

generally  ag re ed  to be the cause  of such broadening. In the limit of 

very  fast reor ien ta t iona 1 m o le cu la r  reorganization , the fluctuating 

magnetic f ields can only contribu te  inefficiently to the relaxation  of 

excited n u c lea r  s ta te s ,  leading to long lived s ta te s  and the sha rp  lines 

observed  for an iso t rop ic  liquid. Lipid b ilayers  fall between the 

e x t re m e s  of solid and liquid behaviour in th is  se nse .  The t rea tm en t  

by Seite r  and Chan (Seiter and Chan , 1973; L ichtenberg ,  et a l .1973)  

sa t is fac to r i ly  accounts fo r  iack of line narrowing  due to incomplete 

motional averag ing  in the b i la y e r .  A cen tra l  issue in the Seite r-C han 

t rea tm en t  is  the absence of iso trop ic  motion. Fas t  motion is as sum ed  

about the phospholipid chain  axes  and slower rocking motions limited onlyto 

angles of 60 - 70° away from the chain ax is  lead to incomplete 

ro tat ions through all poss ib le  angles ,  thus preventing line narrow ing  to 

the deg ree  observed  in l iquids.

The form ation  of b i layers  with a sm all  rad ius  of cu rva tu re ,

e . g .  by sonication, c l e a r ly  cau se s  an in c re ase  in the num ber  of deg re es

of freedom , since the linewidth of the lipid resonances  d e c r e a s e .  I have

observed  linewidths rang ing  between 8 - 10 Hz for the single carbon

resonances  of the son ica tes  used in these studies . Resonances outside

this  range w ere  not o b se rv e d  except for the main methylene envelope

which ranged between 12 - 18 Hz presum ably  due not to la rge m a cro m o le cu la r

contributions but to low resolution  of overlapping reso n an ces .  Bearing
13in mind the cautionary  note that C linewidths in gene ra l  and espec ia lly  

of lipid d isp e rs io n s ,  a r e  not s t r ic t ly  speaking, re liab le  guides to 

elucidating m o lecu la r  s iz e ,  we see  that linewidths of 8Hz a r e  in good 

ag re em e n t  with the m o le c u la r  Stoke's d ia m e te r  of ~  210 A obtained from



molecular sieve experiments.

The spectra  obtained fo r  some of the lipids studied in aqueous 

d ispers ion  a r e  presen ted  in f igures  ( 20 and 21). it will be seen that in 

the m ain ,  ap a r t  from linewidth d if fe rences and the tendency to lower 

resolution and the consequent lower signa 1-to-noise ra t io s ,  the spec tra

a r e  not significantly different from those obtained in organic so lvents .
13In the C n . m . r  spectrum of egg yolk lecithin d isp e rs io n ,  Fig. 21. 

the approxim ation has been made again, that the fatty acid in g r e a te r  

abundance is  contributing m ost of the observed  s igna l- to -no ise .  H ere  

oleic acid  is assum ed  the  p rincipal unsa tu ra te  and we have the peaks 

labelled C(18) , C(17) and C(16) correspond ing  to al l  id , uu-1 and x -2  

ca rbons respec tive ly .  C (9)and  C(10) co rrespond  to all c is -o lef in ic  

ca rbons with sa tura ted  chains a t tached , while( 8) and C ( l l )  co rrespond  

to all m e thylenes a  to a single unsa tura ted  s i te .  The peak m ark ed  

'a '  is  that due to an olefinic carbon P to a second unsa tura ted  s ite 

(Batchelor and P re s teg a rd ,  1972).

13The C chemical sh if ts  observed  in ves ic les  a r e  very  s im i la r  

to those observed  in chloroform solution, Table 6 . Batchelor and

P res tega rd  (Batchelor and P re s teg a rd ,  1972) have shown that although solvent 

effects  on methyl groups can be significant,  s im i la r  effects  on m ethylenes 

a r e  negligible and effects on m ethine ca rbons a re  s  0 .2  ppm. M ore 

s izeable shifts  m ay  however o c c u r  linked with the te m p era tu re  dependent 

ro tational isom eriza tion  about ca rbon -carbon  bonds (Grant and Cheney, 1967).

The t ra n s  isomer is usually the low energy iso m e r  for  C-C 

bonds in both liquid hydrocarbon solutions and in the hydrocarbon portion of 

a fully sa tu ra ted  lipid b ilayer .  One would the re fo re  expect that a downfield 

shift would resu lt  a s  te m p era tu re  is lowered and the t ra n s  s ta te s  a re  

populated to  a g r e a te r  ex ten t .  M oreove r,  the shifts in ves ic les  should be 

m o re  pronounced a s  the Chapman trans i t ion  (crysta lline c  liquid-
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c rys ta l l ine  transi t ion)  is  approached . This  is probably because the b ilayer  

a s  a d ist inct s t ruc tu ra l  entity  com pared  to any o ther  s t ru c tu re s  to be fcund 

in hydrocarbon solutions, m ay  impose pecu lia r  conformational r e s t r ic t io n s  

upon the C-C  bonds. T hus ,  although detailed  ana lysis  of the chem ical 

shift dependencies may yie ld  information concerning the conformational 

s ta te s  of the m olecules in the b ilayer ,  I have del ibera te ly  concentra ted  

m o r e  on the m e asu rem en t  of sp in - la t t ice  relaxation t im es  (Tx ), given the 

n a tu re  (information about the fluid /dynam ic s ta te s  in the v es ic le s )  of the 

ques tions I se t out to an sw e r .

13
E C XMR OF MIXED LIPID VESICLES

It was d es ira b le  to es tab l ish  w hether  any a l te ra t ions  o cc u r  in 
13the observed  C n . m . r .  spec tra  of the ves ic les  with te m p era tu re  o r  

a t  any ra te ,  over  the te m p e ra tu re  range for which sp in - la t t ice  relaxation

t im es  w ere  d es i re d .  T ow ards  this end, I took the mixed lipid sy s te m s  of
13 * 13

in te re s t  [ C -enriched  E . coli P E /ox -b ra in  PS (PE /PS) and C -enr iched

E .c o l i  PE/synthetic  DPL (PE*/DPL) ] through th e ir  respec tive  Chapman

trans i t ions  and above. The spec tra  obtained a r e  shown in figures ( 22 and 23).

C erta in  points of s im i la r i t ie s  ex is t  in both runs and they d ese rv e  com m ent.

The f irs t  is that both sp e c tra  show only the resonances  due to the odd

carbon enriched  phosphatidyl ethanolamine of E . coli , although the

phosphatidyl e thanolamine is  only one half the total phospholipid content

of each sys tem . Thus we would expect that any te m p era tu re  dependent

d iffe rences that may be picked up will be chiefly due to the extent to which
*

the o ther  lipid component in each system  has influenced the observed  PE

spec trum . The second point of s im ila r i ty  in both runs is  that , consistent

with observa tions on lipid phase t ran s i t io n s ,  both spec tra  undergo

considerable  line broadening n e a r  th e i r  respective  ' 'm elting” points .

In the case  of the PE*/PS sy s tem ,  the position of e x t re m e  "motional a r r e s t "
o

a s  determ ined  by ex trem e line broadening , seem s to be around the 15 C



T able  6 : 13C ch em ica l sh ifts  of PE*/PS (1:1 w /w ) and PE*/DPL 

(1:1 w /w ) in CDClg and buffer a t 45°C.

R esolved reso n an ces 
along acy l re s id u e

CDC13
Buffer

PE*/DPL P E '/P S PE’ /D PL PE /PS

—

i

C 1 *
174.1 173.8 173.8 173.3

8 173.6 173.4

C3 25 .5 2 5 .5 25 .3 25.6

C5 2 9 .5 29 .6

C7 3 0 .2 3 0 .2 3 0 .0b 29. 8 b

C9 129.8 130.0 130.0 130.1

C 1 1 27.6 27 .7 27 .8 27 .7

C13 29.9 3 0 .0

(uu -1 ) C15 23.2 23.1 22.9 23.0

(cu ) C16 15.8 16.0

b es tim a ted  fo r  C5( 7, 13 envelope.
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5 1 .

m ark  and the co rresponding  te m p e ra tu re  fo r the PE /D PL  system  

se em s to be a t 32°C.

The m a jo r phase tra n s itio n , a s so c ia te d  with DPL has been es tim ated  

by v ario u s  w o rk e rs  using d ifferen t techniques to be at about 41 (Chapman 

et a l .  1967; Nagle, 1973; Papahadjopoulus et a l . ,  1973 and Shim shick and 

M cConnell, 1973). F u rth e rm o re  a p re tran s itio n  a t about 30° which is 

thought to be a t leas t 10 -  20% of the m ain endotherm ic tran s itio n  (Hinz 

and S turtevant, 1972; N agle, 1973) has been observed  fo r th is  sy s tem . 

Spin-labelling  and lig h t-sc a tte r in g  techniques have been used  to show 

tha t the phase tran s itio n  of ex trac ted  1 . co li m em brane lipids range 

from  13° - 38° (Sackman e t a l . , 1973; O verath  and T rau b le , 1973).

In fac t th ese  stud ies re v e a l tha t the phase tran s itio n  of the t r a n s - 16:1 

lip ids, which constitu te  the predom inant acy l chain m oiety in th is 

o rgan ism , ac tua lly  lie s  between 24° - 28°C.

T hese r e s u l ts  when com pared  with the  sp e c tra  reco rd ed  in figu res
*

23 (a -  e )  suggest th a t a fa ir  d eg ree  of m ixing o ccu rs  in the PE /DPL 

system  and th a t the tra n s itio n  observed  a t 32°C is  probably due to  a 

co -o p e ra tiv e  c o -c ry s ta lliza tio n  of the two d iffe ren t lip id s . S im ilarly  

the observ a tio n  of a m a jo r  tra n s itio n  for the PE*/PS system  a t ~  15°C 

which lie s  betw een the tra n s itio n  of the m a jo r E. coli lip ids and 

rep o rted  Tc in pure PS v e s ic le s  a t about 5°C (Jacobson and 

Papahadjopoulus, 1975) ind icates a reasonab le  am ount of m ixing.

It is d ifficu lt to ac cu ra te ly  define the extent of these  phase

tra n s itio n s  in these  sy s tem s from  these  n . m . r .  data a lone. In the

PE*/PS system  for exam ple, som e deg ree  of line broadening has
o

probably o c c u rre d  a t  te m p e ra tu re s  as high as  40 C. S im ilarly  

co n s id erab le  broadening in the PE* DPL system  m ight have o ccu rred  

a t 50°C (see fig s. 22 and 23). That phase sep ara tio n s a re  unim portant 

in th ese  sy s tem s is th e re fo re  an unlikely conclusion. The signal-to<-noise 

observed  a t about 30°C fo r the PE*/DPL system  could th e re fo re  a r is e  

from  liq u id -c ry s ta llin e  PE m olecu les in coex istence w ith a "frozen"
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m a tr ix  of dipalm itoyl lecithin m o lecu les  as previously suggested  by 

R ird sa ll et a l . , (  1974). T h is  view d e r iv e s  d irec tly  from  the e a r l ie r  

in te rp re ta tio n  of Philips et a l . ,  (1970) that the broadening of the 

endotherm  of m ix tu re s  of PE and PC indicates the p resen ce  of c lu s te rs  

of g e l and liquid c ry s ta llin e  lipid in the bi layer.
*

On the o th e r hand, ou r re la x a tio n  tim e stud ies on the PE /PS  v es ic les

and o ther n .m . r .  data in the l i te r a tu re ,  especially  the work of Seelig and

Seelig (1974 and 1975) show tha t a t  any tem p era tu re  d iffe ren t portions

of the chain m ay p o ssess  d iffe ren t d eg rees  of o rd erin g . T he o rd e r

a sso c ia ted  with th e  carbons n e a r  the  lip id-w ater in te rface  is thought to

be g re a te r  than tha t in the m iddle of the b ilay er. If th is  im p lies  that

d iffe ren t segm ents of the lipid m o lecu le  in the b ilayer " f re e z e ” at
13

differen t te m p era tu re s , then n . m . r .  and, in p a rticu la r, C n .m .r .  

is p a rticu la rly  su ited  to these  s tu d ie s . This m ay explain the 

observa tion  th a t a l l  the reso lv ed  reso n an ces  in figu res 22 and 23 a re  

not broadening a t quite the sam e r a te s ,  although a g e n e ra l broadening 

of the spectrum  of each of the m ixed  lipid sy stem s is o b se rv ab le  with 

the onset of the m ain tra n s itio n . F o r exam ple, the r a te s  o f broadening 

of the olefin carbon  a t C 9 and of the m ain m ethylene ca rb o n s  a t C 5, 7 

and 13 appear to  be considerab ly  f a s te r  than for any of th e  te rm in a l 

carbons, say, the uj - 1 re so n a n ce . This d ifference is p a rticu la rly  

m ore  pronounced in the PE/DPL sy s tem , (figure 23).

T h is observa tion , if tru e , m ay have in te resting  consequences in 

b iological function in na tu ra l m e m b ran es . It is possib le , fo r  instance, 

th a t a "frozen" portion  of the b ila y e r  could a c t a s  an exc lusion  m echanism  

for a p a r tic u la r  perm ean t m o lecu le  which then m oves into reg ions of the 

b ilay er containing m ore "fluid" phospholipid segm ents.

C ertain  d iffe ren ces in the n .m . r  sp ec tra  as  a function 

of tem p era tu re  a r e  found fo r  th e
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two lipid s y s te m s . F or in stan ce , the d iffe ren t te m p e ra tu re s  at which the 

m ain  tra n s itio n  is  observed  in the two sy s tem s and secondly the d iffe ren tia l 

ra te s  of b roaden ing  asso c ia te d  with the olefine region in the two system s 

(in the PE*/D PL system  the olefine h as  a lm o st d isap p eared  into the base  

line a t ~42° w hile  the co rrespond ing  te m p e ra tu re  in the PE*/PS system  

is  at ~  25°). A nother obvious d is s im ila r ity  in the two sp ec tra  is  the 

reso lu tion  o b se rv ed  in each  ca se , esp ec ia lly  at h igher te m p e ra tu re s . The 

reso lu tion  a s so c ia te d  with the spectrum  of the PE*/PS system  is 

consisten tly  of a h igher o rd e r  of m agnitude than that found in the spectrum  

of the PE*/DPL sy s tem . T h is  is in d irec t evidence co rro b o ra tin g  the 

size  of the PE*/PS v es ic le s  a s  de term ined  by m o le cu la r sieve chrom atography 

„  210 A, to be le s s  than that o bse rved  by o th e r  w o rk e rs  ( Sheetz et a l . ,

1972; F iner e t a l . ,  1972; and L itm an, 1973), fo r the PE*/DPL system  

~  250A . F u rth e rm o re , th is  is co n s is ten t w ith the hypothesis of a m ore  

"flu id ized" packing  of acid phospholipids at h ig h e r pH values than neu tra l 

o r  zw itte rio n ic  phosphatides (Trauble and E ib l, 1974; Jacobson and 

Papahadjopoulos, 1975). At te m p e ra tu re s  above 45° , the spectrum  of 

PE*/PS show s up to about eight carbons reso lved  com parab le to the 

situation  in o rg an ic  so lven ts , w hereas the m axim um  num ber of reso lved  

resonances ob se rv ed  fo r the PE*/DPL system  w as six . It m ust be 

m entioned th a t these  tem p era tu re  a s  soc ia ted  changes w ere  com pletely 

rev e rs ib le  o v e r  the te m p era tu re  range stud ied . Checks fo r p roducts of 

any m a jo r chem ical degradation , u sing  th in - la y e r  chrom atography , 

showed on o cc as io n s  only m in o r tr a i 'in g  asso c ia te d  with the m ain sp o ts .

