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Abstract

Germline genetic variations have been shown to affect the overall risk of de-

veloping cancer. In this thesis I combine mathematical modelling of gene

regulatory cell and signalling pathways with genetic and molecular data with

the aim to gain understanding of the mechanistics behind this association.

I started by evaluating the suitability of standard sensitivity analysis tools to

study the link between risk associated genotypes and model dynamics corre-

sponding to phenotype changes linked to carcinogenesis. From the sensitivity

analysis it became clear that, although the development from normal tissue

to cancer is gradual, on a dynamics level, the parameter space of the model

could be divided into a more or less binary state space representing healthy

and diseased phenotype.

Using this insight, a novel method was developed for studying how dynamical

changes caused by a genotype effect its link to the risk of developing cancer.

This method was built on the hypothesis that the distance between the initial

location in parameter space and the border between the two phenotypes could

be used as a proxy for the risk of developing cancer. The method was evaluated

using theoretical data and it was shown that both the dynamics of the model

and the results from the new framework correlated strongly with the relative

risk attributed to the genotypes, even when noise was introduced into the

underlying data.

The developed method was applied to two cancer types and three different

cell samples. The results from this analysis were inconclusive, which, by look-

ing back at the theoretical analysis, could partially be explained by the small

sample sizes. Nevertheless, the theoretical, in combination with the experi-

mental results, indicate that the framework proposed in this thesis could be

used to bridge the gap between the molecular dynamics and the genetics of

carcinogenesis.
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Chapter 1

Biology of Cancer and the Use of
Computational Modelling to Gain
Deeper Understanding

As knowledge about the cellular system has expanded it has become increasingly clear

that cellular signals travel in distinct pathways interacting with each other to create a

regulatory network. Over the years, the map of many parts of the network has become

so detailed and complex that it is impossible to comprehend how a change in the network

will propagate and affect other parts of the system. However, it is possible to study the

dynamics of constrained pathways using computational modelling tools. These models

have been able to give new insight into the complex system and guide researchers into

choosing experiments with high likelihood of giving new biological knowledge. By intro-

ducing perturbations into these models they have also been used extensively in the pursuit

of extended knowledge about cancer development and ways of treating cancer.

At the same time, the means of acquiring molecular data on cellular signalling sys-

tems are becoming increasingly high-throughput and in order to be able to analyse and

interpret the vast amount of data computational methods have become ever more so-

phisticated. Through this development of data acquisition and analysis tools it has been

possible to identify hereditary genetic variations with very small, but statistically signifi-

cant associations with cancer susceptibility.

Cancer is not only already one of the leading causes of death according to the World

Health Organization but the number of new cases and the amount of people in need of

chemotherapy are also expected to rise by around 50% by 2040 [1, 2]. Better diagnostics

and treatments are still needed and will be even more so in the future. Applying the

new knowledge derived from large molecular datasets within computational modelling

opens up the possibility to study the molecular dynamics leading to cancer susceptibility
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and gain knowledge hidden behind complexities that experimental methods alone cannot

breach.

1.1 Cancer signalling pathways

Cancer as a disease has been studied for many decades. Even though many details of

carcinogenesis are still to be unravelled, the broader picture was very well illustrated in

the 6 hallmarks of cancer by Hanahan and Weinberg (2000) [3] (Figure 1.1). These were

later complemented with two further hallmarks and two enabling characteristics in 2011

[4]. Not surprisingly, many of these hallmarks work in similar or complementing pathways

in the cell. Furthermore, these pathways are often enriched in tumour suppressor genes

or oncogenes such as TP53, RB, PIK3CA and FGFR-1 [5]. Some examples of important

cancer pathways are summarized below.

Figure 1.1: The hallmarks of cancer as first suggested by Hanahan et al. in 2000. In
addition to these six hallmarks another two hallmarks were later suggested, these being:
deregulating cellular energetics; and avoiding immune destruction. Furthermore, two
enabling characteristics were suggested: genome instability and mutation; and tumour-
promoting inflammation. Reprinted from Cell, Vol 144, Douglas Hanahan and Robert A.
Weinberg, Hallmarks of Cancer: The Next Generation, 646-674, 2011, with permission
from Elsevier.

1.1.1 Growth and growth suppressor signalling

For a cell to grow and proliferate, it is often dependent on growth signals from the sur-

roundings. These interact with growth signal receptors on the cell surface, which transfer
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the signal into the cell and propagate it in designated pathways. A cell achieves sustained

proliferation signalling, one of the hallmarks of cancer, by producing its own growth fac-

tors/hormones, or by regulating the intracellular signalling, commonly through mutations

in key genes [4]. To exemplify, a single point mutation in BRAF2 of the Ras-Raf-MEK-

ERK pathway could render the protein constitutively active, thus decreasing the depen-

dence on upstream activation by extracellular growth factors [6]. Similarly a mutation

in PIK3CA, as well as mutations in up or down stream components, could increase the

activation of the cell proliferation PI3K pathway [7, 8].

Another example is found within the p53 pathway. TP53 is one of the most important

tumour suppressor genes. Through p21 and together with Rb it controls the cell cycle by

regulating Cyclin D and E2F activity [9]. Down-regulation of Rb is a common path to

gaining resistance to growth suppressing signalling [10].

1.1.2 Death signalling and immortalization

As a means of protecting itself from over-expression of growth signalling and malfunc-

tioning of the cell machinery, the cell can induce apoptosis, i.e. programmed cell death.

This can happen through extracellular signalling via death signal receptors or intracellu-

lar signalling via stress response agents [11]. Both of these pathways activate a cascade

of Caspases that in the end lead to death of the cell. The p53 response to DNA damage

is a good example of such signalling and many times de-regulation of p53 also leads to

the cell resisting apoptosis signals. However, this is also accomplished by up-regulation

of anti-apoptotic factors such as Bcl-2 [11] or down-regulation of apoptotic factors such

as FasL, BAK or BAX [12, 13, 14].

1.1.3 Angiogenesis

A limiting factor for further growth is the cell’s ability to recruit blood vessels (angiogen-

esis) to ensure sufficient supply of oxygen and nutrients. Many cancers have the ability

to induce angiogenesis through expression of vascular epidermal growth factors (VEGFs)

[15, 16] or over-expression of cyclo-oxygenases (COXs), key regulators of VEGF expres-

sion [17, 18]. Unsurprisingly the capability to promote lymph angiogenesis is linked to

many types of metastasising cancers [19, 18].

1.1.4 Motility and metastasis

A very severe trait of late stage cancers is their ability to escape their micro-environment

and spread to other parts of the body, a process known as metastasis. This is often
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accomplished by regulating the expression of cell adhesion molecules [4]. E-Cadherin is the

main cell-cell adhesion molecule in epithelial cells and its regulation is linked to changes

in motility and invasiveness of cancer cells [20, 21]. Additionally, up-regulation of N-

cadherin has been shown to promote motility and invasiveness in various cancers [22, 23].

An example of the interconnectedness of the pathways is that N-cadherin, together with

E-cadherin, also protects against apoptosis through activation of PI3K and Akt pathways

[24, 25].

1.2 Genetics of cancer susceptibility

As our understanding of the mechanisms behind carcinogenesis has evolved questions have

been raised about not only how cancer is developing but also what factors are driving this

development. It has long been known that members of families with a history of cancer

often run a greater risk to develop cancer themselves. The primary focus of this thesis will

be breast cancer development and early work within this field did indeed identify the two

genes BRCA1 and BRCA2 where individual genetic variations played a major role in the

variation of breast cancer susceptibility [26, 27]. Both BRCA1 and BRCA2 are involved

in DNA repair and mutations within these genes are linked to a 10- to 20-fold increase in

the risk of developing breast cancer. Although no other genes with such an impact have

been identified, there are some genes with rare to moderate prevalence of mutations in

populations predisposed to developing certain types of cancer. Many of the genes involved

in breast cancer susceptibility are interacting with BRCA1 or BRCA2, such as BRIP1,

PALB2, ATM and CHEK2. The latter two are also regulating p53 response to DNA

damage [28].

Recently, the emergence of newer technology has opened up the possibility to screen

tens of thousands of patients for Single Nucleotide Polymorphisms (SNPs) on a genome

wide scale. SNPs are common germ line single nucleotide variants with a prevalence of

at least 1% within the population [29]. Using a methodology called Genome Wide Asso-

ciation Study (GWAS) which compares the genotypes of groups of individuals with and

without a given phenotype, or disease, makes is possible to find correlations between the

SNPs and these phenotypes or susceptibility to these diseases. Even though these alleles

are linked to a very limited fold-increase in cancer susceptibility, worldwide collabora-

tions, providing large sample sizes, have made it possible to establish an ever-growing list

of susceptibility loci. As a result SNPs can now explain 14% of breast cancer susceptibil-

ity [30]. While many of these alleles are located in regions with no known function and

several Mb from the closest known gene [31, 30], many also are located close to, but not
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within known protein coding regions with links to pathways involved in carcinogenesis.

In fact, among 41 breast cancer associated SNPs characterised in 2013, 19 were intergenic

and 20 were intronic, whereas 2 fell within protein coding regions [30]. This pattern can

be seen in other cancer associated SNPs as well. Among 63 prostate cancer associated

SNPs 32 were located within introns and 2 in the 3’-untranslated regions [32]. Only four

of the SNPs were missense-variants. Some of the genes with SNPs linked to breast cancer

susceptibility include the apoptotic inducer CASP8 [33], the growth factor receptor and

growth factor binding protein FGFR2 [34] and IGFBP1 [35] and the angiogenic factor

VEGF. Other examples are genes in similar pathways such as MAP3K1 [36] and ESR1

[37], and the telomerase prolonging TERT [38].

However, since individual susceptibility loci are relatively common in the general pop-

ulation and have very little effect on overall cancer susceptibility, they are very difficult to

identify. Even with very large sample numbers results can be difficult to replicate. This

is illustrated by the case of a CASP8 SNPs, which showed a much weaker link to cancer

susceptibility in a later study than in the initial study [39, 33].

Overall the human genome has been estimated to contain around 7 million common

SNPs (>5% prevalence) [40], too many to be genotyped in large scale studies. However,

many of these SNPs are located in close proximity to each other, in which case their

genotypes tend to be highly correlated with one another, and they are said to be in

linkage disequilibrium (LD). It is therefore common to only select one or a few SNPs from

each cluster and treat them as a proxy for the neighbouring SNPs in that region. By

doing that, association studies of the entire genome can be performed using only a few

hundred thousand SNPs [41]. This comes with the drawback that one cannot be certain

whether the observed association to a phenotype is linked directly to the genotyped allele

or to a nearby SNP that is highly correlated to the one included in the study.

In order to be able to identify the actual causal polymorphisms a fine-scale mapping

of the region around an interesting disease-associated SNP is often necessary. Indeed, a

fine-scale mapping of the region around CASP8 found four significant SNPs located in

or around CASP8, out of which one could be replicated in a larger follow up study [33].

Similarly, by investigating approximately 480 SNPs around the TERT gene and including

data of telomere length, two distinct SNPs were linked to increased risk of various cancers

due to elongated telomeres, and two additional SNPs were linked to cancer due to gen-

eration of a truncated dysfunctional TERT [38]. A third example involved the fine-scale

mapping of the region around FGFR2, which identified two SNPs in transcription factor

FOXA1- and E2F-binding regions of FGFR2 [42]. Data such as this and the fact that

cancer-associated SNPs are often found in gene regulatory regions indicates that SNPs
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could regulate gene expression. Indeed, many SNPs have been shown to act as Expression

Quantitative Trait Loci (eQTLs), loci associated with a change in expression of a gene

[43, 44]. These eQTLs regulate gene expression, not only of nearby genes, but sometimes

genes on other chromosomes as well.

These three cases highlight the possibility to pinpoint specific disease susceptibility al-

leles and link them to a biological function. As of 2017, over 170 loci had been reported to

be associated with breast cancer susceptibility and over one thousand additional polymor-

phisms have been estimated to affect breast cancer susceptibility [30, 45]. By searching

for pathways enriched in SNP targets [46], or identifying transcriptome level changes cor-

related to polymorphisms [47, 48], the biological function of SNPs linked to various types

of cancer have started to be unravelled. These efforts, in combination with more fine-scale

mapping, will increase the number of alleles with known biological consequences. This

raises the possibility of incorporating the functional effects of SNPs into computer models

of cellular signalling pathways, to study their role in cancer development.

1.3 Mathematical Modelling

Over time a wide range of modelling techniques have been developed, each with their

own possibilities and drawbacks. When trying to use mathematical modelling as a tool to

answer a specific question it is important to be aware of these strengths and weaknesses

and to choose a modelling technique suitable for the question in mind. One way of classi-

fying models would be by how they treat interactions within the network. Roughly, most

models can be categorised as either logical or continuous models, agent-based models or

hybrids thereof. All of these classes of modelling have their advantages and disadvantages,

as will be seen in the following sections.

Even if it is not essential to know the precise function of a SNP in order to model its

effect, the more accurate the knowledge is, the more accurately it can be represented in

the model. As will be seen later, it also limits the extent to which different modelling

methods can be used.

1.3.1 Logical Models

The simplest form of a logical network, and one of the first models of regulatory networks

that were proposed [49, 50], is a so called Boolean network. It consists of a directed

graph, where each compound or observation is represented by a vertex (or a node) and

the interactions between compounds are edges connecting the vertices. The model has
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Boolean updating rules, where each node can be either ON or OFF and during updating,

the rule takes into account the state of each of the incoming edges (Figure 1.2).

A B

C

A = not C
B = A
C = not B

Figure 1.2: Schematic of a simple boolean model. A is inactivated by C, B is activated
by A and C in inactivated by B.

Even though binary states and the discrete time scale that results from the updating

scheme pose potential problems for a Boolean model, they also act as the main advan-

tages. A Boolean model does not require any parameters for all the interactions, but

instead focuses on the core regulatory logic. At the same time the state space (possible

combinations of states) is finite, thus making it possible to exhaustively investigate the

possibilities within the system. A Boolean model is therefore a good first start when

not much is known about the details of the interactions in the network. Furthermore,

when the Gene Regulatory Network (GRN) studied is highly dependent on the topology

of the network, it is possible to achieve the same results using a Boolean approach as a

continuous modelling mentioned later [51, 52].

The simplicity of the modelling approach also allows for very large networks to be

modelled. As an example of this, a simple synchronous model implementing the core

parts of carcinogenesis was constructed by Fumiã and Martins in 2013 [53]. By including

97 primary genes and external stimuli for cell development and survival the model was

able to predict the effects of deletions and constitutive over-expressions of genes depending

on environmental circumstances. By sequentially altering the expression of 7 genes they

could see how the cell lost sensitivity to death stimuli and showed increased signs of

cell immortality. Moreover, they were able to estimate the severity of the progression in

various environments, such as normoxia vs. hypoxia or sufficient vs. insufficient nutrient

supply. Finally they were able to assess the efficiency of mono vs. pluri-therapies in

suppressing the carcinogenic traits of the cell [53].

1.3.2 Continuous models

Both the strength and the weakness of the logical model lie in its simplicity. By considering

an edge as either active or not, the model fails to take into account the temporal dynamics
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of interaction intensities. Continuous models provide a better alternative to model the

temporal dynamics of a system, and one of the most common types of continuous models

consist of a set of Ordinary Differential Equations (ODEs) [54, 55, 56, 57].

These models are generally written in the form:

dy

dt
= f(y, k), y(0) = y0 (1.1)

where y is a vector of variables, k is a vector of parameters linked to these variables,

and y0 are the initial conditions (at time=0).

The complexity of GRNs and the need for experimental data to reliably determine

the parameters of the model greatly limits the extent to which one can usefully model

larger systems using differential equations (DEs). DE-modelling is, nevertheless, a very

powerful tool to gain deeper insight into experimentally well-studied systems such as the

cell cycle. Logical models are limited to studying inactivating or constitutive- activation-

rendering mutations. In contrast, models such as the ones by Novák and Tyson (2004)

[58] or Csikász-Nagyet al. (2006) [55] are able to investigate the effect of smaller, gradual

perturbations in the system on the outcome of the cycle. As with any computational

work, there is a risk of over-interpreting the data and as Weis et al. (2014) [57] showed,

when comparing the previously mentioned models, a model is only a rough approximation

of the reality and each model has its limits.

Even though the models are just approximations of the real system, using ODEs it

is possible to model intra- and intercellular reactions at the same time as was shown by

Jain et al. (2008) [59], where the VEGF-Bcl-2-CXCL8 pathway involved in angiogenesis

was modelled. In this work Bcl-2, which is also involved in apoptotic signalling, was

recognized as a potential drug target to inhibit cancer progression and spread. This was

later tested in another model focusing on the Bcl-2 response to an inhibiting drug [60].

Even though the latter model was very simplified, it reproduced the results from in vitro

studies sufficiently and predicted a relatively poor performance of the drug in question in

vivo. Another example of an application of these methods is the FIH-PHD-HIF pathway

model by Nguyen et al. (2013) [61], which not only accurately represented the HIF-

1a regulation of HRE genes, but also gave insights and likely explanations to seemingly

counter-intuitive experimental results.

1.3.3 Agent Based Models

In addition to the logical and the continues models, another large group of models which

are used extensively in studying cancer are Agent-Based Models (ABMs). These models
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can simulate interactions and fates of agents at various scales by letting the modelled

features be governed by a set of rules (much like the logical models, but the rules are not

limited to logical rules). Using this framework entire tissues can be modelled by treating

each cell as an agent. The actions of each cell can be simulated based on which pathways

are activated, how it interacts with surrounding cells or how its micro-environment looks,

in terms of nutrients, oxygen or other important factors. By conceptualising factors

in the model, each factor can be modelled on an appropriate level, resulting in multi-

scale models. For example, individual pathways can be modelled using ODEs, and the

activation of these pathways can result in different cell behaviour depending on a set a

rules. These rules can also depend on larger scale factors, such as nutrient diffusion, often

modelled using Partial Differential Equations (PDEs). The spacial aspect of these models

render them particularly suitable to study phenomena such as tumour growth [62] and

cell migration [63]. They have also been used to study angiogenesis, vascularisation and

invasiveness [64].

To some extent ABMs have also been used to study the role of the genome in cancer

development. Gerlee and Anderson used a hybrid cellular automata model (an approach

related to ABM) to study clonal evolution in cancer and under what circumstances the

glycolytic phenotype associated with tumours is most likely to arise [65]. Araujo et al.

[66] used an ABM to study the effect of chromosome missegregation (when chromosomes

get unequally split between daughter cells during cell division) on cancer development.

Anderson et al. also studied the evolution of cancer phenotypes through mutations and

how they were selected for under pressure from the micro-environment [67].

Although these models are very powerful, they are also very computationally intense

and often achieve their large scale and high through-put capabilities by abstracting away

much of the details in the underlying pathways. This trade-off may be acceptable if the

centre of attention is a phenomenon occurring at a larger scale. However, it makes them

less suitable to the study the details of the link between the genotype and the phenotype.

1.3.4 Mathematical models of cancer development and fitness
landscapes

Another approach to model cancer development is based on the concept of carcinogenesis

as a process of evolution. The cancer cells are viewed as occupying a fitness landscape

where different genotypes are associated with different levels of fitness. As the cell accu-

mulates mutations it moves in genotype space and acquires different levels of fitness. If

the new mutation results in the cell occupying a space of higher levels of fitness it has
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acquired an evolutionary advantage over surrounding cells which will cause it to expand

within the tumour relative to the other cells.

The path a cell takes in this fitness landscape as it evolves into a more malignant

cancer can be seen as an evolutionary trajectory through the fitness landscape. A big

question which has been debated a lot is to what extent these evolutionary trajectories

are predictable. To date there are studies which point both towards examples where this,

is the case as well as cases where it is not. For example, G. Caravagna et al. applied

a machine learning method based on transfer learning to a large dataset of multi-region

sequencing of tumours to infer evolutionary patterns across patients. Using this method

they could identify several recurrent evolutionary trajectories in lung, breast and renal

cancer[68].

A problem with the approach of modelling the fitness landscape is that it relies on

genotype-phenotype mappings which then in turn map onto the fitness landscape. In

practice it is very difficult to measure fitness, especially in in vivo systems. Consequently,

a lot of work has been based on simulated data.

R. Diaz-Uriarte used statistical cancer progression models to represent feasible tra-

jectories in the fitness landscape due to evolutionary constraints as directional acyclic

graphs (DAGs)[69]. He then simulated the evolution on various fitness landscapes using

a continuous-time, logistic-like model where cells stochastically divide and acquire mu-

tations which move them in the fitness landscape, making them more or less likely to

survive long enough to divide again. When applying the method to three different cancer

data sets he could show that the level of predictability degraded with the presence of

reciprocal sign epistasis (when two or more genotypes have a negative effect if observed

on their own, but a positive effect when observed together); a phenomenon believed to

be important and common in cancer development. Widely different fitness landscapes

could give rise to genotype frequencies empirically observed in the cancer types, which

then manifested in widely different DAGs with different constraints.

S-R Hosseini et al. on the other hand used a similar method based on conjunctive

Bayesian networks (CBNs) to circumvent the need to measure fitness changes caused

by mutations[70]. Using this method they were able to investigate the predictability of

cancer evolution from mutational data and could show that under the assumption of strong

selection and weak mutation rate, there was a strong correlation between the predictability

of the CBN model and that of classical fitness landscape models. When applying the

method to 15 different cancer types and considering a small number of frequent driver

genes, they could show that many cancers had a high level of predictability with few

evolutionary trajectories being likely.
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One obstacle towards evolutionary predictability is the large amount of intratumoural

heterogeneity seen in many cancers and many studies suggest that the predictability

degrades quickly beyond a few strong driver mutations. For example M. Williams et al.

used a mathematical model of the accumulation of mutations in a tumour to estimate the

relative presence of mutations between cells under different conditions[71]. By relating

the results from these models to sequencing data of tumour samples they could show that

the heterogeneity seen in many cancers of different types was due to neutral evolution,

meaning that most of the mutations causing clonal selection occurred before the onset of

cancer growth.

Likewise, Sottoriva et al. suggested and validated a ’Big Bang’ model of colorectal

cancer growth in which the driver mutations occur early in the development and the

tumour thereafter grows, mainly as a single clonal expansion with very little selective

pressure[72]. This results in a tumour with a high level of intratumoural heterogeneity

where most of the common alterations occur early after the expansion.

1.4 How does the genetics connect to the mathemat-

ical model

When creating a mathematical dynamical model for a pathway there are three things

which connect the model to the biological pathway. The first is the topology of the

network. In a biological network certain proteins interact with each other, and for the

model to be able to represent the network it needs to represent these interactions in its

own wiring. The two other important aspects of the network are the expression levels of

the proteins and the interaction strengths and reaction speeds. Depending on the model,

the levels of the proteins can be modelled either as initial conditions of the variable values

or as a combination of the initial conditions and parameters representing production and

degradation of the proteins. All of the interaction strengths and reaction speeds are set

by parameter values of the equations of the involved proteins.

If all of the above characteristics of the pathway are included in the model, then

any genetic variation altering the function or expression of a protein can be modelled by

altering the initial conditions and/or the parameters representing these altered aspects of

the pathway. In the case of a Boolean model, any mutations rendering a protein inactive

or constitutively active can be modelled by altering the rules of the model to represent

constant inactivation or activation. To some extent under- and over-expressions can be

modelled in a similar way. A good example of such an approach being successful is the

modelling of carcinogenesis by Fumiã and Martins [53] previously mentioned in section
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1.3.1. In a continuous model these genetic alterations can be modelled with a much

higher resolution by treating the mutations as perturbations of the initial conditions or

parameters in the model.

What all of these methods have in common is that they consider what perturbations of

the model will break it, i.e. what perturbation will cause its output to no longer represent

the typical behaviour of the system. When considering the risk of developing a disease it

is not the effects the genetic variations have on the output of the system that is important,

but how that affects the risk of the system to break later on. The risk can therefore be seen

as the potential of a quantitative change in the output to result in a qualitative change,

given additional perturbations. It connects the sensitivity of the system (to what extend

a perturbation changes the quantity of the output) to the robustness of the system (how

easily a perturbation changes the quality of the output) and under what circumstances

the former affects the latter.

