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IDENTIFICATION FOR

DISTRIBUTED PARAMETER SYSTEMS

Carlos Silva Kubrusly

ABSTRACT

This "thesis considers the parameter identification problem 

for systems governed by partial differential equations. The various 

identification methods are grouped into three disjoint classes namely: 

"Direct Methods", "Reduction to a Lumped Parameter System", and 

"Reduction to an Algebraic Equation".

The major subject investigated here is concerned with the 

applicability of stochastic approximation algorithms for identifying 

distributed parameter systems (DPS) operating in a stochastic environ

ment, where no restriction on probability distributions is imposed.

These algorithms are used as a straightforward identification procedure, 

converge to tho real value of the parameters with probability one, and 

are suitable for on-line applications. In this way, a new identification
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method is developed for DPS described by linear models, driven by 

random inputs, and observed through noisy measurements. The very real 

case of noisy observations taken at a limited number of discrete points 

located in the spatial domain is considered. The proposed identifica

tion method assumes that a previous system classification has been 

performed, such that the model to be identified is known up to a set 

of space-varying parameters, where extraneous terms may be included.
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INTRODUCTION

The central theme in this thesis is the application of 

stochastic approximation theory, as a straightforward identification 

technique, for determining parameters in systems governed hy partial 

differential equations (PDS).

In chapter 1 we begin hy presenting some introductory aspects 

of the general problem of system identification. Fundamental concepts 

(such ass system characterization, classification and identification, 

as well as lumped (LPS) and distributed (DPS) parameter systems) are 

explained in order to make precise what kind of problem will be 

considered here.

A survey on the DPS identification field is presented in 

chapter 2. Before reviewing the various approaches used to face the 

problem, we introduce a new classification for the DPS identification 

methods. Briefly, these methods can be grouped into three disjoint 

classes: The first one uses optimization techniques directly on the 

model that describes DPS. The second class of methods is characterized 

by reducing the DPS to an equivalent LPS. In a similar way, the methods 

in the third class reduce the DPS to a set of algebraic equations.

Chapter 3 is concerned with the mathematical concepts and 

techniques that will be used later for identification purposes. It 

contains three independent parts: In part I we consider some classes 

of models for DPS described by PDE. Higher order finite-differences are 

introduced in part II, where the basic lemmas for model approximation 

are derived. Relevant aspects of the stochastic approximation theory,

1
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as well as some applicable stochastic approximation algorithms in 

Hilbert space, are presented in part III.

The main results appear in chapter 4. There we propose a new 

method for identifying space-varying parameters in distributed systems.

The DPS is supposed to be operating in a stochastic environment, and 

no restriction concerning probability distributions i3 imposed. A class 

°f linear models (where extraneous terms may be included) driven by 

random inputs and observed through noisy measurements is considered. These 

measurements are taken at a limited number of discrete points located in 

the spatial domain. The theory is developed by assuming a one-dimehsional 

spatial domain, but direct extensions to multi-dimensional spatial domains 

can be obtained as shown in section 4.7. Higher order finite-difference 

techniques are used to reduce the DPS to an equivalent discrete-time 

LPS. The parameters are then placed in an explicit form which is suitable 

for applying recursive identification schemes. In this way, stochastic 

approximation algorithms (as proposed in chapter 3, part III) are used 

as a straightforward on-line identification procedure, rather than a 

simple searching scheme for finding estimates previously obtained by 

means of any other optimization technique. These algorithms converge to 

the real value of the parameters with probability one.

Finally, the performance of the identification method is 

analysed in chapter 5« After a brief summary concerning second-order 

models, we present three examples dealing with parabolic and hyperbolic 

PDE. Conclusions and suggestions for further research are also included.

References are listed at the end of the thesis, and grouped 

according to chapter.
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CHAPTER 1

SOME BASIC ASPECTS IN SYSTEM IDENTIFICATION

The general idea of System Identification is a very wide 

one and different authors dealing with this subject use the term 

"system identification" in some slightly different ways.

It is not our intention in this study to pose a formal or 

rigorous definition of system identification. Instead of this, we 

intend to present an informal and brief introduction on this topic 

as a starting point for the subsequent chapters.

The three stages of the identification procedure namely, 

system characterization, system classification and system identifi

cation are discussed in section 1.1. The meaning of lumped parameter 

system and distributed parameter system is explained in section 1 .2. 

Finally, in section 1.3» "the problems of system identification and 

state e&cimation are discussed and the difference between these two 

concepts is emphasized.

1.1 - SYSTEM CHARACTERIZATION, CLASSIFICATION AND IDENTIFICATION

One of the first attempts to explain the main concepts 

involved in System Theory was made by Zadeh £lj. Under the subti

tle "Principal Problems of System Theory", he formulated twelve of 

the most important problems (both from theoretical and practical 

viewpoints), which are summarized belowi

3



1) System Characterization

2) System Classification

3) System Identification

4) Signal Representation

5) Signal Classification

6) Systems Analysis

7) Systems Synthesis

8) System Control and Programming

9) System Optimization

10) Learning and Adaption

11) Reliability

12) Stability and Controlability

It would be helpful, for the purpose of our study, to add two 

important problems to the above list:

13) Observability

14) State Estimation (Filtering, Smoothing and Prediction)

As we are interested only in the meaning of the first three 

of those problems and mainly in the third one, we will discuss these 

in the light of Zadeh's paper.

System Characterization; "Representation of input-output 

relationships in mathematical form) transition from one mode of



characteristic functions, frequency response functions, integral 

operators, etc.), and the forms which these representations assume 

for several types of systems (i.e., continuous-time, discrete-time, 

stochastic, deterministic, memoryless, finite-memory, causal, etc.).

System Classification: "Determination on basis of observa

tions of input and output, of one among a specified class of systems 

to which the system under test belongs".

In the following we will call the "class of systems" by the 

class of models or simply the class. the elements of a class are ob

viously called by models or mathematical models, and the "system 

under test" will be called the system (some authors call it process 

or plant).

This kind of problem may be stated as follows*

Assume that

i) I is an index set,

ii) Ca, «-«I, are classes of models M,

iii) F ■ {.C,! 0!,'e l) is a family of these classes.

Suppose we are given a system S and a family F, such that 

S is characterized by F and belongs^ to one of its classes, say C*,. 

The problem is to determine C* by observing the responses of S to 

some different inputs.

mm
*m
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Example 1. An important particular problem in classifi

cation is the followings 

Let

i) I * Z -{.1 , 2, 3» *»•} : the set of all positive integers.

ii) be the class of all models M described by a single or—
odinary differential equation of order n.

iii) P = {cn i 11 € Z+} be the family of all these olasses. That 

is, the set of all ordinary differential equations of any 

finite order.

Suppose S characterized by P. Which means: suppose it is 

known that the system is represented in terms of an ordinary differ

ential equation ( this assumption concerns the System Characteriza

tion).

The question is: What is its order? In other words, which 

class Cn « P does S "belong"? (or better: which class CR « P does M*, 

the "equivalent" model, belong ?)

The problem of finding the olass C<* is, sometimes, described 

as the black hox approach. Roughly speaking, this means the determi

nation of the structure (or "topology") of the system, considering 

it as a perfect "black box". On the other hand, assuming that some

All ordinary differential equations belonging to a given Cn (i.e., 
the models M « C^) are completely known up to a set of m (m>n) 
parameters, which are the coefficients of the differential equa
tion. The problem of finding these parameters concerns to the 
System Identification, and it will be commented later in this 
section.



olass of models, say C* , is available^ the determination of one 

element M ia is, sometimes, called the opaoue box approach«

This is the subject of System Identification which is described 

below.

System Identification: "Determination, on basis of ob

servations of input and output, of a system within a specified 

class of system to which the system under test is equivalent".

Observing the nomenclature introduced before (i.e., the 

meaning of class, model and system) the identification problem 

may be formulated as follows:

Given a class (with each member of Ca completely char

acterized), the problem is to determine a model M in which is 

equivalent to the system S. Briefly: find M « C« such that M is 

equivalent to S.

But what does the term "equivalent" mean in this particu

lar case ?

Assume that

i) W is some space of inputs and w a element of W. 

ii) ys - ys (w) is the system output and yM ■ yM(w) is *he ">odel 

output, for some pre-selected input w in W.

* >

^ This assumption can be based on some "a priori" knowledge of the 
system’s stricture. This "a priori" knowledge can be thou^it as 
the result of a previous classification. We will make more 
oomments about what we mean by "a priori" knowledge, later in 
this chapter.

7
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The equivalence is often defined in terras of a cost func

tion J which is a functional of yg and y^. That is:

J - J(ys»yM)

The model M* which is equivalent to the system S will he one such 

that the cost function J is minimized • Symbolically we have

M* »  S <=> J(ys ,yM*) - Min. J(yg,yM)

where the symbol means "equivalent to" in the above sense.

So, when equivalence is defined by means of a cost func

tion J, the identification problem is reduoed to an optimization 

problem; find a model M < C*. such that the cost function J is min

imum.

In such case, the questions related to the existence and 

uniqueness of the solution arc the main problems of system identi

fication. Some studies of these problems have been done by Bellman 

and Astrom for a simple class of linear systems.

The class is called identifiable if the optimization 

problem has a unique solution.

At this stage some diagrams could be helpful to one vi- 

sualizesthe identification procedure.

Let T be the space of outputs, such that:

ys - ys(w) * t j w e w
yM " yM^w ) C Y 1 w c w » M € c06

8



Assume Y is a metric space** and define the cost function 

J as the metric d in Y. That iss

J  -  d ( y M , y 3 )

So, the identification problem (see fig. l) can he formu

lated as follows: find a model M ̂  such the distance from its out— 

put yM to the system output y , is the smallest possible.

The figure 2 shows the same situation represented by the 

engineering viewpoint; that is, by block diagrams (for simplicity the 

outputs are assumed to be scalars and no external noise is supposed 
to corrupt them).

Pig. 1: S ~  M* « C <=> d(y ,y ) - Min. d(y ,y )
M« C~

^ Actually, it would be necessary some further requirements (as 
linearity, inner product, and completeness) in the algebraic- 
topological structure of the output space Y, when the identi
fication problem is reduced to an optimization one. In this 
case Y becomes a Hilbert spaco.

9



Pig. 2: S «■» H*« C <=> ||e,.̂ || = Min. ||eH ||

Now let us return to the essential meaning of system identi

fication, as formulated above. Generally speaking, there are two pos

sible ways to determine, based on the observations of input and out

put, the mathematical model of a given physical (or economical, or 

sociological, or biological, etc.) systems

1) AXIOMATIC APPROACH! Mathematico-physical (or economical, or soci

ological, or biological, etc.) analysis based on the laws which 

govern the underlying'bipplied" subject.

2) EXPERIMENTAL APPROACH: Data analysis where the main information 

about the system is obtained by measurements.

Very often the first way is used in the system classifi

cation stage. That is, we can use the mathematico-physical analysis, 

based on the physical laws, as some "a priori" information about the 

structure of a physical system S, and so a class C* can be determined 

(i.e., system classification). Since a class C^ is available, a model

10



M in C* may be determined by means of experimental measurements in I

the system S using, for example, the meaning of equivalence stated. I

before (i.o., system identification). I

It is important to notice what we mean by "a priori" knowl- I

edge (or "a priori" information). We will use this term in a very 

wide sense. That is, it will mean all knowledge (or information) we 

have about the system before we start the identification procedure.

Prom this viewpoint, the system classification can be con

sidered, by itself, as "a priori" knowledge of the system’s structure.

So, if the solution of the classification problem provides 

us with some available class of models, say Ca , all information we 

have about the models in will be considered as "a priori". Thi3 

will be the case even if the system classification was carried out by 

experimental analysis (some authors use the term "a priori" only for 

information obtained by means of non-experimental analysis).

Example 2« Assume it was determined that a given system S 

is represented in terms of ordinary differential equation (1 st. step: 

System Characterization) which is linear (in the usual meaning) and 

of order n (2nd. step: System Classification).

Let Cr be the olass of all linear ordinary differential 

equations of order n.

So, using "a priori" information about the system S we could

olassify it as of olass C .n
Each linear ordinary differential equation of order n is a 

model belonging to the class C^. There are infinitely many models in

Cft (aotually the class Cn is uncountable), and they are completely



characterized. The only difference between any two of these models 

is just a set of n+1 real constants, which are the coefficients of 

each linear ordinary differential equation in C . These coefficients
XI

are called the parameters of the model.

The question is: Which are these n+1 parameters? In other 

words, which model M (represented by its n+1 parameters) is equivar- 

lent to the system S?

1.2 - LUMPED PARAMETER SYSTSIIS AND DISTRIBUTED PARAMETER SYSTEM

Beforo introducing the idea of "lumped parameter systems" 

and "distributed parameter systems", we will present an informal 

discussion about the meaning of the terms "dynamic systems" and 

"parametrio models".

A system S is said to be instantaneous if it is represented 

in terms of a mathematical model H whose the outputs y^ at any time 

t depends only on the input values at the same time t. Wo past or fu

ture values of the input will affect the present value of the output. 

This may also be called a zero-memory or a memoryles3 system. Other

wise the system is said to be dynamic and to have memory.

If a dynamic system is one whose the model outputs do not 

depent on future values of the input, it is called causal (or physical, 

or nonanticipatory). If this is not the case the dynamic system is 

called noncausal ( or nonphysical. or anticipatory). If a causal sys

tem is such that the model outputs depend on the past inputs only over

12



a finite period, say T, then it is said to have finite-memory. and T' 

is its memory length.

Systems can he represented in many differents ways, as we 

have already seen in the last section. Now we will introduce two im

portant disjoint classes of models for the system characterization 

problem: By nonparametric we mean suoh models described in terms of 

impulse response, transfer functions, covariance functions, spectral 

densities, etc. By parametric modelB we mean those ones described in 

terms of state equation (or more generally "dynamical equations", 

which means the sot of equations that describes the unique ralation 

between the input, the output and state), differential (or difference) 

equations (both partial and ordinary), etc. Loosely speaking, a mod

el is said to be parametric when it is completely characterized by a 

set of parameters (which can be constants, time and/or space varying, 

state independent, etc.). In rough terms, this means that the iden

tification procedure is reduced to a problem of finding a certain 

number of parameters which completely determines the underlined model. 

Otherwise, it is said to be nonparametric (e.g., when the identifica-

5 We have avoided discussing t he t er m  dynamical system in or
der to keep this introductory chapter on an informal level, re
ducing the abstract mathematical notation to a minimum. Generally, 
"dynamical" and "dynamic" are slightly different concepts. In few 
words: "dynamical" has roughly the same meaning as "causal". For 
a detailed mathematical definition and interpretation of the ax
ioms, the reader is referred to [3] - [6] .



tion procedure is reduced to the problem of finding an impulse re

sponse function belonging to some specific function space). **

When the system under study is represented by a parametric
n

modeljthe terms parametrio estimation1 and structure identification 

are sometimes used to specify what we are calling "system identifica- 

tion" and "system classification", respectively.

Our main subject in this work will be the identification of 

a oertain type of parametric models. So, it would seem to be a good 

choice to use the term "parametric estimation" instead of "system iden

tification". But we will avoid (where possible) using the word "esti

mation" to specify a identification problem, reserving this terra only 

for the problem of "state estimation". Later in this ohapter, we will 

present Borne comments about the confrontation between the problems of 

system identification and state estimation.

Now let us return to the main topio of this section. Many 

authors |lo] - [l6] define lumped parameter systems and distributed 

parameter systems in some slightly different ways. Sometimes, tho

The nonparametric representation has the advantage that it is not 
necessary to specify the order of the model explicitly. They are, 
however, intrinsically infinite-dimensional models. Interesting 
aspects of parametric versus nonparametric models can be found in 
the literature on time-series analysis [7] - [9] •

7 The term "parametric estimation" is also used in some wider sense, 
even when the models are not classified as parametrio ones but the 
identification problem is reduced to that one of finding some un
known parameters (e.g., in the determination of a transfer function 
which is completely known up to a finite set of constant parameters).

14



properties which are used by one author as definition, are used hy 

another one as consequence and "vice versa". For tho purpose of our 

further studies a very brief and simple definition will ho sufficients 

"A dynamic system that can he represented in terms of a or

dinary differential (or difference) equation will he called 'a lumped 

parameter system (LPS). Vhen it requires the vise of partial differen-
g

tial equation to describe its dynamic behavior, it will he called a 

distributed parameter system^ (DPS)?.

In brief wordst LPS and DPS are characterized hy finite and 

infinite-dimensional state space, respectively.

The meaning of the terms "lumped" and "distributed" can he 

better understood when the physioal implications of the above defini

tions are more deeply analysed.

In a lumped parameter system the physioal size of the system 

is not important, since the excitations are tranomited through the 

system instantaneously. This assumption is usually valid if the largest 

physical dimension of the system is small compared to the wavelength 

of the highest significant frequency considered. Also, in this case, 

the system can be decomposed into a finite number of components, each

The particular case of systems described by partial difference equa
tion can be viewed as a result of an approximation method which re
duces a DPS to a LPS.

q
y Dynamic systems whose mathematical models are in the form of inte

gral (or integro-differential) equation are also called DPS.

15



with a finite number of input and outputs. On the other hand, in a 

distributed parameter system, the spatial configuration is important 

and generally it has dimensions that are not small compared to the 

shortest wavelength of interest.

Examples of physical systems that can be modeled by partial 

differential equations will bo considered in the next chapter. Supple

mentary discussions concerning with applications and related topics 

in DPS can be found in the literature dealing with the control prob

lem (see, for example, [lo] and [17] ).

1.3 - SYSTEM IDEHTIFICATION VERSUS STATE ESTIMATION

First of all, let us introduce the notion of state and 

then the formulation of the state estimation problem.

The state notion: Actually, from a physical viewpoint, the 

oonoept of state can be thought as a primitive one, and as such it 

is not to be defined. Therefore some authors [l8j - [26J present a 

"formal definition" of state which is valid, and very useful indeed, 

in the sense of giving a deeper insight about the meaning of state. 

Generally speaking, "the state u of a dynamic system at time t ■ t , 

is the amount of information at tQ that, together with any input w 

belonging to an input space W and known for all t fe tQ, determine 

uniquely the "behavior" of the system". ^  But what does the term

Following our previous intention of keeping this introductory 
chapter on an informal level, we have avoided discussing a more 
sophisticated but preciso definition of state based on abstraot 
mathematical concepts. The interested reader is referred'to(27]-[31],



"■behavior" mean in this case? It meanD "the state itself and the out

put" of the system. So, we may not use the above as a "precise defi

nition" of state, since the intrinsic meaning of state is assumed to 

be known "a priori".

Remark: We talked about "state of a dynamic system". This 

is a slight abuse of nomenclature, since we have been using the terms 

"system" and "model" with different meanings. Actually the concept 

of state is inherent to that of "oriented abstract objects" [27) which 

means, in general terms, our mathematical models. Based on our previ

ous terminology it would be more correct to say: state of a model M 

that characterizes a dynamo system S. Or, when we are considering the 

equivalent model M*, the "state of S" oan be thought as the state of 

M*. Prom now on, the term "state of a dynamic system" will be used in 

the above sense.

Some authors use (or abuse of) the term "system identifi

cation" or even "parameter estimation" to specify a state estimation 

problem. Our matin goal in this section will be to emphasize the dif

ference between these two concepts.

For sake of simplicity, we will concern ourselves with the 

particular problem of state estimation in lumped parameter systems 

(finite-dimensional oase), that can be modeled by a linear ordinary 

differential equation (i.e., the Kalman-Bucy filter [[32], [33])«

Currently there are lots of books [4]» [34]-[68] at many 

different levels dealing with the state estimation problem in finite- 

dimensional case.'*''*' The same is not true in the infinite-dimensional

11 For a general review see [69]



caso, specially for distributed parameter systems described by par-

gives an unified survey of this field, emphasizing the mathematical 

problem of rigorously modelling distributed noise. For those readers 

who are familiar with Kalman-Bucy filter in lumped parameter systems, 

the quite readable but formal works of Meditch [75J , [76] are suggested 

as background before becoming involved with the sophisticated mathe

matical aspects (such as Sobolev spaces and other necessary but non

trivial concepts) which are inherent to the study of state estimation 

for distributed parameter systems.

Problem '•irmulation; Let vis consider a dynamio system S 

modeled by a linear ordinary differential equation, whoso state as a 

funtion of time is an n-dimensional stochastic process {u(t^); tj«T}, 

where T is some appropriate index sot (an orderd subset of the reals 

that has a minimum element called tQ). We are interested in knowing 

the value of u(t^) for some fixed t^, but u(t^) is not directly ac

cessible to U3. Suppose we can have access only to an observation 

process { z(t)j t < z<t,■t«T} which is related to u(t^) by means of a 

linear causal system.

Let us introduce some notation:

1) Denote an estimate of u(t^) based on the measurements of the ob

servation process {z(£)} by u(tj t), such that

where K+ is some linear operator defined in the observation space.

tial differential equations Curtain [74]
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3) L[u(tjt)] will be some admissible cost function of the estima
tion error. A typical example would be:

L - Lpttjt)] - ||u(ti|t)||2

where || J| means the usual norm in an n-dimensional Euclidean space.

4) Since uitj) and uit^Jt) are random vectors, it follows that uCtjJt) 

will also be a random vector and so L will be a random function. In 

order to get a useful measure of the error, we can define a perfor

mance criterion J as the mean value of L, that is

Jttti-fcj*)] - EiLCuttJt)]}
where E{ } stands for the espeotation of a random variable in the 

usual meaning.

5) We say that an estimate u(t^| t) which minimizes is a

"best" or optimal estimate.

6) The linear operator K. which give us the optimal estimate will be
*1

called the "best" or optimal linear filter.

Problem statements Given the measures of the observation

process { z(z)j t(<B<t} t«Tj, determine the "best" estimation u(t^|t)

of u(t.)j or equivalently» determine the "best" linear filter K. .
1 *i

If t^ > t, the problem is one of prediction» if t^ - t, one

of filtering; and if t^ < t , one of smoothing or interpolation.

So we have two distinct optimizations problems namely sys

tem identification and state estimation. The system identification (or 

parametric estimation, as we are dealing with parametrio models) is 

concerned with the problem of finding a set of parameters that speci-



3) L[u(tjJt)] will l)e some admissible cost function, of the estima
tion error. A typical example would bes

L - Lfuttjt)] - ||S(tA| t)||2

where || JJ means the usual norm in an n-dimensional Euclidean space.

4) Since u(t^) and u(tjjt) are random vectors, it follows that u(t^|t) 

will also be a random vector and so L will be a random function. In 

order to get a useful measure of the error, we can define a perfor

mance criterion J as the mean value of L, that is

-  E{h[u(^1|t)]}

where E{ } stands for the espeotation of a random variable in the 

usual meaning.

5) We say that an estimate uit^Jt) which minimizes j[u(tjJt)J is a 
"best" or optimal estimate.
6) The linear operator K. which give us the optimal estimate will be

tl
called the "best" or optimal linear filter.

Problem statement: Given the measures of the observation

process { ¿(3)} tQ<a<t} t«T}, determine the "best" estimation u(tjJt)
of u(t4)} or equivalently: determine the "best" linear filter K. .

1 *1
If t^ > t, the problem is one of prediction: if t^ - t, one

of filtering; and if t^ < t, one of smoothing or interpolation.

So we have two distinct optimizations problems namely sys

tem identification and state estimation. The system identification (or 

parametrio estimation, as we are dealing with parametric models) is 

concerned with the problem of finding a set of parameters that speci-
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fies a model, say M*, which is equivalent in some sense to the system 

S (or, which is the "best" model, based on some performance criterion, 

among all models M belonging to a pre-selected class of models C^). 

Differently, the state estimation concernswith the problem of finding 

the "best" estimate u of the state u of a system S, which is presup

posed to be fully characterized by a completely known model M*.

In recent years many researohers dedicated a great deal of 

their attention to the identification problem for lumped parameter sys

tems. A large number of books [35j»[49j, [53] ,[60j,[o2] ,[64] ,[66] ,[77j- 

[80], surveys [8l]-[9l] and comparisons of different methods [92j-[98], 

were written about this subject. On the other hand, the bibliography 

on identification of distributed parameter systems is not so large.

