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ABSTRACT (Word count: 258)

The genomic epidemiology of influenza B virus (IBV) remains understudied in Africa 

despite significance to design of effective local and global control strategies. We undertook 

surveillance throughout 2016 in coastal Kenya, recruiting individuals presenting with acute 

respiratory illness at nine outpatient health facilities (any age) or admitted to the Kilifi 

County Hospital (<5-year-old). Whole genomes were sequenced for a select 111 positives; 94 

(84.7%) of B/Victoria lineage and 17 (15.3%) of B/Yamagata lineage. Inter-Lineage 

reassortment was detected in 10 viruses; nine with B/Yamagata backbone but B/Victoria NA 

and NP segments and one with a B/Victoria backbone but B/Yamagata PB2, PB1, PA and 

MP segments. Five phylogenomic clusters were identified among the sequenced viruses; (i) 

pure B/Victoria clade 1A (n=93, 83.8%), (ii) reassortant B/Victoria clade 1A (n=1, 0.9%), 

(iii) pure B/Yamagata clade 2 (n=2, 1.8%), (iv) pure B/Yamagata clade 3 (n=6, 5.4%) and (v) 

reassortant B/Yamagata clade 3 (n=9, 8.1%). Using divergence dates and clustering patterns 

in the presence of global background sequences, we counted up to 29 independent IBV strain 

introductions into the study area (~900 km2) in 2016. Local viruses, including the reassortant 

B/Yamagata strains, clustered closely with viruses from neighbouring Tanzania and Uganda. 

Our study demonstrated that genomic analysis provides a clearer picture of locally circulating 

IBV diversity. The high number of IBV introductions highlights the challenge in controlling 

local influenza epidemics by targeted approaches e.g. sub-population vaccination or patient 

quarantine. The finding of divergent IBV strains co-circulating within a single season 

emphasizes why broad immunity vaccines are the most ideal for influenza control in Kenya. 

https://mc.manuscriptcentral.com/vevolu
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MAIN TEXT (Word count 5284)

Human influenza B virus (IBV) is responsible for about 30% of the influenza virus 

morbidity and mortality during seasonal influenza epidemics (Caini et al. 2018a; Paul Glezen 

et al. 2013; Seleka et al. 2017). Influenza disease burden is notably highest in low-income 

countries, majority of which are located in the tropics (Caini et al. 2018a; Sambala et al. 

2018). Influenza virus activity in these regions tends to continue throughout the year 

characterized by a single or multiple epidemic peaks (Caini et al. 2018a; El Guerche-Seblain 

et al. 2019; Emukule et al. 2019; Hirve and Organization 2015). However, understanding of 

IBV evolutionary dynamics and molecular epidemiology in these regions, especially in sub-

Saharan Africa, remains limited with few genomes available to date for detailed 

investigations (Langat et al. 2017).

Currently, there are two major IBV lineages co-circulating, B/Yamagata and 

B/Victoria, which diverged in the early 1970s (Kanegae et al. 1990; McCullers et al. 2004; 

Rota et al. 1990). Differences between the two lineages are seen in their transmissibility, and 

genetic and antigenic dynamics (Langat et al. 2017). For instance, B/Victoria lineage viruses 

have been shown to infect children more commonly than  B/Yamagata lineage viruses (Tan 

et al. 2013; Vijaykrishna et al. 2015; Xu et al. 2015). Further, the B/Victoria lineage viruses 

display a clear antigenic drift of a single clade in successive years with strong seasonal 

fluctuations in their incidence, while the B/Yamagata lineage viruses exhibit continuous co-

circulation of multiple genetic clades which alternate in their dominance over years (Langat 

et al. 2017).

Human influenza vaccines that include one or both the two known IBV lineages are 

currently available. Because of the continuous antigenic evolution inherent in influenza 

viruses, these vaccines are periodically updated in their antigenic composition (Bedford et al. 

2014). Understanding of the prevailing global and local influenza molecular epidemiology is 

https://mc.manuscriptcentral.com/vevolu
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a key consideration during selection of influenza strains to include in vaccines for upcoming 

seasons and for understanding observed vaccine effectiveness (Rajao and Perez 2018). 

However, such information is frequently unavailable for majority of developing countries 

(Caini et al. 2015; Caini et al. 2018a). Furthermore, most developing countries lack a national 

influenza vaccination policy (Dawa et al. 2019). 

 Kenya is a lower middle-income country in East Africa and is currently engaged in 

the process of formulating its national influenza vaccination policy (Dawa et al. 2019). The 

country lies on the equator with a climate that varies regionally, mostly between tropical to 

sub-tropical. An influenza surveillance study conducted between 2012-2016 across 11 sites in 

Kenya found that ~ 31% of medically-attended influenza cases were of IBV type (Emukule et 

al. 2019). IBV prevalence among influenza positives fluctuated from year-to-year, with 2016 

recording the highest proportion (61%) over the 5-year surveillance period. Further, it was 

observed that the two IBV lineages alternated in predominance; B/Victoria lineage 

predominated in the years 2012 and 2016 while B/Yamagata predominated in  year 2013, 

2014 and 2015 (Emukule et al. 2019). 