To better understand the way risk is thought of in this work, one can consider two

persons driving to work as an analogy of the biological system being modelled. Both

persons have individual circumstances affecting their ability to drive and both cars are

in good standard, but not identical to each other. For example, one person might be

a morning person, whereas the other person is not, resulting in one of them needing a

longer time to react than the other (given that they get the same amount of sleep). These

conditions can be seen as the genotypes affecting a biological pathway and the initial

conditions of a model. Under normal circumstance both drivers will every now and then

encounter dangerous situation in traffic. However, since they are rested and focused and

the cars are working properly, an accident will generally be avoided. This is the way the

biological system works under normal circumstances. If the brakes stop functioning both

will end up in an accident, regardless of other circumstances. This could represent major

somatic mutations in the pathway. If a crucial part of the system breaks the pathway will

not be able to perform its function. However, if the brakes only deteriorate a little bit

the stopping distance will get longer, but if the driver is alert, he will still have enough

time to stop before an accident occurs. This can represent somatic mutations with smaller

effects which only alter the parameters or initial conditions slightly and consequently only

affect the output of the model quantitatively, but not qualitatively. However if one driver

happens to not be a morning person, he will be more tired than the other person and need

a longer reaction time, resulting in him not being able to avoid the accident. In this case,

circumstances which did not affect the outcome under normal circumstances (i.e. slight

deterioration in the brakes), all of a sudden became crucial to determine the outcome. In

the same way, a genetic variation may not affect the ability of the pathway to perform its
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function in the cell under normal circumstance. However, upon accumulation of certain

mutations the effect of the genetic variations become the difference between a normally

behaving pathway and an abnormally behaving pathway.

The aim of this thesis is to develop a methodology to investigate and quantify changes

in the risk of developing cancer in terms of the effect perturbations in a dynamical systems

model have on the robustness of the output.

1.5 Thesis plan

Over the years certain pathways have crystallized as key components in carcinogenesis.

These pathways are by no means complete and much is yet to be discovered, both when

it comes to the components and their interactions, but also the way the different path-

ways are interacting and regulating each other. With the emergence of high throughput

genotyping technologies it has also become possible to investigate the role of common

genome variants and their effect on disease susceptibility. With the increasing amount

of fine-scale mapping being performed, more and more SNPs are being associated with

predicted biological functions.

With this in mind the aim of this thesis is to begin to answer the question:

What is the mechanism behind the effect carrying a particular SNP has on the risk of

developing a particular disease phenotype?

The work will be based on the assumption that the effect an inherited genetic variation

and the effect a somatic mutation has on the dynamics of the network can be modelled

through perturbations of initial conditions and/or parameters in a dynamical systems

model. Various computational models have already demonstrated their capability of pre-

dicting the outcome of several types of mutations on different levels of a cellular system,

but very few models have incorporated SNP data. In fact, the vast majority of SNP-

GRNs have been constructed using inference methods and are more concerned with the

topology of the networks than studying the biological dynamics.

Since the SNPs change the risk of acquiring a new phenotype without severely changing

the dynamics of the pathway, two key aspects of the work will be to: successfully link the

effect of a SNP on dynamics of the biological pathway to the effect of a perturbation on

the output of the model and; develop a methodology to relate the quantitative change a

perturbation has on model dynamics to the risk of changing the output qualitatively.

By reasoning around their function, the biologically functional SNPs could be classified

into regulatory changes of the kinds that logical or continuous models have been able to

handle.
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The challenges towards answering the main question of this thesis therefore will be to:

1. find a way to link SNPs to genes involved in the process of interest.

2. choose an appropriate mathematical model of that process.

3. decide for which aspects of that model the particular SNP corresponds to and how

the SNP affects that aspect.

4. decide what features of the model will be used as a representation of the phenotype

of interest.

5. decide on a method to assess the sensitivity of the chosen feature to changes in

aspects of the model corresponding to the SNP.

6. use the outcome of the sensitivity to derive understanding regarding the mechanics

of how the SNP is affecting the risk of the system to develop the disease phenotype.

These challenges will be addressed according to the following plan:

• In chapter two the SNPs associated with breast cancer and their connections to

proteins which can be studied in known ODE models will be explored. In the end

a set of ODE models will be chosen which will be the focus of the rest of the thesis.

• In chapter three, three conventional methods will be used to explore the sensitivity

of the chosen models with regards to perturbations which could be the results of

cancer associated SNPs. First, a standard parameter and variable scan will be used

to map the sensitivities of the models from the initial position in state space. Then

the sensitivity will be explored both at initial conditions representing normal cellular

conditions and at various positions in variable/parameter-space which will represent

the gradual development of a cell from normal to a cancer cell. This will be done

using the sensitivity analysis tools SASSy and SloppyCell.

• In chapter four the lessons learned from the previous chapter will be used as a start-

ing point to explore a novel way of measuring phenotype sensitivity. The concept

of a phenotype separatrix will be introduced and the link to the biology on the

one hand and the mathematics on the other will be discussed. A method for using

this phenotype separatrix will be presented and applied to the two models explored

in the previous chapter. The results from these models will be explored. Finally

this method will be used on simulated data sets of cancer associated SNPs and the

possibility to link the phenotype separatrix to the risk score of cancer associated

SNPs will be explored.
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• In the fifth and last experimental chapter the dynamics of one of the two models

will be linked to experimental data from two tissue types, breast and prostate.

The results from these simulations will be linked directly to the risk score ratio

of relevant cancer associated SNPs. The risk score ratios will also be linked to

the results from the phenotype separatrix analysis results obtained in chapter four,

thereby correlating the risk of an individual to acquire cancer with the risk of a

dynamical model to change output from normal to abnormal behaviour.
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Chapter 2

Choosing the Models

2.1 Introduction

The previous chapter explained how the development of cancer works over a large range of

pathways, whose control mechanisms gradually deteriorate, making the cell behave more

and more like a cancer cell. We also saw how somatic mutations, acting cumulatively

with inherited risk Single Nucleotide Polymorphisms (SNPs), contribute to the risk of

associated pathways to break down rendering the individual more or less susceptible to

cancer. Finally, in section 1.5, the aim of this thesis was declared to try to answer the

question:

What is the mechanism behind the effect carrying a particular SNP has on the risk of

developing a particular disease phenotype?

In the pursuit of answering this question a number of challenges were outlined. In this

chapter the first two of these challenges will be addressed. First links between SNPs and

genes in pathways of interest will be established. Then these links will be used as a basis

for choosing a pathway and associated models to study in the next chapters.

2.1.1 Linking SNPs to genes and pathways

As of December 2018 there are 5,225 entries of SNPs associated with various cancers in

the GWAS Catalogue (not all of these entries are unique) [73]. These SNPs are spread

all over the genome. Most of the cancer associated SNPs are not located in protein

coding regions and can consequently not affect the function of the protein [30, 45]. It is

thought that many of these SNPs located outside of coding regions affect the regulation

of transcription.

In this chapter two methods of linking SNPs to initial genes will be used. First the

gene closest to the SNP will be considered to be the target gene. The second method
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will be to consider the target genes of SNPs which act as Expression Quantitative Trait

Loci (eQTLs). These are genetic variations associated with a differential expression of

a transcript [74]. By considering eQTL target genes it is possible to take into account

indirect interactions and identify more links that would be of interest. Furthermore, many

of these eQTLs are not located anywhere near the target gene, and many times on different

chromosomes [43] (trans-acting eQTLs). The presence of these trans-acting eQTLs point

towards a limitation of the first method, using the gene closest to the cancer associated

SNP in the study.

Once this small set of links has been found it is then much easier to search the literature

for the most suitable model.

2.1.2 Identifying mathematical models of interest

Mathematical models often only handle one pathway, and often even a small part of a

pathway. If one is to successfully link the effect of SNPs to the dynamics of mathematical

models, it is therefore important to identify pathways, which both are enriched for relevant

SNPs and also have been studied through high quality models. There are several ways

of mapping genes to pathways and finding enrichments within them. Two of the most

common pathway annotations are the Gene Ontology (GO) database [75, 76] and the

Kyoto Encyclopedia of Genes and Genomes (KEGG) database [77, 78, 79].

The GO database gathers information about genes regarding their function and clas-

sifies them in terms of biological process, cellular component (cellular location), and

molecular function. Using the biological process annotations it is possible to link genes to

pathways important in carcinogenesis, such as apoptosis, cell cycle or cell growth. While

the KEGG database also contains classifications it has the very useful function of organ-

ising genes and proteins in pathways directly. It also contains disease related pathways

and allows for focusing on cancer development for example. Although this might be very

useful in many cases, if the goal is to identify models for further study, the results from

enrichment analysis in these databases are too rich. Most genes will map to several path-

ways or biological processes and most of the mappings will not be covered by any available

model.

Another approach to find models would be to directly map genes to nodes in models

of interest and choose the models with the most target genes. Even though there are

databases of dynamical models, such as CellML model repository [80], and BioModels

Database [81], these do not in any way represent the vast amount of models that are

available in literature. If one therefore were to map the SNPs onto the annotated genes

in these databases one would in effect miss a lot of useful models.
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Although Ordinary Differential Equation (ODE) models are usually limited to one

pathway and are very small due to computational cost and limited knowledge about the

details needed to parametrise the model, there are a number of Boolean models which

are much larger in terms of nodes and cover larger parts of carcinogenesis. The Boolean

model by Fumiã & Martins (2013) [53] is an example of such a model. It contains 96

nodes (compounds) and 259 edges (interactions between the nodes), capturing many of

the important aspects of carcinogenesis. Due to its size and it spanning many cancer

relevant pathways, this model was chosen as a starting point to identify links between

breast cancer associated SNPs and relevant genes. From these genes, pathways will be

identified, and promising models will be chosen for further study in the next chapters.

The reason for this model not being used to assess the effect of SNPs on the system

dynamics (and for not considering any boolean models) is that it is difficult to model the

effect of small changes in concentrations or activity in a boolean network. In a standard

boolean network, a node can only be either on or off, meaning that if a SNP were to

decrease the translation of a gene with 1% this would either have to be interpreted as

the gene never reaching high enough concentration to be turned on, or that the change

would not affect the dynamics of the model, since the node would be turned on either way.

There are ways to model smaller changes in dynamics, such as introducing dummy nodes

to model time delays or duplicating nodes to show increased activity. Stochasticity could

also be introduced into the model so that each node has a given probability of turning

on after downstream activation signal. A SNP could then have a small effect on the

probability of the node to turn on. However, all of these methods have disadvantages as

well, such as introducing arbitrary time scales, or requiring one to determine probability

distributions for the activation of nodes. They also increase the complexity of the model

and diminishes one of the big strengths of a boolean model, its simplicity. At some point

it is simply better to use differential equation models instead, which are better suited for

these kind of problems.

Although 96 nodes is a much larger number than in most ODE models, it is still a

very small fraction of the total number of genes involved in carcinogenesis and it is not

very likely that many direct links between cancer associated SNPs and these genes will

be found.

To increase the number of interactions identified, Search Tool for the Retrieval of

Interacting Genes/Proteins (STRING), a database of protein- protein interactions [82],

will be used to identify intermediary interactions between the SNP associated gene and

the model node gene.
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2.2 Materials and Methods

2.2.1 Data sources

For the SNP analysis a data set of 85 curated breast cancer associated SNPs and their

nearest genes collected from the Genome Wide Association Study (GWAS) Catalogue

was used [83]. These had been filtered to only include SNPs with a p-value of lower

than 10−5 (Table A.1). Often a p-value of 10−7 or even 10−8 is used as a threshold for

a significant SNP. The less stringent criteria allowed for a higher chance of finding SNP-

model connections, due to the increased sample size, albeit at the risk of introducing

false positives. The strength of association between the genotype and the phenotype was

reported in terms of odds-ratio:

odds-ratio:
Cancer(allele A)/Cancer(allele B)

Healthy(allele A)/Healthy(allele B)
(2.1)

SNPs in linkage disequilibrium (LD) (R2 < 0.8) with any of the breast cancer associ-

ated SNPs were extracted from the HaploReg database (version 2) [84]. Two SNPs in LD

are associated with each other, i.e. their alleles occur together more often than would be

expected by chance.

A set of eQTLs from blood samples were acquired from the Blood eQTL browser

[85, 43]. This data lists, among others, the SNP rs-ID, the gene affected and a False

Discovery Rate (FDR) score for the association between the SNP and the gene expression,

where the significance of each eQTL had been tested against a null distribution of 10

repetitions of the analysis with permuted sample labels. eQTLs with a FDR < 0.05 were

filtered for further analysis.

STRING (v9.1), a database containing protein-protein interaction data collected from

a range of experimental and computational sources as well as literature research, was

used [86]. Each interaction is scored based on the amount of evidence for the interaction.

When data is available, the type and direction of the interaction is indicated as well. The

data was filtered for interaction with a score of at least 800 which was suggested by the

original paper to indicate strong support [82].

The nodes in the model by Fumiã & Martins are many times generic in the sense that

they represent classes of proteins in the cell. The nodes were used to compile a list of

proteins and different versions of the proteins covered by the model (Table A.2).
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2.2.2 Linking SNPs to model genes

In order to find SNPs associated with breast cancer, which could affect the function of

any model chosen for analysis, connections between the SNPs and the model genes were

established according to the method outlined in Figure 2.1 and described below. As a

starting point genes indicated to be targeted by eQTL acting, breast cancer associated

SNPs in the whole blood data set by Westra et al. (2013) [43] were chosen. Proteins

linked to these genes with a maximum distance of 2 interactions according to interaction

data retrieved from STRING were then extracted [82].

Finally all 3-tuple protein sets with at least one node in the Boolean cancer model by

Fumiã & Martins (2013) [53] were considered links between genotype and cancer pheno-

type. A distance of 2 interactions in this case would mean that there is support for an

eQTL-affected protein A interacting with a protein B that in turn is interacting with a

protein C that is present in the network. Those links which STRING indicated had a

directionality going from an eQTL affected protein to a cancer model protein (that is, A

is acting on B which is acting on C), were further extracted (Table 2.1).

The same procedure of extracting links of maximum length 2 was repeated for all the

nearest genes associated with the original set of breast cancer associated SNPs (Table

A.1). Additionally, the directed graph was examined, as described above.

Although the Boolean cancer model by Fumiã & Martins (2013) [53] is not being

used directly in later stages of this work, it captures the core proteins of key pathways of

cancer development and any model later chosen would likely target one of these pathways

and consequently contain the protein modelled in this model as well as proteins directly

interacting with it. Creating these maps of tuples allowed for identifying a larger set of

genes which are likely to be within cancer related models.

Analysis was carried out in python 2.7.
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Table 2.1: Genes targeted by eQTLs linked to breast cancer associated SNPs. For each
target it is indicated whether the eQTL acts in a cis of a trans fashion.

eQTL target gene eQTL type eQTL target gene eQTL type
ABHD3 trans MAP3K11 cis
ANKLE1 cis MARCH6 cis
ANKRD16 cis MRPL34 cis
ATE1 cis MTAP cis
BANF1 cis MUS81 cis
BBS7 trans NR2F6 cis
C19orf60 cis NSMCE4A cis
C19orf62 cis OCEL1 cis
C5orf35 cis OR2A9P cis
C6orf97 cis PEX14 cis
CDKN2B cis PGPEP1 cis
CHMP4B cis PLAUR cis
CTSW cis PLVAP cis
DCLRE1B cis PNCK trans
DFFA cis POP5 trans
ECHDC1 cis PRRG4 trans
EFEMP2 cis PTPN22 cis
EIF2S2 cis RNF146 cis
ELL cis ROPN1L cis
FAM89B cis SART1 cis
FGD5 trans SIPA1 cis
FIBP cis SOCS1 trans
FPR1 cis TEX9 trans
GPR68 cis TGFBR2 cis
GTPBP3 cis TMEM75 cis
HIPK1 cis TNNT3 cis
KCNN4 cis ZNF649 cis
KIAA1217 trans ZNF613 cis
LRRC25 cis
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Figure 2.1: Flow chart of extracting 3-tuples of protein interactions. Proteins which
interact with SNP or eQTL target genes according to STRING are extracted. Process
is repeated once. 3-tuples where one protein is in the model by Fumiã & Martins are
extracted. A further filtering is done, keeping those tuples where SNP or eQTL target
gene is indicated to act on protein B, which is indicated to act on protein C.

2.3 Results

2.3.1 SNPs acting as eQTLs linked to 15 model genes

From the original 85 breast cancer associated SNPs 1966 SNPs could be retrieved from

the HaploReg data base with an LD R2 > 0.8. Out of these, 48 SNPs acted as cis-eQTLs

and another 10 acted as trans-eQTLs in the blood eQTL data set. The cis-acting eQTLs

(distance between SNP and midpoint of probe is less than 250 kb) could be linked to 50

proteins and the trans-acting eQTLs (distance larger than 5 Mb) to 9 proteins (Table

2.1). Using STRING, these proteins could be linked to a large number of proteins in the

Boolean cancer network by Fumiã & Martins with a distance of 2 or lower (Figure 2.2).

When only looking at the directed data, 6 cis eQTLs could be linked to 15 proteins in

the model (Table 2.2 and A.3, Figure 2.3). In both cases, no eQTL affected genes were

themselves a part of the model and in the directed graph, only two interactions were of

length one (TGFBR2 - RTGFB1, TGFBR2 - SMAD7).
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Table 2.2: Genes in the Boolean cancer model which are targeted either by a SNP as-
sociated with breast cancer or by an eQTL linked to any of the previously mentioned
SNPs.

Model Gene Whole SNP Data eQTL SNP
ATM 1 -
CCNB1 1 1
CCND1 1 1
CCNE1 1 1
CCNE2 1 1
CDC20 1 1
CDKN1A 1 1
E2F1 1 -
E2F2 1 -
E2F3 1 -
E2F4 1 -
E2F5 1 -
EEF2 1 1
HIF1A 1 1
IKBKB 1 -
MAP3K7 1 -
NFKB1 1 -
NFKB2 1 -
RB1 1 -
SF3B6 - 1
SMAD4 1 1
SMAD7 1 1
SMAD9 - 1
TERT 1 -
TGFB1 1 1
TNF 1 -
UBE2C 1 1
VHL 1 1
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Figure 2.2: Network of breast cancer associated SNPs acting as eQTLs interacting with
cancer model genes. Proteins marked in blue were identified as eQTL genes from the
1966 breast cancer associated and LD SNPs. Each protein interacts with a protein in
the Boolean cancer model by Fumiã & Martins, either directly or with one intermedi-
ary interaction. Red nodes are genes in the model and yellow nodes are intermediary
interactions.
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Figure 2.3: Subset of network in Figure 2.2, where all interactions have the right direc-
tionality as indicated by STRING. Red nodes are eQTLs interacting with cancer model
genes nodes (blue), either directly or through an intermediary interaction (yellow).
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2.3.2 Linking SNPs to nearest gene resulted in more connec-
tions

Directly linking the SNPs from the GWA studies, instead of going through eQTLs, also

resulted in a large and very complex network of interactions of length < 3 (Figure 2.4).

Considering only interactions which indicated that the nodes in the cancer network are

being acted upon and the SNP associated proteins are the initial actors resulted in a

network of 6 proteins associated with GWAS SNPs acting upon 26 nodes in the network.

Once again, most interactions are of distance two, but 9 are of distance one and 2 (TERT

and CCND1) are a part of the network themselves (Figure 2.5 and Table A.4).

Figure 2.4: Network of interactions between genes mapping to breast cancer associated
SNPs (blue) and genes in the Boolean cancer model by Fumiã & Martins (red). Yellow
nodes are intermediary interactions. Most interactions are going from model nodes to
SNP genes, but a large portion of them are also going in the relevant direction, that is
SNP associated genes are affecting model genes.
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Figure 2.5: Network of interactions between breast cancer associated SNPs and nodes in
the Boolean cancer model by Fumiã & Martins. All interactions go from SNP gene (blue)
to model gene (red), either directly or through an intermediary interaction (yellow). In
addition, two of the SNP genes, CCND1 and TERT, are themselves part of the model.
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2.4 Discussion

2.4.1 Linking SNPs to genes and pathways

Although the breast cancer associated SNPs expanded to 1966 SNPs when including all

LD SNPs, it quickly reduced back to a manageable amount of genes when only looking at

eQTL SNPs. The same trend could be seen when first mapping the genes to the cancer

network model through interactions covered in STRING and then only considering the

interactions with the right directionality.

2.4.2 Identifying mathematical models of interest

By investigating the directed graphs of interactions, in Figure 2.3 and Figure 2.5, a number

of possible networks emerged for further studies. One promising pathway, which emerged

both when studying the graph of breast cancer associated SNPs and the eQTL SNPs was

the cell cycle. This network involves CCND1 (Cyclin D, mapped directly to a breast cancer

associated SNP), and the other cyclins CCNB, CCNE1 and CCNE2. Other important

genes in this pathway are CDKN1A, RB1 and all the E2F genes, also implied to be

affected by breast cancer associated SNPs. The cell cycle has been studied for a long time

and there are many interesting models of various complexities for studying this system

[55, 87, 56, 88, 58, 57].

Other interesting interactions were also found, such as the one involving ATM, a gene

involved in the DNA damage response [28, 89], and are very likely to be important for

carcinogenesis. This gene also has a big effect on cell cycle progression [90]. However, at

the time only Boolean models of the DNA damage response pathway could be identified.

Considering the small effect eQTLs and most SNPs have on a gene, the binary states

used in such a model would not be able to represent such changes using standard analysis

tools (as explained in Section 2.1.2). Once ODE-models of these pathways have been

developed, this will be a very interesting path to follow.

The cell cycle was the most enriched pathway, probably due partly to it being an

essential pathway, but also because the Boolean model itself is enriched in cell cycle

related proteins. Initially a model of the cell cycle was chosen for further study [58].

However, the phenotype of the model proved to be very robust with regards to parameter

perturbations (data not shown). Upon perturbation of any parameter, the period of the

cell cycle shifted as expected. However, when the model was let to run for several cycles,

it slowly reverted back to the initial period. This was true for large ranges of parameter

perturbations and only in some cases did the model shift towards a cell cycle of a different

length, but then the period of that cell cycle showed a similar behaviour. This is likely
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to be a feature of the model selected and not of all cell cycle models. However, because

the cause of this behaviour could not be understood and the effects it would have on

any future analysis was unclear, it was abandoned and focus was concentrated on the

apoptosis models which also had strong links to the SNP data.

As a test case for linking SNPs to dynamical models the apoptosis model by Schlatter

et al. (2011) [91] was chosen. It is a good example of how one can combine several smaller

models into one and contains several links to the SNP data. The eQTL gene MAP3K11

is known to work in TNF mediated activation of JNK [92] and the SNP associated gene

MAP3K1 is suggested by the interaction data to act upon several proteins in the NFκB

pathway. The SNP associated gene ESR1 is also suggested to affect the input node

TNF. In addition ESR1, an eQTL target of the extended set of SNPs is indicated to be a

transcriptional regulator of several genes in the apoptosis signalling pathway [93]. Likewise

NR2F6 is shown to regulate the expression of X-linked inhibitor of apoptosis protein

(XIAP) and possibly the two apoptosis regulating genes Bax and Bcl2 [94]. In addition

to the large apoptosis model by Schlatter et al., a smaller apoptosis model by Eissing et

al. (2004) [95] was chosen. Several SNPs in both the breast cancer and prostate cancer

data set used in Chapter 5 map to genes suggested to have binding sites in promoters of

genes in this model.

The smaller apoptosis model covers the core of the apoptotic signalling pathway, in-

volving Caspase 3 and Caspase 8 as well as the two inhibitors IAP and BAR. The sim-

plicity of the model renders it suitable for exploring the different methodologies in detail

and will prove very useful as the project develops in the later chapters. The larger model

also covers the core around the Caspases, but in addition also covers a much larger part

of upstream proteins, all the way up to the two membrane bound receptors TNFα and

Fas. It also models reactive oxygen species and includes an NF-κB module to model the

effect of TNFα activation on the transcription machinery.

In the following chapters both models will be used to explore different sensitivity

analysis methods and how the results from them can be used to understand the risk of

acquiring a cancer phenotype. Then a new phenotype sensitivity analysis tool will be

developed and both models will be used to theoretically explore the effect of the genotype

on the risk of developing a cancer phenotype. Finally, the smaller model will be used to

validate the theoretical results on experimental data for breast and prostate cancer.
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Chapter 3

Sensitivity Analysis

3.1 Theory

In chapter 1 six challenges were outlined, which had to be solved during this thesis. In

chapter 2 the first 2 challenges were addressed whereby first, Single Nucleotide Poly-

morphisms (SNPs) known to be associated with the risk of developing breast cancer were

linked to genes and pathways involved in carcinogenesis and second, a smaller and a larger

apoptosis model were identified, which could be linked to breast cancer associated SNPs.

In this chapter the third and fourth challenges will be addressed. Various features of

the models will be assessed for their suitability to represent the two phenotypes corre-

sponding to normal and abnormal response to apoptotic signalling. Additionally, methods

to assess the sensitivity of the model features to perturbations in the models correspond-

ing to the presence of a SNP will be explored. These two challenges will be addressed at

the same time, as the features available for assessment will be determined by the type of

analysis method used.

Although only the two apoptosis models will be used in this chapter, the hope is

that the analysis performed in this thesis will be applicable to models of any hallmark

of carcinogenesis. Therefore, all principles and theoretical framework needed will first

be discussed from a general point of view, before examples will be made of how these

principles apply to apoptosis and specifically the two models chosen.

3.1.1 Model behaviour

When studying dynamical system models there are a range of tools and concepts which are

generally used. The most basic of these concepts is that of variable trajectories. Studying

these trajectories provides information about the changes in variable values over time. By
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studying the trajectories of a system, the behaviour of the system as a whole, given a set

of initial conditions (ICs), can be deduced.

