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Abstract: Biological and artificial intelligence (AI) are often defined by their capacity to achieve a
hierarchy of short-term and long-term goals that require incorporating information over time and
space at both local and global scales. More advanced forms of this capacity involve the adaptive
modulation of integration across scales, which resolve computational inefficiency and explore-exploit
dilemmas at the same time. Research in neuroscience and AI have both made progress towards
understanding architectures that achieve this. Insight into biological computations come from
phenomena such as decision inertia, habit formation, information search, risky choices and foraging.
Across these domains, the brain is equipped with mechanisms (such as the dorsal anterior cingulate
and dorsolateral prefrontal cortex) that can represent and modulate across scales, both with top-down
control processes and by local to global consolidation as information progresses from sensory to
prefrontal areas. Paralleling these biological architectures, progress in AI is marked by innovations in
dynamic multiscale modulation, moving from recurrent and convolutional neural networks—with
fixed scalings—to attention, transformers, dynamic convolutions, and consciousness priors—which
modulate scale to input and increase scale breadth. The use and development of these multiscale
innovations in robotic agents, game AI, and natural language processing (NLP) are pushing the
boundaries of AI achievements. By juxtaposing biological and artificial intelligence, the present
work underscores the critical importance of multiscale processing to general intelligence, as well as
highlighting innovations and differences between the future of biological and artificial intelligence.

Keywords: artificial intelligence (AI); decision making, attention; multiscale computation; environmental
neuroscience; prefrontal cortex; exploration-exploitation; information search

1. Introduction

Recent work suggests that the brain’s computational capacities act over multiple spatial and
temporal scales and that understanding this multiscale ‘attention’ (broadly defined) is critical for
explaining human behavior in complex real world environments [1–6]. Trade-offs between choosing
a familiar restaurant versus trying a new one (exploration versus exploitation) or spending money
now versus saving it with interest for later (intertemporal choice) are both common examples where
multiscale processing can allow individuals to evaluate the consequences of alternative courses of
action at different spatial and temporal scales and choose accordingly [7,8]. Indeed, one can reasonably
argue that many of the challenges we face, both individually and collectively, are problems that require
trading-off the value of information and resources over different scales. This is a problem that is central
to both biological and artificial intelligence (AI). Though AI has historically been forced to focus on
more narrow single-goal computational architectures [3,9–11], much of the progress made in the latest
“AI spring” are, as we describe below, achievements of multiscale processing. Such advances are
allowing AI to adaptively generalize across contexts of time and space, to increasingly satisfy what
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a recent definition of AI intelligence characterized as “an agent’s ability to achieve goals in a wide
range of environments” [12]. Further progress in developing and understanding multiscale processes
is recognized as necessary for developing efficient and adaptable AI systems [9,13–15], but it is of
course also central to understanding biological intelligence.

To better understand multiscale processing, researchers must answer a number of questions.
How general are problems in multiscale processing across tasks and domains? What evidence is there
that biological and artificial intelligence benefit from multiscale processing? What architectures best
achieve multiscale processing in biological and artificial intelligence? How can these architectures
move from fixed to adaptive multiscale intelligence? What environmental conditions benefit most
from multiscale processing? Moreover, how can we develop predictive behavioral models using
a more comprehensive and generalizable multiscale theoretical framework of biological cognition
and AI [16,17]? The requirement to integrate information over spatial and temporal scales in a wide
variety of environments would seem to be a common feature underlying intelligent systems, and one
whose performance has a profound impact on behavior [16–21]. Our focus here is on addressing the
above questions by demonstrating the generality of multiscale processing in biological and artificial
intelligence and, by juxtaposing them, gaining insight into the architectural advances that underlie
innovations in multiscale intelligence more generally.

A key insight is that biological cognitive systems often handle multiscale problems by adaptively
modulating ‘attention’ across multiple scales (through mechanisms which can include variable learning
parameters or the degree to which working memory is considered) [22–25]. Thus, intelligent systems
do not just set a simple weighting (e.g., Gaussian or exponential) across temporal and spatial scales,
but rather, adaptively modulate that weighting in light of circumstance. An overarching analogy
is foraging, where an animal must decide how to move in relation to a given resource distribution
(Figure 1). In a typical foraging problem, an animal must both consider the opportunities under
its nose, as well as the larger global context in which it finds itself. This global context contains
a variety of scales and associated distributions: where are other resources, how plentiful are they,
with what probability do they persist, how does access to them change with time of day, season,
competitors, predators, and so on. A popular solution across animal species is called area-restricted
search, which modulates the animal’s movement through space, from global to local, in direct response
to resource encounters. In other words, area-restricted search adapts the scale of an animal’s attention
in response to past payoffs [8,26]. This strategy generalizes across numerous situations which call
for similarly adaptive multiscale solutions. For example, in a multi-armed bandit problem, where an
individual must choose among options which vary in their payoffs over time, individuals must assess
choices by integrating payoffs over repeated samples, evaluate potential temporal trends in payoff

distributions, and explore alternatives appropriately, in order to exploit them optimally in light of
time horizons, risk tolerance, and so on [27]. Analogous to area-restricted search, solutions similar
to win-stay lose-shift are common in multi-armed bandit problems [28–30]. Other examples of the
generality of multiscale processing include developing general problem solving and information
search strategies [31,32], designing versatile AI systems [9], planning efficient business management
strategies [33], and establishing a comprehensive understanding of mental illness [34]. In these
challenging real world environments, adaptive agents have to evaluate the long-term costs of current
solutions, find and evaluate alternative solutions, and vary the scale over which these solutions are
evaluated in light of the current context [31].
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Figure 1. Environment Requiring Multiscale Processing. (Upper Right) For the animal at the tree in 
the front, the environment can consist of a local environment and a global environment. Its survival 
depends on its ability to process information at both local and global levels. For example, the larger 
environment may provide better opportunity for food sources and/or pathways for escape when 
predators appear. (Lower Left) The optimization process in machine learning and animals involves 
some sort of gradient ascent (or descent) where the state or agent follows the local gradient. This space 
can be considered continuous—Such as with “odor-scapes” of smell gradients—Or discrete—With 
different trees representing different patches, similar to multi-alternative choice environments (Upper 
right image adapted and modified with permission from Akaishi and Hayden, 2016, Neuron, Cell 
Press [35]). 

In practice, research on multiscale processing is difficult, because many experimental paradigms 
focus on short spatial or temporal scales. In the studies of spatial processing, the experimenters may 
assume that the animals do not process information beyond the confines of the experimentally 
designed space. These experimental constraints and accompanying assumptions are due to 
complexity issues for researchers, including creating experiments with long enough duration to 
imitate real world long-term decision making, or overcoming challenges in developing models that 
encompass multiple spatial scales. Yet, expanding the spatio-temporal breadth of experiments often 
reveals multiscale capacities that were not previously expected. For example, grid cells were found 
by expanding the spatial scale beyond that previously used in studies of place cells (i.e., moving rats 
to larger size arenas for exploration) [36,37,38]. 

