A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/138398

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

IDENTIFICATION FOR DISTRIBUTED PARAMBTER SYSTEMS*

Carlos Silva Kubrusly

ABSTRACT

This thesis considers the parameter identification problem for systems governed by partial differential equations. The various identification methods are grouped into three disjoint classes namely: "Direct Hethods", "Reduction to a Lumped Parameter System", and "Reduction to an Algebraic Equation".

The major subject investigated here is concerned with the applicability of stochastic approximation algorithms for identifying distributed parameter systems (DPS) operating in a stochastic environment, where no restriction on probability distributions is imposed. These alcorithms are used as a straightforward identification procedure, converge to tho real value of the parameters with probability one, and are suitable for on-line applications. In this way, a new identification

* This research was supported by CNPq. (Brazilian National Research Counoil) under Grant No. $3712 / 73$.

IDENTIFICATION FOR

 DISTRIBUTED PARAMETER SYSTEMS*Carlos Silva Kubrusly

ABSTRACT

This thesis considers the parameter identification problem for systems governed by partial differential equations. The various identification methods are erouped into three disjoint classes namely: "Direct Methods", "Reduction to a Lumped Parameter System", and "Reduction to an Algebraic Equation".

Whe major subject investigated here is concerned with the applicability of stochastic approximation algorithms for identifying distributed parameter systems (DPS) operating in a stochastic environment, where no restriction on probability distributions is imposed. These alcorithms are used as a straightforward identification procedure, converge to tho real value of the parameters with probability one, and are suitable for on-line applications. In this way, a new identification

[^0] Council) under Grant No. 3712/73.

Abstract

method is developed for DPS described by linear models, driven by random inputs, and observed through noisy measurements. The very real case of noisy observations taken at a limited number of discrete points located in the spatial domain is considered. The proposed identification method assumes that a previous system classification has been performed, such that the model to be identified is known up to a set of space-varying parameters, where extraneous terms may be included.

ACKNOWLEDGEMENTS

I wish to thank my supervisor, Dr. Ruth F. Curtain, for her constant encouragement in all stages of this work. Her advice and observations were particularly valuable to me.

I am also grateful to Mr. Laca Braito for his assistance in computer programming.

Special thanks are due to Berenice for her efficient and careful typing of a diffioult manuscript.
INTRODUCTION 1
CHAPTER 1 SOME BASIC ASPECTS IN SYSTEM IDENTIFICATION
1.1 - System Characterization, Classification and Identification 3
1.2 - Lumped Parameter Systems and Distributed Parameter Systems 12
1.3 - System Identification Versus State Estimation 16
CHAPTER 2 DISTRIBUTED PARAMETER SYSTMMS IDENTIFICATION:A SURVEY
2.1 - Introduotion 21
2.2 - Classification of Methods 25
2.3 - A Concise General Reviow 29
2.4 - Conolusions 40
CHAPTER 3 MATHEMATICAL PRELIMINARIES
PART I: MODELS FOR DPS
3.1 - On a General Class42
3.2 - Linear Models 44
PART II: HIGHER ORDER FINITE-DIFPRGNCES
3.3 - Shift, Difference and Slope Operators 47
3.4 - Approximating Derivatives 59
PART III: STOCHASTIC APPROXIMATION
3.5 - The Dvoretzky's Theorem in Banach Spaces 66
3.6 - A Proposed Stochastic Approximation
Algorithm in Hilbert Space 70
CHAPTER 4 IDENTIFICATION FOR A CLASS OF LINEAR DPS USING STOCHASTIC APPROXIMATION
4.1 - Problem Formulation 79
4.2 - Reduction to a Finite-Dimensional State Space 83
4.3 - Parameters in Explicit Form 96
4.4 - Parameters Identification 105
4.5 - Recoverines the Original Paxameters 115
4.6 - An Equivalent Procedure 118
A.? - Extension to Multi-Dimensional Spatial Domain 121
CHAPTER 5 SUNMARY, EXAMPLES AND CONSIDERATIONS
5.1 - Sunmary: Second-Order Models 131
5.2-Guns 1 Assumptions for Examples 144
5.3 - Paraw iic PDE with One Parameter 146
5.4 - Parabolic PDD with Two Parameters 149
5.5 - Hyperbolic PDE with Two Parameters 153
5.6 - Conclusions 157
RAFERENCES 163

INTRODUCTION

The central theme in this thesis is the application of stochastic approximation theory, as a straightforward identification technique, for determining parameters in systems governed by partial differential equations (PDE).

In chapter 1 we begin by presenting some introductory aspects of the general problem of system identification. Fundamental concepts (such as: system characterization, classification and identification, as well as lumped (LPS) and distributed (DPS) parameter systems) are explained in order to make precise what kind of problem will be considered here.

A survey on the DPS identification field is presented in chapter 2. Before reviewing the various approaches used to face the problem, we introduce a new olassification for the DPS identification methods. Briefly, these methods can be grouped into three disjoint classes: The first one uses optimization techniques directly on the model that describes DPS. The second class of methods is characterized by reducing the DPS to an equivalent LPS. In a similar way, the methods in the third class reduce the DPS to a set of algebraic equations.

Chapter 3 is concerned with the mathematical concepts and techniques that will be usad later for identification purposes. It contains three independent parts: In part I we consider some classes of models for DFS described by PDE. Higher order finite-differences are introduced in part II, where the basic lemmas for model approximation are derjved. Relevant aspects of the stochastic approximation theory,
as well as some applicable stochastic approximation algorithms in Hilbert space, are presented in part III.

The main results appear in chapter 4. There we propose a new method for identifying space-varying parameters in distributed systems. The DPS is supposed to be operating in a stochastic environment, and no restriction concerning probability distributions is imposed. A class of linear models (whore extraneous terms may be included) driven by random inputs and observed through noisy measurements is considered. These measurements are taken at a limited number of discrete points located in the spatial domain. The theory is developed by assuming a one-dimensional spatial domain, but direct extensions to multi-dimensional spatial domains can be obtained as shown in section 4.7. Higher order finite-difference techniques are used to reduce the DPS to an equivalent discrete-time LPS. The parameters are then placed in an explicit form which is suitable for applying recursive identification schemes. In this way, stochastic approximation algorithms (as proposed in chapter 3, part III) are used as a straightforward on-line identification procedure, rather than a sinple searching scheme for finding estimates previously obtained by means of any other optimization technique. These algorithms converge to the real value of the parameters with probability one.

Finally, the performance of the identification method is analysed in chapter 5. After a brief summary concerning second-order models, we present three examples dealing with parabolic and hyperbolic PDE. Conclusions and suggestions for further research are also included.

References are listed at the end of the thesis, and grouped according to chapter.

CHAPTER 1

SOME BASIC ASPECTS IN SYSTEM IDENTIFICATION

The general idea of System Identification is a very wide one and different authors dealing with this subject use the term "system identification" in some slightly different ways. It is not our intention in this study to pose a formal or rigorous definition of system identification. Instead of this, we intend to present an informal and brief introduction on this topic as a starting point for the subsequent chapters.

The three stages of the identification procedure namely, system characterization, system classification and system identification are discussed in section 1.1. The meaning of lumped parameter system and distributed parameter system is explained in section 1.2 . Pinally, in section 1.3, the problems of system identification and state esicimation are discussed and the difference between these two concepts is emphasized.

1.1 - SYSTER CHARACTERIZATION, CLASSIFICATION AND IDENTIFICATION

One of the first attempts to explain the main concepts involved in System Theory was made by Zadeh [1]. Under the aubtitle "Principal Problems of System Theory", he formalated twelve of the most important problems (both from theoretical and practioal viewpoints), which are summarized belowi

1) System Characterization
2) System Classification
3) System Identification
4) Signal Representation
5) Signal Classification
6) Systems Analysis
7) Systems Synthesis
8) System Control and Programming
9) System Optimization
10) Leaming and Adaption
11) Reliability
12) Stability and Controlability

It would be helpful, for the purpose of our study, to add two important problems to the above list:
13) Observability
14) State Estimation (Filtering, Smoothing and Prediction)

As we are interested only in the meaning of the first three of those problems and mainly in the third one, we will discuss these in the light of Zadeh's paper.

System Characterization: "Representation of input-output relationships in mathematical form; transition from one mode of representation to another".

This problem is concerned both with the different ways in which the input-output relationship of a specific system can be represented (i.e., in terms of differential equations, state equations,

```
characteristic functions, frequenoy response functions, integral
operators, etc.), and the forms which these representations assume
for several types of systems (i.e., continuous-time, disorete-time,
stochastic, deterministic, memoryless, finite-memory, causal, etc.).
```

Sybtem Classification: "Determination on basis of observations of input and output, of one among a specified olass of systems to which the system under test belongs".

In the following we will call the "class of systems" by the class of models or simply the class, the elements of a class are obviously called by models or mathematical models, and the "systen under test" will be called the system (some authors call it process or plant).

This kind of problem may be stated as follows:
Assume that

1) I is an index set,
ii) $C_{\alpha}, \alpha \in I$, are classes of models M,
iii) $F=\left\{C_{\alpha} ; \alpha \in I\right\}$ is a family of these olasses.

Suppose we are given a system S and a family F, such that S is characterized by F and belongs ${ }^{1}$ to one of its olasses, say C_{α}. The problem is to determine C_{α} by observing the responses of S to some different inputs.

1 Whe expression "S belongs to C_{α} " is not a very accurate one. What really belongs to C_{α} is a specific model, say M^{*}, which is in some sense "equivalent" to S . The meaning of "equivalent" will be precised later in this chapter.

Example 1. An important particular problem in olassification is the following:

Let
i) $I=Z_{+}=\{1,2,3, \ldots\}$: the set of all positive integers.
ii) C_{n} be the class of all models M described by a single ordinary differential equation of order $n .2$
iii) $F=\left\{C_{n} ; n \in Z_{+}\right\}$be the family of all these olasses. That
is, the set of all ordinary differential equations of any
finite order.
Suppose S characterized by F. Which meanss suppose it is
known that the system is represented in terms of an ordinary difforential equation (this assumption concerns the System Characterization).

The question is: What is its order? In other words, which olass $C_{n} \in F$ does S "belong"? (or better: which olass $C_{n} \in F$ does M^{*}, the "equivalent" model, belong ?)

The problem of finding the class C_{α} is, sometimes, described as the black box approach. Roughly speaking, this means the determination of the structure (or "topology") of the system, considering it as a perfect "black box". On the other hand, assuming that some

2 All ordinary differential equations belonging to a given C_{n} (i.e., the models $H \in C_{n}$) are completely known up to a set of $m(m>n)$ parameters, whioh are the coeffioients of the differential equation. The problem of finding these parameters ooncerns to the System Identification, and it will be commented later in this section.
class of models, say C_{α}, is available ${ }^{3}$ the determination of one element M in C_{α} is, sometimes, called the opaaue box approach. This is the subject of System Identification which is described below.

```
System Identification: "Determination, on basis of observations of input and output, of a system within a specified class of system to which the system under test is equivalent".
Observing the nomenclature introduced before (i.e., the meaning of class, model and system) the identification problem may be formulated as follows:
Given a class \(C_{\alpha}\) (with each member of \(C_{\alpha}\) completely characterized), the problem is to determine a model \(M\) in \(C_{\alpha}\) which is equivalent to the system \(S\). Briefly: find \(M \in C_{\alpha}\) such that \(M\) is equivalent to \(S\).
But what does the term "equivalent" mean in this particular case ?
```

Assume that
i) W is some space of inputs and w a element of W.
ii) $y_{S}=y_{S}(w)$ is the system output and $y_{M}=y_{M}(w)$ is the model output, for some premselected input w in W.

[^1]The equivalence is often defined in terms of a cost function J which is a functional of J_{S} and y_{N}. That iss

$$
J=J\left(y_{S}, y_{M}\right)
$$

The model H^{*} which is equivalent to the system S will be one suoh that the cost function J is minimized. Symbolically we have

$$
M^{*} \infty S \Leftrightarrow J\left(y_{S}, y_{M^{*}}\right)=\operatorname{Min}_{M \in C_{\alpha}} J\left(y_{S}, y_{M}\right)
$$

where the symbol means "equivalent to" in the alove sense.
So, when equivalence is defined by means of a cost function J, the identification problem is reduoed to an optimization problem: find a model $M \in C_{\alpha}$ such that the cost function J is minimum.

In such oase, the questions related to the existence and uniqueness of the solution are the main problems of system identification. Some studies of these problems have been done by Bellman and Åström [2] for a simple class of linear systems.

The class C_{α} is called identifiable if the optimization problem has a unique solution.

At this stage some diagrams could be helpful to one visualizesthe identification procedure.

Let Y be the space of outputs, such thats

$$
\begin{array}{ll}
y_{S}=y_{S}(w) \in Y \quad \text { weW } \\
y_{M}=y_{M}(w) \in X \quad & w \in W, \quad M \in C_{\alpha}
\end{array}
$$

Assume Y is a metric space ${ }^{4}$ and define the cost function J as the metric d in Y. That is:
$J=d\left(y_{M}, y_{S}\right)$

So, the identification problem (see fig. 1) can be formulated as follows: find a model $H \in C_{\alpha}$ such the distance from its output y_{H} to the system output y_{S}, is the smallest possible.

The ficure 2 shows the same situation represented by the engineering viewpoint; that is, by block diagrams (for simplicity the outputs are assumed to be scalars and no external noise is supposed to corrupt them).

Fig. 1: $S \sim M^{*} \in C_{\infty} \Leftrightarrow d\left(y_{S}, y_{M^{*}}\right)=\operatorname{Min}_{M \in C_{\alpha}} d\left(y_{S}, y_{M}\right)$

[^2]

Fig. 2: $S \sim M^{*} \in C \Leftrightarrow\left\|\theta_{M^{*}}\right\|=\operatorname{Min}_{M \in C}\left\|c_{M}\right\|$

Now let us return to the essential meaning of system identification, as formulated above. Generally speaking, there are two posm sible ways to determine, besed on the observations of input and output, the mathematical model of a given physical (or cconomical, or sociological, or biological, etc.) system:

1) AXIOMATIC APPROACH: Nathematico-physical (or oconomical, or sociological, or biological, etc.) analysis based on the laws which govern the underlying"applied" subject.
2) EXPERIMMTTAL APPROACH: Data analysis where the main information about the system is obtained by measurements.

Very often the first way is used in the system classification stagc. That is, we can use the mathematico-physical analysis, based on the physical laws, as come "a priori" information about the structure of a physical sygtem S, and so a cless C_{α} can be determined (i.e., system classifioation). Since a class C_{α} is available, a modol

X in C_{α} may be determined by means of experimental measurements in the system S using, for example, the meaning of equivalence stated before (i.e., system identification).

It is important to notice what we mean by "a priori" knowledge (or "a priori" information). We will use this term in a very wide sense. That is, it will mean all knowledge (or information) we have about the system before we start the identification procedure.

From this viewpoint, the system classification can be considered, by itself, as "a priori" knowledge of the system's structure.

So, if the solution of the classification problem provides us with some available class of models, say C_{α}, all information we have about the models in C_{α} will be considered as "a priori". This will be the cose even if the system classification was carried out by experimental analysis (some authors use the term "a priori" only for information obtained by means of non-experimental analysis).

Example 2. Assume it was determined that a given system S is representod in terms of ordinary differential equation (lat. step: System Charaoterization) which is linear (in the usual meaning) and of order n (2nd. step: System Classification).

Let c_{n} be the class of all linea ordinary differential equations of order n.

So, using "a priori" information about the system S we oould classify it as of class C_{n}.

Each linear ordinary differential equation of order n is a model belonging to the olass C_{n}. There are infinitely many models in C_{n} (aotually the class C_{n} is uncountable), and they are oompletely
characterized. The only difference between any two of these models is just a set of $n+1$ real constants, which are the coefficients of each linear ordinary differential equation in C_{n}. These coefficients are called the parameters of the model.

The question is: Which are these $n+1$ parameters? In other words, which model M (represented by its $n+1$ parameters) is equivalent to the system S ?

1.2 - LUMPRD PARAMETER SYSTEIS AND DISTRRIBUTED PARAMETER SYSTEM

Before introducing the idea of "lumpod parameter systems" and "distributed parameter systems", we will present an informal discussion about the meaning of the terms "dynamic systems" and "parametric models".

A system S is said to be instantaneous if it is represented In terms of a mathematical model M whose the outputs y_{M} at any time t depends only on the input values at the same time t. No past or futuro values of the input will affeot the present value of the output. This may also be called a zero-memory or a memoryless system. Otherwise the system is said to be dymamic and to have memory.

If a dynamic system is one wiose the model outputs do not depent on future values of the input, it is called causal (or physical, or nonanticipatory). If this is not the oase the dynamic systom is called noncausal (or nonnhysical, or anticipatory). If a causal system is such that the model outputs depend on the past inputs only over
a finite period, say T, then it is said to have finite-memory, and T is its nemory length. 5

Systems can be represented in many differents ways, as we have already seen in the last section. Now we will introduce two important disjoint classes of models for the system characterization problems By nonparametric we mean such models desoribed in terms of impulse response, transfer functions, covariance funotions, spectral densitics, etc. By parametric models we mean those ones described in terms of state equation (or more generally "dymamical equations", which means the sot of equations that describes the unique ralation between the input, the output and state), differential (or difference) equations (both partial and ordinary), eto. Loosely speaking, a model is said to be parametric when it is completely characterized by a set of parameters (which can be constants, time and/or space varying, state independent, etc.). In rough terms, this means that the identification procedure is reduced to a problem of finding a certain number of parameters which completely determines the underlined model. Otherwise, it is said to be nonparametric (e.g., when the identifice-

5 We have avoided discussing theterm dymamical system in order to keep this introductory ohaptor on an informal levol, roducing the abstract mathematical notation to a minimum. Generally, "dynamical" and "dynamio" are alightly different concepts. In few words: "dynamical" has roughly the same meaning as "oausal". For a detailed mathematical definition and interpretation of the axioms, the reader is referred to [3] - [6].
tion procedure is reduced to the problem of finding an impulse response function belonging to some spacific function space). 6

When the system under study is represented by a parametric model, the terms parametrio estimation ${ }^{7}$ and structure identification are sometimes used to specify what we are calling ${ }^{\text {ngystem }}$ identification" and "system classification", respectively.

Our main subject in this work will be the identification of a certain type of parametric models. So, it would seem to be a good ohoice to use the term "parametric estimation" instead of "system identification". But we will avoid (where possible) using the word "estimation" to specify a identification problem, reserving this term only for the problem of "state estimation". Later in this ohapter, we will present some comments about the confrontation between the problems of system identifioation and state estimation.

Now let us return to the main topio of this section. Many authors [10] - [16] define lumped parameter systems and distributêd parameter systems in some slightly different ways. Sometimes, the

6 The nonparametric representation has the advantage that it is not necessary to specify the order of the model explicitly. They are, however, intrinsically infinite-dimensional models. Interesting aspects of parametric versus nonparametric models can be found in the literature on time-series analysis [7] - [9].
7 The term "parametric estimation" is also used in some wider sense, even when the models are not olassified as parametrio ones but the identification problem is reduced to that one of finding some unknown parameters (e.g., in the determination of a transfer function which is completely known up to a finite set of constant parameters).
properties which are used by one author as definition, are used by another one as consequence and "vice versa". For the purpose of our further studies a very brief and simple definition will be sufficients
"A dynamic system that can be represented in terms of a ordinary differential (or difference) equation will be called a lumped parameter system (LPS). When it requires the use of partial differential ${ }^{8}$ equation to desoribe its dynamic behavior, it will be called a distributed parameter system ${ }^{9}$ (DPS) ${ }^{\text {n }}$.

In brief words: LPS and DPS are characterized by finite and infinite-dimensional state apace, respectively.

The meaning of the terms "lumped" and "distributed" can be better understood when the physical implications of the above definitions are more deeply analysed.

In a lumped parameter system the physioal size of the system is not important, since the excitations are transmited through the system instantaneously. This assumption is usually valid if the largest physical dimension of the system is small compared to the wavelength of the highest significant frequency considered. Also, in this case, the system can be decomposed into a finite number of components, each

8 The partioular case of systems described by partial difference equation can be fiewed as a result of an approdimation method which reduces a DPS to a LPS.

9 Dynamic systems whose mathematical models are in the form of inteeral (or integro-differential) equation are also oalled DPS.
with a finite number of input and outputs. On the other hand, in a distributed parameter system, the spatial confieuration is important and generally it has dimensions that are not small compared to the shortest wavelength of interest.

Examples of physioal systems that can be modeled by partial differential equations will be considered in the next chapter. Supplementary discussions concerning with applications and related topios in DPS can be found in the literature dealing with the control problem (soe, for example, [10] and [17]).

1.3 - SYSTMM IDEITIFICATION VERSUS STARE ESTIMARION

First of all, let us introduce the notion of state and then the formulation of the state estimation problem.

The state notion: Actually, from a physical viewpoint, the concept of state can be thought as a primitive one, and as such it is not to be defined. Therefore some authors [18] - [26] present a "formal definition" of state which is valid, and very useful indeed, in the sense of giving a deeper insight about the meaning of state. Generally speaking, "the state u of a dynamic system at time $t=t_{0}$, is the amount of information at t_{o} that, together with any input w belonging to an input space W and known for all $t-t_{0}$, determine uniquely the "behavior" of the system". ${ }^{10}$ But what does the term

10 Following our provious intention of keeping this introductory ohapter on an informal level, we have avoided discussing a more sophisticatod but preciso definition of state based on abstract mathematical concepts. The interested roader is referred to [27] - [31].
"behavior" mean in this case? It means "the state itself and the output" of the system. So, we may not use the above as a "precise definition" of state, since the intrinsic meaning of state is assumed to be known "a priori".

Romark: He talked about "state of a dynamic system". This is a slight abuse of nomenclature, since we have been using the terms "system" and "model" with different meanings. Aotually the ooncept of state is inherent to that of "oriented abstract objects" [27] which means, in general terms, our mathematical models. Based on our previous terminology it would be more correct to say: state of a model M that characterizes a dynamio system S. Or, when we are considering the equivalent model K^{*}, the "state of S " can be thought as the state of M*. From now on, the term "state of a dynamic system" will be used in the above sense.

Some authors use (or abuse of) the term "syatem identification" or even "parameter estimation" to specify a state estimation problem. Our main goal in this seotion will be to emphasize the difference between these two concepts.

For sake of simplicity, we will concern ourselves with the particular problem of state estimation in lumped parameter systems (finite-dimensional case), that can be modeled by a linear ordinary differential equation (i.e., the Kalman-Bucy filter [32], [33]).

Currently there are lots of books [4], [34]-[68] at many different levels dealing with the state estimation problem in finitedimensional case. 11 The same is not true in the infinite-dimensional

11 For a general reviow see [69].
case, specially for distributed parameter systems described by partial differential equations [70]-[73]. A recent paper by Curtain [74] gives an unified survey of this field, emphasizing the mathomatical problem of rigorously modelling distributed noise. For those readers who are familiar with Kalman-Bucy filter in lumped parameter systems, the quite readable but formal works of Meditch [75], [76] are suggested as background before becoming involved with the sophistioated mathematical aspects (such as Sobolev spaces and other neoessary but nontrivial concepts) which are inherent to the study of state estimation for distributed parameter systems.

Problem ormulation: Let us consider a dynamio system S modeled by a linear ordinary differential equation, whose state as a funtion of time is an n-dimensional stochastio process $\left\{u\left(t_{1}\right) ; t_{1} \mathbb{T}\right\}$, where T is some appropriate index set (an orderd subset of the reala that has a minimum element called t_{0}). We are interested in knowing the value of $u\left(t_{1}\right)$ for some fixed t_{1}, but $u\left(t_{1}\right)$ is not directly accessible to us. Suppose we can have access only to an observation process $\left\{z(z) ; t_{0}<z<t, t \in T\right\}$ which is related to $u\left(t_{1}\right)$ by means of a linear causal system.

Let us introduce some notation:

1) Denote an estimate of $u\left(t_{i}\right)$ based on the measurements of the observation prooess $\{z(\imath)\}$ by $\hat{u}\left(t_{1} \mid t\right)$, such that

$$
\widehat{u}\left(t_{1} \mid t\right)=K_{t_{1}}[z(z)] ; \quad t_{0}<\tau<t \quad, \quad t \in T
$$

where $K_{t_{1}}$ is some linear operator defined in the observation space. 2) Let $\tilde{u}\left(t_{1} \mid t\right)$ be the estimation error which is defined by the relation

$$
\stackrel{N}{u}\left(t_{1} \mid t\right)=u\left(t_{1}\right)-\hat{u}\left(t_{1} \mid t\right)
$$

3) $L\left[\tilde{u}\left(t_{1} \mid t\right)\right]$ will be some admissible cost function of the estimation error. A typical example would bes

$$
L=L\left[\tilde{u}\left(t_{1} \mid t\right)\right]=\left\|\tilde{u}\left(t_{i} \mid t\right)\right\|^{2}
$$

where || || means the usual norm in an n-dimensional Euclidean space. 4) Since $u\left(t_{i}\right)$ and $\hat{u}\left(t_{i} \mid t\right)$ are random vectors, it follows that $\hat{u}\left(t_{i} \mid t\right)$ will also be a random vector and so L will be a random function. In order to get a useful measure of the error, we can define a performance criterion J as the mean value of L, that is

$$
J\left[\tilde{u}\left(t_{1} \mid t\right)\right]=E\left\{L\left[\tilde{u}\left(t_{1} \mid t\right)\right]\right\}
$$

where E\{ \} stands for the espeotation of a random variable in the usual meaning.
5) We say that on estimate $\hat{u}\left(t_{i} \mid t\right)$ which minimizes $J\left[\tilde{u}\left(t_{i} \mid t\right)\right]$ is a "best" or optimal estimate.
6) The linear operator $K_{t_{1}}$ which give us the optimal estimate will be called the "best" or optimal linear filter.

Problem statement: Given the measures of the observation process $\left\{z(z) ; t_{0}<z<t_{;} t \in T\right\}$, determine the "best" estimation $\hat{u}\left(t_{i} \mid t\right)$ of $u\left(t_{i}\right)$; or equivalently: determine the "best" linear filter $K_{t_{i}}$.

If $t_{i}>t$, the problem is one of prediction; if $t_{1}=t$, one of filtering; and if $t_{i}<t$, one of smoothing or interpolation.

So we have two distinct optimizations problems namely system identification and state estimation. The system identifioation (or parametric estimation, as we are dealing with parametrio models) is concerned with the problem of finding a Bet of parameters that speci-
3) $L\left[\tilde{u}\left(t_{1} \mid t\right)\right]$ will be some admissible cost function of the estimation error. A typical example would be:

$$
L=L\left[\tilde{u}\left(t_{i} \mid t\right)\right]=\left\|\tilde{u}\left(t_{i} \mid t\right)\right\|^{2}
$$

where || || means the usual norm in an n-dimensional Euclidean space. 4) Since $u\left(t_{1}\right)$ and $\hat{u}\left(t_{1} \mid t\right)$ are random vectors, it follows that $\hat{u}\left(t_{i} \mid t\right)$ will also be a random vector and so L will be a random function. In order to get a useful measure of the error, we can define a performance criterion J as the mean valuc of L, that is

$$
J\left[\tilde{u}\left(t_{1} \mid t\right)\right]=E\left\{x\left[\tilde{u}\left(t_{i} \mid t\right)\right]\right\}
$$

where $E\}$ stands for the espeotation of a random variable in the usual meaning.
5) We say that an estimate $\hat{u}\left(t_{i} \mid t\right)$ which minimizes $J\left[\hat{u}\left(t_{1} \mid t\right)\right]$ is a "best" or optimal estimate.
6) The linear operator $K_{t_{1}}$ which give us the optimal estimate will be called the "best" or optimal linear filter.

Problem statement: Given the measures of the observation process $\left\{\tilde{z}(z) ; t_{0}<Z<t ; t \in T\right\}$, determine the "best" estimation $\hat{u}\left(t_{i} \mid t\right)$ of $u\left(t_{1}\right)$; or equivalently: determine the "best" linear filter $K_{t_{1}}$.

If $t_{i}>t$, the problem is one of prediction; if $t_{i}=t$, one of filterings and if $t_{i}<t$, one of smoothing or internolation.

So we have two distinct optimizations problems namely system identification and state estimation. The system identifioation (or paremetric estimation, as we are dealing with parametrio models) is concerned with the problem of finding a net of parameters that epeci-
fies a model, say M^{*}, which is equivalent in some sense to the system S (or, which is the "best" model, based on some performance criterion, among all models M belonging to a pre-selected class of models C_{α}). Differently, the state estimation concernswith the problem of finding the "best" estimate \hat{u} of the state u of a system S, which is presupposed to be fully characterized by a completely known model M^{*}.

In recent years many researchers dedicated a great deal of their attention to the identifioation problem for lumped parameter systems. A large number of books [35],[49], [53],[60],[62], [64],[66],[77][80], surveys [81]-[91] and comparisons of different methods [92]-[98], were written about this subjoct. On the other hand, the bibliography on identification of distributed parameter systems is not so large. Very few books [60] deal, even superficially, with this subject; and very often the state estimation problem in systems described by partial differential equations is wrongly "termed "identification" (or even, "parameter estimation" \downarrow). In the next chapter we present a survey of this fiold. ${ }^{12}$

12 For previous surveys in DPS identification see [90] and [99].

CHAPTER 2

DISTRIBUTED PARAMETER SYSTEMS IDENTIFICATION: A SURVEY

This chapter treats the parameter identification problem in distributed systems. The various identification methods are grouped into three disjoint classes, namely: "Direct Methods", "Reduction to a Lumped Parameter System" and "Reduction to an Algebraic Equation". Under this classification we give a general survey of the main approaches to the problem of identifying distributed parameter systems. The meaning of "parametric models", "distributed parameter systems" and "systems identification" are to be understood as introduced in the previous chapter. Standard abbreviations such as DPS: Distributed Parameter System(s)

LPS: Lumped Parameter System(s)
ODE: Ordinary Differential Equation(s)
PDE: Paxtial Difforential Equation(s)
will bo used in this and later chapters.

2.1 - IINTRODUCTION

It has become customary to begin a survey paper dealing with any problem in DPS, by remarking on two fundamental points:

1) Problems involved with DPS are much more difficult than those with LPS.
2) Very little literature has been writien about DPS, compared with what has been done for LPS.

Actually these remarks still remain valid, but they now have much less significance than they had one or two decades ago. Not only are a large number of research papers being published in this field but also new techniques in Noderr Mathematical System Theory have helped to lessen the gap between LPS and DPS identification methods.

Basically the main theoretioal difficulty for identifying systems described by PDE, is due to the infinite dimensionality of the state space. Two approaches are normally used to face this problemg 1) Approximation of the infinite-dimensional model by a finite-dimension one, and 2) application of optimization techniques directly to the infinite-dimensional model. Recent works on optimization in abstract spaces, which contain the DPS and LPS identification as particular casos, have simplified the general concept of this later approach.

In modeling DPS, different authors assume different classes of parametric models, each one representing a particular case adapted to a specific physical system. The "best" choice for a class of models C_{α}, would be a sufficiently large olass, such that all DPS described by PDE could be represented by models M belonging to some subolass of C_{α}. This ideal assumption is not usually satisfied in practice; mainly because of the ereat difficulty in developing an identification method for such a wide olass and, at the same time being applicable in non-restrictive conditions (such as on-line idertifioation, normal operating record, noisy observations, finite number of measurements, nonzero input, random inputs, oto.). As it will be seen in further seotions, the identification methods for general models present one or
more of those restrictions, either from theoretical or practical viewpoint. Discussions on mathematical description for DPS can be found In the literature dealing with the control problem (see, for example, [1] and [2]).

Another difficulty arises when we arc dealing with numerical methods for distributed models. If the solution of PDE is available, it comes very often in the form of infinite series which must bo (for numerical computation purposes) approximated by a finite one. If the explicit solution is not available, some approximation technique (such as finite-differences) will be required for simulation. So, sooner or later, we will be faced with approximation problems for numerical implementation of identification methods in DPS. Discussions about this topic can be found in [3]. For numerical methods in PDE see, for example, [4]-[14] (also see references in chapter 3 - part II).

It is obvious that in physical applications, the DPS identification is a more complex problem than LPS identification. One of the main reasons for that is due to the impossibility of taking measurements by using an infinite number of sensors continuously located all over the spatial domain. In this way, some kind of approximation may be (and usually is) necessary when dealing with real applications.

Concerning the second remark: The literature discussed in this chapter contains over 100 entries related only with DPS identification problem, and it is not exhaustive. Although lots of recent papers in this field are continuously appearing, the number of books (even those that dedioate few seotions to the subject [15]) is still very bcarce.

Before reviewing the various methods for identification we discuss briefly the unierlying motivations.

Physical systems that can be modeled by PDE (i.e., distributed parameter physical systems) are often encountered in engineering applications: Antennas, wave guides, propacation of electromagnetic and mechanioal waves, microwave tubes, transmission lines, gas lines, many fluid flow systems, heat exgengers, heat insulating slabs, mechanical torsion bars, vibrating beams and strings, physical structures, transportation, environmmental and geological systems, chemical and nuclear reactors, nuclear plasma devices, and charged particles accelerators; are just a few oxamples of systems whose state variables are distributed in space.

Also the majority of industrial and technologioal systems are characterized by the same fact (e.E., aerospace, petroleum, power, steel, glass, cement and chemical industries; ferrous and nonferrous metallurgy drying and evaporation machinery; rolling mills; eto.).

There are a wide range of identification problems for parametric models in the real world of distributed systems. Some examples of fundamental physical parameters appearing in DPS are listed belows

1) Electromagnetio properties (e.E., conductivity, permissivity, permeability, charge density, etc.)
2) Thermal properties (e.g., specific heat, thermal conductivity, heat transfer coefficient, etc.)
3) Gas and fluid properties (e.g., density, diffusion constant, visoosity, expansion and compressibility coofficiente, etc.)
4) Material properties (e.g., elasticity modulus)
5) Chemical properties (e.g., activation energy, reaction velocity constant, etc.)

Much of classical and modern, practical and theoretical engineering has been concerned with this basic problem. The first efforts in identifying such fundamental parameters has been performed under rigorously controlled laboratory conditions (normally off-line identification assuming noiseless measurements). In this survey the major attention in given to the problem of identifying coefficients in parametric models ${ }^{l}$ for DPS from sequential data (time series), by using identification methods wich can be performed under less restrictive environmental and computational conditions.

2.2 - CLASSIFICATION OF HEPHODS

In the next section we will discuss several identification procedures for DPS. Although each one of them treats the problem under different conditions, they can be grouped into three different classes. ${\text { CLASS } I_{1}}_{1}$: (Direct Methods) Consists of those methods that use optimization techniques directly to the distributed (infinite-dimensional) model.
CLASS Γ_{2} : (Reduction to a LPS) Consists of those methods that reduce the DPS (described by a PDE) to a continuous or discrete-time LPS (described by ODE or difference equation).

1 Such as DPS driven by random inputs and observed through noisy measurements, experimental data, normal operating records, recursive on-line identification algorithms, oto.).

OLASS Γ_{3} : (Reduction to an Algebraic Equation) Consists of those methods that reduce the PDE to an algebraic equation. (If the time variable is involved, the class Γ_{3} may be viewed as a subclass of Γ_{2} when a finite time interval is discretized).

The methods in classes Γ_{2} and Γ_{3} are characterized by two staces (as opposed to those methods in class Γ_{1} which have a "single" stage). The first stage is concerned with techniques for approximating the infinite-dimensional state space to a finite-dimensional one, and the second with techniques for parametric estimation.

It is important to note that, in the case of Γ_{1}, the techniques for parametric estimation are generally applied after that numerical approximations have been carried out. In this way, these techniques apply to finite-dimensional systems and not all present an infi-nite-dimensional analysis. Actually, from this viewpoint, the "single" stege characterizing the methods in class Γ_{1} could be split into two sub-stages: The first one going up to the point where numerical approximation are used for computational purposes (in this sub-stage the methods work for infimite-dimensional spaoes). The second is concerned with techniques used for parametric ectimation, which are applied after that point. (In this second sub-stage, the majority of the methods do not present an infinite-dimensional treatnent).

Since our classification is based on whether or not a method reduces the infinite-dimensional state spaoe to a finite-dimensional one in order to apply known identifioation techniques, these two sub-stages appearing in class Γ_{1} will not bo emphasized.

Fig. 3 shows a diagram representing these throe olasses, where the paths (1), (2) and (3) correspond to Γ_{1}, Γ_{2} and Γ_{3} respeo-
tively. The bifurcation (2-A) and (2-B), appearing on path (2) characterizes the possibility of reducing the DPS to a discrete er contin-uous-time LPS. The link (2-3) represents the possibility of reduoing to an alcebraic equation via an ODE.

Fig. 3: Classification of the Identification Procedures for DPS.
tively. The bifurcation (2-A) and (2-B), appearine on path (2) characterizes the possibility of reducing the DPS to a discrete or contin-uous-time LPS. The link (2-3) represents the possibility of reducing to an algebraic equation via an ODE.

Fig. 3: Classification of the Identification Procedures for DPS.

Concerning the methods that will be discussed on section 2.3, we can classify them as follows (where the numbers between brackets correspond to the references listed at the end of this work).

CLASS $\Gamma_{1}: \operatorname{Path}(1): \quad[56]-[61],[75],[80],[81],[83],[88],[91]-[104]$. $\underline{\text { CLASS } \Gamma_{2}:}:\left\{\begin{array}{l}\operatorname{Path}(2-A):[50]-[53],[85] . \\ \operatorname{Path}(2-B):[57],[65],[70]-[72],[76]-[79],[84],[87],[89],[90] .\end{array}\right.$ CLASS $\Gamma_{3}: \begin{cases}\text { Path (3): } & {[45],[46],[54],[55],[86] \text {. }} \\ \text { Path (2-3): } & {[66] .}\end{cases}$

The majority of the methods belonging to Γ_{2} and Γ_{3} use the following techniques for stage I :
Path (2-A): Finite-differences ${ }^{2}$: [50]-[53], [85].
\int Method of lines 3 : [57], [87].

Path (2-B): Galerkin's method (e.E., see [7],[10]): [76]-[79]. First order perturbation: [84]. Integral transformations: [65].

Path (2-3): Method of line + Integral transformations: [66]. Path (3): $\left\{\begin{array}{l}\text { Finite-differences: [54], [55]. } \\ \text { Integral transformations: [45], [46], [86]. }\end{array}\right.$

Finally we mention the most pertinent techniques used for parametric estimation in the DPS identification problem. These tech-

[^3]niques are conoerned with stage II for methods in Γ_{2} and Γ_{3}, and with the "single" stage for methods in Γ_{1}.

1) Gradient (Conjugate Gradient - Steepest Descent): [56]-[61], [71], $[76]-[79],[80],[81],[97],[100],[101]$.
2) Stochastic Approximation: [50]-[53], [70], [72], [85].
3) Least Squares (Sequential Weighted Least Squares - Least Squares Filtering): [58], [59], [88], [89].
4) Kalman-Filter: [84].
5) Nonlinear Filtering: [77]-[79].
6) Nonlinear Programming: [83].
7) Maximum Likelihood: [51], [103].
8) Statistical Decision Theory: [51].
9) Pattern Search: [77], [79].
10) Quasilinearisation: [57], [61], [90].
11) Methods for Solution of Algebraic Equations: Class Γ_{3}. Generally, in case of methods in olass Γ_{1}, these estimation techniques are not developed using infinite-dimensional analysis, as commented before. For an interesting study concerning infinite-dimensional gradients of functionals over an infinite-dimensional parameter space, see Chavent [100].

2.3 - A CONCISE GEMERAL REVIEN

The first attempts to identify parameters in DPS were mainly due to investigations dealing with the "Inverse Problem in Heat Trans-
niques are concerned with stage II for methods in Γ_{2} and Γ_{3}, and with the "single" stage for methods in Γ_{1}.

1) Gradient (Conjugate Gradient - Steepest Descent): [56]-[61], [71], $[76]-[79],[80],[81],[97],[100],[101]$.
2) Stochastic Approximation: $[50]-[53],[70],[72],[85]$.
3) Least Squares (Sequential Heighted Least Squeres - Least Squares Filtering) : [58], [59], [88], [89].
4) Kalman-Filter: [84].
5) Nonlinear Filtering: [77]-[79].
6) Nonlinear Programming: [83].
7) Maximum Likelihood: [51], [103].
8) Statistical Decision Theory: [51].
9) Pattern Search: [77], [79].
10) Quasilinearisation: [57], [61], [90].
11) Methods for Solution of Algebraic Equations: class Γ_{3}. Generally, in case of methods in olass Γ_{1}, these estimation techniques are not developed using infinite-dimensional analysis, as commented before. For an interesting study concerning infinite-dimensional gradients of functionals over an infinite-dimensional parameter space, see Chavent [100].

2.3 - A CONCISE GETERAL REVIEN

The first attempts to identify parameters in DPS were mainly due to investigations dealing with the "Inverse Problem in Heat Transm
fer" [16]-[27] ${ }^{4}$. Two different approrches were initially used to attack the identification problem: 1) liethods based on the analytical solution of PDE [28]-[38], [141], and 2) methods developed in frequency domain [39]-[42] (e.E., identification of sone coefficients of a transfer function ${ }^{5}$ approximating a linear model for distributed systems).

The purpose of this section is a brief review of the more relevant literature dealing with parameter identification in distributed systems. The bibliography mentioned here has been published during the last decede, and it is widoly available.

Some survey papors have alrcady appeared in this field. Kozhinsky and Rajbman [43] and Rajbman [44], discuss the work done in the Soviet Union. They prosent an extensive list of reforences and lots of applications. A general inspection of system identificem tion problems (both for LPS and DPS) is also considered [44], including analysis of mathematical models accuracy [43].

A recent survey was presented by Goodson and Polia [3]. They consider a "step by step" approach ${ }^{6}$ wich treats the identification prob-

> 4 Although the label "Inverse Problem" has originated from classical solutions of identification probloms, it is still used in very rocent papers [92]-[94], [103], [105], [106], where a modern abstract approach is applied to solve the old problem.
> 5 As observed in the last chapter, these models axe olassified as nonparametric ones. Since we are interested only in parametric models, such identification methods will not be discussed here.

> 6
> This approach has been considered proviously by tho same authors in [77], [79]. See also [143] for a lattor and concise version of [3].
lem by separating it into seven independent suhproblems. As well as a oollection of five sugeestions for furthor research in this field, they also present a very interesting bibliographical analysis where the major techniques used for identifying DPS are displayed together with their respective frequencies of usage. The state estimation problem is also considered.

A large number of methods have been devoloped to solve the problem. The great majority of them is restricted to particular cases (such as specific classes of parametric models, boundary conditions, input signals and output measurements).

Perdroauviile and Goodson [45], [46] used integration by parts (an extension of Shinbrot's technique ${ }^{7}$) to roduce the distributed model to a set of algebraic equations. The method is applicablo to nonlinear models (where extraneous terms may be included) and the case of space-varying coefficients is also considered. Normal operating records and experimental data may be used. The main limitations of the method are: l) It is not convenient for on-line applications, 2) each model has to be considered separately, 3) it has a restricted applicability, since it requires the choice of a suitable function (wich is not always easy or possible) to multiply the PDE in order to perform the integral transformation and, 4) no noise observations were assumed.

7 The "modulatine function method" of reduoing ODE to a set of algebraic equations proposed by Shinbrot [47], was previously utilized by Loeb and Cahen [48], and Takaya [49] for identifying parameters in LPS.

Zhivoglyadov and Kaipov [50] applied finite-difference [4], [8], [13] techniques to reduce a time-invariant DPS (whose model is not necessarily linear) to a discrote-time LPS. Estimates for constant unknown parameters were obtained by minimizing a performance criterion. In this way, they compute the gradient of a cost function for each different model. Assuming noisy observations taken at discrete points in space, a stochastio approximation algorithm is used as a searching scheme for finding these estimates. The method is suitable for on-line applications. In [51] they develop some DPS identification methods based on statistical decision theory, maximum likelihood and stochastic approximation. In [52] the accuracy of a stochastio approximation method is analysed. The work of Zhivoglyadov and his group is summarizod in [53].

Collins and Khatri [54], [55], assumed a deterministio class of DPS described by a time-varying model which can be nonlinear in the dynamios, but must be linear in the parameters. Based on this linearity, the q-constant vector to be identified is placed in an explicit form, and finite-difference techniques are used to approximate the partial derivatives. This procedure reduces the identification problem to that of solving a q-dimensional linear algebraic equation, where a $q \times q$ matrix must be inverted. The observations are taken at a finite number ($>q$) of points in time and/or space, and cxtraneous terms may be inoluded in the original model. Normal operating data and on-line identifioation may be used, but measurements are assumed to be noiseless.

Seinfeld and Chen [56]-[61] developed methods for nonlinear DPS identification based mainly on the steepest descent algorithm. In [56], systems modeled by hyperbolic or parabolio PDF with constant pa-
rameters are identified. A steepest descent algorithm is used as an optimal scheme for minimizing a quadratic error criterion, where the concept of sensitivity coefficients is introduced. Analysis of output transformations and observability for DPS ${ }^{8}$ are developed, but no noise in the observations is assumed. The method is not convenient for onIine applications and requires integration of PDE. In [57] and [61] they used steepest descent, quasilinearization and collocation techniques for nonsequential (off-line) estimation of constant parameters. Optimal location of measurements is also considered. The identification of space-varying parameters is developed in [58] and [59], where two techniques are presented: steepest descent and least-squares filter Ing. In $[60]$ they considerod estimation of time and/or space-varying parameters, and also of those which govern the spatial domain. The identification problems are formulated as optimal control problems and necessary conditions for optimality are derived. The techniques of steepest descent and conjugate gradient are applied. In [57]-[61] they assume noisy observations.