The behaviour of most deterministic, dynamical systems can roughly be divided into

four groups (Figure 3.1). In the first scenario the values of the system’s variables could

continue to grow indefinitely like a population not being limited by space, nutrient avail-

ability or growth suppressors. In the second scenario the dynamics of the system could

eventually settle on some fixed behaviour: The system is said to have reached an attrac-

tor. This type of behaviour can be seen in the way a population limited by space and

resources eventually reaches a steady state (SS) where its growth rate is the same as its

decay rate, and the population density is constant over time. It can also be seen in the

way molecular signalling within a cell upon activation increases and later maintains a

constant level of signalling. In these cases the attractor is a fixed point of concentrations

or amounts of all components. A third group of behaviour is when the values of the

system variables repeat themselves in a predictable way. An example of this could be

how the levels of proteins involved in the cell cycle oscillate in a time dependent manner.

Here the attractor is not a fixed point but each component follows a chain of states which

eventually closes on itself. A fourth type of behaviour, which will not be covered in this

chapter, is that of a chaotic system. In these cases the components increase and decrease

in a way which never repeats itself.
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Figure 3.1: Illustrations of the main types of dynamics in dynamical systems. (A): Con-
tinuous growth without any upper limit. (b): The dynamics eventually reaches a steady
state where it remains. (c): The dynamics fallow a repeating pattern. (d): A completely
chaotic, non-repeating pattern.

Depending on the ICs of a system, it could show different behaviours and it is possible

for a system to have several competing attractors. For example, consider a system with a

competing activating and deactivating function. Depending on which of the two functions

is stronger, the system will either move towards a state of activation or deactivation. In

simpler systems, by drawing these functions in the same diagram, it is possible to predict

in which direction the system will move given any combination of its variable values

(Figure 3.2). This information can be summarised in a phase space, where all variables

of the system are represented on one axis each. At any point in this space, it can be

calculated, in which direction the state of the system will be moving, and by connecting

these trajectories it can be determined in which, if any, of the attractors, it will end up

(Figure 3.3). For example, it is possible to establish whether an activation signal of a

certain strength will propagate through a system and turn it on, or if it will die out due

to the intrinsic inhibitory functions. These two attractors will each be represented by a

single point in the phase space, whereas an attractor like that of the cell cycle will be a

a closed loop. Any points in phase space where the system is drawn towards a specific

attractor is called the basin of attraction. The border between these basins are called
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separatrices, since they separate different types of dynamics. Both of these features of

the phase space are very important when linking the model dynamics back to the biology

and the risk of developing cancer, as they define the potential of the system to change

phenotype.

production rate
of x

degradation
rate of x

0 A x0 B x1 C

Figure 3.2: Illustration of rates of production and rate of degradation for a two-equation
system. Given the two curves it can be established for any value of x, if the concentration
will increase or decrease. If x is such that the two curves cross, the system is in equilibrium
and will not move. If it is between the first and the second intersection, or after the third
intersection (A and C), the degradation rate is higher than the production rate and x
will decrease until it reaches an equilibrium. If x is between the second and the third
intersection (B), x will increase until it reaches the third intersection.

The tools of dynamical systems analysis can also be used to gain an understanding

of how parameter changes can affect the system. Given the equations of the system it

can be deduced how a change in a parameter alters the positions of the attractors in the

phase space. Given certain parameter changes, it is also possible to alter the system so

much that a bifurcation occurs, where some attractors disappear or others appear (Figure

3.4). This has huge implications when considering the biology behind the modelling. Such

shifts in the dynamics could not only affect the strength of a signal, or whether it would

be activated given certain starting conditions, it could also prove the system to be unable

to reach such a SS at all.
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Figure 3.3: Phase portrait of a two-variable system with two attractors and one unstable
steady state. If the system starts exactly in the middle steady state it will remain there.
If it however, initiates anywhere else, it will fall into one of the other attractors. For
any point in the portrait, it is possible to know where the system will move next and
consequently the path from any point to its final attractor state can be drawn (arrows).

When applying these methods to the genetics of cancer development pathways, the

normal state of a system, starting with a given set of parameters and variables, could be

considered as occupying a small volume of the phase space, in which the system will move

towards the attractor corresponding to normal behaviour of the system. For example,

when considering apoptotic signalling, the default conditions would result in the system

reaching a SS corresponding to the onset of apoptosis, given an initial activation signal.

Depending on the model at hand, it is possible to then consider mutations which would

cause either a shift of a variable, causing the system to start in a different position of the

phase space, or a shift in a parameter, causing the SSs in the phase space to change in

location or number (as explained in Figure 3.4). It is of course also possible to consider

models where both variables and parameters could be altered by mutations. Either type

of alteration could result in apoptosis not occurring.

Even if the phase space contains the information on where the system will end up

depending on any starting point, it does not directly contain information about how
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Figure 3.4: Illustration of how steady states emerge and disappear as parameters are
perturbed. A: Self activation of X is weak, resulting in only one stable steady state with
high concentration of Y and low concentration of X. B: as the self-activation of X gets
stronger a second stable steady states and an unstable steady state in-between the two
emerges. C: as the self-activation gets even stronger the first steady state disappears.

long it will take to reach that attractor. When considering biological processes, this is

important, since a system might have attractors, which may be mathematically valid, but

would take so long to reach that they are not biologically relevant. For example, it might

be possible for an apoptosis signalling model to reach an attractor corresponding to onset

of apoptosis, but it might take days, weeks or even years to do so. It is also important

to keep timing in mind in work like that performed in this thesis, where the models will

not be analysed analytically, but simulated within a time frame deemed relevant. This

means that any mutation does not have to cause a disease associated SS to disappear. It

just has to move the attractor far away enough for it to be non-approachable within a

relevant time frame.

To sum up, the dynamical systems analysis involve the study of trajectories of variables

in the system, the occurrence of any SSs, positions of attractors in phase space and the

location of basins of attraction as well as the locations of the borders between the basins

(separatrices), given a set of ICs and parameters. Changes in parameter values can cause

changes in all of the above mentioned characteristics of a system and may result in changes

in behaviour of the system. Some of these changes may be qualitative, for example, gain

or loss of attractors (bifurcation). They may involve changes in behaviour due to ICs

moving between basins of attraction. They may also change the timing of the dynamics,

which may be crucial in a biological system.

From studies of the effects of SNPs it is known that they often do not have very large

effects on the system under normal conditions [96, 97]. For example, a SNP altering the

expression of a gene important in apoptosis signalling might not have a measurable effect

on the cell’s ability to undergo apoptosis under normal conditions. This is not surprising,

since it could be considered a key evolutionary advantage to have robust behaviour of

core functions such as apoptosis and these systems would then have evolved such that
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the normal state is positioned deep within the basin of the desired attractor. However, if

additional mutations alter the shape of the phase portrait, or the starting position within

the portrait, it is possible that the small shift caused by the initial SNP could significantly

alter the system dynamics and push it out of the basin of attraction, i.e. the part of phase

space where the system will be attracted towards that specific attractor.

3.1.2 Sensitivity

A common concept within systems biology and a red thread throughout this thesis will

be the concept of sensitivity. Sensitivity is a very important topic in systems biology and

there are numerous ways of assessing the sensitivity of a system. However, there is no

universal definition of sensitivity and depending on the underlying question, sensitivity

can be defined in many different ways, and consequently the ways in which it is being

assessed, and the conclusions which can be drawn from the analysis can vary significantly.

It is therefore paramount to clarify the various ways this term will be used in this thesis,

and how they relate to each other and the overall question.

One notion of sensitivity which will be explored is that of model output with respect

to perturbations in ICs, i.e. how much does the output of the model change, when the

ICs change. In terms of the phase space, it asks how much does the path to the attractor

change when the system initiates in a different position. If the ICs are deep within the

basin of an attractor any changes, while still changing the exact trajectory of the system,

are unlikely to cause the system to end up at a different attractor. It is therefore said to

have low sensitivity to IC perturbations. If the ICs on the other hand are close to the

separatrix, the system may end up moving towards a different attractor if the perturbation

is given in the right direction. Such a system would have a high sensitivity to ICs (Figure

3.5).

Another type of sensitivity is called parameter sensitivity. This refers to the change

of the system dynamics upon perturbations of its underlying parameters, i.e. how do the

attractors and the trajectories of the phase portrait move upon parameter perturbations.

If the ICs are deep within the old basin of attraction, any perturbation, while moving the

exact position of the attractor, is unlikely to move the system out of that basin. If the ICs

on the other hand are close to the separatrix of the original phase space, a perturbation

may cause the separatrix to shift so that the ICs end up in a different basin of attraction

(Figure 3.6).

For most of this thesis, the detailed dynamics of the system are of minor concern. What

is really of interest is the final behaviour of the system and its sensitivity to genomic and

meta genomic perturbations. In the example of apoptosis, it is not the detailed dynamics
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Figure 3.5: Sensitivity to ICs. Left: A shift in ICs causes the trajectory of the system to
change. However, it is still drawn towards the same attractor as the original ICs. Right:
a shift in IC causes the system to cross the separatrix and to be drawn towards a different
attractor.

of Caspase concentrations, or the rate of phosphorylations and how much they differ with

or without a given mutation over the course of the cell signalling process, which matters.

What is really of interest, is how much these effects change the parts of the dynamics

which can be interpreted as the time to apoptosis. So it is not the difference in the

path in phase space which matters, but rather, whether the system is pulled towards the

attractor corresponding to apoptosis and how long it takes to get there. However, since

crossing into a different basin of attraction will have a major effect of the trajectories,

it may still be possible to study this sensitivity by studying the change in time course

behaviour.
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Figure 3.6: Sensitivity to parameter changes. Left: a change in parameter values causes
the attractors to move in phase space. However, the ICs are still within the same basin of
attraction as it was before and moves towards the new lower attractor. Right: a change
in parameter values causes the attractors to change so much that the ICs end up on the
opposite side of the new separatrix and is therefore drawn towards the upper attractor.
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3.1.3 Sensitivity analysis tools

Generally the types of sensitivity analysis are divided into local and global sensitivity

analysis. In their simplest forms, both types of methods treat parameters as independent

random variables. This is usually a reasonable assumption to make in biological systems as

for example the production rate of one protein would not affect the production rate of any

other protein during normal conditions due to the excess capacity of the transcriptional

and translational machinery in the cell. Local sensitivity considers the change in dynamics

at each time point after perturbation of a single parameter. One of the simplest versions

make use of the fact that the change in output at any given point can be written as a

Taylor series around that point:

yi(t, k + ∆k) = yi(t, k) +
m∑
j=1

∂yi
∂kj

∆kj +
1

2

n∑
l=1

m∑
j=1

∂yi
∂kl∂kj

∆kl∆kj + ... (3.1)

where k is a vector of m parameters.

The second term in the Taylor series is then the first order sensitivity. This can be

approximated by the difference between the original point and the point after introducing

the perturbation normalised by the perturbation:

si,j ≈
yi(t, kj + ∆kj)− yi(t, kj)

∆kj
(3.2)

By introducing higher order sensitivity terms co-sensitivities between parameters can

be considered. However, the local sensitivity has to be calculated for each perturbation

or set of perturbations considered.

Global sensitivity on the other hand tries to handle the sensitivity in a more general

fashion. Often a Monte Carlo sampling is applied to a range of valid parameter values

and the sensitivity is calculated as a function of the change in output over that range.

One common global sensitivity analysis method is the Morris method [98]. This is very

similar to the local sensitivity analysis method just mentioned, but is performed several

times to cover a part of parameter space as large as possible. The mean and spread of

the sensitivities gathered during these iterations can then be used to study the global

sensitivity.

If the sensitivities are linear, a linear regression can also be performed and the sensi-

tivity can be analysed in terms of correlations between outputs at various perturbations.

Another common global sensitivity method is Sobol’s method [99, 100]. This is a

variance-based method and calculates the contribution the variance in each parameter

has on the total variance of the output. As long as the parameters are independent they
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can come from any probability distribution. However before using the method the space

from which the parameter values are sampled has to be transformed into a standard

uniform distribution (Xi ∈ [0, 1]). If this is done, then given Equation 3.1 and the fact

that V ar(A+B) = V ar(A) +V ar(B), the total variance of the output can be written as:

V ar(yi(t, k + ∆k)) =
m∑
j=1

V ar(
∂yi
∂kj

∆kj) +
1

2

n∑
l=1

m∑
j=1

V ar(
∂2yi
∂kl∂kj

∆kl∆kj) + ... (3.3)

where ∆kj is the difference between the sampled parameter value and the original value.

The first order Sobol sensitivity index can then be written as:

Sij =

V ar(
∂yi
∂kj

∆kj)

V ar(yi(t, k + ∆k))
(3.4)

By considering higher order interactions, covariances can also be studied. There are

also adaptation to Sobol’s method which allows for analysis of dependent variables.

3.1.3.1 Sensitivity analysis tools used in this thesis

In this thesis, two previously published sensitivity analysis tools will be used: SASSy

[101] and SloppyCell [102]. Both methods look at the sensitivity locally in the sense that

they only take into account a small perturbation from the original parameter values, as

opposed the entire range of parameter values of interest. However, they do that for each

time point over the entire time course of interest and for all parameters. It is therefore

an important assumption that the change in dynamics when crossing the separatrix will

be much larger than any changes due to a small shift of the original attractor. Although

both methods try to assess the sensitivity of the system output, they do so in slightly

different ways and it is important to understand how the differences in methodology and

aim affect the results, why they differ from each other and how this relates to the questions

addressed in this thesis.

3.1.3.1.1 SASSy

SASSy is a toolbox for sensitivity analysis of dynamical systems. The main strengths

of this toolbox are the two graphical tools: Sensitivity Heat Map (SHM) and Parameter

Sensitivity Spectrum (PSS). For the purpose of this study only PSS will be used.

In short, SASSy considers a differential equation dx/dt = f(t, x, k) where k is a set

of parameters. The solution to such an equation x(t) = g(t, k) with the initial condition
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x(0) = g(0, k). It then calculates the effect of perturbations of all parameters by consid-

ering a discretised time frame t = t1, ..., tN and creates a vector r for each state variable

xm (m = 1, ..., n) and parameter kj such that rj,m = (∂gm(t1, k)/∂kj), ..., ∂gm(tN , k)/∂kj).

The derivatives are calculated analytically for the output of the model at the discrete

time points. For each j, these vectors are concatenated into a vector rj which then forms

the jth column of the matrix M such that:

M =



∂g1(t1, k)

∂k1

∂g1(t1, k)

∂k2
. . .

∂g1(t1, k)

∂ks

∂g1(t2, k)

∂k1

...
...

∂g1(tN , k)

∂k1

∂g2(t1, k)

∂k1

...
...

∂gn(tN , k)

∂k1

∂gn(tN , k)

∂ks



(3.5)

It then uses singular value decomposition (SVD) of M, M = UDV t to calculate the

sensitivities of the system with respect to each parameter. In the SVD equation D is a

diagonal matrix of singular values σ1, ..., σs of M, U is an nN ×s orthonormal matrix and

V is s× s orthonormal matrix. From this the PSS can be calculated as Si,j = σiV
t
i,j (note

that this Si,j is unrelated to Sij used in equation 3.4).

3.1.3.1.2 SloppyCell

SloppyCell is a multi purpose tool which, among other things, can both fit parameters of

a model to experimental data and calculate the sensitivity of the system with regards to

parameter perturbations.

The sensitivity analysis is performed by calculating the average squared change in

variable time course as parameters θ are perturbed from the reference values θ∗:

χ2(θ) ≡ 1

2NcNs

∑
s,c

1

T c

∫ T c

0

(
ys,c(θ, t)− ys,c(θ∗, t)

σs

)2

dt (3.6)
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where Nc is the number of conditions under consideration (in this thesis there is only one

condition considered each time) and Ns is the number of species in the system.

Analysing the Hessian:

Hχ2

j,k ≡
d2χ2

d log θjd log θk
, (3.7)

at θ∗ then corresponds to approximating the surface of constant model behaviour change

as N-dimensional ellipsoids where N is the number of parameters (note that in this case

first order changes are zero since θ is evaluated at the “optimal” value). The reason for

considering log θ is that parameters can vary widely in scale.

If Hχ2

j,k is evaluated at θ∗ it can be calculated as:

Hχ2

j,k =
1

2NcNs

∑
s,c

1

T cσ2
s

∫ T c

0

dys,c(θ
∗, t)

d log θj

dys,c(θ
∗, t)

d log θk
dt. (3.8)

Using the Hessian, a Principal Component Analysis (PCA) can be performed where the

eigenvectors end up being aligned with the ellipsoids of constant model behaviour change

and the width of the ellipsoids are proportional to 1/
√
λ where λ is the corresponding

eigenvalue

It is worth pointing out that the method analyses the sensitivity in trajectory change

of the species, and not the sensitivity in system outcome. This means that extra care will

have to be taken when interpreting the results and how it relates to the time of apoptosis.

3.1.4 Models

Two apoptosis signalling models of different degrees of complexity and slightly different

characteristics were chosen as test cases; a TNFα and Fas induced apoptosis signalling

model published by Schlatter et al., (2011) [91] and a simpler model by Eissing et al.

(2004) [95] which captures the core of the apoptosis signalling pathway. These are referred

to as the larger and the smaller apoptosis model, respectively.

The smaller model captures the core behaviour of the apoptotic network. It consists

of 4 proteins: Caspase 3, Caspase 8, BAR and IAP. The idea is that an upstream pathway

activates Caspase 8, which in turn activates Caspase 3. Caspase 3 also activates more

Caspase 8 to form a positive feedback loop and an increased signal strength. Activated

Caspase 3 then triggers apoptosis through processes not covered in the model. BAR

and IAP on the other hand act as inhibitors for Caspase 8 and Caspase 3 respectively.

They achieve this partly by binding the active form of their respective target and thereby

preventing it from propagating the activation, but also by targeting the complex for

degradation, thereby depleting the pool of Caspase 8 or Caspase 3. All four proteins are
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continuously being degraded and produced to maintain a SS of no Caspase 3 activation

without the presence of activated Caspase 8.

Even though Caspase 3 is continuously being activated by the active form of Caspase

8, and the active form of Caspase 3 in return activates more Caspase 8, both active forms

are rapidly being taken up by their respective inhibitors and consumed. However, once

the inhibitors have been depleted by the continuous activation of Caspase 3 and 8, there

is a rapid burst of Caspase 3 and 8 activation, which quickly reaches a new steady-state

(Figure 3.7).

C8 C8* Bar-C8*

C3 C3* IAP-C3*

APOPTOSIS

IAP

Bar
Initial
Activation

OUTPUT

Prod

Deg

Prod

Deg

Deg

Deg

Deg

Prod

Deg

Prod Deg

Figure 3.7: Network of small apoptosis model. The model takes an initial amount of
activated Caspase 8 as input. The activated form of Caspase 8 activates Caspase 3, which
in turn activates more Caspase 8. Both the active form of Caspase 8 and Caspase 3 are
quickly being bound by BAR and IAP, respectively, and the two complexes are slowly
being degraded. Both complexes can dissociate into their initial components and the
concentrations of the four proteins Caspase 3, Caspase 8, BAR and IAP are being governed
by constant production and concentration dependent degradation. If the activation of the
two Caspases is faster than the production of the two inhibitors and the degradation
of the complexes, it will eventually result in a burst of active Caspase 3, which can be
interpreted as a commitment to apoptosis.

On a behavioural level, this system is bistable, very much like the example in Figure

3.3, with two stable SSs, one where the concentrations of activated Caspase 8 and 3 are

close to zero (the initial conditions) and one where they are higher (the potential onset of

apoptosis), separated by an unstable SS. The fact that the concentrations of all proteins
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are governed by production and degradation parameters, means that there is only one set

of biologically possible ICs, namely the lower SS, as the higher SS would mean the cell has

committed to apoptosis. Before any signal from within the cell or from the surrounding,

the system would start off, without activated Caspase 8, at the lower SS. The introduction

of activated Caspase 8 would then push it across the separatrix into the basin of the higher

attractor, i.e. committing to apoptosis. A perturbation of the initial activation of Caspase

8 may render it insufficient to push the system over to the basin of the higher attractor

and it will revert to the lower attractor.

If the activation signal is held constant, a parameter perturbation, causing the unstable

SS to move closer to the higher SS such as the example in Figure 3.4, can result in a

previously sufficient amount of Caspase 8 activation, not being able to move the system

across the unstable SS and the system would revert to the lower attractor.

The fact that the ICs, except for activated Caspase 8, are governed by parameters

makes it very suitable for the two parameter sensitivity methods used in this chapter.

This means that the sensitivity methods could evaluate the effect of SNPs which would

cause a change in either activity or expression level of a protein. The analysis of a

perturbation of a parameter affecting the function of a protein would be straightforward

as such a perturbation would only affect the shape of the phase space and not the IC.

A perturbation of a parameter affecting protein expression on the other hand would also

shift the location of the lower SS, which is also serving as IC. For very small perturbations,

it can be assumed that the new SS would be reached almost immediately and therefore the

difference between the old and the new IC would not significantly affect the trajectory of

the system in phase space. However, if the perturbations are large the different ICs could

result in very different paths in phase space. To avoid this, whenever such perturbations

are introduced in this analysis, the system will first be run to its new SS (without any

activated Caspase 8) and the variable values at this SS will be used as new IC.

The larger apoptosis model captures a much larger part of the apoptosis signalling

pathway (Figure 3.8). The larger size means there is a higher probability for SNPs to

target the system, which makes it more likely to be able to link any identified sensitivities

to biological data of disease associated SNPs. Like the smaller apoptosis model, the larger

model captures the core of the apoptosis signalling network, where Caspase 8 activates

Caspase 3 which then triggers apoptosis through mechanisms not covered by the model.

Like in the smaller model, Caspase 3 is bound up and degraded by an inhibitor, in this

case XIAP. Caspase 8 is also being degraded in a concentration dependent manner. In

addition to directly activating Caspase 3, Caspase 8 also activates Bid, which activates

BaxBak, causing cytochrome C to be released, which in turn also activates Caspase 3.
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The BaxBak-cytochrome C mediated activation of Caspase 3 can also be activated by

Bim, which in turn is activated by an upstream pathway. Whereas the smaller model

takes an initial activation of Caspase 8 as input, in the larger model this activation is

modelled by a Fas signal which activates Caspase 8 through DISC. In addition Caspase 8

and Bim can be activated by TNF through a pathway of activation and inhibition events.

A key regulator of both Caspase 8 and Bim activation is the NFκB module, which is being

activated by TNF. This module results in mRNA transcription and translation of a protein

P which functions as a buffer for Reactive Oxygen Species (ROS), modelled to appear

after a certain time as a result of TNF activation. If ROS is not sufficiently buffered it

will result in increased translation of JNK, which is activated by upstream signals of the

TNF activation pathway. The activated JNK acts by both directly activating Bim and

by inhibiting inhibitors of Caspase 8 activation.

Figure 3.8: Illustration of the interactions in the larger apoptosis model (Illustration was
published by Schlatter et al. [91] under Creative Commons Attribution (CC-BY) license.
doi: 10.1371/journal.pone.0018646.g005).

All these interactions yield a very complex network, but the end result is similar to

that in the smaller apoptosis mode, a burst of activated Caspase 3, leading to apoptosis.

A key difference from the smaller model, is that many proteins in the larger models do

not have any production and degradation modelled. Instead the concentrations are set as

initial variables and stay constant throughout the model, or decrease through degradation.

This means that a parameter sensitivity analysis will not be able to capture the effect of

SNPs affecting expression levels of these proteins.
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3.1.5 Work covered in this chapter

In this chapter two main questions will be asked:

1. Which parts of the apoptosis pathway are more sensitive to perturbations than

others?

2. How do these sensitivities change when an individual acquires mutations over the

course of their life?

To answer these questions the two apoptosis models mentioned earlier will be studied

using two sensitivity analysis tools as well as parameter/variable scans with in-house

scripts.

The idea will be that the perturbations used in the sensitivity analysis tools will

correspond to a random set of SNPs affecting either the concentration or function of a

protein in the model. By studying the sensitivity patterns from the two methods, the

first question can be studied.

By introducing initial perturbations of the system, corresponding to somatic muta-

tions, and determining the sensitivities after these perturbations, the second question can

be studied.

On their own, the two sensitivity analysis tools will only reveal how sensitive the

dynamics of the system are to perturbations. This will then have to be related to the

biological question of when a SNP would push the cell over from a normal cell, committing

to apoptosis upon activation, to one which does not commit to apoptosis. To do this the

two phenotypes will have to be interpreted in terms of system dynamics. For the two

models chosen, the commitment to apoptosis will be interpreted as the activation of

Caspase 3 reaching a pre-defined threshold within a given time-frame.

