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ABSTRACT

This thesis is about a theoretical study of the properties of 
photoexcited holes in p-type Ge samples at low temperatures. The 
emphasis is on those carriers which are in non-equilibrium with 
the lattice. The energy distribution function for these carriers 
are obtained by a numerical solution of a rate equation which in­
volves excitation, recombination and lattice scattering. Two models 
of a semiconductor are considered. The complicated band structure of 
p-type Ge is first approximated by a parabolic heavy hole band; later 
developments make necessary the inclusion of a parabolic light hole band.

Two types of photoexcitation are analysed. In the first, carriers 
are generated by a narrow spectrum of photoexcitation and the distri­
bution function is studied as function of the initial excitation 
energy, the spectrum bandwidth and the density of the compensating 
impurities. For a very narrow excitation spectrum, the distribution 
of carriers exhibits a series of equally spaced peaks at carrier 
wavevectors equal to and below the photoexcitation wavevector. At 
compensation densities greater than or about equal to 10^ cm_3 and 
photoexcitation energies about 30 meV the distribution function re­
sembles a Maxwellian function with carriers temperature much greater 
than that of the lattice.

The second excitation spectrum involves room temperature black- 
body radiation. In the one band model, the distribution function is, 
for Cu-doped Ge with compensation densities less than or equal to 
1013 cm“3) nearly a Maxwellian function with the carrier temperature 
obtained from an energy balance equation. Good agreement with 
experimental mobility data is found for the same compensation densities. 
For higher compensation densities a parabolic light hole band is 
then included in the model of semiconductor and the experimental 
photohall mobility data for Cu-and Ga-doped Ge samples are used to 
deduce a value for the deformation potential a. This parameter 
is found to depend on both the compensation density and lattice 
temperature.

It is also reported additional calculations which suggest ways 
to improve the theoretical model.
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CHAPTER 1

INTRODUCTION
It is only recently that a comprehensive information about 

low-temperature-transport properties of photoexcited holes in 
p-type Ge has become available. These properties are in general 
very sensitive to the form of the carrier energy distribution.
This thesis presents a theoretical study of the non-equilibrium 
photohole distribution functions and their consequences as 
regards hole properties. The objectives is to relate measurements 
of phototransport and trapping parameters to the knowledge of the 
interaction of holes with phonons and the recombination processes 
at low temperatures. Particular emphasis is placed on hot carrier 
phenomena, that is, carriers with average energy much greater than 
that of equilibrium.

A complete knowledge of the distribution of carriers is 
essential in order to understand many of the transport and trapping 
properties of semi-conductors. It is well known that for carriers 
in thermal equilibrium with the lattice, the Fermi-Dirac distribution 
is applicable to the case of degenerate systems. This function 
reduces to the Maxwell-Boltzmann function for non-degenerate 
systems. However the initially excited carriers may be unable to 
dissipate the energy excess received from the external source 
during their lifetime and departure from thermal equilibrium may 
occur.

At low temperatures, the mobility of free carriers is strongly 
influenced by the presence of ionised impurities. The degree of 
this influence decreases as the carrier energy increases. Con­
sequently carrier mobilities will reflect changes in the energy
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distribution function. Furthermore, the carrier lifetime is 
governed by capture of free carriers at impurity centres. Their 
capture probability is a function of the average carrier energy. 
The energy of a hot distribution has no direct dependence on the 
lattice temperature. Therefore the carrier lifetime will not 
show a strong temperature dependence as in thermal cases. The 
carrier lifetime can be systematically varied by changing the 
recombination density enabling one to pass from a thermal to a 
hot distribution function.

Experiments by Norton and Levinstein [1] suggest that hot
holes occur in Cu-doped Germanium at low temperatures and for

13 -3compensating donor concentrations (N ) greater than 10 cm
13 -3Samples with compensating densities around 10 cm involve a

carrier lifetime of the same order as the energy relaxation time
t and warm carriers are observed [11. Holes were photoexcited ac
by room temperature blackbody radiation and so have initial 
energies much greater than the thermal energy (k„T). Using the 
same radiation and similar type of experiments, Bannaya et.al. [2] 
arrived also at the conclusion that in Ga-doped Ge hot holes occur 
for a 10^ cm .

Further experimental evidence in support of hot photoexcited 
holes in Cu-doped Ge has been obtained by studying the Oscillatory 
Photoconductivity. This is produced by monochromatic light of 
wavelength X and photon energy greater than the ionization energy 
of copper centres i.e. c ^ 2 42.86 meV. The ionised hole will be 
ejected with an initial energy (eph~42.86) eV. If this energy is
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greater than the optical phonon threshold energy (£ = 0.037 eV),
-12an optical phonon will be emitted in about 10 second. This

process will continue until the hole energy becomes less than
e . This phenomena has been illustrated by Stoker et.al. [3] op
for n-type materials. The carrier energy exhibits a repetition
ramp form as a function of the photon energy [1]. In the case

14 -3of high compensation densities (N^ >10 cm ) hole lifetimes 
are very short, typically about 10~^ sec at 10°K. Therefore 
carriers have no time to come into equilibrium with the lattice. 
The photoconductivity, under this condition, will show a behaviour 
characteristic of the product of mobility, lifetime and photo­
conization cross section. Assuming that the photoconization is 
constant for photons with > 42.86 e.V one may write the 
photoconductivity as

o(e)= e y(e ) x(e) = e tq y(e) cn

where p(e) t(e) is the product of mobility and carrier lifetime
as a function of the carrier energy and n is approximately i for
Cu-doped Ge. Since e is a repetitive ramp, the photoconductivity
will exhibit the same dependence with increasing photon energy.
Besfamil'naya et.al [4] measured this effect in Cu,Au,Zu and
Cd doped Ge. They demonstrated that the oscillations become more
pronounced as the compensation is increased, and this response was
not due to oscillations in the absorption coefficient. No attemps
were made to separate the contribution to oscillations from carrier
lifetime and mobility. This latter effect was separated by
Godik [5] in Cu-doped Ge samples. Oscillatory mobilities were

13found for compensation Np a 10 cm.
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This work has direct relevance to experimental measurements 
by Norton and Levinstein [1], Bannaya et.al [2] and Godik [5], 
Calculations are aimed at obtaining the energy distribution function 
which consequently will be used in a discussion oi some of the 
carriers properties which are of interest in explaining transport 
data.

The first theoretical investigation of hot photoexcited 
carriers was made by Mattis [6]. He discussed the problem of 
calculating the photoexcited carrier distribution function within 
the framework of a variational principle. The theory was based 
on a simple model involving accoustic deformation scattering of 
non-degenerate carriers in the band in the presence of cascade 
capture into shallow impurities. Although the distribution was 
not derived, Mattis showed that significant departures from the 
Maxwel1-Boltzmann distribution are possible at very low temperatures. 
These effects were associated with a rapid decreasing of carrier 
lifetime with lattice temperature. Hearn [7,8] considered the 
criteria for the applicability of an effective temperature to 
describe the steady-state distribution function. Carriers were 
photoexcited into one of the bands of a simple semi-conductor by 
a monochromatic source. Inter-carrier collisions were important 
but non-degeneracy was assumed. Departures from a Maxwellian 
form depends essentially on the carrier lifetime. On the 
other hand, Ladyzhinskii [9] studied the form of a "hot" distribution 
function in connection with the theory of photoconductivity. This 
study assumes monochromatic radiation, momentum and energy relaxation 
by acoustic deformation scattering within one band of a semi­
conductor. The calculated distribution function gives different

/
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results for average lifetime and photoconductivity as compared
with the case of the Boltzmann function. Finally, another work
of interest is that of Barker and Hearn [10]. This work investigates
the properties of photoexcited electrons into one of the bands
of a semi-conductor. Detailed numerical calculations are made
of the carrier distribution function in Ge and Si at low temperatures.
Excitation by room temperature blackbody radiation and cascade

capture into shallow impurities have been assumed. Calculations
used acoustic deformation and non-polar optical scattering. The
theory shows that carrier heating occur below 30°K and impurity

15 -3densities of the order of 10 ' cm . Good agreement with early 
photo Hall mobility data for one Cu-doped Ge sample [11] is 
obtained.

This report deals with the transport properties of photo- 
excited holes for two models of a semiconductor. The complicated 
band structure of p-type Ge is first approximated by a parabolic 
heavy hole band; later developments make necessary the inclusion 
of a parabolic light hole band. The distribution function is 
derived from a rate equation involving photoexcitation, re­
combination into either deep or shallow impurities and lattice 
scattering. Holes are photoexcited either by room temperature 
radiation or by a narrow band of photoexcitation. Acoustic 
deformation scattering and instantaneous optical phonon emission 
account for the lattice scattering. The isotropic distribution 
function occurring in the absence of an electric field is determined 
numerically and the low field mobility and carrier lifetime are 
then obtained as suitable averages over the zero-field distribution
function.
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In Chapter II the physics of photoexcited carriers in p-type 
Germanium samples at low temperatures is investigated. Holes are 
excited by a narrow spectrum of photoexcitation. Special interest 
is paid to the variation of the form of the energy distribution 
function when the excitation linewidth, photoexcitation energy 
and the energy dependence of the recombination lifetime are 
changed. The mobility is then calculated for a Cu-doped Ge 
sample at two lattice temperatures and various excitation energies. 
Results are compared with photohall mobility data of Godik [5],

In Chapter III the properties of photoexcited carriers in the 
heavy hole band of Cu-doped Germanium samples at low temperatures 
are studied. Holes are now photoexcited by room temperature 
blackbody radiation. The energy distribution function is compared 
with a Maxwellian function, with the carrier temperature evaluated 
from an energy balance equation. The mobility and carrier lifetime 
are then averaged over both kinds of distribution functions.
Results are finally compared with the photohall data of Norton 
and Levinstein [1].

Chapter IV begins with a brief review of the experimental 
status of the three deformation potentials for the lattice scattering 
in the valence band of Ge. It is noted that, the deformation 
potential conventionally denoted by £ is very uncertain in value. 
Photoexcitation gives a wide class of carrier distribution functions 
and this opens up the possibility of obtaining a value for the 
deformation parameter a by fitting the calculated hot hole 
mobilities to those measured by Norton and Levinstein [l1 and

f
I



Bannaya et.al [2]. This course of investigation is pursued 
throughout the rest of the chapter, and leads to results which 
cannot bo derived from equilibrium transport measurements.

Chapter V discusses some of the problems raised by this work, 
and presents additional results which partially explain those 
difficulties. These new results suggest areas for future research 
at both theoretical and experimental levels.

The Appendices contain mathematical information about the 
scattering processes used in the; calculations.
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CHAPTER II

THE ENERGY DISTRIBUTION OF PHOTOEXCIT1.D HOLES IN P-TYPE 
GERMANIUM LASER:ILLUMINATION

2.1. INTRODUCTION
In this chapter we investigate the physics of photoexcited 

holes in the valence band of a simple model of semi-conductor. 
Details of the theoretical model are given in Section 2.2. The 
distribution of holes generated by a narrow spectrum of photo­
excitation is derived from a rate equation involving photoexcitation, 
recombination and lattice scattering. The isotropic distribution 
function occurring in the absence of an electric field is determined 
numerically. Thus the carriers properties are obtained as suitable 
averages over the zero-field distribution function. The method of 
calculation is presented in Section 2.3.

In thermodynamic equilibrium the distribution function is 
mainly determined by acoustic and optical phonon scattering. To 
produce changes in the distribution function one requires an 
external stimulus strong enough to transfer energy and momentum 
to the carriers at rates which compare significantly with rates 
of any other scattering process present. This effect is significant 
when the capture rate by an impurity matches or exceeds the 
scattering rates. The distribution function may then deviate 
sharply from a thermal Maxwell-Boltzmann function. This situation 
can occur in Germanium at low temperatures. Ridley and Harris [12] 
have suggested that the form of the distribution function may depend 
crucially on the excitation bandwidth ( •ft Aw). Section 2.4 
presents the salient features of the distribution function for 
various values of the bandwidth. The distribution function exhibits
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a series of equally spaced peaks at carrier wave-vectors equal 
and below the photoexcitation wave-vector (K at very narrow 
excitation spectrum. The wave-vector AK between peaks corresponds 
to the minimum momentum that a carrier should have in order to 
emit an acoustic phonon. On increasing the bandwidth the peaks 
disappear.

The form of the distribution function depends strongly on 
carrier lifetime, although no important changes are seen when the 
energy dependence of the carrier lifetime is varied. The carrier 
lifetime can become comparable with the energy relaxation time 
( t (k](T)) in Ge at low temperatures. Under these conditions one 
can expect that the photocarrier behaviour will depend on the 
radiation energy c Godik [5] has reported one experiment of
this type in Cu-doped Ge at low temperatures. Calculations of 
the low field Hall mobilities involve the average of the total 
momentum relaxation time over the zero-field distribution function 
(Section 2.5). The form of the distribution function is given in 
Section 2.6 for various excitation energies e  ̂and carrier life­
times. The form of the distribution function resembles a 
Maxwellian function as the excitation energy comes close to the 
optical phonon threshold energy (e = 0.037 m.e.V).

It is noted that the deformation potential, of the one- 
deformation parameter theory, changes in value when one attempts 
to fit the calculated mobilities to the experimental data [5], 
at two lattice temperatures.
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2.2. THE THEORETICAL MODEL
The complicated valence band structure o£ Ge is approximated 

by a parabolic heavy hole band so that the carrier energy dispersion 
relation is

2 m2

where is identified with the heavy-hole effective mass (.33 m^, 
mg is the mass of a free electron), J? is the hole wave-vector.
A steady state rate equation is set up to investigate the energy 
distribution of holes in that band. This equation expresses the 
balance at which carriers enter and leave a state ) i. Carriers are 
photogenerated from acceptor levels by a narrow spectrum of 
photoexcitation. We assume that this radiation gives rise to a 
spatially uniform rate of excitation of carriers into the band. 
Transport effects can then be ignored. The only effect of the 
radiation is considered to be that of generation of carriers. In 
particular free-carrier absorption within the band is neglected.
Also transition processes within the solid is supposed not to be 
affected by the radiation. Under these conditions the effective 
bandwidth of carriers arriving at the band is essentially determined 
by the radiation linewidth. At low temperatures broadening of the 
optical transition lifetime will broaden the bandwidth. We will 
leave the bandwidth as parameter.

Since the optical excitation is isotropic in Ji-space, we 
assume that the distribution function 1'0(]̂ ) in the absence of 
external electric field depends only on energy. Only inelastic 
scattering processes are effective in determining fo(Jj). The 
linear response region is considered only. This corresponds to
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a low carrier concentration so that effects of degeneracy, inter­
carrier scattering and non-equilibrium of phonons can be ignored. 
The steady rate equation describing photoexcitation of carriers 
into a single band obeys a linear integral equation:

' * o W 3f
3 t

+ o ^ + o ^
ph 31 rec 31

= 0
lattice

2 . 2 . 1 .

this equation (2.2.1) includes photoexcitation (ph), recombination 
into impurity centres (rec) and lattice scattering. Conservation 
of the total number of carriers given by

Z
k

3fo ^
3t lattice

0

leads to a useful sum rule

Z
k

3fo(S>
3t ph

Z
k

3fo^>
3t rec 2 .2 .2 .

which may be used as a boundary condition.
In a steady state situation the total rate of photoexcitation

W , equals the total rate of recombination W _, that is,ph 1 rec
W , = W = W. The shape distribution function becomes independentph rec ^
of the total excitation rate W; and can be conveniently rewritten 
in terms of a reduced distribution function ij>(K), normalised 
to unit rate of photoexcitation Vi [10].

4>(K) = 4irp a 3 f (K) W 1

2 2 2 where K = a k
e ( k )%
kBT

f,2 k2
2m2kBT

the density of states in k-space and

2.2.3.

with p and T being 

lattice temperature respectively.
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z
k
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2 2 2 where K = a k * 2 k2
kB1 2m^kgT with p and T being

the density of states in Jj-space and lattice temperature respectively,
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The rate equation becomes 

♦ (K) K
“ph(K> -

t (K) ree
K j ( d) )lattice 2.2.4

where the reduced rate of photoexcitation is given by

uph(K) = 4np a-3 W 1 K
3f (K) o
3 t ph

Equation 2.2.2 leads the distribution function to satisfy 
the normalization condition

dK
o T

K ( K ) 
(K)

= 1 2.2.5

(The factor 2 arises from a summation over spin states) and
w , (K) becomes also normalised ph

/ " _ 2to ,(K) dK = 1 2.2.6
Jo P

j(<f>) is the total intraband scattering rate out of state K. This 
scattering rate is based on acoustic deformation scattering and 
instantaneous optical phonon emission. The acoustic deformation 
scattering uses, in the one band model, the one-parameter 
deformation theory. The detailed form of J for acoustic 
scattering is discussed in detail in the literature (in particular 
by Conwell [13] and Barker [14]). For completeness the form 
of J is given in Appendix 1. As far as acoustic scattering is 
concerned the numerical calculations involve no approximation 
in J .

The instantaneous-optical-phonon-emission assumption can be 
expressed in the following way: carriers with energy in excess of
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the optical phonon emission threshold (0.037 e.V) will lose this
excess energy by instantaneous emission of one or more optical
phonons. This hypothesis seems to be valid because the optical
phonon emission process occurs in a time which is much faster
than the carrier lifetime and the acoustic relaxation time.