Tzafestas [65] considered the estimation of constant parameters in linear stochastic DPS, which can be reduced to an equivalent LPS by means of integral transformations. Although tho method is basically the same used by Perdreauville in $[46]$ and no noisy observations have been considered, this was one of the first attempts to identify DPS driven by random inputs. He assumes a discrete-time analogue of the original model and uses integration by parts to get a canonical LPS. In $[140]$ a particular class of discrete-time DPS is considered.

8 Studies concerning observability in DPS can be found in [1],[62]-[64].
rameters are identified. A steepest descent algorithm is used as an optimal scheme for minimizing a quadratic error criterion, where the concept of senaitivity coeffioients is introduced. Analysis of output transformations and observability for DPS ${ }^{8}$ are developed, but no noise In the observations is assumed. The method is not convenient for onIine applications and requires integration of PDE. In [57] and [61] they used steepest descent, quasilinearization and collocation techniques for nonsequential (off-line) estimation of constant parameters. Optimal location of measurements is also considered. The identification of space-varying parameters is developed in $[58]$ and $[59]$, where two techniques are presented: steepest descent and least-squares filtering. In [60] they considered estimation of time and/or epace-varying parameters, and also of those which govern the spatial domain. The identification problems are formulated as optimal control problems and necessary conditions for optimality are derived. The techniques of steepest descent and conjugate gradient are applied. In [57]-[61] they assume noisy observations.

Trafostas [65] considered the estimation of constant parameters in linear stochastic DPS, which can be reduced to an equivalent LPS by means of integral transformations. Although the method is basioally the same used by Perdreauville in [46] and no noisy observations have been considered, this was one of the first attempts to identify DPS driven by random inputs. He assumes a discrete-time analogue of the original model and uses integration by parts to get a canonioal LPS. In [140] a particular class of discrete-time DPS is considered.

[^4]Fairman and Shen [66] modified the method of Perdreauville and Goodson [46] of reducing the model for DPS to a set of algebraic equations. They applied the method of lines to convert PDE into ODE ${ }^{9}$. This way, they avoid two restrictions required in [46], namely: offline numerical integration and complete knowledge of the state, both over the spatial domain. In a second step they reduce the ODE to a set of algebraic equations by using the "moment functional method" ${ }^{10}$. This procedure has been applied to identification of constants paremeters in one-dimensional wave and diffusion equations. A particular case of a time-varying coefficient was also considered. The observations were taken at a finite number of points in space, but were assumed to be noiseless.

Carpenter, Wozny and Goodson [70]-[72], used the method of characteristics [73], [74] to reduce a linear first-order PDE to a set of ODE. Estimates of unknown parameters (which may depend on the independent variables and states) were obtained by minimizing a quadratic performance criterion. Stochastic approximation algorithms were chosen as a recursive searching scheme for finding the estimates. They assumed noisy observations and limited available measurement transducers, but the on-line applicability of the method depends on the required performance criterion.

[^5]Ruban [75] presented an algorithm for identifying DPS by means of sensitivity functions. This method is similar to that prom posed by Seinfeld in [56].

Polis, Goodson and Wozny [76]-[79] proposed a step by step approach to the DPS identification problem. They assumed an approximate solution for the distributed model, based on a finite set of orthogonal functions over the spatial domain. The Galerkin's oriterion [7], [10] is used to reduce the PDE to a set of ODE. The constant parameters are then identified by means of known techniques for LPS identification. Three optimization schemes were considered to minimize a performance criterion: steepest descent, nonlinear filtering and pattern search. Decision for measurement locations in the spatial domain were taken based on the G-K observability [62]. Neisy ouservations and extraneous terms were considered.

Di Pillo and Grippo [80] applied the "epsilon technique" 11 to estimate constant parameters and states in linear DPS. Noisy observations were taken at a finite number of points in the spatial domain, and finite-difference techniques were used for mumerical implementation of the method. In [81] they proposed an alternative procedure, by using an approximate solution, to avoid finite-difference approximations.

Hamza and Sheiran [83] presented a method for identifying constant and time-verying parameters in DPS. Non-linear programming was applicd to minimize a discrete version of an appropriate perfor-

11 Basically, the E-technique consists in minimizing a new cost funotfon, which is obtained by adding to tho original one a penalty term. For details sec [82].
mance criterion, where finite-difference techniques are used to approximate the partial derivatives. In the case of linear models and assuming the instantaneous error squared as a performance criterion, the method reduces to one similar to that proposed by Collins and Khatri in [55]. This identification procedure is suitable for on-line application and uses a limited number of sensors alone the spatial domain. Examples considering noisy measurements, extraneous terms and experimental results were included.

Bhagavan and Nardizzi [84] considered the identification of DPS modoled by linear PDP with constant coefficients. First-order perturbations were used to reduce the problem to one of estimation in LPS by means of Kalman filtering. The method is suitable for on-lino applications and assumes a finite number of noisy observations. ${ }^{12}$

Several papers dealing with the identification problem in 7 DPS were presented in IFAC symposiums and other international conferences. Some of them have already been commented on here.

Dianessis [86] used integral transformations and approximations by Chebychev polynomials to reduce a linear PDE with constant coefficients to a set of algebraic equations. The method is not suitable for on-line identification and does not essume noisy observations.

Luckinbill and Childs [87] applied the method of lines to reduce a quasilinear socond-order $P D E$ to an $O D E$, which is augmented by

12 In chapter 4 we propose a new identification method for a class of linear DPS operating in atochastio environment. The method is based on the stochastio approximation thoory and a rather simplified version of it can be found in [85].
adjoining the constant parameters. A Newton-Raphson-Kantorovich expansion is used to solve the resulting lincar boundary value problem. The identification procedure can operate under on-line conditions, but no noisy observations were considered.

Sherry and Shen [88] presented a method for parameter and state estimation in linear DPS, by using a sequential weighted leastsquares algorithm. A finite number of noisy observations was considered, and the method is suitable for on-line applications.

Shridhar and Balatoni [89] used splines to reduce the DPS to a continuous-time LPS. A recursive least-squares procedure was applied for parametric estimation.

Chaudhuri [90] proposed an identification method for DPS based on differential approximation and quasilinearization.

A modern abstract approach for DPS identification has been considered recently by Chavent [91]-[101] and others [102]-[106].

In [97] and [101], Chavent proposed an off-line identification method for DPS described by a general class of deterministic models, where no specific probabilistic treatment for noisy observations was considercd. The method is developed by functional analysis techniques and based on the Lions' [107] approach to control theory for DPS. It consists of minimizing a performance criterion (the quadratic error of output, which is nonquadratic with respect to the parameters), by using a conventional eradient technique (the steepest descent method was used). In order to compute the gradient of the performance criterion, he introduced the adjoint state (solution of adjoint state equation). The eradient is then derived as a functional of the adjoint and system states. Its computation requires the simul-
taneous solution of both system (given by the distributed model) and adjoint state equations. Fundamental problems in identification, such as existence, uniqueness and cholce of minimization schemes, were disoussed in some detail. Two types of models were considered: 1) Those with a finite number of constant parameters (finite-dimensional parameter space) and, 2) those with varying parametcrs as functions of independent variables, or states (Infinite-dimensional parameter space). Applications were also included where discretization techniques, such as finite-differences, are applied for numerical implementation of the method; which was shown to work with a small number of measurements in space and/or time. In [100] he considered the identification of DPS modeled by parabolic PDE with space and state-varying parameters, Hoasurements are taken by a finite number of sensors located in the spatial domain. These sensors supply a mean value of the output over a small neighbourhood for each observation point. In this way, perturbations of measurements were considered, but a stochastic modeling for noisy observations is still lackine. As in [97], the method presents a rigorous mathematical treatment for minimizing a least square error criterion. An infinite-dimensional Eradient of the performance criterion with respect to the parameters was defined, and expressed in terms of the system and adjoint states. The optimization algorithm was the steepest descent, and a detailed discussion on the uniqueness problem was also included.

Balakrishnan [102]-[104] considered the system identification problem (in particular, DPS) fromastochastic viewpoint. In [103] he presented a ceneral abotrect approach for identifyine a class of linear DPS, previously considered by Lavrentiev [105] and harchuk [106].

A stochastic formulation in Hilbert space was proposed, where additive white Gaussian noises are assumed to corrupt both input and observation process. The theoretical devolopment was based on the semigroup theory of linear operators (as opposod to that proposed by Chavent in [97] and [100]), for time invariant systems operating under continuous-time assumption. The infinitesimal generator of a strongly continuous semigroup appearing in the model, was supposed to be dependent on unknown parameters. In order to obtain asymptotically unbiased and consistent estimates of those parameters, the "a posteriori" maximum likelihood technique was utilized. In [102] he considered the identification problem for both LPS and DPS, operating in a stochastic environment. The DPS case is just slichtly mentioned, and show to be included in the general model.

Other types of "identification" problem for DPS have appeared in the literature. Jones and Douglas [29], [30] identified a timevarying coefficient in a parabolic PDE. Since this coefficient necessarily appears in the boundary conditions and the identification method takes measurements only at the boundary, this problem is reduced to that of identifying boundary conditions. Ward and Goodson [108], [109] and Alvarado and hukundan [139] also investigated the identification of boundary conditions. Wozny, Carpenter and Stein [110] presented a method for identifyine Green's functions of DPS. Cannon [111] and Ikeda, Miyamoto and Sawaraci [142] considered the determination of unkriown sources for a class of PDE. Saridis and Badavas [112], [113] identified solutions in DPS, but this was really a state estimation problem. The term "identification" was also used by Phillipson [114], [115] bu't again this was a state estimation problem.

Some practical subjects have stimulated several researches in this field. Problems related to physical structures, heating processes, transportation, economy, ecology, geology, chemical and environmental sciences; are just a few examples where applications and experimental results in identification of DPS have already been developed (see, for example, [16]-[26],[38], [39], [61], [97], [101],[116]-[136]).

Several conclusions can be drawn from the topics covered by this chapter. Some of them are presented in the noxt section. The classification introduced on section 2.2 can give us a general idea about the main techniques currently used for solving the identification problem in DPS. For a further collection of observations and comments concerning both with system identification and state estimation in DPS, the reader is referred to a previous survey by Goodson and Polis [3], [143].

2.4 - COITCLUSIOIS

From what was discussed here we can seleot some basic points which deserve to be omphasized.

1) The reduction to finite-dimensional state space seems to be the most popular method used in the DPS identification problem (Methods of class Γ_{2} : the distributed model is approximated by a lumped one before any optimization is carried out).
2) Among the approximation techniques, finite-differenoes is one of the most used. Other techniques for dealing with distributed models, such as finite olement method (e.g., [137]), should be invostigated for identification purposes.
3) As remarked before, sconer or later, we are faced with some approximatian problem (either for reducing to a finite-dimonsional state space, for numerical implementation, or for physical applications). The question of when to use approximation techniques, before or after the optimization, has no final ans:rer yet. Athans [138] suggests that any approximation should be applied ..s late as possible in order to retain the distributed nature of the model, until numerical results are required.
4) Amone the optimization techniques for parametric estimation the Eradient method is the most popular. Its "probabilistic version" ${ }^{13}$, stochastio approximation, have also been successfully used by several authors.
5) No ceneral method for a laree olass of models operatinc in non-restrictive conditions has been developed, and only a few authors consider the case of stochastic environment (random inputs and noisy observations).
6) There has been a lot of recent literature in this field, but it is still difficult to make any comparisons, because of the different models considered.
7) Althouch other survey papers dealing with DPS identification have already appeared [3],[44], [143], this seems to be the first attempt to inspect the more relevant techniques in this field without confusing two different problems, namely: system identification, and state estimation.

13 From a particular viermoint, the stochastic approximation algorithms may be thought as a "probabilistic version" of the Eradient method.

CHMPTER 3

Matheratical prelinnnaries

PART I: MODELS FOR DPS

We heve previously defined a DPS as a dynamic system that can be modeled by a PDE. We berin this chepter by presentinc a formal description of such models, emphasizing a special subclass of linear models which will be considered in chapter 4 for identificam tion purposes.

3.1 - OI A GMGRAL CLASS

A Eeneral class of models for DPS described by PDE can be formally written as follows:

Dynamio equation: $L(u, \underline{a}, s)=f(s)+w(s)$
Boundary conditions: $\left.L_{\Gamma}(u)\right|_{x=x^{\prime}}=f_{\Gamma}\left(x^{\prime}, t\right)+w_{\Gamma}\left(x^{*}, t\right)$
Initial conditions: $\left.L_{0}(u)\right|_{t=0}=f_{0}(x)+w_{0}(x)$

where:

i) $x \in X$, a simply conncoted open set in R^{n} the spatial domain.
ii) $x^{*} \in \Gamma$, the boundary of X.
iii) $t \in Z$, an interval which can be $(0, T]$, or $(0, \infty)$: the time domain.
iv) $s=(x, t) \in \Omega=X x z$.
v) $u(s)$ is a real-valued function on Ω belonging to an appropriate function space $H(\Omega)$: the dependent variable.
vi) $\underline{a}(s)$ is a vector with a finite number of components which arc real-valued functions on Ω belonging to an appropriate space: the parameter vector. ${ }^{1}$
vii) $f(s), f_{\Gamma}\left(x^{\prime}, t\right)$ and $f_{0}(x)$ are real-valued functions on $\Omega, \Gamma \times \eta$ and X, beloncing to appropriate function spaces:the input, boundary and initial functions, respectively.
viii) $w(s), w_{r}\left(x^{\prime}, t\right)$ and $w_{0}(x)$ are real-valued random field $s^{2}\{w(s)$; $\left.\left.s \in \Omega \subset R^{n+1}\right\},\left\{w_{\Gamma}\left(x^{\prime}, t\right) ;\left(x^{\prime}, t\right) \in \Gamma x\right\} \subset R^{n+1}\right\}$ and $\left\{w_{0}(s) ; x \in X\right.$ $\left.=\mathrm{R}^{\mathrm{n}}\right\}$: disturbance processes corruptine the input, boundary and initial functions, respectively.
ix) L, L_{Γ} and L_{0} are partial differentiol operators. L_{r} and L_{0} are concerned with the boundary and initial conditions, and L represents a parametric distributed model.

A brief word about what we mean by "appropriate" space: The appropriate space associated with the parameter vector $\mathfrak{a}(s)$ (i.e, the parameter space) will become clear later in the chapter 4 where the identi-

[^6]iii) $t \in Z$, an interval which can be $(0, T]$, or $(0, \infty)$: the tine domain.
iv) $s=(x, t) \in \Omega=X x z$.
v) $u(s)$ is a real-valued function on Ω belonging to an appropriate function space $I(\Omega)$: the dependent variable.
vi) $\underline{a}(s)$ is a vector with a finite number of components which arc real-valued functions on Ω beloneing to an appropriate space: the porameter vector. ${ }^{1}$
vii) $f(s), f_{r}\left(x^{\prime}, t\right)$ and $f_{0}(x)$ are real-valued functions on $\Omega, \Gamma \times Z$ and X, beloncing to appropriate function spaces:the input, boundary and initial functions, respectively.
viii) $w(s), w_{\Gamma}\left(x^{\prime}, t\right)$ and $w_{0}(x)$ are real-valued random fields ${ }^{2}\{w(s)$; $\left.s \in \Omega \subset R^{n+1}\right\},\left\{w_{\Gamma}\left(x^{\prime}, t\right) ;\left(x^{\prime}, t\right) \in \Gamma x 乙 \subset R^{n+1}\right\}$ and $\left\{w_{0}(s) ; x \in X\right.$ $\left.\in R^{n}\right\}$: disturbance processes corrupting the input, boundary and initial functions, respectively.
ix) L, L_{Γ} and L_{0} are partial differential operators. L_{r} and L_{0} are concerned with the boundary and initial conditions, and

L represents a parametric distributed model.

A brief word about what we mean by "appropriate" spacez The appropriate space associated with the parameter vector $\underline{a}(s)$ (i.e, the parameter space) will become clear later in the ohapter 4 where the identi-

1
A more eneral caso can be considered, where the parameter vector $\underline{e}(u, s)$ also depends on the dependent variablo $u(s)$.
2
The term "random ficld" is used to denote a collection of random variablos indexed by points tokine values in a subset of R^{n}, as a netural extension of the concopt of stochartic processes [1].
fioation problem is formulated. Of course, the structure of this space depends on the purticular approach uscd for a specific identification problem. On the other hand, an appropriate space containing the independent variable u (i.e., the state space) is a function (or distribution) space which comes to be suitable to deal with a specific problem in PDI (e.g., some Sobolev space $H(\Omega)^{3}$). Considerine our particular approach to the DPS identification problem (see chapter 4), there will be no need to go into details related with $H(\Omega)$; and there are two basic reasons for that:

1) We assume the existence and uniqueness of the solution for a civen DPS modeled by a particular PDE.
2) We consider (for identification purposes) an approximated finitedimensional version for modeling DPS.

3.2 - LITE:R ODELS

A class of linear models of N th order can be written, most generally, as follows:

$$
L(u, \underline{a}, s)=\sum_{i \in I} a_{i+1}(s) \frac{\partial^{m}}{\partial t^{i_{1} \partial x_{i}^{i_{1}} \ldots \partial x_{n}^{i_{n}}} u(s), ~(s)} u
$$

[^7]fication problem is formulated. Of course, the structure of this space depends on the particular approach uscd for a specific identification problem. On the other hand, an appropriate space containing the independent variable u (i.e., the state space) is a function (or distribution) space which comes to be suitable to deal with a specific problem in PDI (e.g., some Sobolev space $H(\Omega){ }^{3}$). Considering our particular approach to the DPS identification problem (see chapter 4), there will be no need to $g \circ$ into details related with $H(\Omega)$; and there ore two basic reasons for that:

1) We assume the existence and uniqueness of the solution for a civen DPS modeled by a particular PDE.
2) We consider (for identification purposes) an approximated finitedimensional version for modeling DPS.

3.2 - LIITSR :ODELS

A class of linear models of N th order can be written, most enerally, as follous:

$$
L(u, a, s)=\sum_{i \in I^{n+1}} a_{i}(s) \frac{\partial^{n i t}}{\partial t^{i_{e}} \partial x_{1}^{i_{1}} \ldots \partial x_{n}^{i_{n}}} u(s)
$$

3 Rouchly opeaking: $I I(\Omega)$ is a Banach space of functions on Ω, equipod with a suitable norm, such that all partial derivatives of u up to the hichest order involved in the model L are in $L^{p}(\Omega)$. If $p=2$ $H(\Omega)$ is a Hilbert space. For details see, for example, [2] and [3].
where:
i) M is a finite integer.
ii) $I=\{0,1, \ldots, N\}$.
iii) $i_{j} \in I ; \forall j=0,1, \ldots, n$.
iv) $i=\left(i_{0}, i_{1}, \ldots, i_{n}\right) \in I^{n+1}$: an $(n+1)-$ tuple index.
v) $m=\sum_{j=0}^{n} i_{j}$ and such that $0 \leq m \in M$.

So, in this case, the dynamic equation (1) can be written
in the form
$a_{i *}(s) \frac{\partial^{M}}{\partial t^{i n}} u(s)=-\sum_{\substack{i \in I^{n+1} \\ i \notin i^{*}}} a_{i}(s) \frac{\partial^{m}}{\partial t^{i_{0}} \partial x_{1}^{i_{1}} \ldots \partial x_{n}^{i_{n}}} u(s)+f(s)+w(s)$ where $i^{*}=(M, 0, \ldots, 0) \in I^{n+1}$; or equivalently (assuming $a_{i *}(s) \neq 0$, $\forall_{s \in \Omega}$) in a state representation:

$$
\frac{\partial}{\partial t} \underline{u}(s)=A(s) \underline{u}(s)+\underline{b}(f(s)+w(s))
$$

where $A(s)$ is a $M x$ M-matrix of linear spatial-differential operators whose parameters may depend on $s=(x, t), \underline{b}$ is a vector in $R^{1 / 4}$ (e.E., $\underline{b}=(0, \ldots, 0,1))$ and $\underline{u}(s)$ is a state vector with N components.

Remark: We have defined $\underline{a}(s)$ and $\underline{u}(s)$ as "finite-size" vectors of functions representing parameters and state, respectively. It is important to note that:

1) The parameter space may be infinite-dimensional since any component $a_{i}(s)$ of $\underline{e}(s)$ can be a function of x for each time $t \in \mathcal{Z}$.
2) The state space is obviously an infinite-dimensional one, since for each time $t \in \zeta$, the components of $\underline{u}(s)$ are certainly functions of x.

A particular coce: In chapter 4 we will be particularly interested in the following special subclass of linear perametric models: 4

$$
\begin{equation*}
L(u, \underline{a}, x)=L_{t}^{N} u(x, t)-L_{x}^{M} u(x, t) ; \quad x \in X \in R \tag{2}
\end{equation*}
$$

where $L_{t}^{N I}$ and L_{x}^{M} are linear partial differential operators such that

$$
\begin{aligned}
& L_{t}^{N} u(x, t)=\sum_{m=0}^{N} \gamma_{m}^{N}(x) \frac{\partial^{m}}{\partial t^{m}} u(x, t) \\
& L_{x}^{M} u(x, t)=\sum_{n=1}^{M} \alpha(x) \frac{\partial^{m}}{\partial x^{m}} u(x, t)
\end{aligned}
$$

wid the timo-invariant ($M+1+1$)-dimensional parameter vector is given by

$$
\underline{a}=\underline{E}(x)=(\underline{\alpha}(x), \underline{\gamma}(x)) \quad \in \mathbb{R}^{M+\mathbb{N}+1}
$$

with

$$
\begin{aligned}
& \underline{\alpha}(x)=\left(\alpha_{1}(x), \ldots, \alpha_{H}(x)\right) \in \mathbb{R}^{M} \\
& \underline{\gamma}(x)=\left(\gamma_{0}(x), \ldots, \gamma_{M}(x)\right) \quad \in \mathbb{R}^{M+1}
\end{aligned}
$$

[^8]
PART II: HIGHER ORDER FINITN-DIFFERMJCES

The classical finite-difference method is a well knowm technique used to obtain approximations for partial differential equations, mainly for second-order equations (e.g., see [6]-[19]).

The main goal of this second part of chanter 3 is to introduce a bricf discussion of finite-difference techniques for approximating higher order partial derivatives. No attempt will be made to present a riçorous treatment dealing with specific topics such as stability, errors, and other technical aspects concerning with numerical analysis of finite-difference techniques; since this subject is videIy available in the current literature. 5

The results obtained here will be used in the next chapter for reducing DPS to LPS.

3.3 - SIIIM, DIFFSREICE AND SLOPE OPERATORS

Notation:

1) The set of all nonnegativo integers, of all positive integers, of all even integers (including zero) and of all odd intecers are denoted by Z, Z_{+}, Z_{c} and Z_{o}, respectively:

[^9]\[

$$
\begin{aligned}
& z=\{0,1,2, \ldots\} \\
& z_{+}=\{1,2,3, \ldots\} \\
& z_{e}=\{0,2,4, \ldots\} \\
& z_{o}=\{1,3,5, \ldots\}
\end{aligned}
$$
\]

As usual tho three dots (...) indicate a presumed understanding about what is omited.
2) The symbols (${ }^{-}$) and (*) denote integer valued functions defined on Z as follows:

$$
\begin{aligned}
& \bar{m}=\left\{\begin{array}{cc}
\frac{m}{2} ; & \text { if } m \in Z_{0} \\
\frac{m+1}{2} ; & \text { if } m \in Z_{0}
\end{array}\right. \\
& \stackrel{m}{m}=\left\{\begin{array}{cc}
\frac{m}{2} ; & \text { if } m \in Z_{0} \\
\frac{m-1}{2} ; & \text { if } m \in Z_{0}
\end{array}\right.
\end{aligned}
$$

Those functions will be extensively used in the remainder of this work and so we recall some of their main properties:

> i) $\bar{m}+\tilde{m}=m$
> ii) $\overline{m-1}=\tilde{m} ; \quad \overrightarrow{m+1}=\bar{m}$
> iii) $\overline{m+1}=\tilde{m}+1 ; \quad \overrightarrow{m-1}=\bar{m}-1$
> iv) $\bar{m}-\tilde{m}=2 \bar{m}-m=m-2 \tilde{m}= \begin{cases}0 ; & \text { if } m \in Z_{e} \\ 1 ; & \text { if } m \in Z_{0}\end{cases}$

Definition ($D-3.1$): Let $B(R)$ be the linear space of all bounded real-valued functions on R. Ve define the " p th-order delta shift operator"

$$
S_{\delta}^{P}: B(R) \rightarrow B(R)
$$

where δ is a fixed positive real constant, es follows:

$$
S_{\delta}^{p} f(x)=f(x+p \delta)
$$

for any $f \in B(R)$ and $p \in R .{ }^{6}$

Romarks:

1) For any $p \in \mathbb{R}, S_{\delta}^{p}$ is a linear operator on $B(R)$ under the usual definition of addition and scaler multiplication.
2) Any finite set of operators $\left\{\mathrm{s}_{\delta}^{\mathrm{P}_{\mathrm{i}}}\right\}$ is linearly independent. That is, for any finite set of scalers $\left\{\alpha_{i}\right\}$

$$
\sum_{i} \alpha_{i} s_{\delta}^{p_{i}}=0 \leftrightarrow \alpha_{i}=0 \text { for all } i
$$

3) S_{δ}^{p} is invertible for any $p \in R$.

$$
s_{\delta}^{p} s_{\delta}^{-p}=s_{\delta}^{-p} s_{\delta}^{p}=s_{\delta}^{\circ}=I
$$

Where I stends for the identity operator on $B(R)$.
Three special linear operators on $B(R)$ are derived from S_{δ}^{p} as follows:

Definition (D - 3.2): The "forward difference operetor":

6 Hith $\theta=-p \delta$ we eet $S_{\delta}^{n}=S_{\theta}$, the "delay" operator: $S_{\theta} f(x)=f(x-\theta)$. For further details on shift or cialay operators see, for example, [20]. In the finito-differences literature the symbol E is usod instead of s to denote shift (nlco cnlled "displacement") operators.
$\Delta_{\delta}=S_{\delta}^{1}-S_{\delta}^{0}=S_{\delta}-I$.
Definition (D - 3.3): The "backward difference operator": $\Delta_{\delta}^{-1}=S_{\delta}^{0}-S_{\delta}^{-1}=I-S_{\delta}^{-1}$.

Definition ($D-3.1$): The " $m+1$ th-order centered slope operator" :

$$
D_{\delta}^{m+1}=\frac{1}{\delta} \Delta_{\delta}^{(-1)^{m}} D_{\delta}^{m} ; \quad D_{\delta}^{0}=I
$$

Remark: Δ_{δ}^{-1} is not the inverse of Δ_{δ} since $\Delta_{\delta} \Delta_{\delta}^{-1}=\Delta_{\delta}^{-1} \Delta_{\delta} \neq I$.
These operators, mainly S_{δ}^{p} and D_{i}^{m}, will bc used for approximating hicher order derivatives in the next section. But before eoing through that we need to prove the following results:

Proposjition (P - 3.1):

$$
\left(s_{\delta}^{p}+a S_{\delta}^{q}\right)^{m}=\sum_{i=0}^{m} a^{m-i}\binom{m}{i} s_{\delta}^{m q+i(p-q)}
$$

where p, q and a are reals $(a \neq 0), m \in Z$ and

$$
\binom{m}{i}=m!/[i!(m-i)!]
$$

Proof:

Both cases, $m=0$ and mri, are automatically satisfied by simple substitution. How assume the following equivalent proposition:

$$
\begin{equation*}
\left(a s_{\delta}^{q}\right)^{-m}\left(s_{\delta}^{p}+a s_{\delta}^{q}\right)^{m}=\sum_{i=0}^{m} a^{-i}\binom{m}{i} s_{\delta}^{i(p-q)} \tag{3}
\end{equation*}
$$

Then

$$
\begin{aligned}
& \left(a S_{\delta}^{q}\right)^{-(m+1)}\left(s_{\delta}^{p}+a s_{\delta}^{q}\right)^{m+1}= \\
= & \left(a s_{\delta}^{q}\right)^{-m}\left(s_{\delta}^{p}+a s_{\delta}^{q}\right)^{m} a^{-1} s_{\delta}^{-q}\left(s_{\delta}^{p}+a s_{\delta}^{q}\right)= \\
= & \sum_{i=0}^{m} a^{-i}\binom{m}{i} s_{\delta}^{i(p-q)}\left(a^{-1} s_{\delta}^{p-q}+I\right)= \\
= & \sum_{i=0}^{m} a^{-(i+1)}\binom{m}{i} s_{\delta}^{(i+1)(p-q)}+\sum_{i=0}^{m} a^{-i}\binom{m}{i} s_{\delta}^{i(p-q)} \\
= & \sum_{i=1}^{m+1} a^{-i}\binom{m}{i-1} s_{\delta}^{i(p-q)}+\sum_{i=0}^{m} a^{-1}\binom{m}{i} s_{\delta}^{i(p-q)} \\
= & a^{0}\binom{m}{0} s_{\delta}^{0}+\sum_{i=1}^{m} a^{-i}\left[\binom{m}{i-1}+\binom{m}{i}\right] s_{\delta}^{i(p-q)}+a^{-(m+1)}\binom{m}{m} s_{\delta}^{(m+1)(p-q)} .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \binom{m}{i-1}+\binom{m}{i}=\binom{[n+1}{i} \\
& \binom{m}{0}=\binom{m+1}{0}=1 ;\binom{m}{m}=\binom{m+1}{m+1}=1
\end{aligned}
$$

we cet:

$$
\begin{aligned}
& \left(a s_{\delta}^{q}\right)^{-(m+1)}\left(S_{\delta}^{p}+a S_{\delta}^{q}\right)^{m+1}= \\
= & a^{0}\binom{m+1}{0} s_{\delta}^{0}+\sum_{i=1}^{m} a^{-i}\binom{m+1}{i} s_{\delta}^{i(p-q)}+a^{-(m+1)}\binom{m+1}{m+1} s_{\delta}^{(m+1)(p-q)}= \\
= & \sum_{i=0}^{m+1} a^{-1}\binom{m+1}{i} s_{\delta}^{i(p+q)}
\end{aligned}
$$

which proves, by induction, the assumption (3). \square

Pextioular ongeg:

1) $a=-1, p=1$ and $a=0$:

$$
\Delta_{\delta}^{m}=\left(S_{\delta}-I\right)^{m}=\sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} s_{\delta}^{i}
$$

2) $a=-1, p=0$ and $q=-1$

$$
\Delta_{\hat{o}}^{-m}=\left(I-S_{\hat{i}}^{-1}\right)^{m}=\sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} S_{s}^{i-m}
$$

Proposition ($P-3.2$):

$$
D_{\delta}^{m}= \begin{cases}I & \text { if } m=0 \\ \frac{1}{\delta^{m}} \prod_{i=1}^{m} \Delta_{\delta}^{(-1)^{i-1}} ; & \text { if } m \in Z_{+}\end{cases}
$$

where

$$
\begin{aligned}
\prod_{i=1}^{m} \Delta_{\delta}^{(-1)^{i-1}} & =\Delta_{\delta}^{(-1)^{0} \Delta_{\delta}^{(-1)^{1}} \cdots \Delta_{\delta}^{(-1)^{m-2}} \Delta_{\delta}^{(-1)^{m-1}}=} \begin{aligned}
& =\Delta_{\delta}^{(-1)^{m-1}} \Delta_{\delta}^{(-1)^{m-2}} \cdots \Delta_{\delta}^{-1} \Delta_{\delta}
\end{aligned}=.
\end{aligned}
$$

Proof:
a) $m=0$ and $m=1$, trivial by $(D-3.4)$.
b) $m>1$: Assume

$$
D^{m}=\frac{1}{\delta^{m}} \prod_{i=1}^{m} \dot{\Delta}_{\delta}^{(-1)^{i-1}}
$$

So, by $(D-3.4)$, wo eet:

$$
\begin{aligned}
D^{m+1} & =\frac{1}{\delta} \Delta_{\delta}^{(-1)^{m}} \frac{1}{\delta^{m}} \prod_{i=1}^{m} \Delta_{\delta}^{(-1)^{i-1}}= \\
& =\frac{1}{\delta^{m+1}} \prod_{i=1}^{m+1} \Delta_{\delta}^{(-1)^{i-1}}
\end{aligned}
$$

and the proof (by induction) is comploted.

Lemme ($I_{1}-3.1$): The mth-order centered slope operator can. be written in terns of a finite series of delte shift operators as follows:

$$
D_{\delta}^{m}=\frac{1}{\delta^{m}} \sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} s_{\delta}^{i-\mathbb{m}_{m}^{m}} ; \quad m \in Z
$$

and this representation is unique.

Froof:

Existence:
a) $m=0: D_{\delta}^{0}=S_{\delta}^{0}=T \quad$ (trivial).
b) $m \in Z_{+}: B y(P-3.2)$ we have

$$
\begin{aligned}
& \delta^{m} D_{\delta}^{m}=\prod_{i=1}^{m} \Delta_{\delta}^{(-1)^{i-1}=\Delta_{\delta} \Delta_{\delta}^{-1} \cdots \Delta_{\delta}^{(-1)^{m-1}} \Delta_{\delta}^{(-1)^{m-2}}=} \\
&=\left\{\begin{array}{l}
\Delta_{\delta} \Delta_{\delta}^{-1} \cdots \Delta_{\delta}^{-1} \Delta_{\delta} ; \text { if } m \in z_{c} \\
\Delta_{\delta} \Delta_{\delta}^{-1} \cdots \Delta_{\delta}^{-1} \Delta_{\delta} \Delta_{\delta}^{-1} ; \text { if } m \in z_{o}
\end{array}\right. \\
&=\left\{\begin{array}{l}
\left(\Delta_{\delta} \Delta_{\delta}^{-1}\right)^{-\frac{m}{2}} ; \text { if } m \in z_{e} \\
\left(\Delta_{\delta} \Delta_{\delta}^{-1}\right)^{\frac{m-1}{2}} ; \text { if } m \in z_{0} \\
\end{array}\right. \\
&=\left(\Delta_{\delta} \Delta_{\delta}^{-1}\right)^{\frac{m}{m}} \begin{cases}I & \text { if } m \in z_{e} \\
\Delta_{\delta} ; & \text { if } m \in z_{0}\end{cases}
\end{aligned}
$$

But

$$
\Delta_{\delta} \Delta_{\delta}^{-1}=\left(S_{\delta}-I\right)\left(S_{\delta}-S_{\delta}^{-1}\right)=S_{\delta}-2 I+S_{\delta}^{-1}=\left(S_{\delta}^{\frac{1}{2}}-S_{\delta}^{-\frac{1}{2}}\right)^{2},
$$

then by $(P-3.1)$ with $a=-1$ and $p=-q=\frac{1}{2}$ we get

$$
\left(\Delta_{\delta} \Delta_{\delta}^{-1}\right)^{\stackrel{\sim}{m}}=\left(s_{\delta}^{\frac{1}{2}}-s_{\delta}^{-\frac{2}{2}}\right)^{2 \tilde{m}}=\sum_{i=0}^{2 m}(-1)^{2 \pi-1}\binom{2 \pi}{i} S_{\delta}^{-\pi+i}
$$

Hence:

$$
\delta^{m} D_{\hat{\delta}}^{m}=\sum_{i=0}^{2 \stackrel{N}{m}}(-1)^{2 \stackrel{N}{m}-i}\binom{2 \tilde{m}}{i} S_{\delta}^{i-\tilde{m}}\left\{\begin{array}{lll}
1 & ; & \text { if } m \in Z_{e} \\
\Delta_{\delta} ; & \text { if } m \in Z_{0}
\end{array}\right.
$$

$b-i) \quad m \in Z_{e} \rightarrow 2 \pi=m$ and the existence is proved for $m \in Z_{e}$.
$b-i i) m \in Z_{0} \rightarrow 2 \pi=m-1$ and $(-1)^{2 \tilde{m}-i}=(-1)^{m-1-i}=(-1)^{m+1-i}$. So:

$$
\begin{aligned}
& \delta^{m} D_{\delta}^{m}=\sum_{i=0}^{n-1}(-1)^{m+1-i}\binom{m-1}{i} S_{\delta}^{i-\tilde{m}}\left(S_{\delta}-I\right)= \\
& =\sum_{i=0}^{m-1}(-1)^{m+1-i}\binom{m-1}{i} s_{\delta}^{i+1-m}-\sum_{i=0}^{m-1}(-1)^{m+1-i}\binom{m-1}{i} s_{\delta}^{i-n_{1}^{n}}= \\
& =\sum_{i=1}^{m}(-1)^{m-i}\binom{m-1}{i-1} s_{\delta}^{i-\tilde{m}}-\sum_{i=0}^{m-1}(-1)^{m+1-i}\binom{m-1}{i} s_{\delta}^{i-\tilde{m}}= \\
& =-\binom{m-1}{0} S_{\delta}^{-m}+\sum_{i=1}^{m}\left[(-1)^{m-i}\binom{m-1}{i-1}-(-1)^{m+1-i}\binom{m-1}{i}\right] s_{\delta}^{i-\tilde{m}}+\binom{m-1}{m-1} s_{\delta}^{m-\tilde{N}^{m}}= \\
& =-\binom{m}{0} s_{\delta}^{-\tilde{m}}+\sum_{i=1}^{m}(-i)^{m-i}\left[\binom{m-1}{i-1}+\binom{m-1}{i}\right] s_{\delta}^{i-\tilde{m}}+\binom{m}{m} s_{\delta}^{m-\tilde{m}}= \\
& =(-1)^{m}\binom{m}{0} s_{\delta}^{-\tilde{m}}+\sum_{i=1}^{m}(-1)^{m-i}\binom{m}{1} S_{\delta}^{i-\tilde{m}}+\binom{m}{m} S_{\delta}^{m-\tilde{m}}= \\
& =\sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} s_{i}^{i-\tilde{m}}
\end{aligned}
$$

and the existence is proved for $m \in Z_{0}$.

Uniqueness:

Set

$$
\alpha_{i}=(-1)^{m-i}\binom{m}{i} \frac{1}{\delta^{m}}
$$

such that

$$
D_{\hat{\delta}}^{m}=\sum_{i=0}^{m} \alpha_{i} s_{\delta}^{i-\tilde{m}}
$$

Now suppose also that

$$
D_{\delta}^{m}=\sum_{i=0}^{m} \beta_{i} S_{\delta}^{i-\tilde{m}} .
$$

Then

$$
0=D_{\delta}^{m}-D_{\delta}^{m}=\sum_{i=0}^{m}\left(a_{i}-\beta_{i}\right) s_{\delta}^{i-m_{m}^{m}}
$$

by indepondence,

$$
\left(\alpha_{i}-\beta_{i}\right)=0 \text { for all } i=0,1, \ldots, m
$$

Lemme (L - 3.2): Let S_{δ} and D_{δ} be operators on $B(R)$ as defined before, and $\left\{\sigma_{m} ; m=0,1, \ldots, M\right\}$ be a set of $M+1$ real constents. Then:

1) There exists en unique set of $M+1$ real coefficients $\left\{s_{m} ; m=1,2, \ldots, \ldots+1\right\}$ such that

$$
\sum_{m=0}^{M} \sigma_{m} v_{\delta}^{m}=\sum_{m=1}^{M+1} s_{m} s^{m-N}
$$

2) Ioreover,

$$
\sum_{m=1}^{M+1} s_{m}=6_{0}
$$

3) and each of thecse coefficients is civen in terms of $\left\{\sigma_{m} ; m=0,1, \ldots, M\right\}$
such that

$$
D_{\delta}^{m}=\sum_{i=0}^{i n} \alpha_{i} s_{\delta}^{i-\tilde{m}} .
$$

Now suppose also that

$$
D_{\delta}^{m}=\sum_{i=0}^{m} \beta_{i} s_{\delta}^{i-\tilde{m}}
$$

Then

$$
0=D_{\delta}^{m}-D_{\delta}^{m}=\sum_{i=0}^{m}\left(a_{i}-\beta_{i}\right) s_{\delta}^{i-m_{m}^{\infty}}
$$

by independence,

$$
\left(\alpha_{i}-\beta_{i}\right)=0 \text { for all } i=0,1, \ldots, m
$$

Lemma ($L-3.2$): Let S_{δ} and D_{δ} be operators on $B(R)$ as defined

 bofore, and $\left\{\sigma_{m} ; m=0,1, \ldots, M\right\}$ be a set of $M+1$ real constints. Then:1) There exists an unique set of $M+1$ real coefficients $\left\{s_{m} ; m=1,2, \ldots, M+1\right\}$ such that

$$
\sum_{m=0}^{M} \sigma_{m} n_{\delta}^{m}=\sum_{m=1}^{m+1} s_{m} s^{m-N_{m}-1}
$$

2) Horeover,

$$
\sum_{m=1}^{M+1} s_{m}=6_{0}
$$

3) and each of theese coefficientis is civen in terms of $\left\{\sigma_{m} ; m=0,1, \ldots, M\right\}$
as follows:

$$
s_{i+\tilde{i}+1}=\sum_{m=m_{s}(i)}^{M}(-1)^{\bar{m}-i}(i+m) \frac{\sigma_{m}}{\delta^{m}}
$$

where
for each $i=-N,-N+1, \ldots, \bar{M}$.

Proof:

1) By (L - 3.1):

$$
\begin{align*}
\sigma_{m} p_{\delta}^{m} & =\frac{\sigma_{m}}{\delta^{m}} \sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} s_{\delta}^{i-\tilde{m}}= \\
& =\frac{\sigma_{m}}{\delta^{m}} \sum_{i=-\tilde{m}}^{\bar{m}}(-1)^{\bar{m}-1}\binom{m}{i+\tilde{m}} s_{\delta}^{i} . \tag{4}
\end{align*}
$$

Hence

$$
\begin{align*}
\sum_{m=0}^{M} \sigma_{m} D_{\delta}^{m} & =\sum_{m=0}^{M} \frac{\sigma_{m}}{\delta^{m}} \sum_{i=-\bar{m}}^{\bar{m}}(-1)^{\bar{m}-i}\binom{m}{i+\frac{\tilde{m}}{}} s_{\delta}^{i}= \\
& =\sum_{i=-\bar{M}}^{\bar{m}} r_{i} s_{\delta}^{i} \tag{5}
\end{align*}
$$

for some set of $M+1$ coefficients $\left\{r_{i} ; i=-M, \ldots, \bar{M}\right\}$. Moreover, this representation of $\sum_{m=0}^{M} G_{m} D_{\delta}^{m}$ in terms of $\left\{S_{\delta}^{-\widetilde{M}}, \ldots, S_{\delta}^{\bar{M}}\right\}$ nust be unique by independence of $\left\{\mathrm{s}_{\delta}^{-\mathcal{H}}, \ldots, s_{\delta}^{\bar{M}}\right\}$. Then defining

$$
s_{i}=r_{i-M-1}
$$

wo have proved the first part.
2) Let $\sigma_{m} D_{\delta}^{m}$ be written in the following form:

$$
\begin{equation*}
\sigma_{m} v_{\delta}^{m}=\sum_{i=0}^{m} P_{m}(i) S_{\delta}^{i-m} \tag{6}
\end{equation*}
$$

So, by ($\mathrm{L}-3.1$), we have

$$
P_{m}(i)=\frac{\sigma_{m}}{\delta^{m}}(-1)^{m-i}\binom{m}{i}
$$

Since

$$
\sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i}=(-1)^{m} \sum_{i=0}^{m}(-1)^{i}\binom{m}{i}=\left\{\begin{array}{lll}
1 ; & \text { if } \quad m=0 \\
0 ; & \text { if } \quad m \neq 0
\end{array}\right.
$$

we get

$$
\sum_{i=0}^{m} P_{m}(i)= \begin{cases}\sigma_{0} ; & \text { if } m=0 \tag{7}\\ 0 ; & \text { if } m \neq 0\end{cases}
$$

Then, by (6) and the result of the first pert, we have

$$
\sum_{m=0}^{M} \sigma_{m} D_{\delta}^{m}=\sum_{m=0}^{M} \sum_{i=0}^{m} P_{m}(i) s_{\delta}^{i-N}=\sum_{m=1}^{M+1} s_{m} s_{\delta}^{m-j-i}
$$

Now, usine (7), it comes:

$$
\sum_{m=1}^{M+1} B_{m}-\sum_{m=0}^{M}\left(\sum_{i=0}^{m} P_{m}(i)\right)=\sigma_{0} .
$$

3) Finally let us return to the equation (4) and (5). For each $m=0, \ldots$, II the coofficient of s_{δ}^{i} in (4) is

$$
\frac{\sigma_{m}}{\delta^{m}}(-1)^{\bar{m}-i}\binom{m}{i-\tilde{n}^{n}}
$$

and for each $i=-\tilde{N}, \ldots, \overline{\mathrm{M}}$ wo have:
i) If $i=0$; there exists r_{0} in (5) for all $m=0, \ldots, M$
ii) If $i \geq 1 ;$ there exists r_{i} in (5) for all m such that $\bar{m} \geq i$
iii) If $i \leqslant-1$; there exists r_{i} in (5) for all m such that $-\mathbb{m} \leqslant i$

Then

$$
r_{i}=\sum_{m=m_{s}}^{M}(i) \frac{\sigma_{m}}{\delta^{m}}(-1)^{\bar{m}-i}\binom{m}{i+n}
$$

where

$$
m_{s}(i)=\left\{\begin{array}{ll}
0 \quad & \text { if } i=0 \\
\min \{m: \bar{m}=i\}=\min \{2 i-1,2 i\}=2 i-1 & ; \text { if } i \geqslant 1 \\
\min \{m: \dot{m}=-i\}=\min \{-2 i,-2 i+1\}=-2 i & ; \text { if } i \leqslant-1
\end{array} .\right.
$$

And the third part is proved since

$$
s_{i}=r_{i-N-1}
$$

Extension: Let $x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$ and define the following operator on $B\left(R^{n}\right)$, the linear space of all bounded real-valued functions on \mathbb{R}^{n} :

$$
S_{\delta_{x_{i}}}^{p} f(x)=f\left(x_{1}, \ldots, x_{i}+p \delta_{x_{i}}, \ldots, x_{n}\right)
$$

for any $f \in B\left(R^{n}\right)$ and $p \in R$, where $\delta_{x_{i}}>0$ is fixed.

$$
\text { So } \mathrm{s}_{\delta_{x_{i}}}^{p} \text {, the "partial delta shift operator", is a natural }
$$ extension of s_{8}^{p}. Following this idea we can define "partial forward and backuard difforence operators"

$$
\begin{aligned}
& \Delta_{\delta_{x_{i}}}=S_{\delta_{x_{i}}}-I \\
& \Delta_{\delta_{x_{i}}}^{-1}=I-s_{\delta_{x_{i}}}^{-1}
\end{aligned}
$$

and also a " $m+1$ th-order pertial centered slope operetor" on $B\left(\mathbb{R}^{n}\right)$:

In this way, all the results obtained about "ordinery" operators $S_{\delta}^{p}, \Delta_{\delta}, \Delta_{\delta}^{-1}$, and D_{δ}^{m} on $B(R)$, have a direct extension to "partial" operators $S_{\hat{\delta}_{x_{i}}^{p}}^{p}, \Delta_{\delta_{x_{i}}}, \Delta_{\delta_{x_{i}}}^{-1}$ and $D_{\hat{o}_{x_{i}}}^{m}$ on $B\left(R^{n}\right)$.