Very few books [60] deal, even superficially, with this subject} and 

very often the state estimation problem in systems described by partial 

differential equations is wrongly termed "identification" (or even, 

"parameter estimation"!)• In the next chapter we present a survey of 
this field.12

12 For previous surveys in DPS identification see [90] and [99]'



CHAPTER 2

DISTRIBUTED PARAMETER SYSTEMS IDENTIFICATION: A SURVEY

This chapter treats the parameter identification problem in 

distributed systems. The various identification methods are grouped 

into three disjoint classes, namely: "Direct Methods", "Reduction to 

a Lumped Parameter System" and "Reduction to an Algebraic Equation". 

Under this classification we give a general survey of the main ap

proaches to the problem of identifying distributed parameter systems.

The meaning of "parametric models", "distributed parameter 

systems" and "systems identification" are to bo understood as intro

duced in the previous chapter. Standard abbreviations such as 

DPS: Distributed Parameter Systom(s)

LPS: Lumped Parameter System(s)

ODE: Ordinary Differential Equation(s)

PDE: Partial Differential Equation(s) 

will be used in this and later chapters.



2) Very little literature has been written about DPS, compared with 

what has "been done for LPS.

Actually these remarks still remain valid, hut they now have 

muoh less significance than they had one or two decades ago. Not only 

are a large number of research papers being published in this field 

but also now techniques in Modern Mathematical System Theory have 

helped to lessen the gap between LPS and DPS identification methods.

Basically the main theoretical difficulty for identifying 

systems described by PDE, is due to the infinite dimensionality of 

the state space. Two approaches are normally used to face this problem; 

1) Approximation of the infinite-dimensional model by a finite-dimen

sion one, and 2) application of optimization techniques directly to 

the infinite-dimensional model. Recent works on optimization in ab

stract spaces, which contain the DPS and LPS identification as partic

ular cases, have simplified the general concept of this later approach.

In modeling DPS, different authors assume different classes 

of parametric models, each one representing a particular case adapted 

to a specifio physical system. The "best" choice for a class of mod

els , would be a sufficiently large olass, such that all DPS described 

by PDE could be represented by models M belonging to some subclass of 

C^. This ideal assumption is not usually satisfied in practice; 

mainly because of the great difficulty in developing an identification 

method for such a wide class and, at the same time being applicable 

in non-restrictive conditions (such as on-line identification, normal 

operating record, noisy observations, finite number of measurements, 

nonzero input, random inputs, etc.).As it will be seen in further sec

tions, the identification methods for general models present one or
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more of those restrictions, either from theoretical or practical view

point. Discussions on mathematical description for DPS can he found 

in the literature dealing with the control problem (see, for example,

[lj and [2]).

Another difficulty arises when lie are dealing with numerical 

methods for distributed models. If the solution of PDE is available, 

it comes very often in the form of infinite series which must bo (for 

numerical computation purposes) approximated by a finite one. If the 

explicit solution is not available, some approximation technique (such 

as finite-differences) will be required for simulation. So, sooner or 

later, we will be faced with approximation problems for numerical 

implementation of identification methods in DPS. Discussions about this 

topic can be found in [3]. For numerical methods in PDE see, for 

example, [4]-[l4] (also see references in chapter 3 - part II).

It is obvious that in physical applications, the DPS identi

fication is a more complex problem than LPS identification. One of the 

main reasons for that is due to the impossibility of taking measure

ments by using an infinite number of sensors continuously located all 

over the spatial domain. In this way, some kind of approximation may 

be (and usually is) necessary when dealing with real applications.

Concerning the second remark: The literature discussed in 

this chapter contains over 100 entries related only with DPS identi

fication problem, and it is not exhaustive. Although lots of recent 

papers in this field are continuously appearing, the number of books 

(even those that dedioate few seotions to the subject [l5l) is still

very scarce



Before reviewing the various methods for identification we 

discuss Briefly the underlying motivations.

Physical systems that can he modeled hy PDE (i.e., distrib

uted parameter physical systems) are often encountered in engineer

ing applications: Antennas, wave guides, propagation of electromag

netic and mechanical waves, microwave tubes, transmission lines, gas 

lines, many fluid flow systems, heat exgengers, heat insulating slabs, 

mechanical torsion bars, vibrating beams and strings, physical struc

tures, transportation, environmmental and geological systems, chemical 

and nuclear reactors, nuclear plasma devices, and charged particles 

accelerators; are just a few examples of systems whose state variables 

are distributed in space.

Also the majority of industrial and technological systems 

are characterized by the same fact (e.g., aerospace, petroleum, power, 

steel, glass, cement and chemical industries; ferrous and nonferrous 

metallurgy; drying and evaporation machinery; rolling mills; etc.).

There are a wide range of identification problems for pa

rametric models in the real world of distributed systems. Some exam

ples of fundamental physical parameters appearing in DPS are listed 

below:

1) Electromagnetic properties (e.g., conductivity, permissivity, per

meability, charge density, eto.)

2) Thermal properties (e.g., specific heat, thermal conductivity, 

heat transfer coefficient, etc.)

3) Gas and fluid properties (e.g., density, diffusion constant, vis- 

oosity, expansion and compressibility coefficients, etc.)

4) Material properties (e.g., elasticity modulus)
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5) Chemical properties (e.g., activation energy, reaction velocity 

constant, etc.)

Much of classical and modem, practical and theoretical en

gineering has been concerned with this basic problem. The first ef

forts in identifying such fundamental parameters has been performed 

under rigorously controlled laboratory conditions (normally off-line 

identification assuming noiseless measurements). In this survey the 

major attention in given to the problem of identifying coefficients 

in parametric models^ for DPS from sequential data (time series), by 

using identification methods wich can be performed under less restric

tive environmental and computational conditions.

2.2 - CLASSIFICATION OP METHODS

In the next section we will discuss several identification 

procedures for DPS. Although each one of them treats the problem wider 

different conditions, they can be grouped into three different classes. 

CLASS r i; (Direct Methods) Consists of those methods that use optimi

zation techniques directly to the distributed (infinite-dimensional) 

model.

CLASS F (Reduction to a LPS) Consists of those methods that reduce 

the DPS (described by a PDE) to a continuous or discrete-time LPS (de

scribed by ODE or difference equation).

Such as DPS driven by random inputs and observed through noisy mea
surements, experimental data, normal operating records, recursive 
on-line identification algorithms, oto.).
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CLASS F y  (Reduction to an Algebraic Equation) Consists of those meth

ods that reduce the PDE to an algebraic equation, (if the time vari

able is involved, the class I\j may be viewed as a subclass of Tg when 

a finite time interval is discretized).

The methods in classes ^  and are characterized by two 

stages (as opposed to those methods in class which have a "single" 

stage). The first stage is concerned with techniques for approximating 

the infinite-dimensional state space to a finite-dimonsional one, and 

the second with techniques for parametric estimation.

It is important to note that, in the case of "the tech

niques for parametric estimation are generally applied after that nu

merical approximations have been carried out. In this way, these tech

niques apply to finite-dimensional systems and not all present an infi

nite-dimensional analysis. Actually, from this viewpoint, the "single" 

stage characterizing the methods in class could be split into two 

sub-stages: The first one going up to the point where numerical approx

imation are used for computational purposes (in this sub-stage the 

methods work for infinite-dimensional spaces). The second is concerned 

with techniques used for parametric estimation, which are applied af

ter that point, (in this second sub-stage, the majority of the meth

ods do not present an infinite-dimensional treatment).

Since our classification is based on whether or not a meth

od reduces the infinite-dimensional state space to a finite-dimension

al one in order to apply known identification techniques, these two 

sub-stages appearing in class will not be emphasized.
Pig. 3 shows a diagram representing these throe olasces, 

where the paths (l), (2) and (3) correspond to r^, Tg and respeo-



tively. The bifurcation (2-a ) and (2-B), appearing on path (2) char

acterizes the possibility of reducing the DPS to a discrete cr contin

uous-time LPS. The link (2—3) represents the possibility of reducing 

to an algebraic equation via an ODE.

(~
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STAGE I __ll—  STACE II

Pig. 3* Classification of the Identification Procedures for DPS



tively. The bifurcation (2-a ) and (2-B), appearing on path (2) char

acterizes the possibility of reducing the DPS to a discrete or contin

uous-time LPS. The link (2—3) represents the possibility of reducing 

to an algebraic equation via an ODE.

' I V  REDUCTION TO AN ALGEB. EQn .  1
L ___________________ J

STAGE I — ll—  STAGE II

Pig. 3t Classification of the Identification Procedures for DPS.
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Concerning the methods that will he discussed on section 2.3, 

we can classify them as follows (where the numbers between brackets 

correspond to the references listed at the end of this work).

g A 5 3 r l! Path ( 1 ) : [5<0-[61] , [75] , [80] , [8l] , [83] , [88j , [?l] - [104] .

Path ( 2—a ) » [50] - [53] , [85] .

Path (2-B): [57] , [65] , fro]-[72] , [76] -[79] , p4j , [87] , [89] , [90] ,

' Path ( 3) s [45] , [46] , [54] , [55j , [86].

Path (2-3): [6é] .

CLASS rc:

CLASS T ..:

The majority of the methods belonging to Tg and Fj use the 

following techniques for stage It 

Path (2—A)s Finite-differences^: [5°] - [53] , [85] .

Method of lines^: [57] »[87] •

Method of characteristics (e.g., see [73],[74])* [7°]“ [72]* 

Galerkin's method (e.g., see C7I,C101)s [76]-[79j.

First order perturbation: [84].

_Integral transformations: [65] .

Path (2-3): Method of line + Integral transformations: [66]. 

Finite-differences: [54J»[55]•

Integral transformations: [45] »[46],[86].

Path (2-B):

Path (3):

Finally we mention the most pertinent techniques used for 

parametric estimation in the DPS identification problem. These tech-

Very often finite-difference techniques for approximating partial 
derivatives (e.g., see [4]i[8],[l3]) are also used by methods of 
class for numerical implementation (e.g., see [80] ,[83] ,[97]» [lOl]).

 ̂ Basically, finite-difference techniques applied only over the cpa^ 
tial domain (e.g., see [67] — [69])•



niques are concerned with stage II for methods in T2 and F^, and with 

the "single" stage for methods in I\̂ .

1) Gradient (Conjugate Gradient - Steepest Descent): [56]-[6l] , [71] ,

[76>[79] , [80J , [81] , [97] , [loo] , [10 1] .

2) Stochastic Approximation: [50]-[53] ,[70] , [72] , [85] .

Filtering): [58] , [59] , [88] , [89] .

4) Kalman-Filter: [84]•

5) Nonlinear Filtering: [77j- [79] •

6) Nonlinear Programming: [83|.

7) Maximum Likelihood: [51] , [l03] .

8) Statistical Decision Theory: [51] *

9) Pattern Search: [77] , [79] •

10) Quasilinearisation: [57] >[6l] , [90].

11) Methods for Solution of Algebraic Equations: Class

Generally, in case of methods in olass these estimation

techniques are not developed using infinite-dimensional analysis, as 

commented before. For an interesting study concerning infinite-dimen-

3) Least Squares (Sequential Weighted Least Squares - Least Squares



niques are concerned with stage II for methods in and Tj, and with 

the "single" stage for methods in

1 ) Gradient (Conjugate Gradient - Steepest Descent):

[76j-[79| ,Q80j ,[81] , [97] , [loo], [lOl] ..
[56]-[61], [71]

2) Stochastic Approximation: [50j-[53j ,[70] , [72] , [85J •

3) Least Squares (Sequential Weighted Least Squares — 

Filtering): [58] , [59] , [88] , [89] .
Least Squares

4) Kalman-Fi Iter: [84] .

5) Nonlinear Filtering: [77j-[79] •

6) Nonlinear Programming: [831 .

7) Maximum Likelihood: [51] , [l03] .

8) Statistical Decision Theory: [51J .

9) Pattern Search: [77],[79].

10) Quasilinearisation: [57j , [6l] , [90].

1 1 ) Methods for Solution of Algebraic Equations: Class r3‘
Generally, in case of methods in olass these estimation

techniques are not developed using infinite-dimensional analysis, as

commented before. For an interesting study concerning infinite-dimen

sional gradients of functionals over an infinite-dimensional parameter 

space, see Chavent [lOO].

2.3 - A CONCISE GENERAL REVIEW

The first attempts to identify parameters in DPS were mainly 

due to investigations dealing with the "Inverse Problem in Heat Trans-
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fer" [l6j- [27]4. Two different approaches were initially used to attack

the identification problems l) Methods based on the analytical solution

of PDE [28]-[38],[141], and 2) methods developed in frequency domain

[39]-[42] (e • G«, identification of some coefficients of a transfer func
5

tion approximating a linear model for distributed systems).

The purpose of this section is a brief review of the more 

relevant literature dealing with parameter identification in distri— 

buted systems. The bibliography mentioned here has been published dur

ing the last decade, and it is widely available.

Some survey papers have already appeared in this field.

Kozhinsky and Raobman [43] and Rajbman [44]» discuss the work 

done in the Soviet Union. They present an extensive list of references 

and lots of applications. A general inspection of system identifier 

tion problems (both for LPS and DPS) is also considered [44], including 

analysis of mathematical models accuracy [43].

A recent survey was presented by Goodson and Polis [3]• They 

consider a "step by step" approach^ wich treats the identification prob-

4 Although the label "Inverse Problem" has originated from classical 
solutions of identification probloms, it is still used in very re
cent papers [92]-[94] , [l03] , [l05] , [l06] , where a modern abstract 
approach is applied to solve the old problem.

5
J As observed in the last chapter, these models are classified as non- 

parametric ones. Since we are interested only in parametric models, 
suoh identification methods will not be discussed here.

^ This approach has been considered previously by tho same authors 
in [77], [79]» See also [l43] for a lattor and concise version of [3]
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lem by separating it into seven independent subproblems. Ag well as a 

collection of five suggestions for further research in this field, 

they also present a very interesting bibliographical analysis where 

the major techniques used for identifying DPS are displayed together 

with their respective frequencies of usage. The state estimation prob

lem is also considered.

A large number of methods have been developed to solve the 

problem. The great majority of them is restricted to particular cases 

(such as specific classes of parametric models, boundary conditions, 
input signals and output measurements).

Ferdroauville and Goodson [45]»[46] used integration by 

parts (an extension of Shinbrot's technique"^) to roduce the distrib

uted model to a set of algebraic equations. The method is applicable« 

to nonlinear models (where extraneous terms may bo included) and the 

case of space-varying coefficients is also considered. Normal oper

ating records and experimental data may bo used. The main limitations 

of the method ares l) It is not convenient for on-line applications,

2) each model has to be considered separately, 3) it has a restricted 

applicability, since it requires the choice of a suitable function 

(wich is not always easy or possible) to multiply the PDE in order to 

perform the integral transformation and, 4) no noise observations were 

assumed.

7 The "modulating function method" of reducing ODE to a set of alge
braic equations proposed by Shinbrot [47]» was previously utilized 
by Loeb and Cahcn [48], and TaJcaya [49] for identifying parameters 
in LPS.



Zhivoglyadov and Kaipov [50] applied finite-difference [4], 

techniques to reduce a time-invariant DPS (whose model is not 

necessarily linear) to a discrete-time LPS. Estimates for constant 

unknown parameters were obtained by minimizing a performance criteri

on. In this v/ay, they compute the gradient of a cost function for each 

different model. Assuming noisy observations taken at discrete points 

in space, a stochastic approximation algorithm is used as a searching 

scheme for finding these estimates. The method is suitable for on-line

applications. In [5 1] they develop some DPS identification methods
*

based on statistical decision theory, maximum likelihood and stochastic 

approximation. In [$2\ the accuracy of a stochastio approximation meth

od is analysed. The work of Zhivoglyadov and his group is summarized 

in [53].

Collins and Khatri [54], [55]» assumed a deterministic class 

of DPS described by a time-varying model which can be nonlinear in the 

dynamics, but must be linear in the parameters. Based on this linearity, 

the q-constant vector to be identified is placed in an explicit form, 

and finite-difference techniques are used to approximate the partial 

derivatives. This procedure reduces the identification problem to that 

of solving a q-dimensional linear algebraic equation, where a q x q -  

matrix must bo inverted. The observations are taken at a finite number 

(>q) of points in time and/or space, and extraneous terms may be in

cluded in the original model. Normal operating data and on-line iden

tification may be used, but measurements are assumed to be noiseless.

Seinfeld and Chen [56j-[6l] developed methods for nonlinear 

DPS identification based mainly on the steepest desoent algorithm. In 

[56], systems modeled by hyperbolic or parabolic PDE with constant par-
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rameters are identified. A steepest descent algorithm is used as an 

optimal scheme for minimizing a quadratic error criterion, where the 

concept of sensitivity coefficients is introduced. Analysis of output
q

transformations and observability for DPS are developed, but no noise 

in the observations is assumed. The method is not convenient for on

line applications and requires integration of PDE. In [57] and [6l] 

they used steepest descent, quasilinearization and collocation tech

niques for nonsequential (off-line) estimation of constant parameters. 

Optimal location of measurements is also considered. The identifica/- 

tion of space-varying parameters is developed in [58] and [59]» where 

two techniques are presented: steepest descent and least-squares filter

ing. In [60] they considered estimation of time and/or space-varying 

parameters, and also of those which govern the spatial domain. The 

identification problems are formulated as optimal control problems 

and necessary conditions for optimality are derived. The techniques of 

steepest descent and conjugate gradient are applied. In [57]-[6l] they 

assume noisy observations.

Tzafosta3 [65] considered the estimation of constant param

eters in linear stochastic DPS, which can be reduced to an equivalent 

LPS by means of integral transformations. Although the method is ba- 

sioally the same used by Perdreauville in [46] and no noisy observa

tions have been considered, this was one of the first attempts to iden-



rameters are identified. A steepest descent algorithm is used as an 

optimal scheme for minimizing a quadratic error criterion, where the 

concept of sensitivity coefficients is introduced. Analysis of output
O

transformations and observability for DPS are developed, but no noise 

in the observations is assumed. The method is not convenient for on

line applications and requires integration of PDE. In [57] and [6l] 

they used steepest descent, quasilinearization and collocation tech

niques for nonsequential (off-line) estimation of constant parameters. 

Optimal location of measurements is also considered. The identifica

tion of space-varying parameters is developed in [58] and [59]» where 

two techniques are presented: steepest descent and least-squares filter

ing. In [60] they considered estimation of time and/or space-varying 

parameters, and also of those which govern the spatial domain. The 

identification problems are formulated as optimal control problems 

and necessary conditions for optimality are derived. The techniques of 

6teepest descent and conjugate gradient are applied. In [57]-[6l] they 

assume noisy observations.

Tzafc3tas [65] considered the estimation of constant param

eters in linear stochastic DPS, which can be reduced to an equivalent 

LPS by means of integral transformations. Although the method is ba- 

sically the same used by Perdreauville in [46] and no noisy observa

tions have been considered, this was one of the first attempts to iden

tify DPS driven by random inputs. He assumes a discrete-time analogue 

of the original model and uses integration by parts to get a canonical 

DPS. In [l40] a particular class of discrete-time DPS is considered.

Studies concerning observability in DPS can be found in [l] , [62] - [64].
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Fairman and Shen [66] modified the method of Perdreauville 

and Goodson [46] of reducing the model for DPS to a set of algebraic 

equations. They applied the method of lines to convert PDE into ODE^. 

This way, they avoid two restrictions required in [46], namely: off

line numerical integration and complete knowledge of the state, hoth 

over the spatial domain. In a second step they reduce the ODE to a 

set of algebraic equations by using the "moment functional method"*®. 

This procedure has been applied to identification of constants param

eters in one-dimensional wave and diffusion equations. A particular 

case of a time-varying coefficient was also considered. The observa

tions were taken at a finite number of points in space, but were as

sumed to be noiseless.

Carpenter, Wozny and Goodson [70]-[72], used the method of 

characteristics [73] , [74] to reduce a linear first-order PDE to a 

set of ODE. Estimates of unknown parameters (which may depend on the 

independent variables and states) were obtained by minimizing a qua

dratic performance criterion. Stochastic approximation algorithms 

were chosen as a recursive searching scheme for finding the estimates. 

They assumed noisy observations and limited available measurement 

transducers, but the on-line applicability of the method depends on 

the required performance criterion.

^ The method of lines (e.g., see [67]-[69]) reduces the DPS to a con
tinuous-time LFS (i.e., difference-differential equations).

*° Basically, this method consists in multiplying the ODE by a suit
able modulating funotion (they used a modified form of tho Poisson 
probability density function) and then integrating by parts.
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Ruban Q75) presented an algorithm for identifying DPS hy 

means of sensitivity functions. This method is similar to that pro

posed hy Seinfeld in [56].

Polis, Goodson and Wozny [76}-[79j proposed a step hy step 

approach to the DPS identification problem. They assumed an approxi

mate solution for the distributed model, based on a finite set of 

orthogonal functions over the spatial domain. The Galerkin's oriteri- 

on [7]* [lo} is used to reduce the PDE to a set of ODE. The constant 

parameters are then identified by means of known techniques for LPS 

identification. Three optimization schemes were considered to mini

mize a performance criterions steepest descent, nonlinear filtering 

and pattern search. Decision for measurement locations in the spatial 

domain were taken based on the G-K observability [62J. Noisy observa

tions and extraneous terms were considered.

Di Pillo and Grippo [80 ] applied the "epsilon technique"^ 

to estimate constant parameters and states in linear DPS. Noisy ob

servations were taken at a finite number of points in the spatial 

domain, and finite-difference techniques were used for numerical im

plementation of the method. In [8l] they proposed an alternative pro

cedure, by using an approximate solution, to avoid finite-difference 

approximations.

Hamza and Sheiran [83] presented a method for identifying 

constant and time-varying parameters in DPS. Non-linear programming 

was applied to minimise a discrete version of an appropriate perfor-

11 Basically, the e-technique consists in minimizing a new cost funO' 
tion, which is obtained by adding to tho original one a ponalty 
term. For details see [82]•



mance criterion, where finite-difference techniques are used to ap

proximate the partial derivatives. In the case of linear models and 

assuming the instantaneous error squared as a performance criterion, 

the method reduces to one similar to that proposed "by Collins and 

Khatri in [55]» Thi3 identification procedure is suitable for on-line 

application and uses a limited number of sensors along the spatial 

domain. Examples considering noisy measurements, extraneous terms and 

experimental results wore included.

Bhagavan and Nardizzi ([84} considered the identification of 

DPS modeled by linear PDS with constant coefficients. First-order per

turbations were used to reduce the problem to one of estimation in LPS

by means of Kalman filtering. The method is suitable for on-lino ap-
12plications and assumes a finite number of noisy observations.

Several papers dealing with the identification problem in
Ts.

DPS were presented in IFAC symposiums and other international confer

ences. Some of them have already been commented on here.

Diamessis [86] used integral transformations and approximar- 

tions by Chebychev polynomials to reduce a linear PDE with constant 

coefficients to a set of algebraic equations. The method is not suit

able for on-line identification and does not assume noisy observations.

Luckinbill and Childs [87] applied the method of lines to 

reduce a quasilinear second-order PDE to an ODE, which is augmented by

In chapter 4 we propose a new identification method for a class 
of linear DPS operating in stochastio environment. The method is 
based on the stochastic approximation theory and a rather simpli
fied version of it can be found in [85].
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adjoining the constant parameters. A Newton-Raphson-Kantorovich ex

pansion is used to solve the resulting linear boundary value problem. 

The identification procedure can operate under on-line conditions, but 

no noisy observations were considered.

Sherry and Shen [88] presented a method for parameter and 

state estimation in linear DPS, by using a sequential weighted least- 

squares algorithm. A finite number of noisy observations was consid

ered, and the method is s\iitable for on-line applications.

Shridhar and Balatoni [89] used splines to reduce the DPS 

to a continuous-time LPS. A recursive least-squares procedure was ap

plied for parametric estimation.

Chaudhuri [90] proposed an identification method for DPS 

based on differential approximation and quasilinearisation.

A modern abstract approach for DPS identification has been 

considered recently by Chavent [9lJ-[l0lJ and others [l02"]-[l06].