-12Optical phonon emission takes place in about 10 sec [1], so 
that after a very short time carriers will all have energies 
below 37 m.e.V. This automatically reduces the range of integration 
in J to a maximum energy 37 m.e.V. and the distribution of carriers 
with energies greater than 0.037 e.V is ignored.

Holes are excited from neutral acceptors in a partially 
compensated p-type semiconductor. At low temperatures the neutral 
acceptor concentration N° is given by

n a - n a - nd
where is the density of acceptors and is the total donor 
density (considered fully ionised). The rate of generation of 
carriers by a flux of photons incident on neutral acceptors depends 
on N^, the photoionization cross-section and the intensity of 
radiation. The photoionization cross-section is supposed to be 
constant for all photons with energy greater than the activation 
energy. Thus the form of the excitation rate is mainly determined 
by the external source. Fortunately calculations have shown that 
the distribution function <f> (K) is not critically dependent on the 
exact form of the radiation spectrum. We then choose for 
convenience an excitation rate of the form

“ph(K) = Co K e

2 2 2 
- V  ( K  - f t  )o ' 2.2.7.
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where the parameter v defines the bandwidth of the excitation 
2 2and Kq corresponds to the value of K at which the excitation is

maximum. C is the normalization constant, o
The normalized rate of recombination is characterised by a 

recombination lifetime Trec(^) which varies with carrier energy 
as follows:

x (K) = t Kn = [<v>oN„]-1 Kn 2.2.8.rec o D

recombination to shallow acceptors is assumed to take place via 
a cascade mechanism of the Lax-type [15] and n=3 is consequently 
adopted. Measurements of carrier concentration with applied 
electric field in p-type Germanium doped with deep impurities [16] 
are consistent with n=l which will be used when dealing with Cu 
impurities. <v> is the average thermal velocity and o is the 
capture cross-section. This latter quantity has been measured 
for low compensated samples at low temperature. Norton and 
Levinstein [17] have reported such measurements in Cu-doped Ge 
and Stannard [17] for shallow acceptors. We assume that their 
data are also valid for higher compensation densities. Finally, 
recombination into neutral acceptors is neglected because the 
cross section associated with this process is very much smaller 
than a into ionised impurities and is nearly of the same order 
of Nu.

2.3. Method of Calculation
The rate equation 2.2.4 is an integral equation for the 

distribution function 4> and is solved following an iterative 
technique due to Hearn [8]. To apply this technique it is better
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to rewrite first the rate equation in a more convenient form.
Note that KJ(4>) represents the balance between scattering in and 
out of the state K, and can be written as follows:

K J(<|>) = Z(K) <(> (K) - Y(<(>(K)) 2.3.1

the distribution function is then formally given by

<t> (K) =
w , (K) ___

K
r (K)
rec

+

+

Y(4>(K))

Z(K)
2 . 3.2

An assumption implicit in the iterative technique is that if 
4>n(K) is an approximated solution for the distribution function 
after n iterations, then a better approximation <|>n+^(K) is now 
given by

n+1 ( K )  =
« h(K) + Y(*n(K))

K/ t (K) + Z(K)
2 . 3.3

where the normalization constant Nr+1 represents a measure of
the convergency of the iterative process. The solution obtained
by the iterative technique converges to a physical acceptable
solution of the rate equation only when N^+1 reaches a steady
value equal to 1. The results of numerical calculations indicate
that N , is an oscillatory function around 1, and in general this n + 1
parameter converges to 1 at n i 35 iterations. It is noted however 
that in the evaluation of a given transport parameter we must go 
to slightly higher number of iterations, say 50 iterations, to 
obtain better convergence of that transport parameter. This
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criterion is adopted to stop the iterative process. In order to
check the validity of this convergency criterion the distribution
function <}> (n=N) is input into the rate equation in order to

*calculate an effective rate of photoexcitation w ^ . If 4>n is
♦ _the exact solution of the rate equation then and w ^

(equation 2.2.7) must be equals. The proposed criterion to stop 
the iterative procedure ensures that the two rates of photoexcitation 
are very close to each other, that is, the root mean square error 
is about or less than 1%. A thermal Maxwell-Boltzmann function 
is used for the starting distribution function (f)̂ . However for 
a broader spectrum of photoexcitation the Maxwellian distribution 
function with carrier temuerature obtained from the energy balance 
equation (Chapter III) is used.

In numerical calculations the continuous variable K is replaced 
bv a discrete one which goes from zero to K = 220A, where A is 
the mesh gauge given by

' i

A = mS,2
/2kBT

where S is the sound velocity. A may be thought of as a small 
portion of a typical energy transferred in an electron-phonon 
collision. The integrations are carried out by the use of the 
Simpson's rule. Computation was carried out on the Burroughs B 6700 
computer, University of Warwick.

2.4. Dependence of the Distribution function on the Radiation 
Bandwidth
It is well known that the phonon wavevector q involved in 

the emission or absorption of an acoustic phonon takes values going 
from zero to 2k, where k is the magnitude of the carrier wavevector.
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Consequently the acoustic phonon energy is in the range from zero 
to about 2fikS (= iiu ). This range of energies available for the 
interacting phonon allows a given carrier state to enter into 
contact with other states lying within this energy range above 
and below by emission or absorption of an acoustic phonon. Ridley 
and Harris [12] have suggested that the distribution function may 
depend critically on the bandwidth (fiAw). Three cases may occur:

(1) Aw << w , (2) Au - w and (3) Aw >> wac ac ac

The third case corresponds to a very broad spectrum of photo­
excitation and resembles a blackbody radiation; and this kind of 
radiation is used in the next two chapters.

A rough measure of the excitation bandwidth is given by

ftAai
kBT 2.4.1.

exact for a gaussian spectrum but an approximation in our case.
v is a parameter which enters in the reduced radiation rate

tfio
(equation 2.2.7). Equation 2.4.1 is then compared with r- w.-

and is given by

tiwac
kBT

2tikS
kBT

4 4 KA Kph 2.4.2.

A very narrow spectrum of photoexcitation gives rise to a series 
of peaks in the distribution function. These peaks occur at 
energies equal to and lower than the excitation energy cph (<0.037 e.V) 
The sharpest of these peaks occur at e = e h> while the others
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become increasingly broader as the energy decreases. If the
2distribution function is drawn against K instead of K , it is 

noted that the peaks occur at equally spaced intervals AK. This 
interval AK corresponds to the minimum value in K for an electron 
to be able to emit an acoustic phonon (equal to KA, equation 2.4.2). 
The same interval appears in the expression for the total acoustic 
scattering rate out of state K. This is because the carrier 
state K is in contact with states lying in the range from K to 
K + KA (K-KA) by the absorption (emission) of acoustic phonons.
The peaks in the distribution function gradually disappear as 
the spectrum bandwidth is increased to values of the same order 
of a) . In other words, this occurs when the bandwidth of the 
excitation spectrum is greater than the interval AK. All these 
factors suggest that the appearance of the peaks in the distribution 
function is related to the ability of the newly excited carriers to 
emit one or more acoustic phonons, with wavevectors equal to AK, 
immediately after the excitation. This condition occurs when the 
radiation spectrum is very narrow and the probability of scattering 
out of state K  ̂by emission of an acoustic phonon is much greater 
than the scattering in by absorption of acoustic phonons. The 
increase in the radiation spectrum bandwidth implies that both 
processes are comparable. Therefore the presence of the peaks 
disappear .

For acoustic relaxation times much smaller than the carrier 
lifetime, the distribution function is nearly a thermalised 
Maxwellian function. At lower values of the recombination lifetime 
the form of the distribution function is more complicated. This will 
be discussed further later in this chapter. It is noted that the 
form of the distribution function is not critically dependent on the
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energy dependence of the recombination lifetime. Figures 2.1,
2.2 and 2.3 compare the form of the distribution function for 
two values of the parameter v and three compensation densities 
at 4°K. A list of the data used in these calculations appears 
in Table 2.1.

2.5. LOW FIELD TRANSPORT
The trapping and low field transport parameters will be 

averaged over the isotropic zero-field distribution function <f>(K), 
in a similar fashion to conventional transport perturbation in 
which 4>(K) replaces the average thermal equilibrium function [18] .
This approach is justified if the response to the external electric 
fields is ohmic. For Cu-doped Ge the critical field is around 
5 V/cm [16]. In order to evaluate the mobility at a given 
temperature, the energy dependence of the scattering process must 
be averaged over the distribution function <(>(K) . To this end the 
total momentum relaxation time must be obtained as the harmonic 
sum of all scattering times and averaged over <KK) to give the 
mobility. Three scattering mechanisms are considered. The acoustic 
deformation -, ionised and neutral-impurity-scattering. At very low 
temperatures the optical scattering is neglegible and therefore 
ignored. The acoustic deformation scattering is based on the theory 
of Bir, Normantas and Pikus [19] which includes inter- and intra-band 
transitions and uses two deformation parameters. Bir et.al [19] 
have given the expressions to relate these two parameters with 
those of the more general three-parameter theory [20] and Lawaetz [21] 
has found a relationship to connect these three deformation potentials
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with the parameter of the one-deformation theory. This relation­
ship arises from a study of the low-field mobility and galvano- 
magnetic data for holes in Ge at high temperatures. We assume 
that identical formula is valid at low temperatures. The relation­
ship is given by

2D ' I  ,, 2 —  (b è » 2> 2.5.1

where D is the deformation potential in the one-parameter theory, 
a, b and d are the three deformation potentials in the more general
theory. C* and Ct are the average longitudinal and transverse
elastic constants for an isotropic phonon spectrum [22],

C1 =
1
5 (3 Cn  + 2 C12 + 4 C44)

2
Ct =

1
5 (Cl, - C12 + 3 C44)

We adopted for the shear deformation potentials b and d the 
following values: h = -2.2 eV and d = -4.5 eV r 2 3 ] which implies 
b = -2.4 eV (the shear deformation potential in the two-parameter 
theory [19]). The deformation potential a, which characterises 
the shift in the valence band under hydrostatic pressure, has a 
very uncertain value in spite of several attempts to deduce a 
value from conventional low-field transport measurements [21].
It is therefore retained as a fitting parameter. The present 
status of the three deformation potentials parameters will be 
discussed in Chapter IV

The ionised impurity scattering time uses the Brooks-Herring- 
Dingle formula [24]. We have assumed that the singly ionised 
Cu-impurity has the scattering potential as a singly ionised 
shallow acceptor or donor. This is reasonable because most of
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the contribution to the scattering cross-section comes from 
large values of the impact parameter, that is, at considerable 
distance from the core potential. At large distances the potentials 
are nearly identical. This is seen by the fact that the spacing 
in excited-state-energy spectrum of Cu and shallow impurities 
are in agreement [25,26]

The neutral scattering time is calculated from a modified 
version of the Erginsoy formula [27] (which is only valid for 
hydrogenic impurities). The new formula is obtained by 
multiplying the Erginsoy expression by a constant factor A. Norton 
and Levinstein [28] have applied, with success, all these scattering 
mechanisms to describe the mobility in a series of non-illuminated 
Cu-doped Ge, and derived experimentally the non-hydrogenic 
multiplicity factor A for the neutral impurity scattering time. 
Details of the scattering mechanisms are given in Appendix 2, and 
a different expression for the neutral impurity scattering time is 
studied in Chapter V. This new expression gives values for the 
neutral impurity scattering time which are in agreement with those 
obtained by the use of the modified Erginsoy formula.

In order to calculate the mobility the heavy - and light-hole 
distribution functions are needed. However the rate equation 2.2.3, 
in the one band model, gives the heavy-hole distribution function 
4>2(K) only, the light hole ^(K) one is then obtained by 
multiplying 4>2 (K) by an appropriate density of states factor

m 3 / 2

*1<K> = <ÎÇ> M K) 2.5.3.
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where m^ is the light hole effective mass. Mobility is then 
given by

p = -  |  (1 + y 3 ) [y3 <Cn > + <C22>]

where

ii

11

'22

,2 ml
m2

/ K3
3 <t>±(K)

C. .(K)liv '3 K

6 fll 
m^6

( 1 + 2Ï ^2 2 ) 
T 12

e T 22 

m^ 6
( 1 + 3Y

T 12

T11 T 22 
( 1 - ■ ■ — - )

T 12 t 21

2.5.4.

t ^̂  is the total momentum relaxation time (i=j intraband transition,

i f  j interband transitions, i = 1 (2 ) corresponding to the light 
(heavy) hole band). A more general expression for the mobility 
which is valid for the two-band model is discussed in Appendix 2.
The following average

<X>
X <t> 2 ( K ) K dK2 

<t> 2 ( K ) K dK2

2 .5 . 5 .

is used to obtain the average carrier energy (X = e), carrier 

lifetime (X = 1/Trec). etc-
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2.6. DEPENDENCE OF THE DISTRIBUTION FUNCTION ON LIFETIME AND e .--------------------------------------------------------- ph
The distribution function depends on the lifetime, although

results are not significantly affected by changes in the energy
dependence of the lifetime. However the distribution function
suffer important changes when the compensation density is increased.
Thus for low N^ the distribution function is essentially the
Maxwe 11-Bo ltzmann function (Figure 2.1). At higher compensation
densities the form of the distribution function depends also on
the value of the excitation energy. Thus for carrier lifetimes
equal to or lower than the energy relaxation time and low values
of e . ('v 7 m.e.V/, the distribution function is non-Maxwellian in ph v /’
form. In this case <{>(K) is mainly determined by the competition
between the excitation and the recombination rates, and reflects
their forms. The distribution function rapidly reaches a maximum
and then decreases equally rapidly. On the other hand, at greater
values of e .ft 30 m.eVJand h Am H o  the distribution function ph ac
is to a first approximation a Maxwellian function with a carrier 
temperature much greater than T. The distribution function for 
this case is determined by the competition between excitation and 
the scattering rates. In all cases the form of the distribution 
function of energies greater than e ^ is nearly a thermal 
Maxwellian function. Figures 2.4, 2.5 and 2.6 show the variation 
in the form of the distribution with e  ̂ for a heavily compensated 
sample.

2 .7 . TRANSPORT AND TRAPPING PROPERTIES
The carrier lifetime can become comparable with the energy 

relaxation time in Ge at low temperatures. Under this condition 
photocarrier properties are expected to depend on the radiation
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energy. Godik [5] has reported an experimental study of this 
kind in Cu-doped Ge at low temperature. In this study the low 
field photohall mobility of photoexcited holes is measured as a 
function of the photon energy. The model already developed is 
applied to this experimental study.

In the experiments of Godik [5] the applied electric field 
is 5 v/cm and is on the edge of the onset of non-ohmic behaviour; 
consequently the carriers receive neglegible amounts of energy 
from the field. Furthermore the Hall number is assigned the 
value r=l corresponding to high magnetic fields (the classical 
limit). The sample under consideration is characterised by

N. (Cu-impurities) = 2 x lO1  ̂cm-A
14 - 3Nd (Sb-impurities) = 2 x 10 cm

and the measurements were done at T = 5°K and 11°K (one sample 
with Cu and compensation densities of 2 x 10"*̂  and 1.6 x 10^^ cm  ̂
respectively is not considered because it has been found [1 ] 
impurity conduction effects at such densities). In thermal 
conditions the mobility, in this sample, is dominated by ionised 
impurity scattering. However when illumination is applied to 
the sample, acoustic scattering plays a moderate role in the 
determination of the mobility. This scattering uses two 
deformation potentials (Section 2.5). One of which, the deformation 
parameter a is left as a fitting parameter. It is found that only 
one value is needed for the deformation parameter a in order to 
obtain good agreement with the experimental mobility data [5] as 
function of the excitation energy and at a given temperature. It 
is noted, however, that the calculated mobility remains nearly
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constant at e  ̂< 15 meV. This is in disagreement with the 
experimental data which shows a reduction in the mobility as a 
consequence of dominant ionised impurity scattering. The dis­
agreement may be caused by a recombination lifetime expression 
which needs modification. In Chapter V a model is proposed for 
the lifetime in order to give an explanation of this disagree­
ment .

Calculation at two lattice temperatures give two values 
for the deformation potential a:

a = 18 eV at 5°K and a = 13 eV at 11°K.

It is found that the average carrier energy is nearly
independent of the lattice temperature and is an increasing
function of e ^. Its absolute values are much greater than the
thermal energy. The average lifetime is nearly independent on
e , but has a stronger dependence on T. Table 2.2. presents a ph
summary of these calculations.

2.8. CONCLUSIONS

A narrow spectrum of photoexcitation produces a distribution
function which exhibits a series of equally spaced peaks at
carriers wavevectors equal to and less than the photoexcitation wave-
vector K , . This regular spacing between peaks is related to the ph
range of hole states which are in contact with a given carrier 
state K by the emission and absorption of acoustic phonons. It 
is also noted that the wavevector AK between peaks corresponds 
to the minimum momentum that a carrier should have in order to
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emit an acoustic phonon. This suggests that the distribution 
function at Kp^, which is strongly peaked because of carriers 
being photoexcited into that state, will decay into the state 
Kp^-KA by emission of acoustic phonons with wavevector equal to 
the acoustic phonon threshold momentum. Similarly the distribution 
<KKpk~KA) will decay at lower wavevectors values by an identical 
procedure. This process of generation of peaks in the distribution 
function resembles the similar effect caused by the emission of 
optical phonons with quantum energies equal to the optical thres­
hold energy [12, 29], The presence of equally spaced peaks in 
the distribution function, caused by the emission of acoustic 
phonons with wavevectors equal to the acoustic phonon threshold 
momentum, has not previously been seen.