3.4 - APPROKIMAMIMC DERIVRTTVES

The results of lemmas ($L-3.1$) and ($L-3.2$) are now applied to approximate certain class of linear PDE as a natural extension of clessical second-order finite-difference techniaues. To begin with, we present a brief review on a particular type of approximation for ordinary derivatives.

Ordinary derivatives: Let $f(x)$ belong to $C^{M H}\left(x_{a}, x_{b}\right)$, the space of all bouncied real-valued functions on the interval (x_{a}, x_{b}) which are continuous and have continuous dorivatives up to the IIthorder on $\left(x_{a}, x_{b}\right)$.

The derivative of $f(x)$ on $\left(x_{a}, y_{b}\right)$ can be defined in terms
of operators $\Delta_{\delta}, \Delta_{\delta}^{-1}$ and n_{δ} since

$$
\begin{aligned}
\frac{d}{d x} f(x) & =\lim _{\delta \rightarrow 0} \frac{f(x)-f(x-\delta)}{\delta}=\lim _{\delta \rightarrow 0} \frac{f(x+\delta)-f(x)}{\delta}= \\
& =\lim _{\delta \rightarrow 0} \frac{1}{\delta} \Delta_{\delta}^{-1} f(x)=\lim _{\delta \rightarrow 0} \frac{1}{\delta} \Delta_{\delta} f(x)=\lim _{\delta \rightarrow 0} n_{\delta} f(x) .
\end{aligned}
$$

In the same way we can show by induction (e.g., see [21]-[23]) that higher order derivatives may also be written in terms of operators $\Delta_{\delta}^{m}, \Delta_{\delta}^{-m}$ or D_{δ}^{m} :

$$
\begin{aligned}
\frac{d^{m}}{d x^{m}} f(x) & =\lim _{\delta \rightarrow 0} \frac{1}{\delta^{m}} \Delta_{\delta}^{m} f(x)=\lim _{\delta \rightarrow 0} \frac{1}{\delta^{m}} \Delta_{\delta}^{-m} f(x)= \\
& =\lim _{\delta \rightarrow 0} \frac{1}{\delta^{m}}\left[\Delta_{\delta}^{(-1)^{m-1}} \Delta_{\delta}^{(-1)^{m-2}} \cdots \Delta_{\delta}^{-1} \Delta_{\delta}\right] f(x)= \\
& =\lim _{\delta \rightarrow 0} D_{\delta}^{m} f(x) .
\end{aligned}
$$

So forward, backward and centered operators $\left(\Delta_{\delta}^{m}, \Delta_{i}^{-m}\right.$ and $\left.D_{\hat{0}}^{m}\right)$ cen be used to approximate derivatives at $x_{0} \in\left(x_{a}, x_{b}\right)$, for a sufficiently smell δ, as follows: ${ }^{7}$

$$
\left.\frac{d^{m}}{d x^{m}} f(x)\right|_{x=x_{0}} \simeq \begin{cases}\frac{1}{\delta^{m}} \Delta_{0}^{-m} f\left(x_{0}\right): & \text { (backuard operators) } \\ D_{\delta}^{m} f\left(x_{0}\right) & \text { (centered operators) } \\ \frac{1}{\delta^{m}} \Delta_{\delta}^{m} f\left(x_{0}\right): & \text { (forward operators) }\end{cases}
$$

[^10]Partial derivatives: A direct extension of the preceding approximation procedure can be done for partial derivatives as summarized below:

Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \Omega$, a simply connected open set in R^{n} and $f(x) \in C^{H}(\Omega)$, the space of all bounded real-valued functions on Ω which are continuous and have continuous partial derivatives up to the Mth-order on Ω.

The operators $\Delta_{\delta_{x_{i}}}^{m}, \Delta_{\delta_{x_{i}}}^{-m}$ or $D_{\delta_{x_{i}}}^{m}$ can be used to write down partial derivatives of $f(x)$ on Ω,

$$
\frac{\partial^{m}}{\partial x_{i}^{m}} f(x)=\lim _{\substack{\delta \rightarrow 0 \\ x_{i}}} \frac{1}{\delta_{x_{i}}^{m}} \Delta_{\delta_{x_{i}}^{m}} f(x)=\lim _{\substack{\delta \rightarrow 0 \\ x_{i}}} \frac{1}{\delta_{x_{i}}^{m}} \Delta_{\delta_{x_{i}}^{-m}} f(x)=\lim _{\substack{\delta \rightarrow 0 \\ x_{i}}} D_{\delta_{x_{i}}^{m}} f(x)
$$

and so, assuming a sufficiently small $\delta_{x_{i}}$, we can approximate partial derivatives (of a single independent variable ${ }^{8}$) at $x_{0} \in \Omega$ by using partial forward, backward and centered operators $\left(\Delta_{\delta_{x_{i}}}^{m}, \Delta_{\delta_{x_{i}}}^{-\mathrm{ma}}\right.$ and $\left.D_{\delta_{x_{i}}}^{\mathrm{ma}}\right)$ as follows:

$$
{\left.\frac{\partial}{}{ }_{\partial x_{i}^{m}}^{m} f(x)\right|_{x=x_{0}} \simeq\left\{\begin{array}{ll}
\frac{1}{\delta_{x_{i}}^{m}} \Delta_{\delta_{x_{i}}}^{m} f\left(x_{0}\right) ; & \text { (backwerd operators) } \\
D_{\delta_{x_{i}}^{m}}^{m} f\left(x_{0}\right) & \text { (centered operators) } \\
\frac{1}{\delta_{x_{i}}^{m}} \Delta_{\delta_{x_{i}}}^{-m} f\left(x_{0}\right) ; & \text { (forverd operators) }
\end{array}\right) .}
$$

8 Here we aro excluding the case containing cross-terms, such as $\frac{\partial^{2}}{\partial x_{i} \partial x_{j}}$, since they will not be of intereat in our further studies.

Remark: Although we are not coing to use approximation for cross-terms partial derivatives, it is interesting to notice that:

$$
\begin{aligned}
&\left.\frac{\partial^{m}}{\partial x_{1}^{k} \downarrow \ldots \partial x_{n}^{k}} f(x)\right|_{x=x_{0}}=\lim _{\delta_{x_{1}} 0} \frac{1}{\delta_{x_{1}}^{k} \ldots \delta_{x_{n}^{n}}^{k}} \prod_{i=1}^{\overline{1}} \Delta_{\delta_{x_{i}}^{k}}^{k} f\left(x_{0}\right) \\
& \delta_{\dot{x}_{n} 0}
\end{aligned}
$$

where $m=k_{1}+\ldots+k_{n}$.

Finally let us consider the particular problem of approrimating the linear partial differential operators

$$
\begin{aligned}
& L_{x}^{N} u(x, t)=\sum_{m=1}^{M} \alpha_{m}(x) \frac{\partial^{m}}{\partial x^{m}} u(x, t) \\
& L_{t}^{N} u(x, t)=\sum_{m=0}^{N} \gamma_{m}(x) \frac{\partial^{m}}{\partial t^{m}} u(x, t)
\end{aligned}
$$

introduced in (2).
Let the $S_{\delta_{x}}, S_{\delta_{t}}, D_{\delta_{x}}^{m}$ and $D_{\delta_{t}}^{m}$ be operators on $B\left(R^{2}\right)$ as defined before. By lemmas ($L-3.1$) and ($L-3.2$) with $\left(x_{k}, t_{n}\right) \in \Omega \subset R^{2}$, the domain of $u(x, t)$, ond using centered operators for approximating partial derivatives we get:

$$
\begin{aligned}
\left.L_{x}^{M} u\left(x, t_{n}\right)\right|_{x=x_{k}} & =\sum_{m=1}^{M} \alpha_{m}\left(x_{k}\right) D_{\delta_{x}}^{m} u\left(x_{k}, t_{n}\right) \\
& =\sum_{m=1}^{N} \alpha_{m}\left(x_{k}\right) \frac{1}{\delta_{x}^{m}} \sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} s_{\delta_{x}}^{i-m} u\left(x_{k}, t_{n}\right)= \\
& =\sum_{m=1}^{N+1} a_{m}\left(x_{k}\right) s_{\delta_{x}}^{m-M-1} u\left(x_{k}, t_{n}\right)=
\end{aligned}
$$

$$
=\sum_{m=1}^{M+1} a_{m}\left(x_{k}\right) u\left(x_{k c}+(m-\tilde{M}-1) \delta_{x}, t_{n}\right) .
$$

In similar wey

$$
\begin{aligned}
&\left.L_{t}^{\mathbb{N}} u\left(x_{k}, t\right)\right|_{t=t_{n}}=\sum_{m=0}^{N} \gamma_{m}\left(x_{k}\right) D_{\delta_{t}}^{m} u\left(x_{t}, t_{n}\right) \\
&=\sum_{m=0}^{N} \gamma_{m}\left(x_{k}\right) \frac{1}{\delta_{\tau}^{m}} \sum_{i=0}^{m}(-1)^{m-1}\binom{m}{i} s_{\delta_{t}}^{i-\tilde{m}} u\left(x_{k}, t_{n}\right)= \\
&=\sum_{m=1}^{N+1} c_{m}\left(x_{k}\right) s_{\delta_{t}}^{m-N}-1 \\
& u\left(x_{k}, t_{n}\right) \\
&=\sum_{m=1}^{N+1} c_{m}\left(x_{k}\right) u\left(x_{k}, t_{n}+(m-\mathbb{N}-1) \delta_{t}\right)
\end{aligned}
$$

where the coefficients $a_{m}\left(x_{k}\right)$ and $c_{m}\left(x_{k}\right)$ are such as introduced on lemma ($L-3.2$), and so (note that $\infty_{0}(x)=0$):

$$
\begin{aligned}
& \sum_{m=1}^{N+1} a_{m}\left(x_{k}\right)=0 \\
& \sum_{m=1}^{N+1} c_{m}\left(x_{k}\right)=\gamma_{0}\left(x_{k}\right)
\end{aligned}
$$

Remarks:

1) When using this kind of centered approximation we must be sure that for a civen $\left(x_{k}, t_{n}\right) \in \Omega,\left(x_{k}+\left(m^{\prime}-N-1\right) \delta_{x}, t_{n}+\left(m^{\prime \prime}-N-1\right) \delta_{t}\right) \in \Omega$ (or at leest in $\bar{\Omega}$, the closure of Ω) for all $m^{\prime}=1, \ldots, M+1$ and $m^{\prime \prime}=1, \ldots, 1 \mathrm{~N}+1$.
2) Denoting

$$
\begin{aligned}
& a_{k}^{m}=a_{m}\left(x_{k}\right) \\
& c_{k}^{m}=c_{m}\left(x_{k}\right) \\
& u_{k+j}(n+i)=u\left(x_{k}+j \varepsilon_{x}, t_{n}+i \delta_{t}\right)
\end{aligned}
$$

we get

$$
\begin{aligned}
& \left.L_{x}^{M} u\left(x, t_{n}\right)\right|_{x=y_{k}}=\sum_{m=1}^{M+1} a_{k}^{m} u_{k+m-N-1}^{N}(n) \\
& \left.L_{t}^{N} u\left(x_{k}, t\right)\right|_{t=t_{n}}=\sum_{m=1}^{N+1} c_{k}^{m} u_{k}(n+m-N-1)
\end{aligned}
$$

This simplified notation is extensively used in the next chapter.
3) The accuracy of this approximation technique increases for lower order models. The literature dealing with the classical finitedifference techniques [7]- [19] presents discussions on this subject, extressing the accuracy for models with $N=2$ and $N=2$.

PART III: STCCHASTIC APPROXINATIOH

Stochastic Approximation is a recursive scheme which can be used for parametric estimation in a stochastic environment. Its oricins are the works of Robbins and Honro [26], Kiefer and Wolfowitz [27], Blum [28] and the unified general approach given by Dvoretzky [29]. Presently there is a great deal of literature on this subject, both from theoretical and practical viewpoints. Some complete books on stochastic approximation have already been published [30], [31], and interesting surveys regarding mainly the applications are also available [32]-[42], [75].

This technique has been extensively used for identification purposes in memoryless systems and LPS (e.g., see [43]-[54]) and also, but not so extensively, for DPS identification [55]-[60]. Concernine the literature in system identification by stochastic approximation, it has become common practice to refer to Droretzky's work [29] and then to procecd directly to applicable algorithms. But it happens that this "bridee" linking theory and practice is not so obvious and the gap between them is not so narrow either.

For this reason we becin this third part on mathematical preliminarles by presenting the Dvoretzky theorem in abstract spaces. In an attempt to bridee that gap between theory and practice, we introduce some applicable stochastic approximatici algorithms in Hilbert opaces. Particular cases involving alcorithrms for operators on f1-nite-dimensional spaces are also included, since they will be recuired in tho next chapter.

3.5 - THI DVOREMZY'S TYECRM IM RAYACI SPACES

Wolfowitz [61] and Derman and Sacks [62] presented now proofs for the Dvoretzky theorem. In both cases, the proofs are Eiven for real-valued random variables and in [62] they also presented an extension for finite-dimensional rendom vectors. Schmetterer [63] considered stochastic approximation alcorithms, in particular the unified Dvoretzky's approach, in Hilbert spaces. The previous works were ceneralized by Venter [64], who proposed a wider class of algorithms in Hilbert spaces.

In his orifinal paper, Dvoretzky [29] formulated an infi-nite-dimensional version for stochastic approximation algorithms in normed lincar spaces, whose proof is a natural extension of the scaler (real) case. This theorem is formulated below in a simplified version, and the reeder interested in its proof is referredto[29].

Theorem (T - 3.1) (Dvoretzky) : Assume $x_{0}\left(\left\|x_{0}\right\|<\infty\right.$) a fixed point in B, a Banach space. Let $\{z(n) ; n=0,1,2, \ldots\}$ be a B-valued random ectuence, such that

$$
\begin{equation*}
\sum_{n=0}^{\infty} E\left\{\|z(n)\|^{2}\right\}<\infty \tag{8}
\end{equation*}
$$

whero || || stends for the norm in B. Let $x(0)$ be a B-valued second-order random variable, and consider the followine alcorithm (a discrete-time dynamicel system) in B:

$$
\begin{equation*}
x(n+1)=T_{n} x(n)+z(n) \tag{9}
\end{equation*}
$$

where $\left\{T_{n}: B \rightarrow B ; n=0,1,2, \ldots\right\}$ is a family of bounded operators on B.

If:

$$
\begin{equation*}
\left\|T_{n} x-x_{0}\right\| \leqslant F_{n}\left\|x-x_{0}\right\| \tag{10}
\end{equation*}
$$

for any $x \in B$, and

$$
\begin{equation*}
E\left\{\left\|T_{n} x(n)-x_{0}+z(n)\right\|^{2}\right\} \leq E\left\{\left\|T_{n} x(n)-x_{0}\right\|^{2}\right\}+E\left\{\|z(n)\|^{2}\right\} \tag{11}
\end{equation*}
$$

for all $n=0,1,2, \ldots$, where $\left\{F_{n} ; n=0,1,2, \ldots\right\}$ is a real sequence such that:

$$
\begin{equation*}
F_{n}>0 \tag{12}
\end{equation*}
$$

for all n, and

$$
\begin{equation*}
\prod_{n=0}^{\infty} F_{n}=0 \tag{13}
\end{equation*}
$$

Then $\{x(n)\}$ converces to x_{0} in quadratic mean ($q_{0} m_{0}$) and with probability one (w.n.l): 9

$$
\lim _{n \rightarrow \infty} E\left\{\left\|x(n)-x_{0}\right\|^{2}\right\}=0
$$

and

$$
P\left\{\lim _{n \rightarrow \infty} x(n)=x_{0}\right\}=1
$$

9 Tho concepts of convereenco "with probability one" (w.p.1), "almost certainly" (a.c.), "almost sure (or surely)" (a.s.), and "almost cveryh ere" (a.e.) are enuivilent. For theoretical consideration sce, for example, [1], [65]-[69].
$\langle;\rangle$ denote the inner product in II. Anyone of the (sufficient) conditions stated bolow can be used to substitute the condition (11) in the thoorem:

$$
\begin{equation*}
F\{z(n) \mid x(0), z(0), \ldots, z(n-1)\}=0 \quad \text { w. p. } 1 \tag{111}
\end{equation*}
$$

for all n, or

$$
\begin{equation*}
\sum_{n=0}^{\infty} E\left\{\left|\left\langle T_{n} x(n)-x_{0} ; z(n)\right\rangle\right|\right\}<c<\infty . \tag{11"}
\end{equation*}
$$

Proof:

$$
E\left\{\left\|T T_{n} x(n)-x_{0}+z(n)\right\|^{2}\right\}=
$$

$=E\left\{\| \|_{n} x(n)-x_{o} \|^{2}\right\}+E\left\{\|z(n)\|^{2}\right\}+$
$+\mathbb{E}\left\{\left\langle T_{n} x(n)-x_{0} ; z(n)\right\rangle\right\}+\mathbb{E}\left\{\left\langle z(n) ; T_{n} x(n)-x_{0}\right\rangle\right\} \leq$
$\in E\left\{\left\|T_{n} x(n)-x_{0}\right\|^{2}\right\}+E\left\{\|z(n)\|^{2}\right\}+2 E\left\{\left|\left\langle T_{n} x(n)-x_{0} ; z(n)\right\rangle\right|\right\}$.
(11'): $E\left\{\left\langle T n x(n)-x_{0} ; z(n)\right\rangle\right\}=E\left\{E\left\{\left\langle r_{n} x(n)-x_{0} ; z(n)\right\rangle \mid x(n)\right\}\right\}=$
$=E\left\{\left\langle T_{n} x(n)-x_{0} ; E\{z(n) \mid x(n)\}\right\rangle\right\}=$
$=E\left\{\left\langle T_{n} x(n)-x_{0} ; E\{z(n) \mid x(0), z(0), \ldots, z(n-1)\}\right\rangle\right\}=0$.

In the same way:

$$
E\left\{\left\langle z(n) ; T_{n} x(n)-x_{0}\right\rangle\right\}=0 .
$$〈; > denote the inner product in H. Anyone of the (sufficient) conditions stated below can be used to substitute the condition (11) in the theorem:

$$
\begin{equation*}
E\{z(n) \mid x(0), z(0), \ldots, z(n-1)\}=0 \quad \text { w. p.l } \tag{11'}
\end{equation*}
$$

for all n, or

$$
\begin{equation*}
\sum_{n=0}^{\omega} E\left\{\left|\left\langle T_{n} x(n)-x_{0} ; z(n)\right\rangle\right|\right\}<c<\infty . \tag{11"}
\end{equation*}
$$

Proof:

$$
\begin{aligned}
& E\left\{\left\|T_{n} x(n)-x_{0}+z(n)\right\|^{2}\right\}= \\
= & E\left\{\left\|T_{n} x(n)-x_{0}\right\|^{2}\right\}+E\left\{\|z(n)\|^{2}\right\}+ \\
+ & E\left\{\left\langle T_{n} x(n)-x_{0} ; z(n)\right\rangle\right\}+E\left\{\left\langle z(n) ; T_{n} x(n)-x_{0}\right\rangle\right\} \leq \\
\leqslant & E\left\{\left\|T_{n} x(n)-x_{0}\right\|^{2}\right\}+E\left\{\|z(n)\|^{2}\right\}+2 E\left\{\mid\left\langle T_{n} x(n)-x_{0} ; z(n)\right\rangle \| .\right.
\end{aligned}
$$

(11'): $\mathbb{E}\left\{\left\langle T_{n} x(n)-x_{0} ; z(n)\right\rangle\right\}=E\left\{E\left\{\left\langle\eta_{n} x(n)-x_{0} ; z(n)\right\rangle \mid x(n)\right\}\right\}=$
$=E\left\{\left\langle T_{n} x(n)-x_{0} ; E\{z(n) \mid x(n)\}\right\rangle\right\}=$
$=\mathbb{E}\left\{\left\langle T_{n} x(n)-x_{0} ; E\{z(n) \mid x(0), z(0), \ldots, z(n-1)\}\right\rangle\right\}=0$.

In the same way:

$$
E\left\{\left\langle z(n) ; T_{n} x(n)-x_{0}\right\rangle\right\}=0 .
$$

(11"): Set

$$
\sigma_{n}^{2}=E\left\{\|z(n)\|^{2}\right\}+2 I\left\{\left|\left\langle T_{n} x(n)-x_{0} ; z(n)\right\rangle\right|\right\} .10
$$

So

$$
E\left\{\left\|T_{n} x(n)-x_{0}+z(n)\right\|^{2}\right\} \leq E\left\{\left\|T_{n} x(n)-x_{0}\right\|^{2}\right\}+\sigma_{n}^{2}
$$

where

$$
\sum_{n=0}^{\infty} \sigma_{n}^{2}<\infty
$$

and thet is sufficient to insure the theorem (for discussions, see [29] and [64.]) .

Special case ($\mathrm{S}-3.2$): Now set $\mathrm{B}=\mathrm{BL}\left(\mathrm{R}^{k}\right)$, the class of all bounded linear operators from R^{k} into itself. Let A^{*} and $\operatorname{tr}[A]$ denote the adjoint and the trace of an element A in $B L\left(R^{k}\right)$, respectively. As in ($5-3.1$), the conditions below can be used to substitute (11) in (T-3.1):

$$
E\{Z(n) \mid X(0), Z(0), \ldots, z(n-1)\}=0 \quad \text { w.p.l }
$$

for all n, or

$$
\sum_{m=0}^{\infty} E\left\{\operatorname{tr}\left[\left(T_{n} X(n)-X_{0}\right)^{*} Z(n)\right]\right\}<c<\infty .
$$

10 If H is a real Hilbert space, the absolute valued appearinc in (11") may be omited.

Proof:

$B L\left(\mathrm{R}^{\mathrm{k}}\right)$, with addition and scalar multiplication defined as usual, is a Hilbert space with the inner product defined as
$\langle A ; B\rangle=\operatorname{tr}\left[A^{*} B\right]$
for all A, B in $B L\left(R^{k}\right)$ [70]. So, by invariance of the trace (which is real) [71] and by equivalence of norms [72] in $B L\left(R^{k}\right)$, the proof follows as in ($\mathrm{S}-3.1$).
3.6 - A PROPOSED STOCHASTIC APPROXIMATION ALGORIsM IN HILBERT SPACE

In this section we present two corollaries for the preceding theorem. A similar version (in R^{1}) can be found in [37], where the proof stating the connection with the Dvoretzky theorem is somewhat obscure.

First we need to prove the following lemma:

Lemma ($L-3.3$): Let $\left\{\zeta_{n} ; n=0,1,2, \ldots\right\}$ be a real porifive sequence such that

$$
\frac{\zeta_{n}}{\zeta_{n+1}} \leqslant 1+\zeta_{n}+\xi_{n}
$$

for all n, where:

$$
\xi_{n} \geq 0, \sum_{n=0}^{\infty} \xi_{n}<\infty .
$$

Define

$$
\begin{aligned}
& \Phi(n, i)=\prod_{j=1}^{n-1}\left(1-\zeta_{j}\right) ; \quad i<n \\
& \Phi(n, n)=1
\end{aligned}
$$

Then:

$$
\zeta_{i} \Phi(n+1, i+1) \leq k \zeta_{n}
$$

for some finite positive constant k.

Proof:

$$
\begin{aligned}
\zeta_{i} \Phi(n+1, i+1) & =\zeta_{i} \prod_{j=i+1}^{n}\left(1-\zeta_{j}\right)=\zeta_{i} \prod_{j=i+1}^{n} \zeta_{j}\left(\frac{1}{\zeta_{j}}-1\right)= \\
& =\prod_{j=1}^{n-1} \zeta_{j}\left(\frac{1}{\zeta_{j+1}}-1\right) \zeta_{n}=\zeta_{n} \prod_{j=i}^{n-1}\left(\frac{\zeta_{j}}{\zeta_{j+1}}-\zeta_{j}\right) \in \\
& \leqslant \zeta_{n} \prod_{j=i}^{n-1}\left(1+\xi_{j}\right) \leqslant \zeta_{n} \lim _{n \rightarrow \infty} \prod_{j=i}^{n-1}\left(1+\xi_{j}\right)= \\
& =\zeta_{n} k ; 0<k<\infty
\end{aligned}
$$

since [73]:

$$
\xi_{n} \geq 0 \text { and } \sum_{n=0}^{\infty} \xi_{n}<\infty \leftrightarrow 0<\prod_{n=n_{0}}^{\infty}\left(1+\xi_{n}\right)=k<\infty .
$$

Corollary ($C-3.1$): Lat $B=H$ be a Hilbert space, x_{0} a

fixed point in $H\left(\left\|x_{0}\right\|<\infty\right)$, and consider the following alcorithm in II:

$$
\begin{equation*}
x(n+1)=\left(1-\zeta_{n}\right) x(n)+\zeta_{n} y(n) \tag{14}
\end{equation*}
$$

where $\left\{\zeta_{n} ; n=0,1,2, \ldots\right\}$ is a real sequence, $\{y(n) ; n=0,1,2, \ldots\}$ ia a H-valucd rendom secuence, and $x(0)$ is a second-order H-valued random variable independent of $\{y(n)\}$.

If:
i) $\zeta_{n} \in(0,1)$
ii) $\sum_{n=0}^{\infty} \zeta_{n}=\infty$
iii) $\sum_{m=0}^{\infty} \zeta_{n}^{2}<\infty$
iv) $E\left\{\|y(n)\|^{2}\right\}<\sigma^{2}<\infty$
and
v-a) $\left\{\zeta_{n}\right\}$ as in $(L-3.3)^{11}$
v-b) $E\{y(n)\}=x_{0}$; for all n
$v-c) \sum_{n=0}^{\pi n-1} E\left\{\left|\left\langle y(i)-x_{0} ; y(n)-x_{0}\right\rangle\right|\right\}<c<\infty$
or

$$
\left.v^{\prime}\right) E\left\{y(\vec{n})-x_{0} \mid y(0), \ldots, y(n-1)\right\}=0 \quad \text { w.p.l }
$$

for ell n. 12

11 For exemple, the sequence

$$
\zeta_{n}=\frac{1}{(a n+b)^{\alpha}} ; \quad 0<a \leq 1 ; b>1 ; \frac{1}{2}<\alpha \leq 1
$$

setisfies (i) - (iii), and (v-a) [73].
12
Note that, from (v^{\prime}) we cet (v-b) [65], [.66].

Then:

$$
\lim _{n \rightarrow \infty} E\left\{\left\|x(n)-x_{0}\right\|^{2}\right\}=0
$$

and

$$
P\left\{\lim _{n \rightarrow \infty} x(n)=x_{0}\right\}=1 .
$$

Proof:
By (14)

$$
x(n+1)=\left(1-\zeta_{n}\right)\left[x(n)-x_{0}\right]+x_{0}+\zeta_{n}\left[y(n)-x_{0}\right] .
$$

Set

$$
\begin{aligned}
& F_{n}=\left(1-\zeta_{n}\right) \\
& z(n)=\zeta_{n}\left[y(n)-x_{0}\right]
\end{aligned}
$$

and define operators in H, as follows:

$$
T_{n} x=F_{n}\left(x-x_{0}\right)+x_{0}
$$

for any x in H. So we cot an algorithm as in (9):
(9): $\quad x(n+1)=T_{n} x(n)+z(n)$
where the condition in (8), (10), (12) and (13) are satisfied:
(8): $\quad \sum_{n=0}^{\infty} E\left\{\left\|_{z}(n)\right\|^{2}\right\}=\sum_{n=0}^{\infty} \zeta_{n}^{2}\left(E\left\{\|y(n)\|^{2}\right\}-\left\|x_{0}\right\|^{2}\right)<$ $<\left(\sigma^{2}-\left\|x_{0}\right\|^{2}\right) \sum_{n=0}^{\infty} \zeta_{n}^{2}<\infty$.
(10): $\quad\left\|T_{n} x-x_{0}\right\|=F_{n}\left\|x-x_{0}\right\|, \quad$ for any x in H.
(12): $\quad 0<F_{n}<1, \quad$ since $0<\zeta_{n}<1$.
(13): $\quad \prod_{n=0}^{\infty} F_{n}=0, \quad$ since ${ }^{13} 0<\zeta_{n}<1$ and $\sum_{n=0}^{\infty} \zeta_{n}=\infty$.

Then, in order to complete the proof, we just need to verify the condition (11) - theorem (T - 3.1) - or one of its equivalent forms, (11') or (11"), as in (S - 3.1). In the following we show that $\left(v^{\prime}\right) \rightarrow\left(11^{\circ}\right)$ and $(v) \rightarrow\left(11^{\prime \prime}\right)$
(11'): $\quad E\{z(n) \mid x(0), z(0), \ldots, z(n-1)\}=$
$=\zeta_{n} \mathbb{E}\left\{y(n)-x_{0} \mid x(0), y(0), \ldots, y(n-1)\right\}=$
$=\zeta_{n} E\left\{y(n)-x_{0} \mid y(0), \ldots, y(n-1)\right\}=$
$=0 \quad$ w.p.1, $\quad \forall n$
since $x(0)$ is independent of $\{y(n)\}$.
(11"): Let us rewrite the algorithm in (14):

$$
x(n+1)-x_{0}=\left(1-\zeta_{n}\right)\left[x(n)-x_{0}\right]+\zeta_{n}\left[y(n)-x_{0}\right]
$$

So, for any fixed m, we have:

$$
\begin{equation*}
c_{x y}(n+1, m) \leq \Phi(n+1, n) c_{x y}(n, m)+\zeta_{n} c_{y y}(n, m) \tag{15}
\end{equation*}
$$

where

$$
\begin{aligned}
& c_{x y}(n, m)=E\left\{\left|\left\langle x(n)-x_{0} ; y(m)-x_{0}\right\rangle\right|\right\} \\
& c_{y y}(n, m)=E\left\{\left|\left\langle y(n)-x_{0} ; y(m)-x_{0}\right\rangle\right|\right\} \\
& \Phi(n, i)=\prod_{j=i}^{n-1}\left(1-\zeta_{j}\right) ; i<n \\
& \Phi(n, n)=1
\end{aligned}
$$

13 Sce, for examplo, [74] pp. 146.

On iterating the inequality (15) we get:

$$
c_{x y}(n, m) \leqslant \Phi(n, 0) c_{x y}(0, m)+\sum_{i=0}^{n-1} \Phi(n, i+1) \zeta_{i} c_{y y}(i, m)
$$

Since $x(0)$ is independent of $\{y(n)\}$ and $E\left\{y(n)-x_{0}\right\}=0$ for all n,

$$
c_{x y}(0, m)=0, \quad \text { for any } m
$$

Thus, setting $m=n$, we have:

$$
c_{x y}(n, n) \leqslant \sum_{i=0}^{n-1} \Phi(n, i+1) \zeta_{i} c_{y y}(i, n)
$$

Now note that:

$$
\begin{aligned}
& \sum_{i=0}^{n-1} c_{y y}(i, n)<c<\alpha \\
& \Phi(n+1, i+1) \zeta_{i} \leqslant k \zeta_{n}
\end{aligned}
$$

for some finite positive constant k (by assumption ($v-a$) and lemma ($1-3.3$) .

Then:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} E\left\{\left|\left\langle T_{n} x(n)-x_{0} ; z(n)\right\rangle\right|\right\}=\sum_{n=0}^{\infty} F_{n} \zeta_{n} c_{x y}(n, n) \leqslant \\
\in & \sum_{n=0}^{\infty} \zeta_{n}\left(1-\zeta_{n}\right) \sum_{i=0}^{n-1} \Phi(n, i+1) \zeta_{i} c_{y y}(i, n)= \\
= & \sum_{n=0}^{\infty} \zeta_{n} \sum_{i=0}^{n-1} \Phi(n+1, i+1) \zeta_{i} c_{y y}(i, n) \leqslant
\end{aligned}
$$

$$
\begin{aligned}
& \qquad \sum_{n=0}^{\infty} k \zeta_{n}^{2} \sum_{i=0}^{n-1} c_{y y}(i, n) \Leftrightarrow \text { ek } \sum_{n=0}^{\infty} \zeta_{n}^{2}<\infty \\
& \text { and }\left(11^{\prime \prime}\right) \text { is satisfied. } \square
\end{aligned}
$$

Finally we present a particular case of stochastic approximation aleorithms for bounded linear operators on R^{k}.

Corollery ($C-3.2$): The corollexy ($C-3.1$) remains valid if $B=B L\left(R^{k}\right)$, the class of all bounded Iinear operators from R^{k} into itsolf, provided that the condition ($v-c$) is replaced by

$$
\sum_{i=0}^{n-1} E\left\{\operatorname{tr}\left[\left(Y(i)-X_{0}\right)^{*}\left(Y(n)-X_{0}\right)\right]\right\}<c<\infty
$$

Proof:
Define

$$
\begin{aligned}
& c_{X Y}(n, m)=E\left\{\operatorname{tr}\left[\left(X(n)-X_{0}\right)^{*}\left(Y(m)-X_{0}\right)\right]\right\} \\
& c_{X Y}(n, m)=E\left\{\operatorname{tr}\left[\left(Y(n)-X_{0}\right)^{*}\left(Y(m)-X_{0}\right)\right]\right\}
\end{aligned}
$$

and the proof follows exactly as in $(c-3.1)^{14}$, by using the results obtained in (s-3.2).

Romarks:

1) In [37] Fu proposed a similar version for stochastio approximation alcorithms in R^{1}, where direct extension to R^{k} and $B L\left(R^{k}\right)$ can be

14 In this case the ecquality in (15) holds.
obtained. 15 In his formulation he did not require the conditions ($v-a$) and ($v-c$) or (v^{\prime}). So, if one belives in [37], a simplified version of $(C-3.1)$ in R^{k} and $(C-3.2)$ can be formulated by assumine only the conditions (i) - (iv) and (v-b). Note that, in this caso,

$$
\begin{aligned}
& z(n)=\zeta_{n}\left[y(n)-x_{0}\right] \\
& E\left\{y(n)-x_{0}\right\}=0 ; \quad \forall n \\
& E\left\{\|y(n)\|^{2}\right\}<\sigma^{2}<\infty
\end{aligned}
$$

are being used to substitute the oricinal sufficient condition

$$
\begin{equation*}
\mathbb{E}\{z(n) \mid x(0), x(1), \ldots, x(n)\}=0 \quad \text { w.p. } 1 ; \forall n \tag{111}
\end{equation*}
$$

assumed by Dvoretzky in [29] for the scalar (real) case.
2) Finally we romark, as proved by Venter [64], that conditions weaker then (11'), such as

$$
\begin{align*}
& \sum_{n=0}^{\infty}\left(E\left\{\|E\{z(n) \mid x(0), z(1), \ldots, z(n-1)\}\|^{2}\right\}\right)^{\frac{1}{2}}<\infty \tag{16}\\
& \sum_{n=0}^{\infty}\|E\{z(n) \mid x(0), z(1), \ldots, z(n-1)\}\|<\infty \quad \text { w.p.1 } \tag{17}
\end{align*}
$$

are able to ensure the convergence for algorithms in Hilbert spaces, in quadratic mean and with probability one in case of (16), and with probability one in case of (17). (Note that (11') implies (16) which implies (17). For detailed discussion see [64]).

15 Such extencions to finite-dimensional spaces have already been successfully used for identification purpones in memoryless systoms [45] and LPS [47], [49].

CHAPTER 4

IDENTIPICATION FOR A CLASS OR LINEAR DPS USING STOCHASTIC APPROXIMATION

This is the central chapter of this work. It presents a new method for identifying distributed systems operatingina stochastic environment, where no restriction concerning probability distributions is imposed.

A class of linear models driven by random inputs and observed through noisy measurements is considered. These measurements are taken at a limited number of discrete points located in the spatial domain.

The method is classified as class Γ_{2} : First of all a timespace discretization is applied in order to approximate the infinitedimensional model (described in terms of a linear PDF) by a finitedimensional one (described in terms of a linear vector differenceequation). So, higher order finite-difference techniques are used to reduce the DPS to a discrete-time LPS (stage I, path 2-A). Thanks to the linearity in the parameters, the space-varying coefficients are placed in an explicit form, and are then identified by using recursive assymptotically unbiased stochastic approximation alcorithms (stage II). The method is suitable for on-line applications and extraneous terms may be included in the original model.

4.1 - PROBLEN FORMULATIOA

Model description: Consider a DPS modeled by PDE and let $u(x, t) \in H(\Omega)$ denote the dependent variable, as follows:

$$
\begin{align*}
& L_{t}^{N} u(x, t)=L_{x}^{M} u(x, t)+\beta(x) w_{x}(t) \tag{1-a}\\
& x \in X=(0, l) ; \quad t>0
\end{align*}
$$

Where the linear partial differential operators

$$
\begin{align*}
& L_{t}^{N} u(x, t)=\sum_{m=0}^{I V} \gamma_{m}(x)-\frac{\partial^{m}}{\partial t^{m}} u(x, t) \\
& L_{x}^{M} u(x, t)=\sum_{m=1}^{M} \alpha_{m}(x) \frac{\partial^{m}}{\partial x^{m}} u(x, t) \tag{1-b}
\end{align*}
$$

are such as introduced in the first part of the last chapter, as well as the appropriate function space $H(\Omega), \Omega=(0, \ell) \times(0, \infty) \propto R^{2}$.

The input disturbances $\left\{w_{x}(t) ; t=0\right\}$ are taken to be realvalued second-order stochastic processes for each x in $(0, l) .^{1}$ The realvalued space-varying parameters $\left\{\alpha_{1}(x), \ldots, \alpha_{H}(x)\right\},\left\{\gamma_{0}(x), \ldots, \gamma_{N}(x)\right\}$ and $\beta(x)$ are supposed to be in $B V[0, l]$, the space of all functions of bounded

[^11]variation ${ }^{2}$ on the interval $[0, l]$; and $\left|\gamma_{N}(x)\right|>\gamma>0, \beta(x) \neq 0$, for all x in $(0, l) .{ }^{3}$

Observations: Assume that noisy observetions are available over an equidistant 4 partition P_{z} of $\bar{X}=[0, e]$.

$$
\begin{equation*}
z\left(x_{k}, t\right)=h u\left(x_{k}, t\right)+d v(t) ; \quad t>0 \tag{2}
\end{equation*}
$$

where the observation noise $\{v(t) ; \quad t>0\}$ is taken to be a real-valued second-order stochastic process, and h, d are real constants $(h \neq 0)$.

Problem statement: To identify the set of M parameter functions $\left\{\alpha_{m}:[0, l] \rightarrow R ; m=1, \ldots, M\right\}$ appearing in the spatial-differential operator L_{x}^{M}, based on noisy observations $z\left(x_{k}, t\right)$. Under this formulation, the solution lies in $\mathrm{BV}[0, l]$, the infinite-dimensional parameter space. We consider here a finite-dimensional version:

2 By a partition $P_{[a, j]}$ of the interval $[a, b]$, we mean a finite set of pointe $x_{k} \in[a, b], k=0,1, \ldots, K$, such that $a=x_{0}<x_{1}<\ldots<x_{K}=b$. A function f defined on $[a, b]$ is said to be of bounded variation if there is a constant f_{0} so that for any partition of $[a, b]$

$$
\sum_{k=0}^{K-1}\left|f\left(x_{k+1}\right)-f\left(x_{k}\right)\right|<f_{0}<\infty
$$

3 Since L_{x}^{M} and L_{t}^{N} are defined for $x \in(0, l)$, the values of α_{m}, γ_{m} and β in $x=0$ and $x=l$ have no sicnificance for us. To ensure that these functions are in $\operatorname{BV}[0, l]$ we can define any real value for them in $x=0$ and $x=l$.

4
A partition is said to be "equidistant", if $x_{k+1}-x_{k}$ is constant for all $k=0,1, \ldots, K-1$.
"Identify $\left\{\alpha_{m} ; m=1, \ldots, M\right\}$ for points $x_{k} \in P_{x}$ ". Since $\alpha_{m} \in B V[0, l]$, it is always possible to find an equidistant partition P_{x} of $[0, l]$ such that the finite sequence $\left\{\alpha_{m}\left(x_{k}\right) ; x_{k} \in P_{x}\right\}$ is a good (the goodness depending on how small we choose $\delta_{x}=x_{k+1}-x_{k}$) approximation of $\alpha_{m}(x) \quad x \in[0, l]$, for all $m=1, \ldots$, , .

Boundary and initial conditions: A complete description of a physical DPS requires more information than is provided by the distributed model in (1). It is necessary to add some supplementary relations: initial (and/or terminal) and boundary conditions. 5 Let a set of initial conditions (IC) for the DPS modeled by (1) be civen by:

$$
\begin{equation*}
\left.\frac{\partial^{i}}{\partial t^{i}} u(x, t)\right|_{t=0}=E_{i}(x) ; \quad x \in[0, l] ; \quad i=0,1, \ldots, N-i \tag{3}
\end{equation*}
$$

where the real-valued initial functions $E_{i}(x)$ are bounded and continuous on $[0, l]$.

Although the initial conditions written in (3) are not uniquo, they are quite representative for the ereat majority of physical systems modeled by (1). The came does not happen with a set of boundary conditions. Different experiments on the same system (e.c., one modeled by (1)), provido us with different types of "a priori" information which are expressed by different sets of boundary conditions.

[^12]"Identify $\left\{\alpha_{m} ; m=1, \ldots, M\right\}$ for points $x_{k} \subset P_{x}$ ". Since $\alpha_{m} \in \mathrm{BV}[0, e]$, it is always possible to find an equidistant partition P_{x} of $[0, l]$ such that the finite sequence $\left\{\alpha_{m}\left(x_{k}\right) ; x_{k} \in P_{x}\right\}$ is a good (the goodness dependine on how small we choose $\delta_{x}=x_{k+1}-x_{k}$) approximation of $\alpha_{m}(x) \quad x \in[0, l]$, for all $m=1, \ldots$, M.

Boundary and initial conditions: A complete description of a physical DPS requires more information than is provided by the distributed model in (1). It is necessary to add some supplementary relations: initial (and/or terminal) and boundary conditions. 5

Let a sot of initial conditions (IC) for the DPS modeled by (1) be civen by:

$$
\begin{equation*}
\left.\frac{\partial^{i}}{\partial t^{i}} u(x, t)\right|_{t=0}=E_{i}(x) ; x \in[0, l] ; i=0,1, \ldots, N-i \tag{3}
\end{equation*}
$$

where the resl-valued initial functions $E_{i}(x)$ ere bounded and continuous on $[0, l]$.

Although the initial conditions written in (3) are not uniquo, they are quite representative for the ereat majority of phygical systems modeled by (1). The sane does not happen with a set of boundary conditions. Different experiments on the same systom (e.E., one modeled by (1)), provide us with different types of "a priori" information whioh aro expressed by different sets of boundary conditions.

5 We reserve the term "boundary condition" for conditions civen only at the spatial boundary (in our case, at $x=0$ and $x=\ell$).

Since our eoal is the identification of parameters appearing only in the distributod model described by the dynemic equation (1), we have two possible ways to proceed: I) Ne can assume a particular set of boundexy conditions which is representative for many physical oxperiments in DPS. This approach cen also bo thought as if we could choose the experimental conditions (concerning with the boundary) on which the DPS would worl for identification purpose. 2) The second way would be to assume a ceneral (but not explicit) partial diffcrential equation operatinc at the boundary.