T h is could v e ry  well have been due to  varying cham ber hum idity conditions 

during  the ch rom atog raph ic  p ro c e s s , ra th e r  than ac tua l chem ical 

degradation  of the lipid sp e c ie s .

F. U C SPIN-LATTICE RELAXATION TIMES (T i)

13(i) C sp in -la ttic e  relaxation  m echanism

R elaxation  of nuclei in lipid m o lecu les d isp e rse d  in w ater is com plicated  

by the fact th a t in te rna l m otion of the m o lecu les  w ithin the iso trop ically
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tum bling ves ic le  occu r with freq u en c ies  com parab le with the resonance
8 8

frequencies of the absorp tion  phenom enon (6.28 x 10 and 1.57 x 10

rad ians p e r  sec  fo r p ro ton  and ca rbon -13  nuclei respec tive ly ). Detailed

considera tions of such m otions w ith exam ples have been tre a te d  elsew here

(W oessner, 1962; W allach, 1967; W allach, 1969). Iso trop ic tum bling of
13the v e s ic le s  a s  a whole cannot be s ign ifican t in CTj determ inations 

because they w ill tend to p red ic t a com mon relaxation  tim e fo r  a ll the 

ca rbons in the m olecule which w ill not be consisten t with experim ental 

o b se rva tions (M etcalfe et a l . ,  1971; Levine et a l . ,  1972 ). B esides, 

ca lcu la tions based on the S to k es-E in ste in  equation give approxim ate 

ra te s  of about 1 0 ^ / sec  fo r these tum blings leading to co rre la tio n  tim es 

too long for the region of in te re s t .

Im plicit in the an iso tropy  of the b ila y e r  system  is that sev era l

types of m otions a re  o cc u rrin g  (cooperatively  o r  non-cooperatively)

sim ultaneously  in the m o le cu les . One obvious possib ility  is rotation  of

the whole m olecu les about its  long ax is e s tim a ted  from  ESR experim ents
- 8  -9

to have a c o rre la tio n  tim e of about 10 -10 se c . T h is m otional

com ponent m ay be im portan t in d e te rm in in g  the range of observed  T l s

but it is not sufficient to account fo r  the observed  g rad ien ts  in T x since

ro tation  abouts its  long ax is  with the m olecu le behaving as  rig id  rods

w ill lead once again to a com mon T! value for a ll the nucle i. T here  is

th e re fo re  the need to co n sid er m otions about the individual carbon-carbon
13bonds. The m echanism  of C re laxa tion  tim es has been shown to be 

dom inated by predom inantly  d ipo le-d ipo le  . in te rac tio n s and especially  

in hyd rocarbons, ca rbon -p ro ton  d ip o la r  in te rac tio n s (F a r r a r  et al,1972).

D ipolar relaxation  in the b ila y e r  can occu r e i th e r  in te r-m o lecu larly  

o r  in tra m o lec u la rly . The fo rm e r  involving relaxation  by d ipoles in a 

d iffe ren t m olecule from  the m olecu le  bearing  the nucleus under consideration
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and as  such  is determ ined  by, am ong o th e r  fa c to rs , the in te rm o lec u la r  

separa tion  and the la te ra l diffusion ra te . In tram o lecu la r d ipo la r 

re laxation  is  not on the o th e r hand a s  dependent on the tran s la tio n a l 

m otions in the b ila y e r . The c lo se s t d is tan ce  of approach of two diffusing 

m o lecu les has been es tim a ted  to be of the o rd e r  of 5 A (Bloembergen et a l . , 

1948; Burnett and H arm on, 1972) and th is  is at leas t one C - H bond length 

sh o rt o f the separation  between the carbon  atom  of one chain and the 

d ipoles in an o th er, m eaning that in te rm o le c u la r  d ip o la r re laxation  of the 

13C nucleus can only m ake a m inim um  con tribu tion  to the to ta l relaxation  

experienced  by the nu cleu s. In tra m o le cu la r  re laxation  and esp ec ia lly  

of d ire c tly  bonded pro tons ap p e a rs  to be th e  chief re laxation  m echan ism . 

The in tra m o lec u la r  d ipo la r re laxation  of a carbon  nucleus by a d irec tly  

bound pro ton  h as  been given prev iously  by A bragam  (1961).

The A bragam  trea tm en t does not account fo r the 

he terogenous m o lecu lar m otions in an an iso tro p ic  system  d ire c tly , 

because the co rre la tio n  tim e defined in th e  equation is  only rep re se n ta tiv e  

of the effective sum of the contribu ting  c o rre la tio n  tim e s .

We obtain , how ever, a d ire c t e m p ir ic a l re la tionsh ip  between spin- 

la ttice  re laxation  tim e and m o lecu la r m otion  in the ex p ressio n

T, = f  d /Te ) -------------  ( 6 )

w here is the rep re se n ta tiv e  of the e ffec tiv e  sum of the p a rtic ip a tin g  

m o le cu la r m otions. Our arg u m en ts  above have em phasized the re la tiv e  

con tribu tions of the d iffe ren t c o rre la tio n  tim es  to T t ; they do not 

p rec lude any m otions com pletely  and so we m u st e x p re ss  the effective

c o rre la tio n  tim e t a s  a function of a ll o th e r  c o rre la tio n  tim es  in thee
sy s te m . F rom  the in troduction , we have seen that a v a rie ty  of m otional



p o ss ib ilitie s  a re  availab le to the m olecule in the b ilayer v iz -a -v iz ,

ro tational m otion about the long ax is  of the m olecu le , o sc illa to ry

m otions within a conform ation tran s-g a u ch e  iso m eriza tio n s  about the

C - C bonds and p rec ess io n a l m otions about the long ax is of the m o le cu le s ,

with the alw ays p re se n t tum bling m otion of the ves ic le  a s  a w hole.

T hese w ill expand the t te rm  in equation 6  to read  : 
e

Ti « t <V  T + V  T + V  T + V  T + V  n > —  ( 7 )
r 0 1 P t

We can sim plify  equation ( 7 ) by including a ll the m otions of the 

m olecule w ithin the ves ic le  in a common em b race  a s  d e te rm in a n ts  of 

in te rna l m otion, and so equation ( 7 ) w ill now read

Ti = f ( V  T/ + V  T > ---------  ( 8 >
l t

where t* is the correlation time characterising the average of internal

m otions and t c h a ra c te r is e s  the tum bling of the v e s ic le s .  We have

d e lib e ra te ly  left out te rm s  due to tran s la tio n a l o r  la te ra l diffusion and

tra n sv e rse  o r  flip-flop  d iffusions since these  a re  m ore  re lev an t to in te r -

m o lecu lar re lax a tio n . The con tribu tions of each  of th ese  m otions to the

observed  T t o f each carbon  of the fatty acyl chain w ill v a ry  depending

on the location of each carbon  along the length of the cha in . B esides ,

it is  im possib le with the ava ilab le  data to ca lcu late  the se p a ra te

contribu tions due to each of these  m o tions. Since we have shown e a r l ie r

that t is  re la tive ly  un im portan t in determ in ing  T j , we see  that the

observed  T t 's  a re  good gu ides to the in te rna l m otions of each  of the

carbon atom s w ithin the phospholipid m olecule in the b ila y e r  and th e re fo re

a d ire c t index of th e ir  behaviour in the im m ediate m ic ro -e n v iro n m en t.
13T his is the evidence fo r C T t a s  an index of m o lecu la r m otions in the 

b ilay er.
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(ii) C T j of lip ids in n o n -p o la r solutions1 3

C T\ fo r nuclei in lip ids a re  c h a ra c te r is tic  of the type o f s tru c tu re

that is  fo rm ed . Inform ation on the m ic e l la r  behaviour of phospholip ids in

solvents of low d ie le c tr ic  constant a re  p rovided by the w ork of E lw orthy

(Ehvorthy, 1959; Elw orthy and M cIntosh, 1964). In chloroform  so lu tio n s,

Chapman and M o rriso n  (1966) observed  that the choline proton n .m .  r .

resonance of synthetic lec ith in s w as sign ifican tly  narrow ed  when a drop

of D^O w as added to the so lu tion . F u rth e rm o re , W alte r and H ayes (1971)

observed  that the effect w as m o re  pronounced if H 2 O w as added in stead

of D^O . The only possib le  explanation  w as that the choline head group

w as in a r e s tr ic te d  environm ent (in th is  case  inverted  m ic e lle s )  and  that

p a r t of the d riv ing  force fo r the fo rm ation  of these s tru c tu re s  w as

d isrup ted  by hydration  f o rc e s  when the hydrophilic reg ions cam e into

contact with added w a te r . Since then , d ire c t evidence fo r the in v e rted

m ice lle  s tru c tu re  in te rm s  of reduced  T j values fo r the choline headgroup
13

have been obtained (Lee et a l . ,  1971; Levine et a l . ,  1972). The C Ti

values I have observed  in d eu te rio -ch lo ro fo rm  solutions show a g rad ie n t

of in c reasin g  m o lecu la r m otion from  th e  g lycerol backbone to w ard s the

te rm in a l m ethyl of the acyl chain , F ig u re  24a and T able 7 . F u r th e rm o re ,

c o rre la tio n s  w ith the n a tu re  of the m ic e lle  form ed in th is  solvent by

differen t phospholipid sp ec ie s  and m ix tu re s  a re  ob se rv ed . T j v a lu es

have been obtained for th ree  lipid sy s te m s  in chloroform  at 4 5 ° c  and

at a to ta l lipid concentra tion  of 1(1% w /v . In the f irs t  d e te rm in a tio n ,

T j values w ere  m e asu red  fo r PE * a lo n e . The o th e r  two m e a su re m e n ts

w ere  fo r m ixed lipid sy s tem s of PE*/PS (1:1) and PE*/DPL (1:1) under
13

identical cond itions. In a ll these  m e asu rem en ts  en riched  PE [ 1 - C-A c ] 

from  E .c o l i ,  w as used so that only reso n an ces from  the labelled  

carbons of the PE have been o b se rv e d . Table 7 shows the 

d istribu tion  of T* fo r the th re e  d iffe ren t sy s tem s . T here  is  a 

sy stem a tic  in c re a se  of T j from  the C(3) tow ards the C(15) ca rb o n s  in
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T ,
(secs)

carbon num ber

F ig . 24a Tj varia tion  with location w ithin phospholipid m ice lles 

in ch lo ro fo rm .

(o) PE*/DPL (1:1, w /w ), ( ) PE * Data for

' t h e  carboxy late  have been unlinked to the r e s t  

d e lib e ra te ly .
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each c a s e , in ag reem en t with the inverted  m ic e l la r  m odel fo r these  lip ids in 

the low d ie le c tr ic  m edium . The T j value for the C (l)  nucleus is 

inconsisten t w ith the trend  in the r e s t ,  probably because of the lack of an 

efficient re laxa tion  m echanism  fo r th is  nuc leus, in view of the absence of 

any d ire c tly  bonded p ro to n s.

A m o re  in te re s tin g  ob se rv a tio n , how ever, is that the values of 

T i fo r the case  w here PE* is  the only lipid sp e c ie s  in the sy stem  a re  

consisten tly  low er than co rrespond ing  values in an y o f the o th e r  two sy s te m s . 

The values fo r both PE*/PS and PE*/DPL a re  ind istinguishable within lim its  

of ex p e rim e n ta l e r r o r .  T ig h te r packing of the phosphatidyl ethanolam ine 

m olecu les in the m ice lle  a s  a re su lt of strong  h ead -g ro u p  in te rac tio n  is 

unlikely to  be the reason  fo r th is  m otional re s tr ic tio n  a sso c ia te d  with the 

a ll PE m ic e l la r  unit, since from  both n . m . r .  and in f ra - re d  ev idence, both 

PE and PC have been shown to ex is t m o re  probably  in the d ip o la r ionic form  

in chloroform  (Chapman and M o rriso n , 1966). In o th e r  w o rd s , s im ila r  

e le c tro s ta t ic  fo rc es  a re  to be expected  in the co re  of inverted  m ic e lla r  

units fo rm ed by each of these  phospholip ids. T h ere  a r e  two o th e r  p lausib le  

exp lanations. F irs t ly , fo r som e reason  that is  hard  to  im agine (given the 

close s im ila r i t ie s  between the acyl chains in both the PE and DPL m o lecu les), 

the PE m o le cu le s  pack m ore  tightly  along th e ir  long a x is  leading to m ore  

re s tr ic te d  m otions along the length of the chain o r  second ly , pu re  PE fo rm s 

la rg e r  s iz e d  and consequently la rg e r  m em bered  m ic e lle s  ( >  70 m olecu les 

p e r m ic e lle ) . The arg u m en ts  of Sheetz and Chan (1972), tha t as  the rad iu s  

of cu rv a tu re  of the ves ic le  in c re a se s  th e re  is  a consequent d rop  in m olal 

volume in the ag g reg a te , would then apply .lead in g  to a d rop in the deg ree  

of freedom  of the m olecu les in the m ac ro m o le cu la r  ag g re g a te . The effect 

of PC (which on its  own fo rm s only sm all n u m b ered  m ic e lle s  of about 

60 - 70 m o lecu les) in a m ixed PE/PC system  would be to d isp e rse  the PE 

into s m a lle r  m em bered  ag g re g a te s .
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A s im ila r  explanation  could apply to PS in the PE/PS m ic e lle s .

The c o rre la tio n  tim e of the tum bling agg regate  given by :

3
T = 4TT "a __________  ( 9 )

1  3

w here T| is  bulk v isco sity  of m edium  and a is the rad iu s of the tum bling 

a g g re g a te , the r e s t  of the sym bols having th e ir  u su a l m ean ings, cannot 

be the ch ief d e te rm in an ts  of the o bserved  effect fo r  rea so n s that have been 

advanced in the p rev io u s su b -sec tio n . F inally , the p lot of T j against 

carbon  num ber along the acy l chains fo r each  of the th ree  d iffe ren t 

sy s tem s s tud ied , F igure  24a shows the inheren t an iso tro p ic  m otions 

a s so c ia te d  with the lipid m olecu les in the m a c ro m o le cu la r  u n its . Inconsistent 

w ith a s tr ic t ly  lin e a r  g ra d ie n t, a sh a rp  in c re a se  in T a is  observed  for all 

the carbon a tom s fu rth e r  than carbon num ber 11 tow ards the te rm in a l 

m e th y l. P erhaps m o re  reso lved  reso n an ces in the m iddle of the chain 

a r e  req u ired  to ac cu ra te ly  p in -po in t the beginning of th is sudden in c re a se , 

although it is doubtful that it w ill be found to be s tro n g ly  asso c ia te d  with 

the un sa tu ra tio n  a t carbon 10. T h is  is an im provem ent in the e a r l ie r  

defin ition  of th is  point at carbon  (14) by Levine and co llab o ra to rs  (Levine 

et a l . ,  19728. C lea rly , if any m odel is  to have m eaningful application  to 

th is  sy s tem , th is  sharp  deviation from  lin e arity  w ill have to be taken into 

account and the coincidence of its  o rig in  with the te rm in a tio n  of a ^ -e le c tro n  

o rb ita l  should not be neg lec ted .

13(iii)  C T j of aqueous d isp e rs io n s  of PE/PS sy s tem s 

(tem p era tu re  function)

The carbon-13 spin la ttice  re laxation  tim e s  fo r a m ixed E . co li 

phosphatidyl e th an o lam in e -o x -b ra in  phosphatidyl se rin e  system  at m o la r

ra tio s  of 1 : 1 in t r is 'b u f fe r  pH 9 have been m e a su re d . The m easu rem en ts
o o o

w ere  taken at 5 te m p e ra tu re  in te rv a ls  o v er the te m p e ra tu re  range 30 -85 ,
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re su ltin g  in a to ta l of sixty T! va lues. T he Chapman tran s itio n  te m p era tu re

fo r th is  system  has been prev iously  e s tab lish ed  to be below th is  te m p e ra tu re  
13range using c  n .m . r .  sp e c tra l linew idths (see Section E ). Although 

m e asu rem en ts  below 30°C w ere  also  a ttem p ted , they have not been rep o rted  

because the calculation of T j from  th ese  low te m p era tu re  p a rtia lly  

re laxed  F o u rie r  tra n sfo rm s  (P R F T )w ere  g en e ra lly  u n reliab le  due to 

u n ce rta in tie s  about th e ir  inversion po in ts a s  a re su lt of considerab le  

broadening , a s  the m ain tran s itio n  is  app roached . The phosphatidyl- 

ethanolam ine spec ies  w as en riched  to about 50% in the odd carbon atom s 

of i ts  acyl cha ins.