Studies on temporal processing have similar constraints, but also have revealed neural correlates 
of temporal scale. For example, multiple temporal scales are encoded in the firing patterns of neurons 
[23,39,40], and temporal properties of individual neurons are related to their specific functional roles 
in working memory tasks [41]. In the designs of behavioral tasks, a “trial” has been used as the basic 
unit of temporal organization of the experiments. It has been historically assumed that the 
information processing in each trial is independent from information processing from other trials, 
and that once one trial completes, all the information processing is reset [42,43] (e.g., such as in the 
commonly used drift-diffusion models used to explain processes of perceptual and reward-guided 
decision making [42,43,44]). However, sequence effects and path-dependence are common in 
behavioral science, with even studies of perceptual discrimination revealing carry-over effects from 
the prior trials [45,46,47,48]. In widely reported behaviors in behavioral economics, people’s choices 
tend to show temporal dependencies across multiple time-scales [49]. While these behaviors have 
been previously regarded merely as “anomalies” [50,51], it may be more natural to think that 

Figure 1. Environment Requiring Multiscale Processing. (Upper Right) For the animal at the tree in
the front, the environment can consist of a local environment and a global environment. Its survival
depends on its ability to process information at both local and global levels. For example, the larger
environment may provide better opportunity for food sources and/or pathways for escape when
predators appear. (Lower Left) The optimization process in machine learning and animals involves
some sort of gradient ascent (or descent) where the state or agent follows the local gradient. This space can
be considered continuous—Such as with “odor-scapes” of smell gradients—Or discrete—With different
trees representing different patches, similar to multi-alternative choice environments (Upper right
image adapted and modified with permission from Akaishi and Hayden, 2016, Neuron, Cell Press [35]).

In practice, research on multiscale processing is difficult, because many experimental paradigms
focus on short spatial or temporal scales. In the studies of spatial processing, the experimenters
may assume that the animals do not process information beyond the confines of the experimentally
designed space. These experimental constraints and accompanying assumptions are due to complexity
issues for researchers, including creating experiments with long enough duration to imitate real world
long-term decision making, or overcoming challenges in developing models that encompass multiple
spatial scales. Yet, expanding the spatio-temporal breadth of experiments often reveals multiscale
capacities that were not previously expected. For example, grid cells were found by expanding the
spatial scale beyond that previously used in studies of place cells (i.e., moving rats to larger size arenas
for exploration) [36–38].

Studies on temporal processing have similar constraints, but also have revealed neural correlates
of temporal scale. For example, multiple temporal scales are encoded in the firing patterns of
neurons [23,39,40], and temporal properties of individual neurons are related to their specific functional
roles in working memory tasks [41]. In the designs of behavioral tasks, a “trial” has been used as
the basic unit of temporal organization of the experiments. It has been historically assumed that the
information processing in each trial is independent from information processing from other trials,
and that once one trial completes, all the information processing is reset [42,43] (e.g., such as in the
commonly used drift-diffusion models used to explain processes of perceptual and reward-guided
decision making [42–44]). However, sequence effects and path-dependence are common in behavioral
science, with even studies of perceptual discrimination revealing carry-over effects from the prior
trials [45–48]. In widely reported behaviors in behavioral economics, people’s choices tend to show
temporal dependencies across multiple time-scales [49]. While these behaviors have been previously
regarded merely as “anomalies” [50,51], it may be more natural to think that multiscale processing has
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evolutionary significance beyond the narrowly-defined rational theories of behavior that assume an
independence between trials that is unlikely in the real world [52–55].

In what follows, we will explore the thesis that multiscale processing is central to biological and
artificial intelligence. We argue that, in fact, a multiscale architecture that can effectively modulate
between local tasks while also considering multiple global goals and contextual factors is necessary for
agents to perform well in dynamic and uncertain environments approaching real world complexity.
We believe that both fields stand to gain from a common understanding of this problem. To do this,
we first focus on experimental and theoretical investigations aimed at understanding multiscale
processing in the brain and biological systems more generally [35,56–66]. We start with temporal
processing and then move to spatial processing, before tackling the neural underpinnings. In the
second section, we focus on multiscale AI. There, we will first explore the many generalist multiscale
architectures that have given rise to AI’s recent achievements. Then, we will focus on in situ
environments in robotics and game AI, where AI is currently facing some of its most challenging
applications. Finally, we close by exploring some recent advances at the interface of neuroscience
and AI.

2. Bias, Inertia, and Habit Formation in Local Environments

In stable or slowly changing environments, where the recent past reliably predicts the future, it is
computationally efficient to narrow down the range of options at each decision point. This can enhance
efficiency by increasing decision speed and reducing computational costs. Put simply, if the best choice
of ice cream in the recent past was vanilla, then chances are it is the best choice now, and you can
forego the sampling of other flavors. In this section, we will describe two formal demonstrations of
this narrowing of the temporal scale: decision inertia and habit formation.

2.1. Decision Inertia

Decision inertia is the influence of previous decisions on current decisions, even when the
criteria for decision making should make those decisions independent. The presence of decision
inertia suggests multiple temporal scales in decision making [63,65,67]. Akaishi et al. [63] examined
participants decisions in a two-direction motion discrimination task and found that subjects made
repeated choices across trials, in which a decision in a previous trial biased the decision processes
in subsequent trials. Crucially, this bias also accumulated across trials [63] (Figure 2, the left panel).
This observation of accumulating bias can be explained by the multiple effective temporal scales of
decisions. In other words, the choices made on each trial are not just a choice about the immediate
sensory environment of one trial, but also a decision about the states of the environment extending
beyond a timescale of one trial. Thus, the temporal scales of neighboring decisions overlap (Figure 2,
the right panel).

Another important message that can be derived from the right panels of Figure 2 is that the
shorter time scales (upper panel) and longer time scales (lower panel) of information processing are
overlapping. Such overlap can be observed in the equations of the best model explaining the behaviors,
or decision variable DV related to the choice repetition probability P for a subject to make a choice C of
“left” (C = −1) or “right” (C = 1) per trial, of subjects [63]:

CEn = CEn−1 + α(Cn−1 −CEn−1)

DVn = εMn + βCEn

Pn = 1/(1 + exp(−DVn)

Abbreviations are CE for choice estimate, C for choice in each trial n, M for the motion stimulus
presented in each trial, and α, ε, and β as fitting parameters. DV, which influences the ultimate choice,
consists of the short-term effects of the motion stimulus in the current trial, plus the influences of the
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previous choice (which creates a bias towards repetition). Thus, like area-restricted search and some
AI architectures that we will discuss later, CE contains a memory of past experience that is used to
inform present choices.
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same choice (A). The last trial (X), in the sequence AX, AAX, etc. on the independent axis in the figure, 
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Figure 2. Behavioral Manifestations of Multiple Temporal Scales of Computations. The left panel
shows the choice patterns across multiple trials. The x-axis indicates the number of repetitions of the
same choice (A). The last trial (X), in the sequence AX, AAX, etc. on the independent axis in the figure,
can be either A (repetitions of the same choices in the last trial) or B (the alternative in the last trial).
The y-axis shows the probability of choosing A in the current trial. The right panel displays the scheme
of multiple temporal scales in perceptual decision making, with two possible models. The black lines
below the pictures of the stimuli of random dot motions indicate the effective length of computations.
In the upper panels, the effective length is confined within a single trial (the model where each trial is
independent), whereas the lengths in the lower panels are extended beyond the windows of single
trials (the model where longer timescale choice bias exists). The plot on the left indicates that prior
choices strongly bias future choices for the same task in the same environment, following the lower
model. (Left image adapted with permission from Akaishi et al., 2014, Neuron, Cell Press [63]).

In summary, decision inertia exemplifies a common finding in biological cognition of using recent
information to inform decisions in the present. It is perhaps the simplest form of multiscale processing,
but it is ubiquitous. Moreover, in a world with spatio-temporal autocorrelations—where recent and
close encounters predict present circumstances—decision inertia may be the best choice when decisions
must be made quickly. Moreover, the research described above also demonstrates that this narrowing
is adaptive to persistence in the context [63].