He choose the first way because it will permit us to carry out a eencral identification procedure, without especifying the order of the operators L_{x}^{N} and I_{t}^{M}, up to the point of computational implementation.

For simplicity assume a set of homoceneous boundary conditions (BC):

$$
\begin{array}{ll}
\left.\frac{\partial^{i}}{\partial x^{i}} u(x, t)\right|_{x=0}=0 ; & t \neq 0 ; \tag{4}\\
i=0,1, \ldots, \ldots, 1 \\
\left.\frac{\partial^{i}}{\partial x^{i}} u(x, t)\right|_{x=l}=0 ; & t \geq 0 ;
\end{array} \quad i=0,1, \ldots, \bar{M}-1 .
$$

Romarks:

1) (Nonhomogeneous boundery conditions) The identification method that will be proposed here does not require homoceneous BC as a necessary condition for its applicability. He could have assumed nonhomogeneous boundary conditions such es

$$
\begin{align*}
& \left.\frac{\partial^{i}}{\partial x^{i}} u(x, t)\right|_{x=0}=h_{i}^{0}(t) ; \quad t \geq 0 ; \quad i=0,1, \ldots, \tilde{M}-1 \\
& \left.\frac{\partial^{i}}{\partial x^{i}} u(x, t)\right|_{x=l}=h_{i}^{e}(t) ; \quad t \geq 0 ; \quad i=0,1, \ldots, \bar{M}-1 \tag{4'}
\end{align*}
$$

where $h_{i}^{o}(t)$ and $h_{i}^{l}(t)$ may be deterministic or random roal-valued functions. Remerks will be mede alone this chapter in order to show that nonhomocencous boundary conditions may also be considered.
2) (Random initial conditions) : He could havo assumed the initial functions $\varepsilon_{i}(x)$ as random functions rather then deterministic ones. But this assumption would not bring any further genoralization to our identification method, wich already assumes random inputs. Also note that, in case of homoceneous boundary conditions, we must have $E_{0}(0)=g(\rho)=0$.

4.2 - REDUCTIO: TO : MIITE-DITESICHAL STITE SPACF

Space-time discretization: The space and time-domain can be partitioned as follows:

1) Discrotization of epace-domain $\overline{\mathrm{X}}=\{x: 0 \leqslant x \leqslant l\}$: Define

$$
k \in \bar{S}=\{0,1, \ldots, K+M-1\}
$$

where:
i) The integer M is the order of the operator L_{x}^{M}.
ii) $K=\frac{\ell}{\delta_{x}}-M+1$.
iii) The real constant $\delta_{x}>0$ is such that K is an integor * M+1.

So, the function

$$
x_{k}=k \delta_{x}
$$

from \bar{S} into \bar{X} definos a partition P_{X} of \bar{X}. The sot \bar{S} is callcd "the discrete space-donain".
2) Discretization of time-domain $\{t: t \geqslant 0\}$:

Define

$$
n \in \bar{T}=\{0,1, \ldots\}
$$

A function from $\overline{\mathbb{T}}$ into $[0, \infty)$ such as

$$
t_{n}=n \delta_{t}
$$

where $\delta_{t}>0$ is a real constant, defines a partition P_{t} of the interval $[0, \infty)$. The set T is called "the discrete time-domain".

Remarte:

1) The sets

$$
\begin{aligned}
& S=\{\tilde{M}, \tilde{M}+1, \ldots, K+\tilde{M}-1\} \subset \bar{S} \\
& O=\{2 \tilde{M}, 2 \tilde{M}+1, \ldots, K+\tilde{M}-\bar{M}-1\} \subset S \\
& T^{\prime}=\{\tilde{N}, N+1, \ldots\} \subset \bar{T} \\
& T=\{N, N+1, \ldots\} \subset T^{\prime} \\
& O=\{N+\tilde{N}, N+N+1, \ldots\} \subset T
\end{aligned}
$$

will bo of particuler interest in our further studies. The discretization procedure, as well as the location of S, O, T, T and $\stackrel{O}{T}$, aro show in ficures 4 and 5.
2) The condition $K \geq M+1$ imposed to δ_{x}, ensures that S and O have at least $M+1$ and 1 points, respectively.
3) For reasons that will become clear later in this section, we assume δ_{t} such that

$$
-\delta_{t} \gamma_{N-1}(x) \neq \gamma_{N}(x) ; \quad \forall x \in X
$$

if $N \in Z_{e}$. This condition is always attainable since $\left|\gamma_{N}(x)\right|>\gamma>0$ and $\gamma_{N-1}(x)$ is bounded $\forall x \in X$.

Fig. 4: Discretization of Space-Domain.

Fig. 5: Discretization of Time-Domain:

Approzimetine nartial derivatives: Now we use space and time shift operators

$$
\begin{aligned}
& s_{\delta_{x}}^{ \pm 1} u\left(x_{k}, t_{n}\right)=u\left(x_{k} \pm \delta_{x}, t_{n}\right) \\
& s_{\delta_{t}}^{ \pm 1} u\left(x_{k}, t_{n}\right)=u\left(x_{k}, t_{n} \pm \delta_{t}\right)
\end{aligned}
$$

$$
\left(x_{k}, t_{n}\right) \quad P_{x} x P_{t}
$$

to write dovm approximations for pertial derivatives as introduced in the second part of the last chanter. In this way, the identification problem formulated in an infinite-dimensional state space as in (1)(4), can be reduced to the following finite-dimensional discrete version (Tho anproximetion procedure is illustred on ficure 6):

Fig. 5: Discretization of Time-Domain:

Approximating partial derivatives: Now we use space and time shift operators

$$
\begin{aligned}
& s_{\delta_{x}}^{ \pm 1} u\left(x_{k}, t_{n}\right)=u\left(x_{k} \pm \delta_{x}, t_{n}\right) \\
& S_{\delta_{t}}^{ \pm 1} u\left(x_{k}, t_{n}\right)=u\left(x_{k}, t_{n} \pm \delta_{t}\right)
\end{aligned}
$$

to write dom approximations for partial derivatives as introduced in the second part of the last chapter. In this way, the identification problem formulated in an infinite-dimensional state space as in (1)(4), can be reduced to the following finite-dimensional discrete version (The approximation procedure is illustred on ficure 6):

$$
\begin{align*}
& \text { nodas: } \quad \sum_{m=1}^{1!+1} \cdot c_{k}^{m} u_{k}(n+m-\tilde{N}-1)=\sum_{m=1}^{M+1} a_{k}^{m} u_{l+m-n-1}(n)+\beta_{k} u_{k}(n) \\
& (k, n) \in S x^{m} . \\
& \text { OBS: } \quad z_{k}(n)=h v_{k}(n)+d v(n) ; \quad(k, n) \in S \times T \tag{6}\\
& \text { IC: } \\
& u_{k}(0), \ldots, u_{k}(H-1) \text { Eiven by } g_{i}\left(x_{k}\right) ; \quad k \in S \tag{7}\\
& u_{0}(n), \ldots, u_{n-1}(n)=0 \\
& B C \text { : } \tag{8}\\
& u_{K+M}(n), \ldots, u_{K+M-1}(n)=0^{;}
\end{align*}
$$

Proof:

Let us use a simplified notation:

$$
\begin{aligned}
& u_{k}(n)=u\left(x_{k}, t_{n}\right) \\
& z_{k}(n)=z\left(x_{k}, t_{n}\right) \\
& w_{k}(n)=w_{x_{k}}\left(t_{n}\right) \\
& v(n)=v\left(t_{n}\right) \\
& \beta_{k}=\beta\left(x_{k}\right)
\end{aligned}
$$

a) The discrete observation in (6) comes from (2) naturally, for all interior points $\left(x_{k}, t_{n}\right)$ such that $(n, k) \in S \times T$.
b) Uso forvard and bachward operators (sce last chapter, section 3.4)

$$
\frac{1}{\delta_{x}^{m}} \Delta_{\delta_{x}}^{m}, \quad \frac{1}{\delta_{x}^{m}} \Delta_{\delta_{x}}^{-m} \quad \text { and } \quad \frac{1}{\delta_{t}^{m}} \Delta_{\delta_{t}}^{m}
$$

to approximate partial derivatives at boundary points $x=x_{0}=0$,
$x=x_{K+M-1}=l$ and $t=t_{0}=0$, respectively. So (7) and (8) are approximations for (3) and (4).
c) Use centered operators

$$
D_{\delta_{x}}^{m} \quad \text { and } \quad D_{\delta_{t}}^{m}
$$

to approximate partial derivatives at interior points (x_{k}, t_{n}) such that $(k, n) \in S x T^{\prime}$. In this way, as shown in the second part of the preceतinc chapter, we have (5) from (1). Where the coefficients

$$
a_{k}^{m}=a_{m}\left(x_{k}\right) \quad \text { and } \quad c_{k}^{m}=c_{m}\left(x_{k}\right)
$$

are such es introduced on lemma ($L-3.2$).

Fig. 6: Continuous and Discrete Formulations.

Remerks:

1) By lemma ($\mathrm{I}-3.2$) we have the following results (note that $\left.\alpha_{0}(x)=0\right)$:

$$
\begin{equation*}
a_{k}^{i+\tilde{M}+1}=\sum_{m=m_{\alpha}}^{M}(i)(-1)^{\bar{m}-i}(\underset{i+\tilde{m}}{m}) \frac{\alpha_{m}\left(x_{k}\right)}{\delta_{x}^{m}} \tag{9}
\end{equation*}
$$

for each $i=-\pi M,-\tilde{M}+1, \ldots, \bar{M}$ and $k \in S$; where:

$$
\begin{align*}
& m_{\alpha}(i)= \begin{cases}-2 i ; & \text { if } i \in-1 \\
1 ; & \text { if } i=0 \\
2 i-1 ; & \text { if } i \geq 1\end{cases} \\
& c_{k}^{j+N+1}=\sum_{m=m}^{N}(j) \tag{10}
\end{align*}
$$

for each $j=-\tilde{N},-N+1, \ldots, \bar{N}$ and $k \in S$; where:

$$
\begin{align*}
& m_{\gamma}(j)= \begin{cases}-2 j ; & \text { if } j=-1 \\
0 ; & \text { if } j=0 \\
2 j-1 ; & \text { if } j=1\end{cases} \\
& \sum_{m=1}^{M+1} a_{k}^{m}=0 ; \quad \forall k \in S
\end{aligned} \quad \begin{aligned}
& \text {; } \quad \tag{11}\\
& \sum_{m=1}^{N+1} c_{k}^{m}=\gamma_{0}\left(x_{k}\right) ; \quad \forall k \in S \tag{12}
\end{align*}
$$

2) In particuler, from (10), the coefficient $c_{k}^{\mathrm{Ni}+1}$ is such that:

$$
s_{k}^{N+1}= \begin{cases}\frac{1}{\delta_{t}^{N}} \gamma_{N}\left(x_{k}\right) & \text { if } N \in Z_{0} \\ \frac{1}{\delta_{t}^{N}}\left[\gamma_{N}\left(x_{k}\right)+\delta_{t} \gamma_{N-1}\left(x_{k}\right)\right] ; & \text { if } N \in Z_{e}\end{cases}
$$

Remertss:

1) By lemma (L - 3.2) we have the following results (note that $\left.\alpha_{0}(x)=0\right)$:

$$
\begin{equation*}
a_{k}^{i+M ゙+1}=\sum_{m=m_{\alpha}(i)}^{M}(-1)^{\bar{m}-i}\binom{m}{i+\tilde{m}} \frac{\alpha_{m}\left(x_{k}\right)}{\delta_{x}^{m}} \tag{9}
\end{equation*}
$$

for each $i=-\tilde{M},-\tilde{M}+1, \ldots, \bar{M}$ and $k \in S$; where:

$$
\begin{align*}
& m_{\alpha}(i)=\left\{\begin{array}{ll}
-2 i ; & \text { if } i \leqslant-1 \\
1 ; & \text { if } i=0 \\
2 i-1 ; & \text { if } i \geq 1
\end{array} \quad .\right. \\
& e_{k}^{j+N+1}=\sum_{m=m}^{\gamma}(j) \quad(-1)^{\bar{m}-j}\left({\underset{j}{m}+\tilde{m})}_{)^{\gamma_{m}\left(x_{k}\right)}}^{\delta_{t}^{m}}\right. \tag{10}
\end{align*}
$$

for each $j=-N,-N+1, \ldots, \bar{N}$ and $k \in S$; where:

$$
\begin{align*}
& m_{\gamma}(j)= \begin{cases}-2 j ; & \text { if } j=-1 \\
0 ; & \text { if } j=0 \\
2 j-1 ; & \text { if } j=1\end{cases} \\
& \sum_{m=1}^{M+1} a_{k}^{m}=0 ; \quad \forall k \in S \tag{11}
\end{align*},
$$

2) In particulex, from (10), the coefficient c_{k}^{N+1} is such that:

$$
c_{k}^{N+1}= \begin{cases}\frac{1}{\delta_{t}^{N}} \gamma_{N}\left(x_{k}\right) & \text { if } N \in Z_{0} \\ \frac{1}{\delta_{t}^{N}}\left[\gamma_{N}\left(x_{k}\right)+\delta_{t} \gamma_{N-1}\left(x_{k}\right)\right] ; & \text { if } N \in Z_{e}\end{cases}
$$

But we have already assumed that $\gamma_{N}(x) \neq 0$ for all $x \in \pi$ and $\delta_{t} \gamma_{1 \mathbb{1}}(x)=$ $\neq-\gamma_{\mathrm{FI}}(n)$ for all $x \in X$ if $n \in Z_{0}$.

Then:

$$
c_{k}^{\mathrm{N}+1} \neq 0 ; \quad \forall \mathrm{k} \in \mathrm{~S}
$$

3) Since $\beta(x) \neq 0$ for all $x \in X$, we have:

$$
\beta_{k} \neq 0 ; \quad \forall k \in S
$$

Equivalont discrete-time TPS: Let R^{k} denote the k-dimensional Euclidian space, $B L\left(R^{k}\right)$ the normed linear space of all bounded linear operators from R^{k} into itsclf, and derine ${ }^{6}$:

$$
\begin{aligned}
& \left.\begin{array}{ll}
\underline{u}(n)=\left(u_{\tilde{M}}(n), \ldots, u_{K+\ddot{M}-1}(n)\right) ; & \forall n \in \bar{T} \\
\underline{w}(n)=\left(w_{\tilde{M}}(n), \ldots, w_{K+M-1}(n)\right) ; & \forall n \in T \cdot \\
\underline{z}(n)=\left(z_{\tilde{M}}(n), \ldots, z_{K+M-1}(n)\right) ; & \forall n \in T
\end{array}\right\} \text { random vectors in } \mathbb{R}^{K} \\
& \underline{d}=d(1,1, \ldots, 1) \quad \in R^{K} \\
& c_{m}=\left[\begin{array}{ccc}
c_{\tilde{M}}^{m} & & \\
& \ddots & \\
& & e_{K+M-1}^{m}
\end{array}\right] \quad \in B L\left(R^{K}\right) ; \quad \forall m=1,2, \ldots, N+1 \\
& B=\left[\begin{array}{lll}
\beta_{\tilde{M}} & & \\
& \ddots & \\
& & \beta_{\mathrm{K}+\tilde{\mathrm{M}}-\mathrm{I}}
\end{array}\right] \in \mathrm{BL}\left(\mathrm{R}^{K}\right)
\end{aligned}
$$

6 The duantitics in R^{k} and $3 L\left(R^{k}\right)$ are ropresented with respect to the stendard basis in R^{k} (i.e., $\left\{e_{i}=(0, \ldots, 1, \ldots, 0) ; i=1, \ldots, k\right\}$ with a l in the i th place and zeroc elsowhero).

The approximate discrete version (5) - (8) can be written as a vector difference equation (discrete-time LPS), as follows:

From (5) and (8) (with $n \in T$) we get

$$
\sum_{m=1}^{N+1} c_{m \underline{u}(n+m-i N-1)=A \underline{u}(n)+B \underline{w}(n), ~(n)}
$$

$\therefore \quad C_{N+1} \underline{u}(n+\bar{N})=-\sum_{m=1}^{N} C_{m} \underline{u}(n+m-\mathbb{N}-1)+\Lambda \underline{u}(n)+B \underline{w}(n)$.

Since $\quad c_{k}^{N+1} \neq 0 \quad \forall k \in S, \quad \exists C_{N+1}^{-1}$. Hence:

$$
\underline{\underline{u}}(n+\bar{T})=\sum_{m=1}^{N T} A_{m} \underline{u}\left(n+m-\frac{N}{N}-1\right)+B_{N} \underline{W}(n) ; \quad n \in T '
$$

where $\left\{\Lambda_{m} \in B L\left(R^{K}\right) ; m=1, \ldots, N\right\}$ and $B_{N} \in B L\left(R^{K}\right)$ are such that

$$
\begin{gathered}
A_{m}=-C_{N+1}^{-1} C_{m} ; \quad m \neq N+1 \\
A_{N+1}=C_{N+1}^{-1}\left(A-C_{N+1}\right) \\
B_{N N}=C_{N+1}^{-1} B \\
\text { Adding initial conditions supnlicd by (7) } \\
\underline{u}(0), \ldots, \underline{u}(\mathbb{N}-1)
\end{gathered}
$$

we get a full process description for all $n \in \bar{T}$, with observations given by (5)

$$
\underline{z}(n)=h \underline{u}(n)+\underline{d} v(n) ; \quad n \in T
$$

Now defino $\left\{\underline{y}_{m}(n) ; m=1, \ldots, N\right\}$, sets of N rendom vectors in R^{K} for each neT', as follows:

$$
y_{m}(n)=\underline{u}(n+m-\tilde{N}-1) ; \quad n \in T^{\prime}
$$

Then:

$$
\begin{aligned}
& \underline{y}_{m}(N)=\underline{u}(m-1) \quad \text { (initial state) } \\
& \underline{y}_{m}(n+1)=\underline{y}_{m+1}(n) ; \quad m \neq N \\
& \underline{y}_{N}(n+1)=\underline{u}(n+\bar{N})=\sum_{m=1}^{N} A_{m} \underline{y}_{m}(n)+B_{N} \underline{w}(n) \\
& \underline{y}_{\mathbb{N}+1}(n)=\underline{u}(n) \quad \text { (output) }
\end{aligned}
$$

In this woy we eet the following model of a linear discrete-time LFS, which is equivalent to the description given in (5) - (8):

$$
\begin{cases}\text { yODEL: } & \underline{y}(n+1)=F \underline{y}(n)+G \underline{\underline{w}}(n) ; \tag{13}\\ \text { OBS: } & \underline{y}(n)=H y(n)+\underline{d} v(n) ;\end{cases}
$$

where:
i) $\underset{y}{ }(n)=\left(y_{1}(n), \ldots, y_{N}(n)\right) ; n \in T^{\prime}$: random vectors in $R^{N r K}$
ii) $F=\left[\begin{array}{c:ccc}0 & 1 & I & \\ \\ \vdots & 1 & \ddots & \\ 0 & & & \\ \hdashline A_{1} & \cdots A_{N+1} \cdots \cdots A_{N}\end{array}\right] \in B L\left(R^{N X K}\right)$
iii) $a=\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ H_{N}\end{array}\right]: R^{K} \rightarrow R^{N ン K}$
iv) $H=h[0 \ldots 010 \ldots 0]: R^{N x K} \rightarrow R^{K}$

The identity and null operators, I and 0 , are in $B L\left(R^{K}\right)$. In case of H, I is placed at $(\tilde{n}+1)$ th position.

Remarles:

1) (Nonhomocencous boundary conditions). If we assume (4') we get

$$
\begin{array}{ll}
u_{0}(n), \ldots, u_{N-1}(n) & \text { Given by } h_{i}^{o}\left(x_{k}\right) \\
u_{K+M}^{N}(n), \ldots, u_{N+1!-1}(n) & \text { Given by } h_{i}^{e}\left(x_{k}\right)
\end{array} \quad n \in \mathbb{T}
$$

inctoad of (8), and the model in (13) becomes:

$$
y(n+1)=F y(n)+G \underline{y}(n)+G_{r} \underline{u}_{r}(n) ; \quad y(\tilde{N}) \text { Even }
$$

where:
i) $\quad \underline{u}_{r}(n)=\left(u_{0}(n), \ldots, u_{N-I}(n), u_{K+N}(n), \ldots, u_{K+M-I}(n)\right)$, in R^{M}, represents the action of the boundary functions h_{i}^{0} and h_{i}^{l}. It can bo thoucht as an input (or disturbance) vector operating at the spatiel boundary of the discreto version.
ii) $G_{\Gamma}=\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ B_{\Gamma}\end{array}\right]: R^{\mathrm{N}} \rightarrow \mathrm{R}^{\mathrm{TT} \times K}$
iii) $B_{r}=C_{N+1}^{-1} A_{r} \quad: R^{M} \rightarrow R^{K}$

Note that the coofficients of A_{T} are those $\left\{e_{k}^{m}, k \in S, m=1, \ldots, N+1\right\}$, which are not coefficients of A. This can be easily chocked by writing dow the approximation of $L_{x}^{i / 1}$ (i.e.: $\sum_{m=1}^{M+1} a_{k}^{m} u_{k+m-\tilde{M}-1}(n)$) $\forall_{k} \in S$.
2) (Lower order models). It is quito obvious that the apnroximeting mode] (5) (and so (13)) will be more accurate for cases of lower order
where:
i) $\underline{u}_{\Gamma}(n)=\left(u_{0}(n), \ldots, u_{N-1}(n), u_{K+N}(n), \ldots, u_{K+M-1}(n)\right)$, in R^{N}, represents the action of the boundary functions h_{i}^{0} and h_{i}^{l}. It can be thoucht as an input (or disturbance) vector operating at the spatial boundery of the discreto version.
ii) $G_{\Gamma}=\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ B_{\Gamma}\end{array}\right]: R^{\mathrm{HI}} \rightarrow \mathrm{R}^{\mathrm{V} x \mathrm{KK}}$
iii)

$$
B_{r}=C_{N+1}^{-1} A_{r} \quad: \quad R^{M} \rightarrow R^{K}
$$

Note that the coofficients of A_{T} are those $\left\{a_{k}^{m}, k \in S, m=1, \ldots, i+1\right\}$, which are not coefficients of A. This can be easily checked by writing dow the approximation of L_{x}^{M} (i.c.: $\sum_{m=1}^{M+1} a_{k}^{m} u_{x+m-N-1}(n)$) $\forall k \in S$.
2) (Lower order models). It is quito obvious that the apnroximeting model (5) (and so (13)) will be more accurate for cases of lower order
as commented in chapter 3. For $N \leqslant 2$ and $N \leq 2$ (what represents the majority of cases of practical and theoretical interest), our General approximation procecure is reduced to the classical finitedifference technique (see [4] for a particular case with $\mathrm{H}=2$ and $N=1$) .

A basic observetion ecuation: Finally we present a relation expressing the observation dynamics, which is a fundamental stop towards tho identification procedure introducod in next sections.

$$
\begin{aligned}
& \text { Let }\left\{Z_{n} ; n \in \stackrel{O}{T}\right\} \text { denote a class of finito sets as follows: } \\
& Z_{n}=\{n-N, n-\tilde{N}+1, \ldots, n+\bar{N}\} \subset T
\end{aligned}
$$

and, for notational simplicity, define:
i) $z_{k}\left(z_{n}\right)=\sum_{m=1}^{N+1} c_{k}^{m} z_{k}(n+m-N-1)$

1i) $v_{k}\left(Z_{n}\right)=d \sum_{m=1}^{1 l+1} c_{k}^{m} v\left(n+m-\frac{N}{i j-1}\right)+h \beta_{k} w_{k}(n)$
iii) $\varepsilon_{k}=\left(a_{1}^{1}, \ldots, a_{k}^{1+1}\right) \in n^{1+1}$
iv) $z_{k}(n)=\left(z_{k-11}(n), \ldots, z_{k+1}(n)\right) \quad$ i random vectors in R^{1+1}.

With $\langle;\rangle$ staniing for tho inner product in $R^{1 \%+1}$, we claim that:
Pronozition $(P-4.1):$ For all $(k, n) \in \stackrel{0}{S} \times \stackrel{\circ}{T}$,

$$
z_{k}\left(\tau_{n}\right)=\left\langle\underline{a}_{k} ; \underline{z}_{k}(n)\right\rangle+v_{k}\left(Z_{n}\right)
$$

Proof:
Since $h \neq 0$, we get from (6) and (7)

$$
\begin{aligned}
& \sum_{m=1}^{N+1} c_{1}^{m} z_{k}(n+m-j n-1)=\sum_{m=1}^{M+1} a_{k}^{m} z_{k+m-n-1}^{p}(n)+ \\
& +d\left[\sum_{m=1}^{N+1} c_{k}^{m} v(n+m-N-1)-v(n) \sum_{m=1}^{M+1} a_{k}^{m}\right]+h \beta_{k} w_{k}(n)
\end{aligned}
$$

for all (k, n) such that $k-N H, \ldots, k+\mathbb{N} \in S$ and $n-N \mathbb{N}, \ldots, n+\bar{N} \in T$, which means: $(k, n) \in{ }_{S}^{\circ} x$ 号. But

$$
\sum_{m=1}^{M+1} a_{k}^{m}=0 ; \quad \forall k \in S
$$

Hence we have $\nu_{k}\left(\mathcal{Z}_{n}\right)$, independent of \underline{Z}_{k}, as defined before.

4.3 - PSRAGMTR II EXPLICIT FORM

Our goal in this section is to deduce from (P - 4.1) a rolam
tion between the parameter vector

$$
a_{k}=\left(a_{k}^{1}, \ldots, a_{k}^{\mathrm{M}+1}\right) \in R^{\mathrm{M}+1}
$$

and the observations $z_{k}(n)$, which is suitable for applyine recursive identirication alcorithms. First, we introduce some notation:

Notation:

1) A pair of single bars,| |, stands for the absolute valuo (modulus) of a scalor quantity.
2) A pair of double bars, $\|\|$, denotes the standard Euclidian norm in R^{k}, as well as the induced uniform norm of an operator (or its matrix) in $B L\left(R^{k}\right)$. That is:

$$
\|A\|=\sup _{\underline{x}=0} \frac{\|A \underline{x}\|}{\|\underline{x}\|}=\max _{\|\underline{x}\|=1}\|\Lambda \underline{x}\|
$$

for $\underline{x} \in R^{k}, A \in B L\left(R^{k}\right)$ and $\|\underline{x}\|^{2}=\langle\underline{x} ; \underline{x}\rangle$.
3) A stor, * , denotes the transpose of a matrix in the usual way; and the transpose of a vector when it is (notationally) written as a column vector. In this way we have:

$$
\begin{aligned}
& \underline{x} \underline{y}^{*}: \quad \mathrm{r}^{k} \rightarrow \mathrm{r}^{\mathrm{k}} \\
& \underline{x}^{*} \mathbf{y}=\langle\underline{x} ; \underline{y}\rangle
\end{aligned}
$$

for any \underline{x} and y in R^{k}.
4) The symbols, $E\}$ and $\operatorname{Cov}\{$; \}, stand for the expectation and covariance operators, respectively.
5) The Kronecker delta function $\delta(i)$ is defined by

$$
\delta(i)= \begin{cases}1 ; & \text { if } i=0 \\ 0 ; & \text { otherwise }\end{cases}
$$

Now, make the following assumptions on the linear discretetime system described in (13) and (14):

Assumption $(A-4.1):(S t a b i l i t y)$ The space and time sampling rates, δ_{x} and δ_{t}, are choosen such that the system in (13) is stable in the following sense: There exist constants K_{0} and $P(0<P<1)$ such that

$$
\|F\|^{n}<K_{0} p^{n} ; \quad \forall n \in \overline{\mathrm{~T}}
$$

Assumntion (Λ - A.2): (Stationarity) $\{v(n) ; n \in T\}$ and $\left\{\underline{w}(n) ; n \in T^{\top}\right\}$ are real and R^{K}-valued second-order wido-sense stationary random seçuences ${ }^{7}$, respectively, with the following additional conditions:
i) $E\{\underline{w}(n)\}=\underline{0}$
ii) $\operatorname{Cov}\{\underline{\underline{w}}(i) ; \underline{w}(j)\}=E\left\{\underline{w}(i) \underline{w}^{*}(j)\right\}=C_{w} \delta(i-j)$
iii) $E\{v(n)\}=\eta_{v}$
iv) $\operatorname{Cov}\{v(i) ; v(j)\}=E \quad, v(j)\}-\eta_{v}^{2}=\sigma_{v}(|i-j|)$
v) $\operatorname{Cov}\{\underline{d} v(i) ; \underline{w}(i)\}=\underline{d} E\left\{v(i) \underline{v}^{*}(j)\right\}=0$
vi) $w(n)$ and $v(i n)$ have finite moments $u p$ to the 4 th order. Whero C_{w} is a symmetric positive derinite matrix in $B L\left(R^{K}\right)$.

Assumption ($1-1.3$): (Steady state) The initial stete

 response is assumed to have died out before identification begins. Since the input disturbance $H(n)$ and the observation noise $v(n)$ are wide-sense stationery and the system under consideration is timeinvariant, this assumption implies that the state $y(n)$ and observation $\underset{Z}{Z}(n)$ processes will also be wide-sense stationary durine the identification procedure (sce, for example, [5]-[7]).Assumption ($\Lambda-\Lambda \cdot \Lambda$): (Finite transient time) Let $N_{t} \geqslant N+N \neq \stackrel{\circ}{T}$ be a sufficient large integer such that the steady state assumption at the time $n+N_{t}$ is valid for all $n \in \bar{T}$.

7 The tern "random sequence" will be used to denote a "discrete-time stochastic procoss".

Finally, for each $k \in \stackrel{\circ}{S}$, define:
i) $\varepsilon_{k}=-d^{2} \sum_{m=1}^{N+1} o_{k}^{m}\left[\sigma_{v}\left(m-N(1)+\eta_{v}^{2}\right]\right.$
ii) $\varepsilon_{k}=\varepsilon_{k}(1, \ldots, 1) \in R^{i \mathrm{i}+1}$
iii) $\underline{q}_{k}=E\left\{\underline{z}\left(n+\Gamma_{t}\right) z_{k}\left(z_{n+N_{t}}\right)\right\}+\underline{\varepsilon}_{k}$
e $\mathrm{R}^{\mathrm{H}+1}$
iv) $Q_{k}^{-1}=E\left\{\underline{z}_{k}\left(n+N_{t}\right) z_{z}^{*}\left(n+N_{t}\right)\right\}$ e $\mathrm{BL}\left(\mathrm{R}^{2 \mathrm{IT}+1}\right)$

Pronosition ($P-4.2$): For all k in $S_{\text {and }}^{n}$ in \bar{T},
$\left.\mathrm{E}_{\left\{\underline{Z}_{k}\right.}\left(\mathrm{n}_{\mathrm{N}} \mathrm{N}_{\mathrm{t}}\right) \nu_{\mathbf{k}}\left(\bar{Z}_{\mathrm{n}+\mathrm{N}_{t}}\right)\right\}=-\underline{\varepsilon}_{k}$
Pronosition ($P-4.3$): Therc exists the symmetric positive definite matrix $Q_{K}=\left[Q_{k}^{-1}\right]^{-1} \in B L\left(R^{1!+1}\right)$, for all $k \in S^{\circ}$.

Proposition ($p-4.4$): Both \underline{q}_{k} and Q_{k} do not depend on n.

By (12) we get :

$$
\varepsilon_{k}=-d^{2}\left[\eta_{v}^{2} \gamma_{0}\left(x_{k}\right)+\sum_{m=1}^{N+1} i_{k}^{m} \sigma_{v}(|m-\tilde{N}-1|)\right]
$$

$$
\text { If } \sigma_{v}(|i-j|)=\sigma_{v}^{2} \delta(i-j), \sigma_{v}^{2}>0 \text {, wo have from (10): }
$$

$$
\varepsilon_{k}=-d^{2}\left[\eta_{v}^{2} \gamma_{0}\left(x_{k}\right)+\sigma_{v}^{2} \sum_{m=0}^{N}(-1)^{\bar{m}}\binom{m}{\tilde{m}} \frac{\gamma_{m}\left(x_{k}\right)}{\delta_{t}^{m}}\right]
$$

Note also thet in [4] ε_{k} is defined slightly difforent. There, it is divided by $c_{k}^{N+1}=\delta_{t}^{-1}$ for the particular case of $I=1, \gamma_{0}=-\alpha_{0}$ and $\gamma_{1}=1$ (sce section 4.6).

Proof:

(P-4.2): Usine finite induction we cet the solution of the equation (13):

$$
y(n+N-N+1)=F^{n+1} \underset{y}{\underline{N}}(\vec{N})+\sum_{m=0}^{n} F^{n-m} G \underline{w}(m+\tilde{N}) ; \quad n \in \bar{\Psi} .
$$

By ascunption ($A-4.3$) and ($A-4.4$), the first term in the richt hand side is supposed to have died out for any time $n \geq \mu_{t} .{ }^{9}$ Thus,

$$
y\left(n+N_{t}\right)=\sum_{m=0}^{n+N_{t}-\tilde{N}-1} F^{n+N_{t}-m-\tilde{N}-1} G \underline{w}(n+\tilde{N})
$$

and from (14) we get

$$
\underline{\underline{g}}\left(n+N_{t}\right)=H \underline{y}\left(n+N_{t}\right)+\underline{d} v\left(n+N_{t}\right) .
$$

Now, with

$$
v\left(Z_{n+N_{t}}\right)=d \sum_{m=1}^{N+1} c_{k}^{m} v\left(n+N_{t}+m-N N-1\right)+h \beta_{k} w_{k}\left(n+N_{t}\right),
$$

assumption ($A-4.2$), and using the lineerity of the expectation operator [1], we heve:

$$
\begin{aligned}
E\left\{\underline{Z}\left(n+N_{t}\right) \nu\left(Z_{n+N_{t}}\right)\right\} & =d \underline{d} \sum_{m=1}^{N+1} c_{k}^{m}\left[\sigma_{v}(|m-N-1|)+\eta_{v}^{2}\right] \\
& =-\varepsilon_{k}(1, \ldots, 1) \quad \in \mathbb{R}^{K} .
\end{aligned}
$$

9 Actually, the assumptions $(A-4.3)$ and $(A-4.4)$ can be thought as a conscauence of ($A-4.1$) when onc is consitering the asymptotic behaviour. That is:

$$
\begin{aligned}
& 0 \leq\left\|F^{n}\right\| \in\|F\|^{n} \in K_{0} \rho^{n} ; \quad 0<\rho<1 \\
\therefore \quad & \lim _{n \rightarrow \infty}\left\|F^{n}\right\| \notin K_{0} \lim _{n \rightarrow \infty} \rho^{n}=0 \quad \Rightarrow \quad F^{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
\end{aligned}
$$

Finelly, define:

$$
J_{k}=\left[\begin{array}{l:l:}
\varnothing & I
\end{array}\right] \quad: R^{K} \rightarrow R^{K+1}
$$

Where there are li-2iँ zero colums before $I \in B L\left(R^{M+1}\right)$ and, of course, $K+\tilde{I}-\tilde{I}-k-1$ zero columns after I.

So:

$$
\underline{z}_{k}(n)=J_{k} \underline{z}(n) ; \quad \forall k \in \stackrel{O}{S} .
$$

Hence:

$$
E\left\{\underline{z}_{k}(n) \nu\left(z_{n+N_{t}}\right)\right\}=J_{k} E\left\{\underline{z}(n) \nu\left(z_{n+N_{t}}\right)\right\}
$$

and $(P-4.2)$ is proved.
($P-4.3$): It is ensy to show that: 10

$$
\underline{z}(n+\bar{Y})=H F^{\bar{N}} \underset{Y}{ }(n)+H F^{\bar{T}}-1 \quad \underline{w}(n)+\underline{d} v(n+\bar{W}) ; \quad n \in T^{\prime}
$$

and

$$
\begin{array}{ll}
H F^{\bar{Y}-1}=h\left[\begin{array}{llll}
0 & \ldots & 0 & I
\end{array}\right] & : R^{N x K} \rightarrow R^{K} \\
H F^{\bar{N}}=h\left[\begin{array}{lll}
A_{1} & \ldots & A_{N}
\end{array}\right] & : R^{N x K} \rightarrow R^{K}
\end{array}
$$

Now define:

$$
\begin{aligned}
& \Phi=H F^{\bar{Y}}: R^{N x K} \rightarrow R^{K} \\
& \Gamma=H F^{\bar{N}-1} G=h B_{N} \in B L\left(R^{K}\right) \\
& C_{y}=\operatorname{Cov}\left\{y\left(n+H_{t}\right): \underline{y}\left(n+N_{t}\right)\right\} \quad \in \operatorname{BL}\left(\mathbb{R}^{N x K}\right) \\
& C_{z}=\operatorname{Cov}\left\{\underline{z}\left(n+N_{t}\right) ; \underline{z}\left(n+N_{t}\right)\right\} \quad \in \operatorname{BL}\left(R^{K}\right)
\end{aligned}
$$

10 This result comes fron equations (13) and (14) or, oquivelently, from the solution for $Z(n)$, $n>N$, as introduced a.t the becining of this proof. Note that $\mathrm{HF}^{\mathrm{m}} \mathrm{G}=0, \forall \mathrm{~m}=0, \ldots, \sqrt{\mathrm{~N}}-2$.

Then

$$
\underline{z}\left(n+N_{t}+\overline{I H}\right)=\Phi \underline{y}\left(n+\mathbb{N}_{t}\right)+\Gamma \underline{w}\left(n+N_{t}\right)+\underline{d} v\left(n+N_{t}+\bar{N}\right) ; \quad n \in T^{\prime} .
$$

From $(A-4.3)$ and $(A-4.4), C_{y}$ and C_{z} do not depend on n. So, by ($A-4.2$), wo zet: ${ }^{11}$

$$
c_{z}=\Phi c_{y} \Phi^{*}+\Gamma c_{w} \Gamma^{*}+\sigma_{v}(0) \underline{d} \underline{a}^{*}
$$

and $Q_{K}^{-1} \in B L\left(R^{\mathrm{IH}+1}\right)$ is given in terms of $C_{z} \in B L\left(R^{K}\right)$ as follows:

$$
\underline{z}_{k}(n)=J_{k} \underline{z}(n) \rightarrow Q_{k}^{-1}=J_{k} c_{z} J_{k}^{*} .
$$

Since $C_{w}>0$ (positive definite) $\in B L\left(R^{K}\right)$, and all eicenvalues of

$$
\Gamma=h B_{\mathrm{N}}=-h C_{\mathrm{N}+1}^{-1} B \quad \in \quad B L\left(\mathrm{R}^{\mathrm{K}}\right)
$$

are different from zero ${ }^{12}$,

$$
\Gamma c_{w} \Gamma^{*}>0 \quad \rightarrow \quad c_{z}>0
$$

But, if $C_{z}>0$, all principal minors of C_{z} are positive. In particular, all sucessive principal minors of the symetric matrix

$$
Q_{k}^{-1}=J_{k} C_{z} J_{k}^{*} \quad \in \quad B L\left(R^{M+1}\right)
$$

11 Note that:

$$
\begin{aligned}
& \operatorname{Cov}\{\Phi \underline{y}(n) ; \underline{\underline{w}}(n)\}=0 ; \quad \forall n \in T^{\prime} \\
& E\left\{\underline{\underline{v}}\left(n+Y_{t}\right)\right\}=\underline{0} \rightarrow E\left\{\underline{y}\left(n+\mathbb{N}_{t}\right)\right\}=\underline{0} \rightarrow E\left\{\underline{z}\left(n+\mathbb{Y}_{t}\right)\right\}=\underline{\eta}_{v} \underline{d} ; \forall n \in T
\end{aligned}
$$

12 Recall: $0 \neq\left|\beta_{k}\right|<\infty$ and $0 \neq\left|c_{k}^{T+1}\right|<\infty ; \quad \forall k \in S$.
 pp. 306). ${ }^{13}$ So, there exists the symmetric

$$
Q_{k}=\left[Q_{k}^{-1}\right]^{-1}>0 \quad \in \quad B L\left(R^{M+1}\right) ; \quad \forall k \in S^{\circ} .
$$

(P - 4.4): This recult cones directly from ($A-4.2$) - ($A-4.4$): widesense stationary random sequences (for details see, for example, [5]-[7]).

Remarl:: (Random initial state) Assume that all eigenvalues of the system matrix F in $B L\left(R^{\text {IJxK }}\right.$) are different from zero (or equivalently, $\operatorname{det}(F) \neq 0$), and define

$$
\operatorname{Cov}\{y(n) ; y(n)\}= \begin{cases}c_{y}(n) ; & \text { if } \tilde{N} \leqslant n<N_{t} \\ c_{y} ; & \text { if } n \geq N_{t}\end{cases}
$$

It is well know (e.c.., see [5]-[7]) that

$$
C_{y}(n+1)=F C_{y}(n) F^{*}+G C_{w} G^{*}
$$

for all ne T'. So, if the initial state

$$
\underline{y}(\mathbb{I})=(\underline{u}(0), \ldots, \underline{u}(\eta-1))
$$

is a rendom vector in $\mathrm{R}^{\mathrm{II} \times \mathrm{K}}$ such that

$$
C_{y}(\tilde{N})>0
$$

13 Note that, in casc of $(N+K) \in Z_{0}$,

$$
Q_{k_{0}}^{-1}=J_{k_{0}} C_{z} J_{k_{0}}^{*} \quad \in \quad B L\left(\mathrm{~A}^{M+1}\right)
$$

is the $\overline{(M+1)}$ th "inner" of $C_{z} \in B L\left(R^{K}\right)[g]$, where $k_{0}=(K+M-1) / 2$.
in $B L\left(R^{\text {ITx". }}\right)$, we eet

$$
c_{y}(n)>0 ; \quad \forall n \in T^{\prime}
$$

in $B L\left(R^{18 x K}\right)$, and $30:$

$$
\Phi c_{y} \Phi^{*}>0 \quad \rightarrow \quad c_{z}>0
$$

in $B L\left(R^{\Gamma}\right)$. Hence, in this caso, the conditions

$$
\beta(x) \neq 0 ; \quad \forall x \in X
$$

and

$$
c_{w}>0 \text { in } B L\left(R^{K}\right)
$$

can be omited, since they are imposed only to ensure that $C_{g}>0$ when the initial state is assuned to be deterministic.

Lemma (L - 1.1): (Dxplicit Parameter) Let g_{k} and Q_{K} be as

 defined before. If the assumptions ($A-4.1$) through ($A-4.4$) are satisfied, then the parameter vector$$
{\underset{B}{k}}^{\Omega_{k}}\left(\varepsilon_{k}^{1}, \ldots, \varepsilon_{k}^{M+1}\right) \quad \in \quad R^{M+1}
$$

introduced in ($P-4.1$) can be placed in an explicit form, as follows:

$$
a_{k}=Q_{k} \underline{q}_{k}
$$

for all k in $\stackrel{\circ}{5}$.

Proof:

By ($P-4.1$) throuch ($P-4.4$), we have:

$$
z_{k}\left(z_{n+N_{t}}\right)=z_{k}^{*}\left(n+N_{t}\right) \varepsilon_{k}+v_{k}\left(z_{n+I H_{t}}\right) ; \quad \forall k \in \stackrel{\circ}{S}
$$

$$
\begin{aligned}
E\left\{z_{k}\left(n+\Gamma_{t}\right) z_{k}\left(z_{n+N_{t}}\right)\right\} & =E\left\{\underline{z}_{k}\left(n+N_{t}\right) \underline{z}_{k}^{*}\left(n+\mathbb{N}_{t}\right)\right\}_{a_{k}}+E\left\{\underline{z}_{k}\left(n+N_{t}\right) \nu_{k}\left(z_{n+1 T_{t}}\right)\right\}= \\
& =Q_{k}^{-1} \underline{a}_{k}-\xi_{k} .
\end{aligned}
$$

Then:

$$
a_{k}=Q_{k}\left[E\left\{\underline{z}_{k}\left(n+Y_{t}\right) z_{k}\left(z_{n+\mathbb{N}_{t}}\right)\right\}+\underline{\varepsilon}_{k}\right]=Q_{k} \underline{q}_{k} ; \quad \forall k \in \stackrel{\circ}{S}
$$

4.4 - PARMISTMS IDETTRICATICI

General nrocedure: Now we consider the identification problem

 for DPS as formulated in section 4.1 , by using the reduction to a finitedimensional state space introduced in section 4.2. In this way, our identification procedure comprisestwo basic steps:1st) By usinc noisy observations $\left\{z_{k}\left(n+y_{t}\right) ; n \in \mathbb{T}\right\}$ available in each $k \in S$, deternine the coefficients $\left\{a_{k}^{m} ; m=1, \ldots, \pi+1\right\}$ appearine in the discreto version of the spatial-differential operator L_{x}^{M}, as in (5). Since the observation process in $\mathrm{R}^{\mathrm{II}+1}$

$$
z_{k c}\left(n+H_{t}\right)=\left(z_{k-N}\left(n+M_{t}\right), \ldots, z_{k+F_{1}}\left(n+N_{t}\right)\right)
$$

is defincd only for $k \in \stackrel{O}{S}$ and

$$
\underline{a}_{k}=\left(a_{k}^{1}, \ldots, a_{k}^{1+1}\right) \in i^{1+1}
$$

is releted to $Z_{i k}\left(n+I_{t}\right)$ as in ($L-4.1$), this first step can be briefly stated as follows: "civen $\left\{z_{z_{k}}\left(n+N N_{t}\right) ; n \in \overline{\mathbb{T}}\right\} \forall k \in s$, determine $a_{-} \forall k \in \stackrel{O}{S}^{\prime}$.