In order to know when the sensitivities of the model can be interpreted as actual

potential to push the system over from a normal to an abnormal phenotype, domains of

the configuration space will have to be identified, where this is possible. Using parameter

or variable scans of the two models these domains will be identified.
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3.2 Materials and Methods

3.2.1 Models

Both models were implemented in python 2.7 using the odeint solver from SciPy v.0.16.0.

In order to be able to run the sensitivity analysis tool SASSy [101], the models were also

implemented in Matlab 8 using the specified format required by the tool. Furthermore,

for analysis using the python package SloppyCell [102], the models were also implemented

using the format required for that tool.

3.2.1.1 Smaller Apoptosis Model

A small apoptosis model published by Eissing et al. (2004) [95] was implemented as

described in the paper (Figure 3.7). The model takes a Caspase 8 activation signal as

input, which has been set to 1,000 molecules if not stated otherwise. All equations,

parameter settings and initial conditions can be found in Equation B.1-B.8 and Table B.1

and B.2.

In order to be able to easily compare the time to apoptosis between different runs

of the model, the time at which the active form of Caspase 3 reaches its maximum has

been chosen to be interpreted as the time of onset of apoptosis. This cascade of Caspase 3

activation is the last event which occurs in the model upon upstream activation, although,

biologically, there are further downstream reactions involved in apoptosis. Biologically, a

signal will need to have a certain strength to give any significant downstream results. In

order to take this into account, a condition was applied, that the activation would have

to reach at least 1000 molecules of Caspase 3 in order to be considered a commitment to

apoptosis. The model was run up to 5000 minutes, if not stated otherwise.

3.2.1.2 Larger Apoptosis Model

A model of TNFα induced apoptosis signalling published by Schlatter et al. [91] was

implemented as described in the paper (Figure 3.8). The node corresponding to transla-

tional inhibition by cycloheximide was always set to 0, as was the node corresponding to

the antioxidant butylhydroxyanisol (BHA), as well as the node corresponding to transla-

tional inhibition by actinomycin D. The activation signal coming from TNFα was set to

100 and FasL was set to change from 0 to 100 after 12 hours, as described in the paper.

All equations and parameter settings can be found in equation C.1-C.47 and Table C.1

and C.2. The onset of free ROS production was modelled by the function:

50



ROSfree(t) =
1

0.03× 2π
e

1
2
( t−4
0.03

)2 × 100× (1−BHA) (3.9)

resulting in a short burst of 100 ROS units being released after 4 hours. The model was

run for 20 hours unless stated otherwise.

3.2.2 Variable and parameter scan

3.2.2.1 Smaller Apoptosis Model

To assess how sensitive the model is to changes in initial concentrations of its components

the production parameters were changed between 0% and 200% of published values. When

parameters were perturbed from the standard values, the system was first run for 5000

minutes with initial Caspase 8 activation set to zero to allow the system to find its new

steady state. The final concentrations in this steady state were then used as initial

concentrations in the actual run, which included different amounts of initial activation of

Caspase 8. The model was then run for 20,000 minutes in steps of 1.0 minute.

For each set of runs the maximum concentration of active Caspase 3 and time to

apoptosis was recorded.

3.2.2.2 Larger Apoptosis Model

To assess the sensitivity in a comparable way to that of the smaller model, each variable

that was not 0 at time = 0, was separately changed incrementally from 0% to 200% of

published values [91] in steps of 10% while the other initial concentrations were maintained

at their original values.

The models were then run from time 0 to 20 hours and the output reported in steps of

0.2 hours in order to get a high resolution dataset of the dynamics. Within that time frame

the maximum activation signal was measured as well as time to activation, calculated as

time to maximum peak of Caspase 3 activation.

3.2.3 SASSy

To assess the sensitivity of the system with regards to the entire parameter set the program

SASSy was used [101].

3.2.3.1 Smaller Apoptosis Model

As an input for SASSy, the model was implemented in Matlab 8 with the same initial

values and parameter settings as stated in Table B.1 and B.2. It was run with either
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500 or 3,000 molecules of active Caspase 8 at starting time and analysed from time 0 to

4,000 minutes. In addition the model was analysed from time 0 to time of the maximum

peak of activated Caspase 3 (manually estimated to 2,003.2 and 328.6 for 500 and 3,000

molecules, respectively) and within a short window around the maximum of activated

Caspase 3 (manually set to 1,800.1–2,100.2 minutes and 36.2–500.8 minutes for 500 and

3,000 molecules, respectively).

Time course dynamics, Singular values and PC vectors were recorded.

3.2.3.2 Larger Apoptosis Model

The model was implemented in Matlab 8 with the same initial values and parameter

settings as stated in Table C.1 and C.2. The binary parameters corresponding to presence

of cycloheximide, Actinomycin D, BHA and TNFα and Fas signalling were set to be

invariable as to not be included in the sensitivity analysis. The model was run to 20

hours and time course dynamics, Singular values and PC vectors were recorded.

3.2.4 SloppyCell

SloppyCell is a sensitivity method which calculates average square change in node values

over time in order to quantify the change in model dynamics as parameters are perturbed

from their initial values [102]. The details of how it works are outlined in Section 3.1.3.1.2.

All sensitivity analysis using SloppyCell in this thesis was conducted as outlined in

Algorithm 1.

Algorithm 1 SloppyCell Sensitivity Analysis

1: Load SloppyCell Reaction Network RN of the dynamical system
2: Alter any initial conditions if necessary
3: Calculate time window by integrating system and measure time of maximum activated

Caspase 3
4: Set time window for analysis
5: Set variables to track as “experimental” data. (Used to calculate Hessian of perfect

data)
6: Calculate Sensitivity trajectory from RN
7: Calculate Hessian of perfect data w.r.t. log θ (Equation 3.8)
8: Perform PCA on Hessian
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3.2.4.1 Smaller Apoptosis Model

The model was analysed as described in Algorithm 1 with the following configurations of

initial conditions and experimental data:

1. Values from all eight nodes in the model were used as experimental values and all

parameters were set as optimisable.

2. Just the values of active Caspase 3 were used as experimental values and all param-

eters were set as optimisable.

3. Values of active Caspase 3 were used as experimental values and the production

rate parameters were set as optimisable.

The analysis was performed from time zero and stopped when the activation peak

of Caspase 3 reached its maximum, for each instance of the simulation individually, or

when the simulation reached the end time. The level of initial Caspase 8 activation var-

ied between 500, 1,000 and 3,000 molecules, representing changes in upstream pathways.

Eigenvalues and eigenvectors for all parameters, as well as time course data for all com-

ponents in the model were plotted. Additionally, the Hessians with regards to one single

parameter indicating single parameter sensitivity were also plotted.

3.2.4.2 Larger Apoptosis Model

The method was applied to the larger apoptosis model. All parameters were set as

optimisable except: actD, TNF, BHA, CHX, Tr, and CytCfree, which were set to be

fixed. The model was then analysed using just Caspase 3 as experimental values. The

model was run to time 20 hours. Eigenvalues and eigenvectors for all parameters, as

well as time course data for all components in the model were plotted. Additionally, the

Hessians with regards to one single parameter indicating single parameter sensitivity were

also plotted.
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3.3 Results

3.3.1 Smaller Apoptosis Model

3.3.1.1 Model Behaviour

When running the model under normal conditions, with an initial activation of 3,000

molecules, the time to commitment to apoptosis, that is the time until a burst of Caspase

3 activation of over 1,000 molecules, was around 350 minutes (Figure 3.9). As expected

by the published results [95], an increase in the initial activation signal of active Caspase

8 did not significantly alter the response time of the system, whereas decreases gradually

increased the response time. For smaller changes in the activation signal the change in

response time was modest. However, with an ever lower activation signal, the response

time of the system quickly increased.

Figure 3.9: Time course dynamics of small apoptosis model. Initially, the concentrations
of the active forms of Caspases are held very low due to rapid uptake by the inhibitors.
Eventually the activation of the Caspases becomes faster than the renewal of the in-
hibitors, resulting in an accelerated depletion of the inhibitors and a burst of activation
of both Caspases.

3.3.1.2 Parameter Scan shows two distinct types of model behaviour

When keeping the activation signal constant at 3,000 and perturbing two parameters at

a time to various extent, the time to reach a peak in Caspase 3 activation (here measured
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as time to maximum concentration of active Caspase 3) showed relatively little variation,

until it, within a very narrow window, flipped from activating apoptosis within 5,000

time units to not activating apoptosis (Figure 3.10). Even when extending the simulation

to 20,000 time units, the same pattern was observed, indicating that the system had,

indeed become unresponsive, at least from a perspective of biological relevance (Appendix

Figure D.1). Note, that it is not necessarily the case that Caspase 3 activation did

occur but did not reach the threshold set before. It is possible that a perturbation of

some parameters would cause a smaller peak but not affect the time of the peak very

much. However, for example in the case of the production rate of Caspase 8, the system

changed behaviour, at least within the time frame set. In the non-responsive configuration

there was no activation past a couple of molecules initially (this as also seen in the

case of responsiveness) and no extended activation thereafter, whereas in the responsive

configuration, the activation was in the range of several thousands of molecules and there

was an sustained, lower activation after the initial peak (Figure 3.11, visualised at 500

molecules of initial activated Caspase 8 due to the slower progression at that level). It is

possible that the system, even when deemed unresponsive here, would eventually yield a

peak in activated Caspase 3. Indeed, by again perturbing the production rate of Caspase

8 it was seen how the the activation signal was sustained, and gradually moved up to over

25,000 time units (Figure 3.12, 500 molecules of initial activated Caspase 8). However,

after such a long time, the cell would have undergone cell division already and even if the

mathematics indicate that the system would activate apoptosis, it would not be relevant

from a biological point of view. Likewise, even if the threshold for activation is not known

and had to be assumed in this work, the concept of a signal needing to reach a certain

level of sustained activity before being biologically relevant is consistent with how many

of biological signalling systems work.

By changing the amount of initial activation signal, the location, and to some extent

the shape, of the border, at which activation no longer occurred above the given level

and within the set time frame, shifted. The sensitivity was lower for lower amounts of

activation signal. For example, when using 500 instead of 3,000 molecules as starting

activation, the system was already in the area where changes in activation signal had a

significant effect on the response time of the system. This also meant that the amount of

perturbation in any parameter required to flip the system to not respond within 20,000

minutes (to not yield a signal above the threshold with a subsequent sustained signal) was

much smaller than when using 3,000 molecules as activation signal. However, once the

system was in the area of sensitivity, a much smaller additional perturbation was required
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to flip the system if 3,000 units of activated Caspase 8 was used, compared to 500 units

(Figure 3.13) This was true for all parameters under investigation (Appendix Figure D.2).
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Figure 3.10: Time to maximum Caspase 3 signalling when perturbing two parameters
between 0 and 2 time the initial value. The value of the parameters is depicted on the
respective axis and time is colour coded from 0 (dark blue) to 5,000 (dark red). Upon
small perturbations the time to apoptosis does not alter much. However, within a very
small window of parameter perturbation the time changes from very short to very long.
The white indicates where time to apoptosis exceeded the limit of the scale.
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Figure 3.11: Difference in activated Caspase 3 trajectory for responsive and non-responsive
systems. When the system is deemed non-responsive there is a very small initial peak
in activated Caspase 3, which quickly dies out (a and c). When the system is deemed
responsive (b and d) there is again a small initial peak. However, the activation then
builds up until there is a large activation peak followed by a sustained activation.
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Figure 3.12: As the production rate parameter of Caspase 8 is perturbed from initial
value (a) gradually down to 0.92 (b, c, and d) the time of the large activation peak shifts
upwards until it eventually disappears outside of the time frame of the simulation. The
simulation was performed with 500 molecules of initial activated Caspase 8 due to the
slower shift in time to onset of apoptosis after perturbation of the parameter.
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(a) (b)

Figure 3.13: a) Time to apoptosis as a function of initial active Caspase 8 signalling. Red
lines show standard parameter setting. Blue lines show the same pattern with an increase
of k9−1 (corresponding to production rate of Caspase 8) of 5%. Yellow lines show the
trend with a decrease of 5, 10 and 15%. Initial settings indicate a window of Caspase
8 activation signalling, in which the time to apoptosis quickly increases and eventually
exits the time frame of the simulation. The blue and yellow lines indicate a shift of this
signalling window. b) Time to apoptosis as a function of parameter k10−1. Blue and green
lines show an additional perturbation of parameter k9−1 (in increments of 5%), whereas
red shows the initial value. Top and bottom plots show pattern when initial Caspase
8 activation is set to 3000 and 500, respectively. The system shows a similar window a
parameter perturbations as was seen when altering Caspase 8 activation, where the system
response time rapidly increases. The location of this pattern proves to depend both on
additional parameter perturbations and the amount of initial Caspase 8 activation.
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3.3.1.3 SASSY indicates that most of the sensitivity is centred around the
time of behaviour switching

Using the program SASSy the small apoptosis model was analysed using two different

amounts of initial activation signal: 500 and 3,000, and three different time settings.

First the model was analysed from time 0 to 4,000 minutes, then it was analysed to the

time of maximum concentration of activated Caspase 3. Lastly it was analysed within a

window of 400 minutes around the maximum concentration of activated Caspase 3. The

dynamics of all settings are depicted in Figure 3.14 and 3.15 for 500 and 3,000 molecules

of activated Caspase 8, respectively.

Parameter sensitivity spectra were generated for all cases analysed. Normalised sin-

gular spectra were summarised in Figure 3.16 and 3.17 for 500 and 3,000 molecules of

activated Caspase 8, respectively. There was very little variation in the spectra between

the three time frames in both sets of Caspase 8 activation and in all cases there was a

rapid decline in importance among the Singular values. When using 500 molecules there

were only 2 singular values within 1% of the largest value. Using 3,000 molecules, there

was slightly slower decay, with 4 values within 1% of the largest value.

When looking at the parameter spectra for each principal component the pattern

between the three windows of analysis was also very similar across all PCs (Figure 3.18).

This was true for both amounts of Caspase 8 activation. In all cases the higher PCs

were dominated by two parameters, which became even more clear, when looking at

them separately (Figure 3.19). The four most important parameters turned out to be the

production parameters for the four proteins in the model.
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(a) 0 to 4000 (b) 0 to 4000

(c) 0 to burst (d) 0 to burst

(e) burst (f) burst

Figure 3.14: Time course data for all the three sets of analyses performed on the smaller
apoptosis model using 500 as initial Caspase 8 activation signal (as opposed to 3000 in
Figure 3.15). In all three cases the same parameter settings were used, but different time
frames were analysed. (a) and (b) show dynamics from time 0 to 4000, (c) and (d) from
0 to peak of Caspase 3 activation and (e) and (f) within a window around the Caspase 3
activation burst. (a), (c) and (e) show the dynamics for all 8 variables, whereas (b), (d)
and (f) show the dynamics of only active Caspase 3.
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(a) 0 to 4000 (b) 0 to 4000

(c) 0 to burst (d) 0 to burst

(e) burst (f) burst

Figure 3.15: Time course data for all the three sets of analysis performed on the smaller
apoptosis model using 3000 as initial Caspase 8 activation signal (as opposed to 500 in
Figure 3.14). In all three cases the same parameter settings were used, but different time
frames were analysed. (a) and (b) show dynamics from time 0 to 4000, (c) and (d) from
0 to peak of Caspase 3 activation and (e) and (f) within a window around the Caspase 3
activation burst. (a), (c) and (e) show the dynamics for all 8 variables, whereas (b), (d)
and (f) show the dynamics of only active Caspase 3.
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(a) 0 to 4,000 (b) 0 to burst (c) burst

Figure 3.16: Singular spectrum for SASSy analysis of the smaller apoptosis model, using
500 AU as initial active Caspase 8 concentration and the time frames: (a); from 0 to 4000,
(b); from 0 to peak of active Caspase 3 concentration and (c); a window of about 400
time units around the maximum activated Caspase 3 concentration. All three analyses
show a similar pattern of rapidly declining Singular values and the first Singular values
being 2 orders of magnitude higher than the second.

(a) 0 to 4,000 (b) 0 to burst (c) burst

Figure 3.17: Singular spectrum for SASSy analysis of the smaller apoptosis model, using
3000 AU as initial active Caspase 8 concentration and the time frames: (a); from 0 to
4000, (b); from 0 to peak of active Caspase 3 concentration and (c); a window of about 400
time units around the maximum activated Caspase 3 concentration. All three analyses
show a similar pattern of declining Singular value. However, the decline is not as fast as
when using 500 AU of activated Caspase 8 (Figure 3.16) and the first four Singular values
are more or less within 2 orders of magnitude.

64



(a) 500 C8*, 0 to 4000 (b) 500 C8*, 0 to burst (c) 500 C8*, burst

(d) 3,000 C8*, 0 to 4000 (e) 3,000 C8*, 0 to burst (f) 3,000 C8*, burst

Figure 3.18: Principal component spectrum for SASSy analysis of the smaller apoptosis
model using either 500 molecules ((a), (b) and (c)) or 3,000 molecules ((d), (e) and (f)) as
initial active Caspase 8 concentration and the time frames: (a) and (d); from 0 to 4,000,
(b) and (e); from 0 to peak of active Caspase 3 concentration and (c) and (f); a window
of about 400 time units around the maximum activated Caspase 3 concentration. The
strength of each parameter has been colour coded according to their log10 absolute values.
The parameters occur in the same order as they are listed in table 3.3. All experiments
yielded a striking similarity in composition and strength of each parameter, on the x-axis,
in the various PCs, on the y-axis. This similarity was maintained both among the three
time frames and between the two initial activation signals
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(a) PC1, 500 C8* (b) PC2, 500 C8*

(c) PC1, 3,000 C8* (d) PC2, 3,000 C8*

Figure 3.19: Decomposition of the first ((a) and (c)) and second ((b) and (d) PC using
either 500 molecules ((a) and (b)) or 3,000 molecules ((c) and (d)) of initial activated
Caspase 8 signal. The parameters occur in the same order as they are listed in Table
B.1. Using both amounts of initial activation signal both PCs are dominated by the 15th
and 16th parameter, corresponding to production rates of Caspase 8 and IAP, with a
smaller contribution of the 17th and 19th parameter, corresponding to production rates
of Caspase 3 and BAR. All other parameters had a negligible contribution to the two
PCs.
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3.3.1.4 SloppyCell analysis reveals slight differences in sensitivity pattern
depending on initial conditions

When considering perturbations in all parameters and measuring the sensitivity of the

model between time zero and the maximum height of the Caspase 3 peak, there was

initially very little difference in the pattern if data from all nodes were used as experimental

data, or just that of active Caspase 3 (Figure 3.20). The difference became more clear

from the third Principal Component (PC) on. In both cases the first eigenvalue was

much higher than the rest and the decay in importance was much slower from the second

eigenvalue. Although the first eigenvalue was higher than the rest, there was no clear

cut-off between important and unimportant PCs. This was especially true when using

only activated Caspase 3 as experimental data, where the difference between the first and

the second eigenvalue was much smaller.
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Figure 3.20: Left: analysis using all parameters as experimental data. Right: using only
active Caspase 3 as experimental data. In both plots, from the top: eigenvalues, 1st PC,
2nd PC 3rd PC and 4th PC. The difference becomes more clear in the lower PCs. The
parameters occur in the same order as they are listed in Appendix Table B.1.

When altering the initial activation signal from 500 molecules of activated Caspase

8 to 1000 and finally to 3000 molecules, there was very little change in the pattern of

the PCs (Figure 3.21). However, as the activation signal increased, the dominance of the

first PC decreased slightly, indicating a slight difference in sensitivity. In addition to the

PCA, the Hessian with regard to single parameter perturbations was also examined. This

can be seen as the sensitivity of a single parameter perturbation. When looking at the

Hessian for all parameters of the model most parameters had a comparable sensitivity,

both when using all variables as experimental data and when using only the amount of

67



activated Caspase 3 (Figure 3.22). Only a couple of parameters had sensitivity varying by

several magnitudes compared to the rest (k4, k5 and k6). As the initial activation signal

increased, the system became more sensitive, indicated by smaller Hessians (remember

that the hessian approximates an ellipsoid with constant model behaviour change).

When only taking the production rates into account, again, there was no clear cut-off

between important and unimportant PCs (Figure 3.23). For three amounts of activation

signal tested the system showed an even spread of sensitivity among all parameters. Again,

when looking at the Hessian with regard to single parameter perturbations, all parameters

had a similar amount of sensitivity (Figure 3.24). As was the case when analysing the

larger set of parameters, the sensitivity increased when the amount of initial activated

Caspase 8 increased.
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Figure 3.21: As the initial activation signal increases from 500 to 1000 to 3000, there are
slight differences in the sensitivity patterns of each PC. The parameters occur in the same
order as they are listed in Appendix Table B.1.
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Figure 3.22: SloppyCell Hessian for single parameters (dχ2/d log θjd log θj) in the smaller
Apoptosis model looking at all parameters. There is little change between measuring all
variables (a) and measuring only active Caspase 3 (b). Increased initial activation signal
causes an increase in sensitivity overall (small value indicates high sensitivity as only a
small perturbation is needed for the constant model behaviour change)
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Figure 3.23: SloppyCell analysis setting only the four production parameters as optimis-
able and using amount of active Caspase 3 as experimental data. (a),(b) and (c) use 500,
1000 and 3000 as initial Caspase 8 activation respectively. As the initial activation signal
increases, there are slight differences in the sensitivity patterns.
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Figure 3.24: SloppyCell Hessian for single parameters (dχ2/d log θjd log θj) in the smaller
Apoptosis model looking only at the production parameters. There is little change be-
tween measuring all variables (a) and measuring only active Caspase 3 (b). Increased
initial activation signal causes an increase in sensitivity overall (small value indicates
high sensitivity as only a small perturbation is needed for the constant model behaviour
change).
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3.3.2 Larger Apoptosis Model

3.3.2.1 Model behaviour

The model was run with a burst of FasL exposure after 12 hours. As expected from the

paper, the model did not yield an onset of apoptosis (characterised by a burst of Caspase

3 activation) without FasL exposure or deactivation of protein translation by actinomycin

D (not shown). When Actinomycin D was added to the system, Caspase 3 was activated

after about 7 hours (not shown), and when FasL was added after 12 hours the system

showed a delayed activation of Caspase 3 approximately 13 hours after initiation of the

system (Figure 3.25). All results were consistent with previously published results [91].

Figure 3.25: System dynamics of the larger apoptosis model. Initially, there is very little
Caspase 8 activation and negligible Caspase 3 activation. However, after initiation of Fas
signalling there is a spike in Caspase 8 activation at 12 hours, followed by initial smaller
activation of Caspase 3. As the inhibitors are exhausted there is a major spike in Caspase
3 activation at around 15 hours, which can be interpreted as commitment to apoptosis.

3.3.2.2 Variable Scans reveal sets of characteristic behaviour

Each variable that had an initial value above 0 was varied between 0% and 200% of the

initial value, in steps of 1.0%, and the concentration of active Caspase 3 was monitored

over time. The results were insensitive to increases in many of the variables and could

also withstand changes of up to 50% without losing the apoptotic signalling (Figure 3.26

73



and Appendix Figure E.1). For many of these proteins, for example Caspase 8 (Figure

3.26a), the time to activation did not vary much when altering the concentration up

until a certain point, where the time rapidly increased beyond the time frame of the

simulation. Although some proteins had a more gradual change of time to activation, for

example Bim (Figure 3.26b), other proteins were very sensitive in a certain direction, for

example BaxBak (Figure 3.26c), which could barely take any decrease in concentration

before the signal disappeared. Yet other nodes were completely insensitive within the

range investigated, for example itch (Figure 3.26d).

Although most of the proteins maintained an activation signal, which moved in time

when altering the concentration, some proteins, for example Caspase 3 and XIAP (Figure

3.27) had a fading strength of maximum activation. This means that it is difficult to

establish at what point the system no longer yields a biologically relevant activation

signal.