Relaxation tim es have been ca lcu la ted  (see M a te ria ls  and M ethods)

for each  of the six c lea rly  reso lved  re so n a n ce s  in the system  correspond ing

to carbon num bers (C (l), C(3), C (5 ,7 ,1 3  com plex), C ( l l ) a n d  C(15) assum ing

the carboxy late  of the g ly cero -fa tty  acid  e s te r  linkage to be carbon C (l) .

The g en e ra l trend  in the T x values is co n s is te n t w ith in c reasin g  m o lecu la r

m otion from  the g lycero l backbone down tow ards the te rm in a l m ethyl

ca rb o n . T h is m otional g rad ien t ap p e a rs  to be p re se rv e d  ov er the whole

te m p era tu re  range for which sp in -la ttic e  relaxation  tim es  have been

m e a su re d . Because all the carbons of the  g ly cero l and ethanolam ine m o ie tie s
13

a re  probably  s ti ll  a t th e ir  n a tu ra l abundance level of c  en richm ent 

( ~  1 .1% ) it has not been possib le to ob ta in  data for them a s  well a s  fo r the 

even num ber carbon a tom s of the fatty acy l chain . It has p rev iously  been 

shown, how ever, that m o lecu lar m otion in c re a se s  from  the g ly cero l carbons 

tow ards the te rm in al carbon(s) of the p o la r  head group in v e s ic le s  p rep a re d  

from  both synthetic and na tu ra lly  o cc u rrin g  lecith in s (M etcalfe e t a l . ,  1971a).

Typical p a rtia lly  relaxed  F o u rie r  T ra n sfo rm s  (PRFT) obtained 

fo r the m ixed lipid system  a re  shown in F igure  25. The

reso n an ces a re  num bered to co rrespond  with the nom enclature in F igure  19
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and r e fe r re d  to above. The tim es  ex p re ssed  in seconds on the righ t hand

side a r e  the delay tim es between the resp ec tiv e  pu lses  in the tt - t -  r / 2

pu lse  sequence re fe r re d  to in C hapter 2. T able 8 con tains the

six ty-odd  relaxation  tim es de term ined  o v er the te m p e ra tu re  range

30 - 85°C and the quoted e r r o r s  a re  the standard  dev iations on the slopes

of log (A ® - A[ ) vs t (sec) as  p rev iously  re fe r re d  to . T j was

rep roducib le  experim en tally  to w ithin 10% accu racy . The fact that the

m e a su re d  T j fo r any one carbon  atom  in the m olecu le in c re a se s  with

te m p e ra tu re  is good evidence that although ideal solution behaviour

m ay be fa r  from  the case  in th is  sy stem , the condition u; tc < 1

s till ap p lie s , at le a s t w ithin the te m p era tu re  range stud ied . The

carboxy late  carbon re laxation  tim es  a re  unusually long fo r th e ir  m id -reg io n

position  in the m olecu le . A c lo se r  look at th is  nuc leus, how ever, rev ea ls

that th is  anam olous behaviour is not s tran g e , on account of the lack of

an effic ien t d ipo lar-coup ling  to th is  carbon . A com bination of neighbouring

and ad jacen t n o n -d irec tly  bonded d ipo les with the m agnetic  an iso tropy  of

the oxygen nucleus m ay account fo r an inefficient y e t only availab le

re lax a tio n  m echan ism . T hus the > £  = 0  ce n tre  m ay experience a

c h a ra c te r is t ic  relaxation  p ro file  leading to dev iations from  the p red ic ted

tre n d . The observed  re laxa tion  tim es m ay be broadly  grouped into two

p a r ts  on a purely  a rb i t ra ry  b a s is .  U sing the c r ite r io n  of a T j value 
o

of 1 second at 50 C, we see  that ca rbons C (l) , C ( l l ) a n d  C (15) fa 11 into 

one group  of T t values above 1 se c . and carbons C(3), C (5 ,7 ,1 3 ) and 

C(9) fall into a second group  with low er T j v a lu es. Except fo r C (l)  in 

g roup  one, th is  b road div ision  w ill co rresp o n d  to ca rb o n s a t the end and 

m idd le  of the chain resp e c tiv e ly . The p lo ts of T, aga in st te m p era tu re  

p re se n te d  in F igure 26 show that th e re  is a fa ir ly  lin e a r  in c re ase  

a s so c ia te d  with the in itial portion  of the g raphs with a slope of 

approx im ate ly  0 .0 2  - 0 .0 3  sec  deg 1 .



Relaxation tim e as  a function  of te m p e ra tu re  

fo r a PE’ /PS  m ixed lipid sy s te m .
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D eviation from  linearity  o ccu rs  fo r  the group one nuclei at about 70°C , 

resu ltin g  in a new grad ien t of ~  0 . 1  sec  deg 1 and a s im ila r  s to ry  app lies 

to the group two ca rbons, except that th is  deviation  is  observed  only 

a f te r  the 75°C tem p era tu re  m a rk .  T h is deviation from  the in itia l 

lin ea rity  re p re se n ts  an in c re ase  in Tj of the o rd e r  of ~  3 fold. T his 

obse rva tion  may probably fit in to  a p a tte rn  w hereby as  the te m p era tu re  

in c re a se s , those com ponents of m o le c u la r  m otion in the system  tha t 

a re  favoured to d iffering  d e g re e s  tend to av e rag e  out, leading to a 

m o re  'iso tro p ic ' m a tr ix  and th a t a t a c r it ic a l tem p era tu re  ( i .e .te m p e ra tu re  

at which deviation from in itia l id ea lity  is  o b se rved ) a sudden ac ce le ra tio n  

into m o re  uniform  m otions o c c u r s .  We would expect th is  te m p era tu re  

to be low er fo r the e n d -te rm in a l ca rb o n s , i . e .  group 1 , than fo r the 

'b u rie d ' ca rb o n s, since the fo rm e r  p o sse ss  the la rg e r  k inetic energy  

in itially  by v irtue  of th e ir  lo n g e r Tj v a lu es . The re laxation  ra te  for 

the carbon c e n tre s  C3, C9, C l l  and the C 5 ,2 ,13 envelope is  sign ifican tly  

g re a te r  than fo r the carbon a t the  m ethyl end (F igures 26 (c-d ). One 

way the nuclei could achieve th is  enhancem ent is  through tig h te r  packing 

in the m id -reg io n s  of the r e s id u e s .

In the p lo ts of T[ ag a in s t carbon num ber of the fatty acyl chain ,

F ig u res  27 and 28, carbon a to m s ( C(1) and C (5 ,7 ,13) have been

d e lib e ra te ly  left out; the fo rm e r  b ecau se , even though it m ay respond

to the sou rce  of pertu rbation  in a s im ila r  m an n er to the o th e r  ca rb o n s ,

it does not fit into the trend  of T t values in the f irs t  place a s  sta ted

above, and the la tte r  because being  an envelope of m o re  than one

resonance peak, m ay contain co n trib u tio n s from  d iffe ren t resona ting

nuclei in ra tio s  which we have no d ire c t way of es tab lish in g . T hese

p lo ts  outline the genera l trend  of Tj in c re as in g  tow ards the te rm in a l

g ro u p s . T h ere  ap p ears  to be an o th er deviation from  linearity  at ca rbons
o

C(11) espec ia lly  a t the low er range  of te m p era tu re  studied ,c f  (30-40 ).

One can only in fer that a sh a rp  change of m o lecu la r m otion o c c u rs  so m e ­

w here between the C(12) and C(15) ca rbons. Levine et a 1 ,1972b) w ere 

unable to conclude w hether th is  sh a rp  in c re a se  falls right back to the 

m iddle of the chain fu rth e r  than  the carbon C(15) n u cleu s. Although



Acyl resid u e  C T, h e terogene ity  

as  a function of te m p e ra tu re  fo r 

PE*/PS m ixed  lipid sy s te m .

13





6 3

th e re  is  no ev idence in these  re su lts  to conclusively  e s ta b lish  the o rig in s  

of th is  m otional in c re a s e  to the carbons anyw here between C ( l l ) a n d  C(15), 

it is  p robably  un likely  that th is sh a rp  in c re a se  fa lls  back fu rth e r  than the 

C ( l l )  cen tre  since th e re  a p p e a rs  to be only a fa irly  lin e a r  in c re a se  befo re  

th is  c e n tre . It is  un likely  fo r instance that the C(10) nucleus w ill show 

any rem ark ab le  dev ia tion  from  the portion  of the plot between C(9) and 

C ( l l ) .

The plot in F ig u re  29 shows the re la tionsh ip  between NT! and 

carbon num ber along  the chain , w here N is  the num ber of d ire c tly  bonded 

d ipo les. The two cu rv e s  shown a re  for the two lim its  of the te m p era tu re  

range studied and the space between them can be considered  re p re se n ta tiv e  

for a ll the te m p e ra tu re s  in betw een. Once again , the low er curve shows 

the m uch m ore m o d e ra te  continuity  asso c ia te d  with the g rad ien t of 

relaxation  p ro c e s s e s  along the chain a t low te m p e ra tu re s  a s  co n tra sted  

with the sharp  d iscon tinu ity  a t h igher te m p e ra tu re s . With th is  treatm ent 

the sharp  in c re a se  in re laxation  tim es asso c ia te d  with the end carbons 

ap p ears  to have i t s  o rig in s  from  C (11). A ttem pts a t ca lcu lating  the 

activation  e n e rg ie s  ( AE) of the effective relaxation  p ro c e s se s  have been 

m ad e . The re la tio n sh ip

o AE/RT 
t  exp ( 10 )

w here is the e ffe c tiv e  c o rre la tio n  tim e and is rec ip ro c a lly  re la ted  

to the relaxation  tim e Ti , t 0  being a constan t fo r the system  and the 

o th e r  sym bols having th e ir  usual m eanings w as used . The values obtained 

for each of the ca rb o n  atom s in a p a r tic u la r  range of te m p era tu re  a re  

p resen ted  in T ab le  9. Plots of In T j v_s the in v e rse  of abso lu te 

tem p era tu re  w e re  used to ca lcu la te  AE. If the p lo ts  a r e  a ll assum ed  

to d eterm ine a l in e a r  plot and a s tra ig h t line consequently  fitted by the 

m ethod of least sq u a re s , the activation  en e rg ie s  ca lcu lated  a re  those  given 

at the top of T ab le  9. The la rg e s t en e rg ie s  of activation  fo r the p ro c e s se s



Plot of NTt a s  a function of carbon num ber 

w here N is  no. of d ire c tly  bound p ro tons; 

(0) a t 30° , (A) at 85°.
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re laxation seem  to be a s so c ia ted  with the carbons in the m iddle of the 

cha in . A ctivation en e rg ies  of the relaxation  p ro c e sse s  have a lso  been 

evaluated  fo r each  of th re e  reg ions within the m ain  te m p era tu re  range  

s tud ied . T h ese  reg ions a r e  the th re e  m ost lin e a r  portions of the plots 

of Ln T, ag a in st the re c ip ro c a l o f te m p e ra tu re . Although the ac tu a l 

v a lu es of ¿ E  obtained fo r each region differ considerab ly , the trend  

found for the w eighted av erag e  a s  above ap p ears  to  be rem arkab ly  

p re se rv e d , cf. T able 9 and F igure  30 which shows the v a ria tio n  of &  E 

w ith chain  num ber.

G . C onclusion.

A b r ie f  sum m ary  of the re s u lts  rep o rted  in th is  chap te r is  a s  fo llow s:-

( i )  F rom  m o lecu lar sieve experim en ts, the av e rag e  d iam eter of v e s ic le s  

of the fraction  (II) type is  determ ined  to  be ~  210 ± 10? for PE-PS (1:1) 

m ixed  lipid d isp e rs io n s .
13( ii)  T he dependence of the C n . m . r .  sp ec tra  on te m p era tu re  ind icates 

a b ro ad  tra n s itio n  te m p e ra tu re  in both PE -PS and PE -DPL v e s ic le s .

T h is  tran s itio n  o ccu rs  betw een— 15 - 30°C fo r  the fo rm e r and 30 - 40 

fo r  the la t te r  lipid m ix tu re s .

( ii i)  T he observed  linew idths suggest tha t m ost o f the PE m olecu les in the

two m ix tu re s  e x is t in sufficiently  "flu id” s ta te s  to  g ive m eaningful sp e c tra .
31U sing P n . m . r . ,  it w as not possib le to e s tab lish  any phase sep ara tio n s

in the PE-PS system  , n e ith e r w as it possib le to  reso lv e  reso n an ces from

both  the inside and ou tside of the v es ic le , suggesting  that the packing on

both s id e s  of the v e s ic le  i s  probably s im ila r . F rom  the re s u lts  with

broadening  rea g en ts , charge  effects in the stab iliza tion  of th is  lipid

sy s tem  a r e  co nsidered  to  be im portan t.
13(iv ) C T  's  of non -po lar solutions of these  lip ids a re  in te rp re ted  to m ean

th a t the inverted  m ic e lle s  form ed in ch lo ro fo rm  is la rg e r  and probably m o re

populated when PE is the only lipid than when PE-PS o r  PE-DPL m ix tu re s

a r e  u sed .
13(v ) C T j 's  of aqueous sonicated  d isp e rs io n s  of PE-PS (1:1) have been 

ob tained above the o rd e r  -• d iso rd e r  tran s itio n  te m p era tu re , c f .3 0  -  85°C.
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carbon  num ber

F igu re  30 V aria tion  of the energy  of ac tiva tion  fo r T j 

p ro c e s se s  with location in the b ila y e r .
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(c )

PC-18: 1c/1 3 : 1c PC(1: 1 ) liposom es and v e s i c l e s .  Only 

h e a t i n g  s c a n s  are shown in ( c & d ) .

^D ata o f  De K r u i j f f  e t  l a . ,  1975)



*
F i g .  ?0e & f p  Dependence o f  o r le r  p a ra m e te r  o f  DPL b i l a y e r s  on 

( e )  c a rb o n  number in  t h e  c h a in  a t  50 C and  ( f )  
t e m p e r a t u r e  f o r  t h r e e  d i f f e r e n t  c a rb o n  atom s i n  
th e  c h a i n .

•D a ta  o f ( S e e l i g  and S e e l i g ,  197*0

p i N i u B u m n i i i i u i n m i i i n



TABLE 10

E KJ MOLE FOR METHYLENES IN SYNTHETIC POLYMERS*

13 _ o ,
POLYMER GROUP CTt IN SECS. TEM P. C E KJ MOLE

PE O3
C H 2

1 . 1 30 16

pp o a •• 0 .6 0 •• 2 1

PIB3
•• 0 .1 5 - 18

PMMA3 * - CH3
0 . 1 0 •• 23

PE3 GH2 1 .3 5 1 0 0 1 0 . 1

1 PPb

1_______________

0 .5 7 14.3

1

PEO, PPO, PIB, PMMA, PE and PP stand fo r  polyethylene ox ide ,po lypropy lene oxide, 

polyisobutylene ox ide , p o ly m e th acry la te , polyethylene and polypropylene resp ec tiv e ly .