In ($L-4.1$) we got Z_{k} in terms of Q_{k} and Q_{k}. But it is quite obvious that we cannot use the velues of Q_{k} and \underline{g}_{k} in order to perform the identification, because both of them depend on the knowledge of the matrix F (and so, they depend on tho parameters $\mathrm{i}_{\mathrm{k}}^{\mathrm{m}}$). Therofore, by using the stochastic approximation theory (chapter 3 - Part III) tofether with the explicit parancter lema ($L-4.1$), we may be able to present an on-line idontification algorithm for ${\underset{A}{2}}^{2}$, without computing the values of Q_{k} and \underline{q}_{k}. This first step is the central theme in the remainder of this section.

2nd) On the other hand, we also have the problem of recovering the parameters $\left\{\alpha_{m}\left(x_{k}\right) ; m=1, \ldots, M\right\}$ from i_{n}, for cach $k \in \stackrel{\circ}{S}$. This is a much casicr problem then that concerning the first step, and it will be considered in the next section.

Stochestic approximation alrorithms: First, by usinc the results developed in the third part of the preceding chapter, we present an auxiliary lemia for recurgive estimation of q_{k} and $Q_{k}^{-1} \cdot 14$

Lemma $(L-4.2):$ Let $z_{1:}\left(Z_{n+N_{t}}\right), z_{k}\left(n+N_{t}\right), \varepsilon_{k}, q_{k}$ and Q_{k}^{-1} be as defined before and consider the following algorithms in R^{i+1} and $B L\left(R^{1+2}\right)$, respectively, for each ke $\stackrel{\circ}{S}$:
$\underline{q}_{k}(n+1)=[1-\lambda(n)] \underline{\underline{g}}_{k}(n)+\lambda(n)\left[\underline{z}_{k}\left(\underline{z}_{n+N_{t}}\right){\underset{z}{k}}\left(n+N_{t}\right)+\underline{\varepsilon}_{k}\right] ; \quad n \in \bar{T}$
$Q_{K}^{-1}(n+1)=[I-\mu(n)] Q_{K}^{-1}(n)+\mu(n)\left[\underline{Z}_{k}\left(n+N_{t}\right) \underline{Z}_{k}^{*}\left(n+N_{t}\right)\right] ; \quad n \in \bar{T}$

14 Note that, by $(\Lambda-4.1)$ and $(A-4.2),\left\|g_{k}\right\|<\infty$ and $\left\|G_{k}^{-1}\right\|<\infty$ for all $\mathbf{k} \in$ S.
where $\{\lambda(n) ; n \in \bar{T}\}$ and $\{\mu(n) ; n \in \bar{T}\}$ are real seauences, $g_{k}(0)$ is a second-order random vector in R^{M+1} which is independent of $\left\{\underline{z}_{k}\left(n+N_{t}\right)\right.$; $n \in \bar{T}\}$ for each $k \in \stackrel{\circ}{S}$, and $Q_{k}^{-1}(0)$ is a second-order random matrix in
 $k \in \stackrel{\circ}{\mathrm{~S}}$.

If:
i) $\lambda(n) \in(0,1) ; \quad \sum_{n=0}^{\infty} \lambda(n)=\infty ; \quad \sum_{n=0}^{\infty} \lambda^{2}(n)<\infty$
i1) $\mu(n) \in(0,1) ; \quad \sum_{n=0}^{\infty} \mu(n)=\infty$; $\quad \sum_{n=0}^{\infty} \mu^{2}(n)<\infty$

Then:

1) $P\left\{\lim _{n \rightarrow \infty} \underline{g}_{k}(n)=\underline{g}_{k}\right\}=1$ and $\lim _{n \rightarrow \infty} E\left\{\left\|\underline{q}_{k}(n)-\underline{q}_{k}\right\|^{2}\right\}=0$
2) $P\left\{\lim _{n \rightarrow \infty} Q_{k}^{-1}(n)=Q_{k}^{-1}\right\}=1$ and $\quad \lim _{n \rightarrow \infty} E\left\{\left\|Q_{k}^{-1}(n)-Q_{k}^{-1}\right\|^{2}\right\}=0$
for each $k \in$ S. $^{\circ}$.

Proof:
Set, for each $k \in \stackrel{\circ}{S}$,

$$
\begin{array}{ll}
y(n)=z_{k}\left(Z_{n+N N_{t}}\right) z_{k}\left(n+N_{t}\right)+\varepsilon_{k} ; & x_{0}=q_{k} \\
Y(n)=z_{s}\left(n+N_{t}\right) z_{k}^{*}\left(n+N_{t}\right) ; & X_{0}=Q_{k}^{-1}
\end{array}
$$

in $(c-3.1)$ and $(c-3.2)$, and the proof follows directly by the results of section 3.6 and assumptions ($A-4.1$) - ($1-4.4$).

Before introducing the main identification theorem, we noed to prove the followinf prcpocitions:

Propocition $(P-4.5): \operatorname{Let}\left\{\varepsilon_{k}^{-1}(n) ; n \in \bar{T}\right\}$ be a sequence of random matrices in $B L\left(R^{1+1}\right)$ as defince in (L - 4.2) for each $k \in$ S $^{\circ}$. If, in addition, $Q_{k}^{-1}(0)$ is symmetric positive definite, then there exists the symmetric positive definite random matrix

$$
Q_{k}(n)=\left[Q_{K}^{-1}(n)\right]^{-1}
$$

in $B L\left(R^{T+1}\right)$ for all $n \in \bar{T}$ and ke .

Proof:

From (16)

$$
Q_{k}^{-1}(n+1)=[2-\mu(n)] Q_{k}^{-1}(n)+\mu(n) \underline{z}_{k}\left(n+N_{t}\right) \underline{z}_{k}^{*}\left(n+N_{t}\right)
$$

Since $\mu(n) \in(0,1)$ for all $n \in \bar{T}, Q_{K}^{-1}(0)$ is symmetric positive definite for each $k \in \stackrel{O}{S}$, and $z_{k}\left(n+Y_{t}\right) z_{i s}^{*}\left(n+Y_{t}\right)$ is symmetric positive semi-definite for $\operatorname{all}(k, n) \in \AA_{S}^{\circ} \bar{\Gamma} ; Q_{z}^{-1}(n)$ is symetric positive definite for all (k, n) $\epsilon \AA_{\mathrm{S}}^{\mathrm{S}} \overline{\mathrm{T}}$. The existence of $Q_{k}(n)=\left[Q_{k}^{-1}(n)\right]^{-1}$, a symmetric positive definite rendom natrix in $B L\left(R^{[i+1}\right)$, is thus guaranteed for all $(k, n) \in \stackrel{O}{S} x$ 푸.

Pronogition ($P-4.6$): Let $\Lambda \in B L\left(R^{k}\right), W \in R^{k}$ and assume the existence of A^{-1} and $\left(A+\underline{W} \underline{w}^{*}\right)^{-1}$. If $\underline{w}^{*} A^{-1} \underline{w} \neq-1$, then: 15

$$
\left(A+\underline{H} \underline{H}^{*}\right)^{-1}=A^{-1}-\left(1+\underline{w}^{*} A^{-1} \underline{w}\right)^{-1} A^{-1} \underline{w} \underline{w}^{*} A^{-1} .
$$

15
Note that if $A>0$, then: $\left\{\begin{array}{l}3 A^{-1}>0 \rightarrow \underline{w}^{*} \Lambda^{-1} \underline{H} \pm 0 \\ \left(A+\underline{w} \underline{w}^{*}\right)>0 \rightarrow \exists\left(A+\underline{\underline{W}} \underline{H}^{*}\right)^{-1}>0\end{array}\right.$

Proof:
This is a trivial particular case of the "matrix inversion lemme" [6], or "mothod of modification" [10].

Now we can present a stochestic approximation aleorithm for identifyine the vector $e_{k}{ }^{16}$ through noisy observations $\left\{z_{k}\left(n+H_{t}\right) ; n \in \bar{T}\right\}$.

Theorem ($\mathrm{T}-4.1$): Let I denote the identity matrix in $\mathrm{BL}\left(\mathrm{R}^{\mathrm{M}+2}\right.$) and $z_{k} \in R^{W+1}$, for each $k \in \mathscr{S}$, the parameter vector as introduced on proposition ($P-1.1$). Also let $z_{k}\left(z_{n+I_{t}}\right), z_{k}\left(n+\Gamma_{t}\right)$ and ξ_{-k} be as definad before, and consider the following al \mathcal{E} orithm in $\mathbb{R}^{\mathrm{H}+1}$, for each $k \in \mathbb{S}_{\text {: }}^{0}$
(SA-1): $\quad a_{k}(n+1)=\frac{1-\lambda(n)}{1-\mu(n)}\left[I-\mu(n) Q_{k}(n+1){\underset{Z}{k}}\left(n+N_{t}\right){\underset{-}{k}}_{*}^{*}\left(n+N_{t}\right)\right] \varepsilon_{k}(n)+$ $+\lambda(n) Q_{k}(n+1)\left[z_{k}\left(\tau_{n+N_{t}}\right) \underline{z}_{k}\left(n+N_{t}\right)+\varepsilon_{k}\right] ; n \in \overline{\mathrm{~T}}$
with $Q_{k}(n)$ takine values in $B L\left(R^{I+1}\right)$, for each $k \in S$, given by ($s \Delta-2$): $\quad Q_{k}(n+1)=$
$=\frac{1}{1-\mu(n)}\left[Q_{k}(n)-\frac{\mu(n) Q_{k}(n) \underline{z}_{k}\left(n+N_{t}\right) \underline{z}_{k}^{*}\left(n+N_{t}\right) Q_{k}(n)}{1-\mu(n)+\mu(n) \underline{z}_{k}^{*}\left(n+Y_{t}\right) Q_{k}(n) \underline{z}_{k}\left(n+N_{t}\right)}\right] ; \quad n \in \bar{T}$
where $\{\lambda(n) ; n \in \bar{T}\}$ and $\{\mu(n) ; n \in \bar{T}\}$ are real sequences, $\vec{a}_{-}(0)$ is a second-orcer radom vector in $\mathbb{R}^{\underline{3}+1}$ which is independent of $\left\{\underline{z}_{k}\left(n+N_{t}\right)\right.$; $n \in \bar{T}\}$ for each $k \in \AA$, and $Q_{k}(0)$ is a second-order rantom matrix in $B L\left(R^{I T+1}\right)$ which is independent of $\left\{{\underset{Z}{k}}\left(n+N_{t}\right){\underset{Z}{k}}_{*}^{*}\left(n+H_{t}\right) ; n \in \bar{T}\right\}$ for each $k \in \stackrel{\circ}{S}$.

16 Hoto: Since $\left\{\alpha_{m}(x) \in B V[0, l] ; m=1, \ldots, M\right\},\left\|\underline{a}_{i}\right\|<\infty$ for all $k \in \stackrel{0}{S}$, by (9).

If:
i) $\lambda(n) \in(0,1)$; $\sum_{n=0}^{\infty} \lambda(n)=\infty ; \quad \sum_{n=0}^{\infty} \lambda^{2}(n)<\infty$
ii), $\mu(n) \in(0,1)$; $\quad \sum_{n=0}^{\infty} \mu(n)=\infty ; \quad \sum_{n=0}^{\infty} \mu^{2}(n)<\infty$
iii) $Q_{k}(0)$ is a symetric positive definite random matrix in $B L\left(\mathrm{R}^{\mathrm{I}+1}\right)$

Then $a_{k}(n)$ corverges to \hat{S}_{k} with probability one for cech $k \in \stackrel{\circ}{S}$:

$$
P\left\{\lim _{n \rightarrow \infty} \frac{a_{k}}{}(n)=\frac{a_{n}}{a_{k}}=1 ; \quad k \in \stackrel{O}{S} .\right.
$$

Proof:
For sake of simplicity wo use the following notation:

$$
\begin{aligned}
& \lambda=\lambda(n) \\
& \mu=\mu(n) \\
& z=z_{k}\left(\tau_{n+1 I_{t}}\right) \\
& \underline{z}=\underline{z}_{k}\left(n+I_{t}\right) \\
& \underline{q}=g_{k}(n) \\
& \underline{a}=E_{k}(n) \\
& Q=Q_{k}(n) \\
& Q^{-1}=Q_{k}^{-1}(n)
\end{aligned}
$$

a) First of all let us prove the alcorithn (SA-2). Fron (16)

$$
Q_{k}^{-1}(n+1)=(1-\mu) Q^{-1}+\mu_{\underline{z}} \underline{z}^{*}
$$

So, by $(P-4.5)$ and $(P-4.6)$ with $Q=\left[Q^{-1}\right]^{-1}$, we get

$$
\left.\begin{array}{rl}
Q_{k}(n+1) & =\left[(1-\mu) Q^{-1}+\mu \underline{z} \underline{z}^{*}\right]^{-1}= \\
& =\frac{Q}{1-\mu}-\left(1-\mu \underline{z}^{*} \frac{Q}{1-\mu} \underline{z}\right)^{-1} \frac{\mu}{(1-\mu)^{2}} Q \underline{z} \underline{z}^{*} Q= \\
& =\frac{1}{1-\mu}\left[Q-\frac{Q \underline{z}_{\underline{z}}}{}+Q\right. \\
1-\mu+\mu \underline{z}^{*} Q \underline{z}
\end{array}\right] .
$$

since $Q_{k}(0)$ is symmetric positive definite, and that proves (SA-2). Moreover, note that:

$$
Q_{k}(n+1) \underline{z}=\frac{-Q}{1-\mu}\left[\frac{(1-\mu) \underline{z}+\left[\left(\underline{\underline{z}}^{*} Q \underline{z}\right) \underline{z}-\left(\underline{z}_{\underline{z}} \underline{q}^{*} Q\right) \underline{z}\right]}{1-\mu+\mu \underline{z}^{*} Q \underline{z}}\right]
$$

But

$$
\left(\underline{\underline{z}} \underline{\underline{z}}^{*} Q\right) \underline{z}=\underline{z}\left(\underline{z}^{*} Q \underline{z}\right) \text {. }
$$

Hence

$$
\left(\underline{z}^{*} Q \underline{z}\right) \underline{z}-\left(\underline{\underline{z}} \underline{\underline{z}}^{*} Q\right) \underline{z}=\left(\underline{z}^{*} Q \underline{z}\right) \underline{z}-\underline{z}\left(\underline{z}^{*} Q \underline{z}\right)=\underline{0} .
$$

Then

$$
\begin{equation*}
Q_{k}(n+1) \underline{z}=\frac{Q \underline{\underline{z}}}{1-\mu+\mu \underline{z}^{*} Q \underline{z}} \tag{17}
\end{equation*}
$$

b) Now define:

$$
a_{k}(n)=Q_{k}(n) q_{k}(n) ; \quad n \in \bar{T}
$$

for each $k \in \stackrel{\circ}{S}$, where $g_{k}(n)$ is given by (15). Thus from (15) and (SA-2), with

$$
\omega=(1-\mu)+\mu_{\underline{\underline{z}}}{ }^{*} Q \underline{\underline{z}}
$$

So, by ($P-4.5$) and ($P-4.6$) with $Q=\left[Q^{-1}\right]^{-1}$, we get

$$
\begin{aligned}
Q_{k}(n+1) & =\left[(1-\mu) Q^{-1}+\mu \underline{z} \underline{z}^{*}\right]^{-1}= \\
& =\frac{Q}{1-\mu}-\left(1-\mu \underline{z}^{*} \frac{Q}{1-\mu \underline{z}}\right)^{-1} \frac{\mu}{(1-\mu)^{2}} Q \underline{z}_{z^{*}} Q= \\
& =\frac{1}{1-\mu}\left[Q-\frac{Q \underline{z} \underline{z}^{*} Q}{1-\mu+\mu \underline{z}^{*} Q \underline{z}}\right]
\end{aligned}
$$

since $Q_{k}(0)$ is symmetric positive definite, and that proves (SA-2). Moreover, note that:

$$
Q_{k}(n+1) \underline{z}=\frac{Q}{1-\mu}\left[\frac{(1-\mu) \underline{z}+\left[\left(\underline{z}^{*} Q \underline{\underline{z}}\right) \underline{z}-\left(\underline{z} \underline{z}^{*} Q\right) \underline{z}\right]}{1-\mu+\mu \underline{z}^{*} Q \underline{z}}\right]
$$

But

$$
\left(\underline{\underline{z}} \underline{\underline{z}}^{*} Q\right) \underline{z}=\underline{z}\left(\underline{\underline{z}}^{*} Q \underline{z}\right) \text {. }
$$

Hence

$$
\left(\underline{z}^{*} Q \underline{z}\right) \underline{z}-\left(\underline{z} \underline{z}^{*} Q\right) \underline{z}=\left(\underline{z}^{*} Q \underline{z}\right) \underline{z}-\underline{z}\left(\underline{z}^{*} Q \underline{z}\right)=\underline{0} .
$$

Then

$$
\begin{equation*}
Q_{k}(n+1) \underline{z}=\frac{\underline{Q} \underline{\underline{z}}}{1-\mu_{+} \mu_{\underline{\underline{2}}}{ }^{*} \underline{\underline{z}}} \tag{17}
\end{equation*}
$$

b) Now define:

$$
a_{k}(n)=Q_{k}(n) q_{k}(n) ; \quad n \in \bar{T}
$$

for each $k \in \mathbb{S}^{\circ}$, where $g_{k}(n)$ is given by (15). Thus from (15) and (SA-2), with

$$
\omega=(1-\mu)+\mu_{\underline{\underline{2}}} \underline{ }^{*} Q_{\underline{z}}
$$

we

$$
\begin{aligned}
\underline{a}_{k}(n+1) & =Q_{k}(n+1) \underline{q}_{k}(n+1)= \\
& =Q_{k}(n+1)[(1-\lambda) \underline{q}+\lambda z \underline{z}]+\lambda Q_{k}(n+1) \underline{\varepsilon}_{k} .
\end{aligned}
$$

But

$$
\begin{aligned}
& Q_{k}(n+1)[(1-\lambda) \underline{q}+\lambda z \underline{z}]= \\
= & \frac{1}{1-\mu}\left[Q-\frac{\mu Q \underline{z} \underline{z}^{*} Q}{\omega}\right][(1-\lambda) \underline{q}+\lambda z \underline{z}]= \\
= & \frac{1}{1-\mu}\left[(1-\lambda) Q \underline{q}+\lambda z Q \underline{z}-\frac{Q \underline{z}}{\omega}\left(\mu(1-\lambda) \underline{z}^{*} Q \underline{q}+\mu \lambda z \underline{z}^{*} Q \underline{z}\right)\right]= \\
= & \frac{1}{1-\mu}\left[(1-\lambda) \underline{a}+\frac{Q \underline{z}}{\omega}\left(\lambda z \omega-\mu(1-\lambda) \underline{z}^{*} \underline{z}-\mu \lambda z \underline{z}^{*} Q \underline{z}\right)\right]= \\
= & \frac{1-\lambda}{1-\mu} \underline{a}+\frac{Q \underline{z}}{\omega}\left[\lambda z \frac{\omega-\mu \underline{z}^{*} Q \underline{z}}{1-\mu}-\frac{1-\lambda}{1-\mu} \underline{z}^{*} \underline{a}\right]
\end{aligned}
$$

Since

$$
\omega-\mu_{\underline{z}}^{*} Q \underline{\underline{z}}=1-\mu
$$

wo heve

$$
\begin{aligned}
\underline{a}_{\underline{1}}(n+1) & =\frac{1-\lambda}{1-\mu} \underline{a}+\frac{Q \underline{z}}{1-\mu+\mu \underline{z}^{*} Q \underline{z}}\left[\lambda z-\frac{1-\lambda}{1-\mu} \underline{z}^{*} \underline{a}\right]+ \\
& +\lambda Q_{k}(n+1) \varepsilon_{k}
\end{aligned}
$$

and so the alcorithm (SA-1) comes throuch (17).
c) The assumptions about $A_{2}(0)^{17}$ and $c_{k}(0)$ plus (i) - (iii) are sufficient to encure the convercence in lemma ($L-4.2$). So if we define

the events

$$
\begin{aligned}
& A_{k}=\left\{\lim _{n \rightarrow \infty} Q_{k}^{-1}(n)=Q_{k}^{-1}\right\} \\
& B_{k}=\left\{\lim _{n \rightarrow \infty} g_{k}(n)=q_{k}\right\}
\end{aligned}
$$

for each $k \in \stackrel{0}{S}$, we get by ($L-4.2$) that

$$
P\left(A_{k}\right)=P\left(B_{k}\right)=1
$$

Henco

$$
\begin{aligned}
& P\left(A_{k} \cup B_{k}\right)=1 \\
\therefore \quad & P\left(A_{k} \cap B_{k}\right)=P\left(A_{k}\right)+P\left(B_{k}\right)-P\left(A_{k} \cup B_{k}\right)=1 .
\end{aligned}
$$

That is

$$
P\left(A_{k} \cap B_{k}\right)=P\left\{\lim _{n \rightarrow \infty} Q_{k}^{-1}(n)=C_{k}^{-1} ; \lim _{n \rightarrow \infty} \underline{q}_{k}(n)=\underline{q}_{k}\right\}=1
$$

for each $k \in \stackrel{\circ}{S}$. He have already proved in ($P-4.5$) the existence
(and the uniquences comes by definition of the inverse operator) of

$$
\left[Q_{k}^{-1}\right]^{-1} \quad \text { and } \quad\left[Q_{k}^{-1}(n)\right]^{-1}
$$

for all $(k, n) \in \mathcal{S} x$. So we can define the event

$$
c_{k}=\left\{\lim _{n \rightarrow \infty}\left[Q_{k}^{-1}(n)\right]^{-1} \underline{q}_{k}(n)=\left[{Q_{k}}_{-1}\right]^{-1} \underline{q}_{k}\right\}
$$

for each k © S. Moreover,

$$
A_{1:} \cap B_{k} \subseteq C_{1:}
$$

That is, the existence and uniqueness of $\left[C_{k}^{-1}\right]^{-1}$ and $\left[C_{k}^{-1}(n)\right]^{-1}$
for all $(k, n) \in \AA_{\Omega}^{\circ} \bar{T}$, ensure that the occurence of $A_{k} \cap A_{k}$ implies the occurence of c_{k} for each $k \in \mathscr{S}$. Hence

$$
\begin{aligned}
& P\left(c_{k}\right) \geq P\left(A_{k} \cap B_{k}\right)=1 \\
\therefore \quad & P\left(c_{k}\right)=P\left\{\lim _{n \rightarrow \infty}\left[Q_{k}^{-1}(n)\right]^{-1} q_{k}(n)=\left[Q_{k}^{-1}\right]^{-1} g_{k}\right\}=1
\end{aligned}
$$

for each $k \in \stackrel{\circ}{S}$. But

$$
\begin{aligned}
& a_{k}=Q_{k} g_{k}=\left[Q_{k}^{-1}\right]^{-1} g_{k} \quad \text { (by lemma }(L-4.1) \text {) } \\
& a_{k}(n)=Q_{k}(n) g_{k}(n)=\left[Q_{k}^{-1}(n)\right]^{-1} g_{k}(n) \quad \text { (by definition) } \\
& \text { for all }(k, n) \in S \times T \text {. Tron: } \\
& P\left(C_{k}\right)=P\left\{\lim _{n \rightarrow \infty} a_{k}(n)=a_{k}\right\}=1
\end{aligned}
$$

for each $k \in$ S. $^{\circ}$.

Remarks:

1) (Constant parameters) Consider the particular case whore the parerdeters $\left\{\alpha_{m} ; m=1, \ldots, M\right\}$ in (1) arc constant over $X=(0, l)$. By (9) we can see that the components of ε_{k}, the parameter vector defined in (P - 4.1), will be constant over all ked (ie., $\mathrm{a}_{\mathrm{z}}=\mathrm{a} \in \mathrm{R}^{\mathrm{M}+1}$ for all $\mathrm{k} \in \mathrm{S}$: a space-invariant vector in $\mathrm{R}^{\mathrm{K}+1}$). Thus, in order to perform the identification of a using the algorithm (SA-1), it will be sufficient to take noisy measurements $z_{3}\left(n+\pi_{t}\right)$ in just $M+1$ points, say $\left\{x_{k_{0}}-\tilde{I I}, \ldots, x_{k_{0}}, \ldots, x_{k_{0}+i n}\right\}$, located in the spatial domain X; where k_{o} is any fixed point in S. Moreover, the condition

$$
\beta(x) \neq 0 ; \quad \forall x \in x
$$

can be replaced by

$$
\beta_{k}=\beta\left(x_{1}\right) \neq 0 ; \quad \forall k=k_{0}-1 \%, \ldots, k_{0}, \ldots, k_{0}+\bar{M}
$$

since, in this casc, it is just required that the particuler matrix $Q_{K_{0}} \in B L\left(R^{1 i+1}\right)$ is positive definite $($ sce $(P-4.3)$ and its proof).
2) (No noise condition) If $d=0$ in tho obscrvation equation (2) we cet $\varepsilon_{K}=0$, and so the identification elgorithm (SA-I) does not depend on the knowlecge of $\left\{\gamma_{m}\left(x_{k}\right) ; m=0, \ldots, N\right\}$.
3) (An indispensable information) Finally we recall that the information eiven in (11), that is:

$$
\sum_{m=1}^{M r l} \sum_{k}^{m} \quad \text { independent of }\left\{\alpha_{m}\left(x_{2}\right) ; \quad m=1, \ldots, M\right\} \text { for } \text { gny } k \in S,
$$

represented a fundanental step in our identification procedure (when $d \neq 0)$, since it ensured thet $\nu_{i}\left(Z_{n}\right)$ in $(P-4.1)$ does not depend on 2_{2}, and no the result of lemma $(L-4.1)$ could be achieved.

4.5 - RECOTARTIG THE OMIGIIAL PARAMETERS

In this section we consider the 2 nd step of the identification procedure. That is, we face the problcm of determining the sot of parameters $\left\{\alpha_{m}\left(x_{k}\right) ; m m 1, \ldots, d\right\}$ appearing in the distributed model (1-b), for each $k \in \stackrel{\circ}{\mathbf{N}}$.

To begin with, we rocall the oquation (9):

$$
\begin{equation*}
a_{k}^{i+\tilde{M}^{N}+1}=\sum_{m=m_{\alpha}(i)}^{M}(-1)^{\bar{m}-i}\left(m_{i+\tilde{m}}^{m}\right) \frac{\alpha_{m}\left(x_{k}\right)}{\delta_{x}^{m}} \tag{9}
\end{equation*}
$$

for $\operatorname{each} i=-\bar{M},-M+1, \ldots, \bar{T}$ and $k \in S$, where

$$
m_{\alpha}(i)=\left\{\begin{array}{ll}
-2 i & ; \\
1 & \text { if } i \leq-1 \\
2 i-1 ; & \text { if } i=0 \\
\text { if } i \neq 1
\end{array}\right. \text {. }
$$

Or equivalently:

$$
a_{k}^{i+i \tilde{n}+1}=\sum_{m=1}^{M} r_{i m} \alpha_{m}\left(x_{k}\right)
$$

where:

$$
r_{i m}=\left\{\begin{array}{ll}
(-1)^{\bar{m}-i}\binom{m}{i+\tilde{m}} \frac{1}{i_{0}^{m}} ; & \text { if } m \geqslant m_{\alpha}(i) \\
0 & ;
\end{array} \text { if } m<m_{\alpha}(i) .\right.
$$

Now define

$$
\begin{aligned}
& \alpha_{k}=\left(\alpha_{1}\left(x_{k}\right), \ldots, \alpha_{M}\left(x_{k}\right)\right) \in R^{M} ; \quad k \in S \\
& R=\left[r_{i m}\right]: R^{M} \rightarrow R^{M+1}
\end{aligned}
$$

and recell

$$
e_{f}=\left(a_{k}^{1}, \ldots, a_{k}^{14+1}\right) \quad \in R^{M+1} ; \quad k \in S
$$

Then, by (9°), we cet

The problem here is to recover the oricinal parameters $\alpha_{-} \in R^{i i}$ from $a_{k} \in R^{M+1}$, for cach $k \in$. . Since the stochastic approximation alco rithm (SN-1) eive us on estimate $a_{k}(n)$ of a_{k} for all $n \in \bar{T}$ and for each $k \in \mathcal{E}$, an estimato ${\underset{\sim}{k}}_{k}(n)$ of α_{-k} is then anpplied by means of equation (18)
for all $n \in \bar{T}$ and for each $k \in \stackrel{\circ}{S}$:

But ${\underset{-k}{k}}(n)$ and $\alpha_{-k}(n)$ talie values in R^{M+1} and R^{M}, respoctively. So it is not alvays possible to obtain a vector $\alpha_{-k}(n)$ exactly satisfyins the equation (19). A standard alternative consist of determinine an estimate $\hat{\alpha}_{k}(n)$ of ${\underset{\sim}{k}}^{(n)}$ which best approximates a solution in the
 is: a simple least-squares approach.

Lemma ($\mathrm{L}-4.3$): (Least-Scuares Estimate) The estimate of
 by

$$
\hat{\alpha}_{-k}(n)=\left(R^{*} R\right)^{-1} R^{*} \varepsilon_{k}(n)
$$

Proof:

By a direct inspection on the matrix R we can conclude that it has linearly independent colunns, and so the proof comes as in [11] pp. 83.

Thoorem (T-4.2): The random sequence in $R^{M}\left\{\hat{\alpha}_{k}(n) ; n \in \mathscr{T}\right\}$ obtained in ($L-4.3$) converces to

$$
{\underline{\alpha_{k}}}_{k}=\left(\alpha_{1}\left(x_{k}\right), \ldots, \alpha_{M}\left(x_{k}\right)\right) \quad \in \mathbb{R}^{M}
$$

with probability one, for each $k \in \stackrel{\circ}{\mathrm{~S}}$:

$$
P\left\{\lim _{n \rightarrow \infty} \hat{\underline{a}}_{-k}(n)={\underset{-k}{-k}}\right\}=1 ; \quad k \in \beta_{3}
$$

Proof:
By (T - 4.1), (L - 4.3) and (18) we cet :
$\hat{\underline{a}}_{k}(n)=\left(R^{*} R\right)^{-1} R^{*}{\underset{a}{k}}(n) \frac{\text { w.p. } 1}{n \rightarrow \infty}\left(R^{*} R\right)^{-1} R^{*}{\underset{a}{k}}=\left(R^{*} R\right)^{-1} R^{*} R \underline{\alpha}_{k}=\underline{\alpha}_{k}$.

4.6 - AIT ECUIVALMTT PROCBDURE

We present here an equivalent procedure for the identification method developed in sections 4.2 through 4.5. It is besod on formulating a slichtly different version of the proposition ($\mathrm{P}-4.1$), as follows: If we define
i) $z_{k}\left(z_{n}^{\prime}\right)=\frac{1}{c_{k}^{N+1}}\left(z_{k}\left(z_{n}\right)-c_{k}^{N+1} z_{k}(n)\right)=$
$=\sum_{\substack{m=1 \\ m \neq N}}^{\substack{N}} \frac{c_{k}^{m}}{c_{k}^{N}+1} z_{k}(n+m-N N-1)+z_{k}(n+\bar{N})$
ii) $v_{k}\left(z_{n}^{\prime}\right)=\frac{1}{c_{k}^{N+1}} v_{k}\left(z_{n}\right)$
iii) $\quad a_{k}^{\prime}=\frac{1}{c_{k}^{N+1}}\left(a_{k}-c_{k}^{N}+e_{n}^{N}+1\right)=$
$=\frac{1}{c_{k}^{N+1}}\left(a_{k}^{1}, \ldots, a_{k}^{\tilde{M}}, a_{k}^{\tilde{M}+1}-c_{k}^{N}+1, a_{k}^{\tilde{M}+2}, \ldots, a_{k}^{M+1}\right) \quad \epsilon R^{M+1}$
where:

$$
e_{M} \tilde{M}_{+1}=(0, \ldots, 0,1,0, \ldots, 0) \in R^{M+1}
$$

with 1 in the $(M+1)$ th position and zeros elsewhere.

$$
\begin{aligned}
& \text { iv) } \underline{\varepsilon}_{k}^{\prime}=\frac{1}{c_{k}^{N+1}} \underline{\varepsilon}_{k} \quad \epsilon R^{M+1} \\
& \text { v) } \underline{q}_{k}^{\prime}=E\left\{\underline{z}_{k}\left(n+N_{t}\right) z_{k}\left(\tau_{n+N_{t}}^{\prime}\right)\right\}+\varepsilon_{-k}^{\prime} \quad \epsilon R^{M+1}
\end{aligned}
$$

the results in ($P-4.1$) and ($L-4.1$) take the following form: (P-4.1): $\quad z_{k}\left(z_{n}^{\prime}\right)=\left\langle\sum_{-k}^{\prime} ; \underline{z}_{k}(n)\right\rangle+\nu_{k}\left(\eta_{n}^{\prime}\right)$, $(L-4.1): \quad \underline{a}_{k}^{\prime}=Q_{k} \underline{q}_{k}^{\prime} \quad$,
and a similar version of the identification alcorithm presented in ($T-4.1$) is obtained when $\tau_{n}, \varepsilon_{k}$, and ε_{k} are replaced by τ_{n}, $\frac{\varepsilon_{k}}{}$ and ak', respectively:
(T - 4.1): $\quad a_{-k}^{\prime}(n) \frac{w . p .1}{n \rightarrow \infty} e_{k}^{\prime}$
where:

$$
a_{k}^{\prime}(n)=a_{k}(n) \left\lvert\, \begin{aligned}
& Z_{n}=Z_{n}^{\prime} \\
& \varepsilon_{-k}=\varepsilon_{-k}^{\prime}
\end{aligned} \quad\right. \text { in }(S A-1)
$$

Now define:

$$
\begin{aligned}
& \text { vi) } \alpha_{-k}^{\prime}=\frac{1}{c_{k}^{N+1}}\left(\frac{\alpha_{1}\left(x_{k}\right)}{\delta_{x}}, \ldots, \frac{\alpha_{M}^{\left(x_{k}\right)}}{\delta_{x}^{M}}\right) \quad R^{M} \\
& \text { vii) } r_{i m}^{\prime}=r_{i m} \delta_{x}^{m} \\
& \text { viii) } R^{\prime}=\left[r_{i m}^{\prime}\right]: a^{M} \rightarrow i^{M+1}
\end{aligned}
$$

So we crt, from (9'):
and since

$$
a_{k}^{\prime}=\frac{a_{k}}{c_{k}^{N+1}}-\frac{c_{k}^{N} N_{k}^{N}}{c_{k}^{N+1}}-\frac{e^{\sim}+1}{}
$$

the equations (18) and (19) become:
(18):

(19): $\quad a_{k}^{\prime}(n)=R^{\prime} \underline{\alpha}_{k}^{\prime}(n)-\frac{c_{k}^{N}+1}{c_{k}^{N+1}} e_{\tilde{M}+1}$

In this way the least-squarcs estimate of $\frac{\alpha}{d}(n)$ is eiven by:
$(L-4 \cdot 3): \quad \hat{a}_{-k}(n)=\left(R^{\prime} R^{\prime}\right)^{-1} R^{\prime}{ }^{*}\left[\underline{\underline{a}}_{k}^{\prime}(n)+\frac{c_{k}^{\tilde{N}+1}}{c_{k}^{N+1}} e_{-\tilde{M}+1}\right]$,
and the convercence is proved as in (T - 4.2) by using (18), (T - 4.1) and ($L-4.3$):
$(T-4.2): \quad \hat{\alpha}_{-i}^{\prime}(n) \frac{w \cdot p \cdot 1}{n \rightarrow \infty}+\alpha_{k}^{\prime}$.

This equivalent procedure was applied in [4] for a norticulax classof second-order models. Hote that the oricinal procedure identifies paremeters appoarine in tho discrete version Eiven by (5) (i.e., parameters of the matrix Λ), while the equivelent procedure identifies unknowm paraneters appecrinc in the system matrix F civen in (13) (more prociscly, paraneters of the matrix $A_{\mathrm{A}_{\mathrm{N}}+1}=\mathrm{C}_{\mathrm{N}+1}^{-1}\left(\mathrm{~A}-\mathrm{C}_{\mathrm{N}+1}\right)$).
and since

$$
a_{k}^{\prime}=\frac{\underline{a}_{k}}{c_{k}^{N+1}}-\frac{c_{k}^{N}+1}{c_{k}^{N+1}}-\frac{e^{N}+1}{}
$$

the equations (18) and (19) become:
(18):

$$
a_{k}^{\prime}=R^{\prime} \alpha_{k}^{\prime}-\frac{c_{k}^{N+1}}{c_{k}^{N+1}} e_{n+1}
$$

(19):

$$
\exists_{k}^{\prime}(n)=R^{\prime} \underline{q}_{k}^{\prime}(n)-\frac{c_{k}^{\tilde{N}+1}}{c_{k}^{N+1}} e_{\tilde{M}+1}
$$

In this way the least-squares estimate of $\alpha_{k}^{\prime}(n)$ is eiven by:
$(L-4 \cdot 3): \quad \hat{\alpha}_{k}(n)=\left(R^{*} R^{\prime}\right)^{-1} R^{\prime}{ }^{*}\left[g_{k}^{\prime}(n)+\frac{c_{k}^{N}+1}{c_{k}^{N+1}} e_{-\vec{M}+1}\right]$,
and the convercence is proved as in ($T-4.2$) by using (18), (T-4.1) and (L -4.3):
$(T-4.2): \quad \hat{\alpha}_{-k}^{\prime}(n) \xrightarrow[n \rightarrow \infty]{w \cdot p \cdot 1}{\underset{H}{\prime}}_{\alpha_{k}^{\prime}}$.

This equivalent procedure was applied in [4] for a narticular clessof second-ordor models. Wote that the oricinal procedure identifies parameters appearine in the discrete version eiven by (5) (i.e., paraneters of the matrix A), while the equivelent procedure identifies unknorm paraneters appearing in the systen matrix F eiven in (13) (more preciscly, peraneters of the matrix $\left.A_{7+1}=C_{N+1}^{-1}\left(A-C_{N+1}^{N}\right)\right)$.

Remark: (No noise condition) We cen show that, if $d=0$ in (2), the stochastic approximation algorithm in (T - 4.1) also identifies

$$
c_{k}^{\tilde{N}+1}=\sum_{m=0}^{N}(-1)^{\bar{m}-j}\binom{m}{j+\tilde{m}} \frac{\gamma_{m}\left(x_{k}\right)}{\delta_{t}^{m}} .
$$

Set

$$
R^{\prime \prime}=\left[\begin{array}{l:l}
R^{\prime} & -\theta_{\tilde{M}+1}
\end{array}\right] \quad \in \operatorname{BL}\left(R^{\mathrm{M}+1}\right)
$$

and note that there exists R^{-1}, since the independent columns of R^{\prime} are also independent of enin . Now defining

$$
\alpha_{-k}^{\prime \prime}=\left(\frac{\alpha_{k}^{\prime}}{-k}, \frac{c_{k}^{N+1}}{c_{k}^{N+1}}\right)=\frac{1}{c_{k}^{N+1}}\left(\frac{\alpha_{1}\left(x_{k}\right)}{\delta_{x}}, \ldots, \frac{\alpha_{M}\left(x_{k}\right)}{\delta_{x}^{M}}, c_{k}^{N+1}\right) \in R^{M+1}
$$

the equation (18) becomes:

$$
\underline{a}_{\dot{k}}^{\prime}=R^{\prime \prime} \underline{\alpha}_{j}^{\prime \prime} \quad \in R^{\mathrm{K}+1}
$$

and so we get a recursive estimate of $\alpha_{c}^{\prime \prime}$ directly from (T - 4.1)

$$
\alpha_{-k}^{\prime \prime}(n)=R^{n^{-1}} \underline{a}_{k}^{\prime}(n),
$$

since $g_{k}^{\prime}(n)$ does not depend on $\left\{\gamma_{m}\left(x_{k}\right), m=0, \ldots, N\right\}$ if $d=0$.

4.7 - EXTENSION TO MULTI-DIMSNSIOMAL SPATIAL DOMAIN

So far we have been considering a ovedimensional spatial domain ($x \in X \in R^{l}$). Direct extensions of the theory developed in the previous sections can be obtained for distributed models involving multi-dimen-sional spatial domains $\left(x \in X \in \mathbb{R}^{p}\right)$. In order to illustrate this, we perform
the main steps of the identification procedure for the following secondorder ($M=2, N=1$) linear model with two independent spatial variables ($x \in X \subset R^{2}$) and constant coefficients:

$$
\begin{aligned}
& \gamma_{0} u\left(x_{1}, x_{2}, t\right)+\gamma_{1} \frac{\partial}{\partial t} u\left(x_{1}, x_{2}, t\right)= \\
& =\alpha_{11} \frac{\partial}{\partial x_{1}} u\left(x_{1}, x_{2}, t\right)+\alpha_{12} \frac{\partial}{\partial x_{2}} u\left(x_{1}, x_{2}, t\right)+ \\
& +\alpha_{21} \frac{\partial^{2}}{\partial x_{1}^{2}} u\left(x_{1}, x_{2}, t\right)+\alpha_{22} \frac{\partial^{2}}{\partial x_{2}^{2}} u\left(x_{1}, x_{2}, t\right)+ \\
& +\beta\left(x_{1}, x_{2}\right) w_{x_{1}, x_{2}}(t) .
\end{aligned}
$$

Since the solution method follows exactly as before, we will omit any comments and just the basic results will be presented in a concise form. The notation remains the same as in the preceding sections and, for simplicity, we consider homogeneous boundary conditions. The spatial domain X is taken to be an open square in R^{2}.

Continuous formulation: Infinite-dimensional state space.

MODEL:

$$
\begin{aligned}
& \sum_{m=0}^{1} \gamma_{m} \frac{\partial^{m}}{\partial t^{m}} u(x, t)=\sum_{m=1}^{2} \sum_{i=1}^{2} \alpha_{m i} \frac{\partial^{m}}{\partial x_{i}^{m}} u(x, t)+\beta^{\beta}(x) w_{x}(t) \\
& x=\left(x_{1}, x_{2}\right) \in X=(0, \ell) x(0, l) \subset R^{2} ; \quad t>0
\end{aligned}
$$

$$
\text { IC: } \quad u(x, 0)=E(x) ; \quad x \in \bar{X}=[0, l] x[0, l]
$$

$$
\text { BC: } \quad u\left(x^{\prime}, t\right)=0 ; \quad x^{\prime} \in \Gamma: \text { the boundary of } x ; \quad t \geq 0
$$

OBS: $\quad z\left(x_{k}, t\right)=h u\left(x_{k}, t\right)+d v(t)$
$x_{k} \in P_{x}: \quad c$ partition of $\bar{X} \subset R^{2} ; \quad t>0$
where:
i) The input disturbances $\left\{w_{x}(t) ; t \geqslant 0\right\}$ are taken to be realvalued second-order stochastic processes for each x in $(0, l) \times(0, \ell) \subset R^{2}$.
ii) The observation noise $\{v(t) ; t>0\}$ is a stochastic process defined as before.
iii) $\left\{\alpha_{m i} ; m, i=1,2\right\},\left\{\gamma_{m} ; m=0,1\right\}, h$ and d are assumed to be real constant parameters; and $\gamma_{1} \neq 0, h \neq 0$.
iv) $\beta(x) \neq 0 ; \quad$ for all $x \in X$.

Space-time discretization: Finite-dimensional discrete version.

