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ABSTRACT: Many applications in modern electrochemistry, notably electrosynthesis and energy storage/conversion take advantage 

of the “tunable” physicochemical properties (e.g., proton availability and/or electrochemical stability) of non-aqueous (e.g., aprotic) 

electrolyte media. This work develops general guidelines pertaining to the use of scanning electrochemical cell microscopy (SECCM) 

in aprotic solvent electrolyte media to address contemporary structure−electrochemical activity problems. Using the simple outer-

sphere Fc0/+ process (Fc = ferrocene) as a model system, high boiling point (low vapor pressure) solvents give rise to highly robust 

and reproducible electrochemistry, whereas volatile (low boiling point) solvents need to be mixed with suitable low melting point 

supporting electrolytes (e.g., ionic liquids) or high boiling point solvents to avoid complications associated with salt precipita-

tion/crystallization on the scanning (minutes to hours) timescale. When applied to perform microfabrication — specifically the elec-

trosynthesis of the conductive polymer, polypyrrole — the optimized SECCM set up produces highly reproducible arrays of synthe-

sized (electrodeposited) material on a commensurate scale to the employed pipet probe. Applying SECCM to map electrocatalytic 

activity — specifically the electro-oxidation of iodide at polycrystalline platinum — reveals unique (i.e., structure-dependent) patterns 

of surface activity, with grains of specific crystallographic orientation, grain boundaries and areas of high local surface misorientation 

identified as potential electrocatalytic “hot spots”. The work herein further cements SECCM as a premier technique for struc-

ture−function−activity studies in (electro)materials science and will open up exciting new possibilities through the use of aprotic 

solvents for rational analysis/design in electrosynthesis, microfabrication, electrochemical energy storage/conversion and beyond. 

Surface structure/composition has long been known to have a 

profound effect on heterogeneous reaction kinetics and/or 

mechanisms. For instance, in electrochemistry, electrodes of 

practical importance are often nanostructured to introduce/ex-

pose specific sites and/or maximize the active surface area. It 

follows that understanding the structure−property relationships 

of functional (electro)materials is of utmost importance, espe-

cially with the resurgence of electrochemistry in organic (elec-

tro)synthesis and renewable energy storage/conversion technol-

ogies.1 Thus, to complement the ever-expanding library of ma-

terial nanoengineering strategies,2 there is a great need for tech-

niques that can probe (electro)chemical activity at the scale of 

surface heterogeneities, e.g., from single defects (e.g., step 

edges) and/or nanostructures (e.g., nanoparticles, NPs) to the 

individual grains and grain boundaries of a polycrystal.3 

Scanning electrochemical cell microscopy (SECCM) has 

emerged as a premier technique for correlative structure−func-

tion studies in (electro)materials science.3-5 In SECCM, electro-

chemical measurements are performed in a statistically-large 

(typically hundreds to thousands) series of small areas (each 

nm2 to μm2) of a surface, defined by a meniscus cell created 

between a pipet probe filled with electrolyte solution and sub-

strate (working electrode, WE) surface.6,7 SECCM probes elec-

trochemistry directly at an electrode surface, at a scale commen-

surate to commonly used structural/compositional characteriza-

tion techniques (e.g., high-resolution microscopy and/or spec-

troscopy), allowing structure−activity to be assigned unambig-

uously. Indeed, this innovative correlative electrochemical 

multi-microscopy approach has previously been applied to re-

solve the activity of: steps and terraces in layered (two-dimen-

sional) materials;8-11 individual grains and grain boundaries of 

polycrystalline metals12-15 and; single NP or NP agglomerates 

within an ensemble.16-18 Complementing these applications, 

SECCM has also successfully been deployed as a tool for high-

throughput fabrication (i.e., electrodeposition) and screening of 

nanostructured materials at electrode surfaces, notably conduc-

tive polymers (CPs)19,20 and metal NPs.21,22 

All of the applications of SECCM highlighted above have 

mainly been carried out in aqueous electrolyte media, where the 

scanning protocols (e.g., meniscus cell stability, suitable sup-

porting electrolytes and reference electrodes) are well-estab-

lished.4,5 Many applications in modern electrochemistry, in-

cluding the electrosynthesis and energy storage/conversion 

(e.g., Li-ion batteries and supercapacitors) take advantage of the 

tunable physicochemical properties of non-aqueous electrolyte 

media. For example, through careful selection of the solvent and 

supporting electrolyte, the proton availability, donor/acceptor 

(i.e., Lewis base/acid) properties, electrochemical stability win-

dow etc. can be tuned,23 allowing electrochemical reaction path-

ways to be controlled to an extent. Although SECCM has pre-

viously been applied in aprotic electrolyte media, including in 

ionic liquids (ILs)24,25 and organic solvents (and gels),26,27 the 

few studies available do not explicitly consider how the sol-

vent/supporting electrolyte affects the stability of the meniscus 

cell, and the range of solvents studied is quite limited. 

