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Abstract

The notion of strength has featured prominently in recent debates about
abductivism in the epistemology of logic. Following Williamson and Rus-
sell, we distinguish between logical and scientific strength and discuss the
limits of the characterizations they employ. We then suggest understand-
ing logical strength in terms of interpretability strength and scientific
strength as a special case of logical strength. We present applications
of the resulting notions to comparisons between logics in the traditional
sense and mathematical theories.

1 Introduction

Scientific theories are selected on the basis of adequacy to the data and how well
they fare with respect to a number of theoretical virtues (van Fraassen 1980;
Lipton 2004; Keas 2017). One such virtue is strength, which has been discussed
in the philosophy of science. This paper provides an account of the notions of
logical and scientific strength. Our focus will be on logical and mathematical
theories. However, our account is sufficiently flexible to be applicable also in
more general contexts, such as scientific theories.

Our study is prompted by the recent interest in logical abductivism. This
is the view that logical theories should be selected in the same way as scientific
theories. Logical abductivism was famously advocated by Quine (1951), Good-
man (1955), and Putnam (1968). It has received much attention in the recent
literature as a way to navigate the wide array of non-classical solutions to the
logical, set-theoretic and semantic paradoxes (Priest 2005; 2016; Williamson
2013; 2017). Logical abductivism promises to provide a way of resolving in a
principled manner disputes between rival logics which would otherwise appear
hard to settle. Abductivism, so the story goes, replaces clashes of intuition with
appeal to criteria for theory choice that are accepted by the broader scientific
community. For instance, rather than debating the status of paradoxical sen-
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tences, one would determine which semantical theory scores better with respect
to those criteria.

According to the logical abductivist, then, theory choice in logic is no differ-
ent from theory choice in the natural sciences. But the recent revival of interest
in abductivism has been associated with the idea that logic is similar to the
natural sciences in other respects. This is known as anti-exceptionalism about
logic. The anti-exceptionalist may hold, for instance, that logical principles are
not analytic or (metaphysically) necessary or a priori (Hjortland 2017). As Gil-
lian Russell (2018) and Stephen Read (2018) have pointed out, however, some
form of exceptionalism is compatible with abductivism. Although our focus
is on abductivism, our discussion is clearly relevant for any anti-exceptionalist
position which embraces an abductive methodology.

Abductive methodology has been employed also for theory choice in math-
ematics. Abductivist-friendly accounts are famously given by Gödel (1947),
who suggested that set-theoretic axioms may be extrinsically justified. More
recently, Priest (2006) defended näıve set theory against iterative set theory
on the grounds of alleged greater simplicity. A thorough-going abductivist ap-
proach to the philosophy of set theory has been advanced by Quine (1990: 95),
who argues that considerations of simplicity, economy and naturalness sanction
the Axiom of Constructibility. Against this, Maddy (1997) uses the maxims
Unify and Maximize to instead reject Constructibility as a candidate axiom for
a foundation of mathematics.

In the philosophy of science, van Fraassen (1980: 67–68) distinguishes between
logical and empirical strength. A similar distinction is made by Williamson
(2017) and Russell (2018) under the labels of logical and scientific strength.
Roughly speaking, the notion of logical strength of a theory takes into account
only its deductive power, whereas the notion of scientific strength has mostly
to do with its informational content.

There has been some controversy about the status of the criterion of strength
in the recent abductivist literature. Williamson thinks that logical and scientific
strength are both virtues and that the former entails the latter. Russell accepts
that scientific strength is a virtue but criticizes the view that logical strength
should be regarded as one. A more radical position, adumbrated by Hjortland
(2017), holds that logical weakness – and therefore the capability of a logic of
drawing more distinctions – is a virtue in a theory.

We examine these accounts of the notions of logical and scientific strength
and find them wanting. We suggest understanding logical strength in terms
of interpretability strength and scientific strength as a special case of logical
strength. The emerging picture contrasts with Russell’s analysis in that logical
and scientific strength are theoretical virtues, and with Williamson’s, in that
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scientific strength is a special case of logical strength.

2 Logical Strength

The aim of this section is to offer a novel account of logical strength. To clear
the ground for our account, we first rebut arguments against the status of logical
strength as a theoretical virtue and identify problems with extant accounts of
logical strength.

2.1 Logical strength as a theoretical virtue

Williamson characterizes logical strength in terms of deductive power. On his
account, a theory T is logically stronger than a theory T ∗ just in case every
theorem of T ∗ is a theorem of T but not vice versa. This can be extended to
consequence relations by saying that a consequence relation ` is stronger than
a consequence relation `∗ just in case whenever `∗ holds so does ` but not vice
versa. As Williamson notes, this characterization of strength only works if we
compare theories and consequence relations for a single language.

Williamson’s characterization of logical strength makes it sound as if the
comparison of logical theories is a metalinguistic affair. However, Williamson
aims to vindicate the idea that it is not. To this end, he considers two strategies
for comparing logical theories in a non-metalinguistic way. The first strategy
consists in comparing logics by encoding a logic’s consequence relation as a
special set of the logic’s theorems. First one reduces logically valid arguments
to logical truths by replacing the entailment sign by a suitable conditional. Next,
one replaces all its non-logical constants with variables of the corresponding type
and universally binds them with quantifiers of that type. With this reduction
in place, comparing logical theories is tantamount to comparing the sets of
universal generalizations corresponding to their logical consequence relations.