MODEL: $\quad c_{1} u_{k_{1}, k_{2}}(n)+c_{2} u_{k_{1}, k_{2}}(n+1)=a_{1} u_{k_{1}-1, k_{2}}(n)+$
$+a_{21} u_{k_{1}, k_{2}-1}(n)+a_{22} u_{k_{1}, k_{2}}(n)+a_{23} u_{k_{1}, k_{2}+1}(n)+$
$+a_{3} u_{k_{1}+1, k_{2}}(n)+\beta_{k_{1}, k_{2}} w_{k_{1}, k_{2}}(n)$
$\left(k_{1}, k_{2}\right) \in S \times S ; \quad n \in \bar{T}$
$u_{k_{1}, k_{2}}(0)=g\left(x_{k_{1}}, x_{k_{2}}\right), \quad\left(k_{1}, k_{2}\right) \in S \times S$

BC:
$u_{0, k_{2}}(n)=u_{K+1, k_{2}}(n)=0$
$u_{k_{1}, 0}(n)=u_{k_{1}}, K+1(n)=0$
$\left(k_{1}, k_{2}\right) \in \bar{S} x \bar{S} ; \quad n \in \bar{T}$
$z_{k_{1}, k_{2}}(n)=h u_{k_{1}, k_{2}}(n)+d v(n)$
$\left(k_{1}, k_{2}\right) \in S \times S ; \quad n \in T$

Where:

> i) $x_{k_{i}}=k_{i} \delta_{x_{i}} \in(0, l) ; \quad i=1,2 \quad$ (see fig. 7)
> i-a) $\delta_{x_{1}}=\delta_{x_{2}}=\delta_{x}$
> 1-b) $k_{i} \in \bar{S}=\{0,1, \ldots, K+1\} \supset S=\{1,2, \ldots, K\}$
> i-c) $K=\frac{l}{\delta_{x}}-1$
> i-d) $\delta_{x}>0 \quad$ such that K is an integer ≥ 3
ii) $t_{n}=n \delta_{t} \geq 0$
ii-a) $n \in \bar{T}=\{0,1, \ldots\} \supset T=\{1,2, \ldots\}$
ii-b) $\delta_{t}>0$
iii) $u_{k_{1}}, k_{2}(n)=u\left(x_{k_{1}}, x_{k_{2}}, t_{n}\right)$

$$
\begin{aligned}
\text { iii-a) } & \left.\frac{\partial}{\partial t} u\left(x_{k_{1}}, x_{k_{2}}, t\right)\right|_{t=t_{n}} \simeq D_{\delta_{t}} u\left(x_{k_{1}}, x_{k_{2}}, t_{n}\right)= \\
& =\frac{1}{\delta_{t}}\left[u_{k_{1}}, k_{2}(n+1)-u_{k_{1}}, k_{2}(n)\right] \\
\text { iii-b) } & \left.\frac{\partial}{\partial x_{1}} u\left(x, t_{n}\right)\right|_{x_{1}=x_{k_{i}}}=D_{\delta_{x_{1}}} u\left(x_{k_{1}}, x_{k_{2}}, t_{n}\right)= \\
& =\frac{1}{\delta_{x}}\left\{\begin{array}{l}
{\left[u_{k_{1}}+1, k_{2}\right.} \\
(n)-u_{k_{1}}, k_{2} \\
[n)] ; \\
{\left[u_{k_{1}}, k_{2}+1\right.}
\end{array}(n)-u_{k_{1}, k_{2}}(n)\right] ; \quad i=2
\end{aligned}
$$

$$
\begin{aligned}
& \text { iii-c) }\left.\frac{\partial^{2}}{\partial x_{i}^{2}} u\left(x, t_{n}\right)\right|_{x_{i}=x_{k_{i}}} \simeq D_{\delta_{x_{i}}^{2}} u\left(x_{k_{1}}, x_{k_{2}}, t_{n}\right)= \\
& =\frac{1}{\delta_{x}^{2}}\left\{\begin{array}{l}
{\left[u_{k_{1}-1, k_{2}}(n)-2 u_{k_{1}}, k_{2}(n)+u_{k_{1}+1, k_{2}}(n)\right] ; i=1} \\
{\left[u_{k_{1}}, k_{2}-1(n)-2 u_{k_{1}}, k_{2}(n)+u_{k_{1}}, k_{2}(n)\right] ; i=2}
\end{array}\right. \\
& \text { iv) } w_{k_{1}}, k_{2}(n)=w_{x_{k_{1}}}, x_{k_{2}}\left(t_{n}\right) \\
& \text { v) } v(n)=v\left(t_{n}\right) \\
& \text { vi) } z_{k_{1}}, k_{2}(n)=z\left(x_{k_{1}}, x_{k_{2}}, t_{n}\right) \\
& {\left[a_{1}=\frac{1}{\delta_{x}^{2}} \alpha_{21}\right.} \\
& a_{21}=\frac{1}{\delta_{x}^{2}} \alpha_{22} \\
& v i i)\left\{\begin{array}{l}
a_{22}=-\frac{1}{\delta_{x}}\left(\alpha_{11}+\alpha_{12}+\frac{2 \alpha_{21}}{\delta_{x}}+\frac{2 \alpha_{22}}{\delta_{x}}\right) \\
a_{23}=\frac{1}{\delta_{x}}\left(\alpha_{12}+\frac{\alpha_{22}}{\delta_{x}}\right) \\
a_{3}=\frac{1}{\delta_{x}}\left(\alpha_{11}+\frac{\alpha_{21}}{\delta_{x}}\right)
\end{array}\right. \\
& \text { viii) }\left\{\begin{array}{l}
c_{1}=\gamma_{0}-\frac{\gamma_{1}}{\delta_{t}} \\
c_{2}=\frac{\gamma_{1}}{\delta_{t}}
\end{array}\right. \\
& \text { ix) } \beta_{k_{1}, k_{2}}=\beta\left(k_{1}, k_{2}\right)
\end{aligned}
$$

- Equivalent discrete-time LPS:
$\left\{\begin{array}{lll}\text { MODEL: } & \underline{u}(n+1)=A \underline{u}(n)+B \underline{w}(n) ; & \underline{u}(0) \text { given } \\ \text { OBS: } & \underline{\underline{z}}(n)=h \underline{u}(n)+\underline{d} v(n) ; & n \in T\end{array}\right.$
where:

$$
\begin{aligned}
\text { i) } \underline{u}(n) & =\left(u_{11}(n), \ldots, u_{1 K}(n), \ldots, u_{K 1}(n), \ldots, u_{K K}(n)\right) ; & n \in \bar{T} \\
\text { ii) } \underline{w}(n) & =\left(w_{11}(n), \ldots, w_{1 K}(n), \ldots, u_{K 1}(n), \ldots, w_{K K}(n)\right) ; & n \in \bar{T}
\end{aligned}
$$

Fig. 7: Disoretization of
the Space-Domain $\overline{\mathrm{x}}=[0, l] \times[0, l]$.

Equivalent discrete-time LPS:

$\left\{\begin{array}{lll}\text { MODEL: } & \underline{u}(n+1)=A \underline{u}(n)+B \underline{w}(n) ; & \underline{\underline{u}}(0) \text { given } \\ \text { OBS: } & \underline{z}(n)=n \underline{u}(n)+\underline{d} v(n) ; & n \in T\end{array}\right.$
where:
i) $\underline{\underline{u}}(n)=\left(u_{11}(n), \ldots, u_{1 K}(n), \ldots \ldots, u_{K 1}(n), \ldots, u_{K K}(n)\right) ; \quad n \in \bar{T}$
ii) $\underset{w}{ }(n)=\left(w_{11}(n), \ldots, w_{1 K}(n), \ldots \ldots, w_{K I}(n), \ldots, w_{K K}(n)\right) ; \quad n \in \bar{T}$

$$
\text { iii) } \underline{z}(n)=\left(z_{11}(n), \ldots, z_{1 K}(n), \ldots \ldots, z_{K 1}(n), \ldots, z_{K K}(n)\right) ; \quad n \in T
$$ random vectors in $\mathrm{R}^{\mathrm{K}^{2}}$.

iv) $\underline{d}=a(1,1, \ldots, 1)$ $\epsilon \mathrm{R}^{\mathrm{K}^{2}}$
v) $A=\left[\begin{array}{llllll}A_{2} & A_{3} & & & & \\ A_{1} & A_{2} & A_{3} & & & \\ & \ddots & \ddots & \ddots & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & \\ & & & A_{1} & A_{2} & A_{3} \\ & & & A_{1} & A_{2}\end{array}\right] \quad \in \operatorname{BL}\left(\mathrm{R}^{K^{2}}\right)$
vi) $A_{1}=\frac{a_{1}}{c_{2}} I \in \operatorname{BL}\left(\mathrm{R}^{K}\right)$
vii) $A_{3}=\frac{a_{3}}{c_{2}} I \quad \epsilon \quad B L\left(\mathrm{R}^{R}\right)$
viii) $\quad A_{2}=\frac{1}{c_{2}}\left[\begin{array}{lllll}a_{22} & a_{23} & & & \\ a_{21} & a_{22} & a_{23} & & \\ \ddots & \ddots & \ddots & \ddots & \\ & \ddots & \ddots & \ddots & \\ & \ddots & \ddots & \ddots & \ddots \\ & & a_{21} & a_{22} & a_{23} \\ & & & a_{21} & a_{22}\end{array}\right]-\frac{c_{1}}{a_{2}} I$

є $\mathrm{BL}\left(\mathrm{R}^{\mathrm{K}}\right)$
ix) $B=\frac{1}{C_{2}}$

$$
\in \mathrm{BL}\left(\mathrm{R}^{\mathrm{K}^{2}}\right)
$$

$$
a_{1}+\sum_{i=1}^{3} a_{2 i}+a_{3}=0,
$$

a relation expressing the observation dynamics, as presented in ($P-4.1$), can be obtained as follows:

Define
i) $\stackrel{0}{S}=\{2, \ldots, \mathrm{~K}-1\} \subset \mathrm{S}$
ii) $z_{k_{1}, k_{2}}\left(z_{n}\right)=c_{1} z_{k_{1}, k_{2}}(n)+c_{2} z_{k_{1}, k_{2}}(n+1)$
iii) $v_{k_{1}, k_{2}}\left(z_{n}\right)=d\left(c_{1} v(n)+c_{2} v(n+1)\right)+h \beta_{k_{1}, k_{2}} w_{k_{1}, k_{2}}(n)$
iv) $\quad \underline{a}=\left(a_{1}, a_{21}, a_{22}, a_{23}, a_{3}\right) \quad \in \quad R^{5}$
v) $\quad \underline{z}_{k_{1}, k_{2}}(n)=\left(z_{k_{1}-1, k_{2}}(n), z_{k_{1}, k_{2}-1}(n), z_{k_{1}, k_{2}}(n), z_{k_{1}, k_{2}+1}(n)\right.$,

$$
\left.z_{k_{1}+1, k_{2}}(n)\right): \quad \text { randon vectors in } R^{5}
$$

Proposition ($P-4.11$): For each $\left(k_{1}, k_{2}\right) \in S_{S}^{0} S^{0}$ and $n \in T$,

$$
z_{k_{1}, k_{2}}\left(\tau_{n}\right)=\left\langle\underline{a}, \underline{z}_{k_{1}, k_{2}}(n)\right\rangle+\nu_{k_{1}, k_{2}}\left(z_{n}\right) .
$$

Based on (P - 4.1') it can be shown that the parameter explicit lemma (L - 4.1) has a similar version in case of multi-dimensional spatial domain. First consider the assumptions (A - 4.1) - (A - 4.4) (stability, stationarity, steady state and finite transient time), where the input disturbance $\{\underline{w}(n) ; n \in \bar{T}\}$ is a random sequence in $R^{K^{2}}$ and so C_{w} is a aymmetric positive definite matrix in $B L\left(R^{K^{2}}\right)$. Now define
i) $\varepsilon=-d^{2}\left[\eta_{v}^{2} \gamma_{0}+c_{1} \sigma_{v}(0)+c_{2} \sigma_{v}(1)\right]$
ii) $\underline{\varepsilon}=\varepsilon(1,1, \ldots, 1) \quad \in R^{5}$
iii) $\underline{q}_{k_{1}}, k_{2}=E\left\{z_{k_{1}, k_{2}}\left(z_{n+N_{t}}\right) \underline{z}_{k_{1}}, k_{2}\left(n+N_{t}\right)\right\}+\underline{\varepsilon} \in R^{5}$
iv) $Q_{k_{1}, k_{2}}^{-1}=E\left\{{\underline{z_{k}}}_{1}, k_{2}\left(n+N_{t}\right){\underline{z_{k}}}_{1}^{*}, k_{2}\left(n+N_{t}\right)\right\} \quad \in \operatorname{BL}\left(R^{5}\right)$

with $I \in B L\left(R^{3}\right)$ centered at the $\left[\left(k_{1}-1\right) K+k_{2}\right]$ th position and the 18 , in the first and fifth rows, placed at $\left[\left(k_{1}-2\right) K+K_{2}\right]$ th and $\left[k_{1} K+k_{2}\right]$ th positions, respectively.

Since

$$
\underline{z}_{k_{1}}, k_{2}(n)=J_{k_{1}, k_{2}} \underline{z}(n)
$$

the propositions (P - 4.2) - ($\mathrm{P}-4.5$) remain valid if we replace k e $\stackrel{\circ}{S}$ by $\left(k_{1}, k_{2}\right) \in \stackrel{0}{S} \times \stackrel{\circ}{S}$. Hence:

Lemma ($\mathrm{L}-4.1 \mathrm{I}$): (Explicit parameter) Let $\underline{q}_{\mathrm{k}_{1}}, \mathrm{k}_{2}$ and $Q_{\mathrm{K}_{1}}, \mathrm{~K}_{2}$ be as defined before. If the assumptions ($A-4.1$) - ($A-4.4$) are satisfied, then the parameter vector

$$
\underline{a}=\left(a_{1}, a_{21}, a_{22}, a_{23}, a_{3}\right) \in R^{5}
$$

introduced in ($P-4.1$) can be placed in an explicit form, as follows:

$$
\underline{a}=Q_{k_{1}, k_{2}} \underline{q}_{k_{1}}, k_{2}
$$

i) $\varepsilon=-d^{2}\left[\eta_{v}^{2} \gamma_{0}+c_{1} \sigma_{v}(0)+c_{2} \sigma_{v}(1)\right]$
ii) $\underline{\varepsilon}=\varepsilon(1,1, \ldots, 1) \in R^{5}$
iii) $\underline{q}_{k_{1}, k_{2}}=E\left\{z_{k_{1}, k_{2}}\left(z_{n+N_{t}}\right) \underline{z}_{k_{1}, k_{2}}\left(n+N_{t}\right)\right\}+\underline{\varepsilon} \in R^{5}$
iv) $Q_{k_{1}, k_{2}}^{-1}=E\left\{\underline{z}_{k_{1}}, k_{2}\left(n+N_{t}\right) z_{k_{1}}^{*}, k_{2}\left(n+N_{t}\right)\right\} \quad \in \operatorname{BL}\left(R^{5}\right)$
 with $I \in B L\left(R^{3}\right)$ centered at the $\left[\left(k_{1}-1\right) K+k_{2}\right]$ th position and the 1 s , in the first and fifth rows, placed at $\left[\left(k_{1}-2\right) K+k_{2}\right]$ th and $\left[k_{1} K+k_{2}\right]$ th positions, respectively.

Since

$$
z_{k_{1}}, k_{2}(n)=J_{k_{1}, k_{2}} z(n)
$$

the propositions $(P-4.2)-(P-4.5)$ remain valid if we replace $k \in \stackrel{0}{S}$ by $\left(k_{1}, k_{2}\right) \in \stackrel{o}{S} x \stackrel{\circ}{S}$. Hence:

Lemma (L - 4.11): (Explicit parameter) Let $\underline{q}_{k_{1}}, k_{2}$ and $Q_{k_{1}}, k_{2}$ be as defined before. If the assumptions ($A-4.1$) - ($A-4.4$) are satisfied, then the parameter vector

$$
\underline{a}=\left(a_{1}, a_{21}, a_{22}, a_{23}, a_{3}\right) \in R^{5}
$$

introduced in ($P-4.1^{\prime}$) can be placed in an explicit form, as follows:

$$
\underline{a}=Q_{k_{1}, k_{2}} \underline{q}_{k_{1}}, k_{2}
$$

for any $\left(k_{1}, k_{2}\right) \in \stackrel{O}{S}^{\circ} \times \stackrel{\circ}{S}$.

In this way, the parameter vector a can be identified through noisy observations $z_{k_{1}}, k_{2}(n)$, by using stochastic approximation algorithms as presented in ($T-4.1$) (with $k \in S_{S}^{\text {i }}$ replaced by $\left(k_{1}, k_{2}\right)<\stackrel{\circ}{S}_{x} \stackrel{\circ}{S}$).

Remarks:

1) As far as the equivalent LPS is concerned, the computational complexity increases exponentially with the dimension of the spatial domain X. For instance, assume X is an open rectangle in R^{p}, and let K be a fixed integer ($\sum M+1$) such that the discretization of X contains k^{p} interior points (i.e, K interior points for each discretized coordinate: $S=\{1,2, \ldots, K\}$). So, as shown for the two-dimensional case (with $N=1$), the equivalent LPS will be of order (NK) ${ }^{p}$ (i.e., $y(n)$ is in $R^{(N X K)}{ }^{p}$).
2) For identification purposes, the computational complexity increases only with the number of parameters to be identified (i.e., the identification aleorithm $a_{k}(n)$ is in R^{p+1} for each k).

CHAPTER 5

SUMMARY, EXAMPLES AND CONSIDERATIONS

The performance of the identification method proposed in chapter 4 is analysed. After a brief summary concerning second-order models, we present three examples dealing with parabolic and hyperbolic PDI. The chapter closes with a concise list of remarks including some conclusions and suggestions for further research in this field.

5.1 - SUMMARY: SECOND-ORDER MODELS

We present here a brief summary of tho identification procedure developed in the last chapter, for second-order models ($M=2$, $0<N \leq 2$) with constant (space-invariant) parameters and one-dimensional spatial domain ($x \in(0, \ell)$). Two cases will be considered separately: $M=2$, $\mathrm{N}=1$ and $\mathrm{M}=\mathrm{N}=2 .^{1}$

1 Recall that

$$
\begin{aligned}
& \mathrm{M}=2 \rightarrow \\
& \mathrm{~N}=\left\{\begin{array}{lll}
1 & \rightarrow & \tilde{N}=\overline{\mathrm{N}}=0, \quad \overline{\mathrm{~N}}=1 \\
2 & \rightarrow & \tilde{N}=\vec{N}=1
\end{array}\right.
\end{aligned}
$$

Original DPS:

Discrete version:

$$
\left\{\begin{array}{ll}
\text { MODEL: } & \underline{N=1:} \quad c_{1} u_{k}(n)+c_{2} u_{k}(n+1) \\
& \underline{N=2:} \quad c_{1} u_{k}(n-1)+c_{2} u_{k}(n)+c_{3} u_{k}(n+1)
\end{array}\right\}=
$$

$$
\text { BC: } \quad u_{0}(n)=u_{K+1}(n)=0 ; \quad n \in \bar{T}
$$

$$
\text { OBS: } \quad z_{k}(n)=h u_{K}(n)+d v(n) ; \quad(k, n) \in S \times T
$$

$$
\begin{aligned}
& N=1: \quad \gamma_{0} u(x, t)+\gamma_{1} \frac{\partial}{\partial t} u(x, t) \\
& \text { MODEL: } \\
& \left.\underline{N=2}: \quad \gamma_{0} u(x, t)+\gamma_{1} \frac{\partial}{\partial t} u(x, t)+\gamma_{2} \frac{\partial^{2}}{\partial t^{2}} u(x, t)\right\}= \\
& =\alpha_{1} \frac{\partial}{\partial x} u(x, t)+\alpha_{2} \frac{\partial^{2}}{\partial x^{2}} u(x, t)+\beta(x) w_{x}(t) ; \quad x \in(0, l) ; \quad t>0 \\
& \underline{N=1}: \quad u(x, 0)=E_{0}(x) \\
& \text { IC: ; } x \in[0, l] \\
& \underline{N=2}: \quad u(x, 0)=g_{0}(x) ;\left.\quad \frac{\partial}{\partial t} u(x, t)\right|_{t=0}=g_{1}(x) \\
& \mathrm{BC}: \quad u(0, t)=u(t, t)=0 ; \quad t \geq 0 \\
& \text { OBS: } \quad z\left(x_{k}, t\right)=h u(x, t)+d v(t) ; \quad x_{k} \in P_{x} ; \quad t>0
\end{aligned}
$$

where the coefficients $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{c_{1}, c_{2}, c_{3}\right\}$ are given by:

$$
\begin{aligned}
& a_{1}=\frac{\alpha_{2}}{\delta_{x}^{2}} \\
& a_{2}=-\frac{\alpha_{1}}{\delta_{x}}-2 \frac{\alpha_{2}}{\delta_{x}^{2}} \\
& a_{3}=\frac{\alpha_{1}}{\delta_{x}}+\frac{\alpha_{2}}{\delta_{x}^{2}} \\
& \underline{N}=1:\left\{\begin{array}{l}
c_{1}=\gamma_{0}-\frac{\gamma_{1}}{\delta_{t}} \\
c_{2}=\frac{\gamma_{1}}{\delta_{t}} \\
c_{1}=\frac{\gamma_{2}}{\delta_{t}^{2}} \\
c_{2}=\gamma_{0}-\frac{\gamma_{1}}{\delta_{t}}-2 \frac{\gamma_{2}}{\delta_{t}^{2}} \\
c_{3}=\frac{\gamma_{1}}{\delta_{t}}+\frac{\gamma_{2}}{\delta_{t}^{2}}
\end{array}\right.
\end{aligned}
$$

and the sets $\bar{T}, T{ }^{\prime}, T$ and S are defined as follows:

$$
\begin{aligned}
& \bar{T}=\{0,1,2, \ldots\} \\
& \underline{N}=1: \quad T=\{1,2, \ldots\} \subset T^{\prime}=\overline{T_{1}} \\
& \underline{N=2}: \quad T=\{2,3, \ldots\} \subset T^{\prime}=\{1,2, \ldots\} \subset \bar{T} \\
& S=\{1,2, \ldots, K\}
\end{aligned}
$$

with

$$
K=\frac{l}{\delta_{x}}-1: \quad \text { an integer } \geq 3
$$

Equivalent discrete-time LPS:

$\left\{\begin{array}{lll}\text { MODEL: } & \underline{y}(n+1)=F \underline{y}(n)+G \underline{w}(n) ; & \underline{y}(\mathbb{N}) \text { Given } \\ \text { OBS: } & \underline{z}(n)=H Y(n)+\underline{\alpha} V(n) ; & n \in T\end{array}\right.$

$$
\begin{aligned}
& \text { i) } \underline{u}(n)=\left(u_{1}(n), \ldots, u_{K}(n)\right) ; \quad n \in \bar{T}: \quad \text { in } R^{K}
\end{aligned}
$$

$$
\begin{aligned}
& \text { iii) } \underline{g}(n)=\left(z_{1}(n), \ldots, z_{K}(n)\right) ; \quad n \in T: \quad \text { in } R^{X} \\
& \text { iv) } \underline{d}=\mathrm{d}(1,1, \ldots, 1) \quad \mathrm{R}^{\mathrm{K}} \\
& \text { v) } B=\left[\begin{array}{lll}
\beta_{1} & & \\
& \ddots & \\
& & \beta_{K}
\end{array}\right] \in \operatorname{BL}\left(R^{K}\right) \\
& \text { vi) } A=\left[\begin{array}{llllll}
a_{2} & a_{3} & & & & \\
a_{1} & a_{2} & a_{3} & & \\
& \ddots & \ddots & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & \ddots & \\
& & a_{1} & a_{2} & a_{3} \\
& & & a_{1} & a_{2}
\end{array}\right] \quad \in B L\left(R^{K}\right)
\end{aligned}
$$

$\mathrm{N}=1:$

$$
\begin{aligned}
& \text { vii-a) } y(n)=\underline{u}(n) ; \quad n \in T^{\prime}=T: \quad \text { in } \mathbb{R}^{\mathrm{K}} \\
& \underline{y}(N)=\underline{y}(0)=\underline{u}(0)=\left(g_{0}\left(x_{1}\right), \ldots, g_{0}\left(x_{K}\right)\right) \\
& \text { viii-a) } F=A_{1}=C_{2}^{-1}\left(C_{1}-A\right)=\frac{1}{C_{2}}\left(A-C_{1} I\right)=
\end{aligned}
$$

$$
=\left[\begin{array}{ccccc}
a_{2}^{\prime} & a_{3}^{\prime} & & & \\
a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} & & \\
& \ddots & \ddots & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & \\
& & & a_{i}^{\prime} & a_{2}^{\prime} \\
& & & a_{i}^{\prime} & a_{2}^{\prime}
\end{array}\right] \in \operatorname{BL}\left(\mathrm{R}^{K}\right)
$$

where:

$$
\begin{aligned}
& a_{1}^{\prime}=\frac{a_{1}}{c_{2}}=\alpha_{2} \\
& a_{2}^{\prime}=\frac{a_{2}-c_{1}}{c_{2}}=-\alpha_{1}-2 \alpha_{2}-\frac{c_{1}}{c_{2}}=1-\left(\alpha_{1}+2 \alpha_{2}+\delta_{t} \frac{\gamma_{0}}{\gamma_{1}}\right) \\
& a_{3}^{\prime}=\frac{a_{3}}{c_{2}}=\alpha_{1}+\alpha_{2}^{\prime}
\end{aligned}
$$

with the coefficients α_{1} and α_{2} defined as follows:

$$
\begin{aligned}
& \alpha_{1}=\frac{1}{c_{2}} \frac{\alpha_{1}}{\delta_{x}}=\frac{1}{\delta_{1}} \frac{\delta_{t}}{\delta_{x}} \alpha_{1} \\
& \alpha_{2}^{\prime}=\frac{1}{c_{2}} \frac{\alpha_{2}}{\delta_{x}^{2}}=\frac{1}{\delta_{1}} \frac{\delta_{t}}{\delta_{x}^{2}} \alpha_{2}
\end{aligned}
$$

$$
i x-a) \quad G=B_{1}=C_{2}^{-1} B=\frac{1}{C_{2}} B=\frac{\delta_{t}}{\gamma_{1}} B \quad \in B L\left(R^{K}\right)
$$

$$
x-a) \quad H=h I \quad \in \quad B L\left(R^{K}\right)
$$

$\mathrm{N}=2$:

$$
\begin{aligned}
&\text { vii-b }) \underline{y}(n)=(\underline{u}(n-1), \underline{u}(n)) ; \quad n \in T^{\prime}: \quad \text { in } R^{2 K} \\
& z(\tilde{N})=\underline{y}(1)=(\underline{u}(0), \underline{u}(1))= \\
&=\left(\varepsilon_{0}\left(x_{1}\right), \ldots, c_{0}\left(x_{K}\right), \delta_{t} g_{1}\left(x_{1}\right)+g_{0}\left(x_{1}\right), \ldots, \delta_{t} g_{1}\left(x_{K}\right)+g_{0}\left(x_{K}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { viii-b) } F=\left[\begin{array}{ll}
0 & I \\
A_{1} & A_{2}
\end{array}\right] \in \operatorname{BL}\left(R^{2 K}\right) \\
& A_{1}=-c_{3}^{-1} c_{1}=-\frac{c_{1}}{c_{3}} I=\frac{-\gamma_{2}}{\gamma_{1} \delta_{t}+\gamma_{2}} I \quad \in B L\left(R^{K}\right) \\
& A_{2}=C_{3}^{-1}\left(A-C_{2}\right)=\frac{1}{O_{3}}\left(A-C_{2} I\right)= \\
& {\left[\begin{array}{llllll}
a_{2}^{\prime} & a_{j}^{\prime} & & & \\
a_{i} & a_{2}^{\prime} & a_{j}^{\prime} & & \\
& \ddots & \ddots & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & \\
& & & a_{2}^{\prime} & a_{i}^{\prime} \\
& & & a_{i}^{\prime} & a_{2}^{\prime}
\end{array}\right] \in \operatorname{BL}\left(\mathrm{R}^{\mathrm{K}}\right)}
\end{aligned}
$$

where:

$$
\begin{aligned}
& a_{1}=\frac{a_{1}}{c_{3}}=\alpha_{2} \\
& a_{2}^{\prime}=\frac{a_{2}-c_{2}}{c_{3}}=-\alpha_{1}-2 \alpha_{2}-\frac{c_{2}}{c_{3}}= \\
& =2-\left(\alpha_{1}+2 \alpha_{2}+\delta_{t} \frac{\gamma_{0} \delta_{t}+\gamma_{1}}{\gamma_{1} \delta_{t}+\gamma_{2}}\right) \\
& a_{3}^{\prime}=\frac{a_{3}}{c_{3}}=\alpha_{i}+\alpha_{2}^{\prime}
\end{aligned}
$$

with the coefficients α_{1} and α_{2} defined as follows:

$$
\begin{aligned}
& \alpha_{j}=\frac{1}{c_{3}} \frac{c_{1}}{\delta_{x}}=\frac{1}{\gamma_{1} \delta_{t}+\gamma_{2}} \frac{\delta_{t}^{2}}{\delta_{x}} \alpha_{1} \\
& \alpha_{i}=\frac{1}{c_{3}} \frac{\alpha_{2}}{\delta_{x}^{2}}=\frac{1}{\gamma_{1} \delta_{t}+\gamma_{2}} \frac{\delta_{t}^{2}}{\delta_{x}^{2}} \alpha_{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { viii-b) } F & =\left[\begin{array}{ll}
0 & I \\
A_{1} & A_{2}
\end{array}\right] \in \operatorname{BL}\left(R^{2 K}\right) \\
A_{1} & =-c_{3}^{-1} C_{1}=-\frac{c_{1}}{c_{3}} I=\frac{-\gamma_{2}}{\gamma_{1} \delta_{t}+\gamma_{2}} I \quad \in \quad B L\left(R^{K}\right) \\
A_{2} & =C_{3}^{-1}\left(A-c_{2}\right)=\frac{1}{o_{3}}\left(A-c_{2} I\right)= \\
& =\left[\begin{array}{llll}
a_{2}^{1} & a_{3}^{\prime} & \\
a_{1} & a_{2}^{\prime} & a_{3}^{\prime} & \\
& \ddots & \ddots & \ddots \\
& \ddots & \ddots & \ddots \\
& & a_{1} & a_{2}^{\prime} \\
a_{3}^{\prime} \\
& & a_{i} & a_{2}^{\prime}
\end{array}\right] \in \operatorname{BL}\left(R^{K}\right)
\end{aligned}
$$

where:

$$
\begin{aligned}
& a_{i}=\frac{a_{1}}{c_{3}}=\alpha_{2} \\
& a_{2}^{\prime}=\frac{a_{2}-c_{2}}{c_{3}}=-\alpha_{1}-2 \alpha_{2}-\frac{c_{2}}{c_{3}}= \\
& \\
& =2-\left(\alpha_{i}+2 \alpha_{2}+\delta_{t} \frac{\gamma_{0} \delta_{t}+\gamma_{1}}{\gamma_{1} \delta_{t}+\gamma_{2}}\right) \\
& a_{3}=\frac{a_{3}}{o_{3}}=\alpha_{1}+\alpha_{2}^{\prime}
\end{aligned}
$$

with the coofficients α_{j} and α_{2}^{\prime} defined as follows:

$$
\begin{aligned}
& \alpha_{1}=\frac{1}{c_{3}} \frac{c_{1}}{\delta_{x}}=\frac{1}{\gamma_{1} \delta_{t}+\gamma_{2}} \frac{\delta_{t}^{2}}{\delta_{x}} \alpha_{1} \\
& \alpha_{i}=\frac{1}{c_{3}} \frac{\alpha_{2}}{\delta_{x}^{2}}=\frac{1}{\gamma_{1} \delta_{t}+\gamma_{2}} \frac{\delta_{t}^{2}}{\delta_{x}^{2}} \alpha_{2}
\end{aligned}
$$

$$
\begin{aligned}
i x-b) G & =\left[\begin{array}{l}
0 \\
B_{2}
\end{array}\right]: R^{K} \rightarrow R^{2 K} \\
B_{2} & =c_{3}^{-1} B=\frac{1}{c_{3}} B=\frac{\delta_{t}^{2}}{\gamma_{1} \delta_{t}+\gamma_{2}} B \quad \in \quad B L\left(R^{K}\right) \\
x-b) H & =h\left[\begin{array}{ll}
0 & I
\end{array}\right]: R^{2 K} \rightarrow R^{K}
\end{aligned}
$$

Stochastic approximation alporithms for identification:

1st case: The original procedure:

$$
\begin{aligned}
(S \Lambda-1): \quad \underline{a}(n+1) & =\frac{1-\lambda(n)}{1-\mu(n)}\left[1-\mu(n) Q(n+1) \underline{z}_{k_{0}}\left(n+N_{t}\right) \underline{z}_{k_{0}}^{*}\left(n+N_{t}\right)\right] \underline{a}(n)+ \\
& +\lambda(n) Q(n+1)\left[z_{k_{0}}\left(z_{n+N_{t}}\right) \underline{z}_{k_{0}}\left(n+N_{t}\right)+\varepsilon\right]: \text { in } R^{3}
\end{aligned}
$$

with $Q(n)$ in $B L\left(R^{3}\right)$ given by
$(S A-2): \quad Q(n+1)=\frac{1}{1-\mu(n)}\left[Q(n)-\frac{\mu(n) Q(n) \underline{z}_{k_{0}}\left(n+N_{t}\right) \underline{z}_{k_{0}^{*}}^{*}\left(n+N_{t}\right) Q(n)}{1-\mu(n)+\mu(n) \underline{z}_{k_{0}^{*}}^{*}\left(n+N_{t}\right) Q(n) \underline{z}_{k_{0}}\left(n+N_{t}\right)}\right]$
where:
i) $n \in \bar{T}=\{0,1,2, \ldots\}$
ii) N_{t} : finite transient time as in ($A-4.4$)
iii) $k_{0}:$ any fixed point in $\stackrel{\circ}{S}=\{2, \ldots, K-1\}$
iv) $\lambda(n) \in(0,1), \quad \sum_{n=0}^{\infty} \lambda(n)=\infty, \quad \sum_{n=0}^{\infty} \lambda^{2}(n)<\infty$
v) $\mu(n) \in(0,1) \quad ; \quad \sum_{n=0}^{\infty} \mu(n)=\infty \quad ; \quad \sum_{n=0}^{\infty} \mu^{2}(n)<\infty$

$$
\begin{aligned}
& \text { vi) } z_{k_{0}}\left(z_{n}\right)= \begin{cases}c_{1} z_{k_{0}}(n)+c_{2} z_{k_{0}}(n+1) & N=1 \\
c_{1} z_{k_{0}}(n-1)+c_{2} z_{k_{0}}(n)+c_{3} z_{k_{0}}(n+1) ; & N=2\end{cases} \\
& \text { vi.i) } z_{z_{0}}(n)=J_{k_{0}} \underline{z}(n)=\left(z_{k_{0}-1}, z_{k_{0}}(n), z_{k_{0}+1}(n)\right): \quad \text { in } R^{3} \\
& \text { viii) } \varepsilon=-d^{2} \eta_{v}^{2} \gamma_{0}-d^{2} \begin{cases}c_{1} \sigma_{v}(0)+c_{2} \sigma_{v}(1) & \underline{N=1} \\
o_{1} \sigma_{v}(1)+c_{2} \sigma_{v}(0)+c_{3} \sigma_{v}(1) ; & \underline{N}=2\end{cases} \\
& \text { ix) } \underline{\varepsilon}=\varepsilon(1,1,1) \in R^{3} \\
& \text { x) } \underline{a}(0): \text { a second-order random vector in } R^{3} \text {, independent of } \\
& \left\{\underline{z}_{k_{0}}\left(n+N_{t}\right) ; n \in \bar{T}\right\} . \\
& \text { xi) } Q(0) \text { : a second-order symmetric positive definite random } \\
& \text { matrix in } \operatorname{BL}\left(R^{3}\right) \text {, independent of }\left\{{\underset{z}{k_{0}}}\left(n+N_{t}\right){\underset{z}{k}}_{*}^{*}\left(n+N_{t}\right)\right. \text {; } \\
& n \in \bar{T}\} \text { 。 }
\end{aligned}
$$

2nd case: An equivalent procedure:

$$
\begin{aligned}
(S A-1): \quad \underline{a}^{\prime}(n+1) & =\frac{1-\lambda(n)}{1-\mu(n)}\left[I-\mu(n) Q(n+1) \underline{z}_{k_{0}}\left(n+N_{t}\right) \underline{z}_{k_{0}}^{*}\left(n+N_{t}\right)\right] \underline{a}^{\prime}(n)+ \\
& +\lambda(n) Q(n+1)\left[z_{k_{0}}\left(z_{n+N_{t}}^{\prime}\right) \underline{z}_{k_{0}}\left(n+N_{t}\right)+\underline{\varepsilon}^{\prime}\right]: \text { in } R^{3}
\end{aligned}
$$

with

$$
\left.v i^{\prime}\right) z_{k_{0}}\left(Z_{1}^{\prime}\right)= \begin{cases}z_{k_{0}}(n+1) & \underline{N}=1 \\ \frac{c_{1}}{c_{3}} z_{k_{0}}(n-1)+z_{k_{0}}(n+1) ; & \underline{N}=2\end{cases}
$$

$$
\left.i x^{\prime}\right) \underline{\varepsilon^{\prime}}= \begin{cases}\frac{1}{c_{2}} \underline{\varepsilon} ; & \underline{N=1} \\ \frac{1}{c_{3}} \underline{\varepsilon} ; & \underline{N=2}\end{cases}
$$

$\left.x^{\prime}\right) a^{\prime}(0)$: a second-order random vector in R^{3}, independent of $\left\{\underline{\underline{z}}_{k}\left(n+N_{t}\right) ; n \in \bar{T}\right\}$.

In both cases the algorithms converge with probability one:

$$
\begin{aligned}
& \underline{a}(n) \frac{w \cdot p \cdot 1}{n \rightarrow \infty} \underline{a}=\left(a_{1}, a_{2}, a_{3}\right) \in R^{3} \\
& \underline{a}^{\prime}(n) \frac{w \cdot p \cdot 1}{n \rightarrow \infty} a^{\prime}=\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right) \in R^{3}
\end{aligned}
$$

Recoverine the oripinal paremeters:

1st case: Using the original procedure:

$$
\underline{a}=R \underline{\alpha}
$$

where:
i) $\underline{a}=\left(a_{1}, a_{2}, a_{3}\right) \in R^{3}$
ii) $\underline{\alpha}=\left(\alpha_{1}, \alpha_{2}\right) \quad \in R^{2}$
iii) $R=\left[r_{i m}\right]=\left[\begin{array}{ll}r_{-11} & r_{-12} \\ r_{01} & r_{02} \\ r_{11} & r_{12}\end{array}\right]=\frac{1}{\delta_{x}^{2}}\left[\begin{array}{rr}0 & 1 \\ -\delta_{x} & -2 \\ \delta_{x} & 1\end{array}\right]: R^{2} \rightarrow R^{3}$

The least-squares estimate is given by

$$
\underline{\underline{\alpha}}(n)=\left(R^{*} R\right)^{-1} R^{*} \underline{a}_{k}(n) \frac{\text { w.p.1 }}{n \rightarrow \infty} \underline{\alpha}
$$

where:

$$
\begin{aligned}
& \text { iv) } \underline{\hat{\alpha}}(n)=\left(\hat{a}_{1}(n), \hat{\alpha}_{2}(n)\right): \quad \text { in } R^{2} \\
& \text { v) } \underline{a}(n)=\left(a_{1}(n), a_{2}(n), a_{3}(n)\right): \quad \text { in } R^{3} \\
& \text { vi) }\left(R^{*} R\right)^{-1} R^{*}=\frac{\delta_{x}}{3}\left[\begin{array}{ccc}
-3 & 0 & 1 \\
2 \delta_{x} & -\delta_{x} & -\delta_{x}
\end{array}\right]: R^{3} \rightarrow R^{2}
\end{aligned}
$$

So we get:

$$
\begin{aligned}
& \hat{\alpha}_{1}(n)=\delta_{x}\left[-a_{1}(n)+a_{3}(n)\right] \\
& \hat{\alpha}_{2}(n)=\frac{\delta_{x}^{2}}{3}\left[2 a_{1}(n)-a_{2}(n)-a_{3}(n)\right]
\end{aligned}
$$

2nd case: Using the equivalent procedure:

$$
\underline{a}^{\prime}=R^{\prime} \underline{\alpha}^{\prime}-\frac{c_{N}+1}{c_{N+1}} \underline{e}_{2}
$$

where:

$$
\text { i) } \begin{aligned}
\underline{a}^{\prime} & =\left(\alpha_{1}, \alpha_{2}^{\prime}, a_{3}^{\prime}\right) \in R^{3} \\
\text { ii) } \underline{\alpha}^{\prime} & =\left(\alpha_{1}, \alpha_{2}^{\prime}\right) \in R^{2} \\
\underline{N}=1 & :\left\{\begin{array}{l}
\alpha_{1}=\frac{1}{c_{2}} \frac{\alpha_{1}}{\delta_{x}}=\frac{1}{\gamma_{1}} \frac{\delta_{t}}{\delta_{x}} \alpha_{1} \\
\alpha_{2}=\frac{1}{c_{2}} \frac{\alpha_{2}}{\delta_{x}^{2}}=\frac{1}{\gamma_{1}} \frac{\delta_{t}}{\delta_{x}^{2}} \alpha_{2}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \underline{N=2:}:\left\{\begin{array}{l}
\alpha_{i}=\frac{1}{c_{3}} \frac{\alpha_{1}}{\delta_{x}}=\frac{1}{\gamma_{1} \delta_{t}+\gamma_{2}} \frac{\delta_{t}^{2}}{\delta_{x}} \alpha_{1} \\
\alpha_{i}=\frac{1}{c_{3}} \frac{\alpha_{2}}{\delta_{x}^{2}}=\frac{1}{\gamma_{1} \delta_{t}+\gamma_{2}} \frac{\delta_{t}^{2}}{\delta_{x}^{2}} \alpha_{2}
\end{array}\right. \\
& \text { iii) } R^{\prime}=\left[r_{i m}^{\prime}\right]=\left[r_{i m} \delta_{x}^{m}\right]=\left[\begin{array}{rr}
0 & 1 \\
-1 & -2 \\
1 & 1
\end{array}\right]: R^{2} \rightarrow R^{3} \\
& \text { iv) } \underline{e}_{2}=(0,1,0) \in R^{3} \\
& \text { v) } \frac{\rho_{N+1}}{c_{N+1}= \begin{cases}\frac{c_{1}}{c_{2}}=\delta_{t} \frac{\gamma_{0}}{\gamma_{2}}-1 \\
\frac{c_{2}}{c_{3}}=\delta_{t} \frac{\gamma_{0} \delta_{t}+\gamma_{1}}{\gamma_{1} \delta_{t}+\gamma_{2}}-2 ; & N=2\end{cases} } .
\end{aligned}
$$

The least-squares estimate is given by

$$
\hat{\underline{\alpha}}^{\prime}(n)=\left(R^{\prime}{ }^{*} R^{\prime}\right)^{-1} R^{\prime}{ }^{*}\left[\underline{a}^{\prime}(n)+\frac{c_{N}+1}{c_{N+1}} \underline{e}_{2}\right] \frac{w \cdot p \cdot 1}{n \rightarrow \infty} \underline{\alpha}^{\prime}
$$

where:

$$
\begin{aligned}
& \text { vi) } \underline{\hat{\alpha}}^{\prime}(n)=\left(\hat{\alpha}_{i}^{\prime}(n), \hat{\alpha}_{2}^{\prime}(n)\right): \text { in } R^{2} \\
& \text { vii) } \underline{a}^{\prime}(n)=\left(a_{i}^{\prime}(n), a_{\dot{\prime}}^{\prime}(n), a_{j}^{\prime}(n)\right): \text { in } R^{3} \\
& \text { viii) }\left(R^{\prime *} R^{\prime}\right)^{-1} R^{\prime}{ }^{*}=\frac{1}{3}\left[\begin{array}{rrr}
3 & 0 & 3 \\
2 & -1 & -1
\end{array}\right]: R^{3} \longrightarrow R^{2}
\end{aligned}
$$

So we get:

$$
\underline{N=1}:\left\{\begin{array}{l}
\hat{\alpha}_{i}(n)=-a_{i}^{\prime}(n)+a_{3}^{\prime}(n) \\
\hat{\alpha}_{2}^{\prime}(n)=\frac{1}{3}\left[2 a_{i}^{\prime}(n)-a_{2}^{\prime}(n)-a_{3}^{\prime}(n)+1-\delta_{t} \frac{\gamma_{0}}{\gamma_{1}}\right]
\end{array}\right.
$$

$\underline{N=2}:\left\{\begin{array}{l}\hat{\alpha}_{j}^{\prime}(n)=-a_{j}(n)+a_{3}^{\prime}(n) \\ \hat{\alpha}_{2}^{\prime}(n)=\frac{1}{3}\left[2 a_{j}^{\prime}(n)-a_{2}^{\prime}(n)-a_{3}^{\prime}(n)+2-\delta_{t} \frac{\gamma_{0} \delta_{t}+\gamma_{1}}{\delta_{2} \delta_{i}+\gamma_{2}}\right]\end{array}\right.$

Remark: If $\alpha_{1}=0$ is known "a priori", we get the least-squares estimate for α_{2} as follows:

1st case:

$$
\begin{aligned}
& \underline{a}=R \alpha_{2} \\
& R=\frac{1}{\delta_{x}^{2}}\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right]: R^{1} \rightarrow R^{3}
\end{aligned}
$$

So:

$$
\hat{a}_{2}(n)=\frac{\delta_{x}^{2}}{6}\left[a_{1}(n)-2 a_{2}(n)+a_{3}(n)\right]
$$

2nd case:

$$
\begin{aligned}
& \underline{a}^{\prime}=R^{\prime} \alpha_{2}^{\prime}-\frac{\hat{o}_{N+1}}{c_{N+1}} \underline{e}_{2} \\
& R^{\prime}=\left[\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right]: R^{1} \rightarrow R^{3}
\end{aligned}
$$

So:
$N=1:$

$$
\hat{\alpha}_{i}(n)=\frac{1}{6}\left[a_{i}(n)-2 a_{\dot{2}}^{\prime}(n)+a_{j}^{\prime}(n)+2-2 \delta_{t} \frac{\gamma_{0}}{\gamma_{1}}\right]
$$

$\mathrm{N}=2:$

$$
\hat{\alpha}_{2}^{\prime}(n)=\frac{1}{6}\left[a_{i}^{\prime}(n)-2 a_{2}^{\prime}(n)+a_{3}^{\prime}(n)+4-2 \delta_{t} \frac{\gamma_{0} \delta_{t}+\gamma_{1}}{\gamma_{1} \delta_{t}+\gamma_{2}}\right]
$$

A block diarram: Ficure 8 shows a block diagram for system simulation and identification. The DPS simulation is carried out by using the equivalent discrete-time LPS. The parameter vector a is identified on-line, through noisy observations $z\left(n+N_{t}\right)$, via stochastic approximation algorithms given in (SA-1) and (SA-2). The original parameters $\underline{\alpha}^{=}=\left(\alpha_{1}, \alpha_{2}\right)$ are recovered from $\underline{a}(n)$ by means of a simplo least-squares.

