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Abstract

Three-dimensional shapes are important in representing physical objects in digital form. This digital
representation is useful in applications in numerous fields including chemistry, biology, and engineering. The
benefits in analyzing and processing such 3D digital data have given rise to vast amounts of available 3D data
and related applications.

In recent times, techniques for determining the functional and structural relationships amongst proteins
consider the whole 3D structure (spatial coordinates), proceeding from earlier techniques that were based
on sequence information. However, techniques considering the 3D structure of all atomic positions of the
protein are too demanding for fast similarity searches especially when the protein is made up of very large
numbers of atoms.

Iterative Closest Point (ICP) is the standard algorithm for performing 3D shape matching tasks. ICP
has several issues that can affect the process of 3D shape matching. These include the need for an initial
transformation to ensure an optimal match, inability of algorithm to converge when rotations are large, and
computational cost and complexity of the distance calculation.

We propose an improvement of the ICP algorithm, Tagged-ICP for matching 3D protein structures that
takes into consideration known feature descriptions of the points. The search for correspondence in our
algorithm matches atoms based on their meta data (atom types), making this approach more meaningful.
Our algorithm also reduces the number of distance calculations by a factor depending on the partition. The
neighbourhood information also increases the partitions and reduces the size of the search space even further.

Our experimental results based on the publicly accessible Protein Data Bank show that matching becomes
inherently meaningful and the complexity of the distance calculation is reduced. Our results also demonstrate
improvements in speed, accuracy and convergence on larger rotations over the standard ICP algorithm.
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1 Introduction

Background and motivation Comparing shapes is basic to many core problems including matching MRI
scans in medical imaging [Nabavi et al., 2000], developing complete objects from partial scans [Levoy et al.,
2000] and studying similarity, molecular design, and protein docking in chemistry [Axenopoulos et al., 2016].
Devices and applications allowing 3D scanning have become ubiquitous [Yuan et al., 2016] and the benefits
(e.g., high precision) in analysing 3D data have resulted in the emergence of new applications in different
fields, processing these vast amounts of available 3D data. In fact, the number of 3D protein structures in the
Protein Data Bank (PDB) [Berman et al., 2000] doubles every 18 months, requiring more advanced methods for
organising the data [Holm and Sander, 1998].

In the field of molecular biology, comparing structures is used to investigate the functions and interactions
between different molecules such as proteins and nucleic acids [Angaran et al., 2009]. Comparing structures
of proteins is also fueled by the accepted principle that the 3D structure of a protein is linked with its function
[Kinoshita and Nakamura, 2005]. Molecular biology projects have produced a vast number of 3D structures that
have enabled the discovery of functions of proteins [Berman et al., 2000; Ellingson and Zhang, 2012].
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Several approaches have been used to detect structural and functional relationships amongst proteins. The
earliest algorithms were based on sequence information [Schmitt et al., 2002] such as comparing pairs of amino
acids (molecules) in a protein structure [Needleman and Wunsch, 1970]. 3D protein comparisons require more
sophisticated algorithms to capture, visualise and match the structures based on spatial coordinates. 3D Proteins
can be represented as rigid objects and a transformation found to align them, however, more reliable matches
would be attained if the coordinates are associated with some predefined properties [Schmitt et al., 2002] such as
the atom types.

An improved shape matching algorithm can benefit this problem. A key computer vision problem is to best
align two shapes by minimizing the distance between the source and target shapes in order to determine the
extent of similarity or dissimilarity. This technique is used in tasks such as facial and fingerprint recognition,
machine vision, assistive and automotive technologies [Burlacu et al., 2016].