Influenza genomic analysis is now recognized as instrumental in providing a detailed 

information on the mutations that could facilitate antigenic escape, antiviral resistance, 

enhanced virulence and can uncover the transmission history  and pathways of locally and 

globally circulating viruses (Goldstein et al. 2017; Hirve and Organization 2015). Unlike 

influenza A, no study to-date has examined the genomic epidemiology of IBV in Kenya or 

elsewhere in Africa to characterise the local phylodynamics and phylogeography in 

comparison to known global patterns. The extent of inter-connectedness of IBV epidemics 

that occur locally to those happening regionally and globally is yet to be examined. In this 

study, we present detailed genomic analysis of the circulating IBV strains over a single year 

in a rural coastal area of Kenya, their spread, evolutionary dynamics and global context. 

https://mc.manuscriptcentral.com/vevolu
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MATERIALS AND METHODS

Study area and population. All samples analysed here were collected in health 

facilities within the Kilifi Health and Demographic Surveillance System (KHDSS) area 

(Scott et al. 2012), located at the Indian ocean coastal region of Kenya. The  study period was 

over a one year period (January to December 2016) (Nyiro et al. 2018). The KHDSS area 

spans ~900 km2 and is resident to ~280,000 people as at of 2016. The area has a tropical 

climate with two rainy seasons; the main rains that usually peak in April and the short rains 

that usually peak in November (Nokes et al. 2009). Study participants were both resident 

(majority) and non-resident individuals of any age presenting with acute respiratory illness 

(ARI) to nine primary outpatient health facilities within the KHDSS area (Nyiro et al. 2018) 

or inpatients under five years of age admitted with syndromic severe or very severe 

pneumonia to the Kilifi County Hospital (KCH) (Nokes et al. 2009). 

Study design. The description of the study design, including selection criteria and 

case definitions, at KCH and at the included KHDSS outpatient facilities can be found in our 

previous reports (Nokes et al. 2009; Nyiro et al. 2018). KCH is main referral hospital in Kilifi 

County providing inpatient care and is located in Kilifi town, the county headquarters. All 

children meeting the inclusion  criteria are eligible for enrolment (around 75% are 

approached, consented and a sample collected). The outpatient facilities included in the study 

were: Chasimba, Sokoke, Matsangoni, Ngerenya, Mavueni, Mtondia, Junju, Jaribuni, and 

Pingilikani, Figure 1, panel (a). The study aimed to collect a sample from the first 15 

eligible individuals identified in each clinic per week (7020 samples in total). Roughly equal 

numbers of samples were collected from each outpatient facility throughout the year (Nyiro 

et al. 2018), with approximately similar numbers collected per month except for December 

https://mc.manuscriptcentral.com/vevolu
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which was affected by health worker strike (Ong'ayo et al. 2019). Samples from KCH 

represented a full year sampling fulfilling the eligibility criteria. 

Ethical approval. The KEMRI Scientific and Ethics Review Unit (SERU) granted 

ethical clearance for the study protocol and procedures. Study participants or their 

parents/caregivers (if aged <18 years) provided a written informed consent to participate in 

the study before sample collection.

Sample handling and IBV detection. Nasopharyngeal (NP) swabs were collected at 

the outpatient facilities while naso-oropharyngeal (NP/OP) swabs were collected at KCH. 

The swabs were immediately put into viral transport medium (VTM) and transferred to a cool 

box with ‘ice’ blocks before transportation to the Kenya Medical Research Institute (KEMRI) 

- Wellcome Trust Research Programme laboratories (KWTRP) for long-term storage at -80o 

C. All samples were screened for 15 different viruses using real-time reverse transcription 

PCR (RT-PCR) diagnostic assay, as previously described (Hammitt et al. 2011; Onyango et 

al. 2012). IBV primers and probe targeted a conserved region of the non-structural (NS) 

segment of IBV genome (Gunson and Carman 2011). IBV positive samples with a 

considerably high viral load as defined an RT-PCR cycle threshold (Ct) value of <27.0, were 

selected for the KHDSS outpatient facilities arm, but all IBV positive samples regardless of 

Ct value from KCH inpatients arm, for whole genome sequencing (WGS), Figure 1, panel 

(b).

Nucleic acid extraction and multi-segment reverse transcription PCR. Nucleic 

acid was extracted from IBV positive samples using the QIAamp Viral RNA Mini Kit 

(Qiagen, Hilden, Germany). Complete IBV segments were amplified using the Universal 

IBV-GA2 primer set (Zhou et al. 2014) in a multisegment reverse transcription PCR (M-RT-

PCR) utilizing SuperScript III One-Step Kit with Platinum Taq DNA Polymerase High 

Fidelity (Invitrogen, Carlsbard, CA, USA). The universal primers amplify all eight IBV 

https://mc.manuscriptcentral.com/vevolu
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genome segments in a single PCR reaction tube (Zhou et al. 2014). Successful amplification 

was confirmed by running the PCR products and controls on a 2% agarose gel and 

visualizing on a UV trans-illuminator after staining with RedSafe Nucleic Acid Staining 

solution (iNtRON Biotechnology Inc., Seoul, South Korea).

Next generation sequencing. Amplicons were purified with 1×AMPure XP beads 

(Beckman Coulter Inc., Brea, CA, USA), quantified with Quant-iT dsDNA High Sensitivity 

Assay (Invitrogen, Carlsbard, CA, USA), and normalized to 0.2 ng/µL. Indexed paired-end 

libraries were generated from 2.5 µL of 0.2 ng/uL amplicon pool using Nextera XT sample 

Preparation Kit (Illumina, San Diego, CA, USA) following the manufacturer’s protocol. 

Amplified libraries were purified using 0.8×AMPure XP beads, quantified using the Quant-

iT dsDNA High Sensitivity Assay, and evaluated for fragment size in the Agilent 2100 

BioAnalyzer System using the Agilent High Sensitivity DNA Kit (Agilent Technologies, 

Santa Clara, CA, USA). Libraries were diluted to 2nM, pooled and denatured, then diluted to 

12.5 pM. Sequencing was performed on the Illumina MiSeq using MiSeq v250 cycle kit with 

5% PhiX (Illumina, San Diego, CA, USA) spike-in. Sequence assembly was performed using 

the Iterative Refinement Meta-Assembler (IRMA) default settings: median read Q-score filter 

of 30, the minimum read length of 125, the frequency threshold for insertion and deletion 

refinement of 0.25 and 0.60 respectively; Smith-Waterman mismatch penalty of 5; and gap 

opening penalty of 10 (Shepard et al. 2016). 