Fig. 8: SYSTEM SIIULATION AND IDENTIPICATION.

5.2 - GENERAL ASSUMPTIONS FOR EXAMPLES

Examples illustrating this DPS identification method will be presented in sections 5.3 through 5.5. The following assumptions were made when performing those examples.

Simulation: The orifinal DPS was simulated by using the equivalent discrete-time LPS, where the spatial domain

$$
x=(0, \pi)
$$

(i.e., $\ell=\Pi$) was discretized with

$$
\delta_{x}=\pi / 6
$$

So,

$$
K=5 \rightarrow \stackrel{\circ}{S}=\{2,3,4\} \subset S=\{1,2,3,4,5\}
$$

The $M+1=3$ observation points in X (i.e., $x_{k_{0}-1}, x_{k_{0}}$ and $x_{k_{0}+1}$ where k_{0} is any fixed point in S), the constants h and d, the time sampling rate δ_{t}, the space-varying input parameter $\beta(x)$, and the initial functions $g_{0}(x)$ and $g_{1}(x)$ were chosen as follows:
i) $k_{0}=3 \rightarrow\left\{\begin{array}{l}x_{k_{0}-1}=\left(k_{0}-1\right) \delta_{x}=\pi / 3 \\ x_{k_{0}}=k_{0} \delta_{x}=\Pi / 2 \\ x_{k_{0}+1}=\left(k_{0}+1\right) \delta_{x}=2 \pi / 3\end{array}\right.$
ii) $h=d=1$
iii) $\delta_{t}= \begin{cases}1 / 2 ; & \text { if } N=1 \\ \sqrt{1 / 2}, & \text { if } N=2\end{cases}$

5.2 - GENERAL ASSUMPTIONS FOR EXAMPLES

Examples illustrating this DPS identification method will be presented in sections 5.3 through 5.5. The following assumptions were made when performing those examples.

Simulation: The oriEinal DPS was simulated by using the equivalent discrete-time LPS, where the spatial domain

$$
x=(0, \Pi)
$$

(i.e., $\ell=\Pi$) was discretized with

$$
\delta_{x}=\pi / 6
$$

So,

$$
X=5 \rightarrow \stackrel{0}{S}=\{2,3,4\} \subset S=\{1,2,3,4,5\}
$$

The $M+1=3$ observation points in X (i.e., $x_{k_{0}-1}, x_{k_{0}}$ and $x_{k_{0}+1}$ where k_{0} is any fixed point in S°), the constants h and d, the time sampling rate δ_{t}, the space-varying input parameter $\beta(x)$, and the initial functions $g_{0}(x)$ and $g_{1}(x)$ were chosen as follows:
i) $k_{0}=3 \rightarrow\left\{\begin{array}{l}x_{k_{0}-1}=\left(k_{0}-1\right) \delta_{x}=\Pi / 3 \\ x_{k_{0}}=k_{0} \delta_{x}=\Pi / 2 \\ x_{k_{0}+1}=\left(k_{0}+1\right) \delta_{x}=2 \pi / 3\end{array}\right.$
ii) $h=d=1$
iii) $\delta_{t}= \begin{cases}1 / 2 ; & \text { if } N=1 \\ \sqrt{1 / 2} ; & \text { if } N=2\end{cases}$
iv) $\beta(x)=2 \sin (x) ; \quad x \in(0, \pi)$
v) $g_{0}(x)=E_{1}(x)=0 ; \quad x \in[0, \Pi]$

Input disturbence: $\left\{w_{k}(n) ; n \in T\right\}$ was chosen to be uniformly distributed in $\left(-\sqrt{3} \sigma_{w}, \sqrt{3} \sigma_{w}\right)$ and uncorrelated for all $k \in S$, such that:

$$
\begin{aligned}
& \sigma_{W}^{2}=E\left\{w_{k}^{2}(n)\right\} ; \quad \text { for all } k \in S \\
& C_{W}=\sigma_{W}^{2} I \quad \in \operatorname{BL}\left(R^{5}\right)
\end{aligned}
$$

with $\sigma_{w}=1 / 2$ (the example in section 5.3 also consider the case with $\sigma_{w}=1$).
Observation noise: $\{\nabla(n) ; n \in T\}$ was chosen to be uniformly distributed in $\left(-\sqrt{3} \sigma_{v}, \sqrt{3} \sigma_{v}\right)$ such that:

$$
\begin{aligned}
& E\{v(n)\}=\eta_{v}=0 \\
& E\{v(i) v(j)\}-\eta_{v}^{2}=\sigma_{v}(i-j)=\sigma_{v}^{2} \delta(i-j)
\end{aligned}
$$

with $\sigma_{v}=1 / 4$.

Stochastic approximation alporithms (SA-1) and (SA-2): The

identificetion was carried out by using the equivalent procedure; that is, the algorithm in ($5 \Lambda-1$) was

$$
\underline{a}^{\prime}(n)=\left(a_{1}^{\prime}(n), a_{2}^{\prime}(n), a_{3}^{\prime}(n)\right) \frac{w \cdot p \cdot 1}{n \rightarrow \infty} \underline{a}^{\prime}-\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right) \in R^{3}
$$

The following situation was assumed:

$$
\begin{aligned}
& \text { i) } N_{t}=100 \\
& \text { ii) } \lambda(n)=\frac{1}{n+2} \\
& \text { iii) } \mu(n)=\frac{1}{n+3 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { iv) } \underline{a}^{\prime}(0)=\left\{\begin{array}{l}
(1 / 2,0,1 / 2) \in R^{3} ; \quad \text { when } N=1 \\
(1,0,1) \in R^{3} ; \text { when } N=2
\end{array}\right. \\
& \text { v) } Q(0)=I \in \operatorname{BL}\left(R^{3}\right)
\end{aligned}
$$

5.3 - PARABOLIC PDE WITH ONS PARAMETER:

Our first example considers the identification of a eingle parameter α_{2} appearing in the "heat equation":

$$
\frac{\partial}{\partial t} u(x, t)=\alpha_{2} \frac{\partial^{2}}{\partial x^{2}} u(x, t)+2 \sin (x) w_{x}(t)
$$

(i.e: $N=1, \gamma_{0}=0, \gamma_{1}=1$ and $\alpha_{1}=0$ known "a priori"). The simulation was carried out by using

$$
\alpha_{2}=\frac{1}{2}\left(\frac{\pi}{6}\right)^{2} \quad \rightarrow \quad \alpha_{2}^{\prime}=\frac{1}{4}
$$

and so, the constant vector to be identified by (SA-1) is

$$
\underline{A}^{\prime}=\left(a_{1}, a_{2}^{\prime}, a_{j}^{\prime}\right)=\left(\alpha_{2}, 1-2 \alpha_{2}, \alpha_{2}^{\prime}\right) .
$$

Figures 9 and 10 show the performance of the identification procedure, where

$$
\begin{aligned}
& \hat{\alpha}_{2}^{\prime}(n)=\frac{1}{6}\left[a_{i}(n)+2\left(1-a_{2}^{\prime}(n)\right)+a_{j}^{\prime}(n)\right] \\
& \tilde{a}^{\prime}(n)=\left\|\underline{a}^{\prime}(n)-\underline{a}^{\prime}\right\|^{2}
\end{aligned}
$$

Two ceses were considered:
i) $6_{w}=1 / 2$
ii) $\sigma_{W}=1$

Fig. 9: Estimate Performance for α_{2}.

Fig. 10: Error Performance.

5.4 - PARABOLIC PDE UITH TVO PARAMTTRS:

Now we consider the identification of α_{1} and α_{2} appearing in a parabolic equation, as follows:

$$
\frac{\partial}{\partial t} u(x, t)=\alpha_{1} \frac{\partial}{\partial x} u(x, t)+\alpha_{2} \frac{\partial^{2}}{\partial x^{2}} u(x, t)+2 \sin (x) w_{x}(t)
$$

(i.e.: $N=1, \gamma_{0}=0, \gamma_{1}=1$). For simulating the DPS we assumed

$$
\alpha_{2}=\frac{1}{2}\left(\frac{\pi}{6}\right)^{2} \quad \rightarrow \quad \alpha_{2}^{\prime}=\frac{1}{4}
$$

and two cases were considered (the first one representing a model with extraneous terms):
i) $\alpha_{1}=0$

$$
\longrightarrow \quad \alpha_{i}=0
$$

ii) $\alpha_{1}=-\frac{\pi}{30} \quad \rightarrow \quad \alpha_{i}=-\frac{1}{10}$

In this way, the constant vector to be identified by (SA-1) is:

$$
\underline{a}^{\prime}=\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right)=\left(\alpha_{i}, 1-\left(\alpha_{1}+2 \alpha_{2}^{\prime}\right), \alpha_{1}+\alpha_{2}\right) .
$$

The performance of the identification procedure is shown on figures 11 13, where

$$
\begin{aligned}
& \hat{\alpha}_{1}(n)=-a_{1}^{\prime}(n)+a_{3}^{\prime}(n) \\
& \hat{\alpha}_{2}^{\prime}(n)=\frac{1}{3}\left[2 a_{1}^{\prime}(n)-a_{2}^{\prime}(n)-a_{3}^{\prime}(n)+1\right] \\
& \tilde{a}^{\prime}(n)=\left\|\underline{a}^{\prime}(n)-\underline{a}^{\prime}\right\|^{2}
\end{aligned}
$$

Fig. 13: Error Performance.

5.5 - HYPERBOLIC PDE WITH TWO PARAMBTZRS:

Finally we present an example illustrating the identification of α_{1} and α_{2} appearing in a hyperbolic equation:

$$
\frac{\partial^{2}}{\partial t^{2}} u(x, t)=\alpha_{1} \frac{\partial}{\partial x} u(x, t)+\alpha_{2} \frac{\partial^{2}}{\partial x^{2}} u(x, t)+2 \sin (x) w_{x}(t)
$$

(i.e.: $N=2, \gamma_{0}=\gamma_{1}=0, \gamma_{2}=1$). The simulation was carried out by assuming

$$
\alpha_{2}=\left(\frac{\pi}{6}\right)^{2} \quad \rightarrow \quad \alpha_{2}=\frac{1}{2}
$$

and two cases considered:
i) $\alpha_{1}=\frac{\pi}{30} \quad \longrightarrow \quad \alpha_{i}=\frac{1}{10}$
ii) $\alpha_{2}=-\frac{\pi}{30} \quad \longrightarrow \quad \alpha_{i}=-\frac{1}{10}$

So, the constant vector to be identified by (SA-1) is

$$
\underline{g}^{\prime}=\left(a_{i}, a_{2}, a_{j}\right)=\left(\alpha_{2}, 2-\left(\alpha_{i}+2 \alpha_{2}\right), \alpha_{1}+\alpha_{2}\right) .
$$

Ficures 14-16 shown the performance of the identification procedure, where

$$
\begin{aligned}
& \hat{\alpha}_{i}^{\prime}(n)=-a_{i}^{\prime}(n)+a_{3}^{\prime}(n) \\
& \hat{\alpha}_{2}^{\prime}(n)=\frac{1}{3}\left[2 a_{i}^{\prime}(n)-a_{2}^{\prime}(n)-a_{3}^{\prime}(n)+2\right] \\
& \tilde{a}^{\prime}(n)=\left\|\underline{a}^{\prime}(n)-\underline{a}\right\|^{2}
\end{aligned}
$$

Fig. 15: Estimate Performance for α_{2}^{\prime}.

Fig. 16: Error Performance.

5.6 - CONCLUSIONS

At the end of chapter 2 we have surveyed and commented on the gencral DPS identification problem. In this final section we discuss the particular identification method introduced in this work.

The stochastic approximation theory was used to identify parameters in distributed systems operatine in a stochastic environment. Some basic points which characterize the method are listed below.

1) CLASS OF KODRLS: The models we have considered here are described by PDE and have the following properties:

1-a) Linear, of order N in t and M in the scalar spatial variable x, with space-varying parameters.

1-b) Extensions to multi-dimensional spatial domain ($x \in X \subset R^{p}$) were also considered in section 4.7 .

1-c) Although we have not considered cross-terms partial derivatives In our model, they can be treated using the same technique. But, In this case, the choice of which kind of approximation (backward, centered, or forward operators) mast be decided for each model containing a particular type of cross-terms partial derivatives.

1-d) The space-varying parameters to be identified are those multiplying spatial derivatives (parameters appearing in L_{x}^{M}, the spatial-differential operator), that is: $\left\{\alpha_{m}(x) ; m=1, \ldots, M\right\}$. Parameters appearing in $L_{t}^{N}\left(i . e .,\left\{\gamma_{m}(x) ; m=0, \ldots, N\right\}\right.$) are assumed to be known "a priori".

1-e) In case of constant parameters to be identified, the identification procedure can be simplified as commented on paee 114.
2) METHOD CLASSIFICATION: The method is classified as class Γ_{2} (sce section 2.2), and so it presents two stages: model approximation (stage I) and parametric estimation (stage II).
3) REDUCTION TO A FINITE-DIMSNSIONAL STATE SPACE: In the first staEe the method comprises two basic steps:

3-a) An equivalent discrete-time LPS obtained by using higher order finite-differences (section 4.2).

3-b) A fundamental observation equation given in (P - 4.1), which was possible thanks to the results obtained by finite-difference techniques (see remark 3 on page 115).
4) EXPLICIT PARAMETER: The parameters appearing in the discrete version (chapter 4, equation (5)) were placed in an explicit form (5 - 4.1). In this way it was possible to use stochastic approximation algorithms as a straightforward identification procedure, rather than a simple searching scheme for finding estimates previously obtained by means of any other optimization technique.
5) INPUT DISTURBANCE: The input $\{\underline{w}(n)\}$ was taken to be a zero mean "white" random sequence with positive definite covariance matrix C_{w}, as in ($A-4.2$). It is also possible to consider positive semidefinite covariance matrix (or even zero input), if the initial state is assumed to be random, as commented on page 103. It is worth to remember here that, in order to use our identification procedure (based on a straightforward applicability of stochastic approximation via explicit parameter lemma (L - 4.1)), we cannot have deterministic inputs and deterministic initial state together. But in this case the reduction to an equavalent discrete-time LPS (stage I), as developed in section 4.2 , can still be used for identification
purposes by applying in stage II some other known technique (e.E., see surveys in LPS identification mentioned in chapter 1) for parametric estimation in LPS driven by deterministic inputs.
6) OBSERVATIONS: He have assumed that noisy obsorvations are available at a finite number of discrete points equidistantly located in the spatial domain. In case of constant parameters just $M+1$ of those points are required, as remarked on page 114. Also, in some special cases, the measurements can be taken at pre-selected (not necessarily equidistant) observation points, as commented in [1].
7) OBSERVATION NOISE: The noise $\{v(n)\}$ corrupting the observations is assumed to be uncorrelated with the input disturbance as in ($A-4.2$), and its statistics $\left\{\eta_{v}, \sigma_{v}(0), \ldots, \sigma_{v}(\overline{\mathrm{I}})\right\}$ are supposed to be known.
8) BOUNDARY CONDITIONS: Altough the method has been developed using homogeneous $B C$, nonhomogeneous $B C$ may also be considered (sce remark on page 93), as well as random boundary conditions.
9) INITIAL CONDITIONS: Both, deterministic and random initial state, can be considered as commented before (see pages 83 and 103).
10) STOCHASTIC APPROXITATION ALGORITHMS FOR IDENIFICICATION: The elgorithms in (SA-1) and (SA-2) have the following properties: 10-a) No restriction on specific types of probability distributions is imposed.
10-b) Independence of the knowledge of: 1) The input disturbance covariance C_{w}, 2) the input space-varying parameter $\beta(x)$, and 3) the output gain h.

10-c) Suitability for on-line identification..
10-d) Under no noise condition (i.e., $d=0$) the algorithm (SA-1) becomes independent of the knowledge of the parameters
$\left\{\gamma_{m}(x) ; m=0, \ldots, M\right\}$ and a linear combination of them can also be identified, as remarked on pages 115 and 121.
11) CONVERGETGE SPEED: The examples confirmed that the identification procedure has a good convergence speed, which can be accelerated still further by changing the sequences $\lambda(n)$ and $\mu(n)$ (i.e., by choosing optimal sequences).
12) SIMLARITISS WITH OTHER NETHODS: Although this seems to be the first attempt to identify distributed systems in astochastic environment (random inputs and noisy observations) without imposing restrictions on probability distributions, some common points with previous works can be pointed out (for details see section 2.3):

12-a) A slighily similar deterministic version of the parameter explicit technique, that uses the DPS (with constant parameters) reduced to a set of algebraic equations, was applied by Collins and Khatri [2].

12-b) Stochastic approximation algorithms, as a searching scheme for finding estimates previously obtained by minimizing a performance criterion, were used by Zhivoglyadov and Kaipov [3]-[6] and Carpenter, Wozny and Goodson [7]. They considered noisy observations, but not random inputs.

12-0) In [8], [9] Tzafestas considered random inputs but assumed perfect observation of the state.

12-d) Balakrishnan [10] presented a rigorous theoretical formulation for a particular DPS identification problem in a Gaussian stochastic environment.

Sugcestions for further rescarch: Some areas in the DFS identification field where furthor work seems needed have already been commented on section 2.4. Here we extend those remarks, regarding mainly the method developed in chapter 4, by suggesting the following topics for further research:

1) Other techniques for reduction to a finite-dimensional state space (stage I), such as finite element methods or even more elaborated finite-differences, could be investigated towards the applicability of our stochastic approximation approach in stage II.
2) As commented before, the identification procedure can be accelerated by changing the sequences $\lambda(n)$ and $\mu(n)$ appearing in (SA-1) and (SA-2). In this way, optimization studies could be done in order to determine a pair of sequences $\left(\lambda^{*}(n), \mu^{*}(n)\right)$, among those satisfying the conditions required in (T - 4.1), which maximizes the algorithm convercence speed.
3) More research is also needed regarding optimal placement of a fixed number of observation points.
4) In proposition (P - 4.1) we presented a basic observation equation. A similar relation, also involving the state, could be formulated as follows:

$$
z_{k}\left(\zeta_{n}\right)=h\left\langle\underline{a}_{k} ; u_{k}(n)\right\rangle+v_{k}\left(\zeta_{n}\right)
$$

where

$$
{\underset{u}{k}}(n)=\left(u_{k-\tilde{M}}(n), \ldots, u_{k+\bar{M}}(n)\right): \text { a random vector in } R^{M+1} \text {. }
$$

In this way we get similar algorithms as in (SA-1) and (SA-2), with $\underline{Z}_{K}\left(n+N_{t}\right)$ replaced by $\underline{-}_{k}\left(n+N_{t}\right)$ and $\underline{\varepsilon}_{k}=\underline{0}$. This approach presents three

Sugeestions for further research: Some areas in the DPS identification field where further work seems needed have already been commented on section 2.4. Here we extend those remarks, regarding mainly the method developed in chapter 4, by suggesting the following topics for further research:

1) Other techniques for reduction to a finite-dimensional state space (stage I), such as finite alement methods or even more elaborated finite-differences, could be investigated towards the applicability of our stochastic approximation approach in stage II.
2) As commented before, the identification procedure can be accelerated by changing the sequences $\lambda(n)$ and $\mu(n)$ af.earing in (SA-1) and (SA-2). In this way, optimization studies could be done in order to determine a pair of sequences $\left(\lambda^{*}(n), \mu^{*}(n)\right)$, among those satisfying the conditions required in (T - 4.1), which maximizes the algorithm convergence speed.
3) More research is also needed regarding optimal placement of a fixed number of observation points.
4) In proposition (P - 4.1) we presented a basic observation equation. A similar relation, also involving the state, could be formulated as follows:

$$
z_{k}\left(\sigma_{n}\right)=h\left\langle\underline{a}_{k} ; \underline{u}_{k}(n)\right\rangle+\nu_{k}\left(\tau_{n}\right)
$$

where

$$
u_{k}(n)=\left(u_{k-\tilde{M}}(n), \ldots, u_{k+\bar{M}}(n)\right): \text { a random vect or in } R^{M+1} \text {. }
$$

In this way we get similar algorithms as in (SA-1) and (SA-2), with $\underline{z}_{k}\left(n+N_{t}\right)$ replaced by $\underline{u}_{k}\left(n+N_{t}\right)$ and $\underline{\varepsilon}_{k}=\underline{0}$. This approach presents three

basic advantages:

1. The "e priori" knowledge of both noise statistics and the paramamoters $\left\{\gamma_{m}(x) ; m=0, \ldots, N\right\}$ would no longer be necessary.
2. Space-varying observation noise (i.e, $v_{k}(n)$) could be considered.
3. The "indispensable" (in the former approach) information supplied by finite-difference techniques (i.e. $\sum_{m=1}^{M+1} a_{k}^{m}$ constant. See equation (11) in chapter 4 and also remark 3 on page 115) would not be required in this case, and so a wider class of approxi mation techniques could be applied in stage I.

On the other hand, the accessibility of the state $\underline{u}_{k}(n)$ must be assumed, which represents the main disadvantage. In order to by-pass the state accessibility requirement, the identification could be done by using in the new version of (SA-1) and (SA-2) estimates $\hat{\underline{u}}_{k}(n)$, instead of $\underline{u}_{\mathfrak{K}}(n)$, obtained by means of the Kalman-Bucy Filter. This approach has been previously considered for LPS identification in [1l].
5) It would be useful to have some comparison of effectiveness of the different approaches for the DPS identification problem. In performing such comparisons, one must keep in mind that: The literature in this field considers a wide range of particular models operating in quite diverse conditions. So a critical evaluation involving a large number of methods could become a difficult task.

CHAPIER 1

[1] ZADEH L. A. - "rrom Circuit Theory to System Theory", Proc. IRE, Vol. 50, pp. 856-865, Hay 1962.
[2] BELLMAN R. and ASTRÖM K. J. - "On Structural Identifiability", Math. Biosci., Vol. 1, pp. 329-339, 1969.
[3] aTHANS N. and FALB P. L. - "Optimal Control", McGraw-Hill, 1966.
[4] KALMAN R. E., FALB P. L. and ARBIB N. A. - "Topics in Mathomatical System Theory", McGraw-Hill, 1969.
[5] HIRSCH M. W. and SMALE S. - "Differential Equations, Dynamical Systems, and Linear Algebra", Academic Press, 1974.
[6] MESAROVIC M. D. and TAKAHAR Y. - "General System Theory: Kathematical Foundations", Acadomio Press, 1975.
[7] GRONADER U. and ROSEBBLATT M. - "Statistioal Analysis of Stationary Time Series", Wiley, 1957.
[8] WHITTLE P. - "Prediotion and Regulation", Van Nostrand, 1963.
[9] JENKINS G. and WATMS D.- "Spectral Analysis and Its Applications", Holden-Day, 1968.
[10] WANG P. K. C. - "Control of Distributed Parameter Systems", in Advances in Control Systems, Vol. 1, (Ed. by C. T. Leondes), Acadomic Press, 1964.
[11] SCHIARZ R. J. and FIEDLAND B. - "Linear Systems", McGraw-Hill, 1965.
[12] COOPFR G. R. and MC GILLEN C. D. - "Methods of Signals and System Analysis", Holt, R. \& W., 1967.
[13] LEON B. J. - "Lumped Systems", Holt, R. \& W., 1968.
[14] BUTKOVSKIY A. G. - "Distributed Control Systems", Elsevier, 1969.
[15] MC GILLIWN C. D. and COOPRR G. R. - "Continuous and Discrete Signal and Systems Analysis", Holt, R. \& W., 1974.
[16] CHEN C.T. - "Analysis and Systhesis of Linear Control Systems", Holt, R. \& V., 1975.
[17] ROBINSON A. C. - "A. Survey of Optimal Control of Distributed Parametcr Systems", Automatica, Vol. 7, pp. 371-382, May 1971.
[18] DMRUSSO P. M., ROY B. J. and CLOSE C. Y. - "State Variables for Encineers", Wiley, 1965.
[19] OGATA K. - "State Space Analysis of Control Systems", PrenticeHall, 1967.
[20] BROCKPYT R. W. - "Finite Dimensional Linear Systems", Wiley, 1970.
[21] CHEM C. T. - "Introduction to Linear System Theory", Holt, R. \& W., 1970.
[22] KINK D. E. - "Optimal Control Theory: An Introduction", PrenticeHall, 1970.
[23] ROSWBROCK H. H. - "State Space and Nultivariable Theory", Nelson, 1970.
[24] WIBERC D. W. - "State Space and Linear Systems", HoGraw-Hill, 1970.
[25] DIRTCTOR S. I. and ROHRER R. A. - "Introduction to System Theory", McGraw-Hill, 1972.
[26] VOLOVICH N. A. - "Linear Multivariate Systems", Sprincer-Verlac, 1974.
[27] ZADFI L. A. and DESOFR C. A. - "Lineax System Theory: The State Space Approach", McGraw-Hill, 1963.
[28] $Z \cap D H$ L. A. - "The Concept of State in Syotem Theory", in Views on General System Theory, (Ed. by M. Mesarovic), ililey, 1964.
[29] BALAKRISMTAN A. V. - "Foundations of the State Space Theory of Continuous System", J. of Comp. \& Syst. Sci., Vol. 1, No. 1, pp. 91-116, har. 1967.
[30] BAL!KRISILIAII A. V. - "State Space Theory of Linear Time-Varying Syotems", in System Theory, (Ed. by L. A. Zadeh and E. Polak), MoGraw-Hill, 1969.
[31] ZADMI L. A. - "The Concept of System, AEEregate, and State in System Theory", in System Theory, (3d. by L. A. Zadeh and E. Polak), RcCraw-Hill, 1969.
[32] KALNAN R. 2. - "A New Approach to Linear Filtering and Prediction Problems", Tranc. ASITE, J. of Besic Ene., Vol. $82-\mathrm{D}$, No. 1, pp. 35-45, lar. 1960.
[33] KALYN R. D. and BUCY R. S. - "IYew Resulto in Linear Filterinc and Preaiction Theory", Trans. As: No. 1, pp. 95-108, Har. 1961.
[34] TOU J. T. - "Optimum Design of Digital Control Systems", Academic Press, 1963.
[35] LEE R. C. K. - "Optimal Estimation, Identification and Control", MIT Press, 1964.
[36] DEUTSCI R. - "Estimation Theory", Prentice-Hall, 1965.
[37] SORENSON H. W. - "Kalman Filtering Tochniques", in Advances in Control Systems, Vol. 3, (Ed. by C. T. Leondes), Academic Press, 1966.
[38] AOKI K. - "Optimization of Stochastio Systems", Academic Press, 1967.
[39] LIEBELT P. B. - "An Introduction to Optimal Estimation", AddisonWesley, 1967.
[40] BUCY R. S. and JOSEPH P. D. - "Filtcring for Stochastic Process with Application to Guidance", Interscience, 1968.
[41] LUENBEMGER D. G. - "Optimization by Vector Space Methods", Wiley, 1968.
[42] SAGE A. P. - "Optimum Systems Control", Prentioe-Hall, 1968.
[43] VAN TREES H. L. - "Detection, Estimation and Modulation Theory: Part I", Wiley, 1968.
[44] BRYSCN A. E., Jr. and HO H. C. - "Applied Optimal Control", Ginn, 1969.
[45] DEUTSCH R. - "Systems Analysis Techniques", Prentice-Hall, 1969.
[46] MC CAUSLAND I. - "Introduction to Optimal Control", Wiley, 1969.
[47] HEDITCH J. S. - "Stochastic Optimal Linear Estimation and Control", HicGraw-Hill, 1969.
[48] MORRISON N. - "Introduction to Sequential Smoothing and Prediction", McGraw-Hill, 1969.
[49] NAHI N. E. - "Estimation Theory and Applioations", Wiley, 1969.
[50] ÅSTRÖM K. J. - "Introduction to Stochastic Control Theory", Academic Press, 1970.
[51] JAZWINSKI A. H. - "Stochastic Processes and Filtering Theory", Academic Press, 1970.
[52] KUO B. C. - "Disoreto-Data Control Systems", Prentice-Hall, 1970.
[53] SPEED C. B., BRONN R. F. and GCODNIN G. C. - "Control Theory: Identification and Optimal Control", Oliver \& Boyd, 1970.
[54] TAKAHASHI Y., RABINS M. J. and AUSLANDER D. K. - "Control and Dynamic Systems", Addison-Werley, 1970.
[55] ANDERSOH B. D. O. and MOORE J. B. -- "Linear Optimal Control", Prentice-Hall, 1971.
[56] KUSHNFR H. - "Introduction to Stochastic Control", Enlt, R. \& W., 1971.
[57] LEWIS T. D. and ODELL P. L. - "Estimation in Linear Models", Prentice-Hall, 1971.
[58] SAGE A. P. and !RLSA J. L. - "Estimation Theory with Application to Communication and Control", McGraw-Hill, 1971.
[59] WONG E. - "Stochastio Processes in Information and Dynamical Systems", NcGraw-Hill, 1971.
[60] DESAI R. C. and LALIIAMI C. S. - "Identification Techniques", Tata MoGraw-Hill, 1972.
[61] K:AAKFRNAAK H. and SIVAN R. - "Linear Optimal Control Systems", Wiley-Interscience, 1972.
[62] BALAKRISHIAN A. V. - "Stochastic Differential Systems I Filterine and Control: A Function Space Approach", Lectures Notes in Economics and Mathematical Systems, Vol. 84, SpringerVerlag, 1973.
[63] MELSA J. L. and SAGE A. P. - "An Introduction to Probability and Stochastic Processes", Prentice-Hall, 1973.
[64] MENDSL J. M. - "Discrete Techniques of Parameter Estimation", Dokker, 1973.
[65] ARNOLD L. - "Stochastic Differential Equations: Theory and Application", Hiley, 1974.
[66] ETKHOFF P. - "System Identifications Parameter and State Eatimation", Wiley, 1974.
[67] JACOBS O. L. R. - "Introduction to Control Theory", Claredon Press-Oxford, 1974.
[68] MC GARTY T. P. - "Stochastio Systems \& State Estimation", Viley, 1974.
[69] KAILATH T. - "A View of Three Decades of Linear Filtering Theory", IEET Trans., Inf. Theory, Vol. Ill-20, No. 2, pp. 146-181, Mar. 1974.
[70] BENSOUSSAN A. - "Sur L'Identification et le Filtrage de Systèmes Gouvernés par des Equations aux Dérivées Partielles", IRIA, Chaier No. 1, Fév. 1969.
[71] BETSOUSSAN A. - "Identification de Systèmes Gouvernés par des Equations avx Dérivées Partielles", in Computing Hethods in Optimization Problems, Vol. 2, (ma. by L. A. Zadeh, L. W. Neustadt and A. V. Balakrishnan), Academic Press, 1969.
[72] BENSOUSSAN A. - "Filtrage Optimal des Systèmos Lineaires", Dunod, 1971.
[73] PIILLLIPSON G. A. - "Identification of Distributed Parameter Systoms", Blsevier, 1971.
[74] CURTAIN R. F. - "A Survey of Infinite Dimensional Filtering", SIAM Review, Vol. 17, No. 3, pp. 395-411, Jul. 1975.
[75] HEDITCH J. S. - "On State Estimation for Distributed Parameter Systems", J. Franklin Inst., Vol. 290, pp. 49-59, Jul. 1970.
[76] MEDITCH J. S. - "Least Squares Filtering and Smootring for Linear Distributed Parameter Systems", Automatica, Vol. 7, pp. 315322, May 1971.
[77] BALAKRISHIAN A. V. - "Stochastic System Identification Techniques", in Stochastic Optimization and Control, (Jd. by H. F. Karreman), Wiley, 1968.
[78] BOX G. E. P. and JEmKINS G. M. - "Time-Series Analysisz Forecasting and Control", Holden-Day, 1970.
[79] SAGE A. P. and LEISA J. L. - "System Identification", Aoademic Press, 1971.
[80] GRAUPE P. - "Identification of Systems", Van Nostrand,1972.
[81] EYKHOFF P. - "Some Fundamental Aspects of Process Parameter Estimation", IESE Trans., Autom. Control, Vol. AC-8, pp. 347-357, Oct. 1963.
[82] ETKHOFF P., VAN DRR GRINTHN M. E. M., KWAKERINAAK H. and VELTEMAN B. P. - "Systom Modeling and Identification", Survey Paper, Proc. 3rd IFAC Coneress, London, Jun. 1966.
[83] EYKHOMF P. - "Process Parameter and State Estimation", Automatica, Vol. 4, pp. 205-233, May 1968.
[84] ASTRÖN K. J. - "Lectures on the Identification Problem - The Least-Squares Hethod", Lund Inst. of I'ech., Div. of Autom. Control, Report No. 6806, Sep. 1968.
[85] BALAKRISHJJAN A. V. and PETERKA V. - "Identification in Automatic Control Systems", Automatica, Vol. 5, pp. 817-829, Nov. 1969.
[86] BEKEY G. A. - "System Identification an Introduction and a Survey", Simulation, pp. 151-166, Oct. 1970.
[87] NIEMAN R. E., FISHER D. G., SEBORG D. E. - "A Review of Process Identification and Parameter Estimation", Int. J. of Control, Vol. 13, No. 2, pp. 209-264, Fob. 1971.
[88] ASTRÖM K. J. and EYKHOFF P. - "System Identification - A Survey", Automatioa, Vol. 7, pp. 123-162, Mar. 1971.
[89] SAGS A. P. - "System Identification - History, Methodology, Future Prospects", in System Identification of Vibrating Structures, (Ed. by W. D. Pilkey and R. Cohen), ASNE, 1972.
[90] RAJBIMAN N. S. - "The Application of Identification Hethods - Survey", 3rd IFAC Symp.on Ident. \& Syst. Param. Est., The Haguo/Delft, pp. 1-48, Jun. 1973 (also in Automatica, Vol. 12, Jan. 1076).
[91] ALBUCUSRQUE J. P. A. - "Identification Kethods", Chapter II of: Sensitivity to Structural Errors in Randon Processes Identification Performance, Ph.D. Thesis, MIT, Sep. 1973.
[92] ALLISON J. S. - "On the Comparison of Two Methods of Off-Line Parameter Identification", J. of Nath. Anal. \& Appl., Vol. 18, No. 2, pp. 229-237, May 1967.
[93] CUENOD M. and SAGE A. P. - "Comparison of Some Methods Used for Process Identification", IFAC Symp.; Ident. in Autom. Control Syst., Prague, Jun. 1967.
[94] BOWLES R. L. and STRADTER T. A. - "SyBtem Identification: Computational Considerations", in System Identification of Vibrating Structures, (Ed. by W. D. Pilkey and R. Cohen), ASNTE, 1972.
[95] ISERMANN R., BAUR U., BAMBERGER N., KNEPPO P. and SIMBERT H. "Comparison of Six On-Line Identification Methods", Automatica, Vol. 10, pp. 81-103, Jan. 1974.
[96] SARIDIS G. IN. - "Comparison of Six On-Line Identification Algorithms", Automatica, Vol. 10, pp. 69-79, Jan. 1974.
[97] MURTHY D. N. P. - "Comparison of Various Nethods for Estimating the Parameters Characterizing Noise in Discretew Time Dynamical Systems", Int. J. of Syst. Sci., Vol. 5, No. 2, pp. 101-115, Feb. 1974.
[98] SIMHA N. K. and SEN A. - "Critical Evaluation of Online Identification Methods", Proc. İE, Vol. 122, No. 10, pp. 1153-1158, Oot. 1975.
[99] GOODSON R. E. and POLIS H. P. - "Parameter Identification in Distributed Systems: A Synthesiainc Overview", in Identification of Parameters in Distributed Systems, (玉d. by R. E. Goodson and N. P. Polis), ASrE, 1974 (also in Proc. IEN, Jan. 1976).