It is found that the distribution function for pure samples 
is essentially a thermal Maxwellian function. The recombination 
lifetime for these samples is much greater than the acoustic 
relaxation time. Therefore holes have enough time to lose much 
of the energy excess received from the external source and come 
to a nearly thermal equilibrium with the lattice. On increasing 
the compensation density the recombination lifetime is reduced 
and holes will then have less time to lose their excess energy. 
Therefore the possibility of reaching thermal equilibrium with 
the lattice becomes increasingly remote. This effect is clearly 
reflected in the departure of the distribution function from the 
Maxwell-Boltzmann function as the compensation increases. However 
the form of the distribution function depends also on the photo­
excitation energy. Thus for lifetimes of the order of t (k_T)!IC o
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and low values of e . the distribution function is non-Maxwellian.ph
This is a consequence of the competition between the excitation 
and recombination rates. At higher values of e , the distributionph
function resembles a Maxwellian function with a temperature 
parameter much greater than T. This form arises from the 
competition between the lattice scattering and the photoexcitation 
rates. The possibility of obtaining a Maxwellian function from 
laser-photoexcitation has not previously been considered.

The large values found for the average hole energy and its 
nearly independence on the lattice temperature suggest a strong 
carrier heating in the sample studied (Godik [6 ]). This result 
is consistent with the fact that the average carrier lifetime is 
of the same order of the acoustic energy relaxation time. Although 
the model of semiconductor is based on a parabolic heavy hole 
band, satisfactory agreement with the experimental mobility at a 
given temperature and various e  ̂ is obtained. It is noted, however, 
that the deformation potential (which gives the inelastic scattering, 
in the one-deformation theory) changes with temperature when attempts 
are made to fit the experimental and calculated mobilities at two 
lattice temperatures. The values found for this parameter are 
about three times as large as those obtained from thermalised 
mobility calculations based on the one-parameter deformation theory 
of elastic scattering. These large values for the deformation 
potential may be a consequence either of unknown factors affecting 
the experiments or of weaknesses in the theory. It is possible 
that the deformation potential is forced to have large values in 
order to compensate any deficiency in the scattering mechanisms.
In particular the conventional theory of acoustic lattice scattering 
uses only one-phonon processes. Evidence which supports the idea



-28-

of including two-acoustic phonon process will be discussed in 
Chapter V. In the same chapter is reported an attempt to explain 
the disagreement between experimental and calculated mobilities 
at radiation energies e ^ < 15 m.eV. To this end a model is 
proposed for the recombination lifetime which removes the 
dif f iculty.
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elastic constants (77°K)

C 1 1
. / 2 dyn/cm 1 . 2 x 1 0 1 2

C 1 2
11 0.49 x 1 0 1 2

C44 h 0 . 6 8 . a 1 2x 1 0

Erginsoy's multiplicity factor (A) 4
mass density , / 3 p (gr/cm ) 5.323

average sound velocity (cm/sec)
longitudinal (SL) 5.36 x 1 0 5

transverse (ST) 3.28 x 1 0 5

electron free mass me (Kgr) 9.11 x IO" 3 1

Effective mass
heavy hole .33 me
light hole .045 me

capture cross-section (cm2)
shallow impurities (4°K) 1.95 X 10- 1 1

Cu impurities ( 5°K ) 1.5 x io- 1 1

1! It (1 1°K) 5.3 x 1 0 - 12

sample
. T -3 Na cm 2.7 x 1 0 13

N " D 1.9 x io11

sample S„
H ~3N . cm 2 . 2 x 1 0 1 5

N " D 1.7 x 1 0 1 3

sample SQ
-3N . cm 3.0 x 1 0 1 5

nd
2 . 2 x 1 0 14

TABLE 2.1: Data for numerical calculations
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elastic constants (77°K)
2dyn/cm 1 . 2  x 1 0 12

C " 1 2 0.49 x 1012

C M U44 0 . 6 8 x 1 0 12

Erginsoy's multiplicity factor (A) 4
3mass density p (gr/cm ) 5.323

average sound velocity (cm/sec)
longitudinal (S^) 55.36 x 10
transverse (S^)

5
3.28 x 1 0

electron free mass mg (Kgr) 9.11 x IO- 3 1

Effective mass
heavy hole . 33 me
light hole .04 5 me

2capture cross-section (cm ) 
shallow impurities (4°K) 1.95 x IO- 1 1

Cu impurities (5°K) 1.5 x 10- 1 1

" " (1 1 °K)
_ 1 o5.3 x 10

sample
», - 3cm 1 32.7 x 10

nd 1.9 x 101 1

sample S„
M “ 3N. cm 1 5

2 . 2 x IO

nd 1.7 x 101 3

sample
», - 3 N . cm 3.0 x IO1 5

N " D
142 . 2 x 1 0

TABLE 2.1: Data for numerical calculations



Lattice
Temperature

Excitation
Energy

Average
Energy

Effective
Carrier

Average
Lifetime

°K e , (m.e.V) ph k..T unitsD Temperature
°K

, „ - 1 01 0 sec

15 9.2 46.0 2.95
5 20 10.14 51.0 3.08

35 14.42 72 .0 3.22

15 5.0 54.8 4 .O
1 1 20 5.3 58.2 4.1

30 6 .0 66 .0 4.4
35 6.3 69 .0 4 .O

TABLE 2.2. Summary of transport and trapping calculations
-10<T >ac = 1.062 x 1 0

11°K
sec .
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FIGURE 2.1: Comparison of the distribution function 
for two values of the bandwidth parameter 
v in sample at 4°K. The broken line 
corresponds to v=2 and the continuous line 
to v=.001. The excitation energy is eph= 7meV.
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FIGURE 2.2: Comparison of the distribution function
for two values of the bandwidth parameter v
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K

FIGURE 2.3: Comparison of the distribution function for
two values of the bandwidth parameter v in 
sample S„ of 4°K. The broken line corres­
ponds to v=l and the continuous line v=0.05,
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FIGURE 2.4: The distribution function for sample S3

at 4 K and tph 7 mcV. The value of band­
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FIGUP.E 2.5: The distribution function for sample 
at 4°K, c h = 15 roeV and v = 2.
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FIGURE 2.6: The distribution function for sample S3

at 4°K. e , = 30 meV and v = 2.ph

H i  H R  |
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FIGURE 2.6: The distribution function for sample Sg
at 4°K. e . = 30 meV and v = 2.’ ph
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CHAPTER III

THE ENERGY DISTRIBUTION FUNCTION OF PHOTOKXCITED HOLES IN P-TYPE GE 
ROOM TEMPERATURE BLACKBODY RADIATION

In this chapter we continue the study of the physics of
photoexcited holes in the valence band of a simple model of
semiconductor. In contrast with previous chapter holes are
generated by a broad spectrum of photoexcitation of an approximately
blackbody radiation at room temperature. The distribution function
is derived from a rate equation involving photoexcitation,
recombiantion and lattice scattering. The distribution function
is compared with a Maxwellian distribution function with the
carrier temperature parameter evaluated from an energy balance
equation. Details of the model of photoexcitation rate and the
energy balance equation are given in Section 3.2. Section 3.3.
compares the distribution function obtained from both procedures
for various donor compensations densities. The energy distribution

13 -3function, for compensation densities lower than about 1 0 cm ,
is essentially a Maxwellian function with the carrier temperature
calculated from the energy balance equation. At higher compensation
densities the distribution function is non-Maxwellian over most
of the range of energies available.

Photohall measurements by Norton and Levinstein [1] and
Godik [5] at low temperatures, suggest that hot holes occur for

13 -3compensation densities greater than about 10 cm . The average 
hole lifetime is, in such samples, shorter than the hole-lattice 
energy relaxation time (t (KnT)). Samples with densities nearclC LJ

1 *3 _ QlO cm 1 seem to involve a carrier lifetime which is of the same
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order as the energy relaxation time and warm carriers are observed
[1], In the experiments of Norton and Levinstein [1] holes were
photoexcited by room temperature black-body radiation and so have
initial energies much greater than the thermal energy (k^T).

This report presents a theoretical study of the transport
and trapping parameters of photoexcited carriers in Cu-doped Ge.
These parameters are averaged over the isotropic distribution
function occurring in the absence of an electric field. This
work has direct relevance to the experimental measurements by
Norton and Levinstein [1] of the mobility and carrier lifetime
at low temperatures of a series of Cu-doped Ge samples with
various compensating donor densities. The physical model gives
good agreement with experimental data for samples with compensation

13 -3densities less than or equal to 10 cm . At higher compensation 
densities valuable results are obtained.

3.2. THEORY
A simple parabolic band structure characterized by the heavy- 

hole effective mass m2 is assumed. The isotropic nature of the 
radiation and the rapid momentum relaxation ensure that the zero- 
field distribution function <)>(K) is dependent on the energy only. 
Effects of degeneracy, inter-carrier scattering and non-equilibrium 
of phonons are ignored. Furthermore, there is no effective change 
in the occupancy of the impurity levels. Thus the carrier 
distribution function, normalised to unit rate of photoexcitation, 
obeys a linear integral equation (Equation 2.2.4)
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% h (K)
4> ( K ) K
T (K)rec

Where the recombination lifetime (t ) has an energy dependence 
given by Equation 2.2.8 with n = 1. The capture cross section 
has been measured for a few low compensated samples by Norton 
and Levinstein [1] and the validity of these values is extended 
to all samples considered in this report. J represents the total 
intraband scattering rate out of state K. This involves the use 
of one-parameter deformation theory and that parameter is assigned 
the value 10 eV [1]. This implies that the deformation potential 
parameter denoted by a is equal to 8.2 eV (Equation 2.5.1). 
Incidentially Norton and Levinstein [28] have obtained a good 
fit of their experimental dark mobilities by assigning that value 
for the deformation potential a. The mathematical expression
for J is given in Appendix 1 .

The normalised rate of photoexcitation (w produced by a 
flux of photons incident on the neutral acceptors is proportional 
to the concentration of neutral impurities, the photoexcitation 
cross-section and the intensity of radiation. This rate is poorly 
known experimentally. Barker and Hearn [lO] and Barker [14] have 
proposed a model for w  ̂based on a radiation field which 
approximates to blackbody radiation with temperature radiation Tr.
(for a brief summary of the derivation of the expression for w 
see Appendix 3).

ph
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% h (K)
„2 K. +1 . „2  ,p ,K exp(-K T/fr) 3.2.1

where £ is a parameter determined by the matrix elements for 
the electron-photon interaction and the corresponding selection 
rules for the transition probabilities. A high frequency cut-off 
is incorporated to eliminate photoexcitation into the split-off 
band and second ionization of Cu-impurities. Our calculations 
have shown that the transport parameters do not depend critically 
on the value chosen for l . Intrinsic blackbody radiation from 
the lattice is neglected as knT 0.0025 e.V) is much lower thanD

kgl'r ('v 0.025 e.V)
Photoionization of neutral impurities requires a minimum 

photon energy of 42.86 m.eV. The average photon-energy from room 
temperature radiation is of the order of 100 m.eV. Thus the 
average carrier energy is about 60 m.eV immediately after the 
excitation. Since optical phonon emission takes place in about
10 -12 sec, carriers will then emit one or more optical phonons
until their average energy is less than the optical-phonon emission
energy e (% 0.037 eV). We then assume that all carriers will op
have energies less than eQp in a time very much smaller than any 
other physical time. This instantaneous optical emission generates 
an effective rate of photoexcitation of the form (details in 
Appendix 3)

9 T  ° 4 1 0  ^  4 8 0wph(K) « K e x p ( - K ^ )  [ Z (K+n 4*2) exp (-n -^-)] 3.2.2

„2 e _ 0.037
kBT ' kBT
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.Ve nave included in this equation the fact that photon energies 
greater than 0.23 eV have been removed from the excitation spectrum, 
and n = 5 is the maximum number of optical phonons contained in 
that energy range. The radiation temperature Tr is equal to 300°K.

Instead of solving the rate equation, information about the 
distribution function and transport parameters can be obtained 
from "The Moment Balance Method". This method is a set of "moment 
balance equations" obtained by integration of some moment functions 
over the rate equation [30]. If the distribution function is 
assumed to have a fixed shape with a number of adjustable parameters 
equal to the number of moment balance equations, then the parameters 
may be determined through the condition of self consistency of the 
equations. Conservation of carriers, momentum and energy are among 
the moment balance equations. In this report only that energy 
balance equation which gives the carrier temperature (Te) in a 
Maxwellian carrier distribution function truncated at the optical 
phonon emission threshold is set up. The energy balance equation 
appropriate to our model is derived by multiplying Equation 2.2.4 
by the carrier energy e and summing over the band.

<KK) K
Z <£Cj .(K) - Z e ——--- 7-sT, = Z c J(<f>) 3.2.3.
K ph K Trec(K) K

band band band

In (3.2.3) VIZ t w h(K) is the total rate of energy input into the 
band by external radiation measured relative to the bottom of the
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bottom of the band due to recombination and - WE e J(4>) is 
the net rate of energy loss to the lattice due to either phonon 
emission or absorption. Details corresponding to the expressions 
for each one of these rates are given in Appendix 4. The polynomial 
equation (in Te) 3.2.3 is then solved by a standard iterative 
technique which gives the real root of that polynomial.

3.3. DISTRIBUTION FUNCTION
The distribution function has been obtained for five Cu-doped Ge

samples at various compensation densities. The method of calculation
has been described in Section 2.3. A list of the relevant data
concerning such samples appears in Table 3.1. The compensation
density goes from 1 0 1 1 cm- 3 to 1 0 14 cm 3 , that is, the carrier
lifetime is varied over three orders of magnitude. This change
in the lifetime is consequently reflected in the form of the
distribution function. Thus for our purest sample S.̂ (and S2>,

— 7 —8the lifetime is of the order of 1 0 ( 1 0 ) sec and the distribution
function shows a Maxwellian form with the carrier temperature
calculated from the energy balance equation. However for lifetime 

-9of the order of 1 0 sec (sample S3), which is comparable with 
the acoustic energy relaxation time t „ (k T), the distribution 
function deviates from a Maxwellian form for most of the range of 
energies available. Finally, for even lov/er values of t , the 
distribution function is non-Maxwellian throughout the whole 
range of energies. Figures 3.1, 3.2 and 3.3 present an illustration 
of the distribution function at three compensation densities.

A
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3.4. TRANSPORT AND TRAPPING PARAMETERS
Solution of the rate equation gives mobilities which are 

very similar to those of the Maxwellian approximation ; both sets 
are in good agreement with the experimental data of Norton and 
Levinstein [1] for the three low compensated samples. However, 
the Maxwellian mobility of sample S„ is slightly higher than 
experimental data. This is because the distribution function 
for this sample, and for the more heavily compensated samples, 
is non-Maxwellian over most of the energy range. For the two 
heavily compensated samples S ., both calculated mobilities 
are nearly identical and about 25% greater than the corresponding 
experimental values.

Numerical solutions of the energy balance equation 3.2.3. 
give the carrier temperature for a Maxwellian distribution function. 
The main features of the calculated carrier temperature (Te) are:

(i) at low compensation density, Te is very close to and strongly 
dependent on the lattice temperature. Carriers are nearly in 
thermal equilibrium as the distribtuion function is essentially 
a Maxwellian,

(i i) at intermediate compensation densities (sample S^), the 
absolute value of Te has greatly increased while its temperature 
dependence has diminished. Carriers are warm,

(iii) finally for the heavily compensated samples S. and S,-> the 
absolute value of Te is very much greater than T and its dependence 
on the same parameter has nearly disappeared. This suggests that
carriers are hot.
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Table 3.2 summarises the mobility and carrier temperature 
calculations.

The ratio of the acoustic energy relaxation time to the 
carrier lifetime when e = k_T replaces the carriers energy, givesD

a better characterization of the degree of carrier heating in 
the system. The average lifetime and acoustic relaxation time 
together give a ratio which although is satisfactory for the two 
low compensated samples (S-, S2) is rather small for those samples 
(Sg, , Sj.) with intermediate and heavy compensation densities. 
Carriers are in these cases warm and hot respectively.

A mild temperature dependence is seen for the average lifetime
in the two heavily compensated samples (S^, Sg)„ This dependence

2 3is in the range of T ‘ to T' , This temperature dependence is in
close agreement with the behaviour of the experimental photocarrier
density in sample S4 as taken from photohall data [1]. However the
same temperature dependence for sample is not observed in the
experiments. On reducing the compensation density the temperature
dependence of the average carrier lifetime gradually increases.
The strongest temperature dependence occurs for the purest sample
Sj and is about T ‘ which is slightly lower than the experimental
behaviour. In Table 3.3 the averages for the carrier lifetime,
the acoustic energy relaxation time, the carrier energy and the
ratio t /t with the energy equal to k„T are listed, ac ree u

3.5. Conclusions
The solution of the rate equation and the energy balance 

equation, based on a one-band model for holes which are photoexcited 
by room temperature blackbody radiation, satisfactorily explains
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the trapping and photo transport properties of Cu-doped Ge with
13 -3compensation densities < 1 0  cm The average hole lifetime

13 -3in the low compensated samples (N^ < 1 0 ' cm ) is of the order 
of or greater than the acoustic energy relaxation time. Under 
this condition the energy distribution function can be approximated 
by a Maxwellian function with the carrier temperature very close 
to and strongly dependent on the lattice temperature. All these 
factors suggest that the holes are nearly in thermal equilibrium 
and this is agreement with the conclusions of Norton and 
Levinstein [1].