Herein, the feasibility of performing SECCM in non-aqueous 

media, specifically those based on aprotic solvents, is explored 
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systematically. Taking organic carbonates as a model class of 

aprotic solvent, general guidelines are established that dictate 

the choice of solvent/supporting electrolyte to ensure a stable 

and reproducible electrochemical meniscus cell on the scanning 

(minutes to hours) timescale. Using the established guidelines, 

SECCM is applied to perform: (1) local electrodeposition of CP 

(polypyrrole) arrays and; (2) nanoscale structure−activity map-

ping of an electrocatalytic process (I− oxidation). All-in-all, the 

established guidelines and highlighted applications greatly ex-

pand the solvents that can be used in SECCM and further estab-

lish it as a robust tool for structure−function studies in (elec-

tro)materials science and electroanalytical chemistry. 

EXPERIMENTAL SECTION 

Chemical reagents and electrode materials. Details in the Sup-

porting Information (SI), Section S1. 

Electrochemical measurements. Electrochemical experiments 

were performed on a home-built SECCM workstation, as pre-

viously reported.4,5,7,28 In this configuration, shown schemati-

cally in Figure 1a, a single-barreled pipet probe (fabrication de-

tailed below) was filled with electrolyte solution and mounted 

on a z-piezoelectric positioner (P-753.3, Physik Instrumente, 

Germany). The WE (nanocrystalline Au or polycrystalline Pt, 

Figure 1a) was mounted atop an xy-piezoelectric positioner (P-

621.2, Physik Instrumente). The SECCM probe was initially 

positioned above the WE using coarse xy-micropositioners (M-

461-XYZ-M, Newport, U.S.A.), and subsequently lowered into 

the near-surface position using a stepper motor (8303 Picomo-

tor Actuator, Newport) in tandem with an optical camera (PL-

B776U camera, 4× lens, Pixelink, U.S.A.). 

The SECCM probe was approached to the WE surface, using 

a surface current (isurf) threshold of ca. 1.5 pA to detect when 

the meniscus-surface contact had been made and to stop further 

translation.6,10,29 Note that the probe itself never made contact 

with the WE surface. Electrochemical (i.e., amperometry and 

voltammetry) measurements were performed in the confined 

area defined by the meniscus cell created between the SECCM 

probe tip and WE surface. Mapping was carried out using a 

standard hopping mode protocol, as per previous reports.29,30 In 

brief, the SECCM probe was approached to the WE surface at 

a series of predefined locations in a grid (Figure 1a) and, upon 

each landing, an independent electrochemical measurement 

was made, building up a spatially-resolved amperometric 

(isurf−t) or voltammetric (isurf−E) ‘image’ of the substrate. The 

final position of the z-piezoelectric positioner at approach was 

also used to build up a topographical map of the substrate (WE), 

synchronously. 

During operation, the SECCM set up was placed on a vibra-

tion isolation platform (Minus K, U.S.A.) located within an alu-

minum faraday cage equipped with heat sinks and acoustic 

foam. The QRCE potential was controlled, with respect to 

ground and the current flowing at the WE (i.e., isurf), held at a 

common ground, was measured using a home-built electrome-

ter. isurf was measured every 4 µs, and averaged in 256 blocks 

to give a data acquisition rate of 4 × (256 + 1) = 1028 µs (one 

extra iteration is used to transfer the data to the host computer). 

Data acquisition and instrumental control was carried out using 

an FPGA card (PCIe-7852R) controlled by a LabVIEW 2016 

(National Instruments, U.S.A.) interface running the Warwick 

Electrochemical Scanning Probe Microscopy (WEC-SPM, 

www.warwick.ac.uk/electrochemistry) software. 

The single-barreled SECCM probes were fabricated from bo-

rosilicate filamented capillaries (GC120F-10, Harvard Appa-

ratus, U.S.A.) using a CO2-laser puller (P-2000, Sutter Instru-

ments, U.S.A.). The pipet probes were highly reproducible, 

with tip diameters (dt) of approximately 200 nm (Figure 1b-i), 

750 nm (Figure 1b-ii) or 1.7 μm (Figure 1b-iii), characterized 

using electron microscopy.31 Pulling parameters are included in 

the SI, Section S2. After the SECCM probes were filled with 

the analyte solution using a MicroFil syringe (World Precision 

Instruments Inc., U.S.A.), the QRCE (Ag/AgCl or Ag/AgI) was 

then inserted into the analyte solution, and mounted on the z-

piezoelectric positioner, ready for use. 