2.2. Habit Formation

A critical multiscale issue for brains of all species is how to prioritize, allocate attention to, and
even automate, the processing and execution of an overwhelming amount of simultaneous sensory
information about local tasks, while considering larger global contexts and changing environments.
While a detailed analysis of one’s surrounding can lead to more accurate decisions, costs may prohibit
an agent from repeating the same analysis each time they enter a similar environment (e.g., walking
to one’s workplace routinely). Instead, habit formation occurs when repetitive computations are
streamlined, which can greatly increase computational efficiency without the loss of performance in
static environments. Habit formation chunks parts of action sequences into an aggregated unit [68–73].
Patterns of neural activity across multiple brain areas show corresponding changes, as the behaviors
of repeated actions exhibit signs of the habit formations. Reaction times also get shorter [70].
Remarkably, patterns of reaction times also show increasing structural organization: several actions
are chunked together and the time intervals between the chunked actions get smaller compared to the
intervals of non-chunked actions [68,74]. The increasing behavioral organizations are reflected in the
patterns of changes in neural activity in cortical and subcortical brain areas [75,76]. For example, as the
habituation process proceeds when monkeys perform repeated sequential movements by touching
specific parts of a screen presenting binary choices, the single-unit neural activity in their medial
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frontal areas gradually shift from the more anterior areas (pre-supplementary motor areas) to the more
posterior areas (supplementary motor areas) [75,77]. Similar shifts of anterior to posterior brain areas
have been observed in fMRI activity patterns as well [78]. These patterns of the behavioral and neural
activity are summarized in the theories of hierarchical reinforcement learning [69].

What causes these patterns of habit formation is still debated. Some researchers claim that these
habit formation processes occur as a result of reward-guided learning [79]. Still other researchers posit
that reward is not necessary for habit formation and instead habits are the result of a bias towards
repeating previous choices, even if that choice no longer provides value [59]. There are likely multiple
mechanisms driving habit formation, such as a drive towards repeating easier tasks to minimize mental
effort [6,80], as well as multiple types of both maladaptive and adaptive habits rather than just one
category of habits [81]. Nevertheless, the situations examined so far suggest a critical role of uncertainty
in decision processes. Redish and his colleagues examined the deliberation-like behavioral and neural
activity pattern in rats performing modified T-maze tasks [82,83]. In the analysis of behavior, the
deliberation-like behavior at the decision point of the T-maze decreases as the learning proceeds in
the same experimental condition. Consistent with this behavioral change, the neural activity in the
hippocampus and related brain areas progressively show fewer patterns of deliberation-related neural
activity (i.e., less mental wandering around the spatial locations between the two arms of the branching
point). Instead of always considering each option with the equal distribution of time, the neural and
behavioral patterns progressively show more fixed patterns and the exploration of fewer alternatives.
Thus, this focusing of the mental processes on a fixed course of action makes the computation more
efficient if the environment does not change drastically, but at the risk of future bias if the environment
starts becoming more dynamic. However, whether such focusing of mental processes results from
primarily from mentally “replaying” recent choices (choice bias) more frequently, or replaying the best
calculated choices (value-guided) more frequently, remains an interesting topic of future research [84]
(replay is discussed in more detail below).

3. Multiscale Decision Making in the Global Environment

The tendency of making computations more efficient in the local environment is a double-edged
sword. Local adaptation, especially the narrowing down of the computational scope, is problematic
in terms of opportunity cost. That is, with the narrowly tuned optimization processes, the animal in
the environment can miss the crucial resources that could be available if the animal maintains larger
scale computations about the wider environment (Figure 1). Therefore, it is highly likely that animals,
including humans, are equipped with the capacity to counteract the tendency toward local scale
computations, which is reflected in the inertia and habit formation described above. The movement
of the research community to understand such global computation has a long history [8,26,83,85,86].
One research area that examined decisions of multiple time scales is foraging theory [87].

Foraging Decisions

Foraging decisions routinely require trading-off short-term opportunities for exploitation against
long-term opportunities for exploration. In many cases, exploration is a shorthand for the expected
time allocated to move to or find a new resource patch. Multiscale optimization is necessary because,
in the short-term, the gains that could be harvested from the present patch are greater than the gains
that will be available during travel. If an individual is a greedy optimizer, incapable of optimizing over
longer time scales, they will stay in a patch until the rate of resource acquisition is equal to or less than
the rate that would be acquired during a travel period. Most animals leave patches long before this.

The solution to this multiscale optimization problem is captured well by the marginal value
theorem (MVT) (Charnov 1976) [88]. For the MVT, an animal is assumed to forage in a world of resource
patches, with an infinite time horizon, and one simple decision: when to leave a patch. Foraging in
a patch depletes its resources, leading to a reduction in the resource intake rate, but traveling to a
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new patch costs time, during which no new resources are acquired. Charnov (1976) showed that the
solution to this problem was

R(t)′ =
R(t)
t + T

where the instantaneous rate of resource intake at a patch, R(t)′, equals the long-term average rate across
all patches, where R(t) is the cumulative resources acquired in each patch, t is the time spent foraging
in that patch, and T is the time spent traveling between patches. Many animals show qualitative
consistency with this model, for example, by staying in patches longer when the travel time between
patches increases [83]. However, they nonetheless frequently leave the patch long before it is depleted
in favor of higher average long-term gains.

Using operant scheduling paradigms, psychologists have demonstrated this in the laboratory
by giving animals the choice between two levers, one with a progressive-interval schedule (in which
the time or presses between rewards increases), and one with a relatively long fixed-interval
schedule (time or presses are fixed). However, in this paradigm, a fixed-interval choice also resets
the progressive-interval choice, much like a travel-time between patches. This work has shown
that animals such as pigeons and chimpanzees choose the fixed-interval schedule, even when the
progressive-interval schedule would pay off sooner [89–91], resetting the progressive-interval near
the point predicted by the MVT. Similar optimal strategies have been found for human memory
foraging [86] and information search [92].

Studies of foraging decisions in neuroscience have helped to enhance our understanding of the
neural processes that might guide this trade-off [64,87,93,94]. The hallmark of such foraging tasks is
the superimposition of computations at the shorter time scale (a trial) and the longer time scale (a block
of trials). For example, in the study by Kolling et al., subjects demonstrated a capacity to dynamically
modulate choice between safe and risky alternatives, in response to a changing global context [64].
Over a fixed number of trials, subjects were tasked with making a decision between high risk/high
reward or low risk/low reward options. The subjects were also required to reach a certain threshold of
accumulated reward within a block of trials. If the threshold was not reached, all the accumulated
rewards were removed, and the subjects received nothing. If the amount of accumulated rewards from
the outcomes of a series of risky decisions was far away from the target threshold toward the end of
the block, the subjects felt pressure to make even more risky decisions, which had a higher reward
magnitude, but a lower probability of success. Kolling et al. demonstrated that this conflict between
short-term (safe options) and long-term (risky options) was mediated by the dorsal anterior cingulate
cortex (dACC), which we discuss further below. The tendency to take a risky choice has been regarded
as a stable trait of an individual, but the study results showed that contextual global factors can rapidly
modulate the risk-aversion tendencies of human participants in a dynamical manner.