The value of the shape parameter 9, which appears in the rate 
of photoexcitation is not critical in the present calculations 
and optimum agreement is obtained when it is taken to be zero. The 
average acoustic energy relaxation time exhibits a mild dependence 
on the compensation density and this arises from the average over 
the distribution function (so as carrier heating) which depends 
on the recombination lifetime. It is noted that the degree of 
carrier heating is better characterised by the ratio of acoustic 
relaxation time to carrier lifetime when the energy is assigned 
the value kgT. The ratio of their respective average times is 
too low for both warm and hot carriers.

2The mild temperature dependence (T‘ ) found for the average 
carrier lifetime in sample is in close agreement with experimental 
data. However this same temperature dependence for sample is 
not in agreement with experimental results which show no such 
dependence. It is hoped that a more realistic model of semiconductor 
based on two parabolic heavy and light hole bands will remove this 
.difficulty.
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13 —3The onset of non-Maxwellian behaviour occur at 'v 10 cm 
However the Maxwellian approximation and the numerically derived
distribution functions give identical mobilities in samples with 

13 —3Nd > lO cm and the mobilities are about 25% greater than
experimental data. The carriers temperature associated with
these samples are much greater than T and nearly independent of
this parameter. This result indicates a strong carrier heating
in those samples. The deformation potential in the one-parameter
theory is taken arbitrarily to be 10 eV (i.e. a = 8.2 eV) and
this gives satisfactory results for samples with compensation 

13 -3less than about lO cm . It is noted that this value for the 
deformation potential is nearly twice as large as that obtained 
from thermalised mobility calculations based on a one-parameter 
theory of elastic scattering [22], Chapter IV explores the 
possibility of deducing a value for the deformation potential a 
by fitting the calculated hot-hole mobilities to those of Norton 
and Levinstein [1] and Bannaya et.al. [2], The physical model 
for those calculations assumes two parabolic heavy and light
hole bands.
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Lattice Carrier Experimental Rate Eq. Energy B.E.
Sample

C
G

 
P*;

 5 Temperature 
TE (°K) Mobility Mobility Mobility

i 4.9 1.58 X 1 0 6 1.55 X 1 0 6 1 . 6 6 X io 6

bl « 8.5 1 .08 X 1 0 6 1 . 1 2 X 1 0 6 1 . 1 2 X 1 0 6

15 15.4 5.82 X io 5 5.85 X 1 0 5 5.82 X i o 5

4 9 4.28 X 1 0 5 3.75 X 1 0 5 5.45 X 1 0 6

z 6 1 1 4 .0 X 1 0 5 4 .02 X 1 0 5 4.42 X i o 5

15 17 2.95 X 1 0 5 3.21 X i o 5 3.23 X i o 5

4 19 1 . 78 X io 5 1.77 X i o 5 2.24 X 1 0 5

^3 6 19 1.55 X 1 0 5 1 .56 X i o 5 1 . 8 6 X i o 5

15 23 1.40 X io 5 1.5 X 1 0 5 1 .58 X 1 0 5

4 42 9.8 X io 4 1.33 X 1 0 5 1.38 X 1 0 5

S4 Ó 38 8.7 X io 4 1 X 1 0 5 1 .07 X i o 5

lo 40 7.1 X io 4 8.4 X 1 0 4 8.69 X i o 4

4 56 7.13 X io 4 1.13 X 1 0 5 1 . 1 2 X i o 5

S 8 51 6 . 6 X 1 0 4 8.65 X 1 0 4 8.62 X i o 4
O

15 51 5.6 X 1 0 4 7 .03 X 1 0 4 6.99 X i o 4

TABLE 3.2. Summary of the one-single band model mobility
calculations, carrier temperature taken from the 
energy balance equation, experimental mobility 
taken from Norton and Levinstein [1].

i
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Lattice Average Average t (k T) ac B Sample
Temperature Lifetime Acoustic Energy 

Relaxation t (kuT ) rec B
Name

°K sec Time (sec)

4 1 .OO x 10-7 6.23 x ID"10 .008
8 1.68 x lo-7 4.73 x IQ"10 .003 S1

15 3 .00 x 10”7 3.49 x io~10 .001

4 1.OO x icf8 4.6 x 10-10 .1
8 1.45 x 10-8 4.16 x 10-10 .04 S2

15 1.98 x io-8 3.32 x 10-10 .02

4 2.14 x 10-9 3.1 x 10-10 .7

8 2.87 x lo-9 3.1 x 1 0 - 10 .26 S3
15 3.40 x 10-9 2.86 x 10-10 .13

4 4.83 x 10-10 2.0 x 10-10 4.52

8 6 .OO x 10"10 2.23 x 10-10 1.73 S4
15 7.15 x 10~10 2.17 x 10-10 .835

4 3.00 x 10-10 1.90 x 1 0 - 10 9

8 3.63 x 10-10 2.0 x 10-10 3.5 S5
15 4.60 x 10-10 2.0 x -1010 1.7

TABLE 3. 3. Summary of some 'carriers properties.
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CHAPTER IV

DEFORMATION POTENTIALS

Photoexcitation produces a wide class of distribution 
functions and this offers new possibilities of studying the 
carrier - acoustic phonon coupling constants in p-type Ge. In 
order to pursue this end a model of semiconductor is proposed 
which includes the parabolic heavy and light hole bands. Details 
of the theoretical model are given in Section 4.2. The energy 
distribution function of holes which are generated by a broad 
spectrum of photoexcitation is derived from a rate equation 
involving photoexcitation, recombination and lattice scattering. 
Transport and trapping parameters are obtained as suitable 
averages over the zero field distribution function and subsequently 
compare with experimental data [1,2]relevant to p-type Ge doped 
with either deep or shallow impurities. The photohall mobilities 
and the carrier lifetimes appropriate to Cu-doped and Ga-doped 
Germanium have been measured by Norton and Levinstein [1,17] 
and Bannaya et.al [2] respectively at low temperatures and various 
compensating densities. In both cases carriers were photoexcited 
by room temperature blackbody radiation. The salient features of 
the heavy-and light-hole distribution functions are presented in 
Section 4.3.

Under thermal conditions the mobility for samples with high 
compensation densities, such as those of Bannaya et al. [2] and 
the two heavily compensated samples of Norton and Levinstein [1], 
is essentially determined by ionised impurity scattering. However



on increasing the carrier heating the acoustic deformation 
scattering can become important and plays a moderately important 
role in the determination of the mobility. Bir and Pikus [20] 
have developed a theory of acoustic deformation scattering which 
is applicable to p-type Ge. The carrier-long wavelength acoustic 
phonon scattering cross section is characterised by three 
deformation potential parameters which also give the variation 
of the band under homogeneous deformation. Hence these parameters 
can be determined from experiments such as those of the variation 
of the conductivity under homogeneous deformation. Hensel and 
Suzuki [23] have accurately determined the two shear deformation 
potentials from a study of the quantum resonance spectroscopy 
in the valence band of Ge under uniaxial stress at 4.2°K.
Experiments based on different techniques at other temperatures 
(Poliak and Cardona [31], Balslev [32], etc) have given values 
for the shear deformation potentials which agree within experimental 
error with those of Hensel and Suzuki. On the other hand, the 
dilatational deformation potential is poorly known. This parameter 
can only be determined indirectly from experiments. Such a 
determination requires an accurate knowledge of the shear and 
dilatational deformation potentials related to the conduction 
band, however the latter potential is itself poorly known. A 
brief review of the status of the three deformation potential 
parameters related to the valence band of Ge is given in Section 4.3. 
It is hoped that the value of the dilatational deformation potential 
parameter can be deduced by fitting the calculated hot-hole 
mobilities to those measured by Norton and Levinstein [1] and 
Bannaya et.al [2]. Results corresponding to carrier lifetimes
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and mobility calculations are given in Section 4.5 and an analysis 
of these results in Section 4.6. Two different values for the 
dilatational deformation potential parameter are obtained from 
these results. In one case hot-carrier mobilities for Ga-doped Ge 
samples give a value 2 eV for the deformation potential a,which is 
in agreement with some of the experimental values for this 
parameter. Similar result is obtained from mobilities for Cu-doped Ge 
with low compensation densities. In the other case the hot-carrier 
mobilities for Cu-doped Germaniam samples with high compensation 
densities give a deformation parameter of approximately 8 which is 
much greater than any of the experimental values already available.
In addition, this parameter is also found to depend on the lattice 
temperature.

4.2. THEORETICAL MODEL
The valence band of Ge consists of throe bands, two of which 

are degenerate at the centre of the Brillouin zone (k = 0). The 
third one is separated by 0.29 eV at = O from the two upper 
bands by spin-orbit interaction. According to Kane's description 
of the valence band structure of Ge near £ = O [33] the heavy hole 
band is parabolic along the main crystallographic axes. However 
for the light-hole and the split-off effective masses increases 
and decreases with energy respectively. Pinson and Bray [34] 
have shown that the light hole band is parabolic to energies about 
the optical phonon emission threshold, e = 0.037 eV. Thus for 
small values of the heavy-and-1 ight-hole effective masses can 
be set equal to their respective experimental values, that is,
0.33 and 0.045 mfe respectively.
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In the experiments of Norton and Levinstein [1] and Bannaya
et. al. [2 ] carriers were photoexcited by room temperature blackbody
radiation (with a high frequency cut-off filter incorporated to
eliminate photoexcitation into the split-off band and second
ionization of Cu impurities). Furthermore carriers intially
photoexcited at energies greater than the optical phonon threshold
energy (e ) will instantaneously emit one or more optical phonons,op
Thus in a very short time (v 10- 1 2  sec) all carriers will have
energies less than c . All these factors lead us to propose h op
a model of semiconductor which uses both the parabolic heavy and 
light hole bands. The energy dispersion relation for each band 
is given by

where m^ and m2 correspond to the light- and heavy-hole effective 
mass respectively and k is the hole wavevector.

As in previous chapters, free carrier absorption and change 
in the occupancy of the impurity levels are neglected, as are the 
effects of degeneracy, intercarrier scattering and non-equilibrium 
of phonons. The isotropic nature of the radiation and the rapid 
momentum relaxation time ensure that the zero-electric field 
distribution function is dependent only on energy. The rate 
equation (2.2.4) transforms, in the two-band model, into two 
coupled integral equations

1 ,2 4.2.1.
2 m .l

4>i(K) K
T ree i

(K) J i ( i I ̂  j ) 4.2.2.
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where i, j = 1,2. The recombination lifetimes (x ) are assumed
i

to have the same form, Equation 2.2.8, but the average velocities 
differ because of the different effective masses. The shape 
parameter H in the excitation spectrum Equation 3.2.2, is set 
equal to zero in the two band model largely as a consequence of 
the insensitivity of the results of the one-band model to its 
value. This is also consistent with the use of an integrating 
cavity in the experimental measurements. The reduced rate of 
photoexcitation into each band is given by the same equation (3.2.2) 
with an appropriate density-of-states weighting factors (Appendix 3). 

The inter-and intra-band hole transition probabilities from
state k to state k', W. ,(k,k') due to either emission or absorption% % lj 'v %
of a long wavelength acoustic phonon has been given by Bir and 
Pikus [20]. This three deformation-parameter theory can be, by 
use of some approximations, reduced to a two-deformation-parameter 
theory [19]. Within the spirit of the model of semiconductor the 
solid can be assumed as elastically isotropic [35], This means 
that the longitudinal and transverse sound velocities are independent 
of the direction although not necessarily equals. The values for 
the sound velocities can be obtained as suitable weighted averages 
over the crystallographic directions. The longitudinal (S ) andi-i
transverse (ST) sound velocities are then given by

LS
2 and 4.2.3.
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where C^, C are the average longitudinal and transverse elastic 
constants defined in equation (2.5.1) and p is the mass density. 
This assumption is identical, in spirit, to that involved in the 
Equation 4.2.1 which uses an average (with respect to the 
crystallographic axes) for the effective masses [35]. This implies 
that the constants B and D//3, which determine the effective masses 
are equal. Within the same order of ideas, Bir, Normantas and 
Pikus [191 have assumed that the transition probabilities W (k, 
depend only on the energies e(k), e(k') and the angle 0 between
the wavevectors k and k-v <\<

W . . ( k, k ' ) = P . . ( e ( k ) , e ( k ' ) , 0 ) 6(t:(k) - e ( k ' ) )
1 J 'Vj 'V/ 1J J

4.2.4

This assumption requires the shear deformation potentials, b and 
d//3 to be equal. If in the emission or absorption of an acoustic 
phonon i.e. inelastic scattering, is allowed the transition 
probabilities P ^  in Equation 4.2.4 become [21]

, 2
P L  =  SUL

1 1 4pS. nq+i±i q {(l+n)2+v n^-Gncos 0(4 ± 1 ) + 3(l- -r- ) COS©}
4.2.1

pL = pL = 3a m  
12 21 4P8l

n ± i + è
q

2
sin 0 fl - —  + 2n( 6 + — 6_) + 

4 1 4 ¿

+ 3 . r 2 2-,
4 (61 n } 4.2.6

pT _ 9a Tfq 
11 16pST

nq + è ± Ì 2 4 2nn sin 0 4.2.7

t3 x
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T q- „ 2  2p™ — TTqn
12 " 21 " 2p ST

n + i ± l
q

X {1 - I sin20 (l+6j)} 4.2.8

where q = b/a, is the average phonon density equal to

n =
q exp(hSq/kBT)-l

s = s ST>

-  2 e/e’
1 ’ 2

1 + y e/e' - 2y/e/e' cos 0

Y = .13 and e/e' is tne ratio of i n i t i a l  to final hole energies.

In calculations of 6 -  ̂ this ratio has been set equal to 1. The 
sign + (-) in the first parenthesis of 4.2.5 to 4.2.8 is realted 
to emission (absorption) of phonons. The sign + (-) in the second 
parenthesis is for light (heavy) holes. With these transition 
probabilities the general expression for J(<f> . , j ) is easily 
obtained. This is presented in Appendix 1.

4.3. DEFORMATION POTENTIALS IN GE: EXPERIMENTAL STATUS

The shear deformation potentials b and d are related to the 
lifting of the degenerate valence-band edge at k = 0 under <1 0 0> 
and <111> uniaxial stress respectively. As a consequence of the 
degeneracy of the valence band of Ge the low lying Landau levels 
are anomolously spaced. Therefore the cyclotron resonance of 
holes under quantum conditions exhibits complex line spectrum.

. i

V
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T  _  „ 2 2 P 1 = p1 - 3a irqn
1 2 ' 2 1 " 2p ST

n + $ ± J
q

x { 1 - | sin20 (1 +ôj)} 4.2.8.

where n = b/a, is the average phonon density equal to

n =
q exp(h Sq/k^T) - 1

s = SL> ST .

-  2 e /e '
1 ’ 2

1 + Y e/e' - 2yV c/e ' cos 0

Y = .13 and e/e' is the ratio of initial to final hole energies.

In calculations of ^ this ratio has been set equal to 1. The 
sign + (-) in the first parenthesis of 4.2.5 to 4.2.8 is realted 
to emission (absorption) of phonons. The sign + (-) in the second 
parenthesis is for light (heavy) holes. With these transition 
probabilities the general expression for J(<f>̂ ,<t>j) is easily 
obtained. This is presented in Appendix 1.

4.3. DEFORMATION POTENTIALS IN GK: EXPERIMENTAL STATUS

The shear deformation potentials b and d are related to the 
lifting of the degenerate valence-band edge at k = 0 under <1 0 0> 
and <111> uniaxial stress respectively. As a consequence of the 
degeneracy of the valence band of Ge the low lying Landau levels 
are anomolously spaced. Therefore the cyclotron resonance of 
holes under quantum conditions exhibits complex line spectrum.
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Uniaxial stress applied to the sample removes the degeneracy of 
the bands and the quantum resonance spectroscopy can be successfully 
studied. Hensel and Suzuki have used this method to derive the 
two shear deformation potentials at 4.2 °K [23], The value for 
the shear deformation potentials obtained from these very accurate 
measurements are: b = -2.18 eV and d = 4.5 eV. Other experimental 
techniques have been used to obtain a reliable value for each one 
of the shear deformation potentials. Amongst these techniques 
are the optical reflactance combined with static and oscillatory 
stress [36], piezo-electroreflactance [37], modulated piezo- 
reflactance [38], cyclotron resonance [39], Sckottky barrier 
electroreflactance [40]. The values for the shear deformation 
potentials obtained from these techniques agree within experimental 
error with those of Hensel and Suzuki. Table 4.1 compares the 
values for shear deformation parameters as obtained from these 
experimental techniques at various temperatures.