Comparison dataset. Two datasets compiled from the Global Initiative on Sharing 

All Influenza Data (GISAID) were prepared for comparison with the newly sequenced Kilifi 

IBV strains. The first dataset comprised reference sequences of B/Victoria and B/Yamagata 

lineages, and clades within these lineages collected between 1987 and 2020, and IBV strains 

that were included in trivalent and quadrivalent influenza vaccines that were recommended 

during the 2015/16 northern hemisphere influenza season 

https://mc.manuscriptcentral.com/vevolu
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(https://www.who.int/influenza/vaccines/virus/recommendations/2015_16_north/en/). This 

dataset (n=54) was used to assign lineage and clades to the Kilifi IBV strains  and in 

segment-by-segment evolutionary analyses. The second dataset was a 1207 sample of IBV 

whole genomes deposited in GISAID database for samples collected between January 2014 

and December 2016 across all continents. Details on how these were selected are provided in 

S1 Table. This dataset was used to investigate the global phylogenetic context of the Kilifi 

IBV strains. 

Phylogenetic Analysis. The assembled and segment assorted Kilifi nucleotide (nt) 

sequences were aligned together with the global references using MAFFT v7.245 (Katoh et 

al. 2013) and visualized using Aliview v1.25 (Larsson 2014). For each of segment dataset, 

maximum likelihood (ML) phylogenetic trees were inferred using RaxML v.8.2.12 

(Stamatakis 2014), based on the best-fit models of nt substitution determined by IQ-TREE 

v1.5.5 (Nguyen et al. 2015). The individual segment sequences were concatenated to give the 

full-length genome sequences using SequenceMatrix (Vaidya et al. 2011). For all ML trees, 

the clustering reliability was evaluated by bootstrap resampling 1000 replicates. The tree 

topologies across segments were detect reassortment events, using FigTree v1.4.4 

(http://tree.bio.ed.ac.uk/software/figtree/). Reassortant IBV strains were confirmed 

computationally using the Graph-incompatibility-based Assortment Finder (GiRaF) tool 

(Nagarajan and Kingsford 2011). 

Evolutionary analysis. This was undertaken for the individual segments and the 

concatenated genomes. The linearity in nt sequence divergence with sampling time for 

datasets utilized in inferring the time to the Most Recent Common Ancestor  (tMRCA) and 

substitution rates were initially assessed using TempEst v1.5.3 program (Rambaut et al. 

2016). Viruses suspected to be reassortants were analyzed separately. Nt substitution rates 

and the tMCRA were estimated using the Bayesian approach implemented in BEAST v1.10.4 

https://mc.manuscriptcentral.com/vevolu
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program (Suchard et al. 2018). The log files from the analysis were examined using Tracer 

v1.7.1 program (http://tree.bio.ed.ac.uk/software/tracer/) and run convergence (defined as 

estimated sample size of >100 for all sampled parameters) was confirmed before extracting 

the relevant parameter estimates. All BEAST runs were set to at least 10 million steps with 

sampling after every 2500 steps. Additional and longer runs were considered if the initial 

analysis did not show convergence. Maximum clade credibility (MCC) trees were 

summarized from the tree log file using TreeAnnotator v1.10.4  with a 10% burn-in. The 

MCC trees were  visualized using FigTree v1.4.4 (Suchard et al. 2018).

Genetic diversity and transmission analysis. We categorised the diversity observed 

in the Kilifi sequenced viruses using five measures that reflected the closeness of the viruses 

in their underlying transmission history and genetic diversity. These levels were defined on 

the basis of the observed phylogenetic clustering with reference sequences, the concatenated 

segments phylogeny (that identified reassortants), pairwise nt distances and the estimated 

time of divergence at the branch nodes. The defined categories (the first two consistent with 

what has been described in literature) are summarised below: 

a) Lineage: Based on phylogenetic clustering of HA segment sequences with  

B/Yamagata and B/Victoria lineage reference sequences (Arvia et al. 2014).

b) Clade: Based on HA phylogenetic clustering with reference sequences of known 

clades within  B/Yamagata (Clade 1-3) and B/Victoria (Clade 1-6) lineages (Arvia et 

al. 2014; Tramuto et al. 2016).

c) Phylogenomic cluster: Based on the genome phylogeny clustering. Phylogenomic 

clusters were assigned to major branches that showed high bootstrap support values 

(>70%). 

d) Epidemiological cluster: Based on the time to the MRCA inferred from the 

reconstructed genome phylogeny. Epidemiological cluster members belonged to the 

https://mc.manuscriptcentral.com/vevolu

D
ow

nloaded from
 https://academ

ic.oup.com
/ve/article-abstract/doi/10.1093/ve/veaa045/5855143 by guest on 29 June 2020

http://tree.bio.ed.ac.uk/software/tracer/


10

same phylogenomic cluster and had a divergence date within a year prior to the start 

of our surveillance i.e. 2015 onwards. 

e) Transmission cluster: These were defined as viruses of the same epidemiological 

cluster that were independent introductions into the local population. As a 

conservative estimate, members of different transmission clusters diverged before the 

start of our local surveillance i.e. a before January 2016. 

The potential transmission networks within and between  populations visiting the 

enrolled KHDSS health facilities were inferred in PopART package v1.7.2 using TCS 

method with an epsilon of zero (Leigh and Bryant 2015). The networks were created for each 

identified phylogenomic cluster from the concatenated segments alignments.