The reduction of logical validity to logical truth makes use of the standard
structural rules and of the standard rules for implication (conditional proof and
modus ponens). However, when evaluating logical theories, we want to consider
substructural logics or logics which do not have a sufficiently strong conditional.
Not to prejudge any issue against the non-classical logician, Williamson there-
fore considers a second strategy for comparing logical theories. According to
this strategy, we compare logics by encoding their consequence relation via an
operator which takes a set of premises as argument and returns the set of its
consequences. Thus, if Γ is a set of sentences, Cn(Γ) is {ϕ | Γ ` ϕ}.1 Com-

1In the current context it does not matter whether we characterize Cn in terms of logical
consequence or derivability. Clearly, this matters when one considers logics that are not
complete.
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parison of logical theories then proceeds by comparing the different Cn(Γ)s to
which the logical theories give rise for different choices of well-confirmed Γ.

Williamson claims that logical strength is a theoretical virtue and that this,
together with the fact that simplicity too is a virtue, amounts to a prima facie
case for classical logic:

Once we assess logics abductively, it is obvious that classical logic
has a head start on its rivals, none of which can match its combin-
ation of simplicity and strength. Its strength is particularly clear
in propositional logic, since PC is Post-complete, in the sense that
the only consequence relation properly extending the classical one is
trivial (everything follows from anything).

Recently, Gillian Russell (2018) has challenged Williamson’s claims. She agrees
with Williamson’s characterization of logical strength but argues that logical
strength is neither a theoretical virtue nor a theoretical vice. According to her,
if logical strength were a virtue, then, ceteris paribus, if theory T is logically
stronger than theory S, T is better than S. Similarly, if logical strength were a
vice, then, ceteris paribus, if theory T is logically stronger than theory S, T is
worse than S. But, she continues, is plainly not the case that, ceteris paribus, a
theory is always better off (worse off) by having more (less) of logical strength:
a theory can have too much or too little logical strength. Triv, the trivial logic
in which any sentence follows from any set of premisses, is too strong: snow is
white just does not entail grass is purple. Ni, the empty logic in which nothing
follows from any set of premisses, is too weak: snow is white and grass is green
do entail snow is white.

This argument will not persuade the defender of logical strength as a theor-
etical virtue. She can happily grant that if a theory is logically stronger than
another theory then, ceteris paribus, it is better; but she will insist that in the
case considered by Russell ceteris are not paribus. In particular, Triv is plainly
not adequate to the data: by entailing everything, the theory sanctions entail-
ments which contradict our intuitions about, say, grass is green not following
from snow is white. Thus, this is just a case, where logical strength is trumped
by the fact that the theory is not adequate to the data. As Williamson (2017:
335) puts it: ‘First comes fit with the evidence’. A similar response is available
to the defender of logical strength as a vice: by entailing nothing, Ni fails to be
adequate to the data.

Russell presents an analogy (which she credits to Dan Marshall). She sug-
gests that saying that logical strength always makes a theory better would be
like saying that theories of love on which more people love each other are always
better than ones on which fewer people do. But even granting that this analogy
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works, the defender of strength can accept that such a theory of love will be
better other things being equal. However, she will deny that in several specific
cases things are equal: the hard reality of romantic life tells us, for instance, that
a theory of love on which everybody loves everybody else is hardly adequate to
the data.

Similar considerations apply to Read’s response to Williamson abductivist
argument for classical logic. Read begins by observing that classical logic is not
the only logic to be Post-complete, as witnessed by the case of Abelian logic.
He then writes:

A good argument would still ask which logic was the right one:
information is not everything, if some of that information is wrong.
In the case of Abelian logic, some is indeed wrong: e.g.

((p→ q)→ q)→ p (∗∗)

is valid in Abelian logic, but is simply false (as an account of condi-
tionals).

But we take it that Williamson would agree with much of this: logical strength
is not everything and the case for classical logic is to be understood with the
proviso that the logic we want ought to also be data adequate. And classical
logic’s fit with the evidence can and has been challenged, e.g. by relevant logi-
cians such as Read. One may consider logical strength a virtue whilst taking fit
with evidence as another criterion for theory of choice.

Indeed, considering logical strength as a virtue is compatible with thinking
that this virtue is always trumped by adequacy to the data. In the mathematical
context, Maddy comes close to claiming as much. She is arguing in favour of the
maxim Maximize, which tells us that we should strive for set theories which are
as generous as possible. Maddy is very clear that subscribing to Maximize as a
maxim in no way commits one to choosing the most generous of theories—the
trivial theory. For, she says, this maxim can be trumped or at least curtailed
by other maxims. In particular, she says, ‘consistency is an overriding maxim’
(Maddy 1997: p. 216).

Thus, the idea that logical strength is a virtue remains unscathed. Nonethe-
less, we do not stake a stance on whether logical and also scientific strength
should ultimately be considered as virtues, vices or neither. Instead, our aim
is to provide a framework for comparing the strength of theories which can be
used by all parties in this dispute.