The effective shear deformation potential b which appears 
in the two-deformation-parameter theory is evaluated by using the 
values reported by Hensel and Suzuki [23]. According to Bir, 
Normantas and Pikus [19] the effective shear deformation potential 
depends linearly on the b and d as follows

b = 1
— 5----52bB + /3B + C d 4.3.1

where B and C pre constants which are determined by the structure
_ To n{

of the Valence band at low values of k; and B H B
 ̂ IB

B2 + £

t
• Vn*
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The two constants B and C have also been determined very precisely 
by, among others, Hensel and Suzuki [23]. Their values are:
B = -8.48 and = 172.782. These data give consequently b=-2.4eV .The 
dilatational deformation potential a is related to the shift of 
the valence band edge under hydrostatic pressure. This parameter 
cannot be determined directly from experiments. This is because 
they give only the relative shift between the valence and conduction 
bands. The conduction band of Ge has a local minimum at the
centre of the Brillouin zone (k = 0). This minimum is only%
shifted under stress and the deformation parameter associated 
with this shift is experimentally unknown. On the other hand, 
the deformation potentials related to the true minimum of the 
conduction band are partially known. Various experimental techniques 
have been used to measure these parameters. These attempts show 
that the shear deformation potential Eu has a value about 19 eV 
at temperatures in the range from 70°K to 300°K. However, this 
value decreases to about 16 eV at low temperatures. This discrepancy 
in values cannot be explained on the basis of the experimental 
errors. It is likely that E changes slowly with the lattice 
temperature. The techniques so far used to measure the conduction- 
band dilatational deformation parameters require the ratio k of 
the parallel and perpendicular momentum relaxation times which are 
related to the carrier scattering in the conduction band. This 
anisotropic momentum relaxation time arises because the conduction 
band edge has a spheroidal energy surface orientated along the <1 1 1 > 
crystal axis [41]. No agreement has been found from all experimental 
attemps so far made to give a definite value for E A list of
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values for E and a various temperature appears in Table 4.2.

On studying the indirect absorption in Ge under combined 
static and oscillatory stress, Balslev [32] derived the following 
expression which relates the deformation potentials (E , E.) of the 
conduction band with the dilatational deformation potential of 
the valence band:

: . + i E - a = E. d 3 u lg 4.3.2.

where E„ is the shift of the energy gap with dilatation i.e. lg

Elg
8E

= v — £
3 V

In this study Balslev reported a value for E = 2.9 eV at 300°Klg
and 77°K. Paul [42] has also measured E^ from variation of
electrical conductivity with stress and has obtained E = -3.9 eV

lg
at room temperature. Therefore the value of a to be obtained 
from all these experimental information will be spread over a wide 
range of values. Wiley [22] has reported a value for the deformation 
potential a equal to 2eV.This value was obtained from a model 
based on the dielectric band theory [51]. A list of values for 
the deformation potential a appears in Table 4.3. Because of this 
chaotic situation the deformation potential a is retained as a 
fitting parameter in mobility calculations.

4.4. DISTRIBUTION FUNCTIONS
The energy distribution functions for the heavy and light hole 

bands are obtained by a numerical solution of the rate equation
4.2.2. The numerical technique and the criterion of convergency

t
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described in section 2.3 are again used in here. The number of 
iterations needed to reach satisfactory convergence in the solution 
of the two coupled integral equations 4.2.2 is about 130 at 15 K. 
This number of iterations reduces to about 100 at 4°K. The heavy 
and light hole distribution functions exhibit non-Maxwellian 
behaviour over most of the range of energies available. Moreover 
our calculations indicate that the light hole distribution function 
(Jij can satisfactorily be obtained from the heavy hole one by the 
use of the following relationship

3/2
* 1 * 4.4.1

It should be noted that an identical formula was used in Section 
2 . 5  to obtain the light hole distribution function.

In Figure 4.1 the heavy and light hole distribution functions 
for one Cu-doped Germanium sample (S,.) are compared with two 
Maxwellian functions with carrier temperature Te deduced from the 
energy balance equation 3.2.3. The data for Te appear in Table 3.2. 
The light hole Maxwellian function is derived from equation 4.4.1.

Figures 4.2. and 4.3 show the heavy and light hole distribution 
functions for two Ga-doped Ge samples. Hypothetical Maxwellian 
functions are also shown in order to make clear the departure of 
the distribution function from the simple Maxwellian form. Data 
relevant to these calculations appear in Tables 2.1 and 3.1.
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4.5 . DERIVATION OF THE DEFORMATION POTENTIAL a FROM TRANSPORT DATA 
CU IMPURITIES :

The experimental mobilities for the two heavily compensated 
samples S^, (Table 3.1) of Norton and Levinstein [1] are used 
to deduce a value for the deformation potential a. The total 
momentum relaxation time for each band is obtained as the harmonic 
sum of the acoustic deformation -, ionised - and neutral-impurity- 
scattering times (see Section 2.5) and is then appropriately averaged 
over the corresponding distribution function to give the mobility 
in that band. The appropriate procedure required to obtain the 
total mobility is derived in Appendix 2. The final expression for 
the mobility is a generalization of the equation 2.5.3. The 
dominant momentum relaxation mechanism in the two S4, S,. samples 
is the ionised impurity scattering.

A sample with negligible ionised impurity scattering but with 
dominant acoustic scattering, for example sample Sj , gives values 
for the deformation a which are in the range between 2 and 3 eV.
These values agree with some of the experimental results and in 
particular they are close to the value 2 eV reported by Wiley [22] 
These values for the deformation potential a could not be confirmed 
by using dark mobility data [28] (a better fit is obtained by using 
a = 8 . 2 eV) .

It is noted that, for the two heavily compensated samples,
changes in the energy dependence of the recombination lifetime
strongly affect the resultant values for the deformation potential
a. Thus the energy dependence of the recombination lifetime
mentioned earlier (equation 2 .2 .8 ) with n = 1 gives rise to a 1

TE'temperature dependence of the average lifetime of the order of T
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for sample S,. . This result is a very significant improvement 
over the results of the one band model and is in good agreement 
with the temperature behaviour of the experimental photo-carrier 
density [1], On the other hand, it is found that the deformation 
potential a decreases rapidly with the lattice temperature. This 
strongly decreasing dependence on temperature is substantially 
reduced by choosing the strong energy dependence of the type 
derived by Lax [15] for recombination into shallow traps. However 
the average recombination lifetime now becomes strongly dependent 
on T. Table 4.4 summarises the calculation of the apparent 
dependence of the deformation potential on the energy dependence 
of the carrier lifetime. The deformation potential a is also 
affected by the multiplicity factor for the Erginsoy neutral 
impurity scattering time. This factor cannot be satisfactorily 
determined by fitting the experimental thermal mobilities in those 
samples with high compensation densities as this is controlled by 
the ionised impurity scattering. Calculations indicate that the 
neutral impurity and acoustic scattering play a moderately important 
role in determining the photohall mobilities, and it is found that 
the deformation potential a changes by about 1 eV when A is varied 
by a factor of two.

It has not been possible to remove the apparent dependence 
of a on T and NQ by adjustment of other parameters. However the 
capture cross-section used in this study is related to measurements 
on samples with low compensation densities and is probably incorrect 
for highly compensated samples. Further study of the cross-section

i
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for these samples is clearly required before any explanation can 
be offered for the anomaly in the fitting procedure for the value 
of a.

Shallow Impurities:
Bannaya et. al [2] have measured the mobility for various 

Ga-doped Germanium samples at 4.2°K. The experimental mobility 
data suggest that the ionised impurity scattering is the dominant 
momentum relaxation mechanism. Although the role of the acoustic 
deformation scattering in the determination of the mobility is 
therefore small, it is however sufficient to enable us to deduce 
a value for the deformation potential a by fitting the calculated 
hole mobilities to those of Bannaya et.al [2], A list of relevant 
data concerning the samples is given in Table 4.5. We have chosen

eight of the samples studied by Bannaya et.al. The experimental 
mobilities are reported for only four of the eight samples considered; 
for the rest of the samples the mobilities can be roughly estimated 
from Figure 1 in the paper of Bannaya et.al [2].

In order to evaluate the mobility in Ga-doped Germanium samples 
the procedure already used in connection with Cu impurities is 
again employed in here. It is noted however that Ga is a hydrogenic 
impurity and therefore the Erginsoy formula for neutral impurity 
scattering time is used. The recombination of carriers into shallow 
impurities occurs via attractive cascade mechanism [15], and n = 3 
for the energy dependence of the lifetime (equation 2 .2 . 8 ) is 
adopted. Stannard [17] has measured the capture cross-section for 
shallow acceptor impurities in pure p-type Ge samples at low 
temperatures. We use these data in our calculations.
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The value 2eV for the deformation potential a used in the 
calculation of the average hole mobility gives rise to an optimal 
fit with experimental data. The agreement with experimental 
mobilities is very good for three of the samples (Sa2, Sa4, Sa8 ) 
and is too low for the fourth (Sa5). The calculated mobilities 
for the other group of samples are rather small compared with the 
estimated values. However for sample Sa3 the agreement is good. The 
value 2 eV for the deformation potential a could not be confirmed 
by using non-illuminated mobility data because the Brooks-Herring- 
Dingle formula for ionised impurity scattering is no longer valid 
at 4°K. This formula is based on the Born approximation which 
needs Ikal >>1 , where k is the carrier momentum, and a is the 
scattering length. This condition is not satisfied at 4.2 K in 
dark conditions. A summary of the mobility calculations appears 
in Table 4.6.

In the same study Bannaya et.al. [2] has evaluated the averaged 
carrier lifetime for each of the eight samples considered in this 
study. In that work, the density of photoexcited carriers is 
obtained from photohall measurements and the total generation rate 
is then calculated from a theoretical model of generation. This 
procedure has been used to obtain the capture cross section into 
shallow impurities and gives values which are comparable with those 
of generation and recombination noise [5 2].

The main characteristics of the carrier lifetime as obtained 
from photohall measurements are:

i) It is inversely proportional to the compensation density ND
14 -3up to values of about 1 0 cm
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ii) It is also dependent on the degree of compensation R = N^/N. . 
Two broad regions can be distinguished, one for R > .1 and the other 
for R < .1. Thus the carrier lifetime for samples in the first 
region is considerably greater than that for samples in the second 
one.

iii) At compensation densities greater than lO  ̂ cm the average 
lifetime deviates from the inverse dependence on and tends to 
level off. On the other hand, our calculated carrier lifetime 
presents the following characteristics.

i) It is inversely dependent on the compensation density .

ii) It is independent of the relative value of the ratio R. (see 
ligure 4.4).

14 -3iii) Two samples with Np > 10 cm are considered; for one of 
them the carrier lifetime deviates from the inverse dependence
on Nd and indicates a tendency to level off. The carrier lifetime 
for the other sample (Sab) is again dependent on N" . This latter 
result is not reliable because it is not possible to fit the 
experimental mobility for that sample.

iv) Our calculated absolute values for the average lifetime are in 
reasonably good agreement with those reported by Bannaya et.al [2 ], 
However for samples Sa6 and Sa7 the calculated average lifetime 
values are about one order of magnitude greater than the reported

ones.
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ii) It is also dependent on the degree of compensation R = N^/N^. 
Two broad regions can be distinguished, one for R > .1 and the other 
for R < .1. Thus the carrier lifetime for samples in the first 
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values are about one order of magnitude greater than the reported
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The degree of carrier heating in the system is better described
in terms of the ratio t (k T/t _(k T) (The acoustic energytic D roc d

relaxation time to carrier lifetime at e  = k T') rather than by
the ratio of their respective average values. This latter ratio
is too low for both warm and hot carriers. In the evaluation of
the acoustic energy relaxation time the value D = 6.5 eV [22] for
the deformation potential in one-parameter theory is assumed. This
value for D is consistent with a = 2 eV. The calculated acoustic

-9relaxation time is 1.827 x 10 sec and is comparable with the
value 1.4 x 10 sec (quoted by Bannaya et. al. [2]). It is also
noted that the average carriers energy is much greater than the
thermal energy. Combining this information with that coming from
the ratio t ( k„t)/T (k„T) we can say that the carriers inac B ' rec B
samples Sa4, Sa8 , Sa5, Sa3 and Sa7 are hot and in samples Sa2, Sal,
Sa6 they are warm. A list of the average carrier lifetime, average 
energy, average acoustic relaxation time and the ratio Tac(kQT )/Tre(k3T ) 
appears in Table 4.7.

4.6 . CONCLUSIONS
The energy dependence of the hole lifetime corresponding to

n = 1 (equation 2.2.8), in Cu-doped Ge with high compensation
densities, gives an average lifetime which is in close agreement
with the photohall measurements in those samples. The temperature

.06dependence of the average lifetime of about T for the heavily 
compensated sample S^ represents a very significant improvement with 
respect to the result previously obtained from a one-band model .
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The Lax cascade mechanism correctly characterises the 
recombination into shallow impurities and this corresponds to 
n = 3 (equation 2 .2 .8 ) in the energy dependence of the hole 
lifetime. Our average absolute values for the carrier lifetime 
in Ga-doped Germanium are in reasonable agreement with those 
reported by Bannaya et.al. [2], Our calculations reveal no 
dependence of the average lifetime on the compensation ratio; 
and this is contrary to photohall measurements. However the 
average lifetime changes with the inverse of ND as in experimental 
data. The lack of dependence of the average lifetime on the 
compensation ratio may be a consequence of the value used for the 
recombination cross section. Firstly, this value was measured in 
pure samples so that the use of this value in samples with higher 
compensation could be an oversimplification. The use of only one 
value for the cross section in all samples considered there could 
be a further oversimplification. This point is open to discussion 
until new sets of data are available.

The ratio x (kI1T)/x (knT) is found, once more, to give a ac B ' rec B
better description of the degree of carrier heating in the system 
in both hot and warm carriers. The average acoustic relaxation 
time and the carrier lifetime together give a ratio which can 
decrease either by increasing the heating in the system of holes 
or by increasing the compensation density . Thus a low value 
in the latter ratio does not necessarily imply that carriers are 
thermalised. However a low value in the former ratio means that 
the lifetime is large and carriers are likely to be in nearly thermal 
equilibrium with the lattice.
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Photohall mobilities for Ga-doped Ge samples give a value 
for the deformation potential a equal to 2eV.This value corresponds 
to the value reported by Wiley [22] obtained from a model based 
on the dielectric band theory [52], The experimental Hall mobility 
data for Cu-doped Ge samples with low compensation densities 
generate values for the deformation potential a between 2 and 3 eV 
in agreement with the experimental values for this parameter 
(Table 4.3). However non-illuminated data, for the same low 
compensated Cu-doped Ge samples, give for the same parameter a 
value of about 8.2eV. These different results in the value of a 
can be explained as follows: the photohole energy distribution 
function in samples with low compensation densities is approximated 
by the Maxwell-Boltzmann function for much of the energy range (fig.4.5) 
Nevertheless the calculated distribution function presents a tail 
at higher energies which gives rise to an increase in the average 
energy. Precisely at these energies the acoustic momentum relaxation 
time dominates all the other scattering mechanisms. These two 
factors make the average acoustic scattering stronger and con­
sequently causes deformation potential to diminish in value. It 
is noted that the use of values for the deformation potential around 
2<̂ in the calculation of non-illuminated Hall mobilities forces the 
ionised impurity scattering to be the dominant mechanism. This 
artificial result suggests that either the Brooks-Herring-Dingle 
formula overestimates the ionised impurity scattering in Cu-doped Ge 
at low temperature or, perhaps, an extra scattering mechanism should 
be included in the total momentum relaxation time. The good fit of 
the non-illuminated mobility data in Cu-doped Ge samples with various
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compensation densities at low temperatures suggests that the 
Brooks-Herring-Dingle formula is satisfactory for these kind of 
samples. An entirely new scattering mechanism that can be tested 
out is the two-acoustic phonon processes. However there is no 
expression for the two-acoustic phonon momentum relaxation time 
that can be tested. On the other hand, photohall mobilities for 
Cu-doped Ge samples with high compensation densities give values 
for the deformation potential a of about or greater than 8 eV.
These values although closer to those obtained from non-illuminated data 
are nevertheless much greater than any experimental value for a.
There is an indication that the average carrier energy in these 
samples is greater than it should be. This indicates that energy 
relaxation mechanisms included in the theory are not enough to 
account for the total energy relaxation time. In the next chapter 
the effect of two-phonon processes as energy relaxation mechanisms 
will be explored.

The dependence of the deformation potential a on the compensation 
density and lattice temperature may also have arisen from the 
recombination mechanism. The use of an average cross section 
measured under low-compensation conditions seems to become incorrect 
in samples with high compensation densities. Measurements [17] 
of the cross section indicate that its temperature dependence 
diminishes as the compensation density is increased. Thus a new 
temperature dependence for the cross section may give a different 
temperature dependence for the deformation potential. Finally the 
use of an unique energy dependence for t may be an oversimplification. 
Further study of the recombination process in Cu-doped Germanium is 
clearly needed before any explanation can be offered for the 
anomaly in the fitting procedure for the value of a.
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It should be pointed out that the deformation potential a 
may have a real dependence on the lattice temperature. This 
possibility arises from the fact that at least the shear deformation

in a very mild way on the temperature. However much more experimental 
data are required at various temperatures in order to find out the 
temperature dependence of that parameter (E ).

The energy distribution function for the heavily compensated 
Cu-doped Germanium samples is non-Maxwellian over the whole range 
of energies. In these samples the neutral and acoustic scattering 
play an important role in the evaluation of the hot carrier mobility. 
Recognition of this fact opens up the possibility of using the 
fitting of the hot carrier mobilities to determine the multiplicity 
factor for the Erginsoy neutral impurity scattering time or even to 
test other models for this scattering mechanism. In the next chapter 
a new model for this scattering mechanism is stated. We will show 
that the new expression for the neutral scattering time which 
depends on carriers energy gives results similar to those obtained 
from the modified Erginsoy formula.

