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Abstract 7 

Ecological economics is an interdisciplinary science that is primarily concerned 8 

with developing interventions to achieve sustainable ecological and economic 9 

systems. While ecological economists have, over the last few decades, made 10 

various empirical, theoretical, and conceptual advancements, there is one concept 11 

in particular that remains subject to confusion: critical natural capital. While 12 

critical natural capital denotes parts of the environment that are essential for the 13 

continued existence of our species, the meaning of terms commonly associated with 14 

this concept, such as ‘non-substitutable’ and ‘impossible to substitute,’ require a 15 

clearer formulation then they tend to receive. With the help of equations and graphs, 16 

this article develops new definite account of critical natural capital that makes 17 

explicit what it means for objective environmental conditions to be essential for 18 

continued existence. The second main part of this article turns to the question of 19 

formally modeling the priority of conserving critical natural capital. While some 20 

ecological economists have maintained that, beyond a certain threshold, critical 21 

natural capital possesses absolute infinite value, absolute infinite utility models 22 

encounter significant problems. This article shows that a relative infinite utility 23 

model provides a better way to model the priority of conserving critical natural 24 

capital. 25 

 26 

 27 

1. Introduction 28 

Ecological economics is an interdisciplinary science that emerged as a formal institution in the late 29 

1980s, with its origins extending back to Nicholas Georgescu-Roegen’s (1971) The Entropy Law 30 

and Economic Processes.1 This policy-oriented field is primarily concerned with developing 31 

economic policies and interventions that achieve sustainable ecological and economic systems. 32 

 
1 The International Society for Ecological Economics published the inaugural issue of Ecological Economics in 1989. 
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Some ecological economists have gone so far as to claim that their field of research is the only one 33 

poised to address the problem of human survival in the coming centuries, mainly because their 34 

field explicitly recognizes the various interdependencies between biophysical, social, and 35 

economic systems (Gowdy and Erickson 2005). Others have described the transition from neo-36 

classical economics to ecological economics as a requisite Kuhnian paradigm shift from normal 37 

science to post-normal science (Daly and Townsend 1993; Functowicz and Ravetz 1994; Tacconi 38 

1998; Illge and Schwarze 2009). 39 

While ecological economists have, over the last few decades, made various empirical, 40 

theoretical, and conceptual advancements, at least one concept remains subject to significant 41 

conceptual confusion: ‘critical natural capital’ (Brand 2009).2 This concept is most well-known 42 

for its role in the canonical debate between weak and strong sustainability.3 ‘Weak sustainability’ 43 

is traditionally associated with the work of Robert M. Solow (1986, 1993a). On this view, 44 

sustainability requires that the total stock of capital, which consists of manufactured, human, and 45 

natural capital, is held constant across time and between generations.4 Manufactured capital 46 

denotes the traditional produced means of production, such as machines, factories, and tools; 47 

human capital includes items such as knowledge, technology, and institutions; and natural capital 48 

consists of various renewable and non-renewable resources, including non-market phenomena 49 

such as ecosystems. On this view, agents may deplete natural capital provided that it is replaced 50 

by enough manufactured capital (Stern 1997). As Solow states, 51 

Resources are … fungible in a certain sense. They can take the place 52 
of each other. That is extremely important because it suggests that 53 

we do not owe the future any particular thing. There is no specific 54 
object that the goal of sustainability, the obligation of sustainability, 55 
requires us to leave untouched (1993b, 181). 56 

 57 

 
2 For the advancements made by ecological economists, see Christensen (1989); Martinez-Alier and Røpke (2008a), 

(2008b); Røpke (2005). 
3 For the origins of this debate, see Beckerman (1994), (1995); Daly (1995); 1997a; 1997b); Solow (1997); Stiglitz 

(1997). For a detailed overview of the debate between weak and strong sustainability, see Neumayer (2003). 
4 The ‘social scientific approach’ to sustainability was originally motivated by The World Commission on 

Environment and Development (1987). This approach was pioneered by Robert M. Solow (1986) and subsequently 

developed by David Pearce et al. (1989). 
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On this view, what matters is not that any particular stock of capital is depleted but that the overall 58 

stock of capital, which constitutes the productive capacity of an economy, is non-diminishing over 59 

time.5 60 

‘Strong sustainability,’ on the other hand, derives from the earlier work of David W. Pearce 61 

et al. (1989) and others, including Robert Costanza and Herman Daly (1992). The proponents of 62 

this view, which includes most ecological economists, generally argue that because natural and 63 

manufactured capital are complements rather than substitutes, sustainable development requires 64 

that each stock of capital should be held constant, independently.  65 

The most significant argument given to support this position is the argument from critical 66 

natural capital.6 This argument begins with the premise that there exists a special set of 67 

environmental conditions required for the continued existence of our species (Barbier 2011; Stern 68 

1997; Folke et al. 1994; Victor 1991).7 These conditions are denoted by the concept of critical 69 

natural capital. If one presumes a commitment to sustainability, then, the objects denoted by this 70 

concept must be sustained in kind, a conclusion that is generally thought to be incompatible with 71 

Solow’s assertion above – that “no specific object need be left untouched.” 72 

While critical natural capital plays a crucial role for ecological economics, especially for 73 

the debate between weak and strong sustainability, the meaning of terms commonly associated 74 

with the concept, such as ‘non-substitutable,’ ‘near-impossible to substitute,’ and ‘essential for 75 

continued existence’ remain obscure. The first main section of this article grapples with the various 76 

definition types of critical natural capital and argues that each of them is deficient in some way. 77 

Section 3 then proposes a new account of the environmental conditions required for continued 78 

existence based on equations and graphs, a structural framework originally developed by computer 79 

scientists and further refined by philosophers (Pearl 2000 [2009]; Halpern and Pearl 2000; 80 

Hitchcock 2001). This account makes explicit what it means for objective environmental 81 

 
5 Specifically, sustaining the aggregate level of capital over time requires following Hartwick’s Rule whereby total 

net investment in capital remains above or equal to zero (Hartwick 1977, 1978). If net investment were to fall below 

this threshold, capital would be depleted and, because the stock of capital represents the productive capacity of an 

economy, production, along with the present and future human welfare that depends on it, would also decline (Arrow 

et al. 2004; 2010). 
6 For additional arguments, see [reference withheld for peer review process]. 
7 There is no consensus on the objects denoted by the concept of critical natural capital. Frequently cited examples 

include ‘freshwater resources,’ ‘climate regulation’ and ‘fertile soils’ (see Millenium Ecosystem Assessment 2005). 

Below, I will suppose ex hypothesi that the earth subsystem and processes identified by Johan Rockström et al. (2009) 

are instances of critical natural capital. 