Even so, there are a number of issues with Williamson’s characterization of
logical strength as inclusion between sets of consequences. First, Williamson’s
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characterization is not immediately applicable to cases in which one deals with
different languages. In general, on Williamson’s characterization, all we can
say about the relative strength of two logics featuring disjoint sets of logical
constants – such as intuitionistic propositional logic and S4 – is that they are
incomparable. On the other hand, our proposal will take into account trans-
lations between languages. This will enable us, for instance, to say something
informative about the relation between intuitionistic propositional logic and S4,
thanks to the so-called Gödel-McKinsey-Tarski translation.

Another issue with Williamson’s characterization of logical strength concerns
its use of the notion of a well-confirmed sentence. The idea is that we can assess
a logic by considering Cn(Γ) where Γ is a set of well-confirmed sentences, such
as well-established principles of physics. However, in typical cases, whether the
members of Γ are well-confirmed or not depends on the background logic of
the relevant theory. For instance, whether certain principles of physics can be
taken to be well-confirmed depends on whether their consequences fit with the
data. But what these consequences are, in turn, may depend on the background
logic. Thus, it is not clear that we can find adequate Γs which we can take to
be well-confirmed independently of the background logic.

Finally, Williamson claims that logical strength entails a ‘looser notion’
of scientific strength, but he does not provide a detailed account of scientific
strength and of why such an entailment should obtain. In fact, in what follows
we will provide a detailed account of scientific strength and of its relationship
with logical strength in which such an entailment will fail. More specifically, we
will offer a characterization of logical strength based on the notion of translation.
This notion will apply to theories formalized in different signatures, and so will
be more encompassing than Williamson’s characterization in terms of inclusion.
Second, our characterization will extend more naturally so as to apply beyond
the purely logical part of a theory. Finally, our characterization will form the
basis of a detailed account of scientific strength.

2.2 Characterizing logical strength

We propose to characterize logical strength in terms of the existence of suitable
translations. We take mathematical theories to be axioms closed under some
rules of inference. Logics are then identified with the closure of the empty set of
axioms under specific rules of inference. When comparing mathematical theories
in classical logic, it is customary to say that a translation from a language
L1 to a language L2 consists of an ordered pair τ = 〈δ, F 〉 where δ is the
domain of the translation and F is a recursive mapping associating each n-ary
relation symbol R(y1, . . . , yn) of L1 with an L2-formula F (R)(y1, . . . , yn). The
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translation τ commutes with the connectives and δ relativizes the quantifiers so
that, e.g. (∀xϕ)τ := ∀x(δ(x) → ϕτ ). A translation τ from the language L1 of
a theory T1 to the language L2 of a theory T2 is then an interpretation of T1

into T2 if for every set of L1-sentences Γ and L1-sentence ϕ, if Γ `T1 ϕ, then
Γτ `T2 ϕ

τ (where, as usual, Γ `T ϕ is a shorthand for Γ ∪ T ` ϕ, and Γτ is
{ϕτ |ϕ ∈ Γ}).

Finally, T1 and T2 are mutually interpretable if T1 is interpretable in T2 and
vice versa. Given these definitions, we could then characterize logical strength
by saying that a theory T1 has greater or equal logical strength than a theory
T2 just in case there is an interpretation of T1 in T2, and that they have the
same logical strength just in case they are mutually interpretable. For instance,
to mention a few standard examples that will be relevant also for our later
discussion, our characterization entails that the following pairs of theories have
the same logical strength: ZFC + ¬Con(ZFC) (where Con(T ) is the sentence
expressing the consistency of T ) and ZFC, Peano Arithmetic (PA) and ZFFin

(ZF with the Axiom of Infinity replaced by its negation), ZF and ZFC.
Since we aim to deal with mathematical theories formulated in non-classical

logics as well, we generalize the notion of interpretation above, and call a trans-
lation from L1 to L2 any recursive mapping that associates formulas of L2 with
primitive concepts of L1 and that is recursively extended to more complex for-
mulas by suitably commuting with the logical constants. An interpretation is
then a translation that preserves provability in a such given logic.

The characterization is adequate to deal with a large number of cases, but it
is not general enough. For we want to consider cases in which we are dealing with
different logics, and in that case we want to reinterpret the logical vocabulary
itself, whereas the standard notion of interpretation is designed so as to leave
the logical vocabulary alone.

Whilst we cannot hope to preserve the meanings of the connectives when
translating between logics, it seems that a translation between logics ought at
least to (i) be uniform so that, e.g., it is not the case that p ∧ q is translated as
p∨q but r∧s is translated as r → s and (ii) allow going beyond translating each
operator with another operator, e.g. we want to be able to translate, say, p ∧ q
as ¬(¬p ∨ ¬q).2 A suitable notion of translation is the notion of a schematic
translation (Prawitz and Malmnäs 1968; Wojcicki 1988; Pellettier and Urquhart
2003). The general idea is that a translation is schematic if the translation of
a complex formula is a fixed schema of the translation of its parts. As a result,
formulae instantiating the same schema are translated in the same way. So, for

2In addition, one would like the translation to be effective. In the absence of such minimal
requirements, one may end up with striking results such as that classic first-order logic and
classical propositional logic are mutually interpretable (Kocurec 2017).
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instance, if p ∧ q is translated as p ∨ q, then r ∧ s must be translated as r ∨ s.
But it is possible to translate p ∨ q as ¬(¬p ∧ ¬q).