CHAPTER 2

[1] WANG P. K. C. - "Control of Distributed Parameter Systems", in Advances in Control Systems, Vol. 1, (Ed. by C. T. Leondes), Academic Press, 1964.
[2] BUTKOVSKIY A. G. - "Distributed Control Systems", Elsevier, 1969.
[3] GOODSON R. E. and POLIS K. P. - "Parameter Identification in Distributed Systems: A Synthesising Overview", in Identificar tion of Parameters in Distributod Systems, (Ed. by R. E. Goodson and M. P. Polis), ASIE, 1974.
[4] FORSYTHE G. E. and WASON W. R. - "Finite-Difference Methods for Partial Differential Equations", Wiley, 1960.
[5] DOUGLAS J., Jr. - "A Survey of Numerical Kethods for Parabolic Differential Equations", in Advances in Computer, Vol. 2, (Jd. by F. L. ALT), Academic Press, 1961.
[6] FOX L., (Bd .) - "llumerical Solutions of Ordinary and Partial Differential Equations", Pereamon Press, 1962.
[7] MIKHLIN S. G. - "Variational Rethods in Nathematical Physics", Pereamon Press, 1964.
[8] COLLATZ L. - "The Numerical Treatment of Differential Rquations", (3rd. Ed.), Springer-Verlac, 1966.
[9] COLLATZ L. - "Functional Analysis and Numerical Mathematics", Aoademic Presp, 1966.
[10] ISAACSON 2. and KELLER H. B. - "Analysis of Numerical Kethods", Wiley, 1966.
[11] MIKHLIN S. G. and SHOLITSKIY K. L. - "Approximate Methods for Solutions of Differential and Integral Equations", Elsevier, 1967.
[12] ATTS H. F. - "Numerical liethods for Fartial Differential Equations", Nelson, 1969.
[13] VON ROSMIBERG D. U. - "Methods for Numerical Solution of Partial Differential Equations", Elsevier, 1969.
[14] BLUM E. K. - "Numerical Analysis and Computation: Theory and Practice.", Addisson Nesley, 1972.
[15] DESAI R. C. and LALIANI C. S. - "Distributed Parameter Estimam tion", Chapter 7 of Identification Techniques, Tata McGraw-IIill, 1972.
[16] STOLZ G., Jr. - "Humerical Solutions to an Inverse Problem of Heat Conduction for Simple Shapes", Trans. ASide, J. of Heat Transfer, Vol. 82-C, No. 1, pp. 20-26, Feb. 1960.
[17] PRANK J. - "An Application of Least-Squares Method to the Solution of the Inverse Problem of Heat Conduction", Trans. ASIE, J. of Heat Transfer, Vol. 85-C, No. 4, pp. 378-379, Nov. 1963.
[18] BURGGRAF 0. R. - "An Exact Solution of the Inverse Problem in Heat Conduction Theory and Applications", Trans. ASHE, J. of Heat Transfer, Vol. 86-c, No. 3, pp. 373-382, Aug. 1964.
[19] SPARRO: I . IH., HAJI-SHEIKH A. and LUNDGRONT T. S. - "The Inverse Problem in Transient Heat Conduction", Trans. AS:E, J. of Appl. Mech., Vol. 31-玉, No. 3, pp. 369-375, Sep. 1964.
[20] BECK J. V. - "The Optimum Analytical Desipn of Transient Experiments for Simultaneous Determinations of Thermal Conductivity and Specific Heat", Ph.D. Thesis, Dept. of Mech. Eng., Michigan State University, 1964.
[21] BECK J. V. - "Calculation of Thermal Diffusivity from Temperature Measurements", Trans. ASIE, J. of Heat Transfer, Vol. 85-C, Ho. 2, pp. 181-182, May 1963.
[22] BECK J. V. - "Transiont Sensivity Coefficient for the Thermal Contact Conductance", Int. J. of Heat and Hass Transfer, Vol. 10, pp. 1615-1617, 1967.
[23] BECK J. V. - "Surface Heat Flux Determination Using an Integral Mothod", Nucl. Eng. Desicn, Vol. 1, pp. 170-178, 1968.
[24] BECK J. V. - "Analytical Determination of Optimum Transient Experiments for the Neasurument of Thermal Properties", Proc. 3rd Int. Heat Transfer Conr., Vol. IV, pp. 301-329, 1966.
[25] BECK J. V. - "Nonlincar Estimation Applied to the Nonlinear Inverse Heat Conduction Problem", Int. J. of Heat and Mass Transfer, Vol. 13, pp. 703-716, Apr. 1970.
[26] BECK J. V. - "Sensitivity Coefficients Utilized in Nonlinear Estimation with Small Parameters in a Heat Transfor Problem", Trans. ASNE, J. of Basic Enc., Vol. 92-D, No. 2, pp. 215-222, Jun. 1970.
[27] AJGGL E. - "Inverse Boundary-Value Problemss Elliptic Equations", J. of : Kath. Anal. \& Appl., Vol. 30, No. 1, pp. 86-98, Apr. 1970.
[28] JONES B. F., Jr. - "The Determination of a Coefficient in a Parabolic Differential Equation", Ph.D. Thesis, Rice University, 1961.
[29] JONES B. F., Jr. - "The Determination of a Coefficient in a Parabolic Differential Equation. Part I - Existence and Uniqueness", J. of Nath. \& Nech., Vol. 11, No. 6, pp. 907-918, 1962.
[30] DOUGLAS J., Jr. and JONES B. F., Jr. - "The Determination of a Coefficient in a Parabolic Differential Equation. Part II - Numerical Approximations", J. of Math. \& Mech., Vol. 11, No. 6, pp. 919-926, 1962.
[31] JONES B. F., Jr. - "Various Rethods for Findine Unknown Coefficients in Parabolic Differential Equations", Comm. on Pure a Appl. Math., Vol. 16, No. I, pp. 33-44, Feb. 1963.
[32] CAMNOA J. R., DOUGLAS J., Jr. and JONBS B. F., Jr. - "Determination of the Diffusitivity of an Isotropic Medium", Int. J. of Eng. Sci., Vol. 1, No. 4, pp. 453-455, 1963.
[33] CAINON J. R. and JONES B. F., Jr. - "Determination of the Diffusivity of an Anisotropic Kedium", Int. J. of Eng. Sci., Vol. 1, No. 4, pp. 457-460, 1963.
[34] CAMJON J. R. - "Determination of Unknown Coefficients in a Parabolic Differential Equation", Duke Math. J., Vol. 30, pp. 313324, 1963.
[35] CAMMON J. R. - "Determination of Certain Parameters in Heat Conduction Problems", J. of liath. Anal. \& Appl., Vol. 8, No. 2, pp. 188-201, Apr. 1964.
[36] CAMHON J. R. - "Determination of Unknown Coefficients $k(u)$ in the Equation $\nabla \cdot k(u) \nabla(u)=0$ from Overspecified 3oundary Data", J. of Hath. Anal. \& Appl., Vol. 18, No. 1, pp. 112-114, Apr. 1967.
[37] BELLMAN R., DETCIMRIDY D., KAGINADA H. and KALAB R. - "On the Identification of Systems and the Unscrambling of Data - III: One Dimenaional Wave and Diffusion Processes", J. of Math. Anal. \& Appl., Vol. 23, No. 1, pp. 173-182, Jul. 1968.
[38] CLEMESTS W. C., Jr. - "A Note on the Determination of the Parameters of the Longitudinal Dispersion hodel from Experimental Data", Chem. EnE. Soi., Vol. 24, pn. 957-963, 1969.
[39] DREIFKE G. E. and HOUGEN J. O. - "Experimental Determination of Systems Dynamics by Pulse Fethods", J.A.C.C., pp. 452-456, Jun. 1963.
[40] SANATHMTAN C. K. - "On Synthesis of Space Dependent Trensfer Function", IDSE Trans., Autom. Control, VoJ. AC-11, No. 4, pp. 724-729, Oct. 1966.
[41] WILLIAMS J. A., ADLER R. J. and ZOLNER W.J. - "Parameter Estimation of Unsteady State Distributed Models in the Laplace Domain", Ind. \& Eng. Chem. Fundamentals, Vol. 9, No. 2, pp. 193197, 1970.
[42] JUMARIE G. - "Identification on Nonlinear Distributed Systems by Using an Inverse Describing Function Kethod", 3rd IFAC Symp. on Ident. \& Syst. Param. Est., The Hague/Delft, pp. 649-660, Jun. 1973.
[43] KOZHINSKY 0. S. and RAJBMAN N. S. - "Identification of Didtributed Plants", IFAC Symp. on the Control of D.P.S., Banff, p-13.5, Jun. 1971.
[44] RAJBMAN N. S. - "The Application of Identification Methods", 3rd IFAC Symp. on Ident. \& Syst. Param. Est., The Hague/Delft, pp. 1-48, Jun. 1973 (also in Automatica, Vol. 12, pp. 73-95, Jan. 1976).
[45] PERDREAUVILLE F. J. - "Identification of Systems Described by Partial Differential Equations", Ph.D. Thesis, Purdue University Lafayette, Indiana, Jan. 1966.
[46] PERDRCAUVILLE F. J. and GOODSON R. E. - "Identification of Systems Described by Partial Differential Equations", Trans. ASHE, J. of Basic EnE., Vol. 88-D, No. 2, pp. 463-468, Jun. 1366.
[47] SIINBROT I. - "On Analysis of Lincar and Nonlinear Dynamical Systems from Transient-Response Data", NACA Tech. Notes, TiN 3288, 1954.
[48] LOEB J. H. and CAHM G. N. - "Hore About Process Identification", IEES Trans., Autom. Control, Vol. 10, No. 4, pp. 359-361, Jul. 1965.
[49] TAKAYA K. - "The Use of Hermite Function for Systems Identification", IsEE Trans., Autom. Control, Vol. AC-13, No. 4, pp. 446447, Aug. 1968.
[50] ZHIVOGLYADOV V. P. and KAIPOV V. K. - "Application of the Nethod of Stochastic Approximations in the Problem of Identification", Autom. \& Rem. Control, Vol. 27, No. 10, pp. 1702-1706, 0ot. 1966.
[51] ZHIVOGLYADOV V. P. and KAIPOV V. K. - "Identification of Distributed Plants in the Prosence of Noises", IFAC Symp. on Ident. of Autom. Control Syst., Prague, p-3.5, Jun. 1967.
[52] ZHIVOGLYADOV V. P. and KAIPOV V. K. - "Accuracy of Distributed Systems Identification Algorithms", IFAC Symp. on Ident. \& Proc. Param. Est., Pracue, Jun. 1970.
[53] zHIVOGLYADOV V. P., KAIPOV V. K. and TSIKUNOVA J. H. - "Stochastio Aleorithme of Identification and Adaptive Control of Distributed Farameter Systems", IFAC Symp. on the control of D.P.S., Banff, p-13.1, Jun. 1971.
[54] COLLINS P. L., Jr. - "Identification of Distributed Parameter Systems Using Finite-Differences", Ph.D. Dissertation, Montana State University, Bozeman, har. 1968.
[55] COLLITS P. L. and KHATRI H. C. - "Identification of Distributed Parameter Systems Using Finite-Differences", Trans. ASIE, J. of Basic ing., Vol. 91-D, No. 2, pp. 239-245, Jun. 1969.
[56] SEINFELD J. H. - "Identification of Parameters in Partial Differential Eguations", Chem. Eng. Sci., Vol. 24, No. 1, pp. 6574, Jan. 1969.
[57] SEMNPLLD J. H. and CHEN :1. H. - "Estimation of Parameters in Distributed Systeras from Noisy Experimental Data", Chem. Eng. Sci., Vol. 26, pp. 753-766, Jun. 1971.
[58] CHEN W. H. and SEINFELD J. H. - "Estimation of Spatially Varying Parameters in Partial Differential Equations", Int. J. of Control, Vol. 15, No. 3, pp. 487-495, Nar. 1972.
[59] CHEN :I. H., GAVALAS G. R. and SEINFSLD J. H. - "A New Algorithm for Automatic History Matchine", 48th Ann. Meet. Soo. of Petroleum Enc., Las Vegas, Oct. 1973.
[60] SEIMFSLD J. H. and CHEM N. H. - "Fstimation of Parameters in Distributed Systems", in Identification of Parameters in Distributed Systems, (Ed. by R. E. Goodson and M. P. Polis), ASIE, 1974.
[61] CH:M H. H. - "Estimation of Parameters in Partial Differential Equations - With Application to Pretoleum Reservoir Description", Ph.D. Thesis, California Institute of Technolocy, 1974 .
[62] GOODSON R. E. and KLEIN R. E. - "A Definition and Some Results for Distributed Systems Observability", IEFE Trans., Autom. Control, Vol. AC-15, No. 2, pp. 165-175, Apr. 1970.
[63] YU T. K. and SEINMDL J. H. - "Observability of a Class of Hyperbolic Distributed Parameter Systems", ISE Trans., Autom. Control, Vol. AC-16, No. 5, pp. 495-496, oct. 1971.
[64] SAKAMA Y. - "Observability and Related Problems for Partial Differential Equations of Parabolic Type", SIAM J. of Control, Vol. 13, 110. 1, pp. 14-27, Jan. 1975.
[65] TZAPGSTAS S. G. - "Identification of Stochastic Distributed Parameter Systems", Int. J. of Control, Vol. 1l, No. 4, pp. 619$624,1970$.
[66] FAIRMAN F. N. and SHWT D. W. C. - "Parameter Identification for a Class of Distributed Systems", Int. J. of Control, Vol. 11, No. 6, pp. 929-940, 1970.
[54] COLLINS P. L., Jr. - "Identification of Distributed Parameter Systems Using Finite-Differences", Ph.D. Dissertation, Hontana State University, Bozeman, Har. 1968.
[55] COLLIIS P. L. and KHATRI H. C. - "Identification of Distributed Parameter Systems Using Finite-Differences", Trans. ASNE, J. of Basic Eng., Vol. 91-D, No. 2, pp. 239-245, Jun. 1969.
[56] SEINFiLD J. H. - "Identification of Parameters in Partial Differential Eguations", Chem. Eng. Sci., Vol. 24, No. 1, pp. 6574, Jan. 1969.
[57] SEINPRLD J. H. and CHEN H. H. - "Estimation of Parameters in Distributed Systers from Noisy Experimental Data", Chem. Eng. Sci., Vol. 26, pp. 753-766, Jun. 1971.
[58] CHEN W. H. and SEINFPLD J. H. - "Estimation of Spatially Varying Parameters in Partial Differential Equations", Int. J. of Control, Vol. 15, No. 3, pp. 487-495, Nar. 1972.
[59] CHEN :1. H., GAVALAS G. R. and SEIMFPLD J. H. - "A New Algorithm for Automatic History Matchine', 43th Ann. Meet. Soo. of Petroleum Enc., Las Vegas, Oct. 1973.
[60] SEIMFSLD J. H. and CHEM N. H. - "Estimation of Parameters in Distributed Systems", in Identification of Paremeters in Distributed Systems, (Ed. by R. E. Goodson and M. P. Polis), ASME, 1974.
[61] CHNT W. H. - "Estimation of Parameters in Partial Differential Equations - With Application to Pretoleum Reservoir Description", Ph.D. Thesis, California Institute of Technolofy, 1974.
[62] GOODSON R. E. and KLEIN R. E. - " \AA Definition and Some Results for Distributed Systems Observability", IEIE Trans., Autom. Control, Vol. AC-15, Mo. 2, pp. 165-175, Apr. 1970.
[63] YU T. K. and SEIMPSLD J. H. - "Observability of a Class of llyperbolic Distributed Parameter Systems", İEA Trans., Autom. Control, Vol. AC-16, No. 5, pp. 495-496, Oct. 1971.
[64] SAKAHA Y. - "Observability and Related. Problems for Partial Differential Equations of Parabolic Type", SIAM J. of Control, Vol. 13, 110. 1, pp. 14-27, Jan. 1975.
[65] TZAPmSTAS S. G. - "Identification of Stochastic Distributed Parameter Systems", Int. J. of Control, Vol. 11, No. 4, pp. 619624, 1970.
[66] FAIRMANS F. N. and SHEM D. W. C. - "Paramoter Idontification for a Class of Distributed Systems", Int. J. of Control, Vol. 11, No. 6 , pp. 929-940, 1970.
[67] KANTOROVICH L. V. and KRYLOV V. J.- "Approximate liethods of Higher Analysis", Interscience, 1964.
[68] LESER T. - "Recent Sovier Contributions to Nathematics", Hacmillan, 1962.
[69] HICKS J. S. and UEI J. - "Humerical Solution of Parabolic Partial Differential Equations with Two Point Boundery by Use of the Nethod of Lines", J. of the Assoc. for Comp. Hach., Vol. 14, No. 3, pp. 549-562, Jul. 1967.
[70] CARP $\operatorname{THTYR~N.~T.~-~"The~Identification~of~Distributed~Parameter~}$ Systoms", Ph.D. Thesis, Purdue University, Lafayette, Aug. 1969.
[71] WOZMY M. J. and CARPMTTBR H. T. - "A Charactoristio Approach to Parameter Identification in Distributed Systems", IFES Trans., Autom. Control, Vol. AC-14, No. 4, pp. 422, AuE. 1969.
[72] CARPENTER N. T., WOZIY K. J. and GOODSON R. E. - "Distributed Parameter Identification Usine the Method of Characteristies", Trans. ASIS, J. of Dym. Fyst., Neas. \& Control, Vol. 93-G, No. 2, pp. 73-78, Jun. 1972.
[73] COURANT R. and HILBERT D. - "lethods of Nathematical Physics", Vol. II, Interscience, 1962.
[74] GARABIDEAN P. R. - "Partial Differential Equations", :Jiley, 1964.
[75] RUBAM A. I. - "Identification of Distributed Dynanic Objects on the Basic of a Sensitivity $1 l_{\text {Gorithm", Eng. Cybernctics, Vol. 9, }}$ No. 6, pp. 1137-1142, Hov.- Dec. 1971.
[76] POLIS K. P. - "On Problems of Parameter Identification for Distributed Parameter Systems with Results Usinf Galerkin's Criterion", Ph.D. Thesis, Purdue University, Lafayette, 1972.
[77] POLIS K. P., HOZMY \%. J. and GOODSON R. T. - "Identification of Parameters in Distributed Systems Using Galerkin's liethod", IFAC Symp. on the Control of DPS, Banff, p-13.2, Jun. 1971.
[78] POLIS M. P., GOODSON R. T. and HOZITY M. J. - "Parametor Identification for the Bean Equation Usine Galerkin's Criterion", Iß刃刃 Dec. \& Control Conf., pp. 391-395, Dec. 1972.
[79] POIIS M. P., GCODSON R. E. and NOZNY H. J. - "On Yaraneter Identification for Distributed Systems Using Galerkin's Criterion", Automatica, Vol. 9, No. 1, pp. 53-54, Jan. 1973.
[80] DI PILLO G. and GRIPPO L. - "Application of the Epsilon Technique to the Identification of Distributed-Parameter Systems", J. of Opt. Tech. \& Appl., Vol. 11, No. 1, pp. 84-99, 1973.
[81] DI PILLO G., GRIPPO L. and LUC:RTINI M. - "Identification of Distributed Parameter Systems Using the Ipsilon Kethod: A New Algorithm", 3rd IFAC Symp. on Ident. \& Syst. Param. Est., The Hague/Delft, pp. 687-690, Jun. 1973.
[82] BALAKRISHNAN A. V. - nA New Computing Technique in Systems Identification", J. of Comp. \& Syst. Sci., Vol. 2, No. 1, pp. 102116, Jun. 1968.
[83] HAMZA M. H. and SHEIRAH M. A. - "On-Line Identification of Distributed Perameter Systems", Automatica, Vol. 9, No. 6, pp. 689698, Nov. 1973 (also in IFAC Symp. on the Control of D.P.S., Banff, p-13.6, Jun. 1971).
[84] BHAGAVAN B. K. and NARDIZZI L. R. - "Parameter Identification in Linear Distributed Systems", IEDE Trans., Autom. Control, Vol. AC-18, No. 6, pp. 677-679, Dec. 1973.
[85] KUBRUSIY C. S. and CURTAIN R. F. - "Identification of Noiay Distributed Parameter Systems Using Stochastic Approximation", Control Theory Centre, Univ. of Warwick, CTC Report No. 37, May 1975, (to appear in Int. J. of Control).
[86] DIAMESSIS S. E. - "On the Simultaneous Identification of Distributed Systems Parameters and of Boundary Conditions in the Form of Power Series and Chebychev Polynomials. Application to the Vave Equation of sletromegnetics and Transmission Lines Theory", IFAC Symp. on the Control of D.P.S., Banff, p-13.4, Jun. 1971.
[87] LUCKINBILL D. L. and CHILDS B. - "Parameter Identification by Newton-Raphson Expansion of Partial Differential Equations", IFAC Symp. on the Control of D.P.S., Banff, p-13.3, Jun. 1971.
[88] SHIRRYY H. and SHEN D. W. C. - "Combined State and Parameter Estimation for Distributed Parameter Systems Using Discrete Observations", 3rd IFAC Symp. on Ident. \& Syst. Param. Est., The Hague/Delft, pp. 671-677, Jun. 1973.
[89] SHRIDHAR M. and BALATOHI N. A. - "Applioation of Cubic Splines to Systems Identification", 3rd IFAC Symp. on Ident. \& Syst. Param. Est., The Hague/Delft, pp. 787-791, Jun. 1973.
[90] CHAUDHURI S. P. - "A Class of Distributed Parameter System Identification via Differential Approximation and Guasi Linearisation", 5th Hawaii Inter. Conf. on Syst. Sci., Univ. of Hawaii, Jan. 1973.
[91] CHAVMNT G. - "Analyse Fonctionelle et Identification de Coefficients Répartis dans les Equation aux Dérivées Partielles", These Doctorat d'Etat es Sciences, Paris, 1971.
[92] CHAVEMT G, - "Sur une Méthode de Resolution du Problème Inverse dens les Équation aux Dérivées Pærtielles Parabolique", Note CRAS Paris, T-260, Dec. 1969.
[93] CHAVEMT G. - "Deux Résultats sur le Problème Inverse dans les Equation aux Dérivées Partielles du 2éme Orde en t et sur l'Unicite de le Solution du Probleme Inverse de la Diffusion", Note CRAS Paris, T-270, Jan. 1970.
[94] CHAVmT G. - "Une Héthodo de Résolution de Problème Inverse dans les Equations aux Dérivées Partielles", Bull. de l'Acad. Polonaise des Sci., Vol. 18, No. 3, pp. 99-105, 1970.
[95] CHAVMT G. and CILLIGOM-TRAVAIN G. - "L'Identification des Systèmes", IRIA Bull., Nov. 1970.
[96] CILLIGOM-TRAVAIM G. - "Fstimation Bayesienne et Identification des Systèmes Gouvernés par des Equation aux Dérivées Particlles", These Docteur Ingenieur, Paris, 1970.
[97] CHAVNWT G. - "Identification of Distributed Parameters", 3rd IFAC Symp. on Ident. \& Syst. Param. Est., The Hague/Delft, pp. 649660, Jun. 1973.
[98] CHAVMTT G., DUPUY M. and EEMONSIER F. - "History Matching by Use of Optimal Control Theory", 48th Ann. Heet. Soc. of Petroleum Enc., Las Veças, Oct. 1973.
[99] CHAVETT G. and LMMMMER P. - "Identification de la Non-Linearité d'une Équation Parabolique Quasi-linéaire", Appl. Math. \& Opti-. mization, Vol. 1, Ho. 2, pp. 121-162, Springer-Verlag, 1974.
[100] CIIAVSPT G. - "Identification of Functional Parameters in Partial Differential Bquations", in Identification of Parameters in Distributed Systems, (Jd. by R. E. Goodson and M. P. Polis), ASIE, 1974.
[101] CHAVMT G. - "Estimation de Paramèteres Distribués dans le Équation oux Jérivées Particlles", Comp. Meth. in Appl. Sci. \& Ene. - Part 2, Lecture Notes in Computer Science, Vol. 11, Springer-Verlat, 1974.
[102] BALAKRISHAN A. V. - "Identification of Systems Subject to Random State Disturbances", 5th Conf. on Opt. Tach. - Part I, Lecture Notes in Computer Science, Vol. 3, Springer-Verlag, 1973.
[103] BALUNTSINAN A. V. - "Identification-Inverse Problems for Partial Differential Equations: A Stochastic Formulation", 6th IFIP Conf. on Opt. Tech., Lecture Notes in Computer Science, Vol. 27, Sprineer-Verlag, 1975.
[104] BALAKRISHEAN A. V. - "Identification and Stochastic Control of a Class of Distributed Systems with Boundary Noise", IRIA Conf. on Stoch. Control and Comp. Wodelling, Jun. 1974 (to be published by \$princer-Verlec, 1975).
[105] LAVRMTTISV, ROMNOV, VASILIEV - "liulti-Dimensional Inverse Problems for Differential Equations", Lecture Notes in Hathenatics, Vol. 167, Sprincer-Verlae, 1970.
[106] MARCEUK G. - "Perturbation Theory and the Statement of Inverse Problems", 5th Conf. on Cpt. Tech. - Part II, Lecture Notes in Computer Science, Vol. 4, Sprincer-Verlag, 1973.
[107] LIONS J. L. - "Contrôle Optimal de Systèmes Gouvernés par des Équations aux Dérivées Pextielles", Dunod, 1968.
[108] WARD E. D. - "Identifications of Parameters in Nonlinear Boundary Conditions of Distributed Systems with Linear Fields", Yh.D. Thesis, Purdue University, Lafayette, Aug. 1971.
[109] WARD E. D. and COODSON R. 3. - "Identification of Parameters in Nonlinear Boundary Conditions of Distributed Systems with Linear Fields", Trans. ASiTE, J. of Dyn. Syst., leas. \& Control, Vol. 95G, No. 4, pp. 391-395, Dec. 1973.
[110] NOZITY M. J., CARPM!TMR H. T. and STIM G. - "Identification of Green's Function for Distributed Parameter Systems", IEGE Trans., Autom. Control, Vol. AC-15, No. 1, pp. 155-157, Feb. 1970.
[111] CANNM J. R. - "Determination of an Unknown Heat Source from Overspecified Boundary Data", SIAll J. of Numer. Anal., Vol. 5, No. 2, pp. 275-286, Jun. 1968.
[112] SARIDIS G. H. and BADAVAS P. C. - "Identification of Distributed Parameter Systems by Stochastic Approximation", 7 th Symp. on Adaptive Processes, University of California, Berkeley, Dec. 1968.
[113] SARIDIS G. M. and BADAVAS P. C. - "Identifying Solutions of Distributed Farameter Systems by Stochastic Approximation", IBSe Trans., Autori. Control, Vol. AC-?5, No. 3, pp. 393-395, Jun. 1970
[114] PMILIIPSOM G. and IITTER S. K. - "State Identification of a Class of Linear Distributed Systems", 4th IFAC Coneress, Warsaw, pp. 34-56, Jun. 1969.
[115] PHILLIPSON G. A. - "Identification of Distributed Parameter Systems", Elsevier, 1971.
[116] VEMURI V. and KARPIUS H. J. - "Identification of Non-Linear Paremeters of Ground Water Basins by Hybrid Computation", Nater Resources Rosearch, Vol. 5, No. 1, Feb. 1969.
[117] DALE B. O. - "hultiparameter Identification and Optimization Mcthods for Linear Continuous Vihratory Systems", Ph.D Thesis, Purdue University, Lafayettc, Jan. 1970.
[118] DALE B. O. and COMM R. - "rultiparnmeter Identification ir Lincar Continuous Vibratory Systems", Trans, ASII, J. of Dyn. Syst., Neas. \& Control, Vol. 93-G, No. 1, pr. 45-52, Har. 1971.
[119] GILATH C. - "Determination of the Dilution of a Gas Discharced into a Ventilated Atmosphere", Int. J. of Appl. Rad. \& Isotopes, Vol. 22, pp. 671-675, 1971.
[120] GILATH C. and SUTHL A. - "Concentration Dynamics in a Lake with a Water Current Flowing Through It", Proc. IAEA Symp, on the Use of Nucl. Tech. in the Meas. \& Control of Env. Pollution, Vienna, pp. 483-496, 1971.
[121] GILATH C., et al. - "Radioisotope Tracer Tochniques in the Investigation of Dispersion of Sevace and Disappearance Rate of Enteric Orcanisms in Coastal ilaters", Proc. IAEA Symp. on the Use of Nucl. Tech. in the Neas. \& Control of Env. Pollution, Vienna, pp. 673-689, 1971.
[122] KOIVO A. J. and PHILLIPS G. R. - "Identification of Hathematical Models for DO and BOD Concentrations in Polluted Streams from Noise Corrupted Nensurcments", Hater Resources Research, Vol. 7, No. 4, pp. 853-862, Aug. 1971.
[123] KOIVO A. J. and PHILLIPS G. R. - "On Determination of BOD and Parameters in Poiluted Stream lodels from DN Measurements Only", Water Resources Rescarch, Vol. 8, Ho. 2, Apr. 1972.
[124] PILKEY W. D. and COHEN R. (Ed.) - "System Identification of Vibrating Structures - Mathematical Models from Test Data", ASHI, 1972.
[125] LBDG B. - "Identification of Dynamics of a One-Dimensional Heat Diffusion Process", Lund Institute of Technology, Division of Auto-Control, Report 7121, Nov. 1971.
[126] LEDMN B., HA!:ZA M. H. and SHEIRAH M. A. - "Different liethods for Estimation of Thermal Diffusivity of a Heat Diffusion Process", 3rd IFAC Symp. on Ident. \& Syst. Param. Est., The Hacue/Delft, pp. 639-648, Jun. 1973.
[127] MALPANI S. N. and DGMNLLY J. K. - "Identification of One Phase Flow Processes", Canadian J. of Chem. Enc., Vol. 50, No. 6, np. 791-795, Dec. 1972.
[128] MALPANI S. N. and DONTELLY J. K. - "Identification of a Packed Absorption Column", Canadian J. of Chem. Eng., Vol. 5l, No. 4, pp. 479-483, AuE. 1973.
[129] AGUILAR HARTIM J., ALMJGRIN G. and IERNMNTEZ C. - "Estimation of the Diffusion Cocfficient of a Fluidisod Bed Catalytic Reactor Using Non Linear Filterine Techniques", 3rd IFAC Symp. on Ident. \& Syst. Param. Est., The Haguc/Delft, pp. 255-264, Jun. 1973.
[130] agutiar martin J., contimente G., almigarin G. and mervarden c.-" Hóthodes Fecurrents d'Estimation de Modoles Dynamiques de Frocesses Chínicues Industricle", Fédération Europóenne de Génie Chemique, Conc. Int., Paris, Avr. 1973.
[131] MC GREAVY C. and VAGO A. - "Estimation of Spatially Distributed Decay Parameters in a Chemical Reactor", 3rd IFAC Symp. on Ident. \& Syst, Param. Est., The Hague/Delft, pp. 307-316, Jun. 1973.
[132] PINDER G. F. - "Functional Coefficients in the Analysis of Groundwater Flow", Water Resources Research, Vol. 9, No. 1, Jan. 1973.
[133] HUGHES R. D. - "Parameter Identification of Vibrating Second Order Hyperbolic Distributed Systems", Ph.D. Thesis, University of Illinois at Urbana, 1974.
[134] SPALDING G. R. - "A Green's Function Approach to the Identification of Linoar DPS", Ph.D Thesis, Lchigh University, Bethlehem, 1974.
[135] COHEN R. - "Identification in Vibratory Systems: A Survey", in Identification of Parameters in Distributed Systems, (Ed. By R. E. Goodson and M. P. Polis), ASME, 1974.
[136] BENNETT R. J. - "Idontification of the Minimal Renresentation of Linear Distributed Parameter Economic Systems", in Identification of Parameters in Distributed Systems, (Ed. Ey R. E. Goodson and M. P. Polis), ASME, 1974.
[137] STRANG G. and FIX G. J. - "An Analysis of the Finite Element Method", Prentice-Hall, 1973.
[138] ATHANS M. - "Towards a Practical Theory for Distributed Systems", IEEE Trans., Autom. Control, Vol. AC-15, No. 2, pp. 245-247, Apr. 1970.
*[139] ALVARADO F. L. and MUKUNDAN R. - "An Identification Problem in Distributed-Parameter Systems", Int. J. of System Sci., Vol. 1, No. 2, pp. 173-183, 1970.
*[140] TZAFESTAS S. G. - "Identification of Hybrid Distributed Parameter Systems", Int. J. of Control, No. 1, Vol. 13, pp. 145-154, Jan. 1971.
*[141] CANNON J. R. and DUCHATEAU P. - "Determining Unknown Coefficients in a Nonlinear Heat Conduction Problem", SIAM J. of Appl. Math., Vol. 24, No. 3, pp. 298-314, Nay 1973.
*[142] IKEDA S., BIYAMCTO S. and SAWARCI Y. - "Identification Method in Environmental Systems and its Applications to Hater Polutions", Int. J. of Syatem Sci., Vol. 5, NO. 8, pp. 707-723, 1974.
*[143] GOCDSON R. R. and POLIS M. P. - "A Survey of Parameter Identification in Distributed Systems", 6th IFAC Coneress, Boston, p-8.2, Aug. 1975 (also in Proo. IEEE, Vol. 64, No. 1, pp. 43-61, Jan. 1976).

* These references came to the euthor's knowledge later when the chapter was fully typed, so they do not follow the previous order.

CILAPTER 3

[1] WONG E. - "Stechestic Processes in Information and Dynamical Systems", HcGraw-Hill, 1971.
[2] ADAMS R. A. - "Sobolcv Spaces", Academic Press, 1975.
[3] TRTVIS F. - "Basic Linear Partial Differential Equations", Academic Press, 1975.
[4] CCURANT R. and HILBERT D. - "Methods of Mathematical Physice", Vol. II, Interscience, 1962.
[5] MIKHLIN S. G. - "Mathematical Physics: An Advanced Course", NorthHolland, 1970.
[6] GARABBDIN P. R. - "Partial Difforential Equationg", Hiley, 1964.
[7] FORSYTHis G. J. and WASO: W. R. - "Finite-Difference Nethods for Partial Diffcrential Bquations", ililey, 1060.
[8] SALVADORI M. G. and BARON M. L. - "IJumerical Methods in Eneincerinel, Prentice-Hall, 1961.
[9] COLLATZ L. - "The Numerical Treatment of Differential Enuations", (3rd Bd.), Springer-Verlac, 1966.
[10] COLLATZ L. - "Functional Analysis and Numerical Hathematics", Academic Fress, 1966.
[11] ISAACSOH E. and KELIJR M. B. - "Analysis of Hunerical liethods", Wiley, 1966.
[12] NENDROFF B. - "Theoretioal Numerical Analysis", Academic Press, 1966.
[13] HILDEBRAND F. B. - "Finite-Differences and Simulation", PrenticeHall, 1968.
[14] ANES W. F. - "Numerical Methods for Pertial Differential Equations", Nelson, 1969.
[15] Mitchsll A. R. - "Computational Kothods in Partial Differential Equations", $\|$ iley, 1969.
[16] SWITH G. D. - "Humericel Solution of Partial Differential Equations", Oxford Univ. Prese, 1969.
[17] VON ROSMIDSRG D. U. - "Methods for Numerioal Solution of Partial Differentic. Equations", Elsevior, 1969.
[18] GEmaLD C. F. - "Applied Munerioal Analyais", Addison-lesley, 1970.
[1] HOMG E. - "itochestic Processes in Information and Dynamical Systems", l:cüraw-Hill, 1971.
[2] ADAMS R. A. - "Sobolev Spaces", Academic Fress, 1975.
[3] TRGVIS F. - "Basic Linear Partial Differential Equations", Academic Press, 1975.
[4] CCURANT R. and HILBERT D. - "hethods of Mathemetical Fhysics", Vol. II, Interscienco, 1962.
[5] MIMHLTN S. G. - "Mathematical Physics: An Advanced Course", NorthHolland, 1970.
[6] GARABRDIAN P. R. - "Partial Difforential Equations", Miley, 1964.
[7] FORSYTHP G. Z. and WASO: H. R. - "Finite-Difference Methods for Partial Diffcrential Jquations", ililey, 1060.
[8] SALVADORI K. G. and BARON II. L. - "IJumerical Nethods in Encincerinct, Prentice-Hall, 1, 61.
[9] COLLATZ L. - "The Numerical Treatment of Differential Equations", (3rd Ed.), Sprincer-Verlac, 1966.
[10] COLLATZ L. - "Punctional Analysis and Numerical Hathematics", Acndemic Fress, 1966.
[11] JSMACSOH E. and KaLISR II. B. - "Analysis of Numerical liethods", Wiley, 1966.
[12] NENDROFF B. - "Theoretical Numerical Analysis", Acadenic Press, 1966.
[13] HILDEBRAND F. B. - "Finite-Differences and Simulation", PrenticeHall, 1968.
[14] ANGS :N. F. - "Numericel Hethods for Pertial Differential Equations", Nelson, 1969.
[15] MITCHLLL A. R. - "Computational Rothods in Partial Differential Equations", Wiley, 1969.
[16] SMTH G. D. - "Numericel Solution of Partiol Differential Equations", Oxford Univ. Prese, 1969.
[17] VON ROSBIBTRG D. U. - "Kothods for Numerionl Solution of Partial Differentiel Fquations", Elsevior, 1969.
[18] GmaLD C. F. - "Applied Munerioal Analyais", Addison-iesley, 1970. ics", Vol. II, Addison-itesley, 1973.
[20] MaYLoR A. W. and SBLL G. R. - "Linear Operator Theory in Engineering and Science", Holt, R. \& !., 1971.
[21] MILNE - THO:ISOH L. M. - "The Calculus of Finite Differences", Nacmillan, 1933.
[22] JORDN C. - "Calculus of Finite Differences", Chelsea, 1950.
[23] NIPLSN K. L. - "Kethods in Numerical Analysis", (2nd Ed.), Macmillan, 1964.
[24] BLUM E. K. - "Numerical Analysis and Computation: Theory and Practice", Addison-ilesley, 1972.
[25] HILDEBRA!D F. B. - "Introduction to l!umerical Analysis", (2nd Ed.), HeGraw-Hill, 1974 .
[26] RCBDIIS H. and MOMRO 5. - "A Stochastic Approximation liethod", Ann. of Nath. Stat., Vol. 22, pp. 400-407, 1251.
[27] KISFCR J. and NOLFO:IITZ J. - "Stochastic Estimation of the Maximum of a Repression Function", Ann. Math. Stat., Vol. 23, pp. 462-466, 1952.
[28] BLUY J. R. - MMultidimensional Stochastic Approximation Method", Ann. Kath. Stat., Vol. 25, pp. 382-386, 1954.
[29] DVOnmerf A. - "On Stochastic Approximation", Proc. of the 3rd Berkeley Symp. on Wath. Stat. a Prob., Vol. 1, (3d. by J. Ifeyman), Univ. of California Press, pp. 39-55, 1956.
[30] ALBERT A. E. and GARDil: L. A., Jr. - "Stochastic Approximations and Honlinear Recression", liIT Press, 1967.
[31] MASAT M. T. - "Stochastic Approximation", Cambridge Univ. Press, 1969.
[32] DミRMM C. - "Stochastic Approximation", Ann. Nath. Stat., Vol. 30, pp. 879-8ट6, 1956.
[33] WILDE D. J. - "Experimental Brror", Chapter 6 of Optimum Sceking Methods, Prentice-Hall, 1964.
[34] SCINLTZ P. R. - "Some Elements of Stochestic Approximation Theory and Its Application to a Control Problem", in ifodorn Control Systens Theory, (Bd. by C. T. Leondcs), EcGraw-Hill, 1965.
[35] SAFRTSM D. J. - "Stochestic Approximation: A Recursive Method for Solvine Recression Problens", in Advances in Communication Systems, Vol. 2, :Td. by A. V. Belakiahnan), Academic Fresis, 1966.
[36] FU K. S. - "Stochestic Approximetion: A Brief Survey", Apnendix F of Sonuential Hethods in Pattorn Recoenition and Machine Learning, scademic Press, 1968.
[37] FU K. S. - "Learning System Theory", in System Theory, (Id. by L. A. Zadeh and E. Polak), NcGrow-lifil, 1969.
[38] KASHYAP R. L., BLAYDON C. C. and FU K. S. - "Stochastic Approximation", in ddaptive, Learning, and Pattern Recocnition Systems: Theory and Applications, (Jd. by J. N. Mendel and R. S. Fu), Academic Press, 1970.
[39] BLAYDOST C. C., KASITYAP R. L. and FU K. S. - "Applications of the Stochestic Approximation Kethods", in dantive, Learning, and Pattern Recoenition Systems: Theory and Applications, (3d. by J. M. Hendel and K. S. Fu), Academic Fress, 1970.
[40] FABIM V. - "Stochastic Approximation", in Optimizinc Methois in Statistics, (Jd. by J. S. Rustaci), Acedemic Press, 1971.
[41] LJJ!G L. - "Convercence of Recursive Stochastic Algorithms", Lund Inst. of Tech., Div. of Autom. Control, Report llo. 7403, Feb. 1974.
[42] SARIDIS G. M. - "Stochastic Approximetion Methods for Identification and Control - A Survey", I Ses Trans., Autom. Control, Vol. AC-19, अ०. 6, pp. 798-809, Dec. 1974.
[43] TSYPKIf i. z. - "Adaption, Treaning and Solf Learnine in Control Syßtems", Autom. \& Rem. Control, Vol. 27, No. l, pp. 16-51, Jen. 1966.
[44] KASIIYAP R. L. and BLAYDON C. C. - "Recovery of Functions from Noisy Mcasurements Taken at Randomly Selectod Points and it Application in Pattern Recoenition", Proc. IJST, Vol. 54, No. 8, pp. 1127-1129, Auc. 1966.
[45] SARIDIS G. N., NIKOLIC Z. J. and FU K. S. - "Stochastic Approximation Al corithma for System Identirication, Istimation and Decomposition of Mixtures", IJ 3 Trans., Syst. Sci. \& Cybernctics, Vol. SSC -5, IO. 1, pp. 8-15, Jan. 1969.
[46] SARRISGI D. J. - "The Use of Stochastic Approximetion to Solve the System Identificetion Problem", İJS Tranc., Autom. Control, Vol. AC-12, No. 5, pr. 563-567, Oct. 1967.
[47] SARIDIS G. H. and STBII G. - "Stochastic Approximation Alcorithms for Jinear Discrete-Time System Identification", Ince Trenc., Autom. Control, Vol. AC-13, No. 5, pp. 515-523, Oct. 1968.
[48] SARIDIS G. II. and STEIII G. - "A New Alcorithm for Jinear System Identification", IM Trans., Autome Control, Vol. AC-13, No. 5, pp. 592-594, cct. 1968
[49] KUBRUSLY C. S. and GRAVIER J. P. - "Stochastic Approximation Algorithms and Applications", IEES Dec. \& Control Conf., San Diego, pp. 763-766, Dec. 1973.
[50] GRAUPE D. and PERL J. - "Stochastic Approximation Aleorithm for Identifying ARHA Processes", Int. J. of System Sci., Vol. 5, No. 6, pp. 789-809, Dec. 1974.
[51] SAGE A. and MELSA J. L. - "System Identification", Academic Press, 1971.
[52] GRAUPE D. - "Identification of Systems", Van Nostrand, 1972.
[53] WMNDEL J. M. - "Discrete Techniques of Parameter Estimation", Dekker, 1973.
[54] FYKHCFr P. - "System Identification: Paremeter and State Jstimation", Hiley, 1974.
[55] ZHIVOGLYADOV V. P. and KAIPOV V. K. - "Application of the Method of Stochastic Approximations in the Problem of Identification", Autom. \& Rem. Control, Vol. 27, No. 10, pp. 1702-1706, Oct. 1966.
[56] ZHIVOGLYADOV V. P. and KAIPOV V. K. - "Identification of Distributed Plants in the Presence of Noises", IF'AC Symp. on Ident. of Autom. Control Syst., Prague, p-3.5, Jun. 1967.
[57] ZHIVOGLYADOV V. P. and KAIFOV V. K. - "Accuracy of Distributed Syatems Identification Aleorithms", IFAC Symp. on Ident. \& Proc. F'aram. Est., Prague, Jun. 1970.
[58] ZHIVOGLYADOV V. P., KAIFOV V. K. and TSIKUNOVA J. M. - "Stochastic Alcorithms of Identification and Adaptive Control of Distributed Parameter Systems", IFAC Symp, on the Control of D.P.S., Banff, p-13.1, Jun. 1971.
[59] CARPFNTKR W. T., HOZITY M. J. and GOODSON R. E. - "Distributed Parameter Identification Using the Method of Characteristics", Trans. ASME, J. of Dyn. Syst., Meas. \& Control, Vol. 93-G, No. 2, pp. 73-78, Jun. 1971.
[60] KUBRUSLY C. S. and CURTAIN R. F. - "Identification of Noisy Distributed Parameter Systems Using Stochastio Approximation", Control Theory Centre, Univ. of Vorwick, CTC Report No. 37, May 1975, (to appeer in Int. J. of Control).
[61] WOLFO:ITZ J. - "On Stochastic Approximation Methods", Ann. Math. Stat. Vol. 27, pp. 1151-1156, 1956.
[62] DERMAN C. and SACKS J. - "On Dvoretzky's Stochastic Approximation Theorem", Ann. Math. Stat., Vol. 30, pp. 601-606, 1959.
[63] SCHHETPGRER L. - "Sur L'Itération Stochastique", Le Calcul des Probabilites et ses Applications, Vol. 87, pp. 55-63, 1958.
[64] VENTER J. H. - "On Dvoretzky Stochastic Approximation Theorem", Ann. Nath. Stat., Vol. 37, pp. 1534-1544, 1966.
[65] DCOB J. L. - "Stochastic Processes", Wiley, 1953.
[66] LOEVE M. - "Probability Theory", (3rd Ed.), Van Nostrand, 1963.
[67] LUCKAS E. - "Stochastic Convercence", Heath-Raytheon, 1968.
[68] CHUNG K. L. - "A Course in Probability Theory", (2nd Ed.), Academic Press, 1974.
[69] STOUT W. F. - "Almost Sure Convereence", Academic Press, 1974.
[70] LUENBERGR D. G. - "Optimization by Vector Space Methods", Wiley, 1969.
[7i] HIRSCH M. W. and SMALE S. - "Differential Equations, Dynamical Systems and Linear Alcebra", Academic Press, 1974.
[72] BACHMAN G. and NARICI L. - "Functional Analysis", Academic Pross, 1966.
[73] KNOPP K. - "Theory and Application of Infinite Series", (2nd Ed.), Blackie, 1951.
[74] FRRRAR W. L. - "Convergence", Claredon Press-Oxford, 1938.
[75] WETHERILL G. B. - "Sequential Estimation of Points on Regression Functions", Chapter 9 of Sequential Methods in Statistics, (2nd Ed.), Chapman \& Hall, 1975.

CHAPTPR 4

[1] WONG E. - "Stochastic Processes in Information and Dynamical Systems", McGraw-Hill, 1971.
[2] CURTAIN R. F. and FALB P. L. - "Stochastic Differential Equations in Hilbert Space", J. of Differential Eq., Vol. 10, No. 3, pp. 412-430, Nov. 1971.
[3] CURTAIN R. F. - "Stochastic Parabolic Equations of Hieher Order in t", J. of Kath. Anal. \& Appl., Vol. 46, No. 1, pp. 93-103, Apr. 1974.
[4] KUBRUSLY C. S. and CURTAIN R. F. - "Identification of Noisy Distributed Parameter Syotome Usine Stochastic Approximation", Control Thoory Centre, Univ. of Harwick, CTC Report No. 37, May 1975 (to appear in Int. J. of Control).
[5] MEDITCH J. S. - "Stochastic Optimal Linear Estimation and Control", McGraw-Hill, 1969.
[6] SAGE A. P. end MELSA J. L. - "Tstimation Theory with Application to Communication and Control", McGraw-Hill, 1971.
[7] NELSA J. L. and SAGE A. P. - "An Introduction to Probability and Stochastic Processes", Prentice-Hall, 1973.
[8] GANTMACHER F. R. - "The Theory of Matrices", Vol. I, Chelsea, 1960.
[9] JURY E. I. - "Inners and Stability of Dynamic Systems", Wiley, 1974.
[10] HOUSEHOLDER A. S. - "The Theory of Matrices in Numerical Analysis", Blaisdell, 1964.
[11] LUENBGRGER D. G. - "Optimization by Vector Space Methods", Wiley, 1969.

CHAPTER 5

[1] KUBRUSLY C. S. and CURTAIN R. F. - "Identification of Noisy Distributed Parameter Systems Using Stochastic Approximation", Control Theory Centre, Univ. of :Jarwick, CTC Report No. 37, May 1975, (to appear in Int. J. of Control).
[2] COLLINS P. L. and KhaTRI H. C. - "Identification of Distributed Parameter Systems Usine Finite-Differences", Trans. ASME, J. of Basic Eng., Vol. 91-D, No. 2, pp. 239-245, Jun. 1969.
[3] ZHIVCGLYADCV V. P. and KAIPOV V. K. - "Application of the hethod of Stochastic Approximations in the Problem of Identification", Autom. \& Rem. Control, Vol. 27, No. 10, pp. 1702-1706, Oct. 1966.
[4] ZHIVOGLYADOV V. P. and KAIPOV V. K. - "Identification of Distributed Plants in the Presence of Noises", IFAC Symp. on Ident. of Autom. Control Syst., Prague, p-3.5, Jun. 1967.
[5] ZHIVOGLYADOV V. P. and KAIPOV V. K. - "Accuracy of Distributed Systems Identification Alcorithms", IFAC Symp. on Ident. \& Proc. Param. Est., Prague, Jun. 1970.
[6] ZHIVOGLYADOV V. P., KAIPOV V. K. and TSIKUNOVA J. M. - "Stochastio Algorithms of Identifioation and Adaptive Control of Distributed Parameter Systems", IFAC Symp. on the Control of D.P.S., Banff, p-13.1, Jun. 1971.
[7] CARPENTER W. T., WOZNY M. J. and GOODSON R. E. - "Distributed Parameter Identification Using the Mothod of Charaoteristics", Trans. ASME, J. of Dyn. Syst., Meas. \& Control, Vol. 93-G, No. 2, pp. 73-78, Jun. 1971.
[8] TZAFESTAS S. G. - "Identification of Stochastic Distributed Parameter Systems", Int. J. of Control, Vol. ll, No. 4, pp. 619624, 1970.
[9] TZAFESTAS S. G. - "Identification of Hybrid Distributed Parameter Systems", Int. J. of Control, No. 1, Vol. 13, pp. 145-154, Jan. 1971.
[10] BALAKRISHNAN A. V. - "Identification-Inverse Problems for Partial Differertial Equations: A Stochastic Formulation", 6th IFIP Conf. on Opt. Tech., Lecture Notes in Computer Science, Vol. 27, Springer-Verlag, 1975.
[11] KUBRUSLY C. S. and NRAVIRR J. P. - "Stochastic Approximation Algorithms and Aprlicstions", IEEE Dec. \& Control Conf., San Diego, pp. 763-766, Dec. 1973.
[8] TZAFESTAS S. G. - "Identification of Stochastic Distributed Parameter Systems", Int. J. of Control, Vol. 1l, No. 4, pp. 619624, 1970.
[9] TZAFistas S. G. - "Identification of Hybrid Distributed Parameter Systems", Int. J. of Control, No. l, Vol. 13, pp. 145-154, Jan. 1971.
[10] BALAKRISHNAN A. V. - "Identification-Inverse Problems for Partial Differential Eouations: A Stochastic Formulation", 6th IFIP Conf. on Opt. Tech., Lecture Notes in Computer Sciezce, Vol. 27, Springer-Verlag, 1975.
[11] KUBRUSLY C. S. and GRAVIER J. P. - "Stochastic Approximation Algorithms and Applications", IEEE Dec. \& Control Conf., San Diego, pp. 763-766, Dec. 1973.

[^0]: * This research was supported by CNPq. (Brazilian Nationai Research

[^1]: 3 This assumption can be based on some "a priori" knowledge of the system's structure. This "a priori" knowledge oan be thought as the result of a previous classification. We will make more comments about what we mean by "a priori" knowledge, later in this chapter.

[^2]: 4 Actually, it would be necessary some further requirements (as linearity, inner product, and completeness) in the algebraictopological stmucture of the output space Y, when the identification problem is reduced to an optimization one. In this case Y becomes a Hilbert spaco.

[^3]: 2 Very often finite-difference techniques for approximating partial derivatives (e.E., see $[4],[8],[13]$) are also used by methods of class Γ_{1} for numerical implementation (o.g., see [80], [83], [97], [101]).
 3 Besically, finite-difference technigues appiied only over the spar tial domain (e.G., see [67]-[69]).

[^4]: 8 Studies concorning observability in DPS can be found in [1], [62]-[64].

[^5]: 9 The method of lines (e.g., see [67]-[69]) reduces the DPS to a con-tinuous-time LPS (i.e., difference-differential equations).
 10
 Basically, this method consists in multiplying the ODE by a suitable modulating function (they used a modified form of the Poisson probability density function) and then integrating by parts.

[^6]: 1 A more general casc can be considered, where the parameter vector $e(u, s)$ also depends on the dependent variable $u(s)$.

 2
 The term "random ficld" is used to denote a collection of random variables indexed by pointe toking values in a subset of R^{n}, an a natural extension of the concopt of stochastic processes [1].

[^7]: 3 Rouchly speaking: $H(\Omega)$ is a Benach space of functions on Ω, equipod with a suitable norm, such that all partial derivatives of u up to the hichest order involved in the model L are in $L^{p}(\Omega)$. If $p=2$ $H(\Omega)$ is a Hilbert space. For details see, for example, [2] and [3].

[^8]: 4 For discussions (both from theoretical and practical viewpoints) on DPS whose models are included in such subclase, see for oxemple [3]-[6].

[^9]: 5 The interested reador is referred to the bibliography concerning with this second part of chapter 3, which is listed at the end of this work.

[^10]: 7 For details concorning with this sort of (first-order) approximation soe, for example, [21], [22], [24] and [25].

[^11]: $1 w_{x}(t)$ can be thought as an infinite-dimensional vector-valued secondorder process. Actually, using a more sophisticated mathematical terminology, $\left\{w_{;} ; \xi \in(0, l) x[0, \infty) \subset R^{2}\right\}$ is a rendom field, rather than a stochastic process [1]. The existence and uniqueness of solutions for such stochastic DPS has been fully investigated by Curtain and Falb [2], [3].

[^12]: 5 We reserve the term "boundary condition" for conditions eiven only at the spatial boundary (in our case, at $x=0$ and $x=l$).