 



4 

 

conditions to be essential for the continued existence of an agent or group. Moreover, the account 82 

is shown to be consistent with relevant empirical evidence concerning the objects and processes 83 

widely considered to be instances of critical natural capital (Rockström et al. 2009). 84 

Section 4 turns to the question valuing critical natural capital. While some ecological 85 

economists have claimed that, beyond some threshold, critical natural capital possesses absolute 86 

infinite value, I will follow others, arguing that absolute infinite utility models run into significant 87 

problems in the context of modeling conservation decisions (Colyvan et al. 2010). Following Paul 88 

Bartha (2007) and [reference withheld for the peer-review process]), I will show that a relative 89 

infinite utility model provides a better way to model the priority of conserving critical natural 90 

capital. Section 5 concludes. 91 

 92 

2. What is Critical Natural Capital? 93 

The concept of critical natural capital was first developed by members of the London Centre for 94 

Environmental Economics in the late 1980s to denote parts of the natural environment essential 95 

for basic life support (Victor 1991; Stern 1997). Over the past several decades, the concept has 96 

been popularized by ecological economists, particularly as it relates to the debate between weak 97 

and strong sustainability, but also as a significant concept to be explained on its own terms. Critical 98 

natural capital has been defined variously (Hueting and Reijnders 1998; de Groot et al. 2003; Ekins 99 

et al. 2003; Farley 2008; Barbier 2011; Pelenc and Ballet 2015). Consider the following sample 100 

set of definitions:8 101 

 102 

1. “That set of environmental resources which performs important 103 

environmental functions and for which no substitutes in terms of human, 104 
manufactured, or other natural capital currently exist” (Ekins et al. 105 

2003). 106 
2. “Critical natural capital consists of assets, stock levels, or quality levels 107 

that are: (1) highly valued; and either (2) essential to human health, or 108 

(3) essential to the efficient functioning of life support systems, or (4) 109 
irreplaceable or non-substitutable for all practical purposes (e.g. because 110 
of antiquity, complexity, specialization, or location)” (English Nature, 111 
1994). 112 

3. “Vital parts of the environment that contribute to life support systems, 113 
biodiversity, and other necessary functions / as keystone species and 114 
processes” (Turner et al. 1993).  115 

 
8 Rudolf de Groot et al. (2006, 221) consider some of the definitions listed here. 
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4. “The degree to which natural capital is threatened or vulnerable” (de 116 
Groot et al. 2006, 221). 117 

5. “Ecological functioning of natural systems above certain thresholds of 118 
degradation in order to conserve the capacity of natural capital to 119 
provide the services which are critical for human existence and well-120 
being” (Pelenc and Ballet 2015).9 121 

 122 

While this non-exhaustive list might lead some to conclude that critical natural capital is hopelessly 123 

confused, these definitions appear to cluster around three types. A-type definitions generally pick 124 

out some non-empty set of environmental conditions that must be satisfied for the continued 125 

existence of our species (Barbier 2011; Stern 1997; Folke et al. 1994; Victor 1991); B-type 126 

definitions, tend to emphasize a special or distinctive value judgement that makes some instance 127 

of natural capital critical (Chiesura and de Groot 2003). For example, some part of nature might 128 

be judged as ‘sacred’ by some group without being essential for continued existence. Both A and 129 

B-type definitions identify parts of the natural environment as critical natural capital but disagree 130 

on what makes them so. Under most A-type definitions, natural capital is critical if and only if it 131 

is required for the continued existence of some referent group. For B-type definitions, some 132 

instance of natural capital is critical if and only if it is ‘highly valued’ or ‘sacred’ to some group. 133 

Both A and B-type definitions appear to be deficient in some way. A-type definitions 134 

generally ignore values and, therefore, it is difficult to see how ecological economists might model 135 

the conservation of critical natural capital, a project that requires value judgements. On the other 136 

hand, B-type definitions take values seriously, but perhaps too seriously. On this definition type, 137 

any instance of natural capital qualifies as critical so long as an agent assigns it with a ‘high value.’ 138 

This definition type risks casting the net too wide, thus making too many parts of the environment 139 

critical natural capital. Moreover, to claim that some part of the environment is critical natural 140 

capital if and only if it is ‘highly valued’ or ‘sacred’ begs the question about the exact nature of 141 

such special value ascriptions and their relationship to ordinary finite values. 142 

Arguably, the most promising definition type of critical natural capital contains elements 143 

of both A and B-type definitions. Jérôme Pelenc and Jérôme Ballet provided one recent example 144 

of this third hybrid definition type when they state, “the criticality of the ecosystem services 145 

provided by critical natural capital is dependent not only on ecological criteria, but also on the 146 

 
9 When proposing this particular definition, Pelenc and Ballet (2015) cite many other scholars likely to endorse it, 

including Ekins et al. (2003), Chiesura and de Groot (2003), De Groot et al. (2003) and Brand (2009). 
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values espoused by society” (2015, 38). In general, we might suppose that hybrid A-B type 147 

definitions entail that any instance of natural capital is critical if and only if the following two 148 

conditions are satisfied: 149 

 150 

(1) it is required for continued existence of some agent or group 151 

(2) it is ‘highly valued’ by some agent or group  152 

 153 

Conditions (1) and (2) can be specified in numerous ways. With respect to Condition (1), no A-B 154 

type definition has yet made explicit – in definite terms – what it means for some environmental 155 

conditions to be required for continued existence for some agent or group. Ecological economists 156 

often assert that there is a subclass of natural capital for which there are no substitutes, yet many 157 

questions remain. Why exactly do the objects denoted by critical natural capital have no 158 

substitutes? What conditions, if any, would need to be satisfied for another object to serve as a 159 

potential substitute for an instance of critical natural capital? What factor makes critical natural 160 

capital distinctive from other non-essential parts of the environment? Any defensible A-B type 161 

definition of critical natural capital must answer such questions, which I will consider as desiderata 162 

for specifying Condition 1. Moreover, any defensible definition of critical natural capital should 163 

be consistent with relevant empirical evidence concerning objects and processes widely considered 164 

to be instances of critical natural capital.  165 

The next section will show how equations and graphs make explicit what it means for some 166 

environmental conditions – what I term basic environmental conditions – to be essential for the 167 

continued existence of an agent or group. Section 4 will then turn towards the project of elucidating 168 

Condition 2, the distinctive kind of value that is sometimes assigned to critical natural capital. I 169 

will argue that while some ecological economists have suggested that, beyond a certain threshold, 170 

critical natural capital possesses absolute infinite value, this value ascription is problematic in the 171 

context of formally modeling conservation decisions. I will show that a relative infinite utility 172 

model provides a better way to model the priority of conserving critical natural capital. 173 

 174 

3. Specifying Critical Natural Capital with Equations and Graphs 175 

The objective of this section is to specify Condition (1). Basic environmental conditions reflect 176 

the familiar idea that agents can only exist within a certain range of physical or material conditions. 177 