 

Figure 1. (a) Schematic showing the operation of SECCM in hop-

ping mode. A single channel pipet probe, filled with aprotic elec-

trolyte solution, is employed to make local electrochemical meas-

urements at a WE surface (polycrystalline Pt, pictured), by apply-

ing a potential (−Eapp) at the QRCE in the probe and measuring the 

WE (surface) current (isurf). Translation of the probe in 3D (xyz) 

space is achieved using piezoelectric positioners. (b) Electron mi-

croscopy images of SECCM probes with tip diameters (dt) of ca. 

(i) 200 nm, (ii) 750 nm and (iii) 1.7 μm. Scale bars indicate 400 nm.   

Surface characterization. Details in the SI, Section S1. 

Data processing and analysis. Details in the SI, Section S1. 

Note that all electrochemical/topographical images are pre-

sented without any data interpolation. 

RESULTS AND DISCUSSION 

Selection of solvent and/or supporting electrolyte. The suitabil-

ity of different solvent/supporting electrolyte combinations for 

deploying SECCM in aprotic solvent media was the first prac-

tical aspect to be explored. In order to do so, the ferrocene/fer-

rocenium (Fc0/+) process was considered: 

Fc ⇌ Fc+ + e− (1) 

Fc0/+ is known to be a mechanistically simple, outer-sphere pro-

cess in a range of solvents, characterized by rapid electron-

transfer kinetics.32,33 Indeed, previous SECCM studies (with na-

nometric pipet probes) have demonstrated that water-soluble Fc 

derivatives undergo ideal, reversible electron-transfer processes 

at metal and carbon electrodes.8,34 Thus, by investigating the 

Fc0/+ process at a topographically flat, uniformly active metallic 

electrode (nanocrystalline Au, herein), any deviation from ide-

ality was taken as an indicator that the solvent/supporting elec-

trolyte combination was not suitable for SECCM applications. 
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Linear-sweep voltammograms (LSVs) obtained by averaging 

121 independent measurements in the SECCM configuration (dt 

≈ 750 nm, Figure 1b-ii) are shown in Figure 2. Organic car-

bonates were chosen as “representative” aprotic solvents herein 

due to their widespread use in Li-ion battery electrolytes.35 As 

shown Figure 2a, in propylene carbonate, PC (0.1 M tetra-n-

butylammonium hexafluorophosphate, [NBu4][PF6]) the Fc0/+ 

process is highly reproducible, giving rise to an ideal (Nern-

stian, vide infra) sigmoidal LSV with half-wave potential (E1/2) 

and steady-state limiting current (ilim) values of 0.413 ± 0.002 

V vs Ag/AgCl quasi-reference counter electrode (QRCE) and 

ca. 15.1 ± 0.2 pA, respectively. Note that a relatively high volt-

ammetric scan rate (υ) of 0.5 V s−1 was chosen to allow many 

measurements to be carried out on a short timescale, in line with 

previous LSV-SECCM mapping studies.10,29 Note that the sys-

tem cannot achieve a true steady-state on this rapid experi-

mental timescale (evidenced by the slightly peak-shaped LSV 

in Figure 2a, indicative of a transient contribution to mass-

transport). Although a true steady-state could be approached 

through the use of a slower voltammetric scan rate or smaller 

pipet probes (vide infra), previous SECCM studies have shown 

that non-steady-state effects can be readily accounted for by 

performing complementary finite element method (FEM) sim-

ulations.6,28 Also note that given the diffusion coefficient of Fc 

(DFc) in PC is ca. 3 × 10−6 cm2 s−1 (Ref 36), ilim is ca. 10% of 

that expected at the same sized microdisk electrode (ca. 200 

pA), in agreement with previous SECCM reports.6,28,34  

 

Figure 2. LSVs obtained from the oxidation of 5 mM Fc at a nano-

crystalline Au electrode in (a) PC (0.1 M [NBu4][PF6]), (b) DMC 

(0.1 M [NBu4][PF6]), (c) DMC (1 M [C2mim][NTf2]) and (d) 1:1 

(w/w) EC:DMC (1 M Li[ClO4]). Shown on each plot is the average 

i−E curve (black trace) ± one standard deviation (red dashed 

traces), obtained from 121 independent measurements. The LSVs 

were obtained in the SECCM configuration with dt ≈ 750 nm (Fig-

ure 1b-ii) and voltammetric scan rate (υ) = 0.5 V s−1. Inset in (b) 

and (c) are OM images taken of the SECCM scan areas, post meas-

urement (scale bar indicates 10 μm). 