In [97] and [lOl], Chaveht proposed an off-line identifica

tion method for DPS described by a general class of deterministic mod

els, where no specific Probabilistic treatment for noisy observations 

was considered. The method is developed by functional analysis tech

niques and based on the Lions’ [l07] approach to control theory for 

DPS. It consists of minimizing a performance criterion (the quadratic 

error of output, which is nonquadratic with respect to the parame

ters) , by using a conventional gradient technique (the steepest de

scent method was used). In order to compute the gradient of the per

formance criterion, he introduced the adjoint state (solution of ad

joint state equation). The gradient is then derived as a functional 

of the adjoint and system states. Its computation requires the simul



taneous solution of both system (given by the distributed model) and 

adjoint state equations. Fundamental problems in identification, such 

as existence, uniqueness and choice of minimization schemes, were dis

cussed in some detail. Two types of models were considered: 1) Those 

with a finite number of constant parameters (finite-dimensional param

eter space) and, 2) those with varying parameters as functions of in

dependent variables, or states (infinite-dimensional parameter space). 

Applications were also included where discretization techniques, such 

as finite-differences, are applied for numerical implementation of the 

method; which was shown to work with a small number of measurements 

in space and/or time. In [lOO] he considered the identification of DPS 

modeled by parabolic FDE with space and state-varying parameters. Koa»- 

surements are taken by a finite number of sensors located in the spâ - 

tial domain. These sensors supply a mean value of the output over a 

small neighbourhood for each observation point. In this way, perturba^- 

tions of measurements were considered, but a stochastic modeling for 

noisy observations is still lacking. As in [97], the method presents 

a rigorous mathematical treatment for minimizing a least square error 

criterion. An infinite-dimensional gradient of the performance crite

rion with respect to the parameters was defined, and expressed in terms 

of the system and adjoint states. The optimization algorithm was the 

steepest descent, and a detailed discussion on the uniqueness problem 

was also included.

Balakrishnan [l02]-[l04] considered the system identifica

tion problem (in particular, DPS) from a stochastic viewpoint. In [l03] 

he presented a general abstract approach for identifying a class of 

linear DPS, previously considered by Lavrentiev [l05] and Marchuk [l06].



A stochastic formulation in Hilbert space was proposed, where addi

tive white Gaussian noises are assumed to corrupt both input and ob

servation process. The theoretical development was based on the semi

group theory of linear operators (as opposed to that proposed by 

Chavent in [”971 and [100]), for time invariant systems operating under 

continuous-time assumption. The infinitesimal generator of a strongly 

continuous semigroup appearing in the model, was supposed to be de

pendent on unknown parameters. In order to obtain asymptotically unbi

ased and consistent estimates of those parameters, the "a posteriori" 

maximum likelihood teclinique was utilized. In £l02] he considered the 

identification problem for both LPS and DPS, operating in a stochastic 

environment. The LPS case is just slightly mentioned, and shown to be 

included in the general model.

Other types of "identification" problem for DPS have appear

ed in the literature. Jones and Douglas [29]]» [30] identified a time- 

varying coefficient in a parabolic PDE. Since this coefficient neces

sarily appears in the boundary conditions and the identification method 

takes measurements only at the boundary, this problem is reduced to 

that of identifying boundary conditions. Ward and Goodson £l08], ["109J 

and Alvarado and Hukundan f139J also investigated the identification of 
boundary conditions. V/ozny, Carpenter and Stein fllOJ presented a meth

od for identifying Green's functions of DPS. Cannon [ill] and Ikeda, 

Miyamoto end Sawaragi [142] considered the determination of unknown 

sources for a class of PDE. Saridis and Padavas [ll2], [113] identi

fied solutions in DPS, but this was really a state estimation problem. 

The term "identification" was also used by Phillipson [ll4]> £115] l>irfc 

again this was a state estimation problem.
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Some practical subjects have stimulated several researches 

in this field. Problems related to physical structures, heating 

processes, transportation, economy, ecology, geology, chemical and 

environmental sciences; are just a few examples where applications and 

experimental results in identification of DPS have already been devel

oped (see, for example, [l6]-[26] , [38], [39] , [6lj , [9?] » [lOl] , [ll6j-[l36j ).

Several conclusions can be drawn from the topics covered by 

this chapter. Some of them are presented in the next section. The clas

sification introduced on section 2.2 can give us a general idea about 

the main techniques currently used for solving the identification prob

lem in DPS. For a further collection of observations and comments con

cerning both with system identification and state estimation in DPS, the 

reader is referred to a previous survey by Goodson and Polis [3], [143]•

2.4 - coiicLusio:rs

From what was discussed here we can select some basic points 

which deserve to be emphasized.

1) The reduction to finite-dimensional state space seems to be the 

most popular method used in the DPS identification problem (Meth

ods of class Tg* the distributed model is approximated by a lumped 

one before any optimization is carried out).

2) Among the approximation techniques, finite-differenoes is one of 

the most used. Other techniques for dealing with distributed mod

els, such a3 finite element method (e.g., [l37]), should be inves

tigated for identification purposes.



3) As remarked before, sooner or later, w© are faced with some ap

proximation problem (either for reducing to a finite-dimensional 

state space, for numerical implementation, or for physical appli

cations). The question of when to use approximation techniques, 

before or after the optimization, has no final answer yet. Athans 

[138J suggests that any approximation should be applied-..s late as 
possible in order to retain the distributed nature of the model, 

until numerical results are required.

4) Among the optimization techniques for parametric estimation the 

gradient method is the most popular. Its "probabilistic version"^, 

stochastic approximation, have also been successfully used by sev

eral authors.

5) No general method for a large olas3 of models operating in non-re- 

strictive conditions has been developed, and only a few authors 

consider the case of stochastic environment (random inputs and 

noisy observations).

6) There has been a lot of recent literature in this field, but it 

is still difficult to make any comparisons, because of the dif

ferent models considered.

7) Although other survey papers dealing with DPS identification have 

already appeared [3] ,[44] » [l43j » this seems to be the first at

tempt to inspect the more relevant techniques in this field with

out confusing two different problems, namely: system identifica

tion, and state estimation.

^  Prom a particular viewpoint, the stochastic approximation algo
rithms may be thought as a "probabilistic version" of the gradi
ent method.
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CHAPTER 3

MATHEMATICAL PRELIMINARIES

PART I: MODELS FOR DPS

We have previously defined a DPS as a dynamic system that 

can he modeled hy a PDE. We begin this chapter by presentine a fer

mai description of such models, emphasizing a special subclass of 

linear models which will be considered in chapter 4 for identifica
tion purposes.

3.1 - 07T A GENERAL CLASS

A general class of models for DPS described by PDE can be 

formally written as follows:

Dynamic equation: L(u,a,s) = f(s) + w(s) (l)

Boundary conditions: Lr(u )|x=xi ■ fr (*' »t) + wp(*' »t)
Initial conditions: L (u)|. = f (x)+w (x)o' |t=»o o o' '

where:

i) x « X, a simply conneoted open set in Rn: the spatial domain,

ii) x*«r, tho boundary of X.
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iii) t €■ Z, an interval which can he (0,T], or (0,oo): the time 

domain .

iv) s « (x,t)efl» Xxfc.

V) n(s) is a real-valued function on iL belonging to an appro

priate function space Il(Q): the dependent variable,

vi) ,a(s) is a vector »fith a finite number of components which 

arc real-valued functions on ii belonging to an appropriate 

spaces the parameter vector.^

vii) f(s), fr(x',t) and fQ(x) are real-valued functions trail,.

and X, belonging to appropriate function spacessthe input, 

boundary and initial functions, respectively,

viii) w(s), wr(x*,t) and w q (x ) are real-valued random fields^ {w(s); 

BiilcRn+1}, >t); (x',t)« r3t'5cRn+^} and{v/o(s); x e X

c  Rn}‘. disturbance processes corrupting the input, boundary 

and initial functions, respectively,

ix) L, Lj, and Lq are partial differential operators. L̂ , and Lq 

are concerned with the boundary and initial conditions, and 

L represents a parametric distributed model.

A brief word about what we mean by "appropriate" space: The ap

propriate space associated with the parameter vector a(s) (i.e, the param

eter space) will become clear later in the chapter 4 where the identi-

A more general case can be considered, where the parameter vector 
_a(u,s) also depends on the dependent variable u(s).

The term "random field" is used to denote a collection of random 
variables indexed by points taking values in a subset of Rn, as a 
natural extension of the concopt of stochastic processes fl].
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eter space) will become clear later in the chapter 4 where the identi-

A more general case can be considered, where the parameter vector 
_a(u,s) also depends on the dependent variable u(s).

The term "random field" is used to denote a collection of random 
variables indexed by points taking values in a subset of Rn , as a 
natural extension of the concopt of stochastic processes fl].
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fioation problem is formulated. Of course, the structure of this space 

depends on the particular approach used for a specific identifica

tion problem. On the other hand, an appropriate space containing the 

independent variable u (i.e., the state space) is a function (or dis

tribution) space which comes to be suitable to deal with a specific 

problem in PD3 ( e.g., some Sobolev space H(C1) ^). Considering our par

ticular approach to the DPS identification problem (Gee chapter 4), 

there will be no need to go into details related with H(fl); and there 

are two basic reasons for that;

1) We assume the existence and uniqueness of the solution for a given 

DPS modeled by a particular PDE.

2) Vie consider (for identification purposes) an approximated finite

dimensional version for modeling DPS.

3.2 - LI WEAR I'PDELS

A class of linear models of K th order can be written, most 

generally, as follows;

L(u,a,s) = ^  a^s)
i<In+1 at5’3xjl .. dx

ru(s)

^ Roughly speaking; Il(fi) is a Banach space of functions on£l, equipod 
with a suitable norm, such that all partial derivatives of u up to 
the highest order involved in the model L are in Lp(fl). If p » 2 
H(£l) is a Hilbert space. For details see, for example, [ 2j and [3j.
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there will be no need to go into details related with H(£1)j and there 
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DPS modeled by a particular PDE.

2) We consider (for identification purposes) an approximated finite
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generally, as follows:

L(u,a,s) Y L  . ai(s>'
i«ln+1

9"
atia3xjl c>xin
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with a suitable norm, such that all partial derivatives of u up to 
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whore:

i )  M i s  a  f i n i t e  i n t e g e r ,

i i )  I  = { 0 , 1 , • . . , k}  .

i i i )  i . e l  5 V  j = 0 , l , . . . , n .J
iv) i = (i0 ,i1,...,iii) e ln+1s an (n+l) - tuple index.

v)  m = • i  . and such t h a t  0 £ m fc M.0

So ,  i n  t h i s  c a s e ,  th e  dynamic eq u a t io n  a )  can he w r i t t e n  

i n  th e  form

» r-1 3mai#(s) ---- u(s) = - Y  a.(s)---T---r-------- ru(s) + f(s) + w(s)
•t1* i T i n+1 at^axj1 .... 3xJ»

i *■ i*

where i* = (M,0 ,...,0)eI 5 or equivalently (assuming a^Cs) ,4 0, 

^s€fl) in a state representation:

— -u(s) = A(s) u(s) + b(f(s) + w(s))

where A(s) is a MxM-matrix of linear spatial-differential operators 
whose parameters may depend on s=(x,t),.b is a vector in R1'1 (e.g., 

b = (0,...,0|l)) and u(s) is a state vector with M components.

Remark: Vie have defined a(s) and u(s) as "finite-size" vec

tors of functions representing parameters and state, respectively. It 

is important to note that:

1) The parameter space may he infinite-dimensional since any compo

nent a^(s) of a(s) can he a function of x for each time t«Z«

2) The state space is obviously an infinite-dimensional one, since 

fox1 each time teTS, the components of u(s) are certainly functions 

of x.
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A particular c.rcc: In chapter 4 we will "be 

terested in the following special subclass of linear 
elss ̂

particularly in- 

parametric mod-

L(u,a,x) - u(x,t) - u(x,t) ; x e X = R (2)

where and are linear partial differential operators such that

„ r’N m
Lt u(x,t) = 2_ *(x) — - u(x,t)
1 m=0 m *tm

tr c—»M
Lx u(x >t) “ lL  a (x) — - u(x,t)X rn-l m *xm

and the time-invariant (M+IT+l)-dimensional parameter vector is given "by 

a = a(x) •= (“(x)».#(x)) e RW+IT+1

vjith

“ (*) - (^(x).... <Xji(x)) € RM

¿(x) = »•••>^u(x)) € n

4 For discussions (both from theoretical and practical viewpoints) 
on DPS whose models are included in such subclass, see for example



PART II s HIGHER ORDER FINITE-DIFFERENCES

The classica.l finite-difference method is a well known tech

nique used to obtain approximations for partial differential equations, 

mainly for second-order equations (e.g., see [6]-[l9]).

The main goal of this second part of chapter 3 is to intro

duce a brief discussion of finite-difference techniques for approxi

mating higher order partial derivatives. Ho attempt wi 11 be made to 

present a rigorous treatment dealing with specific topics such as sta

bility, errors, and other technical aspects concerning with numerical 

analysis of finite-difference techniques; since this subject is wide

ly available in the current literature.^

The results obtained here will be used in the next chapter 
for reducing DPS to LP3.

3-3 - SHIFT, DIFFERENCE AND SLOPE OPERATORS 

Notation;

l) The set of all nonnegativo integers, of all positive integers, of 

all even integers (including zero) and of all odd integers are de

noted by Z, Z+ , Zc and ZQ, respectively; 5

5
J The interested reader is ref erred to the bibliography concerning 

with this second part of chapter 3> which is listed at the end of 
this work.
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Z - {0,1,2,...)

Z+ - {1.2,3,...}
Zfi e {0,2,4,• • . }

ZQ ■ {l*3,5»...}

As usual the three dots (...) indicate a presumed understanding about 
what is omited.

2) The symbols ( ) and (**) denote integer valued functions defined 

on Z as follows:

m
2 * if m e ZI

m + 1 
2 1 if m € Z1

m
2 * if m e Z1

m - 1 
~ 2 5 if me Zi

Those functions will be extensively used in the remainder of this work 

and so we recall some of their main properties:

i)
— o’m + m *= m

ii)
■ «0 __>
m- 1 « m ; m+ 1 0 m

iii) m+ 1 m m + 1 j m - 1 » m - 1

0 j if me Z
iv) — *N> —m - m b 2m - m = m- 2m =* < e

.1 5 if me z0

Definition (D - 3.1): let B(R) be the linear space of all 

bounded real-valued functions on R. \lo define the "pth-order delta 

shift onerator"

ft



sj * B(R) —  B(R)

whore f is a fixed positive real constant, an follows: 

s£ f(x) . f(x+pi)

for any f £ B(r ) and p-e R. ̂

Renarks:

1) For any p£!i, sj? is a linear operator on B(n) under the usual def

inition of addition and scalar multiplication.

2) Any finite set of operators {s^1} is linearly independent. That is, 

for any finite set of scalars

ZLc* sf1 = 0 *-► <*. . 0 for all i. ̂ * 0 1

3) Ŝ 5 is invertible for any p«R.

»? SJP = S-P sf m s° = IS i  s s s

where I stands for the identity operator on B(r ).

Three special linear operators on B(r ) are derived from sP
S

as follows:

Definition (P - 3.2): The "forward difference operator":

^ With © = -pS ve pet sj* = S0 , the "delay" operator: S0 f(x) = f(x-s). 
For further details on shift or d.olay onerntors see, for example, 
[20]. In the finite-differences literature the symbol E is used 
instead of S to denote shift (also called "displacement") operators.
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at or" :

A. = - S° » S -I .s S S S

Definition (D — 3.3): The "backward difference operator":

<  ■ i - 3!1 - '-» i1 •
Definition (P - 3.4); The "m+1 th-order centered slope oper-

“7 l ■ - f  i ^  - * •

Remark: A -1 is not the inverse of A. since A  A -1 = A11 A. * I ------ S S s S S S

These operators, mainly SP and D?, will he used for approxi-0 o
mating higher order derivatives in the next section. But before going 

through that we need to prove the following results:

Proposition (P - 3.1):

(sp + aSq)m = Z T  am"i (^)Smq+i(l>-<l)
S S' i=o Vi/ *

where p, q and a are reals (a*0), neZ and 

(i) - m • / [ i ! (m-i)f] .

Proof:

Both cases, m=0 and m*l, are automatically satisfied by simple substi

tution. How assume the following equivalent proposition:

r -i in # # .
( a s V  (Sp+ asq )m o ¿L * . (3)

4 b 8 ioQ xi/ 6
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Then
( a S j ) - ( m+1 ) ( s P + a  < £ )" » !  .

( a S ( S *  + aSj)18 a-1 S"* (sj+ aS*) =

(a-1 sir-I) - i=0 ' ' 4 8

a-(i+l) ^ j S(i+1)(P~a-) + ^  a_i (™) Si p̂-<1̂

g *1 a_1 (i-i)sii(p‘ ,) * S

°(>{° * "_1 [ O  * (i)] si (l>',> * •■ <**1)C)s{“ iKm>
Since

we get:

0 5 0 * o - C ? 1)

O - (mo1) - l » C )

(a S’)’(m+1) ( s ^ . s j r 1

0 /m+1
a (o K *

r a - n v
i'-i

z r 1
i=0

a-1 (mt1)

which proves, hy induction, the assumption (3)« Q

Particular cases: 

l) a = -1, p e 1 and cl = 0:



2) a

A* = (s -i)m * £  ( - D ^ Q s 1
i=0

-1, p = 0 and q = —1

where

Proof:

A T  = (i-s"1)m = £ ?  ( - D ^ H s I ' 1”
0 C isrO ' 5

Proposition (P - 3.2):

i

j if m = 0

j^irm a c -1)1-1 , if a i Z j,m i.l Sl s'

o 8 * * *s

S S As' A:

a) m = 0 and m = 1, trivial by (D - 3*4) •

b) m > 1: Assume

,■“ 1 -1 * 4
i-l

So, by (D - 3.4), wo get:

D J S 11 i=l ̂  j
i-l

m+l i=l S

and the proof (by induction) is completed. Q

52



I'ercma (h - 3.1): The mth-order centered slope operator can 

he v/ritten in terns of a finite series of delta shift operators a3 

folloiis:

, „. zs

and this representation is unique.

Proof:

Existence:

a) m = 0 : D° = S °  -  I  (trivial) . 

h ) m «Z+ : By (P -  3 . 2 ) v;e have

¿ W  ••• •- i f m € Z e

A SA «X A «1 A 8A 51 5 i f m € 2 0

(A A“1)*?" 5 if me Zc

m-1
(AjA"1) 2 j if me Zc

But

(A A -1)"’ 
S S

1 ; if m t Z

"i 5 if m e Z

AsÂ  = (sr x) (V si_1) = V 2I+i x = (s« - srl)2 j
then hy (P - 3.1) with a=-l and p . - j e J  v/e get
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(sJ-s^)2 S -

Hence:
i=0

lm T>™ = E 2m (-l)2^ 1 (2.S )3i-S 
4 i=o '1 ' S

I : if raeZe
■ ; if m e Zq

1>-i) m e Z  —«• 2m = m and the existence is proved for m-e. Z .

b-ii) m e Z —m 2m = m -1 and (-1)2m-i (-1)m-l-i / , \m+1 -i (-1) . So:

SmDsm= L "  ( - 1 )"»1- 1 ("71) s!-S (s - 1) =4 i=0 \ i / S s
E m-1 , - . _ o> rim-1 _ _ . ro

(_1)m+i~i Sj+1—m - L  r : 1) sr m =
i=0 ' 1 7 8 i=0 ' 1 8

. ZL" (-1)"-1 (j;}) s‘-a - I T 1 (-1)"1-* C1-1) s‘-s .

n  o m  . _ - . . . to mQ „-fn > / .vm-if/m-lx /m-l\1 t,i-m /m\ _m-m
s + T T i ( } L C i- i)  -  C i  ) J  3S + U ) ss -

- (-Dm ( S K %  Z T  =
i*=l 0

Z m .  ̂ . co

i=0 Xl/ 4

COm-m

and the existence is proved for m-eZQ. 

Uniqueness:

Set

- i  - <-1>m"i (i)7i;
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such that

E m . co
■ *1 si~m6 i=0 1 «

Now suppose also that

Dm = ß. S1"m .
8 iTo 1 «

Then

Z
m . *. <a ■ m

i=0 1 1 $

hy independence,

(ot. -/Sj) = 0 for all i = 0 ,l,...,m, □

Lemma (L - 3.2): Let Sg and Dg he operators on B(r ) as defined 

before, and ̂ 6m ; m = 0,1,...,M} he a set of M+l real constants. Then:

1) There exists an unique set of M+l real coefficients {cm ; m = 1,2,... ,I'+l} 

such that

<TM , V ’M+1 m M i2^ 6m <  = <L s Sm_M 1.

2) Moreover,

"M+lT'12_ s = 6
m=l

3) and each of theese coefficients is eiven in terms of j<> 5 m = 0,1 ,... ,m }



such that

D" - ¿ 1  e«. srm • « tó 1 «

Now suppose also that

r->m . to
Dm = 2_, B. S1-m •
S U O  1 «

Then
Z m . fl

. ( « i - V  sj-m0 0 iaO 1 1 5

hy independence,

(*.-0 .) = 0 for all i = 0 ,l,...,t □

Lemma (L - 3»2): Let Sj and he operators on BCR) an defined 

hefore, and {6m ; m=0,l,...,M} ho a set of M+l real constants. Then:

1) There exists an unique set of M+l real coefficients { sm ; m = 1,2 ,... ,T'+l} 

such that ■

Z M v-*M+l „  .
, Ó pm . > -

=0 m «■m=0
¿L s"
m=l

2) Moreover,

r-̂ M+1
2_ s =<S0m=l m 0

3) and each of thoese coefficients is given in terms of |<î j m ■ 0,1, • • • ,m }
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as follows:

Si+M+1 “
r-i M — .
L  n r
m=ms(i)

, m s £ m  
Vl+m/

where

' -2i ; if i é -1

ms(i) - « 0 ; if i = 0

2i -1 5 if i à 1

for each i = -M,-M + l,.. . ,M.

(4)

(5)

Proof:

1) By (L - 3.1):

6 Dm « Î2L ]Tm („u'n-i/mx i-
m s sm iTo *

^  Z m (-i)”“1 (."Ms* • 
sm Vl+m' «

Hence

S-1̂ /f _m Y ’** 6m T1 m / , »m-i / m \ _i* m D$ " jin -1 c\j  ̂ (i+m) Scm=0 ô m=0 à i=-m *

.1O  Pi
ri - Xi=-M S

for some set of M+l coefficients {r^ ; i

representation of £ "  <j D? in te: m*0 m «
independence of {s~^,.. . ,3**}. Then defining

of [ s f

r pj i-M-1

CO ”  | Moreover, this 

, nust he unique hy

wo have proved the first part.
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2) Let Le written in the following form;

- „ r~*rn CS»
DJ -  t  (0 • (6)

i=0

So, hy (L - 3*1), we have

Since

we get

- p  (Î)

V_,m . t-iB
2 _  (") - (-i)ra z l  (-i)1 (") - <i*=0 i=0

1 5 if m nr 0 

0 ; if m * 0

r“im2-, PM) 60 ' if m = 0

ioO 0 ; if m + 0 (7)

Then, hy (6) and tlie result of the first part, we have

r—iM c—iM c-»m . cO r—iM+1 -
y\ 6 Dm . y  y  p (i) si-m = y  8c— i. m r L—1 4—i 'm v ' $ L— r' m 3m=0 0 m=0 i=0 0 m=l 0

Now, usin^ (7), it comcss

r-»M+l r-»M / r— ITÎ \
l ,  sn. z ; ( L  pu m ) -  *<m=l m=0 'i=0 '

3) Finally let us return to the equation (4) and (5)« For each

m = 0,...,!I the coefficient of S* in (4) is0

—  (-I)”“1 («"-) »Pm ' ' 'l-m/

and for each i = wo have:
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i) If i = 0 5 there exists rQ in (5) for all m =

ii) If i à 1 } there exists ^  in (5) for all m such that m à i

iii) If i - 1; there exists r^ in (5) for all m such that -in  6 i

Then

, = S  &  (-I)”’1 (.m~)1 _— 1 /. \ »m ' 'i+m/m=mg(i) 8

where

ms(0
min {in : m=-i} = min{-2i ,-2i + 1} = -2i ; if i 6 -1 

And the third part is proved since

6i - ri-M-l * □

Extension: Let x * (x^,... ,xn) e. Rn and define the following 

operator on B(Rn)i the linear space of all hounded real-valued func

tions on R :

S i  f ( x )  = f ( x ^ ». . . (x ^ + p ix  , . . . , x n)

'Xi

for any f « B(Rn) and p«.R, where S > 0 is fixed.
i

So sj? , the "partial delta shift operator", is a natural 
8x.