The Iterative Closest Point algorithm (ICP) [Besl and McKay, 1992; Chen and Medioni, 1992] is a well-
known and dominant shape matching algorithm [Attia and Slama, 2017] because of its simplicity and straight
forwardness. The algorithm is very effective at registering (aligning) point clouds because of its speed and
accuracy [Attia and Slama, 2017]. ICP iteratively registers a data point cloud to a model point cloud with the aim
of best aligning them, whether or not they partially or fully overlap. The registration method of the algorithm
finds a transformation that reduces the misalignment (distance) between the point clouds until a defined error
threshold or the maximum number of iterations is met [Donoso et al., 2017a].

Several studies have used ICP to compare structures of proteins by representing them as point clouds of
atoms [Weskamp et al., 2004; Shulman-Peleg et al., 2008].

Limitations of existing solutions ICP requires a good initial transformation to ensure that point clouds
converge at an acceptable minimal. The algorithm may also not converge at all from a particular transformation
[Besl and McKay, 1992]. In fact, larger transformations have actually been found to decrease the efficiency of
the algorithm [Attia and Slama, 2017]. The presence of outliers (non-uniform points) can also affect alignment
with ICP [Chen and Belaton, 2014]. Another notable problem is that ICP performs well in some data sets and
context and worse in the others [Donoso et al., 2017b].

Overview This paper discusses the standard Iterative Closest Point algorithm and evaluates its performance
against our variant on matching 3D protein data sets. Related works are discussed in Section 2. Section 3 details
the analysis and implementation of our novel algorithm, Tagged-ICP that improves the matching of 3D proteins
by considering metadata knowledge of the atoms. The section details how our algorithm also reduces the search
space by partitioning the space according to atom types. Section 4 details the experimental setup and design as
well as the results, analysis, and implications. Section 5 concludes this paper with the reiteration of the problems
with ICP, the solution our algorithm provides, and our ongoing and future work.

2 Related Work

The standard ICP algorithm [Besl and McKay, 1992; Chen and Medioni, 1991] repeatedly computes the
transformation that aligns a data point cloud and a model point cloud and applies this transformation to the data
point cloud until it reaches a set error threshold or the maximum number of iterations.

Chen and Medioni [1991] and Besl and McKay [1992] independently published similar methods for creating
a complete 3D model from a physical object using point clouds captured using 3D scanning from different
angles of the object. The distance from each point in the data point cloud to each point in the model point cloud
is computed to establish corresponding points. A set of transformations are then computed to register (align)
these surfaces in an iterative way. The shapes are registered when the root mean square error (standard deviation
of the distances between the two clouds) is acceptably small.

The ICP algorithm is designed to always converge. It also does not require the use of any extracted features
or meta-data about the points in the cloud.



2.1 Algorithmic Improvements Algorithm 1 Iterative Closest Point algorithm as formu-
lated by Besl and McKay [1992].

1: function ITERATIVE CLOSEST POINT(P , X )
2: Input: data and model point cloud P , X
3: Initialisation: P0 ← P
4: for iteration k := 0 to kmax do
5: closest points Yk

← CLOSEST POINT SEARCH(Pk , X )
6: transformation Mk , MSE dk

← REGISTRATION(P0,Yk )
7: Pk+1 ← TRANSFORM(Mk ,P0)
8: if change in MSE dk−1−dk < threshold then
9: terminate

return Pk+1, Mk ,dk

Several variants of the algorithm have been devel-
oped to improve one or more aspects of the algorithm
[Phillips et al., 2007]. Some of the improvements in-
clude reduction in overall computational cost, smaller
mean square error, faster convergence speed and opti-
mal selection of points for overall algorithm efficiency.
The rise in the development of these variants has been
fuelled by the simplicity and effectiveness of the ICP
algorithm itself. Mora et al. [2016] provide detailed
surveys of many variants and their improvements to
the ICP algorithm.

2.2 Use of Additional Meta-data

Some improvements to the ICP algorithm enable the
use of known meta-data in the form of features and constraints (e.g., colors and labels) to make the search
for correspondence between points more meaningful. Some features such as global orientation information
can change when transformations are applied to them, as such, there is always the need to factor them when
calculating the mean square error. On the other hand, invariant features such as colors, labels and local point
positions for rigid shapes are not affected by transformations. These invariant features can also be used to
improve the registration [Combes and Prima, 2009] by reducing the search space for correspondence [Sharp
et al., 2002].