By contrast, as shown Figure 2b, in dimethyl carbonate, 

DMC (0.1 M [NBu4][PF6]), the Fc0/+ process is significantly less 

reproducible in the SECCM configuration, giving rise to dis-

torted sigmoidal LSVs with E1/2 and ilim values of ca. 0.41 ± 

0.02 V vs Ag/AgClQRCE and ca. 36 ± 3 pA. The shape of the 

average LSV is distorted relative to an ideal case (e.g., Figure 

2a), particularly in the mass-transport controlled region (i.e., E 

> 0.5), which is particularly evident when comparing individual 

i−E curves, as shown in the SI, Section S3 (Figure S1). The dis-

parity between the Fc0/+ response in DMC and PC is attributed 

to differences in the electrochemical meniscus cell stability 

brought on by the precipitation (crystallization) of [NBu4][PF6] 

at the SECCM probe tip during scanning. While this is not usu-

ally an issue for SECCM in aqueous media, where supporting 

electrolyte concentrations of up to 1 M have been reported,16 

DMC is relatively volatile (boiling point, BP = 91°C, vapor 

pressure (VP) = 55.4 mmHg at 25°C; solvent and supporting 

electrolyte properties summarized in SI, Section S1, Table S1) 

compared to water (BP = 100°C, VP = 23.8 mmHg) or PC (BP 

= 242°C, VP = 0.045 mmHg), and is therefore more prone to 

local supersaturation (within the meniscus cell) and eventual 

crystallization of the supporting electrolyte. This was confirmed 

by optical microscopy (OM), post-experiment (Figure 2b, in-

set), where the scan area appears to be made up of a solid crys-

talline mass (i.e., [NBu4][PF6]), rather than individual, well-de-

fined droplet footprints. 

Aside from using a higher BP solvent (e.g., PC vs DMC), an-

other way to avoid the complications illustrated in Figure 2b is 

to employ a supporting electrolyte that is a room temperature 

ionic liquid (IL).25 Shown in Figure 2c is the Fc0/+ process in 

DMC (1 M 1-ethyl-3-methylimidazolium bis(trifluoromethyl-

sulfonyl)imide, [C2mim][NTf2]), which is highly reproducible 

(i.e., comparable to Figure 2a), giving rise to sigmoidal LSVs 

with E1/2 and ilim values of 0.412 ± 0.002 V vs Ag/AgClQRCE and 

ca. 14.5 ± 0.2 pA, respectively. Evidently, changing the sup-

porting electrolyte from crystalline [NBu4][PF6] (melting point, 

MP ≈ 245°C, SI, Table S1) to the IL [C2mim][NTf2] (MP ≈ 

−15°C) stabilizes the SECCM meniscus cell during scanning, 

confirmed by OM, post-experiment (Figure 2c, inset), where in-

dividual well-defined droplet footprints can be seen. Another 

possibility is to mix the low BP (high VP) solvent with a high 

BP (low VP) solvent, as is commonplace in Li-ion battery elec-

trolytes, where linear carbonates such as DMC are usually 

mixed with cyclic carbonates such as ethylene carbonate, EC 

(BP = 248°C, VP ≈ 0.01 mmHg) to take advantage of the low 

viscosity of the former and high BP and dielectric constant of 

the latter.35 Thus, shown in Figure 2d is the Fc0/+ process in a 

“typical” Li-battery electrolyte, 1:1 (w/w) EC:DMC (1 M 

Li[ClO4]). Again, the Fc0/+ process is highly-reproducible, giv-

ing rise to sigmoidal LSVs with E1/2 and ilim values of 0.411 ± 

0.002 V vs Ag/AgClQRCE and ca. 8.8 ± 0.2 pA, respectively, in-

dicating that the meniscus cell is also stable in this mixed-sol-

vent electrolyte system. It is also worth noting that the ilim values 

increase in the order 1:1 (w/w) EC:DMC (1 M Li[ClO4]) < 

DMC (1 M [C2mim][NTf2]) ≈ PC (0.1 M [NBu4][PF6]) < DMC 

(0.1 M [NBu4][PF6]), in accordance with the relative viscosities 

(η) of these electrolytes (SI, Section S1),35 as per the Stokes-

Einstein equation (i.e., D ∝ 1/η).33,36 

Electrochemical meniscus cell stability on the scanning time-

scale. The experiments carried out above confirm the viability 

of various aprotic solvent/supporting electrolyte combinations 

for SECCM on the minutes timescale (i.e., 121 measurements 

takes ca. 7 minutes), which is on par with the fastest reported 



 

LSV hopping mode scans (≈0.25 s pixel−1 or ≈11 minutes for a 

2500 pixel scan).10,29 As “typical” SECCM scans of >1000 pix-

els are usually on the hours timescale,5 a larger scan was carried 

out (4700 measurements over ≈4.5 hours), again considering 

the Fc0/+ process [Eq. (1)] on nanocrystalline Au. Note that PC 

(0.1 M [NBu4][PF6]) has been taken as a “representative” apro-

tic electrolyte in this and all subsequent SECCM experiments. 