* C om m unicated  by F .H ea tle y  (see te x t) , 

a values of F .H ea tley  

b values of Inoue e t a l .
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T hose re s u lts  c lea rly  show a h igher tie ree of d iso rd e r  a sso c ia ted  with 

the carbons n e a re r  the cha in  te rm in a l ir,ethyl than those  n e a r  the g lycero l 

ackbone. In the fcilayer, th e se  would re p re se n t reg io n s buried  deep in 

the m iddle of the b ilay er and  those  at the lip id -w ater in te rface  resp e c tiv e ly ,

(v i) The ca lcu la ted  ac tiva tion  en e rg ies  for th ese  re lax a tio n  p ro c e sse s  

rev e a l the h igher activa tion  en e rg ie s  a ssoc ia ted  with th e se  ca rbons n e a re s t 

the lip id -w ater boundary. It is  suggested  tha t one way in which th ese  

carbons, in segm ents c lo s e s t  to  the aqueous phase, can o ffse t th ese  

unfavourable activation  e n e rg ie s  is to p ick m ore  tigh tly  than, say, 

carbons in the  m iddle of th e  b ila y e r .

F inally, it is d es ira b le  to  e s tab lish  w hether these  re s u lts  have any 

earing w hatsoever on n a tu ra l  m em branes which the m odel is purported  

to re p re se n t. In the p ast, the  valid ity  of sonicated  v e s ic le s  a s  m odels 

for biological m em branes h a s  been challenged on the g rounds tha t the 

re su lts  obtained with them  have not alw ays been found to co rresp o n d  with 

those from  liposom es o r  n a tu ra l  m em b ran es . A re c e n t investigation 

em ploying d iffe ren tia l scann ing  ca lo r im e try  has dem onstra ted  the gel -  

liq u id -c ry s ta llin e  tra n s itio n  o f b ilay ers  in liposom es to  be unaffected by 

sonication (De K ruiff et a l . ,  ¡975). Some of the r e s u lts  in th is  paper 

have a lread y  been p re se n te d  in section  C, and the o th e r  re lev an t p a rts  

a re  included h ere . T h e se  c a lo rim e try  stud ies by Radda and o th e rs  show 

tha t the m ain  endotherm ic tra n s itio n  rem a in s  large ly  unaffected  in 

liposom es and v es ic le s  of PC, (figures 30 (b) and (c)), w hether heating 

o r  cooling cu rv es a re  em ployed . F u rth e rm o re , in m ix tu re s  of PC with 

widely d iffering  chain len g th s, when phase separation  is to be expected, 

idertica l lipid asym m etry  a r e  thought to occu r in both liposom es and 

v es ic les  fo rm ed from  s im ila r  lipid m ix tu re s , (figure 3 0 (d ).)

A m o re  d irec t co m p ariso n  with our re su lts  is  provided by the work of 

Seelig and Seelig, (1974 and  1975) using deu terium  m agnetic resonance  

spectroscopy . The e s tim a tio n  of the segm ental o rd e r  p a ra m e te r  from  the 

observed re s id u a l quadrupo le sp litting  in d eu teria ted  b ila y e rs  is  thought 

to confer an added advantage to  the application  of d m r in m em brane 

sy stem s. T h is is so b e c a u se  the high sp e c tra l reso lu tion  n e c e s sa ry  fo r the
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m easu rem en t o f T ^ s  (in, say , C n . m . r .  ) is no longer a lim iting  fac to r

since fa ir ly  w ell reso lv ed  quadrupole sp littin g s can be observed  in

liposom es without son ication . An obvious w eakness of th is  approach,

how ever, is that fluidity , which very  n ea rly  often is  the re levan t

phenomenon in m em brane function, has no known sim p le  re la tio n sh ip  with

the o rd e r  p a ra m e te r . It w u ld  ap p ear that the ra te  of m o lecu lar

re o rie n ta tio n s  which is  c lo se ly  re la te d  to re lax a tio n  tim e s  (especia lly  if
13

d ipo lar in te rac tio n s dom inate the re lax a tio n  p ro c e sse s , e . g . C T t ) is 

m o re  re lev an t to the concept of fluidity  (Seelig and Seelig, 1974).

However, th e se  au th o rs ' r e s u l ts  on liposom es do m ake an in te restin g  

com parison  with ou r own re s u lts  rep o rted  h e re . T h e ir  re s u lts  a re  

p resen ted  in f ig u res  30 (e) and (f) . It is seen th a t the chain  segm ents 

a re  le s s  o rd e re d  n ea r  the te rm in a l m cthv ls of th e  acy l chain , i . e .  in the 

m id -reg io n s of the b ila y e r , and that th e re  is a p ro g re ss iv e  in c re ase  in 

o rd e r  p a ra m e te r  tow ards the g ly cero l backbone, (figure 30 (e )). A 

m arked  d iscontinuity  a p p e a rs  to be a s so c ia te d  w ith the reg ion  around the 

C 10 carbon  of DPL liposom es as  co m p ared  w ith o u r r e s u lts ,  (figu res 

27 - 29 ). T hat the o rd e r  p a ra m e te r  ap p e a rs  to rem a in  constant for the 

f ir s t  nine segm ents is  a t v a ria n ce  with o u r  re su lts ,a n d  is probably due to the 

fully sa tu ra te d  chains of equal chain length used  by th e se  au th o rs . T he 

dependence of the o rd e r  p a ra m e te r  on te m p era tu re , (figure 30(f)) shows 

an in itia l rap id  in c re ase  in d iso rd e r  as so c ia te d  with each  labelled portion  

of the chain . As te m p e ra tu re  is in c re a se d  fu rth e r , a le s s  pronounced 

in c re ase  in d iso rd e r  ap p e a rs  to  se t in. T h is  obse rv a tio n  is com pared  

to  o u r re s u lts  in f ig u res  26(c) and (d ). T h ese  ob se rv a tio n s we have 

a sc r ib e d  to  an averag ing  out of m o lecu lar m otions a s  a re s u lt  of in c re ase d  

iso trop ic  behaviour.

F inally , ou r re s u lts  and those of Seelig and c o llab o ra to rs , when

co n tra s te d  w ith the r e s u lts  o f H eatley (1976) on po lym er so lu tions, show

that the g rada tion  in o rd e r  asso c ia te d  with lipid m olecu les in both

liposom es and v es ic le s  is the  consequence of a sp ec ia l sym m etry

c h a ra c te r is t ic  o f the b ila y e r  com mon to both m em brane m odels. The 
13activation  en e rg ies  of C T  p ro c e sse s  as so c ia te d  with the m ethylene
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carbons in th e se  po lym ers is  of the o rd e r  of ~  20 KJ m ol , cf. T ab le 

•(). Only the activation  e n e rg ie s  of the te rm in a l carbons in the  PE-PS 

system  a re  in reasonab le  ag reem en t with th is  value . A ctivation  energ ies 

for carbons between the f i r s t  and eleventh segm ent of the chain a re  

considerab ly  h igher, cf. T a b le  9.

From  th e se  co n s id era tio n s , it would appear tha t son icated  lipid 

v es ic le s  a re  s ti l l  sen sib le  m odels fo r studying biological m e m b ran es , 

espec ia lly  when ex p e rim en ta l lim ita tions prevent the d ire c t em ploym ent 

of n a tu ra l m em branes o r  n o n -son ica ted  liposom es. Even w ithout th is 

dem onstration , v e s ic le s  s t i l l  have th e ir  d irec t biological equ ivalence 

in ce rta in  sp ec ia lised  m em b ran es  such as th e  highly cu rved  m em branes 

of m itochondrial c r is ta e  and th e  re tin a l rod. The c o n tro v e rs ia l re su lts  

that a r e  so m etim es ob tained with sonicated  and nonsonicated  sy s tem s can 

now a lm ost safely be view ed a s  deriv ing  from  ce rta in  p ecu lia r 

lim ita tions of the technique applied  ra th e r  than from  d iffe ren ce s  in the 

p ro p ertie s  o f the two sy s te m s .
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CHAPTER 5

13C BIOSYNTHETIC ENRICHMENT OF THE FATTY ACYL 

RESIDUES OF PHOSPHATIDYL CHOLINE

A . INTRODUCTION

The rea so n s  fo r Che req u irem en t of, and the p rob lem s p reven ting ,
13

the ready  av a ilab ility  of phospholipids suitably en rich ed  in the C 

abundance of acyl re s id u e s  have been enum erated  in C hapter 3 . The 

isolation of b ac te ria l m utan ts p o sse ss in g  ap p ro p ria te  genetic  le s io n s , 

p e rm ittin g  a high efficiency  of incorporation  of exogenous su b s tra te s  into 

fatty ac id s  is  one way of com bating som e of these  p ro b lem s. One of the 

m a jo r  a t tra c tio n s  of bac te ria  in th is field is the re la tiv e  ea se  with which 

these m u tan ts  can be iso lated  and cu ltu red  a s  sing le s tra in  types without 

fea r of c e llu la r  d iv e rs ity  as  in h igher o rg an ism s: and an o th er advantage 

closely  linked to the f i r s t  is  the rapid  ce ll cycle in b a c te ria l growth with 

generation  tim es  typ ically  in the region of 2  ± l h r  re su ltin g  in the 

quick e s tab lish m e n t o f la rge  populations in fa ir ly  sh o rt tim e s  with 

concom itant conversion  of su b stra te  into end p roduct read ily .

H ow ever, phosphatidyl choline which is  v e ry  often the m a jo r 

phospholipid of m o st eucaryo te  m e m b ran es , is hard ly  ev e r  p re se n t, at 

any ra te  in any sign ifican t am ounts, in b a c te ria l m em b ran es . If we a re  

going to be able to apply the pow erful technique of n . m . r .  to the study 

of th is im portan t phospholipid a s  w as done in C hap te r 4, fo r the 

phosphatidyl ethano lam ine , then it is  d e s ira b le  that a su itab le  m ethod 

for p rep a ra tio n  of s im ila rly  en riched  lipids be av a ilab le .
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T h ere  a re  m any eucaryo tic  m ic ro -o rg a n ism s  which ap p ro x im ate , 

in te rm s  of th e ir  growth cycle behaviour, som e of the a t tra c t iv e  qualities 

enum erated  above for the choice of b ac teria  in biosynthetic en rich m en t 

techniques. One obvious exam ple is  the w ell studied c ilia te  T etrahym ena 

P y rifo rm is  . Besides having a rap id  b a c te ria - lik e  growth (generation  

tim e ~  4 hou rs ) the c ilia te  is  fa ir ly  easy  to cu ltu re  ax e n ic a lly . F u r th e r ­

m o re , a p a r t from  de novo fatty  acid  b io sy n th esis , d em o n stra tab le  

during growth in chem ically  defined fatty a c id - fre e  m ed ia , T etrahym ena 

can in co rp o ra te  exogenous long-chain fatty ac id s  of g rea t v a r ie ty  into 

its  lipids d irec tly  (Lees and K orn , 1966). H ow ever, when grown on the 

standard  (pro teose-peptone) m edium  the inco rpo ration  of any added aceta te  

o r  fatty acid su b s tra te s  w ill d e c re a s e  due to dilution from  s im ila r  su b s tra te s  

p resen t n a tu ra lly  in these m ed ia . B esides, a considerab le  am ount of 

m a te r ia l incorporated  and en route to lipid sy n th esis  m ay end up one way 

o r  ano ther lost in re sp ire d  CO 2 .

Terrahym ena and se v e ra l o th e r m ic ro -o rg a n ism s  w ill p rey  on 

bac te ria  grow ing in th e ir  im m edia te niche . A review  of th is  phenomenon 

and som e suggestions on its  p ossib le  re levance in "eco log ica l com bat 

has been trea ted  by C urds and Cockburn (1968).

T his chap te r is a rep o rt o f the re su lts  of o u r rea so n in g  that if

T etrahym ena can be cultivated  m ono-axen ica lly  on E . coli K12 s tra in
13CY2, then it m ay be possib le  to have the highly C en rich ed  phospholipids 

of CY2 incorporated  into the eucaryo te  with p ossib le  m odification  (but 

with no m a jo r  a lte ra tio n s  in p a tte rn  of en richm en t) into phosphatidyl 

choline.

B. RESULTS

Initially  a s e r ie s  of ex p e rim en ts  on a sm all scale  (10 m l) w ere run 

in o rd e r  to define the growth conditions n e c e s sa ry  for the ex p e rim en ts .
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T hese e x p e r im e n ts  dem onstra ted  that e i th e r  the E .c o li growth medium  o r

the b a c te r ia l  m etabo lic  products w ere  tox ic to the T etrahym ena and that

it w as n e c e s s a ry  to w ash the b ac te ria  thoroughly  before in troducing the

T e trah y m en a  into a suspension of the b a c te ria  in s te r i le  d is tille d  w a te r .

The in co rp o ra tio n  of the ingested E .c o li  w as m onitored  by liquid sc in tilla tion  
14

coun tingof the 'h o t"  C label. T h ree  s e p a ra te  experim en ts on the 

sm a ll s c a le  (see T able 11) gave an in co rp o ra tio n  of rad ioac tiv ity  with the 

T e trah y m en a  lipid ex tra c t of 44 ± 3%  of to ta l E .co li label. The re su lts  

of a la rg e  sc a le  p rep a ra tio n  (10 L) w ere  com p arab le  (Table 11).

13
T h e la rge  scale  experim en ts w ere repea ted  using E . coli [1 - C] 

a c e ta te -la b e lle d  and the ex trac ted  lipids w e re  fractionated  to give 

p h ospho lip id s . The neu tra l lipid fraction  when chrom atographed  by TLC 

gave the c h a ra c te r is t ic  s te ro l spot of T etrahym enoi (see P late 2). The 

p o la r  lipid fraction  from  axenically  cu ltiva ted  T etrahym ena and from 

o rg a n ism s  cu ltivated  under o u r m ono-oxenic conditions showed identical 

an a ly ses  by  T L C . F u rth e rm o re , the re la tiv e  in te n s itie s  of the spo ts w ere 

co m p arab le  when the sam e am ount o f lipid w as s treak ed  in both ca se s  (see 

P late 3).

13T h e C n . m . r .  sp ec tra  obtained from  the T etrahym ena phospho- 

lip ids (F ig u re s  31 & 32 ) confirm  the b iosyn thetic  incorporation  of label 

into the o rg an ism  via the E .c o li  lipid. F u r th e rm o re , the spectrum  of 

phosphatidy l choline from  the organism  re v e a ls  the s ig n a l- to -n o ise  enhance­

m en t from  those enriched  ca rbons in the ac y l re s id u e s . The sp ec tra  a re  in 
13genera! ty p ic a l of C n . m . r .  spec tra  of phospholipids in non -po lar solution 

and show the th ree  m ain reg ions [v iz-a -v iz ,  carboxy late  ( —173 ppm ),olefin  

( 130 p p m ), and alkyl ( ~  35 -15 ppm) J observed  in the enriched  E .c o l i

lipid (see  F ig u re s  31 and 32). C erta in  d iffe ren ce s  a re  obvious, how ever.
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P l a t e  3
P r e p a r a t i v e  TLC o f  p o l a r  l i p i d  f r a c t i o n  from 
T e trah y m en a  p v r i  f o r m i s .

( a )  O rganim s grown m o n o - a x e n ic a l ly  on 
*E. c o l i  CY2

(b)  O rgan ism s grown a x e n i c a l l y  on p r o t e o s -  
p e p to n e  medium.

PC.PS.PE.AEPL an d  CL s t a n d  f o r  p h o s p h a t i d y l  c h o l i n e ,  
p h o s p h a t i d y l  s e r i n e ,  p h o s p h a t i d y l  e t h a n o l a m i e ,  amino 
e t h y l  p h o s p h o n o - l i p i d  and c a r d i o l i p i n  r e s p e c t i v e l y .
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C hloro fo rm  E x trac t of lipids from  T .p y r ifo rm is
13grow n on C labelled E .c o li  ;CY2 .