7 

 

It is to be remarked that such conditions are always relative to a specific agent embedded in an 178 

external environment that includes a totality of factors, both biotic and physical at a particular time 179 

and place, and with a given level of technology. For simplicity, in what follows I will refer to such 180 

situated agents as merely ‘agents.’ 181 

3.1 Equations and Graphs: A Primer 182 

Before showing how equations and graphs can be used to formulate basic environmental 183 

conditions, it will be useful to show how this framework can be used to represent systems of causal 184 

knowledge generally.10 185 

A causal model is a pair <γ, ε> where γ is a set of relevant variables and 𝜀 is a set of 186 

equations that describe relationships among the variables that belong to 𝛾. Let us begin with a 187 

simple example. Some E is a binary value with possible values E=0 and E=1. These values 188 

represent the occurrence or non-occurrence of a specific event, e:  E=1 represents the occurrence 189 

of e, and E=0 represents the non-occurrence of e. Suppose that e represents the occurrence of a 190 

rainy day. Then E = 1 represents the occurrence of rain and E = 0 represents the non-occurrence 191 

of rain. 192 

The set 𝛾 contains both exogenous and endogenous variables. The former have their values 193 

determined by processes external to the model, while the latter have their values determined as a 194 

function of other variables in the model.  The set ε contains exactly one equation for each variable 195 

in γ. Corresponding to the distinction between exogenous and endogenous variables, 𝜀 is 196 

comprised of two subsets, 𝜀x and 𝜀n. All of the equations in 𝜀x take the simple form X = x: they 197 

state the actual value of the variable in question as fixed by an external process. Equations in 𝜀n 198 

take the form  199 

 (1) Z = fz (X, Y ... W). 200 

Each such equation expresses the value of an endogenous variable as a function of the values of 201 

other variables in the set 𝛾. Equation (1) means that if it were the case that X = x, Y = y, …, W = 202 

w, then it would be the case that Z = fz (x, y, ... w). In other words, the dependent variable Z depends 203 

counterfactually on the values of the variables X, Y …W, and nothing else. Each of the variables 204 

X, Y, …, W on which Z depends directly is termed a “parent” of Z. Unlike endogenous variables, 205 

 
10 For this purpose, I will mainly follow Christopher Hitchcock (2001). 
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exogenous variables have no parents since their values are determined by factors outside the 206 

system. 207 

A convenient feature of this framework is that a system of structural equations can be given 208 

an elegant graphical representation.11 As shown in Figure 1 below, variables form the nodes of a 209 

graph and these nodes are connected by arrows according to the following rule: an arrow is drawn 210 

from X to Z if and only if X is a parent of Z. There is a “directed path” from X to Z where there is 211 

a sequence of arrows that are lined up connecting X with Z (exogenous variables have no arrows 212 

directed to them).  213 

Before moving on to specific examples with graphical representations, it will be useful to 214 

introduce some notation: ¬, ˅, ˄, represent the following mathematical functions: ¬X ≡ 1-X, X ˅ Y 215 

≡ max {X,Y}, X ˄ Y ≡ min {X, Y}. If Z = X ˅ Y, then Z will take the value of 1 if and only if either 216 

X or Y takes the value 1. Z = X ˄ Y, then Z will take on the value of 1 if and only if X takes the 217 

value of 1 and Y takes the value of 1. In other words, Z is true if and only if X is true and Y is true. 218 

Let’s begin with an example that uses equations and a graph. 219 

 220 

 221 

 222 

 223 

                Figure 1. Raining on Fred’s Field 224 

 225 

In this case, the variable X = 1 corresponds to rain on Fred the Farmer’s field; X = 0 corresponds 226 

to no rain on Fred’s field. Y = 1 corresponds to Fred watering his field with an irrigation system; 227 

Y = 0 corresponds to Fred not watering his field. Z = 1 corresponds to Fred’s crop surviving; Z = 228 

0 corresponds a crop failure. It should be clear that there are two routes whereby X can influence 229 

Z – one that goes directly to Z and the other that goes through Y. The set of structural equations 230 

is as follows: 231 

 
11 Of course, the real epistemic benefit of equations and graphs is not merely the elegant representations of causal 

relations, but the clear and definite counterfactual reasoning they enable. 

Y 

Z X 
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𝜀 : X = 1; Y = ¬X; Z = X ˅Y 232 

X is an exogenous variable (whether it rains on Fred’s field is not caused by any other variable in 233 

the set 𝛾). The equation Z = X ˅ Y encodes the following counterfactual: if either X or S were to 234 

take the value of 1 – if it rained on Fred’s field or Fred watered his crop – then his crop would 235 

survive. In this case, 𝜏𝜀 has the following unique solution: 236 

X = 1; Y = 0; Z = 1. 237 

It actually rained on the Fred’s field; Fred did not water his field; the crop survived. 238 

Now, suppose that it did not rain. The set of structural equations is as follows: 239 

𝜀 : X = 0; Y = ¬X; Z = X ˅Y 240 

Again, X is an exogenous variable. 𝜀 has the following unique solution: 241 

X = 0; Y = 1; Z = 1. 242 

It did not rain; Fred watered his crop; and Fred’s crop survived. It should be clear that the causal 243 

graph depicted in Figure 1 does not itself specify the actual values of any variables or even the 244 

nature of the dependence; this information is only contained in the set of structural equations that 245 

accompanies the graph. It should also be understood that each equation in 𝜀n encodes 246 

counterfactual information. For example, if it were the case that X = x, Y = y, …, W = w, then … 247 

Z = 1. 248 

3.2 Modeling Critical Natural Capital with Equations and Graphs 249 

As a first attempt, we might represent the basic environmental conditions for an agent with the 250 

following equations and graphs. 251 

 252 

 253 

 254 

                               Figure 2. Five Basic Environmental Conditions 255 

 256 

The set of structural equations that accompany Figure 2 is as follows: 257 

X1 

X2 

X3 

X4 

X5 

 

 

 

Y Z 
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𝜀 : X1 = 1; X2 = 1; X3 = 1; X4 = 1; X5 = 1;Y = X1 ˄ X2 ˄ X3 ˄ X4 ˄ X5; Z = Y. 258 

 259 

The graph in Figure 2 shows that every basic environmental condition, Xn, is directed towards Y, 260 

a viable environment for the agent. In this case, a viable environment is identified with the 261 

occurrence of no more and no less than five basic environmental conditions. The basic 262 

environmental condition X1, for example, might be a certain quantity and quality of water that 263 

meets the subsistence requirement of the agent at a particular time and place. Or, it could be a 264 

subsistence level of oxygen. The set of structural equations directly above imply that no basic 265 

environmental condition on its own is sufficient to cause a viable environment, Y, to take the value 266 

of 1. Instead, X1, X2, X3, X4, X5 are necessary and sufficient to bring about a viable environment for 267 

the agent. In other words, Y = 1 if and only if X1 = 1, X2 = 1, X3 = 1, X4 = 1, X5 = 1. Conveniently, 268 

these equations have a unique solution: 269 

𝜀 : X1 = 1; X2 = 1; X3 = 1; X4 = 1; X5 = 1; Y = 1; Z = 1. 270 

This solution means that there is a subsistence quantity of each basic environmental 271 

condition that must be met for the continued existence of this particular agent. Jointly, the 272 

occurrence of each such condition causes a viable environment and, therefore, Z takes the value of 273 