 

Figure 3. (a) LSV obtained from the oxidation of 5 mM Fc at a 

nanocrystalline Au electrode in PC (0.1 M [NBu4][PF6]). Shown on 

the plot is the average i−E curve (black trace) ± one standard devi-

ation (red dashed traces), obtained from 4900 independent meas-

urements. The LSVs were obtained in the SECCM configuration 

with dt ≈ 200 nm (Figure 1b-i) and υ = 0.5 V s−1. (b) Plots of E1/2 

(black trace) and ilim (red trace) versus scan time (≈4.5 hours, total). 

(c) Spatially-resolved electrochemical map of |E3/4 – E1/4| (70 × 70 

pixels2, covering 28 × 28 μm2 area, hopping distance = 400 nm). 

As shown in Figure 3a, the LSVs obtained from the Fc0/+ pro-

cess are highly reproducible on the hours timescale, with E1/2 

and ilim values of 0.411 ± 0.002 V vs Ag/AgClQRCE and 3.69 ± 

0.02 pA, respectively. Note that a smaller SECCM probe (dt ≈ 

200 nm, Figure 1b-i) was employed during this set of experi-

ments, which is why ilim is approximately one quarter of that in 

Figure 2a (dt ≈ 750 nm, Figure 1b-ii). Also note that the higher 

mass-transport rate (≈proportional to 1/dt)
6,28 achieved with this 

smaller probe also results in a sigmoidal LSV that approaches a 

true steady-state on the experimental timescale (e.g., compare 

Figures 2a and 3a). As shown in Figure 3b, ilim is relatively un-

changed over the ≈4.5 hour scan, while E1/2 changes by ca. 5 

mV from ≈0.414 V to ≈0.409 V. In steady-state voltammetry, a 

change in E1/2 is usually ascribed to differences in electron-

transfer kinetics (i.e., a more positive E1/2 indicates slower elec-

tron-transfer for an oxidation, vide infra).37 In the present case 

however, the waveshape of the LSV in Figure 3a indicates that 

Fc0/+ process is reversible at all points during the scan, con-

firmed by calculating the |E3/4 – E1/4| values (where E3/4 and E1/4 

are the potentials where i = 3·ilim/4 and i = ilim/4, respectively), 

shown in Figure 3c. Evidently, the |E3/4 – E1/4| values satisfy 

Tomes criterion of reversibility37 at all points (pixels) within the 

scan area, with a scan-average value of 58 ± 2 mV (mean ± one 

standard deviation). Thus, the change in E1/2 seen in Figure 3b 

is attributed to slight drift of the QRCE potential on the order of 

≈1 mV hr−1, which is comparable to what has previously been 

reported for Ag/AgCl QRCEs in aqueous electrolyte media, 

also in the SECCM configuration.38 

Application: microfabrication of conducting polymer arrays. 

Aside from its primary application as a tool for high-resolution 

electrochemical mapping (vide infra),3,4 the SECCM meniscus 

“nanocell” configuration can be used for local decoration (i.e., 

microfabrication) at electrode surfaces.5 This has been shown 

to be a particularly powerful approach for the synthesis and 

screening of three-dimensional (nano)structures, where CPs19,20 

or metal NPs21,22 are locally electrodeposited and subsequently 

characterized with high-resolution microscopy to explore the 

relationship between deposition conditions and material struc-

ture/function in a high-throughput manner. In order to explore 

the viability of this approach in aprotic media, the electropoly-

merization of pyrrole (Py) to form oxidized polypyrrole (de-

noted [PPy]n+, herein) was explored, shown below in Figure 4. 

While CPs (e.g., [PPy]n+) have found many modern electro-

chemical applications, for instance as electrodes in sensing39 

and energy storage technologies,40 the understanding of the in-

terplay between structure/properties (e.g., conductivity) and 

synthesis conditions is still largely empirical,41 making high-

throughput synthesis/screening strategies invaluable. 

 

Figure 4. (a) CV (υ = 0.5 V s−1, 4 cycles) and (b) i−t curve (E = 

1.2 V vs Ag/AgClQRCE) obtained from the electropolymerization of 

Py to [PPy]n+ at a nanocrystalline Au electrode. Shown in (b) is the 

average i−t curve (black trace) ± one standard deviation (red dashed 

traces), obtained from 624 independent measurements. (a) and (b) 

were obtained in the SECCM configuration (dt ≈ 1.7 μm, Figure 

1b-iii) in a 10 mM Py in PC (0.1 M [NBu4][PF6]) solution. (c) SEM 

image of the 24 × 26 pixel2 scan area (hopping distance = 5 μm) 

produced in (b). (d) Zoomed in SEM image of the red boxed area 

in (c), showing the individual droplet footprints. 