1000 F iD 's  w ere  accum ulated  and F o u rie r  

tra n s fo rm e d  on an 8 K data s e t. 90 Pulse length 

2 1  u,sec.

C one . 50 m g /m l in CDCI3  .





22.63  MHz C n . m . r .  sp e c tru m  of PE 

from  T .p y r ifo rm is  grown on E . coll s tra in  

CY2. 200 F ID s  w ere  F o u rie r  tran sfo rm ed  

on an 8 K m em ory  s iz e , 

cone. 2 0  m g /m l in CDCl^ at 30° •
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F ig . 32b
13

22.63 MHz C n . m . r .  spectrum

of PC from  T .p y r ifo rm is  grown on

E .c o li  s tra in  CY2. 200 F ID 's w ere

F o u rie r  tran sfo rm ed  on an 8 K m em ory
o

s iz e . cone. 10 m g m l in CDCl^ at 30 C



T he olefin region shows evidence of m o re  than m ono-unsaturation  as  

co n tra sted  again with the ca se  in E ■ coli . Polyunsaturation of fatty acid 

re s id u e s  of phospholipids is  m o re  com mon in E ucaryo tic  m em branes 

than in p ro ca ry o ti c o n es . S pecifically , T etrahym ena py rifo rm is 

h as  been shown to have m o re  than half of its  to ta l fatty acid content in 

po lyunsa tu rated  fo rm s (Erwin and Bloch, 1963). A lso , in the separated  

frac tio n s of PE and PC, th e re  appear to be inconsistencies in the 

resonances between ou-l, and the m ain m ethylene envelope a s  was seen 

in the CY2, PE . T hese d iffe ren ces and th e ir  likely so u rces a re  dealt 

w ith in fu lle r  d e ta il in the d iscussion  and in te rm s  of the possib le m etabolic 

a l te ra t io n s  tha t the E ■ co li lipid m ay have undergone.

13The %  'C  en richm en t of the phospholip ids w as determ ined  as 

in C hapter 3 , by com paring  the in ten sities  of the o lefine p ro tons and th e ir  

13C sa te llite  peaks of the 1H n . m . r .  of the fatty  acid m ethyl e s te r s  from 

the p h ospho lip id s . This gave an en richm en t of approxim ately  25%.

13The C en richm en t w as m e asu red  independently by m ass

sp e c tro m e try  of the fatty  acid m ethyl e s te r s  at 40°C on an A .E .I .  MS 50

sp e c tro m e te r , using th e + v e  ion m ode; 1 0 0  sec /decode  and high gain

(courtesy  of D r. R .M itchum , W arwick U n iversity ). The unsatu rated

ac id  e s te r s  palm ito le ic , o le ic , linoleic and lino len ic , which together

constitu te  m o re  than 70% of the to tal fatty  ac id s  in T etrahym ena at the

grow th te m p era tu re  of these  ex perim en ts  (Nozawa e t a l .m ,  1974) gave

com plex sp e c tra  of low o rd e r ,  c h a ra c te r iz e d  by a large peak at m /e  of

7 4  from  the spec ies  produced by 6  cleavage w ith hydrogen atom  tra n s fe r

(M cL afferty , 1959). The sp ec tra  w ere  not su itab le fo r the calculation 
13of the d eg re e  of C en rich m en t. The sa tu ra te d  fatty  acid e s te r s ,  

m y r is tic  acid  and palm itic  acid  m ethyl e s te r s ,  which constitu te ~5 and 

8 % resp ec tiv e ly  of to tal fatty acid com position  (Nozawa et a l . ,  1974)
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gave s im p le r  sp ec tra  (F igure 33). The peak at m /e  242 co rresp o n d s

to the m ain  m o lecu la r ion from  m ethyl m y r is ta te . The peak a t m /e
13

243 co rresp o n d s  to that from  m ety l m y r is ta te  w ith one C atom  e tc . 

C om parison  of the peak he igh ts, a f te r  co rrec tio n  fo r n a tu ra l abundance
13 1 3

C , enabled us to com pute the ra tio  of c  labelled  a tom s to the 

m axim um  th eo re tica lly  p ossib le  labelling .

T h is ra tio , which is  the d eg re e  of en rich m en t, was found to be 

19 .3  * 2% in the case  of the p a lm itic  e s te r s  d erived  from  PC.

C . DISCUSSION : EVIDENCE FOR CHAIN ELONGATION 

13The C n . m . r .  sp ec tra  of T etrahym ena PC and PE show 

considerab le  d iffe ren ces from  those of the E .c o li  lip ids from  w hich they 

w ere  derived  (cf F ig u res  32 (a - b ) . In the fo rm e r  two ,a  m ore  

com plex system  is now resonating  in the olefin region in p lace  of what 

appeared  to be only a single resonance from the m ono-unsatu ra tion  

from  the E .c o li  lipids . F u rth e rm o re , between the uj-1 resonance and 

the m ain m ethylene envelope, th e re  ap p e a rs  to be a t least fou r resolved 

reso n an ces a s  against only two [ C(3) and C ( ll  ] in the phospholipids 

from  E .c o l i (See F igure  16).

One in te rp re ta tio n  probably  is  that sc ram b lin g  of the label to

p rev iously  unenriched carbons has o cc u rre d  in the p ro c e ss  o f 'te t r a -

hym enization" of the E . coli lip id s . But th is su re ly  would have led to 
13 13d ire c t C - C sp littin g s of about 130 Hz which have not been 

o b se rv ed . A nother p ossib le  in te rp re ta tio n  is that of the m ovem ent of 

the double bond without any o th e r m a jo r  a lte ra tio n  in the fatty acyl 

re s id u e . T h ere  w ill have to be indeed a m ix tu re  of fatty acyl residues 

w ith double bonds that have w andered to various ex ten ts  to p roduce the
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th re e  newly reso lved  peaks in the alky l region and in fac t, n -e le c tro n s  

that have w andered quite close to e i th e r  end of the chain , would be 

req u ired  to give the d iffe ren t sh if ts  in the olefin region; since m onoenes 

w ith a fa ir  num ber of sa tu ra ted  ca rb o n s  attached on e i th e r  side a r e  

known to have iden tica l sh ifts  in long-chain  hydrocarbons (Levine e t a l . ,  

1972a). F u rth e rm o re , m onoene fa tty  ac ids a re  by fa r  the m ino r 

u n sa tu ra te s  in T etrahym ena p y r ifo rm is  (Holz and C onner, 1973). And 

yet ano ther explanation , and one th a t is m ore  likely , is  that chain 

elongation with fu rth e r  un sa tu ra tio n  has o cc u rre d . P o lyunsaturated  

fatty  ac id s  and in p a r t ic u la r ,  y - lin o le n ic a c id  (6, 9 ,12-octadeca- 

tr ie n o ic  acid) a r e  the m a jo r  fatty  ac id s  of Tetrahym ena p y rifo rm is  

(Erwin and Bloch, 1963). T hese au th o rs  have a lso  shown that y -lin o len a te  

o cc u rs  m ore  on the choline than on the ethanolam ine phosphatides 

(~ 30% of the fatty  ac id  e s te r if ie d  to  PC is  V -linolenate, a s  com pared  

w ith only ~  19% fo r  PE).

Chain elongation is thought to be a norm al p ro c e ss  of fatty  

acid syn thesis  in h ig h e r o rg an ism s (Bishop and Stump, 1971). One 

suggested  m echan ism  is  an enzym e ca ta lysed  condensation of a c e ta te , 

derived  from  acy l -CoA , with the acy l CoA d eriva tive  of the long chain 

fatty ac id .

T h ere  a re  a lso  enzym e sy s te m s  (d esa tu rases) thought to be specific  in 

introducing double bonds along the chain of the fatty acid via the ex p ressio n

NADH
RCH CO -S.CoA  + CH CO - S.CoA

A  >5 NADPH
RCH CH CH CO -S.CoA  + CoA-SH 

2 2 2
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Erwin and Bloch (1963) have shown that when "hot" palm itic  acid was fed 

to cu l tu res  of T .p y r i f o r m is  , a la rge  amount of label resu lted  in the 

V  linolenate f raction  of the phospholipids. The biological sequence of 

events appeared to favour  palm ita te  aga inst palm ito lea te  a s  a p r e c u r s o r  

for chain elongation and desa tu ra t ion  to Y-iinolenate.

Our data shows evidence of these possib le  metabolic  even ts .  They 
13

indicate that (i) the level of C enr ichm ent in PC has  d ec reased  from its

value in its E .c o l i  p r e c u r s o r ,  (ii) changes in the re la tive  in tens it ies  of 
13different regions of the C n . m . r .  spectrum  of the PC a r e  com m ensura te  

with the p ro ce ss  of chain elongation and desa tu ra t ion ,  ( i i i )on  the bas is  of 

non-equivalence of chem ica l  environm ents ,  six  of the enriched carbons 

in the V -linolenate w il l  experience shifts in th e ir  corresponding  resonances 

in the pa lm ito lea te  r e s id u e s  and that by assum ing  the p resence  of these 

two fatty ac ids  on each  phospholipid we can explain the ex tra  resolved 

resonances  in the o lefin ic  and acyl regions of the ^ C  n . m .  r .  spec trum .

Chemical sh if ts  were  m e a su re d  re la tive  to te tram ethy l s i lane ,  on

an 8 K (8192) data s e t .  Under these  conditions, and at an ex terna l  m agnetic

field s trength  of 21 K gau ss ,  the com puter  is  in theory  capable of

m e asu rem en t  of ch em ica l  shifts to an accu racy  of ± 0.01 ppm. However,

given linewidths at half-peak  height ( A V | )  of ~  3Hz for  10 mm sam ples

of the chloroform so lu tions of lipids (see Chapter  4) an accu racy  of ± 0 . 1  ppm

is m o re  likely in p r a c t ic e .  T hus ,  b a r r in g  la rge sy s tem a tic  e r r o r s ,  such

a s  large d isc re p an c ie s  in te m p e ra tu re  from sam ple  to sam ple ,  the

m e asu red  chemical sh if ts  of the PE and PC should be com parab le  within

these e r r o r  l im its  un le ss  the o r ig in s  of such shifts  a r e  at considerable

var ia n ce .  Also, p eak s  a s  close a s  0 .2  ppm will be reso lved . The 
13

m e asu red  C chem ica l  shifts of the PE and PC of the ci lia te  in 

deu teria ted  ch loroform  a r e  p resen ted  in Table 12 and a r e  com pared 

with values obtained from the PE of E .c o l i  and also  the PE from egg yolk.



Table  12: C chem ica l  sh if ts  of T .  pyriform is phospholipids in13

CDClg com pared  with those  of lipids from o the r  so u rce s .

Resolved resonances Chem ical shift p. p .m .  from TMS at 45°C

along acy l re s id u e . Tetrahym ena E. coli Egg yolk

PC PE PE PE

C 1 !e
173.1 173.0 173.8

173.6
173.8

C3 25.0 25.2 25 4 25 .0

C5 29.9

C7 30.6

C9 130.1

C 1 1 27.2

C13 29.5

C 1 5 ( w - 1 ) 22 .5 22.7 23.2 2 2 . 6

C 1 6 ( w ) 16.0 14 .4

a 130.0 130.0 130 .4

C=C b 129.5 129.5 129 .5

•
127.6 127.6 128. 1

d 29.8 30 .5 3 0 .0

e 29.3 30.1 2 9 .6

f - 29.3
1

g 27.4 27.4 2 7 .4

h 26.9 27.0

1 26.1 26.3
.
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To avoid ambiguity, only the carbons with confirmed chem ical shifts a r e  

num bered  with the nom enc la tu re  in Chapter 4 and the r e s t  a r e  le ttered  

in o r d e r  of d ec reas ing  chem ica l  shift from te tram ethy l s ilane (see 

F igu res  34 (a -b).  C le a r ly ,  from Table 12, it can be seen that the 

chem ical shifts of the reso lved  resonances in both PE and PC from the 

ci lla te  a r e  quite s im i la r  , suggesting a correspondingly  s im i la r  

equivalence of env ironm ent of these groups.  Y -lino lenate  has been 

a s sum ed  the principal unsa tu ra te  in these two phospholipids. Compared 

with values from egg yolk  PE, inconsistencies a re  a p p a ren t ,  reflecting  

perhaps  possib le d if fe ren ce s  in the degree of unsa tu ra tion  and chain 

length of the fatty acyl r e s id u e s  in these sy s tem s .  A lso  the values for  

the chem ica l  shifts of correspond ing  resonances from  E . coli PE differ  

from those of the f o r m e r  two by m ore  than the expe r im en ta l  e r r o r  

involved in the ir  m e a s u re m e n ts  and again a re  indicative of a l tera t ion  of 

these p r e c u r s o r s  in the c i l ia tes  as  to be expected.

13The %  C en r ic h m en t  in each resolved resonance  from the

phospholipids of T .  p y r ifo rm  is a r e  shown in Table 13, and a r e  com pared

with co rresponding  v a lu e s  obtained for the PE from E . co li in C hapter  3.

The sam e method of ra t io in g  the intensity of each reso lved  peak, to that

of the solvent peak (CDCI 3 ) and comparing these ra t io s  with those s im ila r ly
13

obtained for natura l  abundance spectrum has been em ployed. The %  C

en richm en t of T .p y r i f o r m is  PE is still fairly com parab le  with those

m e a su re d  for the E .c o l i  P .E .  in Chapter 3. They a r e  also  reasonably

close to the average  value obtained by the rad io -ac tiv i ty  labelling method

at the beginning of th is  exper im en t .  For  example , considering the

enr ichm ent in the ca rboxy la te  carbon alone, we have values of 50% and

65% in the ci lia te  and b ac te r ia  respectively ,  and a value of ~  70% from 
14the [ 1 - C] ace ta te  counts in the bacteria  ( T a b le  11). In co n tra s t ,  

the values a s  d e te rm in e d  for  the PC a r e  much le ss  than for the







Table 13: %  C enrichm ent a s  es t im ated  for  each carbon of

enriched  T .  Pyriform is lipids com pared  with PE in CY2

13

I

Resolved resonances
13

%  C enrichm ent

along acy l res id u e T .  pyriform is E .  coli

PE PC PE

K 50 23
65
60

|C3 44 16 47

!C 5> 7 ,1 3 24

C9 70

C11 28

j( x -1  ) C15 50 49 50

(x )  C16
*n . a .

★
n .a . 5

a 53 23

C=C b 52 25

c 50 33

d 20 19

e 24 16

f 22 16

*
n a tu ra l  abundance level of en r ichm en t ~  1 . 1 %

a see  text fo r  numbering sy s tem



co rresp o n d in g  ca se s  in th e ir  E .c o l i p r e c u r s o r  , a value of only ~  20% 

obtained for the carboxylate  of PC. C lea r ly ,  any m etabolic  alterat ion  

tha t the fatty acyl res id u e s  of the E . coli lipids have undergone in the 

c i l ia te  leading to the d e c re a s e  in levels of enrichm ent m u s t  have affected 

the r e s id u e s  of the choline phospholipid m o r e .

F u r th e r  examination of Table 13 shows that this t rend  is not

p e c u l ia r  to only the carboxylate  carbon but ap p e a rs  to affect all the

newly u rsa tu ra ted  ca rbons and generally  those carbons n e a r e r  the

carboxylate  end of the m olecu les .  The well resolved peak at 6  ~  23ppm,

due to the penultimate carbon appears  to reta in  its enr ichm ent rem arkably

well a s  shown by values of 50% and 49% respec tive ly  fo r  PE and PC from

the ci lia te  and as  com pared with the correspond ing  value of 50% from PE

of E .c o l i  . A com parison  of the re la tive  in tens it ies  of ce r ta in  regions

of the spectrum  helps to magnify this point. The region in question is
13

the 22 - 30 ppm region of the C n . m . r .  spectrum  (Figure 32) and 

the in tegrated  a r e a s  under the m ain  methylene envelope (J), and under 

the peaks between th is  envelope and the penultim ate carbon  (K), and 

a l so  the a re a  under the penultimate (oj-1) carbon itse lf  (L) a re  cons idered .  