When varying two variables at the same time, the time point at which the system went

from high to low final concentration of activated Caspase 3, and the maximum activation

of Caspase 3 often depended on the other variable (Figure 3.28 and Appendix Figure

E.2-E.13). Some variables, however, did not even have a significant effect on the final

concentration of activated Caspase 3 together (Figure 3.29a-d). Still others had value

ranges for which the concentration was lower than normal, but not as low as for the other

variables, begging the question, as to whether it should be interpreted as an activation

signal or not (Figure 3.29e-f).
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(a) C8 (b) Bim

(c) BaxBak (d) itch

Figure 3.26: Concentration of activated Caspase 3 over time (x-axis) depending on change
in initial concentration of one variable (y-axis) between 0 and 2 times the initial concen-
tration. The concentration of Caspase 3 is colour coded between 0 (blue) and 40 (red).
Under normal conditions there is a peak in activation around 15 hours after initiation cor-
responding to the activation of apoptosis. The white indicates where the concentration
exceeded the limit of the scale.
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(a) C3 (b) XIAP

Figure 3.27: Concentration of activated Caspase 3 over time (x-axis) depending on change
in initial concentration of one variable (y-axis) between 0 and 2 times the initial concen-
tration. The concentration of Caspase 3 is colour coded between 0 (blue) and 40 (red).
Under normal conditions there is a peak in activation around 15 hours after initiation cor-
responding to the activation of apoptosis. The white indicates where the concentration
exceeded the limit of the scale.
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(a) Time to maximum C3* (b) Maximum C3*

(c) Time to maximum C3* (d) Maximum C3*

(e) Time to maximum C3* (f) Maximum C3*

Figure 3.28: Left: Time to maximum Caspase 3 signalling when perturbing two parame-
ters between 0 and 2 times the initial value. The value of the parameters is depicted on
the respective axis and the time to maximum Caspase 3 activation is colour coded from 0
(dark blue) to 20 hours (dark red). Right: Maximum Caspase 3 activation upon pertur-
bation of two variables initial values. The maximum Caspase 3 activation ranges between
0 (dark blue) and 40 AU (dark red). The white indicates where the value exceeded the
limit of the scale.
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(a) Time to maximum C3* (b) Maximum C3*

(c) Time to maximum C3* (d) Maximum C3*

(e) Time to maximum C3* (f) Maximum C3*

Figure 3.29: Left: Time to maximum Caspase 3 signalling when perturbing two parame-
ters between 0 and 2 times the initial value. The value of the parameters is depicted on
the respective axis and the time to maximum Caspase 3 activation is colour coded from 0
(dark blue) to 20 hours (dark red). Right: Maximum Caspase 3 activation upon pertur-
bation of two variables initial values. The maximum Caspase 3 activation ranges between
0 (dark blue) and 40 AU (dark red). The white indicates where the value exceeded the
limit of the scale.

78



3.3.2.3 SASSy analysis indicates the sensitivity of the model depends on a
large set of parameters

Using the program SASSy, sensitivity PCs and corresponding Singular values were calcu-

lated. The analysis shows that there are a high number of PCs with relatively high level

of importance to the variance in parameter sensitivity (Figure 3.30). It also became clear

by studying the first 3 PCs that even though they are high dimensional, it was a relatively

small number of parameters that dominated each PC (Figure 3.31). Furthermore, a tail

could be seen behind the top parameters propagating into lower PCs (Figure 3.32). Still,

the combination of many PCs, even if they all were relatively low dimensional, added up

to a large number of parameters with a significant effect on the sensitivity.

Figure 3.30: Sorted Singular values for SASSy analysis of larger apoptosis model. All
Singular values are normalised so that the highest one is 1. Log10 Singular values on the
y-axis.
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Figure 3.31: Principal component (PC) plot for the first 20 PCs in the SASSy analysis of
the larger apoptosis model. Parameters on the ki-axis with the first PC furthest to the
front. Each PC has several parameters with a significant contribution.

(a) PC 2-20 (b) PC 3-20

Figure 3.32: PC plot of analysis using the SASSy program on the larger apoptosis model.
(a) From second PC. (b) From third PC. Parameters on the ki-axis with the first PC
furthest down. Each PC has several parameters with is significant contribution.
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3.3.2.4 SloppyCell analysis reveals two types of sensitivities

The model was run to time 20 hours and all parameters except actD, TNF, BHA, CHX,

Tr, and CytCfree were set to be optimisable. Around normal settings there was no other

eigenvalue which was within 1% of the largest eigenvalue. This PC had a large number

of parameters with a significant contribution to the sensitivity (Figure 3.33). The single

parameter sensitivities, estimated by the Hessian with regard to single parameter pertur-

bations spanned a much larger range of values compared to the analysis of the smaller

model (Figure 3.34). This was true both when measuring all variables as experimental

data and when measuring only the amount of activated Caspase 3.
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Figure 3.33: SloppyCell sensitivity analysis using normal variable and parameter setting
and only active Caspase 3 as experimental data. From the top: eigenvalues, 1st PC and
2nd PC. Only one eigenvalue was within 1% of the largest eigenvalue namely the first
one. Both the first and the second PC had contributions from a very large number of
parameters.
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Figure 3.34: SloppyCell Hessian for single parameters (dχ2/d log θjd log θj) in the larger
Apoptosis model. The Hessian spans several orders of magnitude both when measuring
all variables (a) and when measuring only active Caspase 3 (b) indicating a large spread
in sensitivities. Values have been normalised by the largest value. Small value indicates
high sensitivity as only a small perturbation is needed for the constant model behaviour
change.
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3.4 Conclusion

Using variable and parameter scans, it was relatively simple to identify ranges of variable

or parameter values where the system was more sensitive to further perturbations than

in the normal cases. Furthermore, in the smaller apoptosis model these areas were very

narrow, with an almost instantaneous flip from a short to a very long time to apoptosis.

This was true for many variables in the larger apoptosis model as well, although pertur-

bation of some variables had a more gradual effect on the time to apoptosis. However,

it also quickly became clear that the sheer number of possible combinations of variables

and parameters made it impractical to evaluate the effect a certain SNP could have in

a biological system. In the larger apoptosis model, the analysis was restricted to initial

protein concentrations resulting in scans of 16 variables. The analysis could have been ex-

tended to transcription and translation parameters as well, resulting in a 24-dimensional

space. Even in the smaller system with only 19 parameters and 1 variable (not linked

to any parameter) of interest the space of possible combinations of large perturbations

was too large to fully examine. The analysis was therefore first limited to the parameters

representing production rates. It was then further limited to evaluate how changes in one

or two parameters affected the time to apoptosis and only how further perturbations in

the already chosen parameters would affect the system. Even if only the resulting 2D-

maps were to be considered and only the areas where further perturbations in the chosen

parameters had a significant effect on the time to apoptosis, the analysis could have been

expanded into all of the other parameters for those regions of each map.

The two sensitivity analysis methods, SASSy and SloppyCell, gave similar results,

even though they measured slightly different things as, explained in section 3.1.2. SASSy

indicated that the smaller apoptosis model was mainly controlled by a few parameters

(Figure 3.18 and 3.19). The SloppyCell analysis on the other hand indicated a more com-

plex sensitivity with many parameters contributing (Figure 3.20). Interestingly, SASSy

indicated that the main contributors to the sensitivity were the production rate parame-

ters of the four proteins involved in the model (Figure 3.19). Furthermore, this pattern

was more or less unaltered when moving from an area where the time to apoptosis as

simulated by the model was relatively insensitive (3,000 molecules of activated Caspase 8

at initiation), to an area where the model showed a much higher sensitivity (500 molecules

of activated Caspase 8 at initiation). The pattern also remained regardless of whether

the analysis was performed from time 0 to maximum concentration of activated Caspase

3, within a window around the maximum of activated Caspase 3 or from time 0 to 4000

minutes (Figure 3.18). This indicates that the sensitivity of the model is mostly decided
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by a feature which is more or less the same in all cases, namely the short time frame

when the activation of Caspase 3 and 8 overtakes the inhibition of IAP and BAR and

the former see a rapid increase, whereas the latter decrease. This points to one of the

problems with trying to use standard sensitivity methods to assess phenotype sensitivity,

for which is it not designed.

In contrast to the relatively simple sensitivity of the smaller apoptosis model indicated

by SASSY, the pattern for the larger apoptosis model was more complex. SASSy yielded

a set of PCs with relatively slow decay in importance, where each of the PCs contained

a smaller number of significant parameters compared to SloppyCell (Figure 3.31). Slop-

pyCell on the other hand indicated that the sensitivity was mainly governed by the first

PCs, which contained a large number of parameters (Figure 3.33). The end result was

that, in order to explain a large part of the sensitivity, a large number of parameters

would have to be considered. A further complication, hinted at earlier, is that most of

the protein concentrations in the larger apoptosis model are set by initial variable values

and the total concentration in various conformations, then remain constant throughout

the modelling, or decay over time, in a fashion governed by a decay parameter, without

being renewed. This means that it is not straightforward to measure the sensitivity of the

model with regards to parameter changes and protein concentrations at the same time

using these methods. Instead of creating PCs with both types of sensitivities in them, the

model would have to be run several times, and parameter sensitivities, evaluated as the

protein concentrations to be varied for each run. This would make it possible to get an

idea of how the parameter sensitivities vary as variable values change, but not how they

interact to affect the sensitivity of the model as a whole.

One constraint, which was not considered using SASSy, was which aspects of the

system dynamics were of interest. Although the behaviour of the entire system upon

perturbations might be of interest in some cases, in the cases studied here, it is arguably

really only the dynamics of Caspase 3 which matters. As could be expected, whether data

from all nodes were used or only that of active Caspase 3 had a big impact on the results

of the analysis in the larger apoptosis model. Although the patterns of sensitivity were

much more similar in the smaller apoptosis model, there was a slight difference both in

the eigenvectors and the eigenvalues.

Although it could be argued that the activation of Caspase 3 is of far greater im-

portance than the dynamics of the rest of the system, it is not necessarily the detailed

dynamics of said component which is of interest, but the time to reach a peak correspond-

ing to further activation of the pathway. Consequently, even if all of the other proteins

84



are ignored and only the sensitivity of Caspase 3 activation is considered, the results from

SloppyCell or SASSy would not correspond directly to the sensitivity of interest.

To circumvent this problem, initially, the time frame in which the sensitivity was

measured was adjusted in each case so that it would stop when Caspase 3 reached its

peak activation levels. This allowed for the change in levels of activation to be used as a

proxy for change in time, as shift in time would result in a shift in activity level during

that time difference. However, this correlation between the shift in time and dynamics

is not perfect as a perturbation could change not only the time of the peak but also the

height. Furthermore, the correlation has some limitations with regards to the size and

direction of the shift in time. If the time to the peak were to shift too far into the future

upon perturbation, the increase in active Caspase 3 levels would not start within the set

time frame and the correlation between the shift in time and dynamics would break.

The choice to focus on the four production rate parameters in the smaller apoptosis

model was based on both the experimental results and the literature. These parameters

were found to be the most sensitive in the SASSy analysis. Furthermore, most disease

related SNPs are located outside of protein coding regions indicating that many of them

have an effect on the expression of the protein rather than the function [30, 45]. This

would mean that the four production parameters in the model would be the most likely

to be subject to alteration by SNPs.

When limiting the analysis to these four parameters, there again were slight differences

in the PCs when using different amounts of initial activation signal, suggesting different

sensitivity patterns depending on the signal (Figure 3.23). This, however, only explores

the possibility where the system is being sensitised due to a downgrade of upstream

activation. As was shown by the parameter scan: the system could also alter behaviour,

by mutations altering the parameters in the system.

From the parameter and variable scans two main areas of the phase space were iden-

tified, with either a high or a low maximum concentration of activated Caspase 3 in the

larger apoptosis model, or a short and a long time to onset of apoptosis in the smaller

apoptosis model. By closer examination, it became clear the two behaviours of slow and

fast activation were separated by a curve in parameter space. The same could be said

about the two behaviours of the larger apoptosis model in variable space. By extrapola-

tion it is clear that this line extends into a surface in 3 dimension and a hyper-surface in

higher dimensions. To fully explore the sensitivity of the model around this hyper-surface,

one would have to analyse parameter combinations tracing all along the borders of states

which did respond in time and the ones that did not. This is not only a daunting number

of analyses, it would also be very difficult to compare the sensitivities between the states,
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as a very small change in the initial parameters could have a large effect on the sensitivity

spectrum obtained and it would be very difficult to be exactly the same distance from the

separating border in every case. It was therefore concluded that the method would be able

to give some insight into which SNPs would be most likely to cause a disease phenotype,

given any specific set of mutations or other cellular events, bringing the system close to

the border of the two phenotypes. However, it is not feasible to explore why one SNP is

correlated with a disease and another is not in general, as that would require a weighted

estimation of the sensitivity given all possible sensitivities for a system moving from a

robust to a sensitised position in parameter space.

However, the parameter and variable scans, together with the parameter sensitivity

analyses showed that, although the hyper space where dynamic behaviour changed rapidly

was very complex, it was also very thin, meaning that in any one dimension, there was a

very narrow window of parameter values with a higher sensitivity. This was especially true

for higher initial amounts of activated Caspase 8 in the smaller apoptosis model. Consid-

ering how many genetic and epigenetic alterations could potentially alter the expression

of a protein, and how they could interact to give a wide range of expression values, it is

very unlikely that a system would, by chance, end up precisely in the parameter value

window where the system is sensitised.

Considering how thin this hyper space of increased sensitivity is, it is as if it is acting

like border separating the two behaviours. If the problem is viewed from that perspective,

the question would then not be, which SNP has the largest effect once the system is

sensitised, but how likely is a SNP to push the system over the border, given a random

set of mutations or other alterations, acquired during the course of a persons life. This

will be the scope of the coming chapters of this thesis.
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Chapter 4

Separatrix Analysis

4.1 Theory

In chapter 3 the limitations of standard sensitivity analysis tools were exposed, when

trying to use them to examine the sensitivity of phenotype change. Using the smaller and

larger apoptosis model by Eissing et al. and Schlatter et al. respectively it was seen that

for large parts of parameter or variable-state space there was very little sensitivity in the

part of the model dynamics interpreted as representing phenotype change. Furthermore,

as the initial settings moved in state space, representing accumulations of mutations over

the course of an individual’s life, there was a very small window of opportunity where the

system exhibited a heightened sensitivity in the important dynamics. In fact, it seemed

almost as if the two phenotypes, responsive and non-responsive, were separated by a

surface and crossing this surface resulted in near-instantaneous switching.

In this chapter, a method will be developed and explored, making use of this surface

in order to assess phenotype sensitivity. First, the suitability of this surface as a measure

for phenotype sensitivity will be explored conceptually. Then a method for using the

surface will be presented and finally the new method will be explored in principle and

using simulated Single Nucleotide Polymorphism (SNP) data.

4.1.1 Separatrix surface

Considering a general dynamical system, if the output of the system depends on one

parameter or the initial state of one variable (from here on only parameters will be men-

tioned, however the concepts discussed also apply to initial variable values), then as that

parameter is being perturbed away from its initial value, the output will start to deviate.

If enough is known about the phenomenon said system is modelling, then there will be a

point along the line of possible values, where one can consider the output no longer being
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within the range of normal system behaviour. In biological systems that might correspond

to an apoptosis network yielding a time to activation which is no longer consistent with

normal cell behaviour, i.e. effectively no apoptosis. Alternatively, it might be a cell cycle

model which no longer responds to control signals in a way characteristic of normal cells.

This point along the parameter value line can be seen as separating two sets of values

yielding distinct model behaviours and will from here on be referred to as a separatrix

point.

If the system were to have two parameters affecting the output, combinations of those

parameters would form a separatrix curve in a two dimensional parameter space separating

the two sets of behaviours. Additionally, a system with three parameters would form a

surface and systems with more parameters would form a hypersurface in a hyperspace.

Note that the use of the term separatrix here is different from that traditionally used

in mathematics. In mathematics a separatrix is traditionally defined as the separation

between basins of distinct dynamical behaviour, such as the rotation and oscillation of a

pendulum or the two steady states of a bistable switch. In this thesis, the separatrix will

be defined as separating biological behaviour. Since biological behaviour is not always

clearly defined and not always easy to relate to dynamical behaviour of a model, these

will have to be defined for each phenotype and model explored.

If the separatrix defines the border between cancer and non-cancer phenotypes, then

the risk of acquiring cancer could then be seen as the risk of crossing over from one side

of the separatrix to the other. In the case of apoptosis that would mean shifting from a

position of “normal apoptotic response” to a position of “no apoptotic response” such as

might initiate a tumour. A change in any parameter accounted for in the separatrix, or

any combination thereof, could potentially cause the system to cross over. The sensitivity

of the system with regards to that parameter could be seen as the degree to which a given

change in that parameter changes the likelihood of the system to cross over.

There are several ways in which the notion of a separatrix could be used to evaluate

phenotype sensitivity. In this thesis the suitability of the average distance between starting

point and separatrix as a general measure of phenotype sensitivity will be assessed.

This approach relies on a number of assumptions:

1. There exists a clear definition for separating the behaviour of the system into a

normal and an abnormal phenotype.

2. Over any given time-frame, cells in the body would accumulate mutations and

epigenetic changes which would shift the position in parameter space.
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3. The likelihood of a set of mutations to move the system to a certain position in

parameter space can be related to the distance between the new location and the

start location.

Before evaluating the suitability of the distance to the separatrix as a measure for

phenotype sensitivity, one would first have to decide what is meant by the distance between

a point and a surface, and further, how that relates to the biological question in mind.

In general the distance from a point to a surface or a volume is taken to be the shortest

distance between the point and any point on the surface, within the volume. For many

purposes that is a reasonable definition.

However, if this concept is being applied to the likelihood of a biological system crossing

over a separatrix, it is not at all clear that the point closest to the starting point is a

good approximation for the surface. This point would correspond to the least amount of

perturbation needed to reach the surface, but if the parameter space is multidimensional,

this could require larger or smaller perturbations in all or, most of the parameters. If the

likelihood of a perturbation of a parameter is small to begin with, it is not at all clear

that two, three or four small to medium range perturbations are more likely to take place

than one large one. If the system can take a large number of paths to cross the separatrix,

it seems more suitable that the distance to the separatrix should be considered a function

of all the possibilities of crossing over.

In a system with one parameter affecting the outcome, regardless of the distribution

of possible values the parameter can take given the possible genetic alterations and their

individual likelihood, the likelihood of crossing the separatrix point is proportional to the

ratio of the density of the distribution on the other side of the separatrix to the entire

distribution (It is assumed that, given physical limitations, the distribution has an finite

upper limit).

By extension, if the shape of the distribution is independent of where in parameter

space the system is starting, then an instance closer to the separatrix must have a higher

chance of crossing over to the other side than an instance starting off further away. This

is because an instance closer to the separatrix will extend the part of the distribution on

the other side of the separatrix. Hence, the likelihood of crossing over the separatrix is

relatable to the distance between the initial point and the separatrix. Furthermore, if the

likelihood of crossing over in any one direction is proportional to the distance between the

starting point and the separatrix point in that direction, then the likelihood of crossing

over could be seen as the average of the distances to every part of the surface.

If the system is already sensitive in one or several directions at the original location

of the parameter space, then such sensitivities could be detected by standard sensitivity
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methods as those discussed in Section 3.1.3. However, in the case of disease associated

SNPs, it is understood that the system is generally far away from the separatrix. If the

analysis is limited to parameters for which this is true, the likelihood of crossing over

the separatrix could be seen as the average distance to all points on the separatrix at

a comparable distance from the initial location. This puts a practical limitation on the

method, as the parameters included in the analysis cannot have too wide a variation in

sensitivity, which is something to keep in mind when designing the experiment.

4.1.1.1 Specific limitations for this thesis

The presence of something which could be interpreted as a separatrix surface was seen

in Chapter 3, using the smaller and larger apoptosis model as study examples. For the

smaller apoptosis model, the initial amount of activated Caspase 8 acts as an initial

activator from an upstream pathway and the following burst in Caspase 3 activation is

interpreted as onset of apoptosis. When decreasing the amount of initial activated Caspase

8, the time it took for the system to commit to apoptosis increased. If the amount of

initial activator was low enough, no burst in activated Caspase 3 (onset of apoptosis) could

be seen, even with the large time window set. The point at which any further decrease in

initial activated Caspase 8 would cause the system to not respond at all can be seen as the

separatrix point. It was also shown that the same behaviour could be seen when altering

the parameters guarding protein translation in the system, and also when altering two

parameters at the same time. In both cases a separatrix line could be identified. This

was shown to be true for all four model parameters and, by extension, alteration of

all four parameters at the same time would yield a four-dimensional separatrix surface.

Similar results were shown for pairs of initial variable values for the components in the

larger apoptosis model, and following the same logic the concept could be extended into

a multidimensional separatrix surface.

Although the time to activation of apoptosis changed as the system got closer to the

separatrix, for most of the parameter or variable space, this change was not very large

and as the system got close to the surface there was a rapid shift towards much longer

response times (i.e. longer time between initial signal and onset of apoptosis). In any

case, from a biological point of view, small changes in response time do not have much

effect on the system, since even if a cell managed to escape apoptosis just before mitosis,

the daughter cells would have time to respond. Similarly, even large changes in response

time are of little importance if the system still has time to respond, as they would have the

time of a full cell cycle. With that in mind, the separatrix surface, if time to apoptosis is
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set large enough, can be seen as a reasonable, although very simplified way of classifying

sets of cells which could create cancers and cells which could not.

To ensure that all points on the separatrix are of somewhat equal importance, the

surfaces used in this chapter will be confined between 0 and 2 times the initial values of

each parameter or variable. The problem of including points far beyond these limits can

be illustrated by considering a system with the following criteria (Figure 4.1):

1. the initial point is located between 0 and parts of the separatrix along the y-axis,

2. parts of the separatrix are located between 0 and the initial point along the x-axis,

3. points on the separatrix far beyond 2 times the initial value are taken into account

(Figure 4.1, blue area).

In this case there would be an asymmetrical distribution of points around the initial value.

The mean distance would then be dominated by perturbations along the x-axis where the

separatrix extends beyond 2. Even if a perturbation along the extended axis were to

move the system closer to some points, this decrease in distance would be cancelled by

the increased distance caused by moving further away from all the points in the extended

region.

In the case of genetic and epigenetic effects on a biological system this limitation is not

as severe as might first be thought. The lower limit of any parameter is naturally zero,

corresponding to a complete knock-out of a gene or a mutation that destroys its ability to

perform its function. Although the upper limit might not actually be 2 in reality, there

is usually a limit for how much a gene can be expressed before it either becomes toxic to

the cell or starts to interrupt other essential functions by high-jacking the translational

system. Mutations affecting function, rather than expression rarely render the protein

more efficient than it already was and 2 might then seem like an over-estimation. There

are several mutations which are known to render kinases constitutively active. However,

these mutations would represent structural differences in the model, as opposed to shifts

in parameter values. For that reason, these types of mutations will not be considered in

this thesis.

In this chapter, the separatrix will be restricted to parameters of the smaller apoptosis

model which govern protein production or variables of protein concentrations in the larger

apoptosis model. This decision is based on two facts. First, it was shown in Chapter 3

that the production parameters were among the most sensitive in the smaller model, with

regards to phenotype sensitivity. Secondly, although the exact function of most SNPs
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is not known, eQTL data and expression profiles indicate that many of them do indeed

affect transcription levels.

Furthermore, by limiting the analysis to expression altering parameters, experimen-

tal data could later be used to alter the models and estimate outcome. This gives the

possibility to assess the suitability of the method on experimental biological data.

1 2 3 4

1

2

3

Figure 4.1: Illustration of the problem of extending parameter space beyond 2 times the
initial value. A Perturbation along the x-axis would bring the system closer to a set of
points between 0 and 1 on that axis (bright green), but further away from a set of points
above 1 (dark green). As the space extends further away from the starting position there
will be ever more points which the system will be further away from (blue). If the space is
extended long enough the average distance from initial point to points on the separatrix
surface (as defined in Section 4.1.1) will increase as the system moves closer to the basin
of abnormal behaviour (decreased x). Additionally, as was pointed out in Section 4.1.1,
if the sensitivity of one of the parameters is much higher than the sensitivity of the other
parameters (so that the separatrix is much closer in one direction than in another), then
a similar problem of unbalanced distribution of points arises, even if the surface is limited
between 0 and 2 times the initial values.

4.2 Materials and Methods

4.2.1 Models

4.2.1.1 Smaller apoptosis model

The small apoptosis model published by Eissing et al. (2004) [95], introduced in Section

3.2.1.1 and used throughout Chapter 3 was further used in the work of this chapter. The
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four parameters corresponding to production rate of the four proteins Caspase 3, Caspase

8, IAP and BAR were targeted for further analysis. The initial activated Caspase 8 signal

was set to either 3,000 or 10,000 molecules and was subtracted from the total amount of

inactive Caspase 8 before starting the simulation. All equations and parameter settings

can be found in Appendix B.

The model was run up to 5,000 minutes after initial activation signalling. If no suffi-

cient Caspase 3 peak could be measured within this time, the system was classified as a

non-responder.

When parameters were perturbed from the standard values, the system was first run

to 5000 minutes with initial Caspase 8 activation set to zero, to allow for the system to

find its new steady state. The final steady state concentrations were then used as initial

concentrations in the actual run, with initial activation of Caspase 8.

4.2.1.2 Larger apoptosis model

A model of TNFα induced apoptosis signalling published by Schlatter et al., (2011) [91],

implemented in 3.2.1.2 was further used in this chapter. The node corresponding to trans-

lational inhibition by cycloheximide was always set to 0, as was the node corresponding to

the antioxidant butylhydroxyanisol (BHA) and node corresponding to translational inhi-

bition by actinomycin D. The activation signal coming from TNF was set to 100 and FasL

was set to change from 0 to 100 after 12 hours, as described in the paper. All equations

and parameter settings can be found in Appendix C. The onset of free Reactive Oxygen

Species (ROS) production was modelled by the function:

ROSfree(t) =
1

0.03× 2π
e

1
2
( t−4
0.03

)2 × 100× (1−BHA) (4.1)

resulting in a short burst of 100 ROS units being released after 4 hours. The model was

run for 20 hours unless stated otherwise.