X
extension of S F o l l o w i n g  this idea we can define "partial forward 

end backward difference operators",
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and also a "m+l th-order partial centered slope operator" on B(Rn):

3.4 - Arrac:arA?i”fi aiRiv/.Trns

The results of lemmas (L - 3«l) and (L - 3*2) are now ap

plied to approximate certain class of linear PBS as a natural ex-ten

sion of classical second-order finite-difference techniques. To begin 

with, wo present a brief review on a particular type of approximation 

for ordinary derivatives.

space of all bounded real-valued functions on the interval (xa,xb) 

which are continuous and have continuous derivatives up to the IIth- 

order on (x ^,xl̂ ).

In this way, all the results obtained about "ordinary" oper

ators , and on B(R), have a direct extension to "partial"

operators S? , A. , Ag1 and dT on B(Rn).
0  Y  Y  °  V

The derivative of f(x) on (x^,:^) con be defined in terms
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of operators A  , A“1 and n sinced o  X

dx f(*) = lim _ U m  .
{-0 ¿-♦0

= lim - i -  A”1 f ( x )  = lim - i - A  f(x) = lim n f(x) 
8*0 » « 5*0 o ft 5*0 5

In the same way vie can show hy induction (e.g., see f2l]-[23]) 

that higher order derivatives may also he written in terms of opera

tors A  , A~m or D™: S i  <>

~ f ( x )  - lim-i- A?f(x) = lim-i- A:m f(x) 
dxm 8*0 Sn S 8*0 Sm S

m-1 / , \ n>-2-■u
8*o 8m L s 8
l i . i  [A(-Dm^A(-l)pm a , A ^ A j fW

lim D™f(x) .
S*o 8

So forward, backward and centered operators (A?, A.111 and hi1)S o  o
can he used to approximate derivatives at x q c (x^ x^), for a suffi-

7ciently smell S, as follows:

dx ;f(x) Sf <
I X=X.

—  A~m f(x ) : (backward operators)
(ID 0 O

Djf(xQ) : (centered operators)

— A"1 f(x ) : (forward operators)tm S ' o' ' '

 ̂ For details concerning with this sort of (first-order) approxima
tion see, for example, ("2lJ , 2̂2.], C24j end [25j.
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Parti.-?! derivatives; A direct extension of the preceding

approximation procedure can he done for partial derivatives as summa>- 

rized below:

Let x - (x^,...,xn)< ft, a simply connected open sot in Rn 

and f (x) €. C'̂ ft) , the space of all hounded real-valued functions on fl 

which are continuous and have continuous partial derivatives up to the 

IJ th-order on ft..

The operators A™ , A_m or D™ can he used to write down 
xi xi xi

partial derivatives of f(x) on ft,

® f(x) = lirn -i- A 1̂ f(x) = lim -i- A  m f(x) => lira D™ f(x)d llX. 8-0 8 m sx. 8-0 8m sx.
xi xi 1 xi xi i

8-0 sx. 
xi 1

and so, assuming a sufficiently small 8 , we can approximate partial
1 8derivatives (of a single independent variable ) at xo-£ ft by using

partial forward, backward and centered operators (Ag , Ag and Djj ) 

as follows: Xi Xi “i

—  f(x)| 
ôxi 'x=xo

a «

—  Am f(x ) 5 (backward operators)
S  °

Dm f(x ) } (centered operators)
6x. °1

-1- Ag1" f(xQ) > (forward operators)

xi 1

8 Here we ore excluding the case containing cross-terms, such as
2 , since they will not bo of interest in our further studies.

ôxi
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Remark; A lthough we a re  not g o in g  t o  u se approxim ation  f o r  

c r o s s - te rm s  p a r t i a l  d e r i v a t i v e s ,  i t  i s  i n t e r e s t i n g  to  n o t ic e  t h a t ;

3xlvl ... £)x n 1 n
—  f(x) lim

X”Xo ^  0 K ]  *•* $xn 1 1  n

8 ^ 0
u xn

h r ^ i ^  f(xo>°x.1

where m = k , + . . .  + k , 1 n

Finally let us consider the particular problem of approxi

mating the linear partial differential operators

m f>M «.m
L u(x,t) = 2_. “*ra(x) “  u(s:,t)

m»l m dxm

introduced in (2).

Let the S. , Sf , D™ and D? he operators on B(R^) as de- 
5x *t Sx 5t

fined before. By lemmas (L - 3.1) and (L —  3.2) with (xjc»'tn)€ Q <= R2 , 

the domain of u(x,t), and using centered operators for approximating 

partial derivatives wo get;

Lx 3 ^  °tm(xk) u(xk'1in)m=l

£  (-«-* ( i ) ; « < v Vm=l r  i-o

Z M+1 ,
am ^  h i  u (xk ’ t n)
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In similar way

Lt ÛXk’t L̂„4. = ^  DL u(xtt=t

Z N , f-in . , .eo
- W - ^ r  ( - D m"1 (•)ss1_m u ( vm=0 m * J™ i=0 1 6t *

X

Z N+1 _
t °m(xk) ®r 'm- 1 x

\,N+1» 2 ^  cm(*k) u(xk ,tn+(m-N-l)St)
m«l

where th e  c o e f f i c i e n t s  a ^ x ^ )  and c ^ x ^ )  a re  su ch  as in tro d u c e d  on 

lemma (L -  3 . 2 ) ,  and so  (n ote th a t  c6o (x) = 0 ) :

Remarks:

l) When using this kind of centered approximation vie must he sure 

that for a given (xjc»'tn)e ft > (x̂ .+ (m,-Ii-l)$x ,tn+(mM-N-l)5.l) « ft 

(or at least in ft ,the closure offt) for all m' = !»•••»,M+1 and



2) Denoting

<  " Cm K >

V j (n+i) - u < V ^ x - »  V iJt>

we get

Lx  *<*»*»>
X=Xk

<-M+l
L ,  \ V k Wm= 1

t=t

T h is  s im p l i f ie d  n o t a t io n  i s  e x t e n s iv e ly  u se d  in  th e  n ext c h a p te r .

3) The accuracy of this approximation technique increases for lower 

order models. The literature dealing with the classical finite- 

difference techniques [7]- [19] presents discussions on this sub

ject, extressing the accuracy for models with M = 2 and N = 2.
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PART Ills STOCHASTIC APPROXIMATION

Stochastic Approximation is a recursive scheme which can he 

used for parametric estimation in a stochastic environment. Its ori

gins are the works of Robbins and Monro [26], Kiefer and Holfowitz 

[27] , Blum [28] and the unified general approach given hy Dvoretzky 

[29]. Presently there is a great deal of literature on this subject, 

both from theoretical and practical viewpoints. Some complete books 

on stochastic approximation have already been published [30] , []3l] * 

and interesting surveys regarding mainly the applications are also 

available [32]-[42], [75].

T h is  te c h n iq u e  h as been e x t e n s iv e ly  used f o r  i d e n t i f i c a t i o n  

p u rp o ses in  m em orylcss system s and LP3 ( e . g . , see  [43]-[54]) and a l 

s o ,  but not so e x t e n s iv e ly ,  f o r  BPS id e n t i f i c a t i o n  [55]-[6o]. Concern

in g  th e  l i t e r a t u r e  in  system  i d e n t i f i c a t i o n  by s t o c h a s t ic  approxim a

t i o n ,  i t  h as become common p r a c t ic e  to  r e f e r  to  D v o re tz k y 's  work [29] 

and th en  to  proceed d i r e c t l y  t o  a p p lic a b le  a lg o r ith m s . But i t  happens 

th a t  t h i s  " b r id g e "  l in k in g  th e o ry  and p r a c t ic e  i s  not so  ob viou s and 

th e  gap betw een them i s  not so narrow  e i t h e r .

F o r t h i s  re a so n  we b e g in  t h is  t h i r d  p a rt on m athem atical 

p re lim in a r ie s  by p r e s e n t in g  th e  D voretzky theorem  in  a b s t r a c t  s p a c e s . In 

an attem pt to  b r id g e  th a t  gap betw een th e o ry  and p r a c t ic e ,  we in t r o 

duce some a p p lic a b le  s t o c h a s t ic  ap p ro xim atio n  a lg o rith m s in  H ilb e r t  

s p a c e s . P a r t ic u la r  c a s e s  in v o lv in g  a lg o rith m s f o r  o p e ra to rs  on f i 

n ite -d im e n s io n a l s p a c e s  a re  a ls o  in c lu d e d , s in c e  th e y  w i l l  be r e q u ir 

ed in tho next chapter



3.5 - the BVQRTTPzrY *5 TTH?crr,r' I?I PAVACH SPACES

Wolfowitz j[6ljand Derman and Sacks [62] presented new 

proofs for the Dvoretzlcy theorem* Xn "both cases 9 the proofs are Given 

for real—valued random variables and in £62") they also presented an 

extension for finite-dimensional random vectors. Schmetterer £63] 

considered stochastio approximation algorithms, in particular the 

unified Dvoretzky's approach, in Hilbert spacos. The previous works 

were Generalized by Venter Q6/lJ y who proposed a wider class of alco- 

rithmo in Hilbert spaces.

In his orif;inal paper, Dvorctzky [29J formulated an infi

nite-dimensional version for stochastic approximation algorithms in 

normed linear spaces, whoso proof is a natural extension of the scalar 

(real) case. This theorem is formulated below in a simplified version, 

and the reader interested in its proof is referred to [29]•

Theorem (T - 3.1) (Dvoretsky): Assume °°> a fi*ed
point in B, a Banach space. Let |z(n) ; n= 0,1,2,...} be a B-valued 

random seouence, such that

Z T  E{[|z(n)||2} < 00 (8)
n=0

where || || stands for the norm in B. Let x(o) be a B-valued sccond-ordcr 

random variable, and consider the following algorithm (a discrete-time 

dynamical system) in B:

x(n+l) = Tnx(n)+ z(n) (9)

where[Tn: B -* B 5 n= 0,1,2,...} is a family of bounded operators on B.
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If:

I I V - xoll “ pn H* - x oll (“ )

for any x •£. B, and

E^||Tnx ( n ) - x Q+ z (n )||2}  i  E {||T nx(n ) -  x q||2 J  + E {|U (n )||2} ( l l )

for r.ll n = 0,1,2,..., where ; n = 0,1,2,...} i3 a real seo.uence

such that:

F > 0 n

for all n, and

(12)

i C o  pn “ 0 * (13)

Then |x (n ) }c o n v c r c e s  to  x q in  q u a d ra t ic  mean (q .m .) and w ith  proh£>-

hility one (w.p.l): ^

lim E {| |x (n )  - x  || 
n-»a>

and

2} -  o

P{lim x (n )  = x \  
n-»oo

= 1 .

Tho concepts of convergence "with probability one" (w.p.l), "al
most certainly" (a.c.), "almost sure (or surely)" (a.s.), and "al
most everywhere" (a.e.) are equivalent. Tor theoretical consider
ation see, for example, [1], [65]-[«9].
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Special care (S - 3»l): Let B <= K, a Hilbert space, and let 

( ; ) denote the inner product in H. Anyone of the (sufficient) con

ditions statedbelow can he used to substitute the condition (ll) in 
the theorem:

E{z(n)|x(0),z(0),...,z(n-l)} = 0 w.p.l (ll')

for all n, or

r-i®
L E { | ( y ( n ) - x o 1 z(n))|} < c < °° • (ll")

Proof;

E{||Tnx(n)-x0 + z(n)||2} *

- E{||Tnx(n)-x0||2} + s{||Z(n)||2} +

+ E { ( T nx ( n ) - x 0 ; z ( n ) ) }  + E « z ( n )  ; Tnx ( n ) - x Q) }  é 

A B{||Tnx ( n ) - x o||2} + E{||z(n)||2} + 2 E { l < T nx ( n ) - x o z ( n ) > | } .

(H')s Ei<Tnx(n)-x0 ; z(n)>} = B{e {<Tnx(n) - xQ *, z(n)>|x(n)}} = 

= E{<Tnx(n)-xo ; E{ z(n) jx(n)})} =

“ E K Tnx(n) “ xo » z(n) |x(0),z(0),...,z(n-l)})} = 0 .

In the same way:

E«z(n) *, Tnx(n) - x 0 )} = 0 .
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Special care (S - 3»l): Let B «= K, a Hilbert space, and let 

( ; ) denote the inner product in H. Anyone of the (sufficient) con

ditions statedhelow can he used to substitute the condition (ll) in 

the theorem:

E{z(n) jx(0),z(0),...,z(n-l)} = 0 w.p.l

for all n, or

H  E {|<Tnx(n)-xo *, z(n)> |} <

P r o o f :

E{||Tnx(n)-xo + z(n)||2} =

“ E |||Tnx ( n ) - X o | | 2} + s{||z(n)||2} +

+ K{(Tnx(n) - x 0 z ( n ) )} +E«z(n) ; Tx(n) - xQ)} é

é E{||Tnx(n)-xo||2} + E{||z(n)||2} + 2 E n < T nx(n)-xo *, z(n)>|}.

( 1 1 ' ) *  El<Tnx(n)  - x 0 5 z ( n ) ) }  = B { E K Tnx (n) “ x 0 *, z ( n ) > | x ( n ) } }

= E{<Tnx ( n ) - x o ; E{  z(n)  j x ( n ) } ) }  =

“ E « T nx(n) - x 0 •, e | z(n) | x(0) ,z(0) ,... ,z(n-l)})} = 0 .

In the same way:

E«z(n) *, Tnx(n)-xo )^ = 0 .



(11")s Set

6 2n - E{||Z(n)||2} + 2 3 {|<Tnx(n)-xo *, z(n)>|} .10 

So

E{||Tnx(n)-x0 + z(n)||2} * E{||Tnx(n) - xjl'} + <f2

where

62 < a>n

and that is sufficient to insure the theorem (for discussions, see [29] 

and [64]). □

n
n=0

S p e c i a l  cr.ro (s -  3 . 2 ) ; ITovj s e t  B = BL(R^), t h e  c l a s 3  o f  a l l
1C -K-hounded linear operators from R into itself. Let A and tr[A] denote 

the adjoint and the trace of an clement A in BL(R^), respectively. As 

in (s - 3.1)> the conditions helow can he xised to substitute (ll) in 

(T - 3.1):

E{Z(n) |x(0),Z(0),...,Z(n-l)} = 0 w.p.l

for all n, or

Y L  E(tr[(T X(n)-Xj*Z(n)]}<o<co. 
m=0 n °

If H is a real Hilhort space, the absolute valued appearing in (ll") 
may he omited.
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P ro o f;

BL(R^), with addition and scalar multiplication defined as usual, is 

a Hilbert space with the inner product defined as

< A B > = t r O *  B]

for all A, B in BL(R^) (̂ 7oJ. So , by invariance of the trace (which is 

real) [7lD and by equivalence of norms [72 j in BL(R^), the proof fol

lows as in (S - 3»l)« D

3.6 - A PROPOSER STOCHASTIC APPROXIi'ATICH ALOORTTHK IH HIT/HTRT SPAC2

In this section we present two corollaries for the preced

ine theorem. A similar version (in R^) can be found in [37j, where 

the proof stating the connection with the Dvoretzhy theorem is some

what obscure.
First vj o need to prove the following lemma;

Lemma (L - 3.3); Let } n - 0,1,2,...} be a roal posi

tive sequence such that

In
ln+1 1 + V

for all n, where;

l n *  0 > Z Z T  5n < «>
n-0
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Define

$(n,i) » TTjlli (1 - fj) j i < n  

§(n,n) = 1

Then:

$ ( n + l , i + l )  6 k  fn

for some finite positive constant k.

Proof;

{,$<»1,1*1) - ( J T ^ ! <!-{,) -{JT“.itl -
0

Corollary (C - 3«l): Lot B <= H Do a HilDert space, x0 a 

fixed point in H (||xol| < 00) » and consider the following algorithm in II;

x(n+l) = (1 - ?n) x(n)+ fn y(n) (14)
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where j n b 0,1,2,...] is a real sequence, \y(n) ; » .  0,1,2,.

ia a H-valued random sequence, and x(0) is a second-order IT-valued r 

dom variable independent of\y(n)}.

1ft

-i) £ n <■ (0,1)

iii) < 00

iv) E|||y(n)||2}< £  < 00

and

v-a) as in (L - 3*3) 11

v-b) E{y(n)}= xQ ; for all n

v-c) ¿ L  e ||/y(i) - x *, y(n)-x0>|} < c < 00 
n=0

. or

v') E {y(n) - x q | y(0),... ,y(n-l)} «= 0 w.p.l

for all n. 12

For exam ple, th e  sequence

£ = -- i-- 5 0 < a & 1 5 b > 1 ;
(an + b)

satisfies (i) - (iii), and (v-a) [73j*

Note t h a t ,  from ( v ')  we g e t (v -b )  [ 653» [ 6 6 ] .

■§■< oc £= 1
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Then:

lim E{||x(n) -x ||2} = 0 
n-*oo

and

P{lim x(n) = xQ'J = 1 . 
n-*oo

Proof:

By (14)

x(n+l) - (1- fn) [x(n) - x j  + x0 + ^[y(n)-x0] .

Set

P = (l - £ ) n ' ’n'

z(n) = Kn [y(n) - x j

and define operators in H, as follows:

T x  = F ( x  - x „ )  + x„ n n N o * o

for any x in H. So vie c0-t an algorithm as in (9):

- (9): x(n+l) = Tnx(n)+ z(n)

vihere the condition in (8), (10), (12) and (13) are satisfied:

(8): Z L  E {llz(n)H2} - Z L  ^  (E illy Cn)|| ?} - ||xo||2) <
n=0 n=0

< (c?-IW2) ‘n=0

(1 ° ) *  ||Tnx “ xol| “ Pnllx _ x oll » fo r  x  in H*

(12): 0< Pn < 1 , since 0< £n < 1 .
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(!3){ T U  Fn = 0 » since13 0< fn < 1 and Y L  = 00 '
n*=0

Then, in order to complete the proof, we just need to verify the con

dition (ll) - theorem (T - 3«l) - or one of its equivalent forms, (11') 

or (ll"), as in (S - 3*1). In the following we show that (v*)—*• (ll’) 
and (v)-* (11")

(ll')s E{z(n) | x(0),z(0),...,z(n-l)} =

■ fn E iy(n) - xo| x(°)>y(°)>**-»y(n-i)î =

“  E {y(n) - x 0 | y(0),...,y(n-l)} =

*» 0 w.p.l , V  n

since x(0) is independent of {y(n)}.

(ll")s Let us rewrite the algorithm in (14)s

x(n+l) - xQ = (1 - fn) [x(n) - x0] + Tn [y(*0 -•*„] •

So, for any fixed m, we have:

Cjjyin+l ,m) t §(n+l,n) c^in.rn) + cyy(n,m)xy' yy

where

0xy(n,m) = E -(l<y-(n) ~ x0 » y(m) - 3CQ> |>

Cyy(n,m) = E{|<y(n)-x0 ; y(m)-x0>|}

rn-l
$(n,i) =TT,-=i (1- C) »

$(n,n) = 1

(15)

See, for example, [74] pp. 146.
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On i t e r a t i n g  th e  in e q u a l i t y  ( 15 ) we gets

°3CVXn,n0 6 <$(n,0) c (0,m)+/_j $(n,i+l) c (i,m) .■Jr -nx ¿=o 1 yy

Since x(O) is independent of |y(n)} and E{y(n)-xo} = 0 for all n, 

c (0,m) = 0 , for any m.

Thus, setting m e  n, we have:

E n—1
J $(n,i+l) ^ c (i,n) •xy

Now note that:

and

2_J c (i»Ji) < c < CO 
i»0 yy

(hy assumption (v-c))

$(n+l,i+l) ^  * k ^

for some finite positive constant k (hy assumption (v-a) and lemma

(L - 3-3)).

Then:

I T  E i l < V ( n ) _ x o *» = Z T  Pn ?n oxy( » . n)n=0 n=0

fe ?n (l- $n) $(n>i+1) cyy(i,n) ”n=0 n n i=0 yy

T'® v v n“l . v
“ ?n ¿ _  $(n+l,i+l) ? c (i,n) &
n=o n i=o 1 yy
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n=0 n i-0 ** n=0 n

and (11") is satisfied. 0

Finally we present a particular case of stochastic approx

imation algorithms for hounded linear operators on R^.

Corollary (c - 3.2): The corollary (C - 3«l) remains valid 
if B = Bh(n^), the class of all hounded linear operators from R^ into 

itself, provided that the condition (v-c) is replaced hy

®{tr[(T(i)-X )* (Y(n)-X )]}<«< «  • i=0 ° °

Proof:

Define

E{tr [(X(n) - Xc)* (Y(m) - Xo)]>

Cxr(n,m) " E{tr[(T(n)-X0)*(T(m)-X0)]}

and the proof follows exactly as in (C - 3»l) hy using the results 

obtained in (S - 3»2). 0

Remarks:

1) In [37] Fu proposed a similar version for stochastio approximation 

algorithms in R^, where direct extension to R^ and BL(R^) can he

^  In this case the equality in (15) holds.
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otrtainod. In his formulation he did not require the conditions

(v-a) and (v-c) or (v')- So, if one Relives in [37], a simplified 

version of (c - 3.1) in R^ and (c - 3*2) can be formulated by as

suming only the conditions (i) - (iv) and (v-b). Note that, in this 

caso,

z(n) = ^  [y(n) - x 0]

E{y(n) - x Q} = 0 j V n

E{||y(n)||2} < 6Z < 00

are being used to substitute the original sufficient condition

E[z(n)| x(0),x(l).... x(n)} = 0 w.p.l 5 V n  (ll*)

assumed by Dvoretzky in [29] for the scalar (real) case.

2) Finally we remark, as proved by Venter [64], that conditions weak

er than (11*), such as

X L  (E {||E £ z(n) | x(0),z(l),...,z(n-l)}||2})^ < 00 (16)
n=0

X L  ||E{z(n) | x(0),z(l),...,z(n-l)}|| < 00 w.p.l (17) 
n«0

are able to ensure the convergence for algorithms in Hilbert spaces, 

in quadratic mean and with probability one in case of (16), and with 

probability ono in case of (1 7 )» (Note that (11*) implies (l6)which 

implies (17). For detailed discussion see [64J).

15

J Such extensions to finite-dimensional spaces have already been 
successfully used for identification purposes in nemoryless sys
tems [45] and LP3 [47], [49].

15

77



CHAPTER 4

IDENTIFICATION FOR A CLASS OF LINEAR DPS 

USING STOCHASTIC APPROXIMATION

This is the central chapter of this work. It presents a new 

method for identifying distributed systems operatingini stochastic 

environment, where no restriction concerning probability distributions 

is imposed.

A class of linear models driven by random inputs and observed 

through noisy measurements is considered. These measurements are taken 

at a limited number of discrete points located in the spatial domain.

The method is classified as class TgS First of all a time- 

space discretization is applied in order to approximate the infinite

dimensional model (described in terms of a linear PDE) by a finite

dimensional one (described in terms of a linear vector difference- 

equation). So, higher order finite-difference techniques are used to 

reduce the DPS to a discrete-time LPS (stage I, path 2-a )• Thanks to 

the linearity in the parameters, the space-varying coefficients are 

placed in an explicit form, and are then identified by using recursive 

assymptotic ally unbiased stochastic approximation algorithms (stage II). 

The method is suitable for on-line applications and extraneous terms 

may be included in the original model.