Spatial analysis. We conducted a phylogeographic analysis to assess virus movement 

between the KHDSS locations and in relation to the rest of the world using methods 

implemented in BEAST v1.10.4 package. The analysis was implemented with a symmetric 

discrete trait approach and applied the Bayesian stochastic search variable selection (BSSVS) 

model (Lemey et al. 2009). To reduce complexity of the MCC, location states were 

categorized as “non-Kilifi” or the specific health center regions. Phylogeographic inferences 

were visualized with the spatial phylogenetic reconstruction of evolutionary dynamics using 

data-driven documents (SPREAD3) v0.9.7.1c (Bielejec et al. 2016). To visualize the 

geographic migration of the virus over time, a D3 file was generated  using SPREAD3 

v0.9.7.1c. We used the KHDSS geo.json file. The resulting log files we used to calculate 

Bayes Factor (BF) values for significant diffusion rates between discrete locations.

Statistical Analysis. Numeric variable analyses were conducted using STATA v15.1 

(StataCorp. College Station, TX). Mean, median and inter-quartile range (IQR) were used to 

summarise continuous variables, while proportions were calculated for binary variables. 

Comparison between means and medians was done using t-test and median test, respectively. 

https://mc.manuscriptcentral.com/vevolu
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Patient distribution across the age groups and lineage distribution across demographic sub-

categories were compared using the Wilcoxon-Mann-Whitney U test and the independent t-

test. Demographic and clinical characteristics among IBV positive patients sequenced versus 

those not sequenced and for the two lineages were compared using Fisher's exact test. 

Statistical significance (2 tailed) was set at p value of ≤ 0.05.

RESULTS

Demographic characteristics. Between January and December 2016, a total of 5647 

NP swabs were collected from the nine KHDSS outpatient facilities and 574  NP/OP swabs 

from inpatients at KCH, Figure 1, panel (b). Of these, 4.7% (267/5647) from the outpatient 

facilities and 1.9% (11/574) of samples from KCH tested IBV positive by real-time RT-PCR.  

Sequencing attempt on 120/278 selected positives (43.2%, 109 from KHDSS outpatient 

facilities and 11 from KCH), yielded 111 whole genomes; 101 from KHDSS outpatient 

facilities and 10 from KCH , Figure 1, panel (b). The demographic and clinical 

characteristics of the patients from whom genomes were obtained were similar to those for 

whom genomes were not obtained except for viral loads (as indicated by diagnostic RT-PCR 

Ct value) and health facility type (inpatient or outpatient), Table 1. The patient age among 

IBV positive patients ranged between 1 month and 85 years (mean: 9.6 years, and median: 6 

years). The proportion positive was highest in patients aged between 0-4 years (43.2%) 

followed by the 5-14 years age group (39.2%). Female patients accounted for most IBV 

positives (57.2%) and cough was the most common symptom in the IBV positive patients 

followed by fever and nasal discharge, Table 1.

Seasonality and representativeness of the sequenced samples. IBV were detected 

in all months of 2016 in the surveillance although the number of cases fluctuated from 

month-to-month, Figure 1, panel (c). Notably each KHDSS health facility experienced a 

https://mc.manuscriptcentral.com/vevolu

D
ow

nloaded from
 https://academ

ic.oup.com
/ve/article-abstract/doi/10.1093/ve/veaa045/5855143 by guest on 29 June 2020



12

peak incidence at different months of the year but the majority fell between March and 

August. This coincided with one of the two rainy seasons in region. At the individual health 

facilities, some months had no IBV detections in the samples analysed. When all the enrolled 

health facilities were combined, sequence data was available from every month in 2016 

except February and December. The fraction of samples from each health facility that were 

sequenced roughly reflected the total number of the positives that were detected in the 

specific health facility, S2 Figure. At least one sample was sequenced from each of the 

enrolled health facilities and this enabled our interrogation of IBV transmission between the 

populations served by the enrolled health facilities.

The B/Yamagata and B/Victoria lineages co-circulated in the study population. 

The HA phylogeny demonstrated that the two known IBV lineages were co-circulating: 

B/Victoria and B/Yamagata, Figure 2, panel (a). Overall, the B/Victoria lineage 

predominated during this single year (84.7%) with all its sequenced viruses falling into clade 

1A, Figure 2, panel (b). The HA of B/Yamagata lineage viruses clustered within two 

genetically distinct known clades; clade 2 (n=2) and clade 3 (n=15). The B/Yamagata clade 3 

viruses were detected in low numbers generally but throughout the year while the  

B/Yamagata clade 2 viruses were detected only in January and March as shown in Figure 2, 

panel (c). The demographic and clinical characteristics of patients infected by either  

B/Yamagata lineage or B/Victoria lineage were not statistically different, S3 Table.

Inter-lineage reassortment in the Kilifi IBV strains. Segment-specific phylogenies 

showed a clear separation into the B/Yamagata and B/Victoria lineages for the majority of 

the Kilifi viruses (n=101, 90.1%) in all the segments; PB2, PB1, PA, HA, NA, NP, M, and 

NS (S4 Figure). For the remainder viruses (n=10), two inter-lineage reassortment events 

were suspected that were confirmed in GiRaF analysis, S5 Table. The first involving a single 

virus (B/Kilifi/114/2016/KCH/14-Oct-2016) that had B/Victoria lineage backbone including 

https://mc.manuscriptcentral.com/vevolu
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the HA segment but its PB2, PB1 PA and MP segments clustered closely to B/Yamagata 

lineage viruses, S4 Figure. Notably, for this virus, its NA and NP segments were distinct 

from the other B/Victoria lineage viruses. The second reassortment event involved nine 

B/Yamagata clade 3 viruses in which the NA and NP segments had been acquired from 

B/Victoria lineage but the backbone (i.e. all other segments) remained of B/Yamagata 

lineage. The B/Yamagata clade 2 viruses (n=2) maintained a unique and unchanged 

constellation across all the eight segments. 