In another experiment demonstrating multiscale decision making, subjects performed two
tasks [66] (Figure 3). One task was to push a button and receive an outcome based on a predetermined
schedule of reward rates (Figure 3a). For example, in the schedule of decreasing reward rates, the
reward amount and its probability of occurrence were high in the beginning of the task block and later
decreased. In the schedule of increasing reward rates, the opposite trend was true. The second task was
a patch leaving decision, in which subjects decided whether to stay in the current environment (patch)
or leave to the other environment (patch) (Figure 3e). The subjects’ valuation of the prospects of their
current patch compared to the value of leaving involved the interpolation about the trend of reward
rates in the future, which were represented simultaneously in the dACC. Comparisons with a simple
reinforcement learning model (RL-simple) demonstrated that human participants made decisions
based on the instantaneous reward rate and the reward rate trend. The RL-simple model failed to
do this, “integrat[ing] historical and recent rewards into a single value” [66]. When performance
depended on the reward rate trend, humans substantially outperformed RL-simple. Better models
showed that the leaving decision was programmed to land the subjects in the patch whose reward
rates were between the good (increasing) and the bad (decreasing) patch (Figure 3a, the line of default
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patch in red). The reward experiences in short-term periods in the immediately preceding past showed
the positive influences favoring staying decisions and the long-term aggregate reward experiences in
the total past periods showed negative weights favoring leaving decisions (Figure 4). This negative
weight in the long-term aggregate may seem odd, especially considering that the reward experiences in
the distant past in the current patch reinforce the decision to leave the current patch. This may reflect
the subject’s knowledge of the longer scale task structure, in which the initial rich reward patches
became poor patches, and vice versa. Alternatively, in the known phenomena of contrast effect, the
recent reward experiences are interpreted in the context of the long-term reward averages. Thus, the
apparent negative effects of the distant reward experiences may not reflect the simple local negative
influences of these experiences but the consequences of the multiscale computations, in which local
events and global contexts are compared.
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Figure 3. Patch Leaving Task used in the study by Wittmann et al. In this task, subjects decided whether
to stay in the current patch or leave to another patch, relying on the experiences of past actions and
reward outcomes. (a) Task flow. The x-axis is time steps, at which subjects take one action. The y-axis is
an average reward rate. The subjects are either in the patches with gradually increasing reward rates
(Increasing patch: the line in blue), or in the patches with decreasing reward rates (Decreasing patch:
the line in green). The subjects take one action at each time step and receive a reward or non-reward.
Then, after some time steps, they decided to stay or leave at the time predetermined by the experimenter
(the thick vertical black line). After this patch leaving (staying) decision (the period right side of the
thick vertical black line), the subjects continue the cycles of taking an action and receiving a reward
(or non-reward). (b) Trajectories of average reward rates. There are several possible programmed
trajectories for both increasing patch and decreasing patch. (c) Calculations of the average reward
rates. The average reward rate is calculated by dividing an amount of the reward at each time step by
a probability of reward occurrence at each time step. (d) Sequence of actions and rewards. There are
cases in which a reward follows an action (yellow contents in buckets), or cases in which a reward does
not follow an action (empty buckets). The amount of the content corresponds to the amount of the
rewards. (e) Patch leaving decision. After the presentation of options (Stay or Leave), the subjects have
to respond within 2000 milliseconds and the display of the chosen option appears 800 milliseconds after
the decision response (Image adapted with permission from Wittmann et al., Nature Communications,
2016; Nature Publishing Group [66]).
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Figure 4. The weights assigned to the past reward experiences on the patch leaving decision in the
study by Wittman et al. (a) The influences of the past rewarding events occurring in each past time
periods on patch leaving decision. The x-axis indicates the past time periods (1–3, 4–6, 7–9, 10–12, 13–15:
the lower numbers mean the proximity to the current time). The y-axis shows the weights on the patch
leaving decision: positive values signifies influences for staying in the current environment and the
negative values means the influences for leaving the current patch. Blue bars are the weights calculated
from actual data of the subjects. The green bars are the weights calculated from the simulated data
generated by the simple reinforcement learning (RL) model fitted to the actual subjects’ data. (b) The
weights calculated for the short-term and the long-term reward rates on the patch leaving decision.
The long-term (average) reward rates act to bias decisions for leaving the current environment and the
short-term (last) reward rates influences decision for staying in the current patch (Image adapted with
permission from Wittmann et al., Nature Communications, 2016; Nature Publishing Group [66]).

In a related study, Constantino and Daw found that multiscale processing also explains foraging
behavior better than standard models of reinforcement learning [95]. Empirical comparisons between
a model with long-term temporal scales based on the marginal value theorem and a model with
short-term temporal scales (temporal-difference learning), a very similar RL-simple-like model to
that in Figure 4, found that accounting for additional long-term temporal scales explained subjects’
behavior better (Figure 5) [95].

Similar promising results of model comparison in multiscale computation were also obtained in
the previously discussed study by Wittmann et al. [66], and additional studies in recent years [56–62].
Thus, mounting evidence suggests that the typical approach to information processing in humans
is multiscale processing. For example, even a semantic memory search in category fluency tasks
resembles optimal multiscale strategies for foraging in a patchy environment, following the predictions
of the marginal value theorem [86].

An important future goal is to create multiscale neural computational models that better predict
more complex real world behaviors [96] (many of which can be directly understood through the
general foraging paradigm [8]). Inspiration for multiple temporal or spatial scale computational
models may also be found in the physical and mathematical sciences. Certain search algorithms
that simultaneously operate over multiple scales can be highly efficient at solving complex problems,
including the previously discussed foraging situations, where animals need to explore both the area
around local patches to properly assess each patch value, as well as explore over long distances for
(potentially) higher value patches. As noted above, the evidence suggests that most animals do this by
engaging in a process called area-restricted search, with local search in response to recent resource
encounters, and only giving up slowly as encounters with resources diminish [26,97]. In contrast to
Lévy flights, which are multiscale only by sampling from a fixed distribution of travel distances over
multiple scales [26,98–100], area-restricted search adapts the spatiotemporal search scale in response to
context, much like the attention processes that we will see later in the Multiscale AI section. Though the
multiscale property of Lévy flights have been shown to outperform Brownian motion [26,101,102],
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the adaptive multiscale search in area-restricted search outperforms Lévy flights, and can also produce
power law distributed search path lengths [103–105].
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Figure 5. Model Comparison between Temporal Difference Learning and Marginal Value Theorem.
(Left) The panel shows the Bayesian information criterion (BIC) result of the model comparison between
the model of Marginal Value Theorem (MVT) and the model of temporal difference (TD) learning.
The TD model is similar to the simple RL model in Figure 4. The red bars with values above zero
refer to the subjects whose behaviors are better explained by the model of MVT, whereas the blue
bars with negative values refer to the subjects whose behaviors are explained better by the model
of temporal difference learning. (Right) These two tables summarize the MVT and TD models that
were compared in the left plot. The MVT model optimizes undiscounted reward rate, whereas TD
optimizes cumulative exponentially discounted reward with a free discount rate. For more detailed
model information, see Constantino and Daw [95]. (Image adapted with permission from Constantino
and Daw, Cognitive, Affective, & Behavioral Neuroscience, 2015; Springer [95]).