 

 

Figure 5. (a) EBSD map of a polycrystalline Pt surface, scanned with SECCM (inverse pole figure, IPF-z indicates surface orientation). (b 

– c) Spatially-resolved E1/2 maps (59 × 59 pixels2 over a 29.5 × 29.5 μm2 area, hopping distance = 500 nm) for the (b) I−/I3
− and (c) I3

−/I2 

processes. (b) and (c) were constructed from the i−E data shown in the SI, Movie S1. (d) Pixel-resolved LSVs (υ = 1 V s−1) extracted from 

grains (1) – (4), labelled in (a) and (b), alongside the area average (dashed black line). (e) SECCM topography map, collected synchronously 

with (b) and (c). (f) Line scan profiles of E1/2 (I3
−/I2) and z-height, extracted from the black and red arrows indicated in (c) and (e), respec-

tively. (b – f) were obtained in the SECCM configuration (dt ≈ 200 nm, Figure 1b-i) in a 5 mM [NBu4]I in PC (0.1 M [NBu4][PF6]) solution.

Shown in Figure 4a, the cyclic voltammogram (CV) obtained 

in Py/PC (0.1 M [NBu4][PF6]) solution exhibits two main redox 

processes, in agreement with previous macroscopic studies42: 

(1) oxidative electropolymerization of Py to [PPy]n+ above ≈0.8 

V vs Ag/AgClQRCE and; (2) redox cycling (redox switching) of 

the [PPy]n+ film (i.e., [PPy]n+/PPy) in the 0 to 0.4 V range. Elec-

tropolymerization of a 24 by 26 array of [PPy]n+ nanostructures 

was carried out in the chronoamperometric (constant potential) 

mode; the average i−t curve is shown in Figure 4b. For the sake 

of simplicity, and to check for consistency, the same E−t wave-

form (Eapp = +1.2 V for 200 ms) was applied at all points during 

the scan. Due to this and the fact that the structure of the nano-

crystalline Au electrode is effectively homogeneous on the 

scale of the SECCM probe (dt ≈ 1.7 μm, Figure 1b-iii), the i−t 

curves are highly reproducible, with an average charge (Q) of 

6.5 ± 0.8 pC (proportional to the amount of [PPy]n+ deposited) 

passed during the 200 ms pulse. Note that while a uniform E−t 

waveform was applied herein, E or t can be varied on a per-hop 

basis to systematically study the interplay between electrodep-

osition parameters and deposit morphology.21 

The SEM image of the SECCM scan area, shown in Figure 

4c, confirms the reproducibility of the [PPy]n+ deposits, which 

are visible as a rectangular array of uniform black “dots” across 

the Au electrode surface. Zooming in on an area of the scan, 

shown in Figure 4d, it is clear that the black [PPy]n+ deposits are 

surrounded by a circular halo, which represents the total area 

(footprint) wetted by the SECCM meniscus cell during the E−t 

pulse (vide supra). The diameter of the droplet footprints (ca. 

2.5 μm, Figure 4d) are comparable to the diameter of the 

SECCM probe (dt ≈ 1.7 μm, Figure 1b-iii), indicating that sur-

face wetting is minimal (wetting ratio, W.R. = dfootprint / dt ≈ 1.5). 

Interestingly, while previous SECCM studies in non-aqueous 

IL-based electrolytes have also demonstrated a stable meniscus 

cell with minimal surface wetting,24,25 those carried out in apro-

tic electrolytes based on PC27 and dimethyl sulfoxide26 have 

shown severe surface wetting, with W.R. values of ≈10 and 

≈15, respectively. Evidently, under the conditions investigated 

herein, the meniscus cell-metal contact is very stable, with scan-

ning spatial-resolution on the order of the tip diameter (ca. 200 

to 1700 nm, herein, depending on the experiment/application, 

see Figure 1b), enabling precise electrochemical mapping with 

high spatial resolution (vide infra). 

Application: mapping nanoscale structure−activity. As alluded 

to above, SECCM is primarily employed as a high-resolution 

electrochemical mapping technique in correlative surface struc-

ture−activity studies.3,4 The feasibility of this approach in apro-

tic media was explored herein by investigating the electro-oxi-

dation of iodide (I−) at polycrystalline Pt. I−/I2 is a well-known 

inner-sphere electron-transfer process43 that proceeds via a one-

electron per iodide-ion process on inert electrode materials such 

as Pt or glassy carbon: 

2I− ⇌ I2 + 2e− (2) 

I− and I2 combine homogeneously to form the polyhalogen com-

plex anion, triiodide (I3
−): 

I− + I2 ⇌ I3
−  (3) 