To define the notion of a schematic translation, we first define the notion of
a schema. A schema is a map from formulae (and possibly variables) to the for-
mulae instantiating a schema-string, i.e. an expression featuring metalinguistic
variables such as ϕ∨ψ or ∀αϕ (Dewar 2018). We say that a translation from the
language L1 of a logic L1 to the language L2 of a logic L2 is schematic if it is a
recursive mapping τ such that (i) each atom p of L1 is assigned a L2 formula, and
(ii) for each piece♠ of logical vocabulary in L1 there is an L2-schema T such that
for all sequences ϕ1, . . . , ϕγ of L1-formulae (♠ϕ1, . . . , ϕγ)τ := T (ϕτ1 , . . . , ϕτγ). A
schematic translation τ from L1 to L2 is sound if for every Γ and ϕ in the lan-
guage of L1, we have that if Γ `L1 ϕ then Γτ `L2 ϕ

τ . A schematic translation
τ from L1 to L2 is exact if for every Γ and ϕ in the language of L1, we have
that Γ `L1 ϕ if and only if Γτ `L2 ϕ

τ .
Schematic translations played a prominent role in the history of logic. Gödel,

via the so-called negative translation, showed that there is a (exact) schematic
translation of classical logic into intuitionistic logic. In doing so, he established
the consistency of classical logic and classical arithmetic (Peano Arithmetic)
relative to their intuitionistic counterparts. He also provided the basis of prov-
ability logic, justification logic, and the proof-based semantics for intuitionistic
logic by providing a schematic translation of the latter logic into the modal logic
S4.

We take sound schematic translatability to be a core component of our ac-
count of logical strength. In fact, if we were dealing just with logics, we could
simply characterize logical strength by saying that a logic L1 has greater or
equal logical strength than a logic L2 just in case there is a sound schematic
translation of L2 in L1, and that they have the same logical strength if this
holds mutually. One would obtain a different notion of logical strength with
exact translations instead of sound ones. Although we believe this to be an
alternative worth exploring, we here focus on sound schematic translations in
order to preserve the intuitive idea that S being a sublogic of T implies that T
is at least as (logically) strong as S.

So far we have only afforded the means of comparing either different logics
or mathematical theories cast in the same background logic. However, we also
want to be able to compare mathematical theories cast in different logics. For
instance, we want to compare the logical strength of ZF and Heyting Arithmetic
(HA), the theory whose axioms are those of PA but whose logic is intuitionistic
logic rather than classical logic.

This kind of case leads us to our full characterization of the notion of logical
strength, which is obtained via a two-stage process and subsumes the charac-
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terizations of logical strength that would be suitable in the case of logics or in
the case of theories cast in the same logic. Given a theory T1 with logic L1 and
a theory T2 with logic L2, the idea is that to determine whether T1 is at least as
strong as T2 one first schematically interprets L2 into L1 and then (standardly)
interprets T2 (under the logic L1) into T1.

Logical strength T1 is at least as logically strong as T2 iff there
is a sound schematic translation τ of the logic L2 of T2 in the logic
L1 of T1, and there is an interpretation of T τ2 in T1.

We say that T1 is logically stronger than T2 if T1 at least as logically strong
as T2 but not vice versa. Our definitions entail that, for theories formulated
in the same logic, logical strength coincides with the standard notion of inter-
pretability strength. Symmetrically, when comparing purely logical systems,
our characterization of logical strength reduces to the existence of a schem-
atic translation, since we are taking logics to be theories with the empty set of
non-logical principles.

For the purpose of our discussion, it is worth discussing a few relevant ex-
amples. We begin by considering cases of comparison between logics. Since
schematic interpretability preserves undecidability, it is clear that classical pre-
dicate logic is logically stronger than classical propositional logic. The Gödel-
Gentzen translation (Troelstra and Schwichtenberg 2003: §2.3) is an exact
schematic translation of classical logic into intuitionistic logic, and therefore
intuitionistic logic is as strong as classical logic. Moreover, intuitionistic lo-
gic is a sublogic of classical logic, and hence it can be trivially (schematically)
translated in a sound way into classical logic. Hence, intuitionistic logic and
classical logic have equal logical strength. The Gödel-McKinsey-Tarski transla-
tion is an exact schematic translation of intuitionistic logic into S4. Hence, S4
is at least as logically strong as intuitionistic logic. Similarly to the previous
case, we can also establish the existence of a sound schematic translation of S4
into intuitionistic logic.3 Thus, S4 and intuitionistic logic have the same logical
strength. In the context of comparison between modal logics, by translating
2A with 2A ∧ A, one can show that the modal logics K and T have the same
logical strength (see e.g. French 2010: Theorem 4.3.1).