1. That is, the agent continues to exist. Counterfactually, we also know that if it were the case that 274 

any Xn = 0, then Y = 0, and Z = 0: if any basic environmental condition were missing from what 275 

would otherwise be the agent’s viable environment, then the agent would cease to exist 276 

(eventually). In this example, as with the previous one, we are assuming that every variable is 277 

binary: they take a value of 1 or 0. Y = 1 if and only if the agent has a viable environment and Y = 278 

0 if and only if the agent does not have a viable environment. Z represents either the continued 279 

existence of the agent (Z = 1) or her death (Z = 0).12 280 

Of course, to claim that some agent depends on exactly five basic environmental conditions 281 

is entirely arbitrary. The agent might well depend on n conditions, as depicted in Figure 3 below: 282 

 
12 Clearly, the dependent variable Z could also be made to represent the continued existence or non-existence of a 

group. This possibility is discussed below. 
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 283 

 284 

 285 

 286 

                                          287 Figure 3. “n” Basic Environmental Conditions 

 288 

𝜀 : X1 = 1; X2 = 1; X3 = 1; … Xn = 1;Y = X1 ˄ X2 ˄ X3 ˄ … ˄ Xn; Z = Y. 289 

The unique solution: 290 

𝜀 : X1 = 1; X2 = 1; X3 = 1… Xn = 1; Y = 1; Z = 1. 291 

In this case, a viable environment is identified with the occurrence of n basic environmental 292 

conditions. As with the previous example, the set of structural equations implies that no single 293 

basic environmental condition is sufficient to cause Y to take the value of 1. Instead, X1=1, X2=1, 294 

X3=1, …, Xn = 1 are jointly necessary and sufficient to bring about a viable environment and, 295 

therefore, continued existence. It should be clear that the situation depicted in Figure 2 can be 296 

generalized from five to any number, n, of basic environmental conditions, with corresponding 297 

changes to the graph and set of structural equations. 298 

Figures 2-4 show that the causal routes from every basic environmental condition to a 299 

viable environment, is a direct route.13 Basic environmental conditions are required for continued 300 

existence because they afford an objective causal role to the agent that is required and not available 301 

in any other kind of ecological condition. 302 

There are no intermediate variables between basic environmental conditions, a viable 303 

environment, and the continued existence of a given agent. Basic environmental conditions have 304 

no substitutes because their causal properties are not multiply realizable – at a particular time and 305 

place, with a given level of technology. If any of these elements – time, place, or technology – 306 

were to change, then the agent’s viable environment, the set of basic environmental conditions, 307 

may also change. Indeed, it is to be expected that viable environments will undergo constant 308 

 
13 It is to be remarked that the model merely represents causal knowledge. The knowledge itself is to be obtained 

somewhere else (earth and life sciences). This issue is discussed below. 

X1 
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change and, moreover, agents themselves are taken to be changing self-reproducing physical 309 

systems capable of modifying themselves, their technologies, and their environments (Lewontin 310 

1983). As Daniel Dennett explains: 311 

A tiger is viable now, in certain existing environments on our planet, 312 

but would not have been viable in most earlier days, and may 313 
become inviable in the future (as may all life on Earth, in fact). 314 
Viability is relative to the environment in which the organism must 315 
make its living. Without breathable atmosphere and edible prey – to 316 
take the most obvious conditions – the organic features that make 317 

tigers viable today would be to no avail. And since environments are 318 
to a great extent composed of, and by, the other organisms extant, 319 

viability is a constantly changing property, a moving target, not a 320 
fixed condition (1996, 115). 321 
 322 

Viable environments possess what Dennett refers to as a “moving target quality” and equations 323 

and graphs are sensitive to this quality. A somewhat artificial example will help to illustrate this 324 

point. Let us reasonably suppose that some quantity of water (H2O) – a subsistence level of water 325 

– is a basic environmental condition for specific agents. Since H2O is the only kind of molecule 326 

capable of executing a causal role required for the continued existence of agents, it qualifies as a 327 

basic environmental condition for these agents. Let us suppose that synthetic molecules are now 328 

developed and subsequently made available to agents. This technological innovation affords 329 

agents with the same objective causal role as H2O. In this case, H2O would cease to be a basic 330 

environmental condition for such agents because the causal role it performs can now be realized 331 

in another kind of molecule. We can represent the introduction of these synthetic molecules – call 332 

them ‘causal water’ – with equations and graphs as follows: 333 

 334 

 335 

 336 

                              Figure 4. The Introduction of ‘Causal Water’ 337 

The set of structural equations is as follows: 338 

𝜀 : X1 = 1; X2 = 1; X3 = 1; X4 = 1; X5 = 0; T = ¬X5; Y = X1 ˄ X2 ˄ X3 ˄ X4 ˄ [X5 ˅ T]; Z = 339 

Y. 340 

X1 

X2 

X3 

X4 

X5 

 

 

 

Y Z 

T

1 
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As with the previous example, every Xn is an exogenous variable. Let X5 represent the subsistence 341 

level of H2O that would be available to the agent if there were no T or ‘causal water.’ In contrast 342 

to the previous examples, X5 = 0. Be that as it may, T = ¬X5, and Y = X1 ˄ X2 ˄ X3 ˄ X4 ˄ [X5 ˅ T]. 343 

The solution to these equations is also unique: 344 

𝜀 : X1 = 1; X2 = 1; X3 = 1; X4 = 1; X5 = 0; T =1; Y = 1; Z = 1. 345 

Unlike Figure 2, which depicts agent existence as depending on a subsistence level of water, in 346 

this case, there is no available water in this case. Yet, there remains a viable environment and the 347 

agent continues to exist. Why? In this case, the causal role that would have been performed by 348 

water is realized in the variable T, which represents the subsistence level of the synthetic molecule, 349 

causal water. If it is the case that X1 = 1; X2 = 1; X3 = 1; X4 = 1, then the agent will have a viable 350 

environment (Y = 1) if and only if X5 = 1 or T = 1. This latter disjunction was not available in the 351 

previous case because water performed a causal role that was not available in any other kind of 352 

condition. In this new case, by contrast, if there is no water (X5 = 0) then, there will be a subsistence 353 

level of causal water, since T = ¬X5. 354 

The preceding analysis has shown that equations and graphs can be used to model features 355 

of the environment required for the continued existence of an agent. This causal framework 356 

illustrates the idea that basic environmental conditions are required for this purpose because they 357 

afford the agent with an objective causal role that is not available in any other kind of 358 

environmental condition. These causal conditions must be met for the continued existence of 359 

agents. To put it more precisely, we can define a basic environmental condition as follows: 360 