4. Neuronal Bases of Multiscale Computations

4.1. Dorsal and Ventral Medial Prefrontal Cortex

What neuroanatomical regions are most critical in modulating the interplay between local and
global computations? There have been several important experimental results providing insight for
this question in foraging research, by differentiating between “within-state” (local) and “state-change”
(global) decisions [106]. In within-state decisions such as many economic decisions, the agent makes
choices based on relative values of the immediate options presented to them. Within-state decisions are
by far the most commonly studied in decision neuroscience [107,108]. In global state-change decisions,
the agent is computing the total value of switching to a new environment (or different global state),
based on a cognitive map of probabilistic relationships between stimuli, actions, and outcomes created
from previous experiences [106]. As briefly described above, several researchers have found adaptive
global state-change decision-making—a clear sign of multiscale processing—to be strongly related to
activity in the anterior cingulate cortex (ACC), the neighboring dorsomedial prefrontal cortex (dmPFC),
and often brain subregions directly dorsal or anterior to the ACC (e.g., the anterior medial prefrontal
cortex or the pre-supplementary motor area) [106].

The ACC has multiple attributes that make it suitable for performing global computations,
including sensitivity to both current rewards and trends in reward [66], sensitivity to the rate of change
of environmental variables [22], very long integration time constant neurons for tracking slow changes
in reward rate [40], and the capacity for tracking multiple timescales simultaneously [23,106,109,110].
The involvement of the dmPFC is also expected to play a role in global decision making, since it
is generally active when agents explore environments, and is connected to both subcortical reward
centers and motor circuits [106]. In addition, the orbital frontal cortex (OFC) has been shown to
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track an agent’s previous states, which may allow a comparison between previously sampled local
environments for combined local-global decision making [110–113].

4.2. Lateral Prefrontal Cortex

The dorsolateral part of the prefrontal cortex (PFC) plays important roles in modulating the
processes occurring in other parts of the brain through extensive anatomical connections [114–117].
By transmitting top-down signals, often associated with mechanisms of attention or other executive
functions, the global representation of the agent’s task context influences the more local processing of
stimuli or simple motor actions [118]. The importance of such hierarchical information processing
for managing mental resources and connecting multiple scales of computation has been recognized,
but mapping the full architectural and theoretical framework behind the PFC’s higher level executive
control and the modulation of lower level processes across the brain has remained elusive [119].
The recent interest in artificial analogues to this top-down attention and executive processes in
AI, especially research about multiscale architectures for neural networks, is providing a renewed
interest in the neuroanatomical substrates of top-down modulations within hierarchical and multiscale
computations [119,120]. Note that such biological top-down attention is distinctly different from
(but complementary to) the bottom-up attention processes, based in the temporoparietal cortex and
inferior frontal cortex [121], which are critical for tracking and prioritizing new stimuli in dynamic
environments and may have multiscale relevance, especially for real world autonomous robots [122].

Generally, further understanding of how and why such biological architectural organization
provides increased computational efficiency, power and adaptability from the perspective of
computational algorithms are critical questions for the neuroscience community to address in
the next decade. Inspiration from the AI community will facilitate the understanding of this
hierarchical/multiscale organization, especially as more intricate artificial neural network structures
are explored to improve the performance of applications in dynamic environments [13].

4.3. Cellular Mechanisms

There has been increasing recognition of the importance of neural representations of multiple
temporal scales in memory and cognition. The influential work by Xiao-Jing Wang and colleagues
reported analyses of single unit activity in cortical areas of monkeys performing behavioral tasks
(Figure 6) [23,40]. This work demonstrated a hierarchical ordering in the timescales of temporal
autocorrelation in cortical firing. With sensory areas exhibiting shorter timescales of temporal
autocorrelation, parietal areas showing intermediate timescales, and prefrontal areas showing the
longest timescales, which ranged from milliseconds (sensory areas) to seconds (prefrontal areas).
This maintenance of information over various timescales is useful for tracking trends over longer
periods of time, as well as rapid updating and responses.

The neuronal basis of multiple scales of computation has been considered in memory research
as well [123]. The discovery of place cells and cells with grid-like patterns [37] provides a promising
framework, allowing an agent to perform detailed computations at both global and local scales for
complex tasks [16,17,124,125]. This is analogous to the time scales in the foraging paradigms discussed
in previous sections, where local and global information must be incorporated into optimal behavioral
accounting [126]. Additionally, researchers have observed that, after an exploration or short-term
foraging event, a “replay”, or reenactment of the neural activity patterns that occurred during the
learning event, can occur in the hippocampus and cortical areas (especially the entorhinal cortex), that
may allow for credit assignment computations [4]. Some evidence exists that these grid cell capabilities
could be useful during tasks that require multiscale computation, such as calculating shortcuts from
previous movement trajectories [84,127], predicting the attributes of unexplored regions (i.e., evidence
has been observed for “preplay” in rats [128], a possibly critical feature of multiscale computation),
and performing future planning during goal-directed behavior [82,129,130].
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Figure 6. Multiscale Temporal Representations in Single Unit Activity. A figure panel from Bernacchia
et al. (2011) The x-axis shows the time scale (in number of trials) in which past experiences can affect
the firing rate. The y-axis indicates the probability density distribution of neurons having different time
scales. The densities left of the point of 100 = 1 trial shows the neurons with time scales shorter than
a single trial, whereas the densities right of this point imply the neurons with time scales longer than one
trial. There are substantial number of neurons showing the traces of memory carrying the information
longer than a single trial (Image adapted with permission from Bernacchia et al., Nature Neuroscience,
2011; Nature Publishing Group [23]).

Promisingly, grid cell behavior has been observed directly in humans with single-neuron scale
electrode data [131], consistent with indirect fMRI observations of grid-like fMRI response patterns in
humans, during both navigation and conceptual thinking [125,132]. Significant numbers of grid-like
cells (and place cells) were observed in multiple brain regions, with most in the entorhinal cortex,
hippocampus, and cingulate cortex [131]. Thus, there is potential for future experiments to expand
the roles of grid cell computation to other species and additional non-movement related behaviors,
with several research groups recently putting forth detailed computational models for how grid cells
and place cells may interact to create flexible cognitive maps containing predictive representations
(e.g., multiscale “successor” representations) of combined spatial information, valuation, and other
conceptual knowledge [16,17,133,134]. A critical goal for future researchers in this field is to design
experimental frameworks to test such models in a laboratory.

5. Multiscale AI

As noted by Chollet in a recent article on machine intelligence, “The promise of the field of AI,
spelled out explicitly at its inception in the 1950s and repeated countless times since, is to develop
machines that possess intelligence comparable to that of humans” (p. 3, [135]). One of Chollett’s key
observations is that intelligence is inherently a problem of scope. Ambitions for general AI, comparable
to human intelligence, are therefore ambitions for intelligent systems that can meaningfully approach
the scope (i.e., breadth) of human-relevant tasks. This is inherently an aspiration for a multiscale
intelligence. Such an intelligence has both the generalizable adaptability to quickly learn local
(constrained) tasks (e.g., similar to how humans within days or weeks can learn cooking, driving,
swimming, etc.), while also being able to consider the global applicability of these tasks in a wide
range of dynamic environments [135,136]. One mid-range example of this scope is the motivational
capacities that allow for active learning, whereby an AI can actively sample and construct its own
training data [137,138]. In what follows, we discuss several key examples of progress and challenges
in multiscale processing in AI. This is not designed to be a thorough review for knowledgeable
AI practitioners, but a discussion of several examples that demonstrate similarities and differences
between biological and AI multiscale processing.

Substantial progress has been made towards developing multiscale AI over both temporal and
spatial scales. Temporal scale examples include continuous-time reinforcement learning models [139]
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and continuous time Bayesian networks [140]. The latter, for example, can be used to model the
temporal characteristics of drug effects and their likely consequences on drowsiness and pain in the
context of changing stomach contents. Spatial scale examples include visual object recognition [141]
and natural language processing [142], with the latter facing multiscale challenges such as how to
interpret current text based on past text. Such approaches have had success in numerous applications,
including cybersecurity [143], genetic and clinical analyses [144,145], and robotic exploration with
real-time learning during continuous actions [146].