We now turn to applications of our notions to non-logical axioms. The
full power of our characterization of logical strength comes into play when we
consider theories formulated in different logics. For instance, our notion enables
us compare ZF is to HA. Clearly, there is a sound translation of intuitionist

3One can employ the ‘erasure’ translation schema to translate S4 in classical logic, and
then employ the Gödel-Gentzen translation. Transitivity of sound translations then gives us
the claim.

9
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logic into classical logic such that:

HA `IL ϕ⇒ HA `CL ϕ

Then one simply interprets HA in ZF by means of the ordinal interpretation.
Since there is no interpretation of PA in ZF, this establishes that ZF is logically
stronger than HA. Similar reasoning establishes that intuitionistic ZF (IZF for
short) is logically stronger than PA.4 One first employs the Gödel-Gentzen
translation gg to obtain:

PA `CL ϕ⇔ PAgg `IL ϕ
gg

Then one shows that PAgg, qua subtheory of HA, is interpretable in IZF. Again,
since IZF has (much) higher consistency strength than HA, there is no interpret-
ation of the former in the latter theory.

3 Scientific strength

In this section we first discuss Williamson’s and Russell’s accounts of scientific
strength. We then propose our own account, which is based on the notion of
intertranslatability.

3.1 Williamson and Russell on scientific strength

Williamson (2017) holds that logical strength entails a ‘looser’ notion of sci-
entific strength. For instance, since classical logic proves all instances of p ∨ ¬p
and intuitionistic logic doesn’t, the former is logically stronger, but also scien-
tifically stronger than the latter: according to Williamson, a general claim –
all instances of excluded middle are valid – is scientifically more informative
than its negation. Similarly, ‘the time between 3:14 and 3:16’ is more informat-
ive than ‘the time between 4:00 and 12:00’. So, although Williamson does not
provide a detailed account of scientific strength, both logical form and a certain
degree of accuracy are relevant for his view.

Russell (2018) rejects Williamson’s claim that logical strength implies sci-
entific strength. She does so by distinguishing between two senses of scientific
strength. According to the first, a logic L is scientifically strong if it is able to
decide, for each argument form in a given language, whether it is L-valid or not.
In this first sense, each logic is as strong as another, no matter how different

4IZF is obtained by replacing ZF’s Axiom of Foundation with the Axiom of ∈-induction
and taking the background logic to be intuitionistic.

10
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they are in logical strength: each logic partitions the set of all argument forms
into valid and invalid.

Russell describes her second sense of scientific strength as follows:

If our question is ‘which instances of LL can we use?’ (where LL
is some disputed logical law) then the logically stronger logic tells
us ‘all of them’ whereas the weaker logic says ‘not all of them’ –
and this tells us nothing further about which particular instances
are untarnished (Russell 2018: p. 12).

In this second sense Triv is the strongest logic, because to the question ‘How
many instances of the argument form (Γ, ϕ) can we use?’ it answers ‘All of
them’. Classical logic would then seem to be scientifically weaker than Triv,
but stronger than, say, its logically weaker sublogics K3, LP, FDE. There
are in fact some argument forms (Γ, ϕ) of which, unlike Triv, classical logic can
accept only some instances. Similarly, there are familiar argument forms, such as
(Γ, ϕ∨¬ϕ) or ({ϕ,¬ϕ}, ψ), whose instances are uniformly licensed by Classical
Logic but fail to be so in K3, LP, or FDE. Therefore, it would seem that there
is a sense of scientific strength that is entailed by logical strength. However,
Russell claims that this conclusion would be hasty: any sublogic of Triv can
be extended to a logic that decides which instances of an argument form are
acceptable, and which aren’t. In other words, each logic can be extended in such
a way that, to the question ‘How many instances of the argument form (Γ, ϕ)
can we use?’, it no longer provides the uninformative answer ‘Not all of them’,
but a more instructive list of acceptable and unacceptable instances. Russell
calls this process ‘Triv recapture’. Now any logic that is extended via its ‘Triv
recapture’ ends up being as informative as another. Since this equally applies to
logic with substantially different logical strength, Russell concludes that there
is no sense of scientific strength that is implied by logical strength.

We believe that both accounts of scientific strength offered by Russell are
unsatisfactory. We start with Russell’s first account: on this view, all logics are
on a par with respect to scientific strength because, either Γ �L ϕ or Γ 2L ϕ.
However, it’s clear that under this characterization the details of the specific
consequences are not relevant at all for its scientific strength. In fact, it is
simply a feature of Russell’s classical metatheory that excluded middle holds for
logical consequence claims. It follows that as long as a notion of consequence
is well-defined, it is as strong as it could be. But if the notion of scientific
strength is to play any role in abductive methodology, then it should be capable
of discriminating at least between some logics.