Definition 1: Basic Environmental Condition for an Agent 361 

x is a basic environmental condition for agent α in environment E at 362 
time t  if all variables other than x were held fixed at their values 363 
at t, and x were removed from E, then α would cease to exist at t (or 364 
shortly after t).14 365 

 366 

Definition 1 is a good start. However, ecological economists and sustainability scientists more 367 

broadly are generally concerned with conserving the stock of critical natural capital, not for the 368 

 
14 The symbol “” should read as “if and only if”. This definition can be read in light of J.L. Mackie’s (1980, 63) 

concept of a causal field: a set of background conditions, not completely specified but taken as fixed. The causal field 

fixes everything but some set of variables that one is interested in. 
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continued existence of any specific individuals, but for a group of agents.15 Thus, consider the 369 

following definition of a basic environmental condition, which relativizes essential conditions to 370 

a group: 371 

Definition 2: Basic Environmental Condition for a Group 372 

x is a basic environmental condition for a group G in environment 373 
E at time t  if all variables other than x were held fixed at their 374 
values at t, and x were removed from E, or completely destroyed, 375 
then at least some members of G would cease to exist (or shortly 376 
after t).16 377 

 378 

The only difference between Definition 1 and Definition 2 is that the former defines a basic 379 

environmental condition relative to an individual while the latter defines a basic environmental 380 

condition relative to a group. Both definitions are compatible with specifying critical natural 381 

capital specified with equations and graphs, as shown above.  382 

Equations and graphs sharpen the concept of critical natural capital (Condition (1) 383 

specifically), but it should be apparent that they cannot identify or confirm the existence of basic 384 

environmental conditions. This is an empirical question that is to be answered by the best earth 385 

and life science available. Ideally, these sciences would be capable of establishing – on 386 

independent grounds – each exogenous variable that is essential to the dependent variable. In less 387 

ideal circumstances, one might ask the following question: what does the relevant empirical 388 

evidence suggest about the existence of basic environmental conditions, as outlined in Definition 389 

1 and Definition 2? Which environmental features and processes, if any, are critical or essential to 390 

the continued existence of, for example, our species?  Might this empirical evidence also serve to 391 

improve Definition 2? 392 

Arguably, the most well-known contemporary scientific research on crucial or essential 393 

environmental conditions – on a global scale – is due to Johan Rockström et al. (2009). These 394 

earth scientists have convincingly argued that there is a ‘safe operating space’ for humanity 395 

constituted by various biophysical subsystems and processes on earth, including ‘climate change,’ 396 

the ‘rate of biodiversity loss,’ ‘stratospheric ozone depletion.’ Each subsystem or process is listed 397 

 
15 This group might consist of “all humans (i.e. humanity) or for a given human population or interest group in a given 

situation” (de Groot 2003, 190). 
16 I will suppose an equal distribution of basic environmental conditions among members of G. 
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in Table 1, below. Rockström et al. identify and quantify parameters and boundaries for each of 398 

them. 399 
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Table 1 400 

PLANETARY BOUNDARIES          

Earth-System Process Parameters 
 
Boundary 

Current 
Status 

Pre-Industrial 
Value 

Climate Change (i) Atmospheric carbon dioxide concentration (parts per million by 
volume) 

350 387 280 

  (ii) Change in radiative forcing (watts per metre squared) 1 1.5 0 

Rate of Biodiversity Loss Extinction rate (number of species per million species per year) 10 >100 0.1-1 

Nitrogen cycle (part of a boundary 
with the phosphorus cycle) 

Amount of N2 removed from the atmosphere for human use (millions 
of tonnes per year) 

35 121 0 

Phosphorus cycle (part of a 
boundary with the nitrogen cycle) 

Quantity of P flowing into the oceans (millions of tonnes per year) 
11 8.5-9.5 ~1 

Stratospheric Ozone Depletion Concentration of ozone (Dobson unit) 276 283 290 

Ocean acidification Global mean saturation state of aragonite in surface sea water 2.75 2.9 3.44 

Global freshwater use Consumption of freshwater by humans (km3 per year) 4,000 2,600 415 

Change in land use Percentage of global land cover converted to cropland 15 11.7 Low 

Atmospheric aerosol loading Overall particulate concentration in the atmosphere, on a regional 
basis 

TBD     

Chemical pollution For example, amount emitted to, or concentration of persistent 
organic pollutants, plastics, endocrine disrupters, heavy metals and 
nuclear waste in, the global environment, or the effects on ecosystem 
and functioning of Earth system thereof 

TBD     

  401 
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Consider, for example, climate change. The parameters for this process are (i) atmospheric 402 

carbon dioxide concentration and (ii) change in radiative forcing and the boundaries are estimated 403 

to be 350 parts per million by volume and 1 watt per metre squared, respectively. On Rockström 404 

et al.’s account, each planetary boundary associated with a different earth-system process is a 405 

threshold. If humanity remains below these thresholds, then it is poised to remain within the ‘safe 406 

operating space’ that has been characteristic of the current epoch of geologic time (that began 407 

approximately 12,000-11,500 years ago). Transgressing any of these thresholds, on the other hand, 408 

is expected to result in ‘unacceptable global environmental change’ characterized by radical 409 

instability. Exceeding these planetary thresholds risks undermining the environmental pre-410 

conditions for continued existence and, therefore, human development and well-being. 411 

Suppose ex hypothesi that critical natural capital denotes the earth-system processes 412 

identified by the best earth science available, which is due to Rockström et al. (2009). On this 413 

account, transgressing any of the planetary boundaries identified by Rockström et al. counts as 414 

depleting (or degrading) basic environmental conditions. Given this supposition, we are in a 415 

position to further refine our definition as follows: 416 

Definition 3. Basic Environmental Condition for Group* 417 

x is a basic environmental condition for group G in environment E 418 

at time t  if all variables other than x were held fixed at their values 419 

at t, and x were depleted or degraded beyond a critical threshold 420 
(identified by the best natural science available), then there is a non-421 

trivial positive probability, p > 0, that some members of G would 422 
cease to exist at t (or shortly after t). 423 