Taking a step backwards, in many respects, multiscale processing is the fundamental architectural
advance that has led to the current “AI spring”. Which is to say, much (perhaps all) of deep
learning is focused around using multiple processing layers, to achieve behavior that can harness
predictions at multiple scales of abstraction [147]. The fundamental multiscale workhorses in this
area are recurrent neural networks and convolutional neural networks. Recurrent neural networks
(like long short-term memory networks, LSTM) learn and summarize context information by updating
a hidden state (either explicitly or implicitly, respectively), in a sequential step-by-step process.
This allows them to carry information from one time-step to the next, allowing the algorithm to build
up contextual representations based on sequential experience, such as one might have when reading
text. Deep convolutional neural networks, on the other hand, piece together information at multiple
scales, by passing information through filters (convolution kernels), which are tuned during training
and can learn local patterns in the input feature space. By passing information through kernels of
possibly varying size, deep convolutional neural networks can learn spatial hierarchies representing
increasingly abstract visual relationships between information at different scales (such as noses on
faces on heads in a crowd). Convolutional neural networks make multiscale processing particularly
apparent because scale information can be used in both directions, to categorize entire images as well
as to provide pixel level classifications within the image [141].

More recent advances in multiscale AI involve the capacity to adaptively modulate the scope of the
context, much like the area-restricted search foraging strategy described in the introduction. Perhaps
the most successful of these approaches is based on a process called attention [148]. Attention draws
global dependencies between information at various scales, in order to compute a representation
of the relevant context around a particular input value. For example, in machine translation, the
problem might be to translate the French sentence “tremble comme une feuille”, into English. To do so,
an attentional context vector is computed, that weights neighboring words in relation to their relevance
to the current word in the output translation [149]. As this context is likely to change depending on
the word, attention provides an efficient mechanism for summarizing relevant information across
an entire input sequence without having to focus on everything. Because attention is dynamic, this
allows the decoder of an encoded semantic vector to vary the scale over which its attention operates,
allowing it to distribute its attention in relation to the current word, sometimes called self-attention.
For example, in our French sentence above, the word feuille can mean either leaf or sheet (of paper).
However, by attending to the word ‘tremble’, the decoder is more likely to translate feuille as the English
word leaf, producing tremble like a leaf. Similar approaches have also had success in captioning images,
by focusing attention on various regions of an image during the decoding process [150].

The capacity to modulate attention has also been introduced to convolutional networks in the
form of dynamic convolutions, with dramatic success [151]. Dynamic convolutions use adaptive
convolution kernels at each time-step. Instead of fixing the convolution kernels after the initial training,
the kernel weights are evaluated with respect to the current input data. This again allows for multiscale
processing that adaptively constrains information processing in light of the present context.

A promising extension of attention are transformer networks involving multi-head attention,
which allows algorithms to attend to information over multiple contexts simultaneously, that is,
in parallel [148]. For example, in machine translation, multi-head attention produces multiple attention
vectors for each word, analogous to simultaneously answering questions, like who, what, why, where,
and how, for every word in the translation. By altering the relative tuning of this multiscale information,
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transformers using self-attention mechanisms can process all the words in the input simultaneously,
computing contextual information at multiple scales, and harnessing this high-dimensional multiscale
information to produce state-of-the-art performance in natural language processing, such as machine
translation and question answering (such as GPT-2 and BERT, [142,152]).

Multiscale AI is likely to continue to benefit from neuroscience-inspired AI [9], such as processes
analogous to human executive functions and the PFC, which have been proposed to maintain
goal representations in a hierarchical fashion, allowing for multiscale goal representations [114,120].
Similar inspiration may come from other higher level computational processes, such as working
memory-like conscious binding (e.g., a “consciousness prior”) [153]. In each case, the scope of the
multiscale process is expanded.

Nonetheless, despite the above advances, efficient multiscale processing has remained
a longstanding challenge in real world environments, especially where there are high degrees
of uncertainty and multiple contextual scales [154]. Surprisingly few AI algorithms are available for
real-time learning in such environments [146]. This challenge is becoming even more urgent, as the
expansion of AI continues to unfold and the complexity and scope of the tasks, and their associated
data sets, increase (e.g., self-driving cars, medical diagnoses, scientific research, etc.) [135,155].

Thus, while AI systems can outperform humans in many tasks [13,14,135], the current approach
to achieving this high performance often results in or requires overspecialization, leading to failures to
generalize to novel or overly-dynamic environments [156]. This approach results in AI agents still
significantly underperforming, relative to humans, as their environments and assigned tasks approach
the complexity and rich dynamics of the real world (e.g., navigating unexplored regions, solving tasks
which require communication, tracking and prioritizing multiple goals or sub-goals, etc.) [13,130,156].
Thus, a further understanding of how humans perform so well in these more complex environments,
even in the face of sparse data, is a crucial factor in resolving the performance gap between human and
AI agents [9]. From the neuroscience side, attaining this knowledge will require designing experiments
that both better approach the complexity of the real world and require multiscale computations to
complete [64] (Figure 7).

In the next sub-sections, we discuss two key applications of multiscale AI that provide a grounding
for the more abstract multiscale neural networks architectures described above: progress towards
generalizable, autonomous AI in (1) robotics and (2) electronic video games.

5.1. Autonomous, Generalizable Robotic Agents for Real World Environments

Moving towards such generalizable, autonomous human-like or super-human intelligence is not
just an academic exercise for achieving the sentient AI agents seen in science fiction, there are already
many real-world applications requiring such multiscale generalizable intelligence. For example,
NASA has explicitly called for such generalized systems [154]. Mars rovers need to achieve a changing
list of scientific experiments in finite time—experiments, individually assigned different scientific
values—that each require different temperatures, travel times and thus solar power, physical orientation
and positioning of the rover, identifying specific environmental features of interest (whose existence may
not be known a priori) that could retroactively alter the scientific value of certain proposed experiments,
etc., all while the highly dynamic and unpredictable Martian weather system alters the immediate
environment and lowers or raises the feasibility of certain experiments [154,157]. Similar complex
multiscale needs are present in a variety of robotic AI applications, including underwater scientific
exploration [158], search and rescue [159], and even house cleaning [160].

Importantly, most current AI deliberation and traditional contingency planning techniques
assume only a small set of discrete outcomes are possible, which leads to severe underperformance
in uncertain environments with continuous time-space or other continuous parameters (e.g., power
consumption over uneven terrain), and thus do not scale well to larger global problems where
all possible outcomes cannot be listed [136,146,154,161]. As a result, modern AI agents primarily
outperform humans only in controlled industrial environments, and run into severe challenges in
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the real world applications discussed previously [162]. Recent work has surveyed, in detail, the
progress and performance of different multiscale deliberative-explorative algorithms intended for
furthering the goal of autonomous AI in uncertain environments, concluding that algorithmic progress
towards robust generalized AI is promising in a modular and context-dependent way, but overall is
fragmented and needs to be incorporated into a more global and generalized framework [135,136,163].
Most historical work has been based on model-free RL (more similar to the biological habituation or at
least local task learning discussed above [5]), due to the ease of implementation and not requiring prior
knowledge to be encoded [164]. However due to the increasingly poor performance of model-free
algorithms as the complexity of dynamic environments increases, model-based algorithms have
been closely revisited in recent years (though largely in self-designed controlled environments [164]).
Model-based algorithms represent a model of the causal structure of their environment, which allow for
more complex relationships than model-free algorithms. As a result, model-based algorithms greatly
increase sample efficiency, speed up optimal solution convergence, reduce environmental interaction
(and thus reduce wear-and-tear damage on the robot), and improve multiple goal tracking in dynamic
environments [164,165]. However, learning accurate models, especially in complex environments, has
remained a serious challenge, and several recent works have cited lack of reproducibility and open
source code in this area, as a major structural bottleneck for accurate benchmarking of progress in this
area [164–166].