To avoid such an essential dependence on the classical metalanguage, one
might try to generalize Russell’s first definition of scientific strength by requiring
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that each logic L is as strong as another one by its own light. On this second
reading, however, Russell’s claims cannot be true in general. There is nothing
that guarantees that the notion of logical consequence we are employing satisfies
bivalence. For instance, if our metatheory is formulated in a paracomplete
setting governed by the logic K3, it won’t in general be the case that ‘ϕ follows
from Γ or it’s not the case that ϕ follows from Γ’, because the very notion
of consequence may be partial (Nicolai and Rossi 2018). Moreover, in such
scenario, it would seem that logical strength does indeed in many cases entail
scientific strength, because, for instance, classical logic is able, for each Γ, ϕ, to
determine whether Γ � ϕ or Γ 2 ϕ, whereas the Kleene logics cannot.

Russell’s second sense of scientific strength is based on the notion of Triv
recapture: any logic L can be consistently extended to a logic that decides
which instances of a given argument form are valid or not. This understanding
of scientific strength faces serious difficulties too. First, it is worth noticing
that Russell’s Triv recapture is substantially different from standard recapture
strategies found in the literature on semantic paradoxes. Let us consider the
case-study discussed by Russell. If one’s language amounts to a formal syntax
plus a truth predicate Tr , one can provide models of transparent truth – Tr pAq
is intersubstitutable with A in every context – that satisfy classical logic for all
sentences without Tr . In other words, if LTr := L∪{Tr } is the language under
consideration, one can consistently formulate a logic that satisfies all classical
principles for L and the nonclassical principles for LTr . This is what is often
called ‘classical recapture’ (Field 2008; Beall 2013).

However, this form of recapture is not sufficient for Russell’s purposes. Thus,
she requires something much stronger – what she calls Small Square Complete-
ness: for any argument form in a given language, one has to be able to decide
which instances are licensed and which aren’t. For instance, each specific in-
stance of the form Tr pϕq∨¬Tr pϕq must be decided one way or another. This is
a hugely complex task. If Tr pϕq is interpreted via fixed-point semantics in the
style of Kripke (1975), the problem at hand reduces to a decision procedure for
the set of paradoxical, or ungrounded sentences. Unlike the simple syntactic de-
cision problem underlying recapture strategies, already in the simplest Kripkean
setting (the minimal fixed point) this problem is highly non-effective (Burgess
1986). And these problems become much more complex for more sophisticated
constructions such as other Kripkean fixed points, the revision extensions in
Gupta and Belnap (1993), the theory of Field (2008), just to mention a few.
Moreover, the complexity of the procedure envisaged by Russell is only going
to increase if we move from the specific language LTr to less rarefied languages
closer to English. Therefore, the procedure of Triv recapture is simply un-
manageable; it is not the case that any logic can be consistently extended to
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a Small-Square Complete logic, unless by logic we mean a highly non-effective
infinitary logic whose set of validities is much more complex than the provable
sentences of any recursively axiomatised theory.

3.2 Characterizing Scientific Strength

We now come to our approach to scientific strength. Our proposal shares with
Williamson’s the idea that scientific strength is more closely related to the in-
formativeness of a theory than logical strength is. Our proposal goes further in
that scientific strength is obtained by placing extra conditions on the relation of
being logically stronger. Thus, scientific strength entails logical strength. Intu-
itively, logical strength is a coarser grained relation that mainly deals with pre-
serving the deductive structure of theories. Scientific strength is then obtained
by adding conditions that may be reasonably associated with how informative
the relata are.

We formally render this idea by means of the notion of intertranslatability.
Intertranslatability is also known as definitional equivalence (Glymour 1970) and
synonymy (De Bouvère 1965; Pellettier and Urquhart 2003). Earlier we distin-
guished between interpretations, which relate theories with non-logical axioms
in the same logic, and schematic translations, which relate logics. Analogously,
we now define intertranslatibility as applied to both cases. Logics L1 and L2

are intertranslatable if and only if there are sound schematic translations σ from
the language L1 of L1 to the language L2 of L2 and τ from L2 to L1 such that

ϕ a`L1 (ϕσ)τ for any formula ϕ of L1;

(ϕτ )σ a`L2 ϕ for any formula ϕ of L2.

Similarly, one says that theories S and T in the same logic are intertranslatable
if there are interpretations σ from S to T , and τ from T to S, such that

ϕ a`S (ϕσ)τ for any formula ϕ of LS ;

(ϕτ )σ a`T ϕ for any formula ϕ of LT .

Since we are dealing both with pure logics and theories featuring non-logical
axioms, we again need to characterize scientific strength in terms of a two-step
process.

Intuitively, the idea behind our characterization is that a theory T (where,
recall, logics are limiting cases of theories) is scientifically stronger than another
theory S if there is some subtheory of T that can faithfully reproduce the logical
and non-logical information contained in S. The idea of ‘faithfully reproducing’
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is captured in the strict requirement imposed to the translation by the notion of
intertranslatibility. In particular, intertranslatability requires that both theories
recognize (via provability) that the translations that relate them are ‘companion’
to each other in the way they process the original information in the specific
sense that, when combined, they return the original information.

scientific strength A theory T1 is scientifically as strong as T2

if (i) T1 is at least as logically strong as T2, (ii) the logic L2 of T2 is
intertranslatable with a sub-logic of L1 – say, with τ : L2 → L1 –, and
(iii) there is a sub-theory T0 of T1 such that T τ2 is intertranslatable
with T0 (with respect to the logic L1).