 424 

How does Definition 3 measure up to the desiderata outlined at the end of Section 2? This 425 

definition identifies basic environmental conditions and makes explicit why instances of critical 426 

natural capital have no substitutes. Moreover, the equations and graphs used to model basic 427 

environmental conditions specify the causal conditions that would need to be satisfied by any 428 

potential substitute. Basic environmental conditions are distinctive because they perform causal 429 

roles unavailable in any other kind of environmental condition. Definition 3 is also consistent with 430 

the probabilistic nature of modeling the earth’s planetary boundaries and expected consequences 431 

of transgressing them. Without pretending that Definition 3 is the only way to specify Condition 432 

(1), it does represent a significant improvement over the available alternatives. 433 

 434 
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4. Modeling the Conservation of Critical Natural Capital 435 

The previous section specified Condition (1) from Section 2 with equations and graphs and 436 

proposed a new definition of the objective environmental conditions that must be satisfied for the 437 

continued existence of an agent or group. The primary purpose of this section is to elucidate 438 

Condition (2) in the context of environmental decision-making. What does it mean for the special 439 

parts of nature denoted by critical natural capital to be ‘highly valued’ or ‘sacred’ and how might 440 

one formally model the conservation of these essential parts of the environment?17 441 

Standard cost-benefit analysis (CBA) or the ‘ecosystem services approach,’ has been 442 

embraced by many ecological economists and their life scientist colleagues because it is believed 443 

that a direct appeal to the economic benefits of natural capital and ecosystem services is the best 444 

strategy for conserving such features and processes of the environment (Sen 2000; Costanza et al. 445 

1997; Daily 1997). However, critics have argued that this approach cannot properly capture the 446 

‘no trade-offs’ reasoning that is characteristic of making decisions about significant or ‘priceless’ 447 

parts of the natural environment (McCauley 2006; Ackerman and Heinzerling 2002). This critique 448 

is particularly salient when it comes to the question of modeling conservation decisions about non-449 

negotiable parts of the environment deemed essential for the continued existence of our species. It 450 

seems reasonable to suppose that any formal decision-making model should aim to represent this 451 

‘priceless’ aspect of the environment, especially when such parts have been degraded or depleted 452 

beyond the thresholds identified by Rockström et al. (2009). 453 

As a first attempt, one might interpret ‘priceless’ in this context as assigning critical natural 454 

capital with absolute infinite value. Indeed, the main alternative to CBA or the ecosystem services 455 

approach is a deontological framework that employs infinite values to represent the no trade-offs 456 

approach that is characteristic of some environmental decision-making.18 By proposing a decision-457 

making model that assigns positive infinite value to the conservation of critical natural capital, for 458 

example, one secures a non-negotiable commitment to conserve this subset of the environment. 459 

The critical natural capital theorist, Paul Ekins, effectively endorses this approach when he states, 460 

“critical ecosystems and ecological features must be absolutely protected to maintain biological 461 

diversity” (Ekins et al. 2003, 176). Similarly, the ecological economist, Joshua Farley (2008) has 462 

 
17 I will continue to suppose that critical natural capital denotes the earth-system subsystems, processes, and thresholds 

identified by Rockström et al. (2009). 
18 For more on the deontological approach and critical natural capital specifically, see Pearson et al. (2012); Baron 

and Spranca (1997); Tetlock et al. (2000). 
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also argued that, beyond a certain threshold, the stock of critical natural capital possesses infinite 463 

value. 464 

Absolute infinite utilities decision-making models bring deontological intuitions into 465 

standard decision theory by allowing the utility function (that represents an agent’s preferences) 466 

to take the values +∞ and –∞, in addition to finite real values.  467 

Consider two examples: Climate Change and Stratospheric Ozone Depletion.  468 

Example 1: Climate Change. Suppose the utility of unchecked climate change = u(unchecked 469 

climate change) = –∞:  the total consequence of unchecked climate change caused by 470 

anthropogenic greenhouse gas emissions is infinitely bad. We can reasonably assume that 471 

Pr(unchecked climate change ǀ business as usual) = p > 0.  Then, we would calculate expected 472 

utility as follows. 473 

EU(business as usual)  = p · u(unchecked climate change) + (1–p) · u(finite gain)  474 

= p(–) + (1–p)(finite) = –. 475 

The expected utility of proceeding with business as usual is –∞. Therefore, this activity should be 476 

rejected if there is any positive chance of experiencing the consequences of unchecked greenhouse 477 

gas emissions, which is infinitely bad. This prescription to conserve critical natural capital and 478 

avoid catastrophic climate change appears to be the result that proponents of strong sustainability 479 

wish to obtain. 480 

Example 2: Stratospheric Ozone Depletion.  Represent the utilities of the relevant outcomes as 481 

follows:   482 

u(The ozone is destroyed) = –∞ 483 

u(The ozone remains intact) = I (a positive finite number) 484 

 485 

Now, suppose Pr(The ozone is depleted ǀ Do nothing) = p > 0; the ozone’s depletion, if nothing 486 

is done, has a small positive probability p. 487 

Given these assumptions, the expected utility of doing nothing is –∞: 488 

EU(Do nothing) = p · u(ozone is destroyed) + (1–p) · u(ozone remains intact) 489 

= p(–∞) + (1–p)I 490 

= –.   491 
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On the foregoing absolute infinite utility model, something should be done to avoid any positive 492 

chance that the ozone is depleted. Both examples – Climate Change and Stratospheric Ozone 493 

Depletion appear to show that assigning absolute infinite value to critical natural capital is a 494 

promising conservation strategy. 495 

Unfortunately, there are at least three interrelated problems with formalizing the notion of 496 

absolute infinite value for environmental decision-making (Colyvan et al. 2010). First, suppose 497 

that for both options in Stratospheric Ozone Depletion (do nothing or do something to prevent 498 

ozone depletion) there is a positive probability that the ozone is destroyed and a positive 499 

probability that the ozone remains intact. In such a case, the infinite utilities model would provide 500 

no guidance because the expected utility of both options would be –. There would be no basis 501 

for choosing between acts that yield equal expected utility. 502 

Second, other things being equal, it seems reasonable to suppose that saving more critical 503 

natural capital is more valuable than saving less of it, especially beyond a ‘planetary boundary.’ 504 

Yet, if one assigns ‘exceeding the climate change planetary boundary’ with absolute infinite 505 

negative value, then barely exceeding the boundary and exceeding it by a large quantity has equal 506 

value. After all, two infinitely valued items possess equal value. 507 

Consider Climate Change again. Let B = Barely exceeding the climate change boundary 508 

(atmospheric carbon dioxide concentration is 351 ppm) and F = Far exceeding the climate change 509 

boundary (atmospheric carbon dioxide concentration is 551 ppm). The problem here is that B = F 510 

= –, but u(B) is clearly preferable to u(F). The absolute infinite-utilities model fails to discriminate 511 

between outcomes, B and F. As Mark Colyvan and his co-authors point out, absolute infinite value 512 

is insufficiently discriminative of salient outcomes (Colyvan et al. 2010, 225).  513 