4-1 - PROBLEM FORMULAT!Q!T

Model d e s c r ip t io n : C o n sid er a  DPS m odeled by PDE and l e t  

u (x ,t ) « H ( Q )  denote th e  dependent v a r ia b le ,  a s  fo llo w s :

L* u ( x , t )  = 1 «  u ( x , t )  + /3(x ) wx ( t )  

x <  X = (0 , 0  5 t  > 0

where th e  l in e a r  p a r t i a l  d i f f e r e n t i a l  o p e r a to rs

lï «(«.*> - z !  vx) -$  -(«.*)m=U at

l ”  u ( x , t )  = Z L  U J X ) ~  u ( x , t )  
m-1 m t>xm

(1-a)

(1-b)

a re  such as  in tro d u c ed  in  th e f i r s t  p a rt o f  th o  l a s t  c h a p te r , as w e l l  

as th e  a p p ro p r ia te  fu n c t io n  sp ace  H(Cl), Q, « (0 , < ) i ( 0 , « ) c R 2 .

The in p u t d is tu rb a n c e s  { wx ( t )  5 t=o} a re  taken  to  be r e a l -  

va lu e d  seco n d -o rd er s t o c h a s t ic  p ro c e sse s  f o r  e a ch  x  in  (0 , t ) .   ̂ The r e a l 

va lu e d  s p a c e - v a ry in g  p aram eters { ^ ( x )  , . . .  ,« M( x ) }  , {<Q(x )  , .  .  . ,  ^ ( x ) }  and 

/3(x) a re  supposed t o  be in  BV[o,{J , th e space o f  a l l  fu n c t io n s  o f  bounded

wx ( t )  can be th ought a3 an in f in it e - d im e n s io n a l  v e c to r -v a lu e d  seco n d - 

o rd e r  p ro c e s s . A c t u a l ly ,  u s in g  a more s o p h is t ic a t e d  m athem atical t e r -p
m in ology , {w^ j f  e (0 , t) x  [0 , ® ) c :  R ) i s  a random f i e l d ,  r a th e r  th an  

a  s t o c h a s t ic  p ro c e ss  £ l ] .  The e x is te n c e  and u n iqu en ess o f  s o lu t io n s  

f o r  such s t o c h a s t ic  DPS h as been f u l l y  in v e s t ig a t e d  by C u rta in  and 

P a lb  [ 2] ,  [ 3] .
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v a r ia t io n  on th e i n t e r v a l  [ 0 ,« ]  ; and |iTN(x )|>  > 0 , /3 (x )  / 0 ,  f o r  a l l

x  in  ( 0 , 0 *  ^

O b se rv a tio n s : Assume th a t  n o isy  o b se rv a t io n s  a re  a v a i l a b le  

o ver an e q u id is ta n t4 p a r t i t i o n  P^ o f  X = [ o , € ] .

z ( xk >'t) «■ h u i x ^ j t )  + d v ( t )  } t > 0  (2 )

where th e  o b se rv a tio n  n o is e  { v ( t )  5 t > 0 }  i s  ta k e n  to  be a  r e a l - v a lu e d  

sec o n d -o rd er s t o c h a s t ic  p r o c e s s , and h , d a r e  r e a l  c o n s ta n ts  ( h ^ O ) .

Problem s ta te m e n t : To id e n t i f y  th e  s e t  o f  M param eter fu n c 

t io n s  [ 0 ,^ 3  -».R 5 m » 1 , . . .  ,) f}  a p p e a r in g  in  th e s p a t i a l - d i f f e r -

Me n t i a l  o p e ra to r  L^, b a se d  on n o is y  o b se rv a t io n s  z i x ^ j t ) .  Under t h i s  

fo rm u la t io n , th e s o lu t io n  l i e s  in  Bvfo,{], th e  in f in it e - d im e n s io n a l  

param eter sp a c e . We c o n s id e r  h ere  a  f in it e - d im e n s io n a l  v e r s io n :

2

By a p a r t i t io n  Pr . o f  th e in t e r v a l  f a j b l ,  we mea.n a  f i n i t e  s e tLa,DJ *•
of points Xĵ -e [a,b], k «= 0,1,.. . ,K, such that a = x^< x^ < ... < x ,̂ = b.
A fu n c tio n  f  d e fin e d  on [ a ,b ]  i s  s a id  to  be o f  bounded v a r ia t io n  i f  

th e r e  i s  a co n stan t f  so th a t  f o r  any p a r t i t i o n  o f  [ a ,b 3

lf(xk+i)- f(xk)l<V cok=0

 ̂ S in c e  L*’1 and a re  d e f in e d  f o r  x « . ( 0 , O ,  th e  v a lu e s  o f  cc , g and 

/i in  x =0 and x=€ h ave  no s ig n i f i c a n c e  f o r  u s .  To en su re  th a t  th e s e  

fu n c t io n s  a re  in  BV[0 , € j  we can d e f in e  any r e a l  v a lu e  f o r  them in  

x=0 and x*= £ .

^ A p a r t i t io n  i s  s a id  t o  be " e q u id is t a n t " ,  i f  x.  ̂-  x̂ . i s  co n sta n t fo r  

a l l  k m 0 , 1 , . . . ,K -1 .
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"Identify ; m-l,...,!*} for points -e P Since

€ Dv C° > €3 » i-t is always possible to find an equidistant partition 

Px of [0,t] such that the finite sequence {«.^(x^) > x^-e P^} is a 

good (the goodness depending on how small vie choose Sx = xJc+1 - x^) 

approximation of «/x) x ■£ [0,e], for all m-l,...,M.

Boundary and initial conditions: A complete description of 

a physical DPS requires more information than is provided by the dis

tributed model in (l). It is necessary to add some supplementary re

lations: initial (and/or terminal) and boundary conditions.^

Let a set of initial conditions (ic) for the DPS modeled by 
(l) bo given by:

I i
— Ï u(x,t) = gj/x) 5 x«=[o,<]; i = 0,l,...,N-i (3)
ot It=0

v/here the real-valued initial functions £^(x) are hounded and contin

uous on M -

Although the initial conditions written in (3) are not uniouo, 

they are quite representative for the great majority of physical systems 

modeled by (l). The same does not happen with a set of boundary condi

tions. Different experiments on the same system (e.g., one modeled by 

(l)), provide us with different types of "a priori" information which 

are expressed by different sets of boundary conditions.

We reserve the term "boundary condition" for conditions given only 
at the spatial boundary (in our case, at x=0 and x*> t).

5
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" I d e n t i f y  {o£m j m - l , . . . , ! ] }  f o r  p o in ts  ^ «  P S in ce  

**„, €  B V [ ° i €]> i t  i s  a lw ays  p o s s ib le  to  f in d  an e q u id is ta n t  p a r t i t io n  

px  o f  C o ,«3 such th a t  th e  f i n i t e  sequence jo t ^ x ^ )  5 x^-e P ^ }  i s  a  

good (th e  goodness depending on how sm all we choose = 

ap p roxim ation  o f  « / x )  x  «. [ 0 , 6] ,  f o r  a l l  m - l , . . . , M .

Boundary and initial conditions; A com plete d e s c r ip t io n  o f  

a  p h y s ic a l  DPS r e q \ iir e s  more in fo rm a tio n  th an  i s  p ro v id e d  hy th e  d i s 

t r ib u t e d  model in  ( l ) .  I t  i s  n e c e s s a r y  to  add some supplem entary r e 

l a t io n s :  i n i t i a l  (a n d /o r te r m in a l)  and boundary c o n d it io n s .^

Let a  so t  o f  i n i t i a l  c o n d it io n s  ( iC )  f o r  th e  DPS modeled by 

( l )  bo g iv e n  b y :

— I  u ( x , t )  = g j / x )  5 x *  [o,6]; i  = 0 , l , . . .  ,N-1 ( 3 )
d t  It =0

where th e  r e a l - v a lu e d  i n i t i a l  fu n c t io n s  g ^ (x )  a re  bounded and co n tin 

uous on [ 0 , 6 ] .

A lthough th e  i n i t i a l  c o n d it io n s  w r it t e n  in  (3) a re  not un iou o , 

th e y  a re  q u it e  r e p r e s e n t a t iv e  f o r  th e  g re a t  m a jo r ity  o f  p h y s ic a l  system s 

modeled by ( l ) .  The same does not happen w ith  a  s e t  o f  boundary con d i

t io n s .  D if fe r e n t  exp erim en ts on th e  3ame system  ( e . g . , one modeled by 

( l ) ) ,  p ro v id e  u s w ith  d i f f e r e n t  ty p e s  o f  " a  p r i o r i "  in fo rm a tio n  which 

aro  e x p re sse d  by d i f f e r e n t  s e t s  o f  boundary c o n d it io n s .

5
J  We r e s e r v e  th e  term  "bound ary c o n d itio n " f o r  c o n d it io n s  g iv e n  o n ly  

a t th e  s p a t i a l  boundary ( in  our c a s e , a t  x**0 and x~ t)  •
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S in ce  our g o a l i s  th e  id e n t i f i c a t io n  o f  p a ram ete rs  a p p e a rin g  

on ly  in  th e  d is t r ib u t e d  model d e sc r ib e d  by th e  dynam ic eq u atio n  ( l ) ,  we 

have two p o ss ib lo  ways to  p ro ceed : l )  We can assume a  p a r t ic u la r  s e t  

o f  boundary c o n d itio n s  which i s  r e p r e s e n ta t iv e  f o r  many p h y s ic a l  e x p e r

im ents in  DPS. T h is  approach can a ls o  bo thought as i f  we cou ld  choose 

th e  e x p e rim e n ta l c o n d it io n s  (co n ce rn in g  w ith  th e  boundary) on w hich th e  

DPS w ould work f o r  i d e n t i f i c a t io n  pu rp ose. 2 ) The seco n d  way would be 

to  assum e a g e n e ra l (but not e x p l i c i t )  p a r t i a l  d i f f e r e n t i a l  e q u a tio n  

o p e r a t in g  a t th e  boundary.

We choose th e  f i r s t  way because i t  w i l l  p e rm it us t o  c a r r y  

out a  g e n e ra l id e n t i f i c a t io n  p ro c ed u re , w ithout e s p o c i fy in g  th e  o rd e r  

o f  th e  o p e ra to rs  L“  and h £, up to  th e p o in t o f  co m p u tatio n a l implemen

l )  (Nonhomogeneous boundary c o n d it io n s )  The i d e n t i f i c a t i o n  method 

th a t  w i l l  bo proposed h ere  does not re q u ire  homogeneous BC as a 

n e c e s s a r y  c o n d itio n  fo r  i t s  a p p l i c a b i l i t y .  We c o u ld  have assumed 

nonhomogeneous boundary c o n d it io n s  such as

t a t io n .

For s im p l ic i t y  assume a  s e t  o f  homogeneous boundary co n d i

t io n s  (B C ):

= 0 5 t  SO ; i  * 0 , 1 , . . . , ,M-1

( 4 )

= 0 | t *0 } i « 0 , l , . . . , M —1

Remarks:
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dx*
u ( x , t )

x=0
h ? ( t )  ; t i O  ; i  = 0 , 1 , , . .  ,M-1

(4*)

dx1r u(x»t ) = h*. ( t )  ; t ' * 0  ; i  -  0 , 1 , . . .  ,M -1
x=e 1

where h ? ( t )  and h* ( t )  may t>c d e te r m in is t ic  o r random r e a l - v a lu e d  

fu n c t io n s . Remarks w i l l  "bo made a lo n g  t h i s  ch a p te r  in  o rd e r  to  

show th a t  nonhomogeneous boundary c o n d it io n s  may a ls o  he co n sid 

e re d .

2 ) (Random i n i t i a l  c o n d it io n s )  Ue cou ld  have assumed th e i n i t i a l  fu n c

t io n s  g ^ (x )  as random fu n c t io n s  r a t h e r  th an  d e t e r m in is t ic  o n es. But 

t h i s  assum ption would n ot b r in g  any fu r t h e r  g e n e r a l iz a t io n  to  our 

i d e n t i f i c a t io n  method, w ich  a lr e a d y  assum es random in p u t s .  A lso  

n o te  t h a t ,  in  ca se  o f  homogeneous boundary c o n d it io n s , we must have

eQ(o) = g(€) = o.

4.2 -  RRDUCTTO”  TO A k r i l T E - D r ' j r  SICTAL STATE SPACE

S p a c e -t in e  d i s c r e t i z a t i o n : The space and tim e-dom ain can be 

p a r t i t io n e d  ns fo llo w s :

l )  D is c r e t iz a t io n  o f  space-dom ain  X <= { x  : :

D efin e

k  € I  = { 0 , l , . . . , K + M - l }

w here:

i )  The in te g e r  M i s  th e  o rd e r  o f  th e  o p e ra to r  .

i i )  K ■= "7---- M + 1 .

i i i ) The r e a l  co n sta n t Sx > 0 i s  such th a t  K i s  an in t e g e r  * M+l •
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So, the function

*k " k *x

from  S in to  X d e f in e s  a  p a r t i t io n  o f  X . The so t  S i s  c a l le d  

" t h e  d i s c r e t e  sp ace-d o m ain ".

2 ) D is c r e t iz a t io n  o f  tim e-dom ain { t  : t>/0} :

D efin e

n € T - {0jl,•i»̂  ,

A fu n c tio n  from T in to  [O,«o) such  as

V n i t

whore > 0 i 3  a  r e a l  c o n sta n t, d e f in e s  a  p a r t i t io n  o f  th e  in 

t e r v a l  [ o , ® ) . The s e t  T i s  c a l le d  " th e  d i s c r e t e  tim e-d o m ain ".

Rem arks; 

l )  The s e t s

S -  {M ,M + l,. . . ,K + M - l}  <= S

S = { 2f i ,2M +l.......... K+fi-M -l} C  S

T '=  t i i , i ? + l , . . . >  T 

T = { 1T,H+1 , . . . }  «=. T '

T = { N + S ,B + S + 1 , . . . }  <=T

w i l l  ho o f  p a r t ic u la r  in t e r e s t  in  our fu r t h e r  s t u d ie s .  The d i s -
o

c r e t iz a t i o n  p ro c ed u re , a s w e ll  a s  th e  lo c a t io n  o f  S ,  S ,  T ’ , T 
oand T , are shown in figures 4 and 5*
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2 ) The c o n d it io n  K ^ K + l imposed t o  e n su re s  th a t  S and S have a t 

l e a s t  M+l and 1  p o in t s ,  r e s p e c t i v e ly .

3) F o r  re a so n s  th a t  w i l l  become c l e a r  l a t e r  in  t h i s  s e c t io n ,  we assume

such th a t

- 8t *K_i(x) * *N(X) 5 V  xeX

i f  N€ Ze» T h is  condition is always attainable since |lî (3C)J > 3f > 0 
and ^(x) is bounded V x e X .

0
X: t

l
-9-.X

o sxP : o-o-x
t-Sx t

0 1 M—1 M 2M-1 2M K+fl-M-1 K+M-M K+fi-1 K+fi K+M-2 K+M-l

S : K p t s .

Fig. 4: Discretization of Space-Domain.
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[P,») s £--- — ------------------------------------------ - t

0 fit
P+ : o - o - ............................................................................................. ....  ...........»  tx n

0

0 1 N-l N N-l N N+N-l N+N

n

Pig. 5* Discretization of Time-Domain.

A p p ro xim atin g  p a r t i a l  d e r i v a t i v e s : Now v:c use sp a c e  and tim e 

s h i f t  o p e r a to rs

\  «<**»*«> m uK iSx ’tn) 

S St1 » « ( ^ * V St>
K ’V  Px xPt

t o  v jr ito  dovm ap p ro xim atio n s f o r  p a r t i a l  d e r iv a t iv e s  as in tro d u c e d  in  

th e  second p a rt  o f  th e  l a s t  c h a p te r . In  t h i s  May, th e  i d e n t i f i c a t i o n  

problem  fo rm u la te d  in  an in f in ite - d im e n s io n a l  s t a t e  space a s  in  ( D -  

(4), can be reduced t o  th e  fo llo w in g  f in ite -d im e n s io n a l d i s c r e t e  v e r 

s io n  (The ap p ro x im atio n  procedure i s  i l lu s t r e d  on f ig u r e  6 ) :
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t
0

to,®): E-

0 it
P.S 0-0---------------------------------- --------------- „ t

t  n

0 1 N-l N N-l N N+N-l N+H

Pig. 5* Discretization of Time-Domaini

A pproxim ating p a r t ia l  d e r i v a t i v e s ; Nov; we use sp ace  and tim e 

s h i f t  o p e ra to rs

uK » tn) =
< V V  Px x P t

to  y jr itc  dovm approxim ations fo r  p a r t i a l  d e r iv a t iv e s  as in tro d u c ed  in  

th e  second p a r t  o f  th e  l a s t  c h a p te r . In  t h i s  w ay, th e i d e n t i f i c a t io n  

problem fo rm u la ted  in  an in f in ite - d im e n s io n a l  s t a t e  space as in  ( l ) -  

( 4 ) ,  can he reduced to  th e  fo llo w in g  f in ite -d im e n s io n a l d i s c r e t e  v e r 

s io n  (Tho approxim ation  procedure i s  i l lu s t r e d  on f ig u r e  6 ) s
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r lT+1 iM+1
- I ,  <£ v - S - i W  * 4c "k<»>n= j. ms l

(5)
( k ,n )  €  S x T '

0B3; zk (n) = + d v(n) ; (k,n)-e SxT (6)

ICs wk (0),...,uk(H-l) given by ^(x^) 5 k €. S (7)

u0(n) > • • • (n) = ®
BC: 5 n € T (8 )

"k +r M .... "k +m-iW  c 0

P ro o f :

Lot us U3e a  s im p lif ie d , n o ta t io n :

V y M = u (x k , t n )

® k ( n) -  z (xk>t n)

Wk (n)

v ( n )  .= v ( t  ) v n7

a) The d i s c r e t e  o b se rv a t io n  in  (6 )  comes from (2 ) n a t \ i r a l ly ,  f o r  a l l  

i n t e r i o r  p o in ts  ( x ^ jt  ) such th a t  (n ,k )  e  S x T .

b) Use fo rw a rd  and backw ard o p e ra to rs  (se e  l a s t  c h a p te r , s e c t io n  3»4 )

and

to approximate partial derivatives at boundary points x = Xq = 0,
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x « XE+M_1 = € and t = t0 = 0, respectively. So (7) and (8) are approx

imations for (3) and (4)«

c) Use centered operators

D™ and D?
&x St

to  approxim ate p a r t i a l  d e r iv a t iv e s  a t i n t e r i o r  p o in ts  ( x ^ , ^ )  such 

th a t  (k ,n )  «. S x T ' .  In  t h i s  w ay, as  shown in th e  second p a rt  o f  th e  

p re c e d in g  c h a p te r , we h ave ( 5) from  ( l ) .  l/here th e  c o e f f i c i e n t s

°k “ am(*k> cnd ck “ cm K )  

axe such a.s in tro d u c e d  on lemma (L  -  3«2) . Q

Pig. 6t Continuous and Discrete Formulations.
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Remarks:

l )  By lemma ( L -  3«2 ) we have "the fo llo w in g  r e s u l t s  (n ote th a t

« 0 (x )  = 0 ) :

m«l

Z Ti+1
, ck - » V k«8 .

m=l

„N+l

*k ( 10)

( 11 )

(12)

i+M+l

w
! (-i)"-1

oc
( m~)\i+m/

for each i = -M,-M+1j••. ,53 and ke S;

-2i 5 if i «= -1
■"»(O = * 1 ; if i «= 0

2i-l ; if i^ 1

O+N+l  ̂
Ck z !

,n= m»( )̂
(-1)““3 ( m~ ) *\0+nV

for each j = -N,-N+l,.. . ,N and k t  S}

“2j } if j - - l
1̂ ( 0) = -10 } if 0=0

2 0-1 5 if 0= 1

5T—»M+1
L  <£ := 0 5 Vke s •

2 ) In  p a r t i c u l a r ,  from  ( 10) ,  th e  c o e f f i c i e n t  c^+ i s  such t h a t :

'ja *N(xk) 5 if N« z-



i

Remarks:

l) By lemma (h - 3»2) we have the following results (note that

«0(x) = 0):

, j+N+1

z !m=ma(i) (-I)”“1
06

( • " M\i+m/
m(x k> 

ç m

ol
-M+1 } • • . ,11 and k  -e S ; w h ere :

- 2 i  5 i f i ¿ - l

1 5 i f i  *= 0 •

2 i - l  ; i f i u

t L
m=mi ( j )

( - 1 ) ^ - 0 \0+m/
m(xk> 

s m 
6 t

( 9)

( 10)

*N> CS> —
f o r  each  j « - N ,- N + l, . . . ,N and k  -t S ; w h ere:

- 2 d  5 if d--i

m„ (  j )
S5 4 o 5 if j.o

2 j - 1  ; if d - i

z ? +1 ■k *5 0 5 V  k-e S • ( I D
m « l

Z?+1m=l
m

°k -  V * k >
î V  k i S ( 1 2 )

‘



But we have already aBfmmed that *N (x) * 0 for all x«sX and ft ^  ^x)

 ̂ (n) for all x * X  if n«.Z .a ©
Then:

ck+1 * 0 5 V  k€ S •

3) Since/®(x)^0 for all x«-X, we have:

/3k ^ 0 5 V  ke S .

VEquivalent discroto-tine T.PS: Let R “ denote the k-dimensional 

Euclidian space, BL(R‘) tho normed linear space of all hounded linear 

operators from R1" into itself, and define^:

u(n) - (ug(n),...,uK+jj_1 (n)) 5

— (n) = (wJi(n)»*-*»wK+M-l(n)) * 
z(n) = (zfi(n),...,zK+^_1 (n)) ; 

d - d(l,1... 1) ■€ RK

V

V

V

ne T 

ne. T' 

n€ T

-random vectors in RK

C = m

B «

CK+R-1

^K+M-l

<■ BL(RK) 5 V  m= 1,2,... ,N+1

€ b l(rk)

The quantities in R^ and BL(R^) are represented with respect to the 
standard basis in R^ (i.e., = (0 ,...,1 ,...,0 ) 5 i«l,...,k) with
a 1  in the i th place and zeros elsewhere).
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H+l M+l
aii * * *

1
*28

\

N M+l
a 2f!

\
\ \
\ '
\ N
\ '

\ ......... \
\  \
\ \
\ \

\  \
\  \

\  \\ 1 M+l
°K+M-M-1 ....  aK+R-M-l

\
\

\  l B+i
®K+M-1 ‘' * aK+M-l •e BL(RK )

The approximate discrete version (5) - (8) can he written as 

a vector difference equation (discrete-time LFS), as follows:

From (5) and (8) (with n«T') we get

C u(n+m-fl-l) = A u(n) + B w(n)
m=l

N+l u(n+ii) - - T,  C u(n+m-N-l)+Au(n) + Bw(n)
m=l

Since c17+1 * 0 V k t S  , 3  Cj“+1 . Hence:

Z 1I_ j Am u(n+m-lT-l) + Bjj w(n) } » t l 1
m=l

where {A e BL(rk ) j m=l,...,H} and B HL(nK ) are such that
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m »t 11+1A c C.T i C s m N+l m

AN+1 - CN+1 " CN+1^

B1I " CN+1 B

Adding initial conditions supplied by (7)

u(o),...,u(n-i)

we got a full process description for all n«.T, with observations given

*>y (5)
¿(n) «■ hu(n)+jiv(n) ; n«.T .

Nov/ defino {^m(n) 5 m=l,...,N}, sets of N random vectors in Iî̂  for

each ntî', as follov/ss

ym(n) «= u(n+n-8-l) ; n«.T' .

Then:

2m(N) - u(m-l) (initial state)

2m(n+l) = 2m+l(n) 5 m *N
-ZN («+1) “ u(n+N) = Z_j Am 2m(n) + Ejj v/(n) 

m=l

y« i(n) “ «(n) (output)—N + l *“

In this v/ay v/e get the follov/ing model of a linear1 di3crete-timo LPSj 

v/hich is equivalent to the description given in (5) “ (8):
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M0B3L: jr(nil) = P^(n) +Gw(n) ; y(N) elven (13)

OBS: _z(n) « Hy(n) + dv(n) ; n« T (14)

where:

i) J[(n) ■= (Zj(n) » • • • »Zij(n)̂  5 n€.Tf : random vectors in RN:xK

€  BL(RNxK)

iv) H»h[o...0 1 0 ...o] : RN*K — ► RK

The identity and null operators, I and 0, are in BL(R^). In case of 

H, I is placed at (ÎÎ+1) th position.