The wide class of energy distribution functions that photoexcitation 
brings about opens up the opportunity of deducing new important 
information about the energy and momentum relaxation mechanisms, in 
the valence band of Ge, that otherwise cannot be derived from 
equilibrium transport measurements. In the next chapter this is used 
to explore the effects of two-phonon process as energy relaxation 
mechanism. New formulae for the recombination lifetime and the 
neutral impurity scattering time are also studied.

potential u for the conduction band of Ge has been found to depend

i J
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b
eV

d
eV

Lattice
Temperature

OK

-2.18(a) -4.5 4.2

-2 ,6 (b) -4.7 300

orr<N1 -4.1 80,297

-2 .8(d) -4.95 300

-2 .8 6(e) -5.28 70,300

-2.4(f) -7 4.2

TABLE 4.1. Shear deformation potentials b,d of Ge.

(a) Quantum cyclotron resonance [23]
(b) Piezo-electroeflactance [31]
(c) Indirect optical piezo-absorption [32]
(d) Intrinsic piezo-briefringence [38]
(e) Electroeflactance [40]
(f) Dependence of the acceptor ground state [50].
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~u
e.V.

= d
e.V.

Lattice
Temperature

ok

16.2(a) 77 300
16.7(b) (c) -3.84 'v lOO
16.6(C) -11.3
18.7(d) -9.8 4

19.2(e) (f) -9.07 'v 6 . 1 2

16.3(f^ -1 0 . 0 ^ 77

16.9(g) -6.40 77

19.3(h) (i) -12.3 4.2

18.7(l) -10.5 4.2
-9.8<k) 4.2

TABLE 4.2. Experimental values for the conduction-band 
deformation potentials.

(a) Indirect piezo-absorption [32]
(b) Magnetoresistence [43]
(c) Cyclotron resonance and piezo-reflactance [44]
(d) Electron energy relaxation rates [49]
(e) Piezoresistence [45]
(f) Minority carrier mobility [46]
(g) Piezoresistence, relative population in the valleys [47]
(h) Electron cyclotron resonance, classical limit [39]
(i) Anisotropic phonon scattering and cyclotron resonance [48]
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“u
e.V.

“d
e.V.

a
ElG=-3.8eV

e.V.
E 1(}=-2.9eV

Lattice
Temperature

OK

19.2 -9.07 1.13 .23 6 . 1

18.7 -9.8 0.23 - . 6 6 4

19.3 -12.3 -2 . 1 -2.97 4.2

19.3 -6.4 3.83 2.93

19.3 -4.4 5.8 4.9

16.2 -1 0 . 0 -0 . 8 -1.7 77

16.3 -11.3 -2 . 0 -3.0 20 - 1 0 0°

16.3 -4.4 -4.8 3.9 100

16.3 -6.4 -2 . 8 1.9 77

TABLE 4.3. Experimental values for the deformation 
potential a. Values for Hd and =u taken 
from Table 4.2.
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Lattice Energy Exponent Deformation

Temperature of the Potential a

°K Lifetime (n) eV

4 13

8 1 9

15 7

4
3

6.2

15 4.9

TABLE 4.4. Summary of calculations of the dependence 
of the deformation potential parameter on 
the energy exponent of the carrier lifetime.



-78-

Donor Density
-3cm

Acceptor Density
-3cm

Sample Name

1.7 x 1013 1 34.8 x IQ Sal (3)

1 32.6 x 10 142.0 x lO1̂ Sa2 (4)

3.6 x 1013 5.8 x 1013 Sa3 (5)

142.4 x 10 143.0 x lO Sa4 (9)

144.9 x lO 147.0 x 10 Sa5 (ID

1.4 x 1013 2.3 x lO14 Sa6 (13)

3.4 x 1013 5.7 x lO14 Sa7 (15)

5.3 x 1013 2.3 x lO14 Sa8 (6)

TABLE 4.5. Summary of samples properties. The number
in brackets corresponds to the identification 
number used by Bannaya et. al. [2].
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Sample
Name

Experimental
Mobility

Calculated 
Mobi1ity

Sa2 3.0 x lo5 3.0 x 105

Sa4 1.2 x lO5 1 . 2  x i o 5

Sa8 1.5 x 105 1.4 x 105

Sa5 1.0 x 105 5.7 x 104

Sal 4.6 x lO5 2.6 x 105

Sa3 2.2 x 105 1.9 x lo5

Sa6 4.6 x 10b 2.2 x io5

Sa7 2.3 x 105 1.3 x 10U

TABLE 4.6. Summary of mobility calculations.
E x p e r i m e n t a l  d ata from B a n n a y a  

e t . a l . !2].

'
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distribution functions for both bands in a 
Cu-doped C-e sample (8^) at 4 K and carrier 
temperature Te = 86 K .
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for both bands in a Ga-doped Germanium 
sample (Sa2) at 4°K. The continuous lines 
are hypothetical Maxwellians with carrier 
temperature Te = 44,K.
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FICUr.E 4.3:
2

K
The distribution function (broken line) 
for both bands in a Ga-doped Germanium 
sample (Sa4) at 4°K. The continuous lines
are hypothetical Maxwellians with carrier
temperature Te 55 K.
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FIGURE 4.4; The average carrier lifetime for
various Ga-doped Germanium samples
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FIGURE 4.5: The distribution function for 

both bands in a Cu-doped Ge 
sample (S^) at 4 K.
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CHAPTER V

DISCUSSION

5.1. INTRODUCTION
This chapter is envisaged as a suminary of some of the con­

sequences of non-equilibrium distribution of carriers with regard 
to carriers properties (Section 5.2). In order to bring some light 
on some of the difficulties found during the course of this study, 
factors not included in the model are briefly discussed in connection 
with their possible consequences (Section 5.3). Some of those 
factors are roughly included in the original theoretical model 
and a new set of results is presented which partially explains 
the difficulties found in our study (Section 5.4). These new 
results suggest how the theoretical model can be improved and 
where further experimental research is needed.

5.2. SUMMARY OF RESULTS
Hot carrier distribution functions occur in semiconductors 

for carrier lifetimes smaller than the acoustic relaxation time.
When both times are of the same order the carriers are warm and 
for greater values of the carrier lifetime the holes are in near 
thermal equilibrium. The form of the distribution function for 
both warm and hot carriers depends on the kind of photoexciation 
used. Thus for a narrow excitation spectrum and for low values of 
the initial photoexcitation energy (epj, 10 meV) the distribution 
function has a non-Maxwellian form. However at higher excitation 
energies the distribution function resembles a Maxwellian function
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with carrier temperature much greater than the lattice temperature T.
This latter result is found for a low density system of carriers
in which the inter-carrier scattering is ignored. Such a
possibility of obtaining a Maxwellian function from a laser-type
of radiation, has not been considered before.

A very narrow spectrum of photoexcitation also generates a
series of equally spaced peaks at carriers wavevector equal to and
less than the initial momentum K , . The appearance of these peaksph
is likened to the carriers emission of acoustic phonons with wave- 
vectors equal to the threshold momentum. Such emission of phonons 
with quantum wavevectors has not previously been noted. Because 
the carrier lifetime and the mobility are averaged over the entire 
distribution function the presence of the peaks is hidden in those 
parameters. This suggests that the acoustic emission of phonons 
with quantum wavevector can only be seen in experiments in which 
the parameters are not automatically averaged over the distribution 
of carriers.

For the isotropic room temperature blackbody radiation and the
one-band model the mobility and carrier lifetime in Cu-doped Ge

13 -3samples with compensation densities less than 10 cm are
successfully explained. The distribution function is, in this
case, a Maxwellian function with carrier temperature correctly
obtained from the energy balance equation. The holes are, for
these samples, nearly in thermal equilibrium. At higher compensation
densities the distribution function deviates from the Maxwellian

13 -3form for most of the energy range. At > 10 cm the 
Maxwellian function and the solution of the rate equation give



-88-

identical mobilities but about 25% greater than the experimental 
data. For the two heavily compensated samples (S4> Sg) the two- 
band model produces a significant improvement of the temperature 
dependence of the average lifetime as compared with the one-band 
model. The new dependence on the lattice temperature is in good 
agreement with the behaviour of the excess carrier density with 
temperature for those two samples.

Optimal fit of the photohall mobility data for Ga-doped Ge
13 -3samples with compensation densities greater than 10 cm is 

obtained on assigning the value 2 for the deformation potential a. 
This value is in agreement with the one reported by Wiley. A 
similar value is also obtained from photohall data for a pure 
Cu-doped Ge sample. However the non-illuminated mobility data 
for this sample requires a much greater value for the deformation 
parameter (8.2 eV). The photohall mobility data for the heavily 
compensated samples give a value for the deformation potential 
which depends on the lattice temperature and is much greater than 
any of the experimental values for this parameter. It is thought 
that this anomaly in the fitting procedure for the value of a is 
partially due to the use of incorrect values of the capture cross- 
section and to weaknesses in the theoretical model. In this 
respect, we will discuss in Section 5.4 three possible improvements 
of the theoretical model. These improvements are connected with 
three physical situations for which the theory has failed to 
provide a satisfactory explanation of the experimental data. Our 
calculations do not reproduce the mobility dependence on the 
excitation energy at eph < 15 meV. This difficulty arises as a 
consequence of the model of recombination which considers only an 
effective capture cross-section at all carrier energies. We shall
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see that in order to remove this difficulty is required at least 
two effective capture cross sections. We shall also see that the 
experimental hot mobility data for the heavily compensated Cu-doped 
Germaniam samples can be fitted by averaging the calculated 
mobilities over a Maxwellian distribution function but with 
carrier temperature parameters much lower than those obtained 
from the energy balance equation. This result indicates that the 
carrier heating in the system is much less than that calculated.
This failure suggests that the energy relaxation mechanisms 
considered in the theoretical model are not sufficient to give a 
correct account of the entire energy relaxation processes in the 
system under consideration. This difficulty can be partially 
removed by taking into account two-phonon processes. Finally because 
the inferred value of the deformation potential is affected by changes in thi 
multiplicity factor of the Erginsoy's formula for the neutral 
impurity scattering time, we believe that temperature dependence 
of the deformation parameter can partially be due to an energy 
dependence of the scattering of holes by neutral impurities. A 
new formula is explored which reduces the temperature dependence 
of the deformation parameter slightly.

5.3. Revision of some factors not included in the theory
Instantaneous optical phonon emission is an assumption used 

throughout this study. Such an assumption leads us to consider 
that all carriers are in the range of energies below the optical 
phonon energy. This picture is, however, not far from the real
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physical situation. The optical phonon emission occur in a very 
short, but finite time; this means that the majority (not all) 
of the carriers are in a range of energies below 0.037 eV. The 
presence of carriers outside this range of energies generates 
distributions of carriers at multiples of the optical phonon 
energy. The distribution function at each multiple is a 
rapidly decreasing function. The net effect of these distribution 
functions on the average transport parameters is thought to be 
negligible. However experimental mobility data as a function 
of the excitation energy at e . close to could be used to
obtain information about the carrier-lattice interaction via 
optical phonons. In this respect the theory of I.awaetz for this 
kind of scattering may be of interest. In this theory effects 
of long range forces of the quadruple and optupole type are 
included.

Since most of the carriers are in the range of energies below 
37 meV the effect of non-parobolicity will be very small. It 
should be noted that at those energies the heavy and light hole 
bands are parabolic. Lawaetz has found in calculation of mobility 
and galvanomagnetic parameters in p-type Ge at room temperature 
that this effect produces changes of about 4%. At lower temp­
eratures this effect is less important.

The conventional theory of acoustic deformation scattering 
is based on short range forces. Lawaetz [53] has included effects 
of long range forces for this scattering mechanism. A displace­
ment of an atom in a crystal with a diamond type of lattice 
produces a disturbance in the surrounding change distribution 
which gives rise to moments of quadrupole and optupole nature.
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Because in the experiments of Norton and Levinstein the samples 
were put in an integrating spherical cavity, the radiation on 
the crystal is isotropic and therefore the crystal can be 
considered isotropically homogeneous. For this kind of physical 
situation the net effect of the generalization of the scattering 
theory is one of reducing the value of the deformation potential 
by about 0.7 eV. Incidentally, measurements of the quadrupole 
and optupole coupling constants could lead to a better derivation 
of the deformation potentials E and E^ of the conduction band 
of Germaniam [56]. This consequently leads to a better determination 
of the deformation potential a.

The applied magnetic field in the experiments Of Norton and 
Levinstein [1] and Bannaya et.al. [2] is high. High magnetic 
fields may alter the density of states in the band due to the 
presence of Landau levels. It can also affect the Hall coefficient 
by the so-called "magnetic freeze out". This effect is basically 
the increasing in the impurity ionization energy due to quantization 
of the bound state wave function in the magnetic field. Of the 
data reported by Norton and Levinstein [1] we used only those in 
which the effects of the magnetic field are negligible. However 
the second effect could be significant [57] in the data for 
Ga-doped Ge reported by Bannaya et.al. These authors did 
not discuss this problem in that paper.

Norton [54] has found that the carrier lifetime (obtained from 
a model of decay of excess holes when the photon beam is switched 
off) presents dip at about 5 V/cm when the electrical field is 
changed. On the other hand the average lifetime from photohall
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measurements does not show such a dip. The explanation of 
Norton for this experiment is based on the following elements.

i) Carriers recombine via acoustic and optical phonon emission.
ii) The cross section for the optical phonon emission shows a 
singularity at about the optical phonon energy (0.037 eV).
Therefore the holes are able to gain energy from the electric 
field and reach energies about 0.037 eV which gives rise to the 
dip in the carrier lifetime as a function of the electric field.
iii) The magnetic field affect, present in the photohall measure­
ments, this ability to gain energy from the electric field.

This experiment suggests that a generalization of the theoretical 
model to include the electric and magnetic fields will give new 
important information about the recombination processes. However 
a direct measurement of the time constant as a magnetic field is 
applied is needed to resolve this question.

5.4. ADDITIONAL RESULTS

5.4.1. Two Phonon Processes
The experimental photohall mobility data for the heavily 

compensated Cu-doped Ge samples (S., S,.) can be fitted by 
averaging the calculated mobilities over a Maxwellian distribution 
function but with carrier temperatures much lower than those 
obtained from the energy balance equation. The following table 
compares the new carrier temperatures with those of the energy 
balance equation.
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Lattice Sample CARRIER TEMPERATURE TE(°K)
Temperature Name E.B.E. Mobility

°K Fitting

4 42 22
8 S4 39 26
15 40 28

4 56 26
8 S5 51 30
15 52 32

The fact that hot mobility data can be fitted with much lower 
values of the carrier temperature parameter indicates that the 
heating in the system of carriers is lower than calculated.
This suggests the necessity of an extra energy relaxation 
mechanism to be included in order to account for the excess of 
energy still present in the system. Further support for this 

, idea arises from the study of the experiments of Godik. The 
sample used in that study is very similar to the sample Sg of 
Norton and Levinstein. For such a sample the ionised impurity 
scattering is the dominant scattering mechanism. The stronger 
the carrier heating is in that sample, the more the mobility is 
increased. It is noted that the mobilities of Norton and Levin­
stein are greater than those of Godik, therefore the carrier 
heating in the former case must be greater than in the second one.
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Our calculations give average energies very close to each other .(Table 2 .2  

This suggests, again that the total energy relaxation is not 
correctly described in our model.

Alldredge and Blatt[58] have studied the role of the two- 
phonon processes in the energy relaxation of a heated-carrier 
distribution function. Their calculations showed that:

i) Either the direct two-phonon process and the interference 
of this process with the intermediate state process contribute 
very little to the energy relaxation time. The intermediate 
state process means that the carrier emit on an acoustic 
phonon and goes to a virtual state, to emit a second phonon 
almost immediately.

(ii) The intermediate state process is about the same order of 
magnitude of the one-single phonon process.

Their calculation is applicable to n-type Ge with a Maxwellian 
distribution of carriers and various carrier temperature parameters.
The values of this parameter range from 5°K to 115°K. The 
deformation parameter in the one-parameter theory is set equal 
to lO eV as in the present calculations. Another basic assumption 
is that the lattice is at T = 0°K. Our calculation with a one 
phonon process suggests that the inclusion of finite density of 
phonons produces only very mild changes. Under these conditions 
Alldredge and Blatt found that the average energy loss due to the 
intermediate states process is about twice that of the one-phonon.

Although the heavy-hole effective mass is about three times 
as large as the electron effective one, this deficiency is 
partially compensated by the values of Te used by Alldredge and
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Blatt. Their results are not. critically dependent on Te. We 
feel that the results found by them are also valid for p-type 
Germaniam.

An estimated value for the carrier temperature Te, in sample
Sg, can be obtained by putting T = 0 in the expression for
energy loss via one-phonon process (see Appendix 4), and using
an average lifetime equal to 5 x 10 sec and the results of
Alldredge and Blatt. The energy balance equation now becomes
314.22 - Te = .644 Te^^ + P . , where the term proportionaltwo-phonon’ *

to Te^^ is the rate of energy loss via one-phonon processes.
P . is the rate of energy loss via two-phonon process,two-phonon
According to Alldredge and Blatt this rate is about twice the
one-phonon term. The following table gives the values of the
parameter Te for three values of the ratio R defined as the
ratio of P. , to P ,two-phonon one-phonon

R = 0 R = 1 R = 2

Te 55 35 27

Te = 55°K is in good agreement with the value for this parameter 
obtained from the general expression for the energy balance 
equation, that is, T f  0. The values of Te at R = 1 and R = 2 
are much closer to those of the fitting mobility mentioned above. 
It is hoped that the inclusion of a finite density of phonon's 
(T f  0) would give the correct temperature dependence of Te.
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What this rough calculation shows is that the two-phonon 
processes are important in the calculation of hot mobilities 
in Cu-doped Ge samples. However more rigorous calculations 
are clearly needed in order to establish how the effect of two- 
phonon process affects the evaluation of other parameters such 
as the deformation potential. It is possible that the energy 
and momentum relaxation via two-phonon emission will be needed 
in order to bring the values of the deformation potential down 
to the experimental values.