Third, the absolute infinite utilities model is characterized by the issue of probability 514 

swamping. If conserving the ozone layer were to be assigned absolute infinite value, then any 515 

action with even the slightest positive probability of yielding this outcome will possess infinite 516 

expected utility. Therefore, actions with both high and low probabilities of conserving the ozone 517 

would have the same expected utility. Yet, indifference between these actions is the incorrect 518 

result. Why? Other things being equal, an action with a higher probability of bringing about an 519 

infinitely valuable outcome is preferable to an action with a lower probability of yielding the same 520 

outcome.  521 
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Consider an example. Let D = Destruction of the ozone layer and u(D) = –. Let P represent 522 

the option of passively doing nothing and I represent active intervention to protect the ozone layer. 523 

Assume that Pr(D ǀ P) = 0.95 and Pr(D ǀ I) = 0.01. We can calculate the expected utility of each 524 

action as follows: 525 

EU(P) = (0.95) –    and 526 

EU(I) = (0.01) –  527 

In this case, act I is preferable to act P because this option would result in a much lower 528 

probability of destroying the ozone layer, which possesses negative infinite value. Yet, the absolute 529 

infinite-utilities model prescribes indifference between I and P. This result is counter-intuitive at 530 

best. 531 

These problems and other issues with formalizing absolute infinite value have led some 532 

scholars to argue that it is a mistake to assign any parts of the natural environment with infinite 533 

value (Colyvan et al. 2010). However, all is not lost. Other scholars have shown that so long as 534 

one means relative infinite value – not absolute infinite value – then we can model the priority of 535 

conserving significant parts of the natural environment while avoiding the problems just 536 

mentioned [reference withheld for peer-review process]. I will adopt the same approach here by 537 

showing how relative infinite value can be used to model the conservation of critical natural 538 

capital, specifically. I will begin by introducing key features of relative utility theory (RUT), a 539 

theory pioneered by Paul Bartha (2007).19 To this end, consider the following notation: 540 

• Weak preference.  B ≽ A means B is at least as good as A.   541 

• Strict preference.  B ≻ A means that B is strictly preferred to A. 542 

• Indifference.  B  A means that the agent is indifferent between B and A.   543 

• Gambles. [B, (1 – )Z] is the gamble that gives the agent chance  of winning B 544 

and chance (1-) of winning Z, where 0    1.  545 

The starting point for RUT is the following proposition, which holds for any agent whose 546 

preferences satisfy the standard axioms apart from Continuity, which states that for any three 547 

 
19 For brevity, many details of RUT are omitted here. For further details, see Bartha (2007). My exposition of RUT 

closely follows [reference withheld for peer-review process]. 
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outcomes Z, A and B such that B is preferred to A and A is preferred to Z, the agent must be 548 

indifferent between A and some gamble between B and Z (Fishburn 1974).20 549 

 550 

Proposition.  If B ≻ A ≻ Z, then there is a unique number , 0    1, such that the agent 551 

prefers A to any gamble [pB, (1–p)Z] when p <  and prefers [pB, (1–p)Z] to A if p > . 552 

Proposition is a weakening of Continuity. To see why, consider Figures 5 and 6 below. Gambles 553 

between Z and B are represented as points along the interval from Z to B. The probability  of 554 

winning B is represented as a proportion of the total interval. Given an outcome A that is 555 

intermediate between Z and B, an agent whose preferences satisfy Continuity will always be able 556 

to find some gamble in this interval that is equivalent to A (i.e., such that the agent is indifferent 557 

between A and the gamble). 558 

 559 

    560 

 561 

  Z   A        B  562 

Figure 5:  Continuity 563 

     564 

For the agent whose preferences satisfy Continuity, it is impossible to prefer any outcome 565 

infinitely relative to another.21  Suppose that B is strictly preferred to A and A is strictly preferred 566 

to Z, as shown in Figure 5. With Continuity there is always a value  strictly between 0 and 1 such 567 

that the agent is indifferent between A and [B, (1–)Z]. 568 

Here is the picture for the case when the agent’s preferences violate continuity: 569 

 570 

 
20 For a rehearsal of the standard axioms, see Resnik, M. D.: 1987, Choices, University of Minnesota Press, 

Minneapolis. 
21 Below, I define what it means to value B infinitely relative to A and Z. 
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 571 

  572 

 573 

           Z A            B  574 

                 Figure 6: Violation of Continuity 575 

 576 

The zigzag line in Figure 6 indicates a discontinuity in the agent’s preferences. The outcome on 577 

the right side, B, is preferred infinitely to the outcome on the left side, A, given a base-point Z, 578 

which is the losing (worst) outcome.22 579 

What is a relative utility function? A relative utility function, U(A, B; Z), is a three-place function 580 

defined whenever A ≽ Z and B ≽ Z, with 0   U(A, B; Z)  . U(A, B; Z) is the utility of A 581 

relative to B with base-point Z. A relative utility function may be pictured as the ‘ratio’ of the 582 

utility interval Z–A to the interval Z–B, as depicted in Figures 5 and 6 above. 583 

The following are three special cases of the relative utility function that will be useful when 584 

applying RUT to examples of critical natural capital: 585 

Case 1:  Relative Infinite Utility. 586 

U(B, A; Z) =   iff [pB, (1–p)Z] ≽ A  for 0 < p  1. 587 

Proposition enables one to meaningfully define relative infinite utility as a three-place relation, in 588 

terms of a base-point. Let A, B, and Z be any three outcomes, where B ≽ A ≽ Z.  An agent values 589 

B infinitely relative to A and base-point Z if 590 

[B, (1-)Z] ≽ A for any  > 0  591 

This means that the agent would give up A for any bet that gives a positive chance, however 592 

small, of gaining B. Any gamble between B and Z which offers a positive probability of B is 593 

 
22 Why invoke a base-point here? One cannot define relative utility using gambles (as done here) without specifying 

the two alternatives (i.e., B and Z). As will be made clear below, the preferability of some outcome A over a gamble 

between B and Z will change depending on what the base-point is. 
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infinitely preferred to A. Figure 6 above shows that the ‘distance’ from Z to B is infinitely greater 594 

than the distance from Z to A.23  595 

 596 

Case 2:  Zero relative utility. 597 

U(A, B; Z) = 0  iff  [pB, (1–p)Z] ≽ A  for 0 < p  1. 598 

This is equivalent to Case 1, (Figure 6 above). The only difference is that A and B have been 599 

swapped. Any gamble between B and Z that offers a positive probability of B is preferred to A. 600 

 601 

Case 3:  Relative utility of 1. 602 

U(A, B; Z) = 1  iff  B ≽ [pA, (1–p)Z] and A ≽ [pB, (1–p)Z], for 0  p < 1. 603 

 604 

 605 

  606 

 607 

              Z                A               B  608 

                  Figure 7 609 

 610 

In this case, the agent prefers B to any non-trivial gamble between A and Z, but also prefers A to 611 

any non-trivial gamble between B and Z. Figure 7 shows that although B is strictly preferred to A, 612 

the agent is unwilling to take any chance of getting Z if she can have A for sure. The distance from 613 