We now show that the definition delivers intuitively acceptable verdicts on the
comparative scientific strength of theories. We start with examples of theories
formulated in the same logic.

Since scientific strength entails logical strength, it obviously follows that any
theories that do not have the same logical strength do not have the same sci-
entific strength either. For instance, ZFC plus the assertion that there exists a
measurable cardinal is scientifically stronger than ZFC which, in turn, is scien-
tifically stronger than PA. For another example, ZFC + Con(ZFC) is logically
stronger than ZFC, and properly so, since ZFC+Con(ZFC) is not interpretable in
ZFC. It is worth noticing that Con(ZFC) is a Π0

1-sentence of the language of set
theory, i.e. a purely universal claim. In general, the addition of an independent
Π0

1-sentence results in a scientifically stronger theory. So our characterization
of scientific strength vindicates Williamson’s claim that a universally quantified
sentence adds informativeness to a theory. More generally, our characterization
entails that a theory is always scientifically as strong as any of its subtheories.

However, our notion of scientific strength is also flexible enough to accom-
modate cases of theories that prima facie deal with different mathematical do-
mains. One example concerns set theory with and without urelemente: by a
result of Löwe (2006), ZF and ZF plus urelemente are intertranslatable. There-
fore, they have equal scientific strength. A similar phenomenon involves ZFC
and ZFA (ZFC without Foundation plus Aczel’s (1988) Anti-Foundation Axiom):
the usual interpretations of sets as well-founded sets and non-wellfounded sets
as equivalence classes of graphs with lowest rank can be employed to prove the
intertranslatability of the two theories (Visser and Friedman 2014). This gener-
alizes to theories in different signatures. Consider, for instance, the theory ZFFin.
Although this theory is not intertranslatable with PA (Visser 2006: cor. 9.7), it
becomes so once one adds to it the claim that every set has a transitive closure
(Kaye and Wong 2007).

Crucially, our analysis of scientific strength yields natural counterexamples

14



Fi
rs

t
D

ra
ft:

Pl
ea

se
em

ai
lu

s
at

l.i
nc

ur
va

ti@
uv

a.
nl

;c
ar

lo
.n

ic
ol

ai
@

kc
l.u

k.
ac

if
yo

u
wo

ul
d

lik
e

to
ci

te
.

to Williamson’s implication from logical to scientific strength. A striking ex-
ample concerns set theory with and without the axiom of choice. ZF and ZFC
have the same logical strength but not the same scientific strength. In par-
ticular, ZFC is not intertranslatable with ZF and therefore it is scientifically
stronger than ZF.5 This nicely fits with the intuition that the addition of the
axiom of choice to ZF, although innocent from the point of view of mere consist-
ency strength, results in an increase of informativeness of the axioms. Similarly,
although adding the Continuum Hypothesis or its negation to ZFC does not
increase its logical strength, it does increase its scientific strength. Canonical
consistency statements display a similar behaviour: although PA + ¬Con(PA)
has the same logical strength as PA, it is scientifically stronger than PA. There
is in fact a subtheory of PA + ¬Con(PA) that is intertranslatable with PA, but
the converse does not hold (Visser 2006: Cor. 9.4). A similar phenomenon holds
for ZF(C) and ZF(C) + ¬Con(ZF(C)), and Z2 and Z2 + ¬Con(Z2).

We now turn to the comparison of logics. We said in §2.2 that classical
predicate logic is logically stronger than classical propositional logic. Since clas-
sical propositional logic is a subtheory of classical predicate logic, it follows that
classical predicate logic is also scientifically stronger than classical propositional
logic. We can also show that classical propositional logic is scientifically stronger
than the many-valued propositional logics K3, LP and FDE. That classical
propositional logic is as scientifically strong as K3, LP and FDE obtains be-
cause of the sublogic relation. For the other direction, we can show that none of
K3, LP and FDE can define the classical connectives. Since translational equi-
valence for logics entails that the connectives of one logic can be defined in the
other without reinterpreting propositional letters (Pellettier and Urquhart 2003:
Thm. 2.8), this establishes the failure of intertranslatability. Here is our proof
for K3. If K3 were intertranslatable with classical propositional logic, then it
would feature formulas N(·) and O(·, ·) defining in K3 the classical negation
and disjunction. However, in K3, one can prove by induction on its complexity
that any formula ϕ containing only one propositional letter p, we have that ϕ
and N(p) are K3-logically equivalent, where N(p) can be one of:

p,¬p, p ∨ ¬p,¬(p ∨ ¬p).

By employing the explosion law for p and ¬p, and excluded middle for p ∨ ¬p
5As shown in (Enayat 2016), for extensions of ZF in the language L∈ of set theory, the

relation of bi-interpretability – a slight weakening of the notion of intertranslatability – reduces
to the subtheory relation. This yields that the two theories cannot be bi-interpretable, and
therefore not intertranslatable.
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and ¬(p ∨ ¬p), one can see that none of these alternatives are possible.6

There are also logics that despite having the same logical strength have
different scientific strength. One notable example is given by the modal logics
K and T. We have seen that they have equal logical strength. However, a result
of Pellettier and Urquhart (2003: Th. 4.5) entails that T is scientifically stronger
than K (and vice versa) because they are not intertranslatable. The reason for
this is that – since both logics have the finite model property – translational
equivalence requires isomorphism of classes of finite models. However, since
K is a sublogic of T, there are models of K of size n that are not models of
T. The same result entails that the logics B,S4,S5,T,B all differ in scientific
strength. There are nonetheless logics that have equal scientific strength. For
instance, by a result of Lenzen (1979), the modal logics S4.4 and KD45 are
intertranslatable.