5.4.2. Neutral Impurity Scattering Time
We think that dependence of thè deformation potential 

parameter on temperature is partially due to a temperature de­
pendence of the neutral scattering time. There is experimental 
evidence which suggests that this is the case. In an early study 
of the acoustic electric effect on n-type Germanium, Weinreich 
et.al. [58] found that the average neutral impurity scattering 
depends on T. More recently Blagoskionskaya et.al. [59] and 
Norton et.al. [60] have also arrived at the same conclusion.
The usual model for this kind of scattering mechanism was given 
by Erginsoy [27]. This model gives constant neutral impurity 
scattering. Erginsoy derived this formula, for the scattering 
of electrons by neutral donors in semiconductors, on the assumpti 
that this scattering is equivalent to that produced by hydrogen 
atoms and based its expression on the results of Massey and 
Moiseiwitsch [62]. Subsequent studies of the scattering of 
electrons by hydrogen atoms indicate that the polarization
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produced on the neutral atom by the electric Held arising 
from the scattered electron has not been correctly accounted 
for [59]. In particular it is noted that the Erginsoy model 
gives a cross section o = (20 a(i)/K (where is the Bohr radius 
and K is the electron wavevector) which diverges at K = 0, whereas 
according to Temkin [63] a ■* constant at K = 0.

Blagonklonskaya et.al. [59] have derived an expression for 
the scattering of electrons by neutral atoms based on experimental 
data of Temkin [62] for scattering of electrons by hydrogen atoms. 
This new formula gives neutral impurity scattering times which 
varies with T and are in reasonable agreement with experimental 
data [59]. The new model takes into consideration the following 

factors:

i) The strong interaction of an electron with an unperturbed 
hydrogen atom, the exchange interaction and the polarization of 
the atom by the electric field of the scattered electron. The 
net potential is an attractive one.

ii) The zero phase 6q is used for carrier energy less than
(e is the activation energy). At higher energies the first a
(6,)and second (6„)phase shifts are also used.1 A

The final expression for the neutral impurity scattering time 
takes the following form:

-1 FU/ca)h a*
tn = ;------- nn

m
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where F(e/e ) is a function of that ratio, a the effective a o
Bohr radius, m* the effective mass and the neutral impurity
density. In our calculations we use an approximation expression

paper of Temkin [62]. This formula is in principle only valid

e = 37 meV.
The use of the new formula for the neutral impurity scattering 

time in the study of the mobility data of Godik [6] produces no 
changes in the calculated values for the deformation potentials 
(Chapter II). On the other hand, the new formula slightly 
reduces the variation of the deformation potential on the lattice 
temperature when applied to the study of the measurements of 
Norton and Levinstein [1] . The following table compares the
new set of values of the deformation potential for sample with 
those previously obtained when the modified Erginsoy's formula 
was used (Chapter IV, Table 4.4).

for Tĵ 1 [69] given by

NN /2 ÏÏ a 1o 2—  + 10 K
0.0275 + K

2Ka

n Cwhere K = — %, this equation is consistent with figure 1 in the a kBl

for e/e < i. We however assumed that it is still valid up to 
' a
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Lattice
Temperature

°K

DEFORMATION POTENTIAL a (eV)

New values Previous values

4 11 13
8 8.5 9
15 7 7.5

Finally, the new formula and the modified Erginsoy’s expression 
give nearly identical values for the dark mobilities. Both 
calculated mobilities agree with the experimental data of 
Norton and Levinstein [28] if a 'v 8 .2 eV.

The small reduction in the temperature dependence of the 
calculated deformation potential obtained from the fitting of 
the hot mobility data of Norton and Levinstein certainly indicates 
that the neutral impurity scattering depends on the carriers 
energy as proposed.

How to take into account the fact that Cu impurities in Ge 
are non-hydrogenic is a problem which is not well understood. 
Further theoretical study is clearly needed in order to answer 
that question. The problems arise because the potential seen by 
the incident carrier at short distances (close to the atoms) is 
different from that of the hydrogen atom. This difference in 
the form of the potential at short distances affects the wave 
function within that potential and therefore the phase shifts 
may also be changed.
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5.4.3. Recombination Lifetime
It was found in Chapter II that our calculations do not 

reproduce the dependence of the mobility on the excitation 
energy at < 15 eV. We attempt to remove this difficulty
by setting up a model of recombination which uses two effective 
capture cross sections. The background for this model goes as 
follows :

i). In order to describe the decay of excess carriers produced 
by CC>2 laser when the light pulse is switched off, Norton [54] 
needed a model of decay of the form

A£
Ar> ( l-b) exp((to-t)/T1.aSt ) + b exp ((t —t)/T , )o ' slow

where b is the relative pex'centage of the lower decay component,
Ap is the excess carrier concentration at t when the light *max o b

pulse is turned off, t and t „ , are the two time constants1 ’ slow fast
required to fit the experimental data. The average time is then 
given by

< t > = (l-b) Tfast b t slow

In all cases studied by Norton r. . is about one order ofJ fast
magnitude lower than t -, and b % 39%.slow (ii)

(ii) The CO^-laser photoexcitation energy is 0.117 eV and in our 
model this is equivalent to an effective photoexcitation of 
carriers at 7 m.eV. The distribution function for the sample 
under consideration (sample studied in Section 2.7) shows the
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following characteristics: a). it is non-Maxwellian in form 
and b) it rapidly reaches a maximum and then decreases equally 
rapidly. The rapidly decreasing function can be approximated 
by a thermal Maxwellian function. Because of the striking 
difference between the two functions we can think of the system 
of carriers as being formed by two groups of carriers. Those 
below the maximum of the distribution function form one group. 
Carriers in this region (region I) are much more effective recombined 
than those carriers outside it, (region II). We then propose a 
model of recombination in which it is assumed that the capture 
cross section for carriers in the region one is much greater 
than that of the second group. Carriers in the first region

At other photoexcitation energies 10 < e . < 15 meV the
capture cross section for the first region must gradually diminish 
until finally disappear any distinction between them.

This model of recombination suggests that the two constant

t o  t  .slow
The calculated mobility at eph = 10 meV agrees with experimental 

data of Godik [6] if the capture cross-section is given by:

o ^ 15o at e < cpho
a a otherwiseo

where o q is the experimental cross-section [17].

lifetimes observed, for the decay of excess carriers, by Norton, 
is a consequence of the narrow type of photoexcitation used in 
the experiments and the photoexcitation energy associated with
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that radiation source. Further study, at theoretical and 
experimental levels, of the decay of excess of carriers at 
other values of the excitation energy is clearly required to 
obtain a better understanding of the physics of this process.
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APPEND1X 1

THE ACOUSTIC SCATTERING RATE (J)

We give here expressions for the inelastic rate, J^(k), out 
of state k in band i via the emission of acoustic phonons. The
distribution function f.(k) is a function of the energy only. For
a non-degenerate semiconductor f.(k) << 1 so that we can ignore

J. *\j

the restrictions due to the Pauli principle.
The rate of change of f.(k) with time due to the scattering1 f\j

may be written as

where W.(k,k') are the transition probabilities averaged over the
two degenerate (spin degeneracy) initial states of the band i with 
wavevector k and summed over the final degenerate states of the
band j with wavevector k ’. The first terms in (1) describe the
intraband scattering in the band i (=j) and interband transition 
into the band j(^i), whereas the second term describes the arrival 
from both bands. In the more general theory of acoustic deformation 
scattering [20], the transition probabilities depend not only on 
the scattering angle 0 but also on the direction of k and k' relative

i %

9f (k) i %
3t

( 1 )

J »v •v
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to the crystal axes. In order to simplify the calculations based 
on the solution of the rate equations (eq. 4.2.7) the following 
assumptions are made [19]:

i) . The two bands are parabolic, and isot ionic, that is, the constant energy 
surfaces are spheres (eq. 4.2.1).

ii) . The transition probabilities depend only on the scattering 
angle 6, the initial and the final energies.

is the average phonon density equal to the Bose-Einstein distribution

e . ± ho> ) J q (2 )

where the transition probabilities are given by

6ri(̂ - ± 1 )cos 0 +
(3)

2 „
3(1-^ ) cos 6}

(5)

[ nq + ± tj] U  - ^ sin2 6(1 + Sj)}

where n = r (The shear and dilatational deformation potentials), ncl ^

A
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exp (hSq/k„T) - 1

“ 2 £1 + V T>

s L , s T

1.2
1 + y 2 £ _ 2y/c/£' cos 6

£

Y2 = m1/m2 = .13 and e/e' is the ratio of initial to final hole 
energies. In calculations of 61>2 this ratio has been set equal 
to 1. The sign + (-) in the first parenthesis of equations 3 to 6 
are related to emission (absorption)of phonons. The sign + (-) 
in the second parenthesis is for light (heavy) holes.

In thermal equilibrium f.(k) is proportional to e x p C - e ^ T )  , 
where z ± is the carrier energy in the band i and the total scattering 
rate (1) vanishes identically. The principle of detail balance

gives

w (k,k') exp (- e /k T) = W.. (fc'k) exp (- e ^ ^ T )
X i 'Xj Aj

(7 )

and
(k,k') exp (- Ei/kBT) = W (k',k) exp (- Cj/^T)

1  j  'Xj 'Xj

An enuation similar to <7) can be need to give an expression for 
the scattering rate J In the one-band model lit]

J(k) .  -  - J U ,  (A'G(Jt.X') I « » ' )  exP(e ' /hBT)-f(h)exp(e/hB' 

«here G O t . h ' )  -  » ( * • ! > ' >  “ d • < * • * ' >  l e  S 1 ' ' “  6 y

( 8 )

k_T)] (9)
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W( k ,k ' ) =<v,
2T!
"FT n k 1 k, n

q 1> 6 ( e ' -e-■fid) )
q

<k 1 k , n -1>1 ’ q 1 6(e ' -e + * V }
( 10)

where fun is the energy of a phonon with wavevector q . The state
q _

! k n ) describes an electron with wavevector k and n phonons with 1 ’ q % q
wavevector q. The first term in (10) represents scattering with 
emission of a phonon, whereas the second one involves phonon 
absorption. H' is the perturbation Hamiltonian due to the electron- 
acoustic interaction. This Hamiltonian has been studied, in the 
one band model,by Fhockley et.al [64], H' is locally equivalent to the 
energy shift in the band edge produced by a homogeneous strain 
equal in magnitude to the local strain induced by the lattice 
vibration. The matrix elements in (10) can be written in the 
form [13]

, n H ’
’ q 1

k, n
% q 1>

D“fiu)
2pS. [n .

6k 1% , k ± q (i d

where D is the deformation potential, p is
n is the thermal distribution of phonons.

q
(9), the final expression for J(k), in the

the mass density and 
With (11) and (10) into 

one-band case, is [14]

J(K) = - Y(f(K)) + Z(K) f(K ) (12)



D
+ -2 f(K)

where

Do =
(kBT)5/2 m2l/2 d5

JT2/2 p (hSj )
and the range oi integration is

defined as follows:

a = K
= Ka - K

b = K + Ka

c = K
= Ka

- K

= K - Ka
d = K

K > K / 2a
K
all K

K / 2a'

K < K /2 a'
K < K

(13)

K / 2or
K >. K

s 2 1 m S 1
where K = 2  ( . m—  a KU1

It should be noted that the conservation of carriers follows 

immediately from equation (9)

l  J(k) = ()
k ^

This latter condition in the two-band model becomes

I(J,(k) + J9(k)) = 0 
k 1 ^ %
•\j



The scattering rate J. out of state K can be written in a similar 

way to equation 2.3.1, that is

W V  ’  I Z
U (K) * z ^ t K m j d ! )  -  H u » , )  * ',U < V > (14)

then a formal solution of the rate equation 4.2.2. is given 

follows:
77  / V  \ j - V  > + Y.. (f.)

J ^ J
f i ( K )  =

P V 1 1

K
i---- nr> * zn <K> * zu <K)rec^

where w  ̂ (K) and t (K) are the excitation rate and recombination
Phi rec ̂

lifetime for the band i. The mathematical form for each one of the 

terms in (14) are as follows.

Z . . ( K )  =  — ■1 
11 K

D /6 r$os
2 2 2 

( K 1 ^  -  K )
---------  , 2  *| e x p ( K ’ - K  )  -  1

I q  S L  4 T

♦ i t + ! ( s ^  *11
K ' d K '  ( 1 6 )

m . D
Z j 4 ( K )  =  3 ( - J - )ij

U I r6 r&

*  I, * I,
2 „2 ,

( K 1 - K  )____________

l e x p ( K , 2 - K 2 )  - 1 1

*.*; + ♦itij l j K ' d K ' ( 17

Y i i ( K )  "  K

D 1/6 rS I ( K ’ 2 - K 2 ) 2 f  . ( K '  )
r » - :  \ f x  

i: ■J | e x p (  K 2 - K  1 2 ) - l

I q  St 4 t
i , . L  + j  (^)T i l  4 b T  11

K ' d K '  ( 1 8 )

m, \ 1/6 r<5| (K,2-K2 )^fi(Kl )
u m i

*. *1 + 2 (^) *
1J brr t j

SL , 4 . T K ' d K '  ( 1 9 )

I. ,  T
the integrand functions <K . 1 are the terms in the secondwhere m e  xn --  T ĵ

brackets ({}) of equations (3) to (6 ), that is
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 ̂L = ( 1 ± n ) 2 + | n2 - 6n(n/4 ± Decs eii + 2 cos e.^l-n /4)

+ i i  =  n 2 s i n 2  9 i i

* L = sin2 eV, [ 1 - V  + 2n ( 6 1 + 6 2 n/4) + f n2 6 1 ] ij 1J

l|h = 1 - o Sin
1 J 8

2 « T ( 1 + <$2 '

where
(L,T)

cos 6 ..

1 J ( 1 +

K 2  + K ' 2 - 4 KA2

o 2 2(K - K' ) 
(L ,T)

2 KK'

(L1 T) 
cos 0^

( L , T)
KA.l

m .l ’(L >T)

2 kBT
and Do.l

a2 (kgT) 5 7 2 ™ . 1
— ------ - 4
8/2 n (hSL) P

The range oi integration in equations (16) to (19), when i = j is
identical to that defined in (13) but K /2 now becomes either
L T ° L,TKA^ or KAi according to what type of function is in the

integrand of those integral equations.

For i = 1 and j = 2, the range of integration for K' is
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*.L = rll (l±n) 2 + f  n2 - 6n(n/4 ± l)cos 0^  + 3 cos 0.^(1-n

T 2 . 2 qtn sin 0ii* u  =
2 . 3 2 a2 14 n 61]*.L = ij sin2 0Vj tl " V  + 2n ( 6 1 + 6 2 n/4)

*.T = ij * - 1 ”  * 6?>

where
(L,T)

cos 6ii

(IT - K ' ) 
(L >T)

K 2  t  K ' 2  - 4 KA|

2 KK’

(LXT)
cos 0..

(L,T)
KA.l

m .l 5(L,T)

2 kBT
and D »2 ( K d T , 5 ' V

°i 8/2 n (hS ) p

The range of integration in equations (16) to (19), when i j is
identical to that defined in (13) but Ka/2 now becomes either
KAL or KAT according to what type of function ^^j is ini l
integrand of those integral equations.

For i = 1 and j = 2, the range of integration for K' is



- l i a ­

a = k a2 ♦ (K2 ♦ KA2 - 2K KA ̂ )* all K

B = KA2 + (K2 + KA2 " 2K KA1)4 al 1 K

•y = KA2 - (KA2 + K2 - 2K KAj )* K < 2 KAX

= - KA2 + (K2 + KA2 - 2K KA1>‘ K > 2 KAj

6 = " KA2 ♦ (K2 + k4 + 2K KA all K

it should be noted that sound velocity in either KAj or KA2 should 
correspond to what kind of integrand function is in the integral

equat ion.
The limits of integration for K' when i = 2 and j = 1 are

KA„
KA1 + (K2 * KA2 -• 2 KA2K)Ì

<fed1 + (K2 + KA2 + 2K KA2 )è

-KA1 + (K2 + KA2 + 2K k a 2 ) 2

K «
/200

KAr
K > ----

/200

KAr
KA1 + (K2 +

oKA^ + 2K KA2)4 K ""2< --------
/20O

KA1 - (K2 + KA2 - 2K KA2)4

)4
KA0

KAj + 2(K + KA2 + 2K KA2 K > 2 
/200

1»H<« (KA2 + K2 - 2K KA2)4 1,93KA2 < K < 2 KA2

K > 2 KAr

i K > 1.93 KAr

= - KA1 + (KA2 + K2 - 2K KA^)

6 = - KAj + (K2 + KA2 + 2K KAr,)

In order to remove any confusion from the range of integration of 

K', this can be drawn for each case as follows:



Ranfte of integration of K1 for case i = l, j=2. 
a = Kh 2 - (KA2 + K2 - 2 KA1K)i



Range of integration of K for case i 2 , j-1 .

y*
 L
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APPENDIX 2

DETAILS OF THE SCATTERING MECHANISMS

Details of the three scattering mechanisms used in the 
calculations of the average mobility are given here, so as a 
more general expression for the latter quantity which is valid 

for the two-band model.