The ra tio  J : K : L is found to be of the o r d e r  3:2:1, fo r  the PE o r  

even cardiolipin derived from E .c o l i  . F o r  the Tetrahym ena PE , a 

ra t io  of 3: 1 .8  : 1 was obtained and for the PC, a value of  3: 1 : 1 . T hese  

re la t ive  in tens it ies ,  in a situation where all the carbons in the skeleton 

a r e  equally en r iched ,  should give an indication of the num ber  of nuclei 

resonating under any one peak o r  group of peaks .  In a c a se  where the 

level of en richm ent v a r ie s  from carbon to carbon , the in tensit ies  a re  

a lso  an index of % enrichm ent in each region and can be compared from 

spec trum  to spectrum  if the resonances  have s im i la r  chem ical sh if ts .

Thus the d ec rease  in K re la t ive  to J and L can have one o r  m ore of the 

following or ig ins  :-
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(a) the num ber  of non-equivalent nuclei resonating under

K has d ec reased .  T h is  is unlikely; in fact as we shall

see la te r ,  m ore  peaks a r e  indeed resolved in this
13 13region and they a re  not due to C - C spli t t ings.

(b) de novo fatty acid syn thes is  has  led to a dilution of 

the labelled fatty acid with v -linolenate synthesized 

ab in it io . But such de novo effects  a re  bound to lead 

to a uniform reduction along the en t ire  chain length 

and not regional d e c r e a s e s .

(c) the chain elongation and chain desaturation  have so m e ­

how led to regional d e c r e a s e s  in enrichm ent of different 

p a r ts  of the acyl re s id u e .  Again, since no d irec t  carbon 

spin coupling was o b se rv e d ,  the mechanism by which

this can a r i s e  is p robably  only through a par t ia l  breakdown 

of the acyl chain acyl CoA units  during these metabolic 

a l te ra t io n s .

F igu re  35 is  a sketch of the two relevant unsaturated  fatty acids 

supe r im posed  on each o the r  in an a t tem pt to identify any resonances  that 

m ay expe r ience  induced shifts from the effects  of polym erisation  and chain 

elongation in V-linolenate. The chain at the top is that due to palmito leate
Q

[ c is  -9 ,  palmitoleic  acid; (16 : 1 A ) ] which has been shown to be the 

m a jo r  unsa tu ra te  in E .c o l i  and which is a lso  not likely to be involved in 

chain elongation in T .p y r i fo rm is  . And below is the skeleton of v -linolenate 

[ c i s - 6 , c i s - 9 ,  c is -12  O ctadecatrienoic acid (18:3, 9’ ] which is

the m a jo r  unsa tura te  in T .p y r i f o rm is  and w ill be derived from the



major saturated fatty acyl residue of E . coli which is palmitate (16 ) ]

In chloroform solution, the phospholipids a re  likely to ex is t  a s  

inverted  m ic e l les  of up to 60 - 70 m o lecu les  p e r  m ic e l le .  The chemical 

shifts assoc ia ted  with the carboxy la tes ,  the u r l  and the C3 in both 

res id u e s  would largely  be unaffected by chain length and m ay be expected 

to be the sam e ir re sp e c t iv e  of re la t ive  abundance of each fatty acid in 

the lipid. C learly  polyunsaturation in the Y-linolenate will re su l t  in m ore  

olefinic nuclei being resolved at the in te rm ed ia te  field region of ~120-130Hz 

due to the inc reas ing  s c h a r a c te r  of these  bonds. In y l in o l e n a te  the 

th ree  tt -bonds a r e  A°’ ^  t and this m e an s  that resonances  due to

enriched  carbons 5, 7 and 11, in palm ita te  now become ca rbons 7 9  and 

13 respectively  in y - l ino lenate  and they now become unsa tura ted  .which 

was not the case prev iously .  T hese  resonances  m arked  N in F igure 35U
will be lost from the acyl region to the olefinic region. How they will be 

resolved in this new region m ay depend on se v e ra l  f ac to rs ,  such a s  the 

degree  of po larizab ili ty  due to proxim ity  to a dipole a n d /o r  s te a r ic  

fac to rs  such a s  gauche-t rans isom er ism . Bearing in mind the "multip licity" 

of spec ies  of fatty ac ids  that m ay be p re se n t  in these phospholipids, no 

at tem pt has been m ade to accu ra te ly  a s s ig n  the olefin region. One must 

point out,  however, the resolution of at leas t  2 and at m ost  4 resonances 

in the olefinic region of the T .p y r i f o rm is  lipids . Also it m u s t  be 

rem em bered  that V  linolenate is the p r inc ipa l  unsa tu ra te  in th is  organism 

and that PC is likely to have m o r e  of th is  spec ies  in i ts  acyl res idues  

than PE. We a r e  now left with th ree  en r iched  s i te s  to be accounted for 

v iz -a -v iz  carbons 5' , 11 and 15 in y - ' in o len a te ,  which a r e  derived 

from carbons 3, 9 and 13 respectively  in pa lm ita te .

Now C5' in 7 -linolenate has not moved very  much fa r th e r  from 

the m o lecu la r  dipole at the carboxylate  end than C3 in pa lm ito lea te ,  so



that we expect not too d is s im i la r  contributions to its  shift from the

polarisa t ion  of i ts  bond induced by the e le c t r ic  field at this m o le cu la r

dipole. However, C5 is now d irec t ly  bound to an unsa tura ted  carbon 
• 13

at C6  . Magnetic anisotropy in C n . m . r .  is not expected to be

much m o re  than about the s  1  ppm equivalent in proton n . m . r .
. 13This shift i f  opera ting  will lead to a new resonance in the C n . m . r .

spectrum  of the phospholipid at about 25 + 1 = 26 ppm, and this

will s ti ll  be in the K domain-Similarly, C15 which a s  C13 in palm ito leate

resonated  a t  6  29 .5  ppm, may be shifted upfield by a combination of

severa l  f a c to rs .  F o r  a beginning, it is  ally lic  to the unsaturation a t

A ^  , resu lt ing  in a downfield shift of le ss  than 1 ppm again. But a

re v e rsa l  of this  shift might re su l t  from s te a r ic  upfield shifts  due to

the g r e a te r  tendency of y- linolenate to form gauche bonds than is  the

case  in pa lm ito lea te .  It has been suggested (Batchelor et a l . ,  1972)

that the re  ex is ts  a tendency tow ards a gauche bond g to a c i s -u n s a tu ra te .

Now if no o th e r  gauche bonds a r e  a s su m ed  to exis t  o the r  than by th is

p ro ce ss  in these sy s tem s ,  we see  that y - linolenate is  potentially

capable of forming 6  gauche bonds a s  aga inst  2  only in palm ito lea te .

C lea rly ,  the possib ili ty  of an upfield shift due to these s te a r ic  fac to rs

is  m o re  favourable for  0 5 '  than for  0 3 .  The only enriched  nucleus

sti l l  unaccounted for  is  the C l l  of the y-lino lenate .  This cen tre  is

derived from the C 9 of the pa lm ita te  and in palmitoleic acid is the
9

carboxylate-end  cen tre  of the only olefin, along the chain, A . It 

is obvious, th e re fo re ,  that the shift of th is  carbon will be considerab ly  

different in y - linolenate from what it w as in palm ito lea te .  T hese  

th ree  resonances  of sa tura ted  ca rbons that may experience shifts in 

the p ro c e s s  of chain lengthening and desaturation  a r e  each m arked  

Ns in F igure  35. It m ust be pointed out, however, that the assum ption 

that palm ito lea te  and y-l ino leate  a r e  the principal fatty acids in th is
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organ ism , as  reasonable  as  it a p p e a rs ,  is a v e ry  s im plis t ic  one, considering
13that sa tura ted  fatty acid  res idues  with equally high levels  of C abundance

exist in these lipids a lbe it  as  m in o r  components. For exam ple ,  although

V - linolenate is de r ived  from palm ita te ,  not all the palm ita te  is  exhausted

in this p ro ce ss  and PE in T .P y r i fo rm is  is known to have up to 13%, of  its fatty

acids a s  palmitic  ac id .  This will introduce fu r th e r  complications in the

observed spectrum  because  the C l l '  of the y - linolenate ,  fo r  exam ple ,  will

presum ably  resonate  a t  lower field than its C9 p rec u rso r  in pa lm ita te ,

due to the magnetic  an iso tropy  from adjacent olefins on e i th e r  side

(Figure 35). In E .c o l i ,  the p roblem  is not as  acute because pa lm ita te

alone m akes  up a lm os t  half  of the fatty ac ids  and the only u n sa tu ra te s

found a r e  monoenes. This  is  evident from the rela tively  s im p le r  spectra

obtained from the ex t rac ted  phospholipids of th is  o rg an ism . T hus ,  it

m ust be em phasized that the e x e rc is e  descr ibed  above was not one in

accura te ly  assigning chem ica l  sh if ts .  Rather, it r e p re se n ts  an a t tem pt to
13

rela te  the observed additional complexity of the C n . m . r .  spec trum  of 

the ciliate lipids, to poss ib le  m etabolic  a l te ra t ions  that the bac te r ia l  

lipids had undergone.

D. BIOLOGICAL IMPLICATIONS

These findings may have a possible biological relevance in te rm s  

of elucidating the m e ch a n ism s  of chain elongation and desa tu ra t ion .  F irs t ly ,  

the enrichm ent at the methyl te rm in a l  end ap p e a rs  to be rem arkab ly  well 

p rese rved  a s  con tra s ted  with that at  the carboxylate end. This  is  good 

evidence that the p r o c e s s  of chain elongation is  from the ca rboxylate  end 

of the molecule . C lea r ly ,  the fatty acid will have to be cleaved from 

the g lycerol e s t e r  linkage, before 2  carbon units can be added to its 

carboxylate end. P re sum ab ly ,  a hydrolytic enzyme cleaves the e s t e r  

linkage which is then followed by the enzym e-cata lyzed  addition of one
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ace ta te  unit. This is  then followed by re -e s te r i f ica t io n  of the res idue  

by an e s te r a s e  and finally the d esa tu ra te  in troduces the double bonds.

The last two steps m ay a l te rna te  f ree ly .  The in te re s t in g  point,  how ever,  

is  that these enzymes a r e  likely to be in teracting  with the re s t  of the 

chain during these p r o c e s s e s .  It is not unlikely, fo r  instance,  that 

the enzyme responsib le  for chain elongation b inds its  non -po la r  res idue  

to the re s t  of the acyl chain while it exposes its ac tive  site to the 

carboxylate end of the m olecu le .  In a s im i la r  way, the d esa tu ra se  may 

bind non-specifically  to the g lycero l  moiety while it exposes its  ac tive  

s ite  to the cen tre  to be d esa tu ra ted .  The in te rac t ions  of these enzym es ,  

and indeed o ther  m etabolic  enzym es,  with the acyl res idue  m ay lead 

to the reduction in enrichm ent of portions of the chain rela tive to o th e rs .

The observation  that the PE sti l l  re ta ins  i ts  enrichm ent level 

ra th e r  well com pared to the PC, m ay at f irs t  suggest that the PE from

E .c o l i  undergoes much less  pronounced a l te ra t ions  in being converted  

to Tetrahym ena PE than in going to PC. It is  not c l e a r  how this  can 

happen unless one postu la tes  that PC is synthesized at a much la te r  

s tage in the m etabol ism  of the lip ids .  In this  m a n n e r ,  the fatty a c id s  

from PC a re  probably synthesized from the rea ssem b ly  of a lm ost  o r  

totally broken down E .c o l i fatty ac id s ,  w hereas the PE is m ade from 

whole E .c o l i  fatty ac ids  with a s im ple single ace ta te  condensation s tep ,  

in sho r t ,  it may be the g r e a te r  participation of_ab initio synthesis  in 

the p ro ce ss  of chain elongation that resu lts  in m o re  reduced levels  of 

enrichm ent in the PC.
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CHAPTER 6

N .M .R .  STUDIES OF PROTEIN DENATURATION

A. INTRODUCTION

The ability of va r io u s  dénaturants to a l te r  the s t r u c tu re  of p ro te ins  

has been the subiect of broad investigation for some t im e now (Tanford, 1968; 

Lum ry  and Bittonen, 1969). A common feature of many g lobular  p ro te ins  

is the fact that, in th e i r  native conformation, i . e .  in the conformation in 

which they occur  in th e i r  natura l surroundings, m ost p o la r  re s id u e s  a re  

located on the su rface  of the molecule in contact with solvent (usually 

aqueous) while the in te r io r  is made up to a large extent of no n -p o 'a r  

amino acid  side cha ins (Kendrew, 1961; Philips, 1966). Quite  obviously, 

the folding of a long-chain polym er into a compact s t r u c tu re  will re su l t  

in a loss  of freedom of motion of the chain and hence a d e c r e a s e  of 

configurational en tropy .  F o r  a typical protein containing about 200 

amino ac id s ,  folding into the native form at physiological te m p e ra tu re s  

could r e su l t  in the loss  of up to 800 KJ mol * of p ro te in ,of  s t ru c tu re  

stab ilization  free  energy  (Tanford, 1962). C learly ,  th is  m ust  be overcom e 

by a t t ra c t iv e  fo rc es  of equal magnitude if the protein  in teg r i ty  is  to be 

p r e s e rv e d .  C urren t  reasoning appears  to be that the lo s s  in entropy 

involved in protein folding is  m ore  than made up for,  by the gain in 

en tropy  of w ate r  m o lecu les  in the surrounding environm ent.

The end product of dénaturation may vary  depending on the 

s t reng th  of the denatur ing  agent.  Dénaturants like urea o r  guanidine 

sa l ts  a r e  known to unfold the protein "configuration" to an  extent 

approaching the "random -fligh t"  conformation of synthetic p o ly m e rs .  On 

the o th e r  hand, m i ld e r  denaturing agents like acetone and var ious  alcohols 

unfold the p ro te in ,  but the a -he lica l  s truc tu re  is s ti ll  recogn isab le  

(Callaghan and M art in ,  1962; T im asheff  et a l . , 1966).



T he question of how these agents bring about th e ir  effect involves 

not only a considerat ion  of the ir  s t ru c tu re s  (they a re  usually  simple 

organic m o le cu le s )  but also an explanation of the nature  of th e ir  

in te ract ion  in aqueous solutions. In o the r  w ords ,  the s t ru c tu re  of w a te r  

i tse lf  and any s t ru c tu ra l  a l tera t ion  brought about by the solubilisation 

of these m o lecu les  will have to be considered .  But p e rh ap s  m ost 

im portan tly ,  an insight into the exact m echanism  of denaturation  will 

n e c e s sa r i ly  re f lec t  upon the exact nature  of the forces  involved in 

protein s tab il isa t ion  which is of such g rea t  biological im portance and 

yet very  poorly  understood.

Aqueous urea solutions a re  known to inhibit m ic e l la r  aggregation 

(Schick, 1964), solubilise hydrocarbons and affect the conformational 

p ro p e r t ie s  of a wide range of po lym ers ,  including protein  denaturation 

(McKenzie and Rolston , 1971). A lot of c i rcum stan tia l  evidence, from 

therm odynam ic data mostly  (Stokes, 1967) has implicated hydrophobic 

in te rac t ions  in these  sy s tem s .  Yet another set of evidence d em ons tra te s  

the req u irem en t  for  the presence  of free  hydrogen atom s on the nitrogen 

atoms of denaturing  agents (Gordon and Jencks, 1963, Robinson and 

Jencks, 1965), thus implicating the capacity to form hydrogen bonds as  

a requ irem en t  for  denaturation . F u r th e rm o re ,  alkyl g roup  substitution 

of urea in the methyl u rea s  is observed to dec rease  the solubility of 

simple pep tides  , providing conflicting evidence that the denaturation 

may not p roceed  via hydrophobic in te rac t io n s  a f te r  a l l .  Studies of 

protein chem ica l  shifts in w ater  in the p resence  and absence of non-polar  

solutes (Clifford and Pethica, 1964; F iner  et a l . ,  1972) , have produced 

ambiguous r e s u l t s .  On the o ther  hand, p roper  application of n . m . r .  

relaxation data may prove to be the technique of choice in these  sy s te m s .  