The analysis was performed on two sets of variables: all the variables which were not

zero at time zero and with nodes that were not governed by production parameters; all

variables at the core of the model (Caspase 8, Caspase 3, XIAP, Bim, Bid, Bcl2 and

BaxBak), corresponding to the function of the smaller apoptosis model.

Limiting the separatrix space of the larger model to the pathway equivalent of that

covered by the smaller model allowed for a better comparison of the results between the

models and an evaluation of how the results translate from a smaller to a larger model.
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4.2.2 Phenotype sensitivity analysis tool

4.2.2.1 Defining separatrix surface and measuring distance from starting
point

To define the separatrix, points of the separatrix surface were determined using an adapted

method previously published by Cavoretto et al. [103, 104]. The way the full method

works is outlined in Figure 4.2 and Algorithm 2 and 3. For each parameter under in-

vestigation, a range of starting values were chosen and arranged so that they formed a

Latin Hypercube (using pyDOE v.0.3.8). For each set of parameter values, a point on

the surface was searched for along the axis of each parameter value. For each parameter

consecutively, the model was run with the maximum and minimum of the search range. If

the two runs gave results indicating they were on different sides of the separatrix surface,

the search was continued through a binary search algorithm with a predefined number

of iterations (the number of iterations varied between 5 and 20). For each iteration, the

middle point between the maximum and the minimum was identified. The model was run

with the minimum and middle parameter values. If the two runs gave results indicating

they were on different sides of the separatrix surface, the middle point was taken as the

new maximum and the search was iterated. If both runs were on the same side of the sep-

aratrix, the middle point was taken as the new minimum and the search iterated. For the

last iteration, either the middle or the maximum was taken to be the last approximation

of the point on the surface.

To calculate the distance between the system starting point and the separatrix surface,

the length of each vector between the starting point and the points identified to be close to

the surface was calculated and a mean of them taken to represent the mean distance. To

evaluate the sensitivity of a parameter or variable, the starting position of each parameter

or variable was perturbed individually and the distance to the surface was calculated again.

4.2.2.2 GWAS simulator

A python script was written, simulating SNPs linked to parameters or initial concentra-

tions of nodes in an ODE based biological pathway model and estimating how each SNP

affected the risk of a system to cross the separatrix given accumulation of mutations over

the course of a lifetime. In short the script functions as follows: A SNP is created having

a random target parameter and an effect k on that parameter, randomly drawn from a

normal distribution centred around 1.0 (σ=0.05), as well as an allele frequency randomly

chosen from a uniform distribution between 0.0 and 0.5.
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Algorithm 2 Finding points on the separatrix surface

1: search range = max and min of the space explored
2: iterations = the number of iterations to narrow down location of separatrix point
3: for all indices p in list of parameters in analysis do
4: for all vectors v of initial parameter values do
5: start and end = v
6: start[p] = minimum of search range . Position of parameter p in vector start
7: end[p] = maximum of search range
8: if SeparatrixTest(start,end) == True then . start and end give rise to

different phenotypes
9: SearchPoint(start, end, iterations) . Hone in on the actual separatrix

point
10: end if
11: end for
12: end for

13: function SearchPoint(start, end, iterations)
14: middle = start
15: for iteration in iterations do
16: middle[p] = (start[p] + end[p])/2
17: if SeparatrixTest(start,middle) == True then
18: end = middle
19: else
20: start = middle
21: end if
22: end for
23: return end . Return the upper vector as separatrix point
24: end function

25: function SeparatrixTest(start, end)
26: peak1 = maximum of activated Caspase 3 (using start)
27: peak2 = maximum of activated Caspase 3 (using end)
28: if peak1 < threshold and peak2 > threshold then
29: return True . Separatrix point is within interval
30: else if peak1 > threshold and peak2 < threshold then
31: return True . Separatrix point is within interval
32: else
33: return False . Separatrix point is not within interval
34: end if
35: end function
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Algorithm 3 Calculating the mean distance from starting point to the separatrix surface

function DistanceToSurface(separatrixPoints, startPoint)
2: lengthList = empty list

for all points in separatrixPoints do
4: append (point - startPoint) to lengthList

end for
6: return mean of lengthList

end function

An individual is then simulated with genotypes for each SNP chosen from binomial

distributions with likelihoods according to predefined allele frequencies. Each parameter

is then perturbed
∏
εxii times the normal value (as described in the original publication

of the model being studied), where εi is the effect of the SNPi and xi is the number of

risk alleles for that SNP. The individual’s response to apoptotic signal is then simulated

as described in Section 3.2.1.1 and if the response time is within normal range (5,000

minutes for the smaller apoptosis model and 25 hours for the larger apoptosis model),

the individual is kept. Otherwise it is discarded and a new individual is simulated. This

ensures that, although every simulated individual would have different start point in

parameter space due to their individual genotypes, all simulated individuals would have

a life compatible phenotype at “birth”. A second perturbation is then applied to each

parameter under investigation, drawn from a separate distribution (for the smaller model:

type gamma with k=2.2 and θ=1, for the larger model: type log normal with mean=0

and σ=0.5) simulating a life time accumulation of mutations. The parameter values

were chosen so that the distributions would resemble those of RNA expression values in

cancer cells (a heavy centre around 1 and a long, thin tail). The response is once again

simulated, and the individual characterised as having a cancer phenotype if it does not

respond within the time frame of the simulation. If it does respond, the individual is

characterised as healthy. When a sufficient amount of individuals in both healthy and

cancer groups has been collected, Odds ratios for cancer are calculated for all SNPs in

the simulations, according to standard methods.

ODDs−Ratio :
D(A)/D(B)

H(A)/H(B)
(4.2)

where:

A and B are the two alleles

H(x) and D(x) are the sum of healthy and diseased individuals with allele x, respec-

tively.
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4.2.2.3 Estimating the correlation between simulated SNPs and model char-
acteristics

Using 50 simulated SNPs, linked to parameters in the model, subsets of SNPs, ranging in

number from 10 to 50, were chosen and individuals were simulated with defined genotypes,

according to the method described in Section 4.2.2.2. For each individual the effect of the

genotype on the model parameters was taken into account and the model was run. Then

the individual’s risk score: ∑
(| loge(Odds ratio)i | ×xi) (4.3)

where:

xi is the number of risk alleles for SNPi over all risk associated SNPs,

was calculated. Finally the correlation between the risk score and either time to apoptosis

or distance to separatrix was tested using a linear least-square regression method. There is

no clear consensus in the fields as to how disease risk or genetic effects on model parameters

should be modelled. However, a log-additive model seems to be the most common way

of modelling SNPs effect on risk of developing disease and consequently, it was chosen for

this work. A multiplicative model seemed most reasonable when considering the genetic

effects on the models most likely to be of concern in this work (change of production rate)

and was chosen for modelling the effect of SNPs on the model parameters. To assess the

robustness of the method, the analysis was repeated several times, with different numbers

of SNPs and different sizes of risk scores.

If the method were to be applied to real biological data, there would be errors and noise

in every step of the analysis, making it more difficult to identify any links between the risk

of developing cancer associated with a certain genotype and the parameter perturbation

that genotype is causing. To investigate how noise in the data set would affect the

likelihood of finding a significant regression the analysis was also performed, linking only

a random subset of the SNPs to the parameters, while all of them contributed to the risk

score.
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Figure 4.2: Illustration of method for generating separatrix surface and calculating dis-
tance from the starting point to the separatrix surface. A: points are randomly chosen
in parameter-state space in a way which tries to cover as large a part of the space as
possible. B: along each axis a point on the separatrix surface is searched for by looking
for increasingly small intervals in which the phenotype switches. C: the average distance
is calculated between the starting point and the points on the surface. D: the starting
point is moved, corresponding to a perturbation caused by a SNP and the average dis-
tance is calculated again. E: the differences between the two measures can be compared
over several surfaces or individuals.
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4.3 Results

4.3.1 Mean distance to separatrix surfaces quickly converge and
precision increases as number of points and number of
search cycles increase

In this work a numerical method was developed for finding points on the separatrix and

relate them to the distance between a starting point and the separatrix as a whole. When

creating a separatrix surface using this method, two parameters have to be set: the number

of points on the surface and the number of cycles used to narrow down the interval within

which the point is situated (see Algorithm 2). To investigate how much of an effect

these parameters had on the shape of the generated surface and downstream analysis

several surfaces were generate using varying number of points and cycles (iterations in

SearchPoint() in Algorithm 2). For each surface the mean distances from starting point (1

in all dimensions) to surface was measured. Using the smaller apoptosis model by Eissing

et al., when increasing the number of points on the separatrix surface, the change in mean

distance from the starting point very quickly approached zero (Figure 4.3 and 4.4). The

mean distance as well as the deviation between runs showed much less dependence on the

number of iterations for narrowing down the position of the separatrix points than the

number of points used. This was especially true at the upper range of number of points

chosen.

Using the larger apoptosis model, a similar trend could be seen, where the variation

between simulations quickly decreased as the number of points on the surface increased.

However, whereas the number of points used had little effect on the mean distance, the

precision (i.e. the variation in mean distance between surfaces) never did converge within

the range of points explored in this analysis, but continued to decrease, although at a

slower pace. This was true both when the surface was containing all constant concentra-

tion variables in the model and when confining the analysis to the 6 variables at the core

of the model, corresponding to the smaller apoptosis model (Figure 4.5 and 4.6).

In summary, when generating the separatrix surfaces, the number of points initially

used to find the points of the surface proved to have a much larger impact on the precision

of the surface than the number of cycles used to narrow down on the interval within which

the surface was located for each point.
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Figure 4.3: One standard deviation of distances calculated over 10 surfaces generated
using different latin hypercubes for the smaller apoptosis model, using 10,000 molecules
as initial activated Caspase 8. Along the x-axis the amount of hypercube points which
are being fitted to each axis in parameter space is being varied between 1,000 and 10,000.
Along the y-axis the number of times the range within which the separatrix point is located
is being halved, is varied from 5 to 20. The spread of the distances is quickly decreasing
as the amount of points are increasing, but the rate with which it is decreasing decreases
as the number of points increases. The number of cycles (iterations in SearchPoint() in
Algorithm 2) of narrowing down on the separatrix point did not prove to have as much
of an affect on the variation of distances calculated between surfaces.
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Figure 4.4: Mean of distances to separatrix calculated over 10 surfaces for the smaller
apoptosis model, using 10,000 molecules as initial activated Caspase 8. Both plots show
the same data from different angles. Along the x-axis the amount of hypercube points
which are being fitted to each axis in parameter space is being varied between 1,000 and
10,000. Along the y-axis the number of times the range within which the separatrix point
is located is being halved, is varied from 5 to 20. With the exception of very low number
of points, there was not much difference between the setting. The system seemed to settle
around a narrow range of distances using between 5,000 and 10,000 points and between
15 and 20 cycles (iterations in SearchPoint() in Algorithm 2) for narrowing down on the
surface points.

Figure 4.5: Top: Mean of distances calculated over 10 surfaces for the larger apoptosis
model, using 10 cycles (iterations in SearchPoint() in Algorithm 2) of narrowing down
on the separatrix surface. Along the x-axis the amount of hypercube points which are
being fitted to each axis is being varied between 500 and 6,000. Bottom: One standard
deviation of the mean distances.
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Figure 4.6: Top: Mean of distances calculated over 10 surfaces using a smaller set of
variables in the larger apoptosis model, using 10 cycles (iterations in SearchPoint() in
Algorithm 2) of narrowing down on the separatrix surface. Along the x-axis the amount
of hypercube points which are being fitted to each axis is being varied between 500 and
6,000. Bottom: One standard deviation of the mean distances.
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4.3.2 Phenotype sensitivity analysis

4.3.2.1 Perturbations in the smaller apoptosis model result in clear differ-
ences in distance to the separatrix

When perturbing each parameter corresponding to the production rates of the four pro-

teins in the model individually, the distance between the new starting point and the

separatrix surface changes in an expected fashion. A decrease in either of the two in-

hibitors, IAP or BAR, brings the system further away from the separatrix, whereas a

decrease in either of the activators, CASP3 or CASP8, brings the system closer. This

behaviour is in agreement with what would be expected, since a decrease in the amount

of inhibitor would decrease the time to apoptosis and render the system less “cancer-like”.

On the other hand, a decrease in an activator would increase the time to apoptosis and

render the system more “cancer-like”. When comparing the actual distances after small

perturbations on ten different surfaces to the distances to the surfaces without any per-

turbations, there was a clear overlap of the distributions of distances for the ten surfaces

before and after the perturbation (Figure. 4.7), meaning that the variance in distance

between different calculations of the surface was generally larger than the effect a pertur-

bation had on the distance to each surface. However, when taking the same surfaces and

comparing the change in distance for each generated surface (i.e the difference in distance

to the same surface with and without a perturbation of the initial point) the results were

very consistent (Figure. 4.11a), indicating that although there was a difference between

the generated surfaces, each of them were capable of representing the actual surface. Fur-

thermore, the direction of the change in distance depends both on the initial concentration

of activated Caspase 8, which dictates how far away from the starting point the separa-

trix surface is (As can be seen in Chapter 3), as well as the amount and direction of the

perturbation. For example, when initiating with 10,000 molecules of activated Caspase

8, upon perturbations of IAP and BAR the distance changes in the same direction, for

any perturbation between -0.1 and 0.05 times the initial value, as does the distance upon

perturbations of Caspase 3 and Caspase 8 (Figure 4.8). When the amount of an inhibitor

(IAP and BAR) is increased, the system moves closer to the separatrix, i.e. it becomes

more likely to stop responding to an apoptosis signal. Likewise, when the amount of an

activator (CASP3 and CASP8) increase the system moves further away from the surface,

making it less likely to stop reacting to activation signal.

However, if the system is initiated with 3,000 molecules, small perturbations of IAP

cause the distance to change in the opposite direction of the distance resulting from

perturbation of BAR, and in the same direction as that resulting from perturbations
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of either Caspase 3 or Caspase 8 (i.e. decreased inhibitor decreases likelihood of not

responding.) (Figure 4.9). If the perturbation is large enough in the negative direction,

however, the shift in distance changes direction and moves with that of BAR, until it

shows the expected behaviour again, i.e. opposite behaviour of perturbations of either

Caspase 3 or Caspase 8 (Figure 4.10). The results from the distribution of distances were

consistent with that of changes is mean distance of each surface (Figure 4.11b).

Figure 4.7: Distance from starting point to separatrix surface, calculated as mean dis-
tance to all points on the surface. The surface is calculated with 10,000 molecules of
initial activated Caspase 8 and each parameter is perturbed -0.01 times the initial value.
Blue data indicate distances from original starting point to 10 surfaces whereas other data
indicate distances after perturbation of the production rate parameter of the correspond-
ing protein. As the parameters corresponding to Caspase 3 and Caspase 8 production
rates are decreased the distance to the surface decreases as well, whereas a decrease in
the parameters corresponding to production parameters for IAP and BAR result in an
increase of the distance.

A closer inspection of the distribution of the separatrix points along each axis, shows

that the surface is skewed towards smaller values of IAP when initiating with 3,000

molecules, compared to when initiating with 10,000 molecules, (Figure 4.12 - 4.15). this

indicates that there are more possibilities for the system to cross over from a responder

state into a non-responder state, when IAP is down-regulated compared to when it is

up-regulated, even though it is acting as an inhibitor. The same skewness could be seen

along the axis of Caspase 3 and Caspase 8 in both scenarios, indicating that there are

more possibilities to cross over into a non-responding state with lower levels of activa-

tors, regardless of the strength of initial activation signal, as would be expected. The

distribution along the axis of BAR was much more uniform in both cases.
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Figure 4.8: Distance from starting point to separatrix surface, calculated as mean dis-
tance to all points on the surface. The surface is calculated with 10,000 molecules of
initial activated Caspase 8 and each parameter is perturbed: top left; -0.05, top right;
0.05, bottom left; -0.1, bottom right; 0.1 times the initial value. Blue data indicate dis-
tances from original starting point to 10 surfaces whereas the rest indicate distances after
perturbations of respective production rate parameter.
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Figure 4.9: Distance from starting point to separatrix surface, calculated as mean distance
to all points on the surface. The surface is calculated with 3,000 molecules of initial
activated Caspase 8 and each parameter is perturbed -0.01 times the initial value. Blue
data indicate distances from original starting point to 10 surfaces whereas the rest indicate
distances after perturbation of respective production rate parameter.
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Figure 4.10: Distance from starting point to separatrix surface, calculated as mean dis-
tance to all points on the surface. The surface is calculated with 3,000 molecules of initial
activated Caspase 8 and each parameter is perturbed: top left; -0.05, top right; 0.05, bot-
tom left; -0.1, bottom right; 0.1 times the initial value. Blue data indicate distances from
original starting point to 10 surfaces whereas the rest indicate distances after perturbation
of respective production rate parameter.
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Figure 4.11: Percentage mean distance change per percentage parameter change for each
separatrix surface of the smaller apoptosis model. 10,000 molecules (a) 3,000 molecules
(b) was used as initial activation signal of Caspase 8 and each parameter was perturbed
-1% one at a time. From left to right the parameters are production rates of Caspase
8, Caspase 3, IAP and BAR. Using 10,000 molecules as initial activation signal, there is
a clear difference in distance between perturbations of the studied parameters and each
perturbation is clearly shifting the distance in the direction which would be expected given
the function of the variable in the network. Using 3,000 molecules as initial activation
signal, perturbation of IAP has an effect opposite to what would be expected.
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Figure 4.12: Distribution of separatrix points along one axis for surface using 3,000
molecules as initial activated Caspase 8. On the y-axis is the portion of points in each bin
of the axis under investigation along the x-axis. Both Caspase 3 and Caspase 8 have more
points below the normal value of one, indicating that over a large part of the surface these
two nodes are down-regulated, as would be expected. BAR has a more even distribution,
indicating that there are many possibilities of crossing the surface where BAR is either
up- or down-regulated. Contrary to what would be expected, IAP has more points below
one, indicating that even though it is an inhibitor, there is still a larger part of the surface
where it is being down-regulated than up-regulated.

Figure 4.13: Distribution of separatrix points along one axis for surface using 10,000
molecules as initial activated Caspase 8. On the y-axis is the portion of points in each
bin of the axis under investigation along the x-axis. The distribution of points on the axis
of Caspase 3 and Caspase 8 are even more skewed towards them being down-regulating,
indicating that their down-regulation is very important for the chance of crossing over
the surface. Compared to the surface for 3,000 molecules of activated Caspase 8, the
distribution of both IAP and BAR are skewed towards them having larger values (Figure
4.12).
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Figure 4.14: Distribution of separatrix points along two axes for surface using 3,000
molecules as initial activated Caspase 8. In almost every case there are points spread over
the entire domain.
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Figure 4.15: Distribution of separatrix points along two axes for surface using 10,000
molecules as initial activated Caspase 8. In almost every case there are points spread over
the entire domain. The concentration of points in certain areas is much strong than when
using 3,000 molecules as initial activation signal (Figure 4.14)
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4.3.2.2 The quality of results for the larger apoptosis model depend strongly
on the number of nodes included in the analysis

The larger apoptosis model was run with either all variables whose concentrations are not

governed by production parameters, or with just a small subset of those variables around

the core of the model, representing the same functional module as the smaller apoptosis

model. For the larger set of variables, there was relatively little sensitivity of the variables,

with small shifts in the distribution of the distances upon perturbations (Figure 4.16 and

4.17). This lack of sensitivity for some parameters carried over to the distance change

of each surface, where even a 0.05 times perturbation in the negative direction resulted

in many variables having a distribution of mean distances changes including zero (Figure

4.18c). Decreasing the perturbation to -0.01 times the initial concentration resulted in the

distributions of some of the variables to no longer include zero (Figure 4.18a). However,

it moved the distributions of some of the more insensitive variables down to zero. A 0.05

times perturbation in the positive direction did result in non-zero overlapping distributions

of mean distance changes, but there was very little variation for most of the variables

(Figure 4.18d).

Upon inspection of the distribution of the separatrix points along each axis, it was

seen that most variables had a close to uniform distribution (Figure 4.19). Two variables

with a slightly skewed distribution were FADD and Caspase 8. These variables were also

two of the most sensitive ones, as identified in Figure 4.16. Caspase 3 also had a skewed

distribution; however, the distance to separatrix did not prove to be any more sensitive

to perturbations in this variable than any other of the variables investigated.

When limiting the surface to encompass the variables governing the core of the model

around Caspase 3, there was a clearer distinction between the variables. Small negative

perturbations of all inhibitors brought the system further away from the surface, whereas

negative perturbations of all activators brought the system closer to the surface, as would

be expected (Figure 4.20 and G.3). Interestingly the relative order in which the variables

affected the distance to the surface corresponded with the order in which the parameters

in the smaller apoptosis model affected the distance to that surface, indicating that,

although the wiring of the two models are slightly different, they both capture the same

type of dynamics. Closer inspection of the distribution of the surface points along each

axis showed that a larger part of the surface was located in areas where activators were

down-regulated and/or inhibitors were up-regulated than the other way around (Figure

4.21).
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Figure 4.16: Distance from starting point to separatrix surface for larger apoptosis model,
calculated as mean distance to all points on the surface before and after each variable
is perturbed 0.1 times the initial value. Blue histogram indicate distances from original
starting point to 10 surfaces whereas red histogram indicate distances after perturbation.
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Figure 4.17: Distance from starting point to separatrix surface for larger apoptosis model,
calculated as mean distance to all points on the surface before and after each variable
is perturbed -0.1 times the initial value. Blue histogram indicate distances from original
starting point to 10 surfaces whereas red histogram indicate distances after perturbation.
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Figure 4.18: Percentage mean distance change per percentage parameter change for each
separatrix surface of the larger apoptosis model as each variable is perturbed one at a
time, 1% (a–b) or 5% (c–d) times the initial value. (from left to right: proMKK7, JNK,
prophosphatase, FADD, proDISC, Caspase 8, cFLIP, itch, MKP, Bim, Caspase 3, Bid,
BaxBak, XIAP and Bcl2).
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Figure 4.19: Distribution of separatrix points along one axis. On the y-axis is the portion
of points in each bin of the axis under investigation along the x-axis. Apart from FADD,
Caspase 8 and Caspase 3, the distribution of points are fairly uniform, indicating that
they are not more sensitive in on direction than another.
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Figure 4.20: Percentage mean distance change per percentage parameter change for each
separatrix surface of the larger apoptosis model as each parameter is perturbed one at
a time, -0.01 times the initial value. Initial variable values of genes in the core of the
model around the Caspase was included in the surface (from left to right: Caspase 8,
Bim, Caspase 3, Bid, BaxBak, XIAP and Bcl2). As expected, decreasing any of the
activators (first 5 genes in order: Caspase 8, Bim, Caspase 3, Bid and BaxBak) resulted
in a shortening of the distance to the surface, whereas a decrease of any of the inhibitors
(last 2 genes: XIAP and Bcl2) resulted in an increase in the distance.
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Figure 4.21: Distribution of separatrix points along one axis. On the y-axis is the portion
of points in each bin of the axis under investigation along the x-axis. The distribution
of points on the axis of activator Caspase 8, Caspase 3 and BaxBak are clearly skewed
towards them being down-regulated, whereas the distribution of points for the 2 inhibitors
XIAP and Bcl2 are slightly skewed towards them being up-regulated. The distribution of
points for the two activators Bim and Bid do not show much of a skew in either direction.
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4.3.3 GWAS simulation

4.3.3.1 Risk score correlates strongly with both time to apoptosis and dis-
tance to separatrix of the smaller model

Generating only SNPs affecting the rate parameters of the proteins in the model, popula-

tions of one million diseased and one million non-diseased individuals were simulated and

odds-ratios were calculated according to Section 4.2.2.2. In this way, 50 SNPs with corre-

sponding odds-ratios and a p-value below 5*10−4 were generated (Appendix Table F.1).

Using these SNPs sample populations were simulated and the risk score (
∑

(| loge(Odds

ratio)| × number of risk alleles) for all SNPs) was correlated to the time to apoptosis as

calculated by the model, as well as the distance to the separatrix as defined previously.

When the developed method was later applied experimental data, the smallest popu-

lation size 50 individuals. As to not overestimate the power of the method the simulated

sample size was also limited to 50 individuals. Given the size of the models and the low

likelihood of having several SNPs affecting the same gene the number of SNPs used was

also limited to 10 SNPs. This sample size was also in agreement with those later used for

experimental data. With this setup clear correlations could be identified, both between

risk score ratio (RSR, individual risk score/largest possible risk score given the SNPs car-

ried by the individual) and time to apoptosis, as well as distance to separatrix (Figure.

4.22). Repeating the experiment with different sets of SNPs resulted in clear correlations

between the RSR and the time to apoptosis (data not shown). The correlation between

the RSR and the distance to separatrix also proved robust, although less robust than the

correlation between RSR and time to apoptosis (data not shown).