Remarks:

l) (Honhomocencous Boundary conditions). If we assume (4') we Got

u0(n),...,u-_1(n) Given hy h ® ^ )
BC: t J n « ï

V Æ (n) » ‘ • * ’V u i - l ^  Civen hi (xk )

instead of (8), and the model in (13) Becomes:

ÿ(n+l) = Py(n) + G w(n) + u (n) j ^(N) Civon

ii) F

A 1 . • • Ajj+i • • • Ajj

iii) G «
0

: R
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where :

i) — r n̂) = (uo(n) » * * * »Tl-l^ ,UK+M^n  ̂» * * * »̂ +1.1-1 (n) ) » in rM» 
represents the action of the boundary functions h? and hf.

It c m  ho thought as an input (or disturbance) vector oper

ating at the spatial boundary of tho discrete version.

ii) G =

iü) Br CK+1 Ar

rIIxK

r m -  nK

iv) A_

1
°Vl

\

N 4 j u

M+l
Sc+R-n

\
• \
: s
«, N M+2 > M+l
°K+R-1* * * aK+M—1

Note that the coefficients of A^ are those {a^1 , k<- S, m = 1 ,M+l} , 

which are not coefficients of A. This can be easily checked by 

writing down tho approximation of L™ (i.e.s / . â. T,k+m-M-l^n^
VkeS. X m=1

2) (Lower order models). It is quite obvious that the approximating mod

el (5) (and so (13)) will be more accurate for cases of lower order
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where:

*•) £ r(n) - («0(n),... »«¡^(n) >uK+fi(n) . • • • >«k + j ,i_ 1 ( » )  )» in RH, 
represents the action of the boundary functions h? and hf. 

It can ho thought as an input (or disturbance) vector oper

ating at the spatial boundary of the discrete version.

Ü )  Cr =

B-

iii) Bp = C-^ Ar

: RM -  ^

, RM -  RK

iv) Ar -

1 R
?iî •”  ^

\
\

\

a2ÎI—1

M+l
®K+R-n

\
• \
: s
« \M+2 > M+l
°K+R-1 ’ * * aK+M—1

s R

Note that the coefficients of Aj, are those , Joe S, m = 1,. . . ,M+l} ,

which are not coefficients of A. This can be easily checked by
II <r-iM+l

writing down the approximation of (i.e.s / . a^ uk+m_j»_1(n)) 
Vkes. m=1

2) (bower order models). It is quite obvious that the approximating mod

el (5) (and so (13)) will bo more accurate for cases of lower order



as commented in chapter 3* For 11̂ 2 and Nt2 (what represents the 

majority of cases of practical and theoretical interest), our 

general approximation procedure is reduced to the classical finite- 

difference technique (see £4] for a particular case with H=2 and 

N-l).

A basic observation equation: Finally we present a relation 

expressing the observation dynamics, which is a fundamental step towards 

tho identification procedure introduced in next sections.
f 0 ■»L e t } n t T j  denote a class of finite sets as follows:

Z„ o {n-ii ,n-h+l, . .. ,n+i}} cz T

and, for notational simplicity, define:

■.N+l 

m=l
i) zk(3n) = 2 _  ¡^(n+m-Ñ-l)

lth=l

cflT+1 M
ii) V k (Zn) = d 2_i \  v(n+m-IJ-l) + h/*k wfc(n)

.., \ / I  M+1\ ,iii) c 'Clc>*,',0íc /
„14+1

iv) » (zk_^(n),...,zk+jj(n)) : random vectors in R,K+1

11+1With ̂  ; ) standing for tho inner product in R , we claim that:

o o
Proposition (P - 4»l): For all (k,n)«SxT,

\ ( Z n ) - (ak ; ^(n)) + \ ( Z n )
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Proofi

Since h*0, vie get from (6) and (7)

m=l
Cy Zjc(n+m-ÎJ-l)

r-M+1
= 4  « w i u w +m«l

+ h/3k wk (n)

for all (k,n) such that k-M,. . . ,k+R « S and n-ff,... ,n+N-e T, which means: 

(k,n)« § x ?. But

r^M+1
Z L  - ■m«l

m ~
°k - 0 ? V  k£ s .

Hence we have ‘̂ k(^n)» independent of n^, as defined Before. O

4.3 - p/JAirarmis et explicit fcbh

Our goal in this section is to deduce from (F - 4«l) a rela

tion Between the parameter vector

/ 1 M+l\ - dM+1
üj. = 'ak ,,,,,ak ' € ®

and the observations z (n), which is suitable for applying recursiveJ£
identification algorithms. First, we introduce some notation:

Notation:

l) A pair of single Bars,| |, stands for the absolute value (modulus) 

of a scalar quantity.
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2) A pair of double bars,|| ||, denotes the standard Euclidian norm in 

R' , as well as the induced uniform norm of an operator (or its 

matrix) in BL(Rk). That is:

ll#l1 ■ ZlW  ■ ||x|“ i l|A 511

for x « R k , A-e BL(Rk) and||x||2 ■= ^x ; x^ •
.  *3) A star, , denotes the transpose of a matrix in the usual way} and 

the transpose of a vector when it is (notationally) written as a 

column vector. In this way we have;

x jr* * Rk -* Rk 

i* i ' (i i l) 

for any x and j in R .

4) The symbols, E {, } and Cov{ ; }, stand for the expectation and 

covariance operators, respectively.

5) The Kronecker delta function S ( i )  is defined by

1 i 
0 5

if i = 0 

otherwise

Now, make the following assumptions on the linear discrete- 

time system described in (13) and (14)*

Assumption (A - 4.1): (Stability) The space and time sampling 

rates, J and j., are choosen such that the system in (13) is stable inX  X
the following sense: There exist constants Kq and C  (0< P < 1) such that 

||F||n < Ko r n } V n e T
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Assumption (A - 4.2): (Stationarity) (v(n) ; ne T} and
y(w(n) 5 ne T1} are real and R ̂ -valued second-order widc-sense sta-

7
tionary random sequences , respectively, with the following additional 

conditions:

i) E{w(n)} = 0

i i )  Cov{w(i) j w(j)} = E{w(i) w*(j)} = Cw S ( i - o )

i i i )  E{v ( n ) } = n v

iv) Cov{v(i) } v(j)} « El ) = <iv(|i-ol)

v) Cov{dv(i) s w(i)}= _d E | v(i) w*(j)} = 0

vi) w(n) and v(n) have finite moments up to the 4ih order.

v
Where Cw is a symmetric positive definite matrix in BL(R ).

Assumption (a - 4.3): (Steady state) The initial state 

response is assumed to have died out before identification begins. 

Since the input disturbance w(n) and the observation noise v(n) are 

wide-sense stationary and the system under consideration is time- 

invariant, this assumption implies that thè state ^(n) o^d observation 

_z(n) processes vn.ll also be wide-sense stationary during tho identifi

cation procedure (see, for example, Q53~C"̂ ] ) *

. •*> o
Assumption (A - 4.4): (Finite transient time) Lot N+N « T 

be a sufficient large integer such that the steady state assumption at 

tho time n + is valid for all n« T.

7 Tho term "random sequence" will be used to denote a "discrete-time 
stochastic process".
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Finally, for each keS, defines

U  *k - - d 2 i r  w  "-s-i)*’!’ ]
171=1

ü )  • ,1) *€. RM+l

iii) 3k = E{z(n+ÎTt) ,k(*n + N )}+ ^  * M+l

iv) CÇ1 = E{zk (n+Mt) Zj'(n+Nt)} € BL(RW+1)(M+1>

Proposition (P - 4.2): For all k in S and n in Ï,

SM^(n+Nt) ̂ ( Z n+^)} = -

Propos it ion (P - 4« 3): There exists the symmetric positive 

definite matrix Qĵ  = £q^J~*-€. BL(R*‘+*), for all k« S.

Proposition (P - 4«4): Both qk and do not depend on n.

By (12) we get :

m= 1

If iv(|i-Ô|) » S(i-j) I 6 \ >  0> we have from (10):

Note also that in [4] £k is defined slightly different. There, it 
is divided hy Ck+  ̂= J“1 for the particular case of 11=1, ¡f0 »-#0 
and "î  = 1 (see section 4*6).
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Proof:

(P - 4-2): Using finite induction we get the solution of the equation 

(13):

¿(n+N-t-l) = Pn+1 2 (N)+ Pn-m G w(m+N) j n-c. T •
m=0

By assumption (A - 4.3) end (A - 4-4), the first term in the right 

hand side is supposed to have died out for any time n^N^. ̂  Thus,

Zn+N.— N— 1 „ « -i„ t pP+Ht-m-N-1 Q
m=0

and from (14) we get

_z(n+Nt) = Hy(n4Nt) + d v(n+N^.) .

Nov:, with

<— <N+1
) = d 2_i v(n+Nt+m-N-l) + h flk wk(n+N.),

■fc m = *  1

assumption (A - 4*2), and using the linearity of the expectation oper

ator fl], v:e have:

-tN+1
} » d dL /

"t m=l

&k ( l,...,!) ■€. R .

|i| | ^
E{s(n+Nt) V(Zn+ )} - dd Y  c-[rfv (| m—N—1|) + ^ ]

 ̂ Actually, the assumptions (A - 4*3) and (A - 4«4) can he thought as 
a consequence of (A - 4«l) when one is considering the asymptotic 
behaviour. That is:

0 i 11 Pn 11 6 ||p||n i Ko rn 5 0<p<\

lim || Pr'|| k K lim - 0 «=*■ Pn -*• 0 as n -♦ »
n»a> ° n-»oo
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Finally, defino:

Jk - [ 0  i 1 í 0  ] RK -  RII+1

~ TT-i-Twhore there are k-2II zero colvunns before I*BL(R ) and, of course,
•o —

K+II—if—k-1 zero columns after I.

Sot

ZírM " Jk Z . M  ? V k t s  .

Hence:

B { ^ ( » W ( W ) }  - Jk E í i O O * ( W »t t

and (p - 4»2) Í3 proved.

(P - 4«3)t It is easy to show that:

and

Now define:

jz ( n+N ) = HF 1 1 jr(n) + h / - 1 0  w(n)+_dv(n+Ñ) 5

HP®;-i zs h [ 0  ... 0 I] 1 rNxK _  hK

n = h [ A! •** % ] 3 rNxK^  rk

it

§ - HFri , rNxK_ rk

r = H i * 1  Q = hBN ■e b l (rk)

c . y = Cov{£(n+Nt) 5 ^(n+Njfc» e BL(R!IxK:

C t= Cov{_z(n+N.) ; _z(n+N. )} € BL(R )

nt T'

This result comes from equations 
from the solution for ¿(n), n»IJ, 
this proof. Note that HFm G = 0,

(13) and (14) or, equivalently, 
as introduced at the heeining of
Vm= 0,... ,fl-2.



Then

^(n+N^+Il) = $y(n+ll^.)+ + d.v(n+N^+N) 5 n-tT* .

Prom (A - 4»3) and (A - 4»4)> Ĉ , and Cz do not depend on n. So, hy 

(A - 4*2), we get:

C = $ C $* + r C r*+ & (°) d d* z y 1 w 1 v v / ---

and Q^«- BL(R11+̂ ) is given in terms of Ĉ -e BL(R^) as follows:

5fc(n) - Jk m Jlc Cz Jk •
TT

Since C >0 (positive definite) <■ BL(R ), and all eigenvalues of 

r - hBjj = - h C ”^  B e BL(RK )

12are different from zero ,

r c„r*> o —  c >o .W 7j

But, if Cz>0, all principal minors of are positive. In particular, 

all cuce3sive principal minors of the symmetric matrix

«i1 - Jk °z JI • SL<n“*1)

Hot© that:
Cov{$y(n) j w(n)}= 0 ; V n i T '
E {w(n+ITt )> = 0 -  E { jr(n+ITt ) }  = 0 -*■ E ^ n + I ^ ) }  = \  d *, Vnfe T 

12 Recall: and 0 * | C^+1 |< °° j V k « 3 .



are positive. Hence Q^1> 0 (Sylvester^ criteria. See, for example, [8] 

pp. 306). ^  So, there exists the symmetric

\  » [O^1 J"1 > 0 BL(RM+1) j V k - e S .

(P - 4•4)s Thi3 r e s u l t  comes d i r e c t l y  from  (a - 4*2) - (a - 4.4): w id e- 

Bense s t a t i o n a r y  random seciuonces ( f o r  d e t a i l s  3e e , fo r. ex a m p le , [5]-[7j).

□
Remark: (Random initial state) Assume that all eigenvalues 

of the system matrix P in BL(R^X^) axe different from zero (or equiva

lently, det(P)^O), and define

Cov{^(n) 5 x(n)}
cy(n) >

It is vjell known (e.g., see [5>[7]) that

if H i n < U t

if ni H.

C (n+1) - PC (a) F* + GCh C*y' ' y'

for all n « T ’. So, if the initial state

2(11) - (u(0),..., u(H-l)) 

is a random vector in R ‘ such that

Cy(il) > 0

1 3 Note that, in case of (H+K)« ZQ ,

= \  ° -  \
« BI^r”*1)

is the (M+l)th "inner" of C * BL(r ) [9], where k » (K-i-M-l)/2.
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V n t T ’

in BL(R^Ixr'), we get 

Cy(n)> 0 ; 

in BL(R1TxK), and so:

$ Cy «$*> 0 -♦ cz > 0

in BL(R*'). Hence, in this case, the conditions

fi(x) *  0 } V x e X

and

Cw >0 in BL(RK )

can "be omited, since they are imposed only to ensure that C„>0 when the 

initial state is assumed to he deterministic.

Lemma (L - 4.1): (Bxplicit Parameter) Let gk and Qj, he as 

defined before. If the assumptions (A — 4»l) through (A - 4*4) are 

satisfied, then the parameter vector

Ac
/ 1 M+l\
'ak ,,**,sk ' a RK+1

introduced in (P - 4»l) can he placed in an explicit form, as follows:

Ac c \  2k
ofor all k in S.

Proof:

By (P - 4«l) through (P - 4*4) > we have:

" A > +Nt> A  + V k (V H t5 5 V  k
o t S
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B L ^ n + V  Zlc^n+>J+H “ B{^ ( n +Ht) + 0 ^ 1  )}=
X X

= S^1 Ac " •

Then:

a* -  0,, [ E i z k(n+Ut ) * * 0 ^ ) }  + U  ‘  Sc Sk » V k J  . □

4.4 - PARAi:nms irreTTiPic.vricn

General procedure: llow we consider the identification problem 

for BPS a3 formulated in section 4»1> By using the reduction to a finite- 

dimensional state space introduced in section 4*2. In this way, our iden

tification procedure comprises tv;o Basic steps:

1st) By using noisy observations {zk(n+!7̂ .) 5 n«T} available in each

ki S, determine the coefficients { aj? ; m = 1,... ,?T+l} appearing in
jjthe discrete version of the spatial-differential operator L^, as 

in (5)* Since the observation process in R*'+*

£ v > + V  ° ( Zk-“l(n+lrt )»“ •» “k+fi(n+Nt) )
o

io defined only for S and

■Sk
/ 1 K+l\ 
'̂ Ic* ** * ,ak '

,IT+1

is related to z.(n+lTt) as in (L - 4«l)> this first step can be 

briefly stated as follows: "given { Zj^n+IT^) ; n-fc T } Vk€ 3, 

determine V It tS



obvious that vie cannot use the values of and q̂ _ in order to perform

the identification, hecause hoth of them depend on the knowledge of

using the stochastic approximation theory (chapter 3 - Part III) 

together with the explicit parameter lemma (L - 4»l)» we may he ahlo 

to present an on-line identification algorithm for a. , without computing 

the values of and q^. This first step is the central theme in the 

remainder of this section,

2nd) On the other hand, we also have the problem of recovering the 

parameters {^(x^.) 5 mol,...,Tl} from a^, for each k«. S. This

is a much easier problem than that concerning the first step, and 

it will be considered in the next section.

results developed in the third part of the preceding chapter, we present

qk(n+l) = [l - A(n)] qk (n)+Mn) ) ^.(n+Nt) + 5 « « T  (1 5 )
t

Qĵ 1 (n+l) = [l-^(n)J Q^1 (n) t^Cn) [^k (n+Nt) ^(n+K.^.)] 5 n-c T (16)

the matrix F (and so, they depend on tho parameters r™). Therefore, by

Stochastic approximation algorithms: First, by using the

an auxiliary lemma for recursive estimation of qk and Q̂ . .,-1 14

as defined before and consider the following algorithms in Rli+J' and
if, 1 o

BL(RU ), respectively, for each k« S»
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where {X(n) 5 ne f  } and {/*( n) 5 n e l }  axe real sequences, 3k(0) is a 

second-order random vector in RM+1 which is independent of {¿^(n+N^) 5 

Hi TJ for each k«3, and (0) is a second-order random matrix in 

BL(RMh1) which is independent of { z^fn+N. ) _z*(n+N.) ; n e ?}for each
o

kt S.

I f s

i ) X ( n ) c ( 0 ,1 )  ;
v— ,03

X(n) =00 ; 8V£

8 
' 

K
n»0 n»0

i i ) /*(n) e  ( 0 , l )  j
y > C O

2—i /*(n ) = °° 5 
n=0

Z L / * 2 («) < ®
n-0

Then:

l) P{limqk(n)= qk } = 1 and lim E{ ||?k(n) - 3k||2} = 0
n-~a>

2) P {lim Qk^(n) » Q^1} = 1 and lim E{||Q“ 1 (n) — Qk1 1|2} - 0„-1 - 1/ ■>-1 n2i
n-*co n-a>

for each ke. S.

Proof:

Set, for each kcS,

y(n) - \(T>n+Uj) ^ ( n+ITt) + ̂ k 5 xo ” 3k

Y(n) " ̂ .(n+Mt) _z*(n+llt ) 5 X 0 a M

in (C - 3»l) and (C - 3«2), and the proof follows directly hy the 

results of section 3*6 and assumptions (a - 4«1) - (A - 4»4)* D

Before introducing the main identification theorem, we need 

to prove the following prepositions:

4
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Proposition (P - A.5): Let {Q^1(n) j n<=T}ho a sequence 

of random matrices in BL(R*i+'*') ns defined in (L - 4*2) for each ktS.

If, in addition, Q^(0) is symmetric positive definite, then there 

exists the symmetric positive definite random matrix

Sc<»> ■ t e 1« ] ' 1

in BL(RI+1) for all n t i  and k-e-S.

Proof:

Prom (l6)

C^1(n+1) » [l -/*(n)] ^ ( n ) +/*(«) z^Cn+N^.) z^(n+Nt) .

Since/*(n) e (0,l) for all n«T, Q^(o) is symmetric positive definite 
o *for each keS, and ̂ (n+ll^) z^Cn+N^) is symmetric positive semi-definite 

for all (k,n) t S x T; Q^(n) is symmetric positive definite for all (k,n)

€ SxT. The existence of Q^n) «* a symmetric positive defi

nite random ma.trix in BL(Rk+^), is thus {piaranteed for all (k,n)c S x T . D

1c 1cProposition (P - 4»6): Lot AeBL(R ), w « R and assume 

the existence of A-  ̂and (A+ w w  If w A * w * -1, then: ̂

(A + w h*)-1 = A-1 - (l + w* A-1 w)“1 A-1 w w* A-1 .

Note that if A>0, then: ■

15 _ _i * -13 A >0 -»• w A w à O  

( A + w w  )>0 —*• 3 (A+ u w  )*" >0
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Proof;

This is a trivial pnxticxilar case of the "matrix inversion lemma" [6], 

or "method of modification" [lO3. 0

Now we can present a stochastic approximation algorithm for 

identifying the vector ^  through noisy observations |zj,(n+N̂ .) ; nef}.

Theorem (T - 4.1); Let I denote the identity matrix in BL(r^+ )̂ 

and â -e ^^, for each kc3, the parameter vector as introduced on prop

osition (P - 4.1). Also let Zjc('3n+j| )> 2.,(n+N̂ .) and 6^ he a3 defined 

“before, and consider the following algorithm in RIi+ , for each ke3:

(SA-l)s ^(n+l) = C^(n+1) ^(n+1^) z^(n+N^)J i^(n) +

+ A(n) ^(n+l) [zk(3n+N ) z.k (n+Nt )+ £k ] ; n<£ T
t

with {^(n) taking values in BL(R*‘+^), for each kc. 3, given by 

(SA-2): Qk(n+1) «

/*(*») Q,c(n) z^n+N^.) zfe(n+Nt) Qk (n) 
---------------— ------ --------------- 5
1 -A» ) + / t n )  £k (,,l+lIt) <^(»0 ^(n+Nt)

n«. f

where {X(n) j nt?} and-f/*(n) ; n t ? |  are real sequences, 0^(0) is a

second-order random vector in R;‘+* which is independent of jsk(n+N^) }

nt f} for each kcS, and Qj_(0) is a second-order random matrix in

BL(R*i+̂ ) which is independent of{_sk(n+N̂ .) z^n+N^) ; i K i )  for each 
o

kt S .

o
Note; Since {“^(x)* BV[o,«] ; m=l,...,it}, ||a,.||<® for allk*S,
*y (9).
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If:

i) M n )  €(0,1 ) ;
coZ_j >(n) = ® 5

V “ o
Xfc(n)n=0 n=0

ii) /*(n)€(0,l) 5/ ZL /*(n) = ® ;
n=0 ZLVwn=0

iii) QjjCo) is a symmetric positive definite random matrix in 
BL(RI!+1)

Then a^(n) converges to with probability one for each k-e

P{lim a.(n) = a. } = 1 ; kfc S .
n-»o>K- ^

Proof:

For sake of simplicity wo use the following notation:

X  = \(n)

Z "

2  “ ¿k(»+l't)

a - sk(»)

a ■* e^n)

Q « \(n)

Q"1 *= \ X(n)

a) First of all let us prove the algorithm (3A-2). From (l6) 

Q^1(n+l) - (1 -ft Q“1 + /* z z* .
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So, by (p - 4.5) and (p - 4.6) with Q = [q-1]"1, we get 

(^(n+l) = [(1 - / 0  z* ] - 1 =

= T - > i  “  2 . i ' ^ iu L ^ .)1  ~——— 2 Q -  —* Q =1 z1 1 - r  (i -/1)2

i r q z z* q 
- r i  Q ---------- *—

' L i-/*+ q  z .

since Qk(0) is symmetric positive definite, and that proves (SA-2). 

Moreover, note that:

(1 - / 0  _z + [(_z Q _z ) _z - ( £  £* Q)

1 ~/J‘ + /x £  Q £

( £  £* Q) z = £  ( £* Q £ )

Hence

( £ *  Q £  ) £ - ( £ £ *  Q) £  = ( £ *  Q ^  ) z -  z ( £ *  Q £  ) = 0 .

Qk (n+1) z = y S p

But

Then

Qk (n+1) £
Q z

1 - /¿+ Q £ (17)

b) Now defines

- M n) ak(») 5 nt T

o
for each keS, where ak(n) is given by (15)» Thus from (15) and 
(SA-2), with

w  - (1 -/*•) + Z\z* Q z
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So, by (P - 4«5) and (P - 4*6) v/ith Q = \  we get

Qj^n+l) = [(1-/") ft^ + ̂ z  z*]_1 =

= YTTI ~ i1- ̂  Z* y^-TTZ )-1 — ^— - Q z z Q =
1 r- 1~ r  (1-A*)2

* —Q z z_ Q

1 ~Z* + ft _z .

since Qk(0) is symmetric positive definite, and that proves (SA-2). 

Moreover, note that:

Qk(n+l) z

But

Q
1-/"

(1 -  y-) z + [ (  z ft Z  ) Z ~  ( Z. Z* Q)

1 -/X + /A ̂  Q _z

( Z  Z?  Q) .z -  js ( * *  ft _z )

Hence

(¿*Q_z)_z-(_z^*Q)_z=(^*Q_z)_z-z^(^* Q z_ ) = 0 .

Then
Q z

Qk(n+1) z •= --------- »----
i - /*+ /̂ .z ft £

h) Now define:

(17)

^.(n) - ftk(n) ak(n) } nt T  

o
for each kt S, where g,k(n) is given hy (15)« Thus from (15) and 
(SA-2), with

U) C (1 - /*) + /*-_z Q z
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we gets

a^n-i-l)  = Q ^in+l)  qk ( n + l )  =

■= \ ( n + l )  [ ( 1 - X )  q +  > z  _z ]  + >Qk (n + l)  .