Schutz et al. [1998] proposed a multi-feature ICP variant that includes the color and global orientation
information in the distance computation. the research showed that convergence has been considerably improved
with the addition of the feature information. Similarly, Thirion [1996] demonstrated an ICP variant using
geometric invariant feature points. The research showed that, for a rigid object, the relative positions of the
points (local orientation) can serve as invariant feature points because their positions relative to the rigid shape
do not change when transformations are applied.

The development of machine learning algorithms has seen their application to the registration problem [Aoki
et al., 2019]. Wang and Solomon [2019] proposed a learning-based registration method based on the idea of
deep learning. The method takes two point clouds and is able to predict the rigid transformation to align them.
Having trained the machine learning model with ModelNet (a custom-built large-scale 3D CAD model dataset)
[Wu et al., 2015], the algorithm was found to outperform ICP in terms of efficiency. This is due to the algorithm
predicting a rigid transformation in a single pass compared to the iterative classical ICP.

2.3 Applications

ICP is appropriate for aligning protein surfaces which are often not similar [Axenopoulos et al., 2013]. This
research focused on extracting features of the shape that were rotation invariant to aid in matching the protein
surfaces for protein docking. ICP has also been extensively used for matching biological structures such as
measuring the spatial structural similarity of biological data such as proteins. Lu et al. [2016] used ICP for
alignment refinement after applying a data reduction method to reduce the missing residues when matching two
proteins that are not identical. This two-stage process ensured that the matching was less sensitive to noise and
ICP was able to be used effectively. Similarly, ICP was used in the comparison of binding sites on proteins
for drug discovery [Bertolazzi et al., 2010]. The research overcame the problem of ICP needing a good initial
transformation by formulating a continuous global optimization algorithm that iteratively updated random points
in a cluster based on the worst matched point of the cluster. Using sample protein data taken from PDB [Berman
et al., 2000], Bertolazzi et al. [2010] proposed a method to detect similarities in protein binding sites when such
similarities actually exists. Ellingson and Zhang [2012] developed an ICP based algorithm for superimposing



and comparing protein binding-sites by representing protein atoms as point clouds, with atoms having descriptor
labels of their properties to aid in the matching.

Other geometric information was also used to improve the precision of the algorithm including multiple
initial local alignments derived from adapting 3D Delaunay triangulation [Cignoni et al., 1998]. Zhou et al.
[2014] adapted ICP to group a 3D representation of the activities of bio-molecules. The research used ICP for
computing the structural distances and another alignment method to compute the chemical distances. These
distance measures were then combined and clustered.

3 The Tagged ICP Algorithm

Our algorithm is based on the basic ICP algorithm (see Algorithm 1). To establish correspondences, ICP has to
compute the distances between each point of the model point cloud and each point of the data point cloud. This
is an expensive and critical step that becomes a performance bottleneck as the number of points increases. Besl
and McKay [1992] proposed using binary search data structures such as kd-tree to reduce the complexity of the
distance calculation process.

Algorithm 2 Tagged Iterative Closest Point algorithm.
The metadata of the protein is used to speed up the
search for correspondence and improve the registration
accuracy: The model point cloud X has been partitioned
by tag and only the partition corresponding to the tag of
p is searched.