When increasing the number of SNPs in the risk score, without linking them to the

model, so that only 10 out of 20 SNPs actually affected the time to apoptosis or the

distance, whereas all are used to calculate the risk score, clear correlations could still be

seen, although not as strong as when all SNPs had been linked to the model (Figure. 4.23).

Repeating the experiment with different sets of SNPs again indicated robust correlation

between the RSR and both the time to apoptosis and distance to separatrix, although

less robust than when all SNPs had been linked to the model (data not shown).

By varying the number of SNPs in the analysis and the portion of those SNPs linked

to the model, a clear correlation could be seen between the fraction of risk score linked

to the model (SNPs which affect a parameter in the model) and the significance of the

correlation. Moreover, very small fractions of the risk score needed to be attributed to

SNPs linked to the model in order to get a correlation with a p-value below 0.01 (Figure

4.24).
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Figure 4.22: Simulations of 50 individuals with generated genotypes for 10 simulated
cancer associated SNPs. Left: correlation between RSR and time to apoptosis calcu-
lated by applying the SNP perturbations to the corresponding parameters in the model
before running it for 5,000 minutes, with 10,000 molecules of initial activated Caspase
8. Right: correlation between RSR and distance to separatrix surface after applying the
perturbations to corresponding parameters.

Indeed by repeating the analysis 10,000 times (using 50 individuals each time) and

calculating a mean p-value within a moving window of 500 analyses, it could be seen that

if around 40% or more of the risk score was linked to the model a significant correlation (p-

value < 0.01) was obtained almost every time (Figure 4.25). If the number of individuals

was increased to 100 only around 30% of the risk score would have to be linked to the

model for similar results. When using the distance to the separatrix instead of the time

to apoptosis a similar trend could be seen. However, a much larger fraction of the risk

score had to be linked to the model in order to see a significant correlation almost every

time (Figure 4.26a). The same was true when increasing the amount of samples in each

simulation to 100 individuals (Figure 4.26b).
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Figure 4.23: Simulations of 50 individuals with generated genotypes for 20 simulated
cancer associated SNPs, where 10 were randomly chosen to be associated with the correct
parameter, whereas the other did not have any effect on the model. Just as in the previous
case in Figure 4.22, there is a clear correlation between the RSR and: left; the time to
apoptosis as well as, right; distance to separatrix.

Figure 4.24: 50 calculations of p-values for correlations between RSR and left: time to
apoptosis, and right: distance to separatrix. For each experiment 50 individuals were
simulated with a random number of SNPs and a random number of those SNPs linked to
the model.
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(a) 50 samples (b) 100 samples

Figure 4.25: Correlation between time to apoptosis and RSR for the smaller apoptosis
model. Ten thousand experiments with either 50 (a) or 100 samples (b) each were gener-
ated. In each simulation a random number of SNPs (max 50) were chosen and a random
subset of those SNPs were linked to the model. Each point represent the fraction of 500
experiments around that point with a p-value below 0.05 (blue) and 0.01 (red).

(a) 50 samples (b) 100 samples

Figure 4.26: Correlation between distance to separatrix and RSR for the smaller apop-
tosis model. Ten thousand experiments with either 50 (a) or 100 (b) samples each were
generated. In each simulation a random number of SNPs (max 50) were chosen and a
random subset of those SNPs were linked to the model. Each point represent the fraction
of 500 experiments around that point with a p-value below 0.05 (blue) and 0.01 (red).
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4.3.3.2 The correlation between risk score and the distance to separatrix of
the larger apoptosis model depends largely on the number of nodes
included

Generating SNPs for all 13 variables used in the larger apoptosis model resulted in 50

SNPs with a p-value > 0.05 (Appendix Table F.2). Whereas the SNPs for the smaller

model were spread evenly across all parameters of interest, there was a more skewed

distribution of SNPs for the larger apoptosis model. There were no SNPs targeting NFκB

or itch and only one SNP targeting proMKK7 or FADD. Also BaxBak as well as JNK and

prophosphatase were under-represented with only 2 and 3 SNPs each respectively. The

SNPs of these under-represented targets also tended to have a larger effect than many

other SNPs. When considering only small effect SNPs (between 0.95 and 1.05 time the

initial value), there were only SNPs targeting Bid, Bim, Caspase 3, Caspase 8 and XIAP.

Randomly choosing 10 of the total set of SNPs and linking a random number of

them to the larger apoptosis model resulted in a weak correlation between RSR and the

time to apoptosis, and an even weaker correlation with distance to separatrix. Repeated

simulations with 50 individuals showed a trend of RSR-time correlations with increased

significance when the fraction of the RSR linked to the model increased Figure 4.27a).

The same trend could not be seen with regards to correlations between RSR and distance

to separatrix (Figure 4.27b).

(a) time to apoptosis (b) distance to separatrix

Figure 4.27: 50 calculations of correlations between RSR and a: time to apoptosis and,
b: distance to separatrix for the larger apoptosis model. Each simulations contained 50
individuals with 10 SNPs randomly chosen from the entire set and a random number of
those SNPs linked to the model. Both maximum time to apoptosis and separatrix surface
was set to 25 hours and all analysed variables were used.

Limiting the SNPs to the ones having a small effect on the variable (between 0.95
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and 1.05 time the initial value) left a set of 11 SNPs. When these SNPs were used, the

link between increased fraction RSR linked to the model and significance of correlations

between RSR and time to apoptosis as well as distance to separatrix became weaker

(Figure 4.28a-b). This trend became even more pronounced when limiting the SNPs to

effect sizes between 0.97–1.03 times the initial values (Figure 4.28c-d).

(a) time to apoptosis (b) distance to separatrix

(c) time to apoptosis (d) distance to separatrix

Figure 4.28: 50 calculations of correlations between RSR and a and c: time to apoptosis
and, b and d: distance to separatrix for the larger apoptosis model. Each simulations
contained 50 individuals with 10 SNPs randomly chosen from SNPs with a variable effect
size between 0.95–1.05 (a–b) or 0.97–1.03 (c–d). A random number of those SNPs were
linked to the model. Both maximum time to apoptosis and separatrix surface was set to
25 hours and all analysed variables were used.

The analysis was also performed on a subset of the larger apoptosis model, which

included the core proteins BaxBak, Bcl2, Bid, Bim, Caspase 3, Caspase 8 and XIAP, and

the separatrix surface was recalculated in the lower dimensional space made up of these
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proteins. When considering this smaller separatrix surface, while the trend of correlations

between the RSR and time to apoptosis behaved in the same way, the significance of the

correlations between RSR and distance to separatrix increased as the effect size of the

SNPs was decreased (Figure 4.29 and 4.30).

(a) time to apoptosis (b) distance to separatrix

Figure 4.29: 50 calculations of correlations between RSR and a: time to apoptosis and,
b: distance to separatrix for the larger apoptosis model. Each simulations contained
50 individuals with 10 SNPs randomly chosen from the entire set. Out of these SNPs,
a random number were linked to the model. Both maximum time to apoptosis and
separatrix surface was set to 25 hours and only variables around the Caspase signalling
were used.

To test whether the difference in trend patterns was due to the surface being to close

to the starting point and larger mutations bringing the system too close, the same analysis

was repeated using the smaller variable set (excluding BaxBak) for three time lines; 25,

50 and 100 hours, either sampling from the entire set of SNPs or limiting to those with

an effect size between 0.97–1.03. However, there was no clear change in behaviour as the

time for the separatrix surface was increased (Appendix Figure G.6 and G.7).
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(a) time to apoptosis (b) distance to separatrix

(c) time to apoptosis (d) distance to separatrix

Figure 4.30: 50 calculations of correlations between RSR and a, and c: time to apoptosis
and, b, and d: distance to separatrix for the larger apoptosis model. Each simulation
contained 50 individuals with 10 SNPs randomly chosen from SNPs with a variable effect
size between 0.95–1.05 (a and b) or 0.97–1.03 (c and d). Furthermore, a random number
of those SNPs were linked to the model. Both maximum time to apoptosis and separatrix
surface was set to 25 hours and only variables around the Caspase signalling were used.

125



4.4 Discussion

In this chapter the concept of relating the potential for phenotype change of a system

to the difference between the starting configuration of the system and a set of potential

configurations causing that phenotype change was introduced. These potential config-

urations were represented by a separatrix surface in parameter and/or variable space,

separating configurations of the system which exhibit the two different phenotypes. It

was hypothesised that the mean distance between the starting position in the space and

the points on this surface could be used as a proxy for the risk of developing cancer. A

method of generating these separatrix surfaces was also presented and the method was

applied to a larger and a smaller apoptosis model, using both single perturbations with

known effect on the systems and simulated population studies, relating the distance to

separatrix and the time to apoptosis to the risk score of simulated genotypes, affecting

large parts of the model at the same time.

By altering the number of initial points in parameter space and the number of cycles

for identifying points on the separatrix surface it was shown that it is relatively straightfor-

ward to decide whether the level of detail of the generated surface is sufficient. Moreover,

it was shown that the precision of the surface was much more dependent on the number

of initial points than on the number of cycles used for identifying the surface (Figure

4.3 and 4.4). By generating a couple of surfaces with an increasing number of points,

it would be very easy to decide on a final surface by considering the rate at which the

standard deviation of the distance to the surfaces declines. For this analysis, all surfaces

were generated at the same time and for best results, the largest surface was used for

further analysis. However, for any future models, a criteria could be formalised so that

points would be added until the rate of decline in standard deviation reached a certain

level. This would not only make the decision of generating a surface less arbitrary, but

also possibly make the results between models more comparable.

Using small perturbations of single parameters within the smaller apoptosis model,

the method was shown to be adept at relating differences in parameter space to shifts in

distance to the separatrix surface. Although there was a great overlap of distances between

the normal and perturbed states, the difference became more clear when comparing the

difference in distance within each surface separately.

The individual perturbations also revealed limitations in the method. One of these

was the importance of defining the separatrix beforehand in a way that it was sufficiently

far away from the starting point. When the activation signal was set to 3,000 molecules

instead of 10,000, rendering the whole system more sensitive to further perturbations, a
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small perturbation in IAP did not have the expected effect (Figure 4.11). It did, however,

behave as expected when the initial activation was increased to 10,000 molecules. For IAP,

both when the initial activation was set to 3,000 and when it was set to 10,000, the effect

on the distance upon larger perturbations was also contrary to what would be expected

given the function of the protein in the model (Figure 4.8 and 4.10). However, the effect

was much more prominent with the lower activation signal. For the lower activation,

large positive perturbations also resulted in a shift in distance contrary to what would be

expected of an inhibitor, again highlighting the importance of designing the experiment

so that the separatrix surface is far away from the initial starting site in parameter space.

This difference in behaviour of IAP and BAR could be explained by looking at the

histogram of separatrix surface points projected onto each axis (Figure 4.12 and 4.13).

Both Caspase 3 and Caspase 8 had a point distribution skewed below 1.0, meaning that

a positive perturbation would bring the system further away from more points of the

surface than the number of points it would bring the system closer to. Conversely, a

perturbation in the negative direction would bring the system closer to a larger part of

the surface. This is what can be seen using both amounts of initial activation signal,

with an increased distance for positive perturbations and decreased distance for negative

perturbations. However, for the surface with the lower activation signal, the points along

the IAP axis are skewed towards smaller values (Figure 4.12), contrary to what would be

expected of an inhibitor. This means that even though the system takes longer to respond

when IAP in increased, it brings the system further away from a large amount of possible

combinations of perturbations which would cause the system to shift phenotype. A small

negative perturbation also brings the system closer to a large amount of points. However,

as the perturbation increases, the amount of points which it is moving further away from

also increases, resulting in a limited effect. When using the the larger activation signal, the

distribution of points is more even and the effect is not as big. Likewise, the distribution of

points along the BAR axis is slightly skewed downwards when using the lower activation

signal, but skewed upwards when using the higher activation signal. Consequently, the

unexpected behaviour can only be observed when using the lower activation signal.

The reason for the points not being evenly distributed along all axes is because of

the curvature of the surface. For example, when Caspase 8 is low, the effect that has

on the system can not be compensated easily by other perturbations in any other gene.

Consequently, there will be many combinations of perturbations of all genes which will

give almost the same outcome of the model. When all of these points are projected down

on the Caspase 8 axis, this manifests as a large peak at the lower end of the distribution.
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When the same analysis was performed on the larger model, the results were naturally

more complicated. In general the system was less sensitive to single perturbations, shown

both by the distributions of distances upon perturbations (Figure 4.16 and 4.17) and

the change in distances (Figure 4.18). Also the distribution of points along each axis of

the variable space was more evenly distributed compared to the smaller apoptosis model

(Figure 4.19). This could be due to the scale of the model and that any perturbation

could be compensated by a combination of perturbations spread over a larger amount of

genes, compared to the smaller model.

When the separatrix surface of the larger model was confined to the lower dimensional

space constituting to genes around the core of the apoptosis network, more resembling

the smaller apoptosis model, the system became more sensitive to perturbations (Figure

4.20 compared to 4.18, keep in mind that the magnitude of perturbation is different in

the two graphs). More importantly though, in this lower dimension space, perturbations

in all single nodes resulted in shift in distance corresponding to what would be expected

given the function of the protein in the network. When using the larger set of nodes,

negative perturbations in most activators (resulting in slower response time) had resulted

in an increase in distance (Figure 4.18). Likewise, positive perturbations in inhibitors

had either resulted in an increase of distance (XIAP), or a distance change distribution

overlapping zero (Bcl2)).

From the distributions of points on both types of surfaces it appears that the nodes

with a skewed distribution in either direction, mostly correspond to the nodes also present

in the subset of the model. It is likely that this, unintentional, filtering out of less sensitive

nodes resulted in a more sensitive system overall. It is also possible that the heightened

sensitivity is due to the fact that as the number of dimensions increase, the contribution

of each dimension to the length of a vector in that space, decreases (The length of a vector

is defined as
√∑n

i=1 x
2
i . As n increases the contribution of xi on the length decreases.).

This difference in sensitivity between nodes of the larger apoptosis model could also

be seen when examining the simulated phenotype shift associated SNPs generated. There

was a clear over-representation of SNPs targeting the subset of nodes and two outer nodes

in the larger model (NFκB, and itch) not having a single SNP targeting them.

This general lack of sensitivity might explain the weak correlations between the RSR

in the simulated populations and the distance to separatrix in the larger implementation

of the larger apoptosis model (Figure 4.28) and why a correlation was more visible using

the subset of the model (Figure 4.30). Interestingly, these trends were only visible when

using only the set of SNPs with small effects of the genes in the model. The effects were in

fact so small that the RSR could not be reliably correlated with the time to apoptosis as
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calculated by the model. Conversely, when the effects were large enough to be correlating

the with the time to apoptosis, they did not correlate with the distance to separatrix.

This is probably due to the narrow span of the variable space (0 to 2 times initial value)

and the larger perturbations probably pushed the system so close to the boundary that

the surface was no longer representative of the potential mutations of the system.

Interestingly, the same trend could not be seen when limiting the SNPs of the smaller

apoptosis model to the ones with the smallest effect on the parameters. When using

all SNPs there was a clear correlation between RSR and both time to apoptosis and

distance to separatrix (Figure 4.24). However, even when only considering SNPs with a

perturbation effect 0.97 < x < 1.03, there was a clear trend of correlations with increased

significance, both when correlating RSR to time to apoptosis and distance to separatrix

(data not shown).

Furthermore, these correlations between RSR and both time to apoptosis and distance

to separatrix could be identified with high accuracy, even when very small fractions of the

RSR ratio was actually linked to the model (Figure 4.25 and 4.26). This gives increased

hope that the method will be possible to use on real experimental data, when it is not

always known what a SNP is doing and there is bound to be more noise on all levels of

measurement.

The differences in results between the models and between settings of the same model,

point towards the need for a more in-depth investigation into how the size of the model,

and the network dynamics, affect how suitable the method is. Further research would also

need to be performed on how the limits of the separatrix space affects the extent to which

the method represent actual biological development. However, the fact that separatrix

was able to correlate with the RSR in settings where the standard output of the model

failed, shows the potential of the method and that it has a possible use case which can

not be covered by standard sensitivity analysis of system dynamics.
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Chapter 5

Linking experimental data to model
behaviour and separatrix surface

In chapter 4 we examined the effects of a theoretical mutation on the output of a dynam-

ical model when interpreted as a change in a parameter value. We saw that the resulting

change in model behaviour could be linked to the risk of the system to change model

behaviour from what could be considered normal to what can be classified as diseased

(in the case of the apoptosis model, this was defined as a time to activation of apoptosis

which would render the cell effectively non-responsive). This was based on the biologi-

cal assumption that an individual will accumulate mutations randomly in all genes and

eventually this accumulation will cause the cellular network in which the gene operates

to break down or change behaviour so much that it will exhibit a phenotype associated

with disease. Under this assumption, Single Nucleotide Polymorphisms (SNPs) affecting

production rate parameters of the four genes in a smaller apoptosis model by Eissing et al.

[95] and initial concentrations of the products of 15 genes in the larger apoptosis model

by Schlatter et al. [91] were examined. Using simulated SNPs with known odds ratios

with respect to disease phenotype and a specified effect on the gene target in the model,

it could be shown, not only that the risk score of individuals with random genotypes of

these SNPs could be correlated with increasingly disease like model behaviour, but that

the risk score could also be correlated with the distance from starting position to the

separatrix in the parameter or variable space. This meant that the effect the genotype

had on the model in non-diseased state could directly be linked to the increased risk of

the system to acquire a diseased phenotype later on, following mutation events.

In this chapter the framework developed in chapter 4 will be extended and applied

to experimental data from human cell lines and tissues. Since a large part of the cancer

associated SNPs are located outside of protein coding regions and it is thought that they

affect RNA expression levels[30, 45] and consequently protein levels, RNA sequencing data
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will be used as a proxy for protein expression. Due to limited knowledge about what effect

known disease-risk associated SNPs which do not affect RNA expression levels have, the

analysis will be limited to differences in protein expression. Since the results in chapter

4 were clearer in the smaller apoptosis model by Schlatter et al. compared to the larger

model, only the smaller model will be used in this study.

RNA expression values will be used as proxies for concentration of the proteins in

the model and time to apoptosis as well as distance to separatrix will be related to

the risk score (cumulative risk of all SNPs under investigation) of the individual. SNPs

associated with breast and prostate cancer will be examined, using both the dataset as a

whole and by extracting a subset of strong candidates, likely to affect the model under

investigation. The SNPs will be extracted and combined with RNA sequencing data

of both lymphoblastoid cell lines from the 1000 genome project and GEUVADIS, and

of normal breast and prostate tissue from The Cancer Genome Atlas (TCGA). TCGA

is a project with the goal to identify and characterise genetic mutations responsible for

development of cancer in various tissues.

Both breast and prostate cancer have been extensively researched and there is a strong

hereditary aspect to risk of developing these cancers, with many SNPs known to be

associated with this risk. For the same reason, there is also more tissue specific data

available for these cancers, compared to many other tissues.

For the lymphoblastoid cell lines, the breast cancer associated SNPs will be used. Since

these samples are not breast tissue derived, there is no guarantee that the breast cancer

associated SNPs will have the same function in these cell lines as they do in the process

of breast cancer development. However, if a correlation can be found it could potentially

be validated in vitro. This could be the basis of a very useful model, where results from

simulations could inform about and guide towards hypothesis formations which could be

tested in the biological system and vice versa.

5.1 Materials and Methods

5.1.1 Data Collection and Preprocessing

From a paper published by Michailidou et al. 2017 [45], 177 breast cancer associated SNPs

and genes mapping to them were collected (Appendix Table H.1). A further 142 prostate

cancer associated SNPs and genes mapping to them were collected from a paper published

by Schumacher et al. 2018 [32] (Appendix Table H.2). These publications also contained

the odds ratios (the strength of association between a genotype and the development of
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the specific cancer) which were used to calculate the risk score (
∑

(| loge(Odds ratio)| ∗
(number of risk alleles))) for each individual during this work.

As a first data set, genotype data was acquired for the set of cell lines denoted GBR

and CEU in the 1000 Genome Project [105] [59]. These are lymphoblastoid cell lines (B

cells that have been immortalised through Epstein-Barr virus transformation) collected

from individuals in Great Britain and a population in Utah with central European ances-

try, respectively. Each line of the data contains, among other things, information about

the reference allele and alternative allele, genomic position, rs-ID (a unique SNP identifier

issued by dbSNP (https://www.ncbi.nlm.nih.gov/snp/)) and genotype for each individual

in the study. RNA expression data for the same cell lines was collected from the GEU-

VADIS project and contained Reads Per Kilobase (of transcript) per Million (of reads)

(RPKM) values for each gene [106].

For the breast and prostate SNP analysis, genotype and RNA expression data from

TCGA was gathered from the GDC Data Portal [107] (genotype data was collected from

the legacy archive [108]). The breast tissue samples were restricted to female origin and

for both tissue types only normal tissue was selected. To further minimise the diversity

in genotype-phenotype association, the individuals were limited to those characterised as

white. This was done to mimic the selection of European individuals or individuals of

European descent which was done for the lymphoblastoid cell lines.

In all three cases the RNA expression data consisted of RPKM values for

the four genes XIAP (ENSG00000101966.11), BFAR (ENSG00000103429.9),

CASP8 (ENSG00000064012.20) and CASP3 (ENSG00000164305.16).

The TCGA genotyping had been performed on Affymetrix Genome-Wide Human SNP

Array 6.0 chips and came encoded with the chip-tag IDs for each SNP. Using data from

Thermo Scientific’s webpage [109, 110] the tags were mapped to dbSNP rs-IDs.

To increase the amount of SNPs being used in the analysis, SNPs in linkage disequilib-

rium (LD) with data set SNPs, meaning that there is a non-random association between

them, were also considered. For all 177 breast and 142 prostate cancer SNPs in the anal-

ysis, any SNP within 50,000 base pairs of a SNP in the original data set and in LD (r2

> 0.8) with that SNP was collected from PLINK [111] and filtered to only contain SNPs

which were present on the chips used. This resulted in a 418 SNPs linked to the breast

cancer associated SNPs and 378 SNPs linked to the prostate cancer associated SNPs.

For both the breast cancer and prostate cancer analysis, for each SNP in the expanded

data set a tag (sequence on the chip used to capture the DNA) was identified in the chip

data from TCGA. In the case that the original SNP was covered by the chip, this tag was
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used. Otherwise the tag corresponding to the SNP with the highest LD with regards to

the original SNP was used.

Out of the filtered SNPs only those for which genotype data was available in all

samples were kept resulting in 90 SNPs for the breast cancer tissues and 86 SNPs for the

prostate cancer tissues. The Risk Score Ratio (RSR) was then calculated by summing up

the absolute of the loge-Odds ratio (risk score) times the number of risk alleles for each

individual and dividing it by the maximum possible risk score, that is the theoretical risk

score an individual would have if they had two alleles of all risk associated SNPs used in

that analysis.

5.2 Model

The small apoptosis model published by Eissing et al. (2004) [95], implemented in Section

3.2.1.1 (Appendix Equation B.1-B.8 and Table B.1 and B.2) and used in chapter 3 and

4 was further used in the work of this chapter. The four parameters corresponding to

production rates of the four proteins Caspase 3, Caspase 8, IAP and BAR were targeted

for further analysis. The initial activated Caspase 8 signal was set to 10,000 molecules and

was subtracted from the total amount of inactive Caspase 8 before starting the simulation.

For all analysis in this chapter, the RNA-seq data corresponding to the four genes

CASP3, CASP8, XIAP and BFAR was used to adjust the start position in parameter

space as described below. When parameters were perturbed from the standard values

(the values used in the original paper), the system was first run to 5,000 minutes with

initial Caspase 8 activation set to zero. This meant that no apoptosis signal was being

transmitted through the network and the system was allowed to find its new steady

state, with concentrations in agreement with the new production parameters. The final

concentrations reached after this run were then used as initial concentrations in the actual

run containing activated Caspase 8 from time 0. The model was run up to 5,000 minutes

after initial activation signalling and the time to onset of apoptosis, interpreted as time

when Caspase 3 activation signal reached 1,000 molecules, was measured.

5.2.1 Normalisation of RNA-expression values and fitting of pa-
rameters to expression values

To “fit” the RNA-seq data to the model in question the mean RNA expression level of

all individuals in the analysis for each of the genes was assumed to correspond to the

published values of the corresponding parameter. Furthermore, the parameter value is

assumed to relate to the RNA expression value as:
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Pi,j =
Xi,j

mean(Xi)
(5.1)

where: Xi,j = Ri,j − 0.95× (Ri,j −mean(Ri)) (5.2)

where:

Pi,j is a positive expression level of protein i for individual j

Xi,j is transformed RNA expression value of gene Ri,j > 0

For each individual, 95% of the difference between that expression value and the mean

value was subtracted, reducing the spread of the expression levels. The level 95% was

chosen under the assumption that all normal cell should be responding to apoptotic sig-

nalling and subtracting more than 95% meant that some samples became non-responders.