Z to A or Z to B is infinitely greater than the distance from A to B. 614 

Applying RUT to examples 615 

With the basic details of RUT behind us, we are now in a position to model decision-making that 616 

concerns critical natural capital.  617 

 
23 It is worth noting that because relative infinite utilities can be defined in terms of ordinary preferences between 

well-defined gambles, there is no need for calculations using positive or negative infinity. 
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Example 1.1: Stratospheric Ozone Depletion*: Let H  Half the ozone is saved, W  The whole 618 

ozone is saved, and let A  The ozone layer is destroyed.  Let Z be any base-point worse than A. 619 

We can model the assumption that both H and W are infinitely better than A by  620 

U(H, A; Z) = U(W, A; Z) = ∞. We can picture these preferences as follows: 621 

 622 

  623 

 624 

                    625 

     Z   A                         H                  W     626 

                Figure 8 627 

 628 

We can also model the assumption that the agent is unwilling to trade H for any gamble that might 629 

result in destroying the ozone layer: U(H, W; Z) = U(H, W; A) = 1. In this case, W is strictly 630 

preferred to H, but the agent is unwilling to take any action to bring about W if it increases the 631 

probability of destroying the whole ozone layer.  632 

To discriminate between H and W, one need only consider a different base-point, such as 633 

Q  One-quarter of the ozone is saved, as pictured below: 634 

 635 

  636 

 637 

            638 

                        Z   A            Q    H  W 639 

             Figure 9 640 

 641 

In this case, we have: 642 

0 < U(H, W; Q) < 1   643 

This value of the relative utility function means there is some non-trivial gamble between W and 644 

Q that is preferred to H. While U(W, A; Z) = U(H, A; Z) = U(Q, A; Z) = ∞, W is not infinitely 645 

preferable to H, with base-point Q (the discontinuity is not located ‘between’ outcomes Q, H, and 646 

W). It is worth noting that, in a different decision context, where there is no risk of destroying the 647 

whole ozone layer, the agent may be willing to act that brings about the most preferred outcome, 648 
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W, even when there is some positive probability of making things a bit worse for the ozone layer. 649 

This kind of result is out of reach for views that assign absolute infinite utility to the ozone layer; 650 

however, this can be accommodated with relative infinite utility models. 651 

 652 

Example 2.1: Climate Change*. We can model the same kind of decision for anthropogenic 653 

climate change. Let M  Mostly mitigated climate change, A  Avoided climate change and 654 

B  Business as usual (unbridled climate change).  Let Z be any base-point worse than B. Like the 655 

previous example, we can model the assumption that both M and A are infinitely better than B by  656 

U(M, B; Z) = U(A, B; Z) = ∞. 657 

We can also model the assumption that we are unwilling to trade M for any gamble that might 658 

result in B:  659 

U(M, A; Z) = U(M, A; B) = 1. 660 

The challenge is to discriminate between M and A, when there is a strict preference for A over M. 661 

To show how this can be done, consider a different base-point, S   Slightly mitigated climate 662 

change. Suppose that the agent’s preferences are pictured as follows: 663 

 664 

  665 

 666 

          667 

                        Z  B            S    M  A 668 

              Figure 10 669 

 670 

We now have: 671 

0 < U(A, S; M) < 1.   672 

There is some non-trivial gamble between A and S that is preferred to M. In the probabilistic 673 

version of the example, the choice is between the two gambles GA = [pA, (1–p)B] and GM = [pM, 674 

(1–p)B]. If the base-point is B, then U(GA, GM; B) = 1: we fail to discriminate between the two 675 

gambles, since both are infinitely better than B.  But if instead the base-point is GS  [pS, (1–p)B], 676 

then U(GA, GM; GS) = U(A, M; S), a value between 0 and 1. Given a suitable choice of the base-677 
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point, RUT enables us to discriminate between the two gambles and clearly prescribes GA over 678 

GM. 679 

To summarize, this section has argued that assigning absolute infinite value to critical 680 

natural capital, a convention followed by some ecological economists, is a mistake in the context 681 

of modeling conservation decisions that affect critical natural capital. Be that as it may, as shown 682 

with examples 1.1 and 2.1 above, an alternative infinite utilities model – a relative infinite utility 683 

model – can avoid the problems associated absolute infinite value in formal decision-making 684 

models. By selecting an appropriate base-point, a relative utility model provides guidance, 685 

discriminates between outcomes, and avoids the issue of probability swamping (Colyvan et al. 686 

2010). 687 

5. Conclusion 688 

Critical natural capital is central to the interdisciplinary science of ecological economics and yet 689 

the concept remains subject to immense confusion. The main purpose of this article was to show 690 

how this concept can be made clear and distinct. I suggested that the most promising definition 691 

type entails that an instance of natural capital is critical if and only if it is (1) required for continued 692 

existence and (2) ‘highly valued.’ This article specified both conditions. Section 3 specified 693 

Condition (1) with a structural model and proposed a new account of the objective environmental 694 

conditions, termed ‘basic environmental conditions,’ required for continued existence. This 695 

account, I argued, goes a long way to satisfy the desiderata outlined in Section 2. Critical natural 696 

capital qua basic environmental conditions makes explicit what it means for some environmental 697 

conditions to be essential for continued existence. Moreover, it is consistent with relevant 698 

empirical evidence and clearly identifies the conditions that would need to be satisfied for any 699 

object to potentially serve as a substitute for basic environmental conditions. 700 

Section 4 wrestled with Condition 2, the distinctive kind of value assigned to the 701 

conservation of critical natural capital. While leading ecological economists have suggested that, 702 

beyond some threshold, critical natural capital possesses absolute infinite value, I showed that, in 703 

the context of formally modeling environmental decisions, ecological economists would be better 704 

served by modeling the priority of conserving critical natural capital with a relative infinite utility 705 

model. On this model, the conservation of critical natural capital possesses relative, not absolute, 706 

infinite value. 707 
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The chief purpose of this article was to specify the concept critical natural capital, not to 708 

resolve the debate between weak and strong sustainability. However, I will finish where I began – 709 

with a brief remark on this debate. What consequence, if any, does the account of critical natural 710 

capital proposed in this article have for this debate between weak and strong sustainability? If one 711 

interprets the proponents of weak sustainability as insisting that sustainability requires members 712 

of the present generation to sustain nothing in kind, and it turns out that critical natural capital 713 

denotes the earth subsystems and processes identified by Rockström et al. (2009), or something 714 

like them, then it would appear that weak sustainability is false in at least one important sense. 715 

 716 
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