Phylogenomic clusters in the Kilifi IBV 2016 epidemic. The ML phylogeny of the 

concatenated 8 segments of the Kilifi IBV strains, including reference strains is shown in 

Figure 3, panel (a). Multiple well-supported clusters were observed with evidence of mixing 

of virus samples from different health facilities. We assigned the five main  branches 

including Kilifi strains with high bootstrap support (>70%) phylogenomic clusters namely; 

(i) pure B/Victoria lineage clade 1A viruses (n=93, 83.8%), (ii) reassortant B/Victoria lineage 

clade 1A virus (n=1, 0.9%), (iii) pure B/Yamagata clade 2 viruses (n=2, 1.8%), (iv) pure 

B/Yamagata clade 3 viruses (n=6, 5.4%) and (v) B/Yamagata clade 3 reassortant viruses 

(n=9, 8.1%). The KCH surveillance captured 4 of the 5 of these circulating phylogenomic 

clusters excepting only the pure B/Yamagata clade 2 viruses. Viruses of this clade were seen 

only in one KHDSS outpatient facility (Matsangoni, found furthest North in the KHDSS). 

Most other KHDSS outpatient facilities observed circulation of 1-2 clusters except Mtondia 

where three phylogenomic clusters were detected, Figure 3, panel (b). Mtondia and 

Matsangoni are located along a Mombasa-Malindi highway, Figure 1, panel (a). Of the 10 

months that we obtained genome sequence data, in all except November we detected the pure 

B/Victoria Clade 1A viruses. The reassortant  B/Yamagata clade 3 viruses were the second 

most persistent phylogenomic cluster with detection in five months of the 10 months, Figure 

3, panel (c). B/Yamagata clade 2 and 3 pure clusters were observed only at the beginning of 

https://mc.manuscriptcentral.com/vevolu
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the year while reassorted B/Victoria clade 1A virus was detected only in October and only at 

the KCH facility. 

Evolutionary dynamics of the Kilifi IBV strains. A strong linear relationship 

between root-to-tip genetic distance and sampling date was observed in all assessed 

phylogenomic clusters (R2 consistently >0.6), S6 Figure. The Kilifi genomes fit well in the 

global continuum of observed diversity of the identified phylogenomic clusters. The time-

resolved BEAST phylogenies for the combined non-reassortant viruses, and for main  

phylogenomic clusters in Kilifi (those with a sample size of >2) are shown Figure 4. For the 

reassorted B/Yamagata clade 3 viruses, the global tMRCA was estimated to be around May 

2013 (95% HPD: March 2013 to August 2013), Figure 4, panel (b) and Table 2. The 

estimated nt substitution rates and tMRCA for the individual phylogenomic clusters are 

provided in Table 2. For all the individual phylogenomic clusters, tMRCA for the IBV 

viruses sampled in Kilifi during our surveillance occurred within 2015 except for the pure 

B/Yamagata clade 3 whose tMRCA occurred in October 2013 (95% HPD interval June 2012 

to December 2014), Figure 4, panel (d). 

Using the global reference set collected from 1987 to 2020 and the Kilifi strains and 

the unique Kilifi strains, we estimated the tMRCA and nucleotide substation rate for each of 

the segment, Table 3. The segments arrived at different tMRCA estimates for the included 

strains. The more recent tMRCA (March 1983) were from the NA and MP segments while 

the earliest tMRCA (July 1968) was arrived at from analysis of NS segment. As expected, the 

highest nucleotide substitution rates were observed with the HA segment (1.97 ×10-3) and NA 

segments (1.92 ×10-3) while the slowest substitution rate was observed with NS segment (1.24 

×10-3). 

Global context of the 2016 Kilifi IBV strains. We examined this using HA segment 

analysed by the ML approach. The global comparison dataset included 1207 IBV strains 
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sampled across 6 continents between 2014 and 2016. The phylogeny showed a clear 

birfurcation into two major clades corresponding to B/Victoria (n=481) and B/Yamagata 

(n=743) Lineages (figure not shown). The ML phylogenies for the individual Lineages are 

shown in Figure 5. For both B/Victoria and B/Yamagata, the phylogenies confirmed that 

multiple distinct strains were in circulation in the Kilifi community in 2016 some of which 

had extensive local onward transmission e.g. B/Victoria Clade 1A. The viruses clustering 

closest to the Kilifi IBV strains were commonly those detected in other African countries 

especially neighbouring Uganda and Tanzania (S7 Figure).

By our set criteria (based on clustering with global sequences and divergence dates), 

we identified a total of 7 epidemiological clusters and 29 transmission clusters from the Kilifi 

IBV strains, (see Figure 4 and Figure 5). The epidemiological cluster membership size (for 

Kilifi sequences) ranged from 1 to 93 while transmission cluster membership size varied 

from 1  to 28, Figure 4. The vast majority of the Kilifi transmission clusters (23/29) were 

within the pure B/Victoria clade 1A. 