What has been said so far enables us to compare theories in different logics by
means of scientific strength. In general, if S is a subtheory of T and formulated in
a sublogic of the logic of T then S will be scientifically weaker than any extension
of T which is not scientifically as strong as T . For instance, HA is a subtheory
of PA, and therefore, by Visser’s result on extensions of PA, HA is scientifically
weaker than any proper extensions of PA. Similarly, HA is scientifically weaker
than any theory that is properly logically stronger than ZFFin plus the existence
of transitive closures for all finite sets.

4 Abductivism and its strengths

We have presented a framework to analyze the notions of logical and scientific
strength. By employing the notion of translation between theories, the frame-
work allows one to compare the logical and scientific strength of theories in a
formally precise way.

The framework is directly applicable to the debate on logical and math-
ematical abductivism. Williamson (2017) and Russell (2018) analysed logical

6In more detail: since p,¬p �CPL q, we would have

p, N(p) �K3 q

However, this cannot be the case if N(p) ≡ p, if N(p) ≡ ¬(p ∧ ¬p), if N(p) ≡ (p ∨ ¬p). If
N(p) ≡ ¬p, by contrast, if we had multiple conclusion, we could use the fact that �CPL p,¬p,
but 2K3 ¬p, p. Otherwise, we can use O(p, q). In K3, there are only the following forms it
can take:

p ∨ q, p ∨ ¬q,¬p ∨ q,¬p ∨ ¬q,¬(p ∨ q),¬(¬p ∨ q) ∨ ¬(¬q ∨ p)
But K3 does not entail:

p ∨ ¬p, p ∨ ¬¬p,¬p ∨ ¬p,¬p ∨ p,¬(p ∨ ¬p),¬(¬p ∨ ¬p) ∨ ¬(p ∨ p)

¬(¬p ∨ ¬p) ∨ ¬(p ∨ p)⇔ ¬¬p ∨ ¬p⇔ p ∨ ¬p
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strength essentially in terms of the subtheory relation. This fails to capture
many interesting cases of theory comparison. Our framework allows theory
comparison between theories that are not cast in the same language. Nonethe-
less, it also clarifies how the subtheory relation fits into a more general account
of logical strength. In particular, being a proper subtheory of another theory
implies being logically weaker than it.

One important question for the abductivist concerns the relation between
logical and scientific strength. According to Williamson, logical strength en-
tails scientific strength, essentially because more deductive power yields more
information. If this may be a plausible picture when comparing theories cast
in the same language, it becomes harder to defend when one must translate
between theories. For, if not suitably regimented, translations may compromise
the information contained in theorems, and this is not compatible with theories
having the same scientific strength. For instance, it is well-known that facts
such as the interpretation of PA+‘PA is inconsistent’ in PA rely essentially on
distorting the information contained in ‘PA is inconsistent’. It then follows that
logical strength cannot entail scientific strength.

By ensuring that the consequences of a theory are translated in accordance
to suitable information-preserving constraints, our proposal maintains the gen-
erality given by understanding logical strength in terms of translations, while
providing a notion of scientific strength as a refinement of the logical one. As
a result, scientific strength implies logical strength but not vice versa: not all
translations involved in the relation of logical strength are adequate for scientific
strength. For instance, for PA to be scientifically as strong as PA+‘PA is incon-
sistent’, the information contained in ‘PA is inconsistent’ should be preserved,
and PA has to be inconsistent after all. Hence, our notion of scientific strength
gives its due to the intuitive idea that scientific strength has to do with the
information contained in a theory.

Our framework combines notions of reducibility and equivalence that are
usually employed in different domains. Interpretability strength is the stand-
ard tool to compare mathematical theories, schematic translations are generally
employed to compare pure logics, and intertranslatability is a standard measure
of theoretical equivalence for scientific theories. Therefore, our framework paves
the way to a unified approach to the comparison of formal theories. The spe-
cific combination of notions of reducibility employed in our characterization of
logical and scientific strength delivers especially intuitive verdicts when applied
to canonical examples. However, several alternatives are possible. For instance,
faithful interpretability – in which not only provability, but also unprovability
is preserved via the translation – may replace the looser notion of interpretab-
ility. Analogously, instead of focusing on sound translations in the comparison
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of pure logics, one can consider the stricter notion of exact translation. Finally,
instead of intertranslatability, which is occasionally considered to be too strict
for theoretical equivalence (Weatherall 2019), can be replaced by looser notions
such as bi-interpretability (a.k.a. weak intertranslatability, homotopy equival-
ence) or categorical equivalence (Halvorson 2019). These alternatives will be
considered in future work.7
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