For  exam ple ,  m easu rem en t  of relaxation t im es  of w a te r  revealed 

in c re a s e s  of up to a factor of 2  in the p resence  of non-po lar  substances
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The question  of how these  agents bring about th e i r  effect involves 

not only a considera t ion  of th e i r  s t ru c tu re s  (they a re  usua lly  simple 

o rganic  m o le cu le s )  but a lso  an explanation of the natu re  of th e i r  

in te rac t ion  in aqueous so lu t ions.  In o the r  w ords ,  the s t ru c tu re  of w ater  

i tse lf  and any s t ru c tu ra l  a l te ra t io n  brought about by the solubilisation 

of these  m o lecu les  will have to be cons idered .  But p e rh a p s  m ost 

im portan tly ,  an insight into the exact m echanism  of denaturation  will 

n e c e s sa r i ly  re f lec t  upon the exact n a tu re  of the fo rces  involved in 

p ro te in  s tab il isa t ion  which is  of such g re a t  biological im portance  and 

yet very  poorly understood .

Aqueous u rea  solutions a r e  known to inhibit m ic e l l a r  aggregation 

(Schick, 1964), so lubilise  hydrocarbons  and affect the conformational 

p ro p e r t ie s  of a wide range of p o ly m e rs ,  including p ro te in  denaturation 

(McKenzie and Rolston , 1971). A lot of c i rc u m s ta n t ia l  evidence, from 

therm odynam ic data m ost ly  (Stokes, 1967) has  implicated  hydrophobic 

in te rac t ions  in these  s y s te m s .  Yet another  se t  of evidence dem onstra tes  

the requ irem en t  fo r  the p re se n c e  of f ree  hydrogen a tom s on the nitrogen 

a tom s of dena tu r ing  agents  (Gordon and Jencks, 1963; Robinson and 

Jencks,  1965), thus im plicating  the capacity to form hydrogen bonds as  

a requ irem en t for  dena tu ra tion .  F u r th e rm o re ,  alkyl group substitution 

of urea in the m ethy l u r e a s  is  obse rved  to d e c re a s e  the solubility of 

s im ple peptides , providing conflicting evidence that the denaturation 

may not p roceed  via hydrophobic in te ra c t io n s  a f te r  a l l .  Studies of 

p rotein  chem ica l  shifts in w a te r  in the p re se n ce  and absence  of non-polar 

so lu tes  (Clifford and Pethica,  1964; F iner  et a l . ,  1972) , have produced 

ambiguous r e s u l t s .  On the o th e r  hand, p ro p e r  application of n . m . r .  

relaxation data may prove to be the technique of choice in these  sy s tem s .  

F o r  exam ple ,  m e asu rem en t  of relaxation  t im e s  of w a te r  revealed 

in c re a s e s  of up to a fac to r  of 2  in the p re se n ce  of n on -po la r  substances
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a s  aga inst  the values in pure w a te r ,  indicating an in c re a se  in the o rder ing  

of w a te r  in these solutions (Danyluk and G ore ,  1964; Howarth , 1975).

13
We have applied the technique of C sp in - la t t ic e  relaxation  t im es  

to the study of the u rea -w ate r -b o v in e  se rum  albumin sy s tem .  Specifically, 

we have m e a su re d  relaxation t im es  for  u rea  solutions in the p re se n ce  and 

absence of the pro te in  over  the concentra tion  range of 2 - 10 M u re a .  We 

find (1 ) evidence co rro b o ra ted  by proton sa tu ra tion  e x p e r im e n ts ,  i . e .d o u b le  

i r rad ia t ion  techniques leading to n uc lea r  O verhause r  enhancem ents  (NOE), 

that urea d is ru p ts  the w ate r  s t ru c tu re  with possib le  en tropy  in c re a se  (ii) 

no evidence for s t rong  urea binding to s i te s  on the p ro te in  (iii)  weak u r e a -  

p ro te in  associa t ion  may exist and probably fac ili ta ted  by the rem ova l of 

adsorbed  oxygen on the protein  .

NUCLEAR OVERHAUSER ENHANCEMENTS

A 90 MHz proton n . m . r .  spectrum  of an 8 M u rea  solution in
o.

deuterium  oxide, pH 7 .0  and a t  25 C is  shown in F igu re  36 . The

exchange of p ro tons between u rea  and w a te r  is sufficiently slow to p e rm i t

the observa tion  of two separa te  peaks .  Acid o r  base  ca ta ly s is  of proton

exchange in aqueous urea has  been shown to be e x t re m e ly  effective

~  1 0 ^ m ol 1  sec * , leading to the rapid collapse of the two peaks into a

singlec(Void etal. , 1970). The exchange at neu tra l  pH, only about 1 .5  ± 0 .5

sec  ̂ , leads to the two reso lved  peaks at about 3 .673  KHz and 3.578KHz

corresponding  to the -N H j and HOD signals  re sp e c t iv e ly .  The separation

of a lm ost  100 Hz m ean s  that if  the decoupler  power is  appropria te ly
13

chosen, se lec tive ir rad ia t ion  of each peak is  p o ss ib le ,  while the C n . m . r .  

spectrum  is being observed .  The values of the s ig n a l- to -n o ise  enhancem ents 

as  obtained for the ir rad ia t ion  of (i) the urea pro tons only, (ii) the w a te r  

pro tons only, and (iii) al l  the pro tons in the sam ple by broad band 

modulation a re  repo r ted  in Table 19 . Values have been m e asu red  

for 2M and 8 M u re a ;  both rep resen t ing  the lower and h igher  urea 

concentra tion l im its  respectively  in t e r m s  of effec tiveness  in protein



TABLE 14
13

C SIGNAL -TO-NOISE RATIOS FOR THE SELECTIVE 
13 1

PROTON DECOUPLING [ C f H} ] OF AQUEOUS UREA 

SOLUTIONS. TEMPERATURE 30°C

r---------------------------------

Type of protons 

being ir ra d ia ted

8  M o la r  U rea 2 M olar Urea

S/N NOE S/N NOE

Not decoupled 6 .7 - 2 . 8 -

Broad-band

decoupled 15 .5 1-271 5 .0 0 . 9T|

H20  (3,578 KHz ) 15 .4 1 . 2 1 1 3 .7 0.711

Urea (3.673 KHz 10.7 0 . 8 T1 3 .0 0.5T)

M e a s u r e m e n t s  a r e  the m e a n s  of at leas t  th ree  separa te  determ inations.

? + 1  = m axim um  possib le  enhancement from a d irec tly  bound 
13

proton to C nucleus.





1
[ C { H } ] expe r im en ts  

with decoupling frequency.

1 3 : var ia t ion  of s igna l/no ise

Fig. 37a for 8 M Urea Solution 

Fig. 3/l)for 2\1 Urea Solution.

Decoupling frequency at (A) 3 .578 KH 2  (B) 3.673 KH2

and (C) fully modulated.
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déna tu ra tion .  Some of the s p e c t ra  used for the calculation a r e  shown in

F igure  37.

13
C. C SPIN-LATTICE RELAXATION STUDIES

Tj values have been de te rm ined  for (1 ) aqueous urea solutions and 

(ii) aqueous-u rea -bov ine  se ru m  albumin solutions, both at 30°C . Values 

for  1M concentra tion  in te rv a ls  o v e r  a urea concentration range  of 2 -10M 

a r e  p re se n ted  in Table 15. All values p resen ted  a re  for the case  of 

degassed  so lu tions.  M e asu rem en ts  of T x s for corresponding undegassed 

solutions have not been r ep o r ted  but a re  mentioned in the d isc u ss io n .  A 

fixed p ro te in  concentra tion  of 2 % (w/v) was used throughout the ex pe r im en t .  

The var ia t ion  of Tj with u rea  concentrr t ion  is  plotted in F igure  38a 

PRFT and correspond ing  log (A* - A t)v ^  t plots a r e  included in F igure 39

D. DISCUSSION 

13
The C T j values o b se rv e d  for the carbonyl grouping in u rea  a r e  

in the range of 30 - 40 s e c s . , Table 15.Estim ation of the ro ta t io n a l '  

co r re la t io n  t im e based on the Debye equation

tc = .74 VTl/3NoKT ( 11 )

w here  v is  the m o la r  volum e, 71 is  the viscosity  and No is  A vogadro 's  
-12num ber ,  give Tc ~  10 s .  F u r th e rm o re ,  t h e  lack of d i r e c t ly  bonded 

dipoles resu lt ing  on the whole in inefficent relaxation m e ch a n ism s ,  could 

account for  these  long T jS .

The resu lts  of the double resonance experim ents  and those  of the 
13

C T j values of degassed  aqueous solutions of u rea  a re  bes t  in te rp re ted  

in the light of the " s t ru c tu r in g "  affect of urea on w ate r  m o le cu le s .  The 

recognition that w a te r  is  an a s so c ia te d  compound da tes  back \  long tim e



4 0  -

T t
(secs)

30

20

0

U rea

F i g . 3 8 a C Tj a s  a function of Urea Concentra tion  

A  without protein •  plus a constant 2 %  (w/v)

protein



Table 15; C T, data for aqueous u rea  solu tions in the p re se n ce  and 

absence of bovine se rum  albumin at 2 0  m g s / m l .

1 3

. .  n L rea  cone No protein p resen t Prote in p resen t

Molarity
T , 3  sec ' 1 x 1 0 2 Tx sec ” 1 x 1 0 2  |

1 36 .4  ± 1.2 2.74 -

2 36.2  ± .5 2.76 38 .4  ± . 8 2 .60

3
35.0  ± . 8 2.85 31 .6  ± .4 3 .1 6

! 4 34 .0  ± 1 . 4 2.94 26 .2  ± 1 . 2 3 .8 2

5 32.7  ± . 6 3.06 26 .0  ± . 8 3 .8 5

6 31.8  ± .5 3 .14 25. 4 ± .7 3 .9 3

7 31 .4  ± .7 3 .18 25 .2  ± .9 3 .9 6

8 31.2  ± .3 3 .20 25.0  ± . 6 4 .00

9 32.5  ± . 8 3 .07 2 2 . 8  ±  1 . 0 4 .38

1 0 32.8  ± . 6 3 .05 2 0 . 2  ± . 8 4 .9 5

i



Plot of ra te  of relaxation a s  a function 
of urea in the p resence  O
absence ,  of p rotein .
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indeed. (Chadwell, 1927). It has gene ra lly  been accepted  that these  

in te rac t ions  involve hydrogen bonds in such a way tha t e a c h  water  

molecule is  d irec tly  bonded to four o ther  " s i s t e r "  w a te r  m olecu les .  

But w h erea s  the o lder  theories  tended to em phasize  the existence of 

"p o ly m ers"  in the w ater  s t ru c tu re ,  they failed  to account for  many of 

the observed  p ro p e r t ie s  and have consequently been superseded  in 

m ost  of the  recen t models by an em phasis  on the ex is tence  of spatial 

networks in the extended w ate r  s t ru c tu re .  T h is  change in viewpoint 

was in it iated  by Bernal and Fowler (1933) who proposed  a model 

based on a broken-down "ice s t ru c tu re "  (Barnes 1929) with most of 

the hydrogen bonding still in ex is tence,  but p e rm it t in g  the hydrogen 

bonds to b reak  down with inc reas ing  t e m p e r a tu re .  P erhaps  m ore 

inclination tow ards a la te r  modification of th is  theory  by F ranks  and 

F ranks  (1968) is  shown, espec ia lly  in the in te rp re ta t io n  of the 

solubility p ro p e r t ie s  of aqueous-hydrocarbon  m ix tu re s .  This new 

approach , often r e f e r re d  to a s  the " s ta t i s t ic a l  t r e a tm e n t"  r e p re se n ts  

w a te r  a s  a m ix tu re  of two species  v iz -a -v iz  the dense and the bulky 

species ; t h e  bulky species  being c h a rac te r ize d  by te trahed ra l ly  

bonded w a te r  m olecu les  attem pting to form long range associa ted  

s t ru c tu re s  and only prevented from so doing by the p re se n c e  of f reely  

tumbling, unassocia ted  m onom ers  : the d en se  spec ies .

It is  postu lated  that an equilibrium that can e s sen t ia l ly  be rep resen ted  

as

H 2 °bulky H O
2  dense

and K f / ( l - f ) ( 12 )

where K is  the equilibrium constant and f and 1 - f  a r e  the mole fractions 

of bulky and dense species  respectively ,  def ines  the " s tru c tu ra l  te m p era tu re
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of the liquid. In term ediate deg re es  of m o le cu la r  energy  and freedom 

m eaning  those m olecu les  with s  4 ^ 0 ,  H-bonds (Figure 40 ) may 

exis t  but will not effectively a l t e r  the t r e a tm e n t ,  and the effect of a 

foreign molecule e i th e r  a s  a " s t ru c tu r e - m a k e r "  o r  " s t ru c tu r e - b re a k e r"  

will be m e asu red  by the extent to which it ha s  shifted th is  eq u i l ib r iu m  

e i th e r  to the left o r  right respec tive ly .  As the te m p era tu re  in c re a s e s ,  

fo r  exam ple ,  m o re  and m o re  of the bulky sp ec ie s  would have to be 

converted  to the m onom er species  and vice v e r s a  ; te m p era tu re  being 

reg a rd e d  as  a " s tru c tu re  b r e a k e r ” of w a te r  th e re fo re .  Not only i s  the 

p ic to r ia l  concept of th is  model suitable for  th is  kind of qualitative 

in te rp re ta t ion ,  it fits quantitatively obse rva tions  on the solution 

p ro p e r t ie s  of non-ionic solutes in w a te r .  W alferen (1966) has defined 

a " s t ru c tu re  b re a k e r"  a s  operationally  a solute e i th e r  ionic, o r  

non-ion ic ,  for which the ra tio  (Raman spec troscop ic  te rm s ) ,  (1̂  / C  y f I j C ! )  

is  le s s  than unity The subsc r ip ts  j and 2  r e f e r  to pure  w ate r  and to 

solutions respec tive ly .  I r e f e r s  to the in teg ra ted  Raman intensity  of the 

hydrogen-bond s tre tch ing  band at 152 - 175 cm * and C re f e r s  to the 

s to ich iom etr ic  w a te r  m o la r i ty .  The ra t io  found fo r  u rea  under these  

conditions is  0 . 8  and that for suc rose  which is  considered  a " s t ru c tu re  

m a k e r ” is  1  - 6 .

We think that the re su l t s  from the s ignal enhancement s tud ies

back up the involvement of u re a -w a te r  as soc ia t ion  in these solu tions.
13

Consis tently ,  the s igna l- to -no ise  of the C n . m . r .  peak of the u rea  

carbonyl is  la rg e r  Wien the w a te r  peak alone is  i r rad ia ted  than in the 

undecoupled c a se .  Not only that,  the ac tua l enhancement is  2 .3 ,  the 

sam e a s  when the decoupling is broad band modulated and a s  con tra s ted  

with a value of only 1 .6  when the u rea  pro tons  a r e  i r ra d ia te d .  It is 

unlikely that any associa t ion  of the urea m o lecu les  with neighbouring 

w a te r  m olecu les  shor t  of d irec t  hydrogen bonding to the carbonyl of the 

u rea  will produce such an efficient d ipo lar  spin coupling: the e s t im a ted



Vapour
E

Unbonded m o le cu le s  ,

1 -H bond.
Molecules 2-H bond,
with

3-H bond

(Ground s ta te ) 4 " |ice?nd

F ig .  40 Schematic represen ta t ion  of energy
levels for H O m olecules  w ith  degrees  
of H-bonded s t ru c tu re s .