Acoustic Deformation Scatterings:
This scattering mechanism can be written:

t = (constant) T  ̂ K (1)acoustlc

According to Bir, Normantas and Pikus 119] the 
band acoustic scattering times are given by

T1 1
L= TO T 3/2K 1 ( 1 .0504 - 0.7628 n + 5.193

T 22

II H c 
r T - S / V 1 ( 1 .0504 - 2.0435 n + 3.6 n

T12
L= -T O
T-3/2R- 1 ( •567 n2 + .6632 n ) - 1

inter-and intra-

2 "1n ) (2)

-i
) /■“

N GO

(4)

The minus sign in T1 2 indicates that the band 2 was used as the 
reference,n = b/a (The ratio of the shear to dilatational deformation 
potentials). is a constant parameter given by [19]

LT „ =
/S  n h4 p s^

a m3/2 3/2
(5)
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Norton [54] has found that in order to fit the dark mobility data
t must be equal to 577 * U)-9. This value is equivalent to the o
use of a = 8.2 eV in the expression for Since a is left as a
fitting parameter in our calculations, the expressions (2) to (5) 

are consequently chosen.

Neutral Impurity Scattering :
The Erginsoy's formula [27] for the scattering of electrons 

by neutral donors is

1
O

m e mo
( 6 )

where the term inside the brackets is the scaled Bohr radius, mo
is the geometric mean mass which is taken to be equal to the density
of states effective mass and m is the conductivity effective mass.
N is the number of neutral impurities. In the case of neutral Cu N
impurities in C.e, Norton and Levinstein [281 have introduced a 
multiplicative factor A such that the neutral impurity scattering 

time in each band becomes
1.8758 x 105 m*T _________________ i- A (7)

N N
1 WN

where N = N - Nn - P (P is the density of free carrfers) and N A D

m* = _i (m is the free electron mass). A is subsequently used

as a fitting parameter.
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IonLised_ImpuriJ^2_J5ca^
The Brooks-Herring-Dingle formula [24] was used to calculate

the momentum relaxation Tj. for this
i

and it is given by

scattering mechanism in band i,

1 NI 11 e* k B 3 / 2  

Tli K2(2mi)i K3

b .
T- 3 ' 2 [ tn(b . +1 ) ------— 1 (8 )

1 b. + 1l

where k is the dielectric constant, 
ionised centers equal to P + 2ND

N is the concentration of

0 2 2
2 k m. k“ T Kl o n ' -

‘ n h2 e2 7  ’

P + N
P + (P + N ) ( 1 --- 55---) andu

K2 =
kBT

For ionised Cu impurities in Ge the equation (8 ) becomes

9.334 x 10 3 Nt
_ L  _ [ t n
TI. 1/2 3 3/2 1 m̂ ' K 1

where b, is now given by

14 2 * 2b 6.9366 x 10 T m. K 
1 1

(bi + O  - b .\ il (9) 
1

»P
and m* is the ratio ne/n^.
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The Total Scattering Time and Mobility:

The total intra- and inter-band momentum relaxation times 
are obtained as the harmonic sum over the three scattering processes, 

that is

Tij £ 1 )a S j  a
i , j = 1 , 2 ( 10)

where a represents the scattering process considered and t 12 - y t21

If the carriers receive negligible amounts of energy from 
the applied electric field, the current density j is then 
given as

2e
(2n)‘

[
o / 'V 3

fl V1 d k + J f2 V2 d k] ( 11)

where f^ is the non-equilibrium distribution of carriers in the
band i produced by the electric field, 
in the same band, fi is given by

is the carrier velocity

fi “ - h l  •
3  <j> ■ ,

-- —  T. P (O
3k

( 1 2 )

where E is the applied electric field, t ^i is the total momentum 
relaxation time in the band i and 4> i s  the zero-field distribution 
function in the same band i,

P1 = T -  (1 + Yij ^
ij
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mi . . .  1 1 22where y . ~ —  a.nd 6- — i _Tij 1 t12 t21

j can also be written as

i = o E = P eyE J o % ^

where y is the total mobility.By combining together equations 
(13), (1 2 ) and (1 1 ) the total mobility is then given by

3 L 3  3*01 GTUy K ---- ----
i 3K m1

Y3 j * 01 K2dK + { 0>o 2 K2 dK

P1 (K2)dK + [k 3 ^
> IK

e ^99  2 2°2 _i£ p^(K )dK
(14)

If the distribution function in light hole band can be obtained 
from that of the heavy hole one by the following relationship 

m 3/2. _ /_then the equation (14) reduces immediately to
♦oi ~ Cm2; 902’
equation 2 .5 . 4  which was the expression for the mobility used in 

the one-band model.
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APPENDIX 3

THE RATE OF PHOTOEXCITATION (o>ph)

We give in here a brief outline of the model of photoexcitation 
derived by Barker [14]. The effect of instantaneous optical phonon 
emission on the rate of photoexcitation is also discussed.

Model of Excitation Spectrum
It is assumed that a single hole is excited into the band 

for each photon absorbed from the radiation by the neutral 
impurities. The rate of generation of carriers by a flux of photons 
of energy hto is then proportional to the concentration of neutral 
impurities, the photoionization cross-section and the intensity 
of radiation. It is adopted a radiation field approximating to 
the room temperature blackbody radiation. The number of photons 
dn in the range of energy (ho, ho + dho) is of the Planck form

dn a (ho) 2 dho [exp(ho/k^Tr) - 1] (1)

where T^ 'v 300 °K.

If a photon of energy ho excites a carrier into the band with 
energy c, then by conservation of energy

e + Ea 'v ho (2)

where Ea is the activation energy. Only photons with energies 
in the range (e + Ea, e + Ea + dc) may excite carriers into the 
band in the range (e, e + dc). The number of photons in this range 
is proportional to dn. The excitation rate into the same range of 
energies is
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where g(e) is the density of states into the band, a(hw) is the

proportional to the transition probability into the band. This

where l  is a parameter determined by the matrix elements for 
the electron-photon interaction and the corresponding selection 
rules for the transition probabilities.

The Reduced Rate of Photoexcitat ion , one band mode 1
In order to derive this rate, we first determine the distribution 

of the newly excited carriers into the band. To this end a rate 
equation is set up

2
probability that a correct photon is absorbed and ]m | is

rate is just W w e), where W is the total excitation rate and 
oj is the normalized rate of excitation. W id̂ ^Cc ) is then

(3)

For room temperature radiation kgT^ 'v 0.025 eV, E^/k^T^ 'v 2eV,

(4)

T
f(e)
rec(e) ( 5 )

0
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where the first term is the excitation rate (eq. 4), the third 
and fourth terms are the net scattering rate out of state e by 
emission of optical phonons and Jac is the scattering rate due 
to acoustic phonons. If the emission of optical phonons occurs 
in a finite time (T ) but very much smaller than any other 
physical time associated with the scattering mechanisms, then 

equation (5) is reduced to

f(E + hüJop} _ f(c)W Ac' exp (-e/. T ) +B r T„„(e+hu>__)op op Top(F)
= O ( 6 )

A final assumption is that

T- 1 = t  ̂ = constantop o
e • h<» = .037 eVop

= 0 e < 0.037 eV

In the rate of photoexcitation, photon energies greater than 
0.23 eV have been removed by an InSb filter. The excitation rate 

can be drawn as follows

carrier energy
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The rate equation for region VI is

e + 4fuoo
AW( c + 5hoj ) ° exp( -------^  ) -op k TB r

f(e+5h% p) = o

Therefore the distribution function is
e+5hui

f ( G + 5tnj ) = AWt expl­op o V r
££) (e+h% p )\

Similarly the rate equation for region V is

e +4fioj
AW( c + 4hoj ) exp(------°P k..T

_££) f(e + 5h<i> ) f ( e +4hw )_°E 9 £ - = o

B r
- 1and the distribution function is that region when tq -*0 , is

e+4tiiij „  % e + 5 ^

f(c»4lw„n) = AW t Jexp(--. T QPXe+ftOqp) +exp(- PK f + ^ “‘op̂  1op op V r

The distribution functions for the other regions are obtained 
a similar way. Finally the rate equation for all carriers in

region I is
, . f (e -t-hu) )

. £ , \ f  (?_) ________ 9P—  + .1 = 0AWtc) exp (- ----) - ac
kBTr Trec TO

AWf *■ exp( - — -— ) - ^  E " 
kBTr

e+nhio
+ A 1 (e+nfio) ) exp(- ----°P k T

-SE) + J
n= 1 B r

(7)

i n

(8 )

= Oac
rec (9)
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Therefore the effective rate of photoexcitation is clearly given 
by the first and third terms of this equation. That is

5  ̂ e+nfiiDo
m . = A exp (-- -— ) E (e+nhu) ) exp(------- ^
Ph k„T n=0 opB r

(10)
k T B r

and the reduced rate of photoexcitation is defined as

¡ ¡ . s K b . ' A K  exp ( -K2 E (e+nhrn )£ exp(-   — 2 2 ) (u >ph ph Tr n=Q op k ^

where = -c- , the constant A can be obtained by the use of the
kBT

normalization condition, equation 2 .2 .6 .

Two-band Model:
The rate of photoexcitation into each one of the bands is 

derived by identical procedure of that of the one-band model. In 
the two-bund model carriers can migrate into any of the two bands 
after the emission of an optical phonon, and the probability of 
these transitions is proportional to the density of states of the 
final hand. Thus, for example, the rate equation for carriers 
in the region I, band i and 8 = 0  becomes

AW exp(- -) + - ii fi(e~fh% p ) + P . . - Ji-
kBTr P. ,+P. .li lj

f1 (E+hulop)
P .,+P . . J j Ji

M O + jaciree .l

0 ( 1 2 )
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where the second and the fourth terms correspond to the total 
intra- and inter-band scattering rate into the state e in band i 
due to the emission of optical phonons, respectively. The 
multiplicative factors are defined as

P . . 11
m .l

3/2

P. .+P . . it Ji m .l
3/* + m .j

and
P . . 3/2

P . , + P  . . 
J J J i

m . 
J

37I\  3/2' + m. '

where i,j = 1,2 and mi(m2) is the light (heavy) hole effective 
mass. The reduced rate of photoexcitation into the light and 

heavy hole bands are:

— 3a) . = v A K expph K2 f ]  
r

[1 2 Y 
1 + Y*

k)
£ exp(- 1 .434 n)] 
n=l

2 T= .05186B K exp( - K p-)
r

2 T_ = 1 .6BK exp (- K =r-)W . rph2 r

the constant B is obtained from the normalization condition 

(equation 2.2.6)

f (U1P h l
+ m . ) dK = 1ph2

Other procedures were also used with no important differences in

the final results.
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APPENDIX 4

THE ENERGY BALANCE EQUATION

We give here details for each one of the terras of the energy 
balance equation (equation 3.2.3) when the energy distribution 
of carriers is given by a Maxwellian function with carrier temp­
erature Te as a parameter. The energy balance equation gives a 
polynomial equation for the temperature parameter Te.

The total rate of energy loss relative to the bottom of the 
band due to recombination is

Z £ 
K

<t> ( K ) K

ii o 0 *-
3

j 
H f , V 2  ^  ̂ X Vexp ( -K elk 

* eT  ( K')>ree
fill)... .?p - k„T

4 30 
T

= W Co (kBTe) jQ exp(-Y) dY = O^TJWC^

where C is a constant that can be evaluated from the normalizationo
equation 2.2.5 and Cq is a numerical factor close to 1.

The equation 11, Appendix 3, is the appropriated expression 
for the reduced rate of photoexcitation. Thus the total rate of 
energy loss input into the band by the external radiation measured 
relative to the bottom of the band is then written

W f £ 
K

band
w . (K) ph

4 30 
T

(kBT)A
1 O

5
Z
n=0

(K2 _T
Tr

+
nfia)
___krjT B r

d + è
)

x exp [-(K2 T nfiio ___o£
~T 7 r

) 1 dK

= AQW(kBTr) a  + 3/2) ( 2 )
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Where A is a constant evaluated from the normalization equation
2.2.6 and is a numerical factor close to 1.

The net rate of energy loss into the lattice due to either
emission or absorption of acoustic phonons may be obtained from
two different methods, [13]. In one of them, the rate of increase 

dn
of phonons (~~jwith wavevector q is first derived. The net rate

dn
of energy loss in the lattice is then obtained by multiplying

by the phonon energy fi(û  and integrating over all phonon energies. 
This procedure gives the following expression for the rate of energy 
loss per carrier into the lattice

J(f) =
K

b:ind

dc D2 mQ- „ Z 1
q r

t f

dt 4n ph •> o
dq q3 (n 1)

(3)

J .

f(k) kdk
max

dq q
q+q

2

K.
2 _ c max 

n(1 i q-q 
2

f(k)k dk]

''max " (2 ln2 c max > ^  * "max = emax = °-°37 eV’
m Sa (=  ̂ ) is the minimum wavevector that a given carrier should

have in order to be able to emit acoustic phonons, p is the density 
of free carriers, and n^ is the equilibrium density of phonons.

In the second procedure, the total rate of energy loss (̂ j~) for 
a carrier with given energy e is first determined. This is carried 
out by summing over all possible emission and absorption of one- 
phonon processes, and the total rate of energy loss per carrier to 
the lattice is then derived by integrating dc/dt over the distribution 

of carriers, that is
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2k-otkmax
Z e J(f) 
K

band

de
dt a

f(k) kdk
O

(4)

k 2k+amux

i f ( k) kdk dq q3 n((]
0

The kind of distribution function we have to our disposal is the 
main factor which decides the type of procedure to choose. In the 
case of a Maxwellian function with only one parameter to determine, 
the equation (3) is the most favourable one. The integration over 
the q is numerically calculated. However if we assumed that the 
equipartion of energy is still valid in the range of temperatures 
(T < 20°K) we are dealing with, then the total rate of energy loss 
per carrier into the lattice has a simple form

where C is a numerical factor close to 1 and A is small quantity

Combining together equations (1), (2) and (5) a polynomial 
equation for Te is obtained

o
which depends on T. If CQ = 1 and A = 0 the expression (5) reduces
to the formula obtained by Conwell (13].

where

ao TO is the constant lifetime defined

in equation 2.2.8. It is noted that < i>
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l  « J(f ) 
K

band

de
dt

r,2 n
- 3 ^  i J
8n ph

2

f(k) kdk

2 k-a
f(k) kdk | dq q3(n^+l) 

0
(4)

2k+a
dq q3 n ]

The kind of distribution function we have to our disposal is the 
main factor which decides the type of procedure to choose. In the 
case of a Maxwellian function with only one parameter to determine, 
the equation (3) is the most favourable one. The integration over 
the q is numerically calculated. However i f we assumed that the 
equipartion of energy is still valid in the range of temperatures 
(T < 20°K) we are dealing with, then the total rate of energy loss 
per carrier into the lattice has a simple form 

8/5 n2 m 5/2 ( k_T l3/2 (5)de_ 
d t

8/5 D2 m 5/2 (k T )3/2 T
--------------------- 2---------------------------------- [ 1 -  Y~ 1 Cu + A

.3/2 ,4 en ph

where C is a numesrical factor close to 1 and A is small quantity 
which depends on T. If CQ = 1 and A = 0 the expression (5) reduces 
to the formula obtained by Conwell [13].

Combining together equations (1), (2) and (5) a polynomial 

equation for Te is obtained

Vo kBTr + 3/2) - Co kBTe + %  Te(V T) " °

where

» °2 » / /2 -B3/2’oa = ----
° ■ * . 42* h'* p n t *

t is the constant lifetime definedo

in equ ation 2.2.8. It is noted that <t> = to ' T
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l
K

band
e JCf) = g  = - °2 m2 f

— 3—  18H ph

2 k -a
f(k) kdk f dq q3(n^+l)

(4)

2k+amax
f(k) kdk ;O O

dq q3 n

The kind of distribution function we have to our disposal is the 
main factor which decides the type of procedure to choose. In the 
case of a Maxwellian function with only one parameter to determine, 
the equation (3) is the most favourable one. The integration over 
the q is numerically calculated. However if we assumed that the 
equipartion of energy is still valid in the range of temperatures 
(T < 20°K) we are dealing with, then the total rate of energy loss 
per carrier into the lattice has a simple form

ch_
dt

8/3 D2 m 5/2 (k T )3/2 ________2____ B c
n3'2 Ph4

l 1 - t - 1 °o + A (5)

where C is a numerical factor close to 1 and A is small quantity o
which depends on T. If = 1 and A = O the expression (5) reduces

to the formula obtained by Conwell [13].
Combining together equations (1), (2) and (5) a polynomial

equation for Te is obtained

A q  k QT r  ( l  -  3 / 2 )  -  C o  k BT e ♦  a Q  T ^ - T )  =  0

where
„ _2 5/2 3/2
8 0  m2 KB To a = ------------------

°  i 4 i
24 h p n T*

t xso the constant lifetime defined

'Te. i
" To ('T)'in equation 2.2.8. It is noted that <i>