Local phylogeography of the detected IBV strains. The genetic relatedness Kilifi 

viruses within the same phylogenomic clusters by health facility is shown in Figure 6 (for 

B/Victoria 1A) and S8 Figure (for both B/Yamagata pure and reassorted clade 3). In some of 

the KHDSS facilities, it was clear that a dominant transmission cluster existed e.g. some of 

the pure Victoria 1A variants for Chasimba, Mavueni and Mtondia while others had no clear 

dominant transmission cluster, Figure 6, panel (a). Further, the phylogeographic analysis 

showed that IBV Victoria IA viruses were commonly getting into and out of the KHDSS area 

through the Matsangoni area, Figure 6, panel (b) and (c). The Matsangoni health facility had 

connection with 7 of the 9 other health facilities. Although the Yamagata clade 3 clusters had 

KCH as their link to the rest of the world, the sample size was relatively small and KCH is a 

referral facility thus a direct link cannot be concluded, S8 Figure.
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DISCUSSION

Detailed phylodynamic and transmission studies on influenza in low-income settings 

in the tropics remain sparse. This is despite these regions bearing a disproportionately large 

influenza burden (Byarugaba et al. 2016; Katz et al. 2012). Here, through a comprehensive 

genomic analysis, we show that the year-round circulation of influenza B virus in a coastal 

region of Kenya (covering ~900 km2) in 2016 (Nyiro et al. 2018) was occasioned by co-

circulating IBV clades and viral clusters within both B/Yamagata and B/Victoria lineages. 

Further, we show that that the epidemic season was instigated by up to 29 independent strain 

introductions, some of which were inter-lineage reassortants. The genomic analysis 

recognised extensive local spread of the new IBV strains once introduced accompanied with 

significant accumulation of nucleotide substitutions.

The B/Victoria lineage predominated the IBV season we observed, being responsible 

for > 80% of the IBV infections we sequenced. These finding are congruent with a recent 

IBV report from Kenya of a surveillance study across 10 sites  from  2012 to 2016 (Emukule 

et al. 2019). The authors observed that in the 2016 season, IBV was the predominant 

influenza type in the enrolled health facilities (just like at this coastal Kenya site, (Nyiro et al. 

2018)) and the B/Victoria lineage was the predominant IBV lineage. Here through our 

detailed genomic analysis, we extend these earlier observations to show that this season was 

predominated by B/Victoria clade 1A strains and the co-circulating B/Yamagata viruses were 

of clade 2 and 3, and there were at least two inter-lineage reassortant strains in circulation. 

Currently available seasonal influenza vaccines require periodic update to better 

match circulating influenza strains (Hampson et al. 2017). Both trivalent influenza vaccines 

that have a representative H3N2, H1N1 and IBV strain (of either B/Victoria or  B/Yamagata 

lineage) and quadrivalent vaccines that have a representative H3N2, H1N1 and both IBV 

lineages (Victoria and B/Yamagata) are available (Grohskopf et al. 2019). Currently, Kenya 
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does not have a national influenza vaccination policy (Dawa et al. 2019). In this study, 

although B/Victoria lineage was predominant, our findings support the notion of deployment 

of quadrivalent influenza vaccines for optimal vaccine effectiveness. The impact of the 

additional diversity we observed within  B/Yamagata lineage (2 antigenically distinct clades 

and the emergence of reassortant viruses on the overall vaccine effectiveness require further 

investigation.

IBV inter-lineage reassortment is well recognised in literature (Dudas et al. 2015; 

Monamele et al. 2018; Tewawong et al. 2017). For instance, reassortant  B/Yamagata lineage 

viruses with a B/Victoria NA were recently reported in Cameroon (2014 -2017) (Monamele 

et al. 2018). Here, we identified two inter-lineage reassortment events; (i)  B/Yamagata 

lineage viruses that had acquired NP and NA segments from B/Victoria lineage viruses, and 

(ii) a B/Victoria lineage virus that had acquired PB2, PB1, PA and MP from  B/Yamagata 

clade 3 viruses. Previous studies observed that IBV reassortant viruses tend to circulate at a 

low prevalence and do not persist over epidemics (G.-W. Chen et al. 2007; Chi et al. 2005). 

In the current study, the reassorted  B/Yamagata clade 3 appeared to transmit for at least 6 

months while the reassortant B/Victoria clade 1A strain had single time point detection. 

Notably, the latter reassortant was unusual given the co-segregation of PB2, PB1 and PA.  

Previous analysis noted  that PB2,  PB1 and HA segments tend to segregate together due to 

more compatibility (Dudas et al. 2015). A follow up study to investigate the fate, clinical and 

epidemiological impact of the reassortant strains we observed here will be useful.

Some studies have associated B/Victoria lineage infections with more severe disease 

compared to  B/Yamagata lineage infections while other did not find such relationship (Caini 

et al. 2018b; Emukule et al. 2019). In the current study, we did not observe a significant 

difference in lineage distribution between in-patients and outpatients. Further, the genome 

phylogenies observed interspersing of strains that were found in the inpatients and those 
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found in mild ARI outpatient cases. These observations suggest that it is host rather than viral 

factors that are most critical in determining IBV disease severity. Further, we found that IBV 

infections were most frequent amongst 0-14 year-olds and lineage distribution did not appear 

to be influenced by age unlike what has been reported in some previous studies 

(Horthongkham et al. 2016; Korsun et al. 2017; Yang et al. 2018). 

The inclusion of regional and global genomes deposited in GISAID significantly 

improved the power of our phylodynamic analyses and showed that the Kilifi IBV diversity 

was part of the global continuum. For example we determined that the reassortant Yamagata 

clade 3 viruses were circulating in several other countries including Uganda, Tanzania, 

Rwanda, Congo, Nigeria, Cote D’Ivoire, Mali, Burkina Faso, Indonesia, Laos, Bangladesh, 

Nepal, Singapore, Japan and USA. By tMRCA analysis we found that the reassortment event 

that resulted in this cluster occurred around October 2012 (95% HDP March 2012 to April 

2013). However, we did not find a close relative in the database to the reassortant Victoria 

clade 1A. Our repeated bioinformatics analysis of the raw short-read data of this sample 

reproduced the reassorted genome. 