(Nemethy & Scheraga,  (1962) I .C hem .P hys .  3 6 ,  3382 )



m axim um  enhancement from a d irec tly  bound hydrogen on carbon is only 

about 3. The su rp ris ing ly  high solubility of u re a  (Ellerton and Dunlop,

1966) of up to 10 m o la r  at 25°C is  suggestive of some solute-solvent 

in te rac t io n .  Also the upfieid shift of the chem ica l  shift of the u rea  pro tons 

with inc reas ing  te m p era tu re  ( F in e r  et a l ,  1972) is  evidence of 

the  sever ing  of hydrogen bonds to the u rea  m olecu le  a s  te m pera tu re  

i n c r e a s e s .

The varia tion  of v iscos i ty  with u rea  concentra tion in aqueous 

u re a  solutions is  m o re  pronounced than the var ia t ion  of T j . A factor 

o f  1 .4  change in v iscosity  in going from 1- 8 M urea (Jager et a l . , 1965) 

co n t ra s te d  with observed  T i  change of a fac to r  of only 1 . 1  o v er  the 

sa m e  concentration range ind ica tes  perhaps  in c reased  motional freedom 

a s  the concentration is r a i s e d .  In fac t,  the relaxation  tim e is observed  

to in c re a se  suddenly in going from  8  m o la r  to 10 m o la r  solutions (Figure 38a) 

One possib le explanation for  th is  is  that the observed  relaxation time is  

ac tua l ly  contributed to by d if fe ren t  u rea  spec ies  in aqueous solution and 

tha t  it is  the shift in the s ta t i s t ic a l  d is tr ibution  of these spec ies  (which 

a r e  presum ably  in some so r t  o f  equilibrium with each o ther) ,  that 

d e te rm in e s  the T t observed .  It has  been suggested that the resolution 

of  two d ie lec tr ic  relaxations in 8 M urea  (Pottel and Adoph, 1972) im plies  

independently tumbling u rea  and w ate r  m o le cu le s .  Our re su l t s  he re  do 

not fit this model but instead indicate a coexistence of species  with 

d if fe ren t  co rre la t ion  tim es  fo r  the u rea  m olecu le  at leas t .  If, a s  the 

double i r rad ia t ion  expe r im en ts  suggest ,  hydrogen bonding between u rea  

and w a te r  m olecu les  is s ign ifican t ,  then it is  conceivable that the ’bound" 

u re a  entity may tumble as  a whole; in o ther  w o rd s ,  the tumbling rate  

of the bound spec ies  will be cons iderab ly  influenced by the rotational 

c o r re la t io n  time of the .w ater  "m onom er"  bound to it,  result ing  perhaps 

in two different co rre la t ion  t im e s  for  u rea .  The exchange of the urea
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m olecu le  between "s i te s"  , i . e .  bound and f ree  spec ie s ,  may be within

the relevant range of de term in ing  T i . P resum ably ,  a s  the urea

concentra tion is  ra ised ,  the ra t io  of free /bound  urea m o lecu les  in c re a se s  and

consequently , the contribution of the bound species  to the observed  T :

d im in ishes .  A com parison of the ra t ios  of the num ber  of w a te r  m olecu les

p e r  m olecule of urea shows a rapid d e c re a s e  in going from 1  - 1 0 M 
o

u rea  solutions a t  20 (c . f .  > 52 m olecu les  of w a te r  to 1 molecule

of u rea  a t  1 m o la r ,  as co n tra s te d  with < 3 m olecu les  of w a te r  to 

ev e ry  molecule of urea at 10 M olar u rea  solutions) indicating, perhaps ,  

that if the re  is  g o i n g  to rem a in  any "bulky" species  of the w ate r  

s t ru c tu re  a s  previously r e f e r r e d  to, then the equifibrium between 

hydrogen bonded u re a -w a te r  unions and free  urea m o lecu les  will 

be es tab l ished  long before the 10M urea  concentration is  reached . This 

is  so because for  reasons  of geom etry ,  u rea  cannot be accom modated 

in the te t rah ed ra l  spatial ne t -w ork  of the bulky w ate r  sp e c ie s .

Having postulated a s trong  partic ipa tion  of u rea  m olecu les  in 

the w ate r  s t r u c tu re ,  the question  rem a ins  a s  to how the new environm ent 

would affect p rotein  solubility and eventual dénaturation .  The dénaturation 

of bovine se rum  albumin by u rea  is pH dependent,  p roceeds  fas tes t  above 

the 6 M urea  concentration range and of cou rse  is  te m p e ra tu re  dependent 

a s  w ell .  At neu tra lity  and an u rea  concentra tion  of about 7M, the 

schem e for the dénaturation can be rep rese n ted  a s  :

w here  A 1  i s  the native m o n o m e r  conformation of the protein  and A* is 

an activated complex of A j , thought to be converted rapidly  to conformational!y 

a l te r e d  albumin AaC (McKenzie et a l . , 1963). The A ^  species  a re
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indis tinguishable e lec tro p h o re t ica l ly  from the native form but a r e  identifiable 

by means of o the r  physical techniques such as  optical rotation (Kauzmann 

and Simpson, 1953) and v iscosity  (Mackenzie et a l . ,  1963). The Sj and Aj 

s e r i e s  a r e  e lec tropho re t ica l ly  d is t inguishable  from the native fo rm .  S, 

has  ~  5 - 30% mobility  of A, and A2  has  m obil i t ie s  between S. and A j .

(Katz and D en is ,  1969). A fte r  long exposure ,  2  4 days ,  w a te r  and sa lt

insoluble com ponents 1,begin to a p p e a r .  The sign £ indicates the  formation 

a t  each s tage  of multiple spec ie s  depending on u rea  concentra tion; the 

so -c a l le d 'm ic ro -h e te ro g e n e i ty  "e lement.

The m ultip lic ity  of the p ro te in  species  p re se n t  in urea solutions 

m ake it a lm o s t  unreasonable to d i s m is s  outright any form of u re a  protein 

as so c ia t io n .  In fact the re laxa tion  tim e of the u rea  molecule in the p re se n ce  

of protein is  considerab ly  d e c re a s e d  over  al l  the concentration range  studied 

except fo r  the very  low urea  concentra tion  at s  2M. This d e c r e a s e  may 

just be pu re ly  due to the co rrespond ing  in c re ase  in viscosity  with the 

p re se n ce  of p rote in ; at neu tra l  pH, the rela tive v iscosity  of u re a  solution 

in the p re se n c e  01) and absence (T]o) protein is  found to be 1 . 8  and 1. 4 

for  2M and 7M urea  re sp e c t iv e ly ,  at a fixed protein concentra tion  of 

20 m g s /m l .  The re la t ive  change in T s for these solutions is  of the o r d e r  

of £ 1 .3 up to an u rea  concentra tion  of 9M and only r i s e s  to 1 . 6  a t  10M 

urea  (Figure 38a ). C lea r ly ,  these  changes a r e  within the range of the 

in c re ase  in solution v iscosity  and hence may not re p re se n t  any s trong  

binding of the u rea  to the p ro te in .  On the o the r  hand, the very  long 

relaxation  t im e  at low u rea  concentra tion  ( <  4M ) in the p re se n c e  of 

p rotein  (see F igure 38a ) is  ev idence tha t,  a t leas t  at these concen tra t ions  

w here  the dena tu ran t  is  cons idered  least effective, the u rea  m o le cu le s  a re  

s t i l l  tumbling re la tive ly  f reely  a s  if th e re  was no protein p r e s e n t .  T hese  

long Tj va lues  a re  a lso  probably evidence that it is  the v iscosity  in c re ase  

assoc ia ted  with the unfblded c o n fo rm e rs  of the protein : a fac to r  of 5 

in c re ase  in in tr in s ic  v iscosity  fo r  the protein solution in going from

'  » « i ♦ .
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native to denatured  con fo rm ers  at neu tra l  pH (Mackenzie et a l ,  1963), 

which is  respons ib le  for the drop in T ,  s at h igher  u rea  concen tra t ions .

An in te res t ing  o b se rv a t io n ,  however, is  that the relaxation  ra te s  (see 

F igure  38b ), d ep ic t  the u rea  molecule a s  being in a medium of identical 

"fluidity" over  the concentra tion range of 4 - 8  M urea  in the p re se n c e  

of p ro te in .  This i s  c lea rly  not the case  in the absence of protein w here  

a steady in c re ase  in the ra te  of relaxation  i s  observed  in ra is ing  the 

concentra tion. T h i s  identifies the protein  a s  being solely responsib le  

for th is  ob se rv a t io n .  If we a r e  going to in te rp re t  the changes a s  being 

purely  an in c re a se  of v iscosity  brought about by the unfolding of denatured  

p ro te in ,  then it i s  quite  likely that the p la teau in th is  concentra tion  range 

indicates the p r e s e n c e  of con fo rm ers  at the same stage of denaturation  in 

the leas t  (see equation  13 ) o r  at w o rs t  con fo rm ers  with identical

v isc o s i t ie s .  It s e e m s  that ra is ing  the u rea  concentra tion above 8 M produces 

a new species with  radically  d ifferent v iscos i t ie s  .

In su m m ary  then, it se em s that the resu l ts  point towards a fa ir ly  

s trong  par t ic ipa tion  of u rea  in the w a te r  s t r u c tu re .  This part ic ipa tion  is 

a lm o s t  certain ly  v ia  hydrogen bonding between the w ate r  m o lecu les  and 

incoming urea m o le c u le s .  If the equilib r ium  w a te r  s truc  e involving 

te trah ed ra l ly  hydrogen  bonded w ate r  m o lecu les  and free  I, tumbling 

m onom ers  is  a c ce p te d  a s  n e a r  enough to the true  p ic tu re ,  then conceptually 

an u rea  molecule can form a hydrogen bond with a t  least one m o le cu le .

If th is  new as so c ia t io n  considerably  a l t e r s  the p ro p e r t ie s  of the newly 

assoc ia t ing  w a te r  m olecu le ,  m o re  m o n o m e rs  will have to be r e le a se d  

from the bulky s p e c ie s  of the w a te r ,  re su lt ing  in a shift to the r igh t  of 

the equilib r ium . The re su l t ,  an in c re ase  in the " s tru c tu ra l  te m p e ra tu re "  

of the w ater  , could conceivably be sufficient to offset the a lm ost 800 Kjmole 

s t ru c tu ra l  s tab il izat ion  energy  assoc ia ted  with protein  folding. Our
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re su l t s  provide no evidence of s trong "l igand-type" asso c ia t io n s  between the 

u rea  and incoming p ro te in .  Weaker as soc ia t ions  cannot be s im i la r ly  ruled 

out . Indeed, even if s t ro n g  associa tion  between only a few eas ily  sa tu rab le  

s i te s  on the protein and v e r y  few urea m olecu les  ex is t ,  it is poss ib le  we 

m ay have m is se d  it given the ex t rem ely  high urea concentra tion range we 

a r e  opera ting  a t .  However, there a p p e a r s  to be evidence that different 

u rea  s treng ths  lead to d if fe ren t  con fo rm ers  of the denatured spec ie s .

F inally ,  mention i s  due of the correspond ing  T j  data obtained from 

undegassed solutions. They have not been included h e re  because we think 

that they a r e  ambiguous. Although the u rea  solutions behave fa ir ly  accord ing  

to p red ic tion ,  the p re se n ce  of protein in these solutions seem s to resu lt  in 

relaxation  t im es  h igher than to be expected .  We think that d ifferentia l 

so lub ilit ies  of m o lecu lar  oxygen in these  solutions m ight account for  some 

of these d isc re p an c ie s .



CONCLUDING REMARKS

It was found m ost convenient to p resen t this th e s is  in i ts  p resen t 

fo rm ,  i . e .  on the bas is  of one chapter  containing the r e s u l t s  of a s im i la r  

s e r i e s  of ex p e r im en ts .  It m ust  not be as sum ed ,  how ever,  that a 

connection does not ex is t  from experim ent to exper im en t .

13
The r e su l t s  of C enrichm ent of lipids d esc r ib ed  in Chapter 3,

fo r  exam ple ,  m ade  it feasible to study these sys tem s  by relaxation techniques

a s  d esc r ib ed  in C hapter  4. Also the enrichm ent of PC a s  descr ibed  in
13

C hap te r  5 shows that the application of C T, to a v e ry  important

phospholipid of "h igher” o rgan ism s  is  now a re la tive ly  s im p le  m a t te r .
. 13B esides ,  by app rop r ia te  choice of labelling agents ,  e . g .  the use of [2 -  c j  

a c e ta te ,  o ther  ca rbons  which have been impossible to study in these sy s tem s  

m a y  be reso lved . The protein denaturation studies d esc r ib ed  in Chapter 6  

a r e  (inasmuch a s  p ro te ins  a re  an in tegral p a r t  of in vivo m em b ran es  ) 

r e la ted  to the r e s t  of the work a s  well.

Finally, mention is due of another  aspec t of the n . m . r .  of m e m b ran es  

which we have a t tem p ted ,  without su c c e ss ,  to inves tiga te .  This is the 

des ign of an n . m . r .  lipophilic probe that can be introduced into the b ilayer  

without apprec iab le  perturbat ion  of the native s ta te  of the m e m b ra n e s .  An 

ideal m em brane  system  to use is the ery th rocy te  "ghost" p repara tion  which 

is  easy  to come by and can be p repared  fairly  ea s i ly .  Ideal also as  the probe 

a r e  sm a ll  o rganic  m olecu les  with a fa ir  amount of equivalent protons that 

will give a readily  detectable n . m . r .  signal in the concentra tion  range of 

in te re s t .  We have tr ied  simple hydrocarbons such a s  Hexamethyl ethane 

(CqH ig  )» diphenyl (C j 2  ^ 1 0  )» hexa methyl benzene, (C 1 2 H i 8  ) e t c . ,  

which, because of the ir  sm a llness  and reasonably s im ple s t ru c tu re s  , would 

hopefully not p e r tu rb  the b ilayer  significantly. It a p p e a r s  that ra th e r  

h a r sh  methods that lead to m em brane  d isorganisation  a r e  required  to 

t r a n s f e r  these p robes  a c r o s s  the "m em b ran e -w a te r"  in te r fa ce .
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GLOSSARY OF TERMS AND ABBREVIATIONS

à Chem ical shift in parts  per  m illion .

FID F re e  induction decay.

FT F o u r ie r  t r a n s fo rm .

NMR N uclear  magnetic resonance .

NOE N uclear  O verhauser  effect.

T t Spin-latt ice relaxation  t im e .

t 2 Spin-spin relaxation  t im e.

PRFT Partia lly  re laxed  F o u r ie r  t r a n s fo rm .

S/N Signal- to -noise  ratio  .

BSA Bovine serum  albumin.

CL Cardiolipin.

DML Synthetic d im yris toy l lecithin.

DPL Synthetic dipalm itoyl lecithin.

PC Phosphatidyl choline.

PE

PE* o r  PE[ 1-

Phosphatidyl ethanolamine.
13_,- C] ace ta te  ^

PE derived from biosynthetic C enr ichm ent with 
13[ 1 -  C] ac e ta te .

PE/DPL PE-DPL m ix tu re s .

PE/PS PE-PS m ix tu re s .

PL Phospholipid.

PEPF Phospholipid exchange protein fac to r .

PS Phosphatidyl se r ine .

All o th e r  symbols and abbrev ia tions used a r e  explained in the text

• • » t j  . « «
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