1: function CLOSEST POINT SEARCH(Pk , X )
2: Input: data and model point cloud Pk , X
3: Initialisation: closest points Yk ← empty list
4: for all points p in Pk do
5: closest point distance dmin ←∞
6: closest point y ← null
7: for all points x in Xp.tag do
8: distance d ← DISTANCE(p, x)
9: if d < dmin then

10: closest point y ← x
11: closest point distance dmin ← d

12: append closest point y to closest points Yk

13: return Yk

In order to improve this expensive process, our
algorithm uses known metadata to optimize the search
for correspondences and to make it more meaningful.
This optimisation reduces the search space because it
only computes the distance between two points with
the same metadata information which we call the tag.
The tag consists of the point’s own atom type (carbon,
hydrogen, etc.) as well as the atom types of its k
nearest neighbours, unordered. In the pre-processing
step, the model cloud is partitioned, grouping atoms
with identical tags. During the ICP algorithm, the
closest point search only searches the partition with
the same tag as the atom in the data shape. All results
in this paper use k = 3. Note that this improvement
can be combined with other optimisations of the inner
for loop such as the kd-tree search suggested by Besl
and McKay [1992].

3.1 Computational Complexity

Given a data point cloud P with NP points and a model
point cloud X with NX points, the computational complexity of a naive Closest Point Search algorithm is
O(NP NX ). The Tagged Closest Point Search has the same computational complexity but it reduces the number
of distance calculations by a factor depending on the partitioning. Given fractional partition sizes fP,t and fX ,t

for each point cloud and each tag t such that
∑

t fP,t = 1 and
∑

t fX ,t = 1, the number of distance calculations
is reduced by a factor F = ∑

t fP,t fX ,t ≤ 1. The factor F would be smallest for a larger number of equal-size
partitions. However, the fractional partition sizes in our dataset are given by the abundances of the atoms and
their neighbourhoods. If the tag consisted only of the point’s own atom type and omitted the neighbourhood
information, the computation time would only be reduced by a factor of F ≈ 0.45 in practice. The neighbourhood
information increases the number of partitions and reduces their size to lower F further.

4 Experiments and Metrics

Our algorithm was implemented in C#. We also made use of Unity3D [Unity Technologies, 2019] as the IDE to
develop the algorithm and visualise and inspect the shape matching results (Fig. 1).



Figure 1: Same shape PDB ID: 2HAX with data shape at angle 30 degrees before match, and after Tagged-ICP
match

The experiment setup allows a PDB (Protein Data Bank) [Berman et al., 2000] file to be uploaded using
Cell Unity [Gehrer, 2015]. Cell Unity allows spatial information of a PDB file to be extracted and represented
as a structure similar to the ball-and-stick model. For each protein dataset, the PDB ID was entered into Cell
Unity and the application retrieved the PDB flat file and automatically generated a 3D rigid object representation
of the protein based on the spatial coordinates of the atoms in the file. The atoms are represented by spheres
and the spheres are able to show the 3D position of the atoms in the protein molecule. We then set our model
and reference objects as intended for the generated shapes in our Unity application. The experiment was
designed to match sets of the same and different protein structures. Three protein structures with PDB identifiers
2JKF (shapes with mutations), 2JKG (shapes with noise), and 2HAX (matching same shapes) were used in the
experiment. For each test, the shapes were aligned along their centers of mass. Data shapes were then rotated at
different angles (30, 60, 90, 120, 150 degrees) along the x-axis and the algorithms were run with 100 iterations.
The aim of the experiment was to compare the performance in terms of the convergence and match quality of the
Tagged-ICP to the original ICP algorithm over different initial rotation angles, noise levels, and when attempting
to match two mutations of the same protein. Large initial rotation angles are known to cause difficulties for ICP
algorithms. Noise added to the positions of the atoms simulates inaccuracies in protein measurement methods.
Mutations are a common use case for matching the identical functional parts and highlighting the differences
caused by the mutation. The standard ICP algorithm was chosen because we wanted to measure the effect of
only our improvements. The success of this improvements means they can be incorporated into other variants
for further experiments on 3D proteins. Using other variants of ICP meant that their improvements will also
affect the convergence and match quality and we would not have measured our improvements accurately. We
also did not place much emphasis on the translation vector because we aligned the shapes along their centers of
mass, meaning they become reasonably close. In order to compare and analyse the performance of the matching
of standard ICP with Tagged-ICP, we show two types of graphs.