Neuroscience is expected to continue to play a critical role in aiding to enhance the performance
and adaptability of both model-free and model-based approaches [69,162]. For example, further
interesting robotic AI approaches have tried to implement transfer learning (i.e., a machine learning
approach for efficiently transferring knowledge learnt from one problem to another related problem
without total retraining, which humans seem to frequently do) in robotic systems for more generalizable
human-like learning [167], finding significantly enhanced physical robot performance over traditional
deep RL and policy techniques [168,169]. Moving forward, an especially critical interdisciplinary
point to resolve is what role higher order human cognitive processes like creativity, curiosity, intrinsic
motivation, the creation of cognitive or world maps, etc., as well as bottom-up attentional systems for
more adaptable response to dynamic environments [121,122], play in providing our species with such
highly generalized intelligence, and whether these processes are necessary or optional for achieving
generalized intelligence in AI systems [16,170–172]. However, answering such a question requires
further understanding of these poorly understood and underexplored processes in human neuroscience
as well [171].

While exploration of highly dangerous, unpredictable and scientifically rich environments like
planetary surfaces and the depths of the ocean, in some ways, represent the ultimate challenge for
autonomous AI, a promising proving grounds of more intermediate complexity has also emerged for
the goal of developing autonomous AI that can handle uncertain and dynamic continuous time-space
environments: electronic video games.

5.2. Autonomous Game AI for Quasi-Real World Environments

The multiscale deep neural network algorithms discussed previously are also leading to substantial
progress towards generalized AI intelligence in the quasi-real world environments of modern electronic
video games, which can provide a more controlled virtual environment to test multiscale AI architecture,
without the complications introduced by real world environments and robotics hardware [173].
This area has already attracted considerable interest from social neuroscientists, as these game AI
systems are designed to compete (or even cooperate) with humans in modern electronic video
games [13,174,175]. Furthermore, modern electronic game AI agent development has partly evolved
into an interesting applied human neuroscience problem, due to the unique situation of a large global
consumer base putting constant pressure on game developers to implement AI characters and agents in
video games that algorithmically behave more like humans, for a more immersive user experience [176],
providing an opening for neuroscience input.
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Interestingly, this transition in the AI field of moving from simple discretized games to
“continuous” (small time scale), electronic real time strategy (RTS) games is mirroring a similar
transition in neuroscience, away from using discretized independent-trial experiments [63,177,178]
(Figure 7, and see previous sections). RTS games such as Dota 2 have been chosen, as they have
continuous-time (~10–100 Hz frame rates) and -space (sub-mm2 pixels), thus which may violate
Markov assumptions of independent states, and have more dynamic environments than turn-based
games such as chess [174,179]. There is a vast difference in the AI computational complexity between
these RTS games compared to the simpler turn-based games explored by AI researchers previously
(e.g., chess [180], Go [181], backgammon [182]), and even compared to the electronic Atari games played
by DeepMind’s deep Q-network agent [183]. In turn-based games, such as chess, the pieces can only
move in a small set of well-defined, discrete positions across temporally discrete “rounds” of a game,
and players have perfect knowledge of their opponent’s past and current piece positions. In contrast, for
the behavior paradigm in these RTS games, agents have to work (with fast reaction times), either alone
or in teams, to explore unknown map regions for resource seeking, use the resources to improve their
own fitness and their team’s fitness in the face of uncertain and dangerous environments, coordinate
global strategies to predict unknown enemy movements and resource locations, and defeat the enemy
according to game-dependent metrics for victory [174,179].
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Figure 7. Transition from Independent Discrete Trials to Dynamic Continuous-Time Environments
in both AI and Neuroscience. (Top) It has been historically assumed that the information processing
in each trial during a neuroscience experiment is independent from information processing in other
trials and that once one trial completes, all the information processing is reset. However, in the real
world, events and decisions occur over continuous time frames and are often correlated with people’s
choices being known to show temporal dependencies across multiple timescales. This has motivated
a transition in neuroscience to continuous time experimental designs. (Bottom) A similar transition
from spatially-temporally discrete turn-based games to continuous time and space real time strategy
games is occurring in the field of AI research, such as from the ancient game of chess (Left) to the
modern electronic real time strategy game Dota 2 (Right). Upper right image adapted with permission
from Wittmann et al., Nature Communications, 2016; Nature Publishing Group [66]). Lower right
image is taken from OpenAI [184], according to the license agreement.

These RTS tasks inherently require multiscale computations for agents to play [185], and thus are
a framework that arguably has relevance for behavioral scientists [13,179]. The current RTS games most
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studied by AI researchers (e.g., Starcraft with several AI systems [186], Dota 2 with OpenAI’s OpenAI
Five [184,187]) have elements of traditional foraging behavior. RTS game agents must calculate the
risks-versus-rewards of seeking new resource patches in dangerous environments as their current
patches dwindle [186], while keeping a long-term goal in mind, similar to the paradigm with global
risk pressures discussed previously in Wittman et al. [64] Additionally, multiple scales of computation
are needed, often involving transformer networks like those described above, because players are
presented with a game display screen that only shows a small local environment contained within
a larger game map, where the larger map is only presented as a small symbolic display insert in the
main game screen (Figure 7) [174,184–186]. Thus, as agents accomplish local immediate goals, they also
must simultaneously track global changes in their maps as unknown regions are gradually explored,
and new resource patches are suddenly revealed through exploration. Remarkably, some AI agents
are now able to reach high performance in multiple different games simultaneously (a strong step
towards generalizability), while using only deep reinforcement learning on the same raw pixel input
as humans, compared to the highly processed input of older generations of game AIs [183].

Numerous challenges remain in developing AI that can process and modulate attention like
humans over multiple spatial and temporal scales [11]. Traditionally, to achieve human performance,
AI has relied on local reinforcement learning and search algorithms over massive data sets, combined
with superhuman levels of global knowledge [13,14,174]. Such learning strategies are computationally
inefficient relative to human cognition, especially at transferring the learned knowledge to other
tasks [13,188]. Generally, AI systems require massive retraining if the goal is switched within the same
game framework (e.g., survive a round as long as possible instead of score maximization) [13,135,183].
For example, the OpenAI Five Dota 2 player, which defeated human master players in an internationally
watched 2019 competition [184], used large-scale reinforcement learning with ~50,000 CPUs plus
~500 GPUs that trained for 45,000 years of game time, and could only perform well inflexibly in very
restricted game conditions [135,184]. Thus, the ~10 W human brain seems to be using considerably more
efficient multiscale learning and search algorithms to make approximation-motivated (e.g., inference)
but accurate decisions in the face of dynamic goals and environments. This decision power is
additionally impressive given the context the mismatch in processing times of a human’s ~10 s–100 ms
timescale for the fastest perceptual feedforward tasks [189], compared to a computer’s nanosecond scale
timescale with typical GHz clocks. Thus, neuroscience-inspired algorithm and structural improvements
may more broadly hold substantial potential for the development of more compact and power efficient
(i.e., more environmentally friendly) AI computer centers as well.