The phylogeographic analyses demonstrated IBV migration both into and out of the 

KHDSS area. The Kilifi IBV genomes seemed to frequently have their close relatives in 

neighboring Uganda and Tanzania. This observation is one that requires a follow up 

investigation to test the hypothesis that new influenza epidemics are likely to be seeded from 

neighboring East African countries than distant countries. Within the KHDSS area, for the 

phylogenomic cluster that had significant sample size, virus seeding seemed to start from 

Matsangoni. The area to the north of the KHDSS has two key touristic towns (Watamu and 

Malindi) and their proximity to Matsangoni might explain the virus entry via matsangoni. 

Further investigation is required to confirm this hypothesis.
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This study had some limitations. First, the sequencing was undertaken for only a 

single year period. Thus we cannot conclude on the long-term consistency of the observed 

IBV transmission patterns and the fate of the identified reassortant strains. Second, we 

sequenced only a fraction of the identified IBV positives (~40%). The prioritised samples 

were selected on the basis of anticipated probability of successful sequencing inferred from 

the sample’s viral load as indicated by the diagnostic Ct value. Such a strategy ultimately 

avoided sequencing some samples that may have been critical in reconstructing the true 

transmission networks and may bias cluster prevalence. However, the demographic and 

clinical characteristics of the sequenced and not sequenced patients were similar except for 

their viral load. Third, the KHDSS outpatient facilities surveillance collected a maximum of 

15 samples/week/site. This non-exhaustive sampling at the facilities may have introduced  

bias in the inferred lineage/clade prevalence and transmission networks. 

In conclusion, our genomic analysis of IBV confirms that B/Victoria (clade 1A) and  

B/Yamagata (clades 2 and 3) lineage viruses were in co-circulation together with 2 inter-

lineage reassortant variants in coastal Kenya in 2016.  The co-circulation of divergent IBV 

viruses complicates the optimal selection of influenza vaccine strain components for local 

use. As Kenya formulates her influenza vaccination policy, the choice of broad immunity 

(Epstein 2018) or more valence vaccines ( e.g. quadrivalent regimen (Dbaibo et al. 2019)) 

should be considered. Further, this study demonstrates the benefits of analysis of full-length 

IBV genomes. In addition to providing a clearer understanding of locally circulating viral 

diversity, a high-resolution tracking of transmission of IBV strains was achievable at a scale 

impossible with single or few segment analysis. That in a single season up to 29 independent 

IBV introductions occurred demonstrates the challenge of controlling local influenza 

epidemics by targeted approaches e.g. sub-population vaccination, patient quarantine or 

institutional closures as previously observed (Holmes et al. 2011). Future studies should 
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combine genomic data with various epidemiological data (e.g. host migration, immunity 

profiles, population densities and social contact patterns) to elucidate patterns of IBV 

infection and spread in this setting for better-informed control strategies.
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Figure legends

Figure 1. Study location, sample laboratory processing and IBV detection in the 

enrolled health facilities. Panel  (a) a map of the Kilifi Health and Demographic 

Surveillance System (KHDSS) area showing the spatial distribution of the enrolled KHDSS 

health facilities. Panel (b) a sample flow gram showing the number of samples and genomes 

obtained from the Kilifi County Hospital (KCH) and KHDSS outpatient facilities 

surveillances. Panel (c), a bubble plot showing the number of IBV positives by month and 

health facility across 2016. The size of the circle is proportional to the number of samples 

(smallest represent one and largest represent 17 samples). 

Figure 2. Identification of IBV lineages and clades that were in circulation in coastal 

Kenya in the 2016. Panel (a) shows a maximum likelihood (ML) phylogenetic tree based on 

the HA segment of samples we sequenced. From the surveillance, only unique HA sequences 

are included. The tree includes reference sequences of previously identified clades within  

B/Yamagata and B/Victoria lineages collected between 1987 and 2020. Kilifi sequences are 

shown with a red circle, the reference with a black filled circle. Strains included in the 

2015/16 influenza vaccine are shown in a green filled circle for B/Victoria and blue filled 

circle for B/Yamagata. Panel (b) shows the monthly prevalence of the  B/Yamagata and 

B/Victoria lineage viruses across the 12 months the surveillance was undertaken. Panel (c) 

shows the virus clades that were detected and their frequency across different months of the 

year 2016.

Figure 3. Genomic epidemiology of IBV in coastal Kenya. Panel (a), a ML phylogenetic 

tree reconstructed from concatenated eight segments of IBV (n=111) from the 9 sampled 

KHDSS outpatient facilities and KCH. A total of 51 reference sequences (non-Kenya) were 
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included. The taxa are indicated by filled circles at the tips and colored by health facility of 

sampling. Panel (b), the location of detection for the defined phylogenomic clusters. Their 

first three letters abbreviate names of the outpatient health facilities are. Panel C, the monthly 

prevalence of the defined phylogenomic clusters.

Figure 4. Time-resolved phylogenies of sub-samples of global genomes combined with 

Kilifi IBV genomes. The branches, and the node shapes (size scaled by posterior support of 

the branch) are coloured by the most probable ancestral location inferred during BSSVS 

analysis. The threshold for epidemiological clusters (having the MRCA within the year 

preceding the start of our surveillance (between January and December 2015) is indicated by 

black dashed line while the threshold of transmission clusters (i.e. occurred first as a single 

branch at the start of our surveillance in January 2016 with or without onward diversification) 

is indicated by the orange dashed line. Panel (a) shows combined non-reassortant strains. 

Panel (b) shows B/Victoria clade 1A viruses. Panel (c) shows reassortant B/Yamagata clade 3 

viruses. Panel (d) shows pure B/Yamagata clade 3 viruses.