The equilibrium (stability) constant of this reaction is highly 

solvent dependent, ranging from ≈102.9 in water to ≈107.8 in PC, 

and has a strong bearing on the observed iodide oxidation mech-

anism.44 The overall oxidation process shown in Eq. (2) may 

occur in one step, giving rise to a single voltammetric process 

(e.g., in water) or in two steps (via an I3
‒ intermediate), giving 

rise to two separate voltammetric processes (e.g., in PC): 

3I− ⇌ I3
− + 2e− (4) 

I3
− ⇌ 3 2⁄ I2 + e− (5) 

The I−/I3
− couple is the most commonly employed redox medi-

ator system in dye-sensitized solar cells (DSSCs), where Eq. (4) 

takes place (usually) at a platinized counter electrode.45 More 

recently, the addition of I− (in the form LiI) to lithium-oxygen 

battery electrolytes has been found to reduce the charging over-

potential by influencing the cathode product distribution, 

achieved through the action of the I−/I3
− redox mediator sys-



 

tem.46 Thus, understanding the surface structure-dependent ki-

netics/mechanisms of the I−/I3
−/I2 redox processes in aprotic me-

dia (e.g., PC) is important for the optimization of these devices. 

A spatially-resolved electrochemical movie obtained from 

the oxidation of I− at polycrystalline Pt is shown in the SI, 

Movie S1 (caption in the SI, Section S4). Despite the small 

magnitude of the measured currents (<5 pA), the high signal-

to-noise ratio allows the I−/I3
− [Eq. (4)] and I3

−/I2 [Eq. (5)] pro-

cesses to be readily distinguished at lower and higher potentials, 

respectively. Comparison with the EBSD map in Figure 5a re-

veals that I−/I3
− and I3

−/I2 are both structure (grain) dependent 

processes. All of the grains within the scan area [labelled (1) to 

(4) in Figure 5a] can be described as relatively “high-index”, 

with average crystallographic orientations that are far from the 

low-index orientations of face-centred cubic (fcc) Pt (i.e., 

{001}, {011} and {111}). Consulting the spatially-resolved E1/2 

maps of I−/I3
− and I3

−/I2, shown in Figure 5b and c, respectively, 

it is clear that the two processes possess different grain depend-

encies, with electron-transfer kinetics (inferred from E1/2, vide 

supra) decreasing in the order: (1) ≈ (2) > (3) > (4) and (1) ≈ (2) 

> (4) > (3). These trends are also abundantly clear from the av-

erage LSVs extracted from each grain, shown in Figure 5d, 

which exhibit two processes occurring at potentials of ca. 0.7 

and 1 V vs Ag/AgI (5 mM I−), corresponding to I−/I3
− and I3

−/I2, 

respectively. Interestingly, considering the I−/I3
− process in Fig-

ure 5d (i.e., process at ca. 0.7 V), it is clear that the LSV wave 

shape/slope is also grain dependent, with |E3/4 – E1/4| values of 

ca. 54, 55, 64 and 56 mV for grains (1) to (4), respectively. Note 

that given DI− ≈ 3.5 × 10−6 cm2 s−1 (Ref 44) and dt ≈ 200 nm 

(Figure 1b-i), ilim (≈5 pA in Figure 5d) is again ca. 10% of that 

expected at the same sized microdisk electrode (ca. 60 pA).28,34 

Similar trends in grain-dependent I− oxidation kinetics were 

also observed on other areas of the polycrystalline Pt surface, 

shown in the SI, Movie S2 and Figure S2.  

Although the X−/X3
−/X2 processes [where X− is a general hal-

ide (Cl−, Br− or I−) or pseudohalide (SCN− or SeCN−) anion] 

have been the subject of intensive research in many different 

solvent media,44 no consensus has been reached on the electrode 

reaction mechanism(s). For instance, X3
− redox has been pro-

posed to occur via either direct oxidation/reduction routes [e.g., 

Eqs. (4) and (5)]47 or generalized CE mechanisms [e.g., Eq. (3) 

followed by Eq. (2)]48 in non-aqueous media. From the different 

grain dependencies of I−/I3
− and I3

−/I2 shown in Figure 5b and c, 

respectively, it may be inferred that the two processes take place 

preferentially at different active sites, suggesting that the direct 

oxidation route predominates. Alternatively, the unique struc-

tural dependencies of the two processes may result from the po-

tential-dependent specific adsorption of I−/I2,
49 which may in-

fluence the I−/I3
− oxidation sites in a grain-dependent manner. 