The convergence graphs represent the root mean squared error of the alignment of the two shapes at different
particular iterations. This data (iteration, mean square error) is generated in real time after each iteration. This
allows us to understand which algorithm converged faster (iterated less to converge) in terms of the iteration
count at convergence and not the time in seconds. The match quality graphs represent the cumulative percentage
of points with their mean squared error when the shape matching is complete. This data (point, alignment error)
allows us to understand the effective match quality based on the error of the cumulative sum of points. A higher
cumulative percentage of points with a lower mean square error implies a better quality of match than a higher
percentage of points with a higher mean square error. These graphs provide insights into the behaviours of
different techniques: how fast and smoothly they evolve from one iteration to another. Each algorithm uses its
own implementation of the closest point search. However, for a fair comparison of match quality, ICP finally
runs Tagged-ICP’s closest point search method, implying that the match quality graphs for ICP are determined
by its registration process only. This is done to identify distortions between ICP’s convergence and the quality
of match for the different implementations. For instance, from these graphs we can understand that a bad or
good convergence graph for ICP shows whether the match quality graph was improved because of Tagged-ICP’s



Figure 2: Same shape PDB ID: 2HAX. Convergence at angles 30, 60 and 90 degrees rotation about the x axis,
and final match quality at 90 degrees

Figure 3: Mutation PDB ID: 2JKF and 2JKG. Convergence and final match quality

closest point search being used. Generating the data at these different phases allows us to study the progress of
the convergence as well as the final alignment error for each correspondence.

5 Performance

Fig. 2 shows that for identical shapes, increasing angles result in a higher number of iterations required before
convergence, as expected. We also see that Tagged-ICP performed better by convergence with fewer iterations
than Standard ICP. Fig. 3 shows that for the mutations protein dataset (Same protein with the mutant one having
single to many changes in the molecule in terms of the numbers of atoms and their positions), ICP had a better
convergence quality. We can also deduce from the noise experiments (Fig. 4) that the final mean squared errors
are related to the noise levels because, for each algorithm, the errors at convergence are directly proportional to
the noise level so increasing noise levels shows convergence at higher mean squared error, as expected. On the
other hand, the final converged errors do not correspond to the match quality graphs for ICP. That is because the
convergence graphs use the algorithm’s own closest points search method which gives ICP an unfair advantage
. The match quality graphs show the fair comparison using the same, more meaningful closest point search
method. This is because Tagged-ICP’s closest points search method was used in a final iteration of the ICP
which makes use of known feature descriptions to get a meaningful closest point search. Tagged-ICP’s closest
point search method was used in the final iteration for Standard ICP’s match quality in order to compare the
differences in the estimated transformations.

Similarly, the graphs show that the convergence speed is related to angle and not to the noise. We can see
from the convergence graphs that the higher angles converge at much higher iteration. On the other hand, this
pattern is not seen in the noise graphs. This is because the large angles of rotation make the data shape far away
from the reference and thus make them differ significantly whilst the noise level is multiplied by a random
distance factor that is within the diameter of the data shape.

From the graphs, we can deduce that increasing the levels of noise reduces the quality of the resulting match
by increasing the final mean squared error, as expected.

6 Conclusion and Future Work

The standard ICP algorithm may not converge when rotation angles are high. The search for correspondence
is also computationally expensive. We have presented an improvement to the ICP algorithm for matching 3D



Figure 4: Noise PDB ID: 2JKF. Convergence and final match quality at varying noise levels, 0.001 to 0.05

protein structures that shows improvements over the standard ICP algorithm. Our improvement to the closest
point search also demonstrates a smaller search space for searching each correspondence thus reducing the
overall time and resulting complexity of the closest point search method. Some future work on Tagged-ICP
include caching the partitioning of points based on tags which might further improve on speeds.
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