But

Q ^ n + l )  [ ( 1  -  X) q + Xz z j

1-^ Q-
y - Q z  z Q

to [(i - X) q+ X z _z ] =

i f  ^ ¿¡¡L it
TZyT [ ( i  - X )  Q 2+ Xs Q j s -  (/*(!  -  A) £  Qq + / ^ z  z; Q jz)J =

y ~  Ĵ (X - X) a + ( Xzu) - /*(l- X),z* a- / ^ z  z* Q _z)J

i - x q -£ i\ «>- p * * *  ! _ x * i
T^I£+ — LAZ --- rZF----- J: J

to - y  z, q _z = i - /*■ 

wo have

4 ;(n+l) = Y ~  — +
Q z

t1 i - y  +/*_z q ̂

+ ^Sc(n+1)ik

[Az-

and so the algorithm (SA-l) comes through (17)»

c) The assumptions about Oj,(0) ^  and Q^(o) plus (i) - (iii) are suffi

cient to ensure the convergence in lemma (L - 4»2). So if we define

^  Ilote that Qk(0 ) = [Qk(0 )]~^ a^O), "by definition of {^(u) 5 nt t }.
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the events

\  "{lim \ V )  = Q^1 }
n-*®

Bk = {lim qk(n) = qk } 
n-*co
o

for each keS, v;e get T>y (L - 4»2) that 

P t A j J  = P(Bk ) = 1  .

Hence

K ^ U B jP  = i

H \ n \ )  = P(Ak ) + P(Bk ) - P ( A k U Bk ) = 1  .

That is

P(Ak n B j : ) = P { l im  Q ^ ( n )  = 5 l im  qk (n) = 2k  } ”  1
n-»® n->®

for each ke 5. Vie have already proved in (P - 4*5) the existence 

(and the uniqueness comes hy definition of the inverse operator) of

- n - i[v ] and

for all (k,n)e§xf. So we can define the event

Ck - { lim f o - ^ n ) ] " 1 qk (n) = [ Q ^ J - 1 Sk }, - U  -1
n*®

for each k€S. Moreover,

\ n \ e  \  •

That is, the existence and uniqueness of and [^k^(n)J -1

113



for all (l:,n)€3xT, ensure that the occurence of J^fl implies
othe occurence of Ck for each k«- S. Hence 

p(ck ) * P C ^ O B j,) = 1

P(Ck ) = P^lira [Q^Cn)]-1 qk(n) = [o^1] -1 Sk } - 1 
n-»«>

ofor each ktS. But

■Sk = Sc -'k = [ S i 1 ] " 1 Sk (*>y lenuna ( L -  4 * 1 ) )

^.(n) = \ ( n) 2k(«) = 2k (n) definition)

for all (k,r)t Sii. Then:

P(Ck ) = P{lim ¿-,(n) = a ^  = 1 
n+a>

for each k«. §. D  

Remarks:

l) (Constant parameters) Consider the particular case where the param

eters ; m=l,...,M} in (l) are constant over X = (0,£). By (9)

we can see that the components of a, , the parameter vector defined 

in (P - 4.1)» will he constant over all k * S  (i.e., ^  « a c  R*'I+̂  for 

all k* S: a space-invariant vector in RII+1). Thu3, in order to per

form the identification of a usinc the algorithm (SA-l)> it will he

sufficient to take noisy measurements Sj. (n+Hj.) in just M+l points,
o

say{xk ~,...,xk ,...,3^ +-J, located in the spatial domain Xj 
O O O owhere kQ is any fixed point in S. Moreover, the condition



can be replaced lay

P k = P(\) * 0 5 V  k = k Q-M

since, in this case, it is just required that the particular matrix

2) (No noise condition) If d=0 in the observation equation (2) vie get 

§^=C>» and so the identification algorithm (SA-l) does not depend on

3) (An indispensable information) Finally we recall that the informa

tion given in (ll), that is:

y»H+l
/_, tv independent of {ot (x̂ ,) ; m=l,...,M) for any k€ S,
m=l

represented a fundamental step in our identification procedure (v;hcn 

d*0), since it ensured that “0. ("3 ) in (P - 4*l) does not depend on 

a, , and so the result of lemma (L - 4«l) could be achieved.•TlC

4.5 -  Rscoy .m KG  th e  o r ig in a l  param eters

procedure. That is, we face the problem of determining the set of param-

Qjc € BL(R‘'+ )̂ is positive definite (see (P - 4*3) and its proof).

the knowledge of \ Í (x^) ; m = 0 j • • • y

In this section we consider the 2nd step of the identification

eters {«■n(xk ) ? m « !>•••>,M } appearing in the distributed model (l-b),
ofor each k c 3.

To begin with, we recall the equation (9):

(9)
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wherefor each x — M+l ,• • • jM and k € S j

' —2i 5 if i4 -1

“>«(0 = ■ 1 5 if o11•H

2i- 1 5 if i* 1

Or equivalently;

where;

im

r->M

’ rim 0‘m(xk ) (9')

(-!)”-*( m- ) —  5 x+m/ »m *
*x

if m £ ra (i) ocv '

0 5 if m< m (i)

,M rM+1

How define

= (ai(xk )»*-*>Vxk ^  rH 5 k ‘ S

R " Oim] 5 R” -
and recall

/ 1 K+l\ . _w+x . _ _JŜ. = ( Ojr» • • • > ) € R  > kfeS«

Then, "by (9')» we get

-11+1

% “ R ^k 5 k«- S . (18)

The problem here is to recover the original parameters Rn 

from RR+\  for each k«. 0. Since the stochastic approximation algo

rithm (SA-l) give us an estimate ¿^(n) of for all n c T  and for each 

k« §, an estimate «^(n) of 2^ is then supplied by means of equation (18)
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n c !  • (19)

- ofor all n t T  and for each k c S:

a^n) - R ̂ ( n )  5 k« § ,

But a^n) and °f̂ (n) take values in RM+^ and R**, respectively. So it 

is not always possible to obtain a vector «^(n) exactly satisfying 

the equation (19)• A standard alternative consist of determining an 

estimate ̂ ( n )  of o^(n) which best approximates a solution in the 

sense of minimizing the norm ||a^(n)-R °î (n)|| over all^,(n). That 

is: a simple least-squares approach.

Lemma (b - 4.3): (Least-Squares Sstimate) The estimate of 

5̂ ,(n) which minimise s H ^ M - R  ̂ (n)j| for each (k,n)«-SxT is given 

by

^ ( n )  = (R*R)_1 R* aj.(n) .

Proof:

By a direct inspection on the matrix R we can conclude that it has 

linearly independent columns, and so the proof comes as infll] pp. 83. (D

Theorem (T - 4«2): The random sequence in R ^ ^ ^ C 11) > n«?}

obtained in (L - 4*3) converges to

“k = (ai(*k)»*“ »<V xlc)) *  rM

o
v/ith probability one, for each ke S:

p { U i» « ( h ) } = 1 J k * 3  •
n-*co
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Proof:

By (T - 4.1), (L - 4.3) and (lS) wo get :

o»k(n) = (R*R)_1 R* a^n) w. p. 1
n -* <x> (R R) R ^  = (R R) R R “ k = “k . □

4 . 6  - AIT ECUIVAI3IIT PROCEDURE

We present here an equivalent procedure for the identification 

method developed in sections 4*2 through 4»5* It is based on formulating 

a slightly different version of tho proposition (P - 4«l)i as follows:

If we define

= - ¿ t  W
°k

where:

= (0 0) « RM+l

with 1 in tho (M+l) th position and zeros elsewhere.
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iv) L:- k  N+l - k  
ck

€ RM+l

v ) S i  = E { z k (n+Nt ) ^ ( S i +N )> + &Hi € RM+l

the results in (P - 4.1) and (L - 4-1) take the following forms 

(P - 4.1): z ^ )  = (e£ 5 £k (n)> + V k(^) ,

(L - 4.1): a£ - Qk Si ,

and a similar version of the identification alcorithm presented 

(T - 4*1) is obtained vihen Z , and a,, arc replaced by Z', E,' 
a^, respectively:

(T - 4.1), K

where:

§ £ (n )  « ak (n )
Zr^Zn
- k " - k

in  (S A -l)

Nov» d e f in e :

vi) « . ____L_ ) e rM
y l )  -k = N+l ' « ........... rM ' RC, X 0

vii) r] b r. £m J lm 1 m x

viii) R. = [r*m ] : „M _M+1

So v»e ect, from (9’)!

ci+ l R , ^k

in

and
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and since
<\>N+l
\ __
N+l —M+l 
Ck

the equations (l8) and (19 ) hocome:

c8+1
(10)=

ck

cN+i
(19): «¿(n) = R* “¿(»)" “fej ^S+l

ck

In this way the least-squares estimate of ot^(n) is given hys

(O _N+l
(L- 4.3): -¿(») - (R’* R T 1 R ' * [ a > ( n ) + % fT J g j  ,L Cjc J

and the convergence is proved as in (T - 4*2) hy using (18), (T - 4*1) 

and (L - 4«3):

(T - 4.2): «¿(n) w.p.l, tt,
n ■» os —k *

This equivalent procedure was applied in [4] for a particular 

classof second-order models. Note that the original procedure identifies 

parameters appearing in the discrete version given hy (5) (i«®*j parame

ters of the matrix A), while the equivalent procedure identifies unknown 

parameters appearing in the system matrix F given in (13) (more precisely, 

parameters of the matrix Ajj+1 *= (A-Cj;j+j)).

120



and since
CON+l
ck
N+l —M+l 

Ck

the equations (l8) and (19) hccome:

cii+i
(18): ¿ ¿ - « ' S i i - T r J M

ck

N+l
(19). «¿(») - » ' « ¿ W - i i  •*,

In this way the least-squares estimate of ̂ ¿(n) is given hys

CN+1
(L - 4.3): «¿(n) = (R^R*)-1 R ,# [*¿(«0 + £{j+1J

and the convergence is proved as in (T - 4*2) "by using (18), (T - 4»l) 

and (L - 4«3)s

(T - 4.2)s «¿(n) -w,p,j;. .

This equivalent procedxtre was applied in [4 ] for a particular 

classof second-order models. Note that the original procedure identifies 

parameters appearing in the discrete version given hy (5) (i.e.j parame

ters of the matrix A)> while the equivalent procedure identifies unknown 

parameters appearing in the system matrix P given in (13) (more precisely, 

parameters of the matrix Ajj+1 >= cjj+i (A - C N+1^ )*
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Remark; (No noise condition) We can show that, if d<=0 in (2), 

the stochastic approximation algorithm in (T - 4-1) also identifies

■ t 1 .  £
m=0

*m(xk>
0+m/ 5m

Set

R" - [R’ I -£fi+i] € bl(rM+ >

and note that there exists R" 3ince the independent columns of R' 

are also independent of _e~+ .̂ Now defining

B+i
a," - (ot* . — -—  ̂ t_—k ' —k ’ N+l ' N+l p

ck ck 6x

1 N+lx „M+1
( : »•••» 7m ,ck } * R

the equation (18) becomes:

„M+1a£ = R" a" €. R“

and so we get a recursive estimate of directly from (T - 4»l) 

ot^(n) - R"—1 a^(n) ,

since a£(n) does not depend on {fl^x^) 1 if d=0.

4.7 - EXTENSION TO IfllLTI-DIKENSIOIIAL SPATIAL DORAIN

So far we have been considering a one-dimensional spatial domain 

(xtXcR^). Direct extensions of the theory developed in the previous 

sections can bo obtained for distributed models involving multi-dimen

sional spatial domains (xt Xc R*5). In order to illustrate this, we perform

121



the main steps of the identification procedure for the following second-

order (M=2, N=l) linear model with two independent spatial variables 
2

( l e l c E  ) and constant coefficients:

*0 u(xi>*2 >‘0 + u(Xl,x2,t) .

” a ii sq- «(xi»*2.t) + ai2 ¿ p 0 v * 2.t) +

• q2 ^2
+ a 2l — 2 u(xl»x2’t  ̂+ °22 — q U 3̂Cl ,X2,t) +

0X1 0X2

+/9 (X1>X2) Wx1,x2 t̂> •

Since the solution method follows exactly as before, we will

omit any comments and just the basic results will be presented in a 

concise form. The notation remains the same as in the preceding sections 

and, for simplicity, we consider homogeneous boundary conditions. The

spatial 2domain X is taken to be an open square in R .

Continuous formulation: Infinite-dimensional state soar.«.

M0D3L: £1 “ T5 u<x »t) “ 21  ^mi T~m «(*»*) + /*(*) «x(t) m=0 at m»l i=l Qx.̂

x= (xj^jXgJc X- (0,e)x (0,t)cR2 } t>0

1C: u(x,0) = g(x) } xe x= [o,eJ x [o,t]

BC: u(x’,t) = 0 } x ' * r  * the boundary of X | t * 0

OBS: (̂Xĵ .t) = hu(xk ,t) + dv(t)

x^e Px : a partition of X C R 2 ; t>0
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where:

i)

ii)

The input disturbances ^wx(t) 5 t ^ o }  are taken to he real

valued second-order stochastic processes for each x in 

(0,<) x ( 0 , O C R 2.

The observation noise { v(t) 5 t > 0} is a stochastic process 

defined as before.

iii) i^mi » = l»2 }»{im ’ h and d are assumed to be 
real constant parameters; and , h*0.

iv) P(x) ^ 0 ; for all x« X .

'
MODEL:

Space-time discretization: Finite-dimensional discrete version

°1 \ , k 2M +C2 \ , k 2(n+1) * *1 \ - l , k 2(a) +

+ a21 flklfk2-l(n> + a22 Uk1 >k2(n) + a23 \ , k 2+lM  +

+ a3 V 1 *k2(n)+/Jicl’k2 Hlcl’k2(n)

(k^,k2)e S x S ; n t T

< IC: ^ l ’̂ 0) = e X̂k1’Xk2  ̂ 5 (ki,k2) « S x S

BC:
u o,k2 (n> “ \+i,k2M  “ 0

; (k^kgjesxs ; n«T

\ , 0 M  “ \ , K +l(n) ’ °

OBS: K  v (“) - huv V (n)+dv(n)

b (k^,k2) e S x S  ; n « Tn i l



where:

*) *k “ ki Sx * (°»*) * i- 1»2 i i

i-a) s = s - i
1 x2 3

(see fig. 7)

i-t>) ^ * S = |0|lf ••• ,K+l}^S b (l,2,. ..,K }

i-c) K

i-d) Sx > 0 such that K is an integer i 3

ii) t « n J . i 0 n x

ii-a) n*.T = {0,1,...}:DT ={ 1,2,...} 

ii-h) S.J. > 0

iU) \ , * ZM  “ u(3Ck1>xk2>'tn)

m - a )  • A -  " <w t ) L  * ' ’ , ( w * " )1 n

iii-h) J -  u(*,t ) X d8 «(** » V  -
1 \xi‘\  xi 1 2

1
' [ V 1’*2<”)' ”' V 1'2(” )1 ’

> ‘ - 2
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Fig. 7« Discretization Of 

the Space - Domain 

X - [0,1] X [0,C].

O O »------- O--

0 1 2  K-l K K+l

E q u iv a le n t  d ig c r o t e - t im e  LPS:

MODEL: u(n+l) = A u(n)+ B w(n) ; u(0) given

OBS:u ¿(n) - hu(n)+_dv(n) } n e T

where t

i) u(n) - (u1:L(n),...,u1K(n),.. ne T

Ü ) w(n) - (w11(n),...,w1K(n),.. n e T
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Pig. 7* Discretization of 

the Space - Domain 

X - [0,1] x [0,C].

o—o—•---------- — --------- o -o -o ------kĵ

0 1 2  K-l K K+l

Equivalent discrete-time LPS:

MODEL: u(n+l) » A u(n)+ B w(n) j u(0) given

OBS: jz(n) = h u(n) + dv(n) 5 n « T

where:

i) u(n) = (u1 1 (n),...,u1K(n),.. ne T

ii) w(n) - (wn (n),...,w1K(n),.. n e T
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n e TJ l ( n ) = ( zn ( n ) » • • •  ’ z i i f ( n ) » • • • • •  tZKt ( n ) » • • •  »zirv(11) ) 5"1K
K2

random v e c t o r s  i n  R

ici' KK

i v )  d = d ( l , l , . . . , l ) ■e R

v )  A

A2 A3 
A^ Ag A^

• •
» • 4• •
A^ Ag

A1 A2 € BL(RK )

v i )  A, = — -  I  e  BL(RK) 1 c2

v i i )  A ,  «= —  I  €  BL(RK )
j c2

viii) A2 - ~ h

a22 a23
a 21 a 22 a 2 3

a21 a22 a23 
a21 a22

€ BL(RK)

11

rlK

i x )  B

K l

KK € BL(RK )
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Identification Procedure: Since in this case we still have

a! + ZL a. + a, = 0 ,
i=l 1 J

a relation expressing the observation dynamics, as presented in (P - 4.1), 
can he obtained as follows:

Define

i) S = {2,...,K UÌUrH1

ii) *ki,k2^n^ C1 \ , * 2(n) + °2 \ , k 2(n+l)

iii) ^klfk2(Zn) = d(cj v(n) + c2 v(n+l)) + h k wk k 1,K2

iv) £  “ ial»a2i*a22,a23,a3̂  * R5

▼) 2* k (n) =-Kl,K2 <\- l , k 2<n>’Zk k -l^n  ̂1»K2 1 »zk k ( Kl,k2 ^ » ^ . k g + l W »

V 1-*»0 0 ’'
randon vectors in r 5.

Proposition (P - 4.1')« For each (kj_ . 0 o,k2) € S x S and ne T,

“ <£ » \ , k 2(n)> + \ , k 2^

Based on (P - 4«1') it can he shown that the parameter explicit 

lemma (L - 4*1) has a similar version in case of multi-dimensional spatial 

domain. First consider the assumptions (A - 4«l) - (A - 4»4) (stability,

stationarity, steady state and finite transient time), where the input
K2disturbance { w(n) ; n t l / i a  a random sequence in R and so C is a oym-

K2 Wmetric positive definite matrix in BL(r ). Now define
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i) £ = -d [ \  ¿0 + cl iv(0) +c2 <fv(l)]

Ü )  £ = £(1,1,...,1) e R5 

U i )  ^ki,k2 = E{Zki,k2(5n+Nt) ^ >k2(n+Nt)}+ £ c r 5

1V) QkJ,k2 = E U k 1>k2(n+Nt) ¿ I>k2( ^ t)} e BL(R5)

v )  J k  k  -  
1 » K 2

0  • • • 0  1 0  • • •

<tt>
. .  . 0

i 1 i %
0 . . . • ••0 1 0  0 0 0 0

: RK _  R5

with I«BL(R3) centered at the [(kj-l)K+k2]th position and 

the Is, in the first and fifth rows, placed at [(kj-2) K+k2] th 

and [kjK+k2J th positions, respectively.

Since

-k k “ Jk v £(n)“•̂ ,k2 k 1,k2 —

the propositions (P - 4*2) - (P - 4*5) remain valid if we replace k«.
/ . o oby (kj,lc2)e SzS. Hence:

Lemma (L - 4.1'): (Explicit parameter) Let q. . and Q.
~K1 ,K2 *"1 ,lc2

be as defined before. If the assumptions (A - 4*1) - (A - 4*4) are 

satisfied, then the parameter vector

_a *= (a^ ,a2  ̂,a22 ,a2^ >a^) c R^

introduced in (P - 4.1') can be placed in an explicit form, as follows:

-  c Sc k 2k k ^ 1 9 2
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i )  £ = - d 2 [ ^ ) i 0  +  c l ( i v ( 0 ) + c 2 < i v ( l ) ]

i i )  e  =  £ ( 1 , 1 , . . . , 1 )  e  r 5

Ui) 3k1,k2 » E izk1,1c2( ^ +Nt) 5 k;,1c2(^ N t)}+ £ « R5

1V) Qki,k2 = E U k 1>k2(n+Nt) ¿ 1>k2(n+Nt)} e b l (r 5)

Since

v) J,
kl,k2

. .  .0

0

0...0 1 0 .
” ~ ~ ¥  
o • • • • • • o i o • • • o

>3n

, RK - ^ r5

with I< BL(RJ) centered at the [(kj-l) K+k2] th position and 

the Is, in the first and fifth rows,placed at [(kj-2) K+kg] th 

and fkj K+k2 J th positions, respectively.

-k k <n) “ Jk v i(n)

the propositions (P - 4*2) - (p - 4«5) remain valid if we replace k*.
. , . o ohy (kpk2)€ S x S .  Hence:

Lemma (L - 4*1'): (Explicit parameter) Let q. . and Q,
"K1,1C2 *1 >̂ 2

he as defined before. If the assumptions (A - 4*1) - (A - 4-4) are 

satisfied, then the parameter vector

a. ■= ( , a2 ^, a2 2 , a23 ,a^) «■ R"*

introduced in (P - 4»1') can he placed in an explicit form, as follows!

-  ^ Sc k 2k k ^ 1 ^ 1 5 2

1 2 9

W
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/ . 0 0 for any ( k ^ k ^ e S x S .

In this way, the parameter vector a can he identified through 

noisy observations z. . (n), by using stochastic approximation algo-
i ,k2

rithms as presented in (T - 4.1) (with k e S  replaced by ( k ^ k ^ t S x S ) .

Remarks;

1) As far as the equivalent LP3 is concerned, the computational complex

ity increases exponentially with the dimension of the spatial domain 

X. For instance, assume X is an open rectangle in Rp, and let K be a 

fixed integer (¿M+l) such that the discretization of X contains Kp 

interior points (i.e, K interior points for each discretized coordi

nates S = {.1,2,... ,k }) . So, as shown for the two-dimensional case 

(with N=l), the equivalent LPS will be of order (NK)P (i.e., y(n)

is in R<NxK)P).

2) For identification purposes, the computational complexity increases 

only with the number of parameters to be identified (i.e., the iden

tification algorithm a^(n) is in RpM+1 for each k).

130



CHAPTER 5

SUMMARY, EXAMPLES AND CONSIDERATIONS

The performance of the identification method proposed in 

chapter 4 is analysed. After a brief summary concerning second-order 

models, we present three examples dealing with parabolic and hyper

bolic PDS. The chapter closes with a concise list of remarks includ

ing some conclusions and suggestions for further research in this 
field.