In addition to the crystallographic orientation of the grains 

themselves, the I3
−/I2 process additionally exhibited enhanced 

activity in the vicinity of the interface between grains (1)/(2) 

and (4) (i.e., the grain boundaries). This can be seen by compar-

ing the E1/2 (I3
−/I2) map (Figure 5c) to the SECCM topographical 

map (which was collected synchronously with the spatially-re-

solved electrochemical data), shown in Figure 5e, in which the 

individual grains can be distinguished topographically, arising 

from the polishing and flame annealing processes (detailed in 

the SI, Section S1). Clearly, there is a line of high activity run-

ning along the grain boundaries between grains (1)/(2) and (4), 

visualized by taking line-scan profiles of E1/2 and z-height, 

shown in Figure 5e. In the vicinity of the grain boundary (i.e., 

at x-displacement = 2 μm, indicated by blue arrows in Figure 

5e), E1/2 is shifted negatively by ca. 0.01 V and 0.03 V compared 

to grains (1) and (4), respectively, indicating enhanced activity 

towards the I3
−/I2 process. Note that similar enhancements in 

activity towards inner-sphere processes have also been noted in 

previous SECCM studies,12-14 but the ability to now perform 

such studies in aprotic solvent media greatly expands the range 

of systems that can be mapped with high spatial resolution. 

It is also worth noting that in other areas of the polycrystalline 

Pt surface, non-uniform I−/I2 activity was observed within indi-

vidual grains (i.e., at the intra-grain level). For instance, com-

paring the electrochemical movie in the SI, Movie S3 to the cor-

responding EBSD map in Figure 6a, it is clear that the electro-

chemical activity of grain (1), which makes up >95% of the scan 

area (labelled in Figure 6a), is non-uniform with regards to both 

the I−/I3
− and I3

−/I2 processes. The areas of high electrochemical 

activity surrounding grains (2) and (3)/(4), particularly for the 

I3
−/I2 process, coincide with regions of grain (1) with relatively 

high crystallographic misorientation, evident by comparing the 

misorientation map in Figure 6b [areas labelled (A) and (B)] 

with the E1/2 maps in Figure 6c and d. Note that the misorienta-

tion map indicates the local misorientation angle relative to the 

grain average, with a value ≥10° indicating a grain boundary 

(indicated by black lines in Figure 6a and b). In the present case, 

the two areas of relatively high misorientation [i.e., (A) and (B) 

in Figure 6b] also coincide with local topographical defor-

mation, as shown in the SI, Figure S3. The different patterns of 

reactivity in Figures 6c and d also imply that the I−/I3
− and I3

−/I2 

processes take place at different active sites on Pt (vide supra). 

 

Figure 6. EBSD (a) IPF-z and (b) misorientation maps of a poly-

crystalline Pt surface, scanned with SECCM. Individual grains are 

labelled (1) to (4) in (a). (c – d) Spatially-resolved E1/2 maps (59 × 

59 pixels2 over a 29.5 × 29.5 μm2 area, hopping distance = 500 nm) 

for the (c) I−/I3
− and (d) I3

−/I2 processes. (c) and (d) were con-

structed from the i−E data shown in the SI, Movie S3. (c) and (d) 

were obtained in the SECCM configuration (dt ≈ 200 nm, Figure 

1b-i) in a 5 mM [NBu4]I in PC (0.1 M [NBu4][PF6]) solution. 

CONCLUSIONS 

Taking organic carbonates as a model class of aprotic solvent, 

SECCM was successfully adapted to operate in non-aqueous 



 

electrolyte media. Investigating the simple outer-sphere Fc0/+ 

process, it was shown that high BP (low VP) solvents (e.g., PC) 

give rise to robust and reproducible electrochemistry on the 

scanning (hours) timescale, while low BP (high VP) solvents 

(e.g., DMC) need to be combined with suitable low MP sup-

porting electrolytes (e.g., ILs) or high BP solvents (e.g., EC) to 

avoid complications associated with salt precipitation/crystalli-

zation. SECCM was applied for microfabrication, by synthesiz-

ing (depositing) a microarray of [PPy]n+ on a nanocrystalline Au 

electrode surface, which was subsequently characterized with 

SEM to confirm the reproducibility of the technique and stabil-

ity of the meniscus cell during scanning. Finally, high-resolu-

tion electrochemical mapping of the I−/I3
− and I3

−/I2 processes 

across the surface of a polycrystalline Pt electrode revealed 

unique, structure-dependent patterns of surface reactivity at for 

example, individual grains, grain boundaries and areas of high 

local surface misorientation. Overall, this study expands 

SECCM as a premier technique for structure−function−activity 

studies in (electro)materials science, opening up possibilities in 

exciting new areas such as the microfabrication of water-sensi-

tive materials (e.g., electrodeposition of reactive metals, which 

will be facilitated by housing SECCM in a glovebox) or elec-

trochemical mapping of processes relevant to electrochemical 

energy storage (e.g., Li-ion batteries and supercapacitors) and 

electrocatalysis. 
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