Figure 5. ML HA phylogeny of IBV strains sampled across the world between 2014 and 

2016. Panel (a),  B/Victoria lineage (n=481). Panel (b), B/Yamagata lineage (n=743). The 

taxa are shown as filled circles and are coloured differently for each geographic origin of the 

sample by continent. The newly sequenced Kilifi genomes are shown in a bright green colour 

and the major Kilifi clusters labelled (KLF-1 to KLF-6).

Figure 6. Possible transmission links between the Kilifi Victoria clade 1A viruses. Panel 

(a) shows a TCS POPART network of the 93 newly sequenced pure Victoria clade 1A 

viruses. The vertices represent the concatenated genome haplotypes. The size of the vertex is 
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proportional to the number of haplotypes (identical sequences) and is colored by the health 

facility from which the sequenced sample was collected. The numbers shown on the edges 

represent the number of nt changes from one vertex (haplotype) to the next. Panel (b) shows 

the phylogeography the newly sequenced pure Victoria clade 1A in comparison with non-

Kilifi genomes (n=116). The lines connecting the health facilities are shown only between 

location with support of a Bayes factor of > 5. Panel (c) shows the Bayes Factor and posterior 

probability support for the links shown in panel (b).
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Locations Bayes Factor Posterior 

Matsangoni <-> Chasimba 74582.65 0.99 

Ngerenya <-> Junju 4657.53 0.99 

Junju<-> Jaribuni 990.34 0.99 

Matsangoni <-> non-Kilifi 334.88 0.98 

Matsangoni<->Mavueni 100.61 0.96 
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Table 1. Clinical and demographic characteristics of patients who were IBV positive and a 

comparison of those sequenced versus those not sequenced.

Characteristic All positives

(n= 278)

Sequenced 

(n=111)

Not sequenced 

(n=167)

p value

Health facility 0.001

  Inpatient (KCH) 11(4.0%) 10 (9.0%) 1 (1.0%)

  Outpatient (KHDSS) 267 (96.0%) 101 (91.0%) 166 (99.0%)

Age (Years)

  Mean (SD)€ 9.6 (13.3) 9.7 (15.2) 9.6 (11.9) 0.938

  Median (IQR) 6 (2-12) 6 (2-11) 5 (2-13) 0.924

Age class (Years) 0.203

  0-4 120 (43.2%) 49 (44.2%) 71 (42.5%)

  5-14 109 (39.2%) 47 (42.3%) 62 (37.1%)

  15-34 32 (11.5%) 9 (8.1%) 23 (13.8%)

  35-64 13 (4.7%) 3 (2.7%) 10 (6.0%)

  ≥ 65 4 (1.4%) 3 (2.7%) 1 (0.6%)

Gender 0.708

  Female 159 (57.2%) 65 (58.6%) 94 (56.3%)

  Male 119 (42.8%) 46 (41.4%) 73 (43.7%)

Clinical Symptoms

  Fever 220 (79.1%) 89 (80.2%) 131 (78.4%) 0.727

  Cough* 260 (97.4%) 98 (97.0%) 162 (97.6%) 0.781

  Nasal discharge* 204 (76.4%) 79 (78.2%) 125 (75.3%) 0.586

  Breathing difficulty 28 (10.1%) 15 (13.5%) 13 (7.8%) 0.120

Viral load (Ct value)

  Mean (SD)€ 27.7 (3.2) 25.0 (2.3) 29.5 (2.4) <0.001

  Median (IQR) 27.6 (25.7-29.6) 25.2 (23.5-26.5) 29.2 (28.0-31.0) <0.001

* n = 267, 101 and 166 for the categories; all positives, those sequenced and those 

not sequenced, respectively. Symptoms data were unavailable for inpatients.
€SD stands for Standard of Deviation
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Table 2. The genomic evolutionary characteristics of the sequenced IBV strains in the surveillance stratified by phylogenomic cluster.

tMRCA, the Most Recent Common Ancestor; HPD, Highest Posterior Density; Yam for Yamagata, Vic for Victoria, Substitution rate units are 

nucleotides/site/year. 

Phylogenomic cluster # isolates 

(Kilifi)

tMRCA Substitution rate × 10-3

Mean Low 95% HPD High 95% HPD Mean Low 95% HPD High 95% HPD

Pure B/Vic/clade1A 209 (93) Mar-2012 Jul-2011 Oct-2012 1.37 1.18 1.56

Reassorted B/Vic/clade1A 1 (1) - - - - - -

Pure B/Yam/clade2 46 (2) Oct-2011 Nov-2010 Aug-2012 1.36 1.02 1.75

Pure N/Yam/clade3 157 (6) May-2013 Mar-2013 Aug-2013 1.40 1.27 1.53

Reassorted B/Yam/clade3 79 (9) Oct-2012 Mar-2012 April 2013 1.54 1.33 1.76
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Table 3. Divergence times and rates of nucleotide substitution of gene segments of influenza B virus

tMRCA Substitution rate ×10-3

Segment Mean Low 95% HPD High 95% HPD Mean Low 95% HPD High 95% HPD

PB2 Feb-1982 Nov-1977 Oct-1985 1.53 1.29 1.78

PB1 Jun-1979 Jan-1976 Oct-1982 1.33 1.16 1.51

PA Nov-1979 Jul-1974 Sep-1984 1.46 1.28 1.66

HA Dec-1980 May-1976 Jun-1985 1.97 1.70 2.24

PA Nov-1979 Jul-1974 Sep-1984 1.46 1.28 1.66

NA Mar-1983 Sep-1980 Aug-1985 1.92 1.67 2.21

MP Mar-1983 Jun-1970 Apr-1987 1.44 1.26 1.69

NS Jul-1968 Sep-1960 Jul-1975 1.24 1.00 1.48

tMRCA, the Most Recent Common Ancestor; HPD, highest posterior density
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