5.1 - SUMMARY; SECOND-ORDER MODELS

We present here a brief summary of the identification proce

dure developed in the last chapter, for second-order models (M*=2,

0< 1U 2) with constant (space-invariant) parameters and one-dimensional 

spatial domain (x« (0,f)). Two cases will be considered separately: M=2, 
N » 1  and M = N = 2. 1

Recall that

M = 2 — M= M
[ 1 — Ou253

N =<
l2 - N = if
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ICs

ICs

BCs

Originai DPSs

MODELs
W- 1« X0 u(x,t) + u(x,t)

N ~ 2> #0 u(x>t) + *1 ^  «(***) + 2̂ ^~Zdt

° 1  "a iT  u (x »t ) + a 2 ^ 2  u (x »t ) + wx ( * )  5 * <  ( 0 ,< )  ? t>  0

N_f_ls u(x,0) = gQ (x)

N_f_2s \i(x,0) = g0(x) ; u(x,t)
} x « [ 0 , £ J

t=0
gi(x)

BCs u(0,t) = u({,t) = 0 ; t * 0

OBSs = hu(x,t) + d v(t) ; x^«. } t > 0

Discrete versions

MODELs
N ° ls Cĵ uk(n) + c2 uk(n+l)

N ■= 2s Cj Uj^n-l) + c2 ^(n) + u^n+1)

- ax v»k_1(n) + a2 u^n) + a^ ^(n) + Z2. \(n) J (k,n) « S x T '

V o) ” «<><**)

ÌLfi2« V o) “ *o(xk> 5 ui(1) “ *t ei(xk> + go(*k>

«o(n) - uK+1(n) *= 0 ; n «■ T

5 kt S

OBSs z.(n) “ bu.(n) + dv(n) ; (k,n)cSxT



where the coefficients {a^ &2, and {c.^ c2, c^} are given hys

and the sets T, T', T and S are defined as followst

with

T = {0,1,2,...}

N ■= 1: T = {l,2,...} c  T' « T

N° 2: T - {2,3,...} CZ T' = {l,2,...} Cl T

S = {1 ,2,...,k }

K = —r---1 * an integer ^ 3»
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Equivalent discrete-time LPS;

MODEL: ï ( n + l ) = P ÿ(n)  + G w(n) $ y(N ) g iven

OBSs z(n) - H ^ ( n )+ d v (n )  } n e  T

w h ere;

i ) u(n) . (u 1 ( n ) , . . . , u K (n))  j n e f  : i n  RK

ü ) w(n) = ( w j i n ) .......... wE (n))  j n e T' : i n R K

i i i ) jz(n) = ( z 1 ( n ) , . . . , a K (n)) } n < T : i n  R*

i v ) d = d ( l , l , . . . , l )  « RK

v )  B

f3,

€. b l (rk )

v i )  A

a2 a3 
al a2 a3

©2
al a2 «- b l ( rk )

N = 1:

tr
vii-a) ^(n) “ ü(n) 5 n ' T ' « T  i in R

ï(n) = 2(0) = u(o) = (g0(x1)>...,60(xK))

viii-a) F «■ Aj » C^ÎCj^-A) = ■—  ( A - ^ l )  =



a2 a3
ai  a2 a3

ai  a2
al a2

where s

al— i- = a.
°2 2

a2
a2 - c

•e- BL(RK )

^ y
I .  -«1 - 2 a . - - r L .  l-(«. + 2«. + ît 7 2-)

a' «= — —  •= + a*3 o2 1 2

with the coefficients and 0»£ defined as follows:

06'1
1 «1 1 *t
c2 *x " *x

1 tt2 1 it
C2 «T *1 Sx

OC,

ix-a) G = B 

x-a) H - h I

i - cll B — -r-> °2 *1

e  b l (r )

■e b l (r )

N«= 2:

„2Kvii-h) ■ (u(n— 1) i u(n)) ; n-eT’ : in R

X(N) = 2(1) = (u(0) , «(1)) - 

» (c qC*!) * ••• » c0 e1(x1)+e0 (x1) , , St
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viii-b) F
0 I

A1 A2 € BL(R2K)

A1 = _C31 C1
-Ì,

^1 ̂ t 4 ̂ 2

C ' ^ A - C J  = - L -  ( A - c ? I )

€  BL(R )

a2 a3
a2 a$

®1 a2 a3
ai  a2 ^  b l ( rk )

where :

__ c On*
°3 2

"* Cp Cp
— ---- » - a* _ 2  o i l - —c, 1 2 c ,

in $ + + if,
2 - (ai + 2 ^ + i t T r t t '

« i + «2

w ith  th e  c o e f f i c i e n t s  a j  and a£  d e f in e d  a s  fo l lo w s :

°HL -
i ° 4 1 S‘  c*

° 3 «X = h  i t  + *2 «X 1

P ro il 1 °*2 1 s2- X Qr
c3 ‘ Î  ' + ^2 s2 2X
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viii-t>) F
A1 A2 €  BL(R2K)

A1 - ~ Cf  C1 + ̂ 2
€ . b l ( r  )

C-^A-C») = -L- (a - c. I)

a2 a3 
a' a£

ai a2 a3
ai a2 ^  BL(RK)

where s

a* c _—  = Oc<
1 c3 2

&2 ”* Cp Co
a2 - ^ - ' - “i - 2a2 - - Ç

/f) + lil

*3 " - S ^ - 0ii + «2

with the coefficients OiJ and a£ defined as follows:

0(.| *= i «4 i &Î
°3 fix “ *1 fit + *2 fix

p ro il 1 «2 f21 ôt
C3 I T ' 4  fit + *2 S2

a

a
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ix-b) G RK - 2K

Bg = C“1 B &t
#1 St + ?2 B € BL(RK)

x-b) H = h [o l] s R2K R*

Stochastic approximation algorithms for identification:

1st case; The original procedure:

(SA-l): a(n+l) = fiftfn} [X <l(n+1) £k (n+Nt) (n+Kt)j a(n)

+ >(n) Q(n+1) ^zk (Tn+N^) zk (n+Nt) + g-J : in R3

with Q(n) in BL(R ) given by

(SA-2): Q(n+1) = Q(n)-
/*(*0 Q(n) ¿k (n+Nt) _z* (n+N.) Q(n) 
______________o_________ o____________
1 -/^n) +/*(«) z* (n+Nt) Q(n) _zk (n+Nt)

where:

i) n e f  = {0,1,2,...}

ii) N|. : finite transient time as in (A - 4*4)

iii) ko : any fixed point in S = {2,...,K-l}

iv) X(n) t (0,1) j 2 2  X(n) =Q0 ) 22. X2(n)<oo
n=0 n=0

v) /'■(n)c (0,1 ) , r V ( n )  = <o 5 2 l V 2(n)
n=0 n=0
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5 N - 1

vii)

viii)

ix)

x)

xi)

2nd case: 

(SA-1):

with

vi)

vi')

zk ”o

C1 \  + °2 zk ^n+1^

°1 zk (n_1) + c2 zk + °3 zk (n+1) * » « 2

-k = Jk = ^zk -l,zk (n)»zk +l^n^  ! in r3O O 0 0 0

£ = -d2Tl2 i( -d2 v 0

e. «= £.(1 ,1 ,1 ) t  r j

cx ¿v(0) + c2 <Tv(l) 5 N«_l

°1 <M 1) + C2 + C3 5 N » 2

,3a(0) : a second-order random vector in R , independent of 

(n+Nt) j n*T}.

Q(0) s a second-order symmetric positive definite random

matrix in BL(R^), independent of {z. (n+N.) (n+N.)
o o

ncf}.

An equivalent procedures

a' (n+l) = \ ft(n+l) zk (n+Nt ) z* (n+Nt)J a’(n)+
+ X(n) Q(n+l) fz. (z' ) (n+»t ) + 1 5 in r3

L o t o -*

Zk (n+l) J 2Lz_i
o

■“  zk (n-l) + zk (n+l) } N - 2
3 o o
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ix') £■
2

T~ L ? JLil 
c3

x') ji'(0) : a second-order random vector in R , independent of 

{^ .(n+N t ) } n t f } .

In both cases the algorithms converge with probability one:

a'(n) '¿'-L'cS" — ' “ (ai » a2 > aj) € r3

Recovering the original parameters 

1st case: Using the original procedure: 

a = R «

where:

i) a = ( a x , a2 , a 3 )  

ii) «  - ( ^  > <*2) c R

ii4> R " [rim]'

The least-squares estimate is given by 

*<»> -  (R *R )_1 R* •*<»)

"r-ll r—12 0 1

Hou r02
1

= 82 -«x -2

rll r12
X

is 1

H. ■. ^



where:

i v ) « ( n )  = ( \ ( n )  , a 2 (n ) )  :
2

in  R

V) a(n ) = (a -^ n )  , a g in )  , a 3 ( n)) : in  R

V i) (R*R)- 1 R* =
-3 0 1

3 28 -S -5

So we get:

a x ( n) -  &x [ -  ax (n)  + a3 ( n ) ]

j2
a 2(n) c [2 ®i(n) - a2(n) - a3(n)]

2nd case: Using the equivalent procedure:

R3 —  R2

where:

a' = R' N+l
°N+1 — 2

a' = (aj , e.'2 » a^) €■ R3

a* = (a* , a* ) e R2

*
1 *1 1 i t«• =
C2 1 7 “ T T «X

He It J

*2 -
»

1
C2

tt2 1 
S2 “ *1X

i t

*x

a.

a.
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N = 2: «

a*

Qi»

1 «1 1 St
c3 • 1̂ $t + *2 *x

2
l “ 2 1 St
°3 «x ‘ 1̂ & t + ̂ 2 82X

Od,

a:

ìii) R- = [r-J = [rim g”] =

iv) e2 •= (0 , 1 , 0) * R-

0
-1
1

1 °N+1 .v) ---- = <;
°N+1

C0 ^ Ì1

C2 s *0 _ o .
c3 “ * h  + h

1
-2

1
i R

N = 1

N - 2

The least-squares estimate is given hy

where:

«•(n) = (E'* H* )-1 R'*^a'(n)+ eg j

vi) a-(n) = (S’(n) ,a£(n)) : in R^

vii) a'(n) - (aj^n) , a£(n) , a^(n)) : in

viii) (R1* R' )-1 R'*
3 0 3
2 -1 -1

« RJ

So we get:

W«l: ,
«{(«)

&*(n)

- a^(n) + a^(n)

-J- j 4 ( n) " aà(n) ~ aj(n) + 1 - St 1^*
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N ■= 2:
®j_(n) » -a^(n) + a*(n)

«¿(n)
.  i fn  S+ + X -,

2 »¡(a) - - .•(»> . 2 - -A - *  *
A X c

Remarks If 0(̂  = 0 is known "a priori", we get the least-squares

estimate for<Xg as followss

1st case:

a - R a„

1
-2

1
s R

So:

<*2(n) X
6 [ax(n) - 2 a2(n) + a3(n) ]

2nd case:

a- - R- ^  e
^ °N+1 *

1
-2

1
: R

So: 

N- It

N = 2:

a 2(n) = “g- ĵa{(n) - 2 a£(n) + a^(n) + 2 - 2 St J

« ¿ (n )  = - g "  [ 4 ( n ) - 2 a | ( n ) + a '( n )  + 4 - 2  St

A block diarram: Figure 8 shows a block diagram for system 

simulation and identification. The DPS simulation is carried out by using 

the equivalent discrete-time LPS. The parameter vector _a is identified 

on-line, through noisy observations ¿(n+N^.), via stochastic approximation 

algorithms given in (SA-l) and (SA-2). The original parameters ct = (oĉ »Ot̂ ) 

are recovered from a(n) by means of a pimple least-squares.
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P ig . 8: SYSTEM SIMULATION AND IDENTIFICATION



5.2 - GENERAL ASSUMPTIONS FOR SXAPPLSS

Exam ples i l l u s t r a t i n g  t h i s  DPS i d e n t i f i c a t i o n  method w i l l  he 

p re sen ted  in  s e c t io n s  5 * 3  th rough  5 * 5 . The fo llo w in g  assum ptions w ere 

made when p e rfo rm in g  th o se  exam p les.

S im u la t io n : The o r ig in a l  DPS was s im u late d  hy u s in g  th e  eq u iv 

a le n t  d is c r e t e - t im e  L P S , where th e  s p a t ia l  domain

X = (0 ,TT)

(i.e., € = 77) was discretized with

Sx = TT/6

So ,

K = 5 —  § = {2,3,4 } <= S = {l,2,3,4,5 }

The M+l»3 observation points in X (i.e., x^ x^ and x̂. where kQ 

is any fixed point in S), the constants h and d, the time sampling rate 

8^, the space-varying input parameter/3(x), and the initial functions 
gq(x) and g^(x) were chosen as follows:

* k - l -  O'-,,-1) - TT/3

1) *0 -3 k $ o ° x = n/2

V . i  - < V  «  *< • 2lT/3

ii) h = d = 1

i i i )
1/2 5 if N = 1

Jl/2 } if N = 2
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5*2 - general assumptions tor examples

Examples illustrating this DPS identification method vd.ll he 

presented in sections 5*3 through 5»5* The following assumptions were 

made when performing those examples.

Simulation: The original DPS was simulated hy using the equiv

alent discrete-time LPS, where the spatial domain

x = (o,n)

(i.e., t =17) was discretized with 

*, •"/«

So,

K=5 — s = {2 ,3 ,4}  <= S = { 1 ,2 ,3 ,4,5}

The M+l=3 observation points in X (i.e., x̂ . x^ and x^ where kQ
o o' o o+

is any fixed point in S), the constants h and d, the time sampling rate

St , the space-varying input parameter/3(x), and the initial functions

gg(x) and gj(x) were chosen as follows:

*k -1 " ^ o “ 1) K  - "ft

= n/2

V +l “ <ko + 1 > Sx =2H/3

ii) h = d = 1

iii) Jt
1/2 5

^1/2 I

if N = 1

if N = 2
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iv) A x )  . 2 sin(x) ; X€(0,1T)

v ) BqM  - g^x) = 0 ; x € [0,TT]

Input disturbance: |w^(n) ; n e T '} was chosen to he uniformly 

distributed in , JT ¿v) and uncorrelated for all keS, such that:

£  - E {wk(n>) » for. all k e. S

C W  -  i w  1  e
BL(R5)

with = l/2 (the example in section 5*3 also consider the case with 6^ = 1)

Observation noise: {v(n) ; ncT} was chosen to be uniformly 

distributed in (-</31 6W , v/3* iy) such that:

E{v(n)} « T v = 0

E{v(i) v( j)} - 6V ( i - 3 ) - tfy i(i~ Ô)

with <fv = 1/4.

Stochastic approximation algorithms (SA-l) and (SA-2): The 

identification was carried out by using the equivalent procedure; that 

is, the algorithm in (SA-l) was

a*(n) «= (a'(n) , a*(n) , a‘(n)) a* = (aj , a£ , a p  -fc R3

The following situation was assumed: 

i) N « 100
X

i!) A(n) = ^

111 ) * ÏÏT172
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iv) a*(0)
(1/2 , 0 , 1/2) €- R3 j when N = 1

( 1 , 0 , 1 )  R3 ; when N - 2

v) Q(0) = I €. BL(R3)

5*3 - PARABOLIC FDS WITH OWS PARAMETER*

Our first example considers the identification of a single 

parameter appearing in the "heat equation"*

a2
-Of «(*,t) = u(x,t) + 2 sin(x) wx(t)

dx

(i.et N*»l, X0 = 0, ^  = 1 and 0i>̂ «= 0 known "a priori"). The simulation 

was carried out hy using

-L/ ^  vT (TT> 06 2
i_
4

and so, the constant vector to he identified hy (SA-l) is

a» -  ( a {  , , a } )  = (<*£ , 1 -  2a* , « ¿ )  .

Figures 9 and. 10 show the performance of the identification procedure, 

where

Oi|(n) = -g- [aj(n) + 2 (l - a^(n)) + a^(n) J 

a ’(n) « || a'(n) -a'||2 

Two cases were considered*

1) <„ - 1/2 

ii) ¿w - 1
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5*4 - PARABOLIC PBS VIITH TWO PARAV. TTmS:

Now we consider the identification of and 0t2 appearing in 
a parabolic equation, as follows:

T T  u (x »t) » a i -A" u(x >"0 + “2 T~2 u (x »t) + 2 sin(x) w (t)
O x  1

(i.e.: N = 1, = 0, ^  = l). For simulating the DPS we assumed

* 2 -  - F ( T - ) 2 a 2 4

and two cases were considered (the first one representing a model with 
extraneous terms):

i) c 0

“ l “ “ 30

a* = o

tti ' 15"

In this way, the constant vector to he identified hy (SA-l) is: 

a* - (a* , a£ , a}) = («• , l-(0i«+20^) ,0t*+ap .

The performance of the identification procedure is shown on figures 11- 

13, where

a£(n) = - a'(n)+ a^(n)

a 2(n) “ "y [2 a{(n) - a£(n) - a^(n) + lj

a'(n) «= || a' (n) - a’||2
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5-5 - HYPERBOLIC PDH WITH TWO PARAMETERS:

Finally we present an example illustrating the identification 

of Ol̂  and Oî  appearing in a hyperbolic equations

u(x,t) = 04l u(x,t) + «* —  u(x,t)+2sin(x) wx(t)

(i.e.t N=2, = î = 0» ^2 "^)* The simulation was carried out by

assuming

0W i r > 2 —  “ ¿ - 4

and two cases considered:

So, the constant vector to be identified by (SA-l) is

a' = (aj , a£ , a}) - (<*£ , 2-(a<+20i£) , .

Figures 14 - 16 shown the performance of the identification procedure, 

where

a^(n) = -aj(n)+a^(n)

a ^ 11) “ -y \_2 ai(n ) “ “ a3^n) + 2 J

a* (n) *= |J_£_• (n) - a_



\ o

\
o

Pig. 14: Estimate Performance for tx.̂.
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Fig. 15s Estímate Performance for ool.
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5.6 - CONCLUSIONS

At the end of chapter 2 we have surveyed and commented on the 

general DPS identification problem. In this final section we discuss the 

particular identification method introduced in this work.

The stochastic approximation theory was used to identify param

eters in distributed systems operating in a stochastic environment. Some 

basic points which characterize the method are listed below.

1) CLASS OP MODELS: The models we have considered here are described by

PDS and have the following properties:

1-a) Linear, of order N in t and M in the scalar spatial variable 

x, with space-varying parameters.

1-b) Extensions to multi-dimensional spatial domain ( x t X c R p) were 

also considered in section 4*7•

1-c) Although we have not considered cross-terms partial derivatives 

in our model, they can be treated using the same technique. But, 

in this case, the choice of which kind of approximation 

(backward, centered, or forward operators) must be decided for 

each model containing a particular type of cross-terms partial 

derivatives.

1—d) The space-varying parameters to be identified are those multi- 

plying spatial derivatives (parameters appearing in Lx , the 

spatial-differential operator), that is: {ct^x) ; m=l,...,M}.

Parameters appearing in L^ (i.e., {^(x) $ m=0,...,Nl) are

assumed to be known "a priori".

1-e) In case of constant parameters to be identified, the identi

fication procedure can be simplified as commented on page 114 •



2) METHOD CLASSIFICATION: The method is classified as class (see 

section 2.2), and so it presents two stages: model approximation 

(stage I) and parametric estimation (stage II).

3) REDUCTION TO A FINITE-DIMENSIONAL STATE SPACE: In the first stage 

the method comprises two basic steps:

3-a) An equivalent discrete-time LPS obtained by using higher order 

finite-differences (section 4»2).

3-b) A fundamental observation equation given in (P - 4*1)» which 

was possible thanks to the results obtained by finite-differ

ence techniques (see remark 3 on page 1 15 )«

4) EXPLICIT PARAMETER: The parameters appearing in the discrete version 

(chapter 4» equation (5)) were placed in an explicit form (L - 4*1)* 

In this way it was possible to use stochastic approximation algo

rithms as a straightforward identification procedure, rather than a 

simple searching scheme for finding estimates previously obtained by 

means of any other optimization technique.

5) INPUT DISTURBANCE: The input {w(n)} was taken to be a zero mean 

"white" random sequence with positive definite covariance matrix C^, 

as in (A - 4.2). It is also possible to consider positive semi- 

definite covariance matrix (or even zero input), if the initial 

state is assumed to be random, as commented on page 103» It is worth 

to remember here that, in order to use our identification procedure 

(based on a straightforward applicability of stochastic approxima

tion via explicit parameter lemma (L - 4*1)), we cannot have deter

ministic inputs and deterministic initial state together. But in 

this case the reduction to an equivalent discrete-time LPS (stage I), 

as developed in section 4»2, can still be used for identification

mSi.
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purposes by applying in stage II sons other known technique (e.g., 

see surveys in LPS identification mentioned in chapter 1) for. 

parametric estimation in LPS driven by deterministic inputs.

6) OBSERVATIONS: We have assumed that noisy observations are available 

at a finite number of discrete points equidistantly located in the 

spatial domain. In case of constant parameters just M+l of those 

points are required, as remarked on page 114» Also, in some special 

cases, the measurements can be taken at pre-selected (not necessarily 

equidistant) observation points, as commented in [l}.

7) OBSERVATION NOISE: The noise {v(n)} corrupting the observations is

assumed to be uncorrelated with the input disturbance as in (A - 4-2), 

and its statistics ¿v(0),..., ¿v(il)} are supposed to be known.

8) BOUNDARY CONDITIONS: Altough the method has been developed using 

homogeneous BC, nonhomogeneous BC may also be considered (see remark 

on page 93 ), as well as random boundary conditions.

9) INITIAL CONDITIONS: Both, deterministic and random initial state, 

can be considered as commented before (see pages 83 and 103).

10) STOCHASTIC APPROXILATION ALGORITHMS FOR IDENTIFICATION: The algo

rithms in (SA-l) and (SA-2) have the following properties:

10-a) No restriction on specific types of probability distributions 

is imposed.
10-b) Independence of the knowledge of: l) The input disturbance

covariance Cw , 2) the input space-varying parameter ^(x), and

3) the output gain h.

10-c) Suitability for on-line identification.-

10-d) Under no noise condition (i.e., d=0) the algorithm (SA-l) 

becomes independent of the knowledge of the parameters
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can{#m(x) 5 m = 0 ,...,ll} and a linear combination of them

also he identified, as remarked on pages 1 15  and 1 2 1. 

CONVERGENCE SPEED: The examples confirmed that the identification 

procedure has a good convergence speed, which can he accelerated 

still further hy changing the sequences A(n) and /*(n) (i.e., hy 

choosing optimal sequences).

SIMILARITIES WITH OTHER METHODS: Although this seems to he the first 

attempt to identify distributed-systems in a stochastic environment 

(random inputs and noisy observations) without imposing restrictions 

on probability distributions, some common points with previous works 

can be pointed out (for details see section 2.3):

12-a) A slightly similar deterministic version of the parameter

explicit technique, that uses the DPS (with constant param

eters) reduced to a set of algebraic equations, was applied 

by Collins and Khatri [2].

12-b) Stochastic approximation algorithms, as a searching scheme 

for finding estimates previously obtained by minimizing a 

performance criterion, were used by Zhivoglyadov and Kaipov

[3]_[6] and Carpenter, Wozny and Goodson [7]• They considered 

noisy observations, but not random inputs.

12-c) In [8], [9] Tzafostas considered random inputs but assumed 

perfect observation of the state.

12-d) Balakrishnan [loj presented a rigorous theoretical formulation 

for a particular DPS identification problem in a Gaussian 

stochastio environment.



Suggestions for further research: Some areas in the DPS iden
tification field where further work seems needed have already heen 

commented on section 2.4« Here we extend those remarks, regarding mainly 

the method developed in chapter 4» by suggesting the following topics 

for further research:

1) Other techniques for reduction to a finite-dimensional state space 

(stage i), such as finite element methods or even more elaborated 

finite-differences, could he investigated towards the applicability 

of our stochastic approximation approach in stage II.

2) As commented before, the identification procedure can be accelerated 

by changing the sequences X(n) and /*(n) appearing in (SA-l) and (SA-2). 

In this way, optimization studies could be done in order to determine

a pair of sequences ()T(n) ,/^(n)), among those satisfying the condi

tions required in (T - 4.1), which maximizes the algorithm convergence 

speed.

3) More research is also needed regarding optimal placement of a fixed 

number of observation points.

4) In proposition (P - 4.1) we presented a. basic observation equation.

A similar relation, also involving the state, could be formulated as 

follows:

zk<3n> - h <^k 5 V n)> + <W

where
M+l

u^n) - (Uk-M^n  ̂ ,uk+M^n^  8 a r£mdom veotor in R •

In this way we get similar algorithms as in (SA-l) and (SA—2), with 

^(n+H^) replaced by uJc(n+Nt) and §̂ "=0. This approach presents three
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basic advantages:

1. The "a priori" knowledge of both noise statistics and the param-

ametcrS |#m(x) ; would no longer be necessary.

2. Space-varying observation noise (i.e, ^(n)) could be considered.

3. The "indispensable" (in the former approach) information supplied
1 m

by finite-difference techniques (i.e., / , a^ constant. See
m=l

equation ( 11 ) in chapter 4 and also remark 3 on page 1 1 5 ) would 

not be required in this case, and so a wider class of approxi

mation techniques could be applied in stage 1.

On the other hand, the accessibility of the state u^Xn) must be 

assumed, which represents the main disadvantage. In order to by-pas3 

the state accessibility requirement, the identification could be 

done by using in the new version of (SA-l) and (SA-2) estimates u^n), 

instead of u^(n), obtained by means of the Kalman-Bucy Filter. This 

approach has been previously considered for LPS identification in £ll] «

5) It would be useful to have some comparison of effectiveness of the

different approaches for the DPS identification problem. In performing 

such comparisons, one must keep in mind that: The literature in this 

field considers a wide range of particular models operating in quite 

diverse conditions. So a critical evaluation involving a large number 

of methods could become a difficult task.
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