Recent work has intriguingly found promise in non-reinforcement-learning-based quality diversity
(QD) and backplay algorithmic methods, as part of a broader architecture (that can be combined with
reinforcement learning) researchers called “Go-Explore” and “Plan, Backplay, Chain Skills” respectively,
where agents can revisit useful prior “stepping-stone” environmental states as starting points for
further exploration (an ability generally not readily available to physical robotic agents, highlighting
the power of the virtual domain) [190,191]. This approach was found to especially improve explorative
performance in specific games where reinforcement learning alone fails (e.g., games that require difficult
exploration or more global computations) [190,191], and is similar to some foraging behaviors described
previously [190]. Collectively, this interesting work suggests that large-scale deep reinforcement
learning (which generally only excels during local interactive learning or in controlled environments
where complete, and often superhuman [174], global information is provided) is not sufficient for
generalized intelligence. Instead, these supplementary “stepping stone” algorithms are hinting at the
importance of spatio-temporal (or even conceptual [125]) cognitive map-like algorithms, in achieving
more generalized multiscale intelligence that can excel in dynamic, uncontrolled environments [16,134].
Additionally, developing relational inductive priors that are more suitable to the complexity of the real
world [192], or more global-thinking hierarchical macro-strategy design, may be needed for significant
performance enhancement in more challenging environments [15].
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6. Discussion

Multiscale AI deep learning algorithms have allowed AI to surpass human performance in
many specific tasks in a variety of controlled environments, both virtually and physically, with
game-based and robotic AI agents, respectively. While notable progress has been made towards
incorporating this local task mastery into more generalized global architecture, generalized intelligence
in AI still falls short of the speed and adaptability of human (or even animal) intelligence in dynamic
environments (Figure 8). Recent promising biologically realistic theoretical work has provided insight
into how the locally efficient choice biases may combine with long time-scale global cognitive maps
(e.g., entorhinal grid cells) to provide such efficient, flexible and generalizable multiscale computation
in humans [16,17,133,134]. We believe further understanding of this multiscale architecture has
the possibility to provide breakthroughs in AI development, similar to neuroscience’s previous
contributions of reinforcement learning [193] and artificial neural networks [194–196].
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Figure 8. Comparing the Computational Architecture for Navigating Uncertain Environments of
Human Brains and the Frontier of Autonomous AI Systems. (Left) Human brains have a highly
flexible and generalizable learning architecture. Evolutionarily tuned biological networks allow for
streamlining or even “automation” of local tasks and decision-making through biases and habituation,
while cognitive maps and detailed prior knowledge within long-term memory allow for multiple
goal tracking. Both top-down and bottom-up attentional processes modulate cognitive resources and
deliberate across multiple spatio-temporal scales, while an agent pursues goals and makes inferences
within dynamic and uncertain environments. (Right) Current AI systems have made tremendous
progress towards comparable or even super-human computational and task-related performance in
many controlled environments. AI already have the ability to simultaneously consider much larger
amounts of sensory data and meta-data than human brains, with much larger-scale parallelization
than biological brains, such as in Transformer networks. Thus, improved world models, more
computationally efficient and robust multiscale attentional algorithms, and more flexible multiscale
deep neural net structures that provide higher sample efficiency and accuracy hold great promise for
achieving successful autonomous AI systems.

Distinguishing between single and multiscale computational processes is still rare in behavioral
and neural sciences with regards to exploration and exploitation, but recognition is growing in the
importance of considering this topic. Understanding the balance of these multiple competing and/or
complementary computational layers underlying multiscale decision making (which may actually
be the dominant form of decision making in humans) is a crucial problem for studies of information
processing of the brain in the upcoming decade. Moreover, as described above, it is being increasingly
incorporated into AI.

One area we have barely touched on is the necessity for intelligent systems to escape local minima
in the fitness or value space. For example, imagine the animal in Figure 1 trapped permanently
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at a suboptimal peak. Current uncertainty reduction models have the weakness of not adequately
explaining or predicting what drives humans to break out of habits or biases (such as creating temporally
local increases in uncertainty) [197–199]. These are drives which presumably include a desire for
creating a long-term reduction in global uncertainty. Biological attentional processes may also play
a critical role in this area, especially in non-reinforced preference or state changes [200]. Thus, it is an
open and important question in multiscale neuroscience as to what motivates humans to embark on
risky exploratory behavior by temporarily increasing local uncertainty. Standing hypotheses include
(1) multiple timescale computations valuing the benefits of short-term uncertainty gains for long-term
benefits as discussed above, (2) behavioral variability being induced by endogenous noise fluctuations
in the brain [201], (3) specific brain regions which may seek to actively increase uncertainty or risk
in some situations [202], such as the (poorly understood) circuits involved in curiosity, boredom and
intrinsic motivation [106,130,171,203–205], or (4) responses to variations in the social environment and
peer feedback [206–208]. Temporarily increasing local uncertainty is often necessary for generating
alternative solutions in challenging environments and requires methods for amplifying internal or
external sources of noise, inhibiting initial responses (to allow time to generate alternatives), and
maintaining long-term goals [130]. Generally, there is an important need for developing multiscale
learning and decision models that incorporate uncertainty (and mapping the neural correlates of these
uncertainty mechanisms, e.g., the ACC [22]), as even variable learning rates do not fully address
biological reactions to surprising outcomes for instance [25].

In addition, there are also other scales besides time and space, such as social scales. Decision making
in social uncertainty (such as (4) above) is especially interesting, because social effects cannot be
observed in typical behavioral experimental paradigms where only one isolated human is observed
during an experiment [209]. However, social cues have been shown to be a dominant factor during
exploration and foraging in many organisms [210,211], and to play a significant role in more effective
and accurate human decision making [212,213].

Even in the growing area of environmental neuroscience, which encourages all experimental
neuroscientists to consider the possible role of environmental factors (e.g., social factors, epigenetics,
the physical environment, etc.) in influencing their results, a recent call was made urging researchers to
consider hierarchical systems theory in experimental designs, as this multiscale theoretical framework
has significant potential for studying how these more spatially and temporally broad social and
environmental factors influence human behavior [20]. Due to the critical utility of multiscale processing,
these topics will have a growing importance in future experimental and theoretical studies.

7. Conclusions

In closing, multiscale processing is ubiquitous. It is necessary for foraging, visual processing,
decision making, and problem solving, and both neuroscience and AI are making headway in
understanding what biological and algorithmic mechanisms best achieve this. As we have shown,
humans and other animals often appear to achieve this by modulating attentional resources across scales,
with dedicated local and global processing architectures that are then integrated in specific brain regions
to determine a final behavior. Researchers in AI are taking similar but also novel approaches, which
allow systems to modulate across scales but also to process information in parallel formats (sometimes
surpassing humans’ serial constraints, such as when humans read text). Ultimately, multiscale
processing asks us to consider both short and long-term views and to choose in the context of changing
environmental contexts. However, of course, the obvious question is what is the right mix of short
and long scales, and how long is long enough? Biological systems may suffer under an evolutionary
precedent to attend to multiscale events that only include near future and spatial (and social) scales,
which bias decision making towards nearby short-term gains (and in-groups) [214]. There is no reason
to think that AI will have similar constraints, unless we build them in. Thus, AI and neuroscience have
much to offer one another, and there is still a great deal to learn.
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