Each value was then divided by the mean to produce a distribution centred around one.

Before running the model, each parameter under investigation was multiplied with the

perturbations (normalised RNA expression values). This resulted in all of the individuals

showing a behaviour which could be considered to fall within a range of normal behaviour,

that is, they all responded to apoptosis signalling within the set time frame. The resulting

time to apoptosis for each individual was then correlated with the risk score ratio made

up of cancer associated SNPs.

5.2.2 Separatrix analysis

The RNA-expression values of the four genes XIAP, BFAR, CASP8 and CASP3 were

normalised as described above and corresponding parameter values were perturbed as

previously described before applying the separatrix analysis method explained in Chapter

4. In brief, the method defines a criterion for the system output at which it no longer can

be classified as a normally behaving system. Any instance of the system falling within this

criterion is considered normal and any system which falls outside is considered diseased.

In the case of the smaller apoptosis model the criterion for normal behaviour was set

to an activation of Caspase 3 of at least 1000 molecules, within 10,000 minutes. The

result of this criterion is that a surface forms in parameter space separating systems of

normal behaviour from systems of diseased behaviour. The method calculates the average

distance from points on this surface to the starting position of each sample after applying

the perturbations inferred from the RNA-expression data. The separatrix surfaces used

were the same as those used in chapter 4.
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5.2.3 Statistical analysis

In this work regression analysis was performed between RSR and RNA expression, time

to apoptosis, and distance to separatrix. In addiction regression analysis was performed

between RNA expression levels and time to apoptosis. In all cases the p-value was used

to measure significance of the correlation. This approach has many known limitations.

One problem is that the p-value of a correlation depend both on the magnitude of the

association and on the sample size. This means that even if the correlation is very small

it is possible to get a significant p-value with a large enough sample size. Conversely, even

a strong correlation may not result in a significant p-value if the sample size is very small.

Null hypothesis significance testing also doesn’t give support for any alternative hy-

pothesis in the case of the null hypothesis being rejected. If the level of support for either

of the two hypotheses is of value, it is better to use alternative methods, such as Bayes

factors which assess the support of the data for one hypothesis over another. However,

using Bayes-Factors require the formulation of two hypotheses with prior distributions

and it was not clear what these priors should be in the case of the work performed in

this chapter. Furthermore, since this the work presented here is a novel method and the

available data is very limited, leading to likely low statistical power, the main interest

was to see if the correlation coefficient between the two variables was zero or not. It was

therefore concluded that reporting p-values was sufficient.

5.2.3.1 Correcting for multiple tests

One of the most common ways to correct for family wise error rate is by performing a

Bonferroni correction, where the critical p value is adjusted by dividing α with the number

of tests performed. However, due to the large number of tests performed in this study

combined with the low sample size and the noisy nature of biological data, a Bonferroni

correction would most likely be too conservative and result in any true correlations almost

certainly being thrown away.

Instead a correction for the False Discovery Rate (FDR) was conducted according to

the Benjamini-Hochberg procedure, where a certain FDR is decided to be acceptable and

the critical p-value is adjusted, accepting that a given percentage of the significant results

will be false positives.

All p-values were ranked from lowest to highest and the Benjamini-Hochberg critical

values was calculated:

pi ≤
i

m
Q, (5.3)
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where i is the rank, m the total number of familywise tests and Q is the false discovery

rate.

As a test family all correlations with RSR and RNA expression, time to apoptosis or

distance to separatrix were considered for all 3 tissue types, resulting in 42 tests. Because

of the low statistical power, due to the sample size and the noise in the data Q was set

at 0.25 to minimise the risk of rejecting true positives.

When applied to the family of tests, this resulted in the threshold of significance being

p ≤ 0.059.

The test between RNA expression and time to apoptosis were considered belonging

to a separate test family and corrections were conducted separately and the threshold of

significance for the 4 tests (Q = 0.25) was calculated to be 0.004.

5.3 Results

5.3.1 Breast cancer associated SNPs do not correlate with model
behaviour for lymphoblastoid cell lines

From the 1000 genomes project, 154 individual lymphoblastoid cell lines were identified,

for which genotype data and RNA expression data were available from 1000 Genomes

Project and GEUVADIS respectively [112, 106]. Out of these cell lines, 76 were of female

origin and were chosen for further analysis. After normalisation, the RNA expression

values were still skewed with a slight tail extending into higher expressions for XIAP,

CASP8 and CASP3 (Appendix Figure I.1). Only BFAR had a normal distribution ac-

cording to the Shapiro-Wilk test for normality [113] (p-values: XIAP, 4.0× 10−09; BFAR,

0.45; CASP8, 1.6 × 10−10; CASP3, 4.6 × 10−6). Using this normalised RNA expression

data to adjust the protein production parameters in the model before simulation, the dis-

tance to the separatrix and time to apoptosis as calculated by the model was compared

to the RSR of each sample and a regression analysis was performed.

No significant correlation was identified between the RSR and the time to apoptosis

(Figure 5.1, p-value: 0.67, r2: 0.002) or between the RSR and the distance to the sep-

aratrix (Figure 5.2, p-value: 0.16, r2: 0.026). Additionally, no significant correlations

were found between the RSR and individual expression levels for XIAP or BFAR (Figure

5.5). There was a significant correlation between RSR and expression levels of CASP8

(p-value: 0.049, r2: 0.052), however this was only due to an outlier with very high expres-

sion levels and low RSR. When this individual was excluded, the correlation disappeared

(data not shown). There was also a correlation between RSR and the expression level

of CASP3 (p-value: 0.045, r2: 0.053)), which could not be linked as easily to a single
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outlier. Interestingly, there was a difference in how much differences in expression of each

gene contributed to differences in the calculated time to apoptosis, where XIAP had the

strongest correlation between expression level and time to apoptosis (Figure 5.4, p-value:

1.2× 1028, r2: 0.81), followed by BFAR (p-value: 5.6× 10−6, r2: 0.25). Although CASP3

did correlate (p-value: 0.004, r2: 0.109), the r2 was much lower than the r2 for XIAP and

BFAR. There was no clear correlation between the expression of either CASP8 and the

time to apoptosis (p-value: 0.52, r2: 0.006).

Figure 5.1: Correlation between RSR and time to apoptosis as calculated by the smaller
apoptosis model for lymphoblastoid cell lines from the 1000 genome project.

By closer examination, 2 individuals were identified, with a much longer time to apop-

tosis than the rest of the population. These samples were also found to have a much higher

expression of XIAP, compared to the other samples (Figure 5.3). In addition to the 2

female individuals identified, 5 male individuals also had an overexpression of XIAP and

a corresponding increased time to apoptosis (data not shown). Examining the exome and

genome sequencing data of the abnormal samples showed that there were no differences in

copy number variations compared to other samples (Appendix Figure I.15 and I.16). Since

the abnormal behaviour was overrepresented in male individuals and the lymphoblastoid

cell lines used, had been immortalised through EBV transformation, a method which is

known to sometimes affect the expression of XIAP [114, 115], it was hypothesised that

these expression values were not representative of the normal behaviour of these sam-

ples. It was further hypothesised that removing them from the analysis would result in
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a more accurate picture of any effect the SNPs would have on the expression levels and

the system behaviour. However, removing these samples did not reveal any correlations

between RSR and the time to apoptosis (Figure 5.5, p-value: 0.815, r2: 0.001), distance to

separatrix (Figure 5.6, p-value: 0.14, r2: 0.03) or the individual expression levels (Figure

5.7) Although, at a FDR of 0.25 the correlation between RSR and expression levels of

Caspase 3 was significant.

Twelve SNPs were selected, which through literature research were hypothesised to

be affecting at least one of the genes in the model and the same analysis was performed

using RSRs of only those SNPs (Table 5.1). This time, there was a significant correlation

between RSR and time to apoptosis, both when using all 76 individuals (Figure 5.8, p-

value: 0.016, r2: 0.076) and when excluding the 2 individuals with abnormal response

times (Appendix Figure I.2, p-value: 0.008, r2: 0.094). This trend was negative, meaning

that increased RSR was linked to a faster response time to apoptosis. However, there was

no significant correlation between RSR and distance to separatrix in either case (p-value:

0.33 and 0.27).

Figure 5.2: Correlation between RSR and distance to separatrix for the lymphoblastoid
cell lines from the 1000 genome project.

Out of the 12 SNPs previously chosen, genotype data was available for 9 for the breast

tissue later used in this chapter. To be able to compare the results between the two

models, the same analysis was performed using RSRs of only those 9 SNPs (Table 5.1).

In this case too, there was a significant correlation between RSR and time to apoptosis
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Figure 5.3: Correlation between RSR and expression value in lymphoblastoid cell lines
for the four genes XIAP, BFAR, CASP8 and CASP3 (from top left to bottom right).

both when including all individuals (Appendix Figure I.3 , p-value: 0.016, r2: 0.076) and

when excluding the two with an abnormal response time (Appendix Figure I.4, p-value:

0.005, r2: 0.104). As when using the 12 SNPs, these correlations were also negative, with

decreased response time with increased RSR. There was no correlation between RSR and

distance to separatrix (p-value, larger set: 0.56; p-value, smaller set: 0.50).

Lastly, 4 out of the previously selected 9 SNPs were selected based on them being

transcription regulators with binding sites in a promoter of one of the the genes in the

model. As was the case with the previous 2 sets of SNPs, with these 4 SNPs, there

was also a negative correlation when excluding the 2 individuals with abnormal response

time (Appendix Figure I.5, p-value: 0.022, r2: 0.070). However, there was no significant

correlation when these 2 individuals were included (Appendix Figure I.6, p-value: 0.288,

r2: 0.015). In both cases there was no correlation between RSR and distance to separatrix

(p-value, larger set: 0.241; p-value, smaller set: 0.224).
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Figure 5.4: Correlation between time to apoptosis and expression values in lymphoblastoid
cell lines for the four genes XIAP, BFAR, CASP8 and CASP3 (from top left to bottom
right).

Figure 5.5: Correlation between RSR and time to apoptosis for the lymphoblastoid cell
lines from the 1000 genome project, excluding the samples identified in Figure 5.1 as
forming a separate cluster of longer response times.
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Figure 5.6: Correlation between RSR and distance to separatrix for the lymphoblastoid
cell lines from the 1000 genome project, excluding the samples identified in Figure 5.1 as
forming a separate cluster of longer response times.

Figure 5.7: Correlation between RSR and expression values for the four genes XIAP,
BFAR, CASP8 and CASP3 of lymphoblastoid cell lines form the 1000 genome project,
excluding samples forming a separate cluster of behaviour in Figure 5.1.
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Figure 5.8: Left: Correlation between risk score ratio and time to apoptosis, as calculated
by the smaller apoptosis model, for the lymphoblastoid cell lines from the 1000 genome
project. Right: Correlation between risk score ratio and distance to separatrix. In both
cases 12 SNPs thought to be linked to one of the genes in the model were used to calculate
the RSRs.
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5.3.2 Breast cancer associated SNPs show weak correlations
with model behaviour for breast tissue data from TCGA

In the TCGA database, 85 white women with breast cancer were identified which had

genotyping data as well as RNA sequencing data available for normal breast tissue. By

expanding the data set of SNPs to include all SNPs within 50,000 bp of the published

SNPs associated with breast cancer and with an LD above 0.8, data for 90 SNPs could

be extracted for the normal tissue samples.

When normalising the RNA expression values for the four genes XIAP, BFAR, CASP8

and CASP3 around the mean and reducing the variance, the expression of XIAP had a

normal distribution according to the Shapiro-Wilk test for normality [113] (p-value: 0.38),

The distributions of BFAR, CASP8 and CASP3 were all skewed (p-values: BFAR, 0.009;

CASP8, 2.6104; CASP3, 3.1104) (Appendix Figure I.7). Using these expression values as

input for the smaller apoptosis model the time to apoptosis was calculated and correlated

with the RSR including the 90 SNPs extracted previously. Contrary to what would

be expected, a small, negative, although not significant (p-value: 0.36), correlation was

observed, with shorter time to apoptosis as RSR increased (Figure 5.9).

By filtering out a subset of 9 SNPs (Table 5.1) thought to be affecting genes which

in turn could affect the expression of proteins in the model, a positive correlation was

identified with a p-value of 0.042 (Figure 5.10).

By randomly selecting 9 SNPs from the total set of SNPs and performing the anal-

ysis as previously described, a distribution of p-values for the correlations was attained.

Even though this distribution had a slight skew towards negative correlation, the 9 SNPs

previously chosen yielded a correlation which was both one of the most positive and had

among the lowest p-values possible given the data (Figure 5.11).

When performing the same analysis, using only one SNP at a time, the distribution of

the chosen SNPs was skewed towards positive correlations. However, 2 out of the 9 SNPs

had a close to zero correlation and one SNP had the most negative, although not most

significant, correlation, of all possible correlations, given the entire dataset (Figure 5.12).

Furthermore, only one of the 9 SNPs had a significant correlation with time to apoptosis.

When comparing the RSRs directly to the RNA expression values of the four genes

in the model, no significant correlation could be identified, indicating that it is not just

one, or a few SNPs, targeting one node in the network, driving the change in response

time, but a concert of small changes all over the system, which play together to yield

the observed correlation (Appendix Figure I.8). This was true, both when considering

all of the SNPs in the data set or when only the 9 previously chosen SNPs, as well as

when one of the 9 SNPs at a time were used (Appendix Figure I.8-I.11). Although, at a
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Table 5.1: SNPs identified through literature research as being likely to affect the expres-
sion of any of the genes in the small apoptosis model. The subset of SNPs which could be
used for the breast tissue from TCGA has been marked in the forth column. A further
selection was made on SNPs mapping to genes which acted as transcriptional regulators
and had binding sites in promoters of at least one of the genes in the model. Two SNPs
mapped to genes thought to regulate all four genes, whereas two additional SNPs mapped
to a gene thought to regulate only BFAR and CASP8.

SNP ID Nearest Gene Binding Site for Gene Promoter TCGA
rs3757322 ESR1 BFAR, CASP8 Yes
rs9397437 ESR1 BFAR, CASP8 Yes
rs11780156 MYC XIAP, BFAR, CASP8, CASP3 Yes
rs2823093 NRIP1 - Yes
rs6596100 HSPA4 - Yes
rs79724016 HIVEP3 - Yes
rs10760444 LMX1B - Yes
rs6569648 L3MBTL3 - Yes
rs2965183 GATAD2A, MIR640 XIAP, BFAR, CASP8, CASP3 Yes
rs1830298 CASP8, ALS2CR12 - No
rs2747652 ESR1 BFAR, CASP8 No
rs17156577 CREB5 - No

FDR of 0.25 the correlation between RSR and expression levels of BFAR was significant

(Appendix Figure I.9).

When analysing the relation between the RSR and the distance to the separatrix, no

significant correlation was identified, using either all of the SNPs, or the subset of 9 SNPs

(Figure 5.13), although the direction of the trend using the subset was in the expected

direction. Furthermore, when comparing the results from the regression analysis of the

9 selected SNPs to the distribution of possible correlations of 9 SNPs(Figure 5.14) the

correlation of the selected SNPs was far from being among the most significant ones

possible (in terms of significance or trend strength). When performing the same analysis

for single SNPs there was still a skew of the selected SNPs in the expected direction, but

it was not as clear as when looking at the time to apoptosis (Figure 5.15). Altogether,

the results indicate that, although the risk score could be correlated with the time to

apoptosis, at least for the subset of SNPs likely to be linked to the model, this trend

could not be captured by the distance to the separatrix, given the current data.
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Figure 5.9: Correlation between RSR and time to apoptosis as calculated by the smaller
apoptosis model, using 10,000 molecules of activated Caspase 8 as input for normal breast
tissue. All 90 SNPs associated with risk of developing breast cancer were used to calculate
the RSR.

Figure 5.10: Correlation between RSR and time to apoptosis as calculated by the smaller
apoptosis model, for normal breast tissue from TCGA. 9 SNPs thought to be linked to
any of the genes in the model were used to calculate the RSR and the model was run as
previously described.

146



Figure 5.11: Distribution of p-values and regression coefficients for correlations between
RSR and time to apoptosis using data for a subset of SNPs in normal breast tissue. 9 SNPs
were randomly selected from the breast cancer associated SNP data set and compared to
the results from the set of 9 SNPs manually selected previously for further analysis (Red).
Using the manually selected SNPs resulted in one of the smallest p-values and one of the
largest positive regression coefficients possible given the data it came from.
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Figure 5.12: Distribution of p-values for correlations between RSR and time to apoptosis
for normal breast tissue. Single SNPs were used to calculate the RSR. The 9 SNPs chosen
previously for further analysis (red) had a distribution of regression coefficients which was
skewed to upper values of the total distribution given all the data.

Figure 5.13: Correlations between RSR and distance to separatrix surface for the smaller
apoptosis model for normal breast tissue. Left: all SNPs in the breast cancer SNP data
set were used. Right: only the 9 previously selected SNPs were used to calculate the risk
score ratio.
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Figure 5.14: Distribution of p-values and regression coefficients for correlations between
RSRs and distance to separatrix surface for the smaller apoptosis model using SNP data
from normal breast tissue. Using 9 SNPs randomly selected from the total data set of
SNPs associated with breast cancer resulted in a distribution of regression coefficients
slightly skewed towards negative values. Usign the set of 9 SNPs previously selected for
further analysis resulted in a regression coefficient slightly to the below the centre of the
distribution.
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Figure 5.15: Distribution of p-values and regression coefficients for correlations between
RSR, using one single SNP at a time, and distance to separatrix surface for the smaller
apoptosis model for normal breast tissue. The red dots correspond to the SNPs previously
selected for further analysis.
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Table 5.2: Prostate cancer associated SNPs identified as being likely to affect the expres-
sion of any of the genes in the small apoptosis model. One of the SNPs is close to CASP8
which is itself in the model. The other SNPs are close to transcription regulators which
have binding sites in the promoters of at least one of the genes in the model.

SNP ID Gene Name Binding Site for genes
rs6062509 ZGPAT CASP3, CASP8, XIAP, BFAR
rs7094871 TCF7L2 CASP3, CASP8, XIAP, BFAR
rs11290954 C11orf30/EMSY CASP3, CASP8, XIAP, BFAR
rs4962416 CTBP2 CASP3, BFAR
rs10460109 TSHZ1 XIAP, BFAR
rs11480453 DNMT3B CASP3, CASP8, BFAR
rs59308963 CASP8 -

5.3.3 Risk scores for prostate cancer associated SNPs do not
correlate with time to apoptosis or distance to separatrix

From the paper published by Schumacher et al. in nature Genetics 2018 [32], 142 SNPs

were identified to be associated with risk of developing prostate cancer. Out of these

SNPs genotypes for 86 SNPs could be extracted (either directly or on the basis of LD

as described in Section 5.1.1) for 50 normal prostate tissues from the TCGA database,

which also had expression data for the four genes in the model, XIAP, BFAR, CASP8

and CASP3. After normalising the RNA expression data, only BFAR had a normal

distribution of expression, whereas XIAP, CASP8 and CASP3 where skewed according

to the Shapiro-Wilk test for normality [113] (p-values: XIAP, 0.04; BFAR, 0.25; CASP8,

0.003; CASP3, 0.002) (Appendix Figure I.12). Using all SNPs to calculate the RSR for

each sample, the correlation between the RSR and the output of the model, time to

apoptosis, was evaluated. Similar to the breast cancer data, there was a (negative) non-

significant correlation, contrary to what would be expected if the SNPs did indeed affect

the genes in the model (Figure 5.16).

When examining the function of the genes closest to the SNPs, 7 SNPs were identified

to be either affecting the gene directly, or affecting transcription regulators with binding

sites in the promoter region of any of the genes (Table 5.2).

Using only these 7 SNPs to calculate the RSR a positive correlation can be seen,

although the p-value was not significant at 0.103 (Figure 5.17). Randomly selecting 7

SNPs multiple times and performing the same type of correlation analysis results in a

distribution centred around a slope of zero and p-value of 1 (Figure 5.18). The set of 7

SNPs chosen for further analysis yields a correlation which is positioned at the upper end

of this distribution. However it is not among the very best correlations.
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Figure 5.16: Correlation between RSR and time to apoptosis as calculated by the smaller
apoptosis model for normal prostate tissue, using 10,000 molecules of activated Caspase
8 as input. All 86 SNPs associated with risk of developing prostate cancer were used to
calculated the risk score.

Using only one SNP at a time and performing the correlation analysis yields a distri-

bution similar to that when using 7 SNPs (Figure 5.19). Although, 6 out of the 7 SNPs

had a positive correlation with the time to apoptosis, none was significant. However, the

clear difference in distribution compared with the total set of SNPs suggest that at least

some of the SNPs do indeed have an effect on the genes in the model.

A similar trend can be seen when comparing the RSR to the expression values of 3

out of the 4 genes in the model (Appendix Figure I.13 and I.14). When using 7 SNPs

there was a positive correlation with XIAP and negative correlations with CASP8 and

CASP3, although all were non-significant. When looking at one SNP at a time there

was a skew towards positive correlations for XIAP and towards negative correlations with

CASP8 and CASP3. However, for BFAR, the trend was towards negative correlations,

(both with 1 and 7 SNPs), contrary to what would be expected given that BFAR acts as

an inhibitor for apoptosis.

When comparing the cumulative RSR of the 7 SNPs and the distance to the separatrix

of the model no significant correlation was found (Figure 5.20). However, like with the

analysis of the RSR and the time to apoptosis, the correlation was in the expected direction

and the distribution of possible correlations given the entire data set was weighed towards

the opposite direction. When looking at individual SNPs the distribution of correlations
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Figure 5.17: Correlation between RSR and time to apoptosis for 50 prostate tissues using
7 SNPs likely to affect the expression of any of the genes in the model.

for the selected SNPs was also skewed in the expected direction, although none of them

were significant (Figure 5.21).

As a negative control for both types of cancer, the breast cancer associated SNPs were

analysed on prostate tissue and the prostate cancer associated SNPs were analysed on

breast tissue. In both cases there was no significant correlation between the RSR and the

time to apoptosis (Figure 5.22 and 5.23). This was true, both when using the entire data

sets or when only using the 9 breast cancer associated or 7 prostate cancer associated

SNPs.
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Figure 5.18: Distribution of p-values and regression coefficients for correlations between
RSR for 7 randomly selected SNPs and time to apoptosis as calculated by the smaller
apoptosis model for normal prostate tissue. Using the set of 7 SNPs previously selected
for further analysis (red) resulted in a regression coefficient located in the upper region
of the distribution, although not at the very top.
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Figure 5.19: Distribution of p-values and regression coefficients for correlations between
RSR for single SNPs and time to apoptosis as calculated by the smaller apoptosis model
for normal prostate tissue. Using the 7 previously selected SNPs (red) resulting in a
distribution skewed towards upper values of the total distribution given all the data.
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Figure 5.20: Distribution of p-values and regression coefficients for correlations between
RSR of 7 randomly selected SNPs and the distance to separatrix surface for the smaller
apoptosis model for normal prostate tissue. Using the 7 SNPs previously selected for
further study (red) resulted in a regression coefficient far to the left of the total distribution
given all the data.

Figure 5.21: Distribution of p-values and regression coefficients for correlations between
the RSR of a single SNP and the distance to the separatrix for the smaller apoptosis
model for normal prostate tissue. The 7 SNPs previously selected are marked red.
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Figure 5.22: Correlation between RSR and time to apoptosis for 50 prostate tissues using
breast cancer associated SNPs. Left: All breast cancer associated SNPs were used. Right:
The 9 previously identified breast cancer associated SNPs were used.

Figure 5.23: Correlation between RSR and time to apoptosis for breast tissues using
prostate cancer associated SNPs. Left: All prostate cancer associated SNPs were used.
Right: The 7 previously identified prostate cancer associated SNPs were used.
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5.4 Discussion

Using simulated data in Chapter 4 the link between the risk score and the risk of develop-

ing a phenotype was assessed and verified. The data suggested a clear trend between RSR

and time to apoptosis. Furthermore, the separatrix analysis method was shown to be able

to capture the increased risk of developing a cancer phenotype by taking into account the

effect the risk associated SNPs had on the parameters in the model and how that shifted

the average distance of the individual to the separatrix surface. In this chapter the same

method was applied to experimental data from three different sources, lymphoblastoid

cell lines, from the 1000 genome project, and normal tissue of breast and prostate from

TCGA.

First, lymphoblastoid cell lines from the 1000 genomes project were used as an ex-

perimental model to assess the validity of the results from Chapter 4. Unfortunately, no

correlation was found between the RSR of breast cancer associated SNPs and the time

to apoptosis, extracted from the model dynamics, or distance to separatrix. However,

there was a clear correlation between the time to apoptosis and the expression values of

XIAP and BFAR and a weaker correlation between the model output and the expression

values of CASP3 (Figure 5.4). If parts of this trend could be linked to a subset of the risk

associated SNPs, then the RSR using only those SNPs could potentially be correlated

with the output of the model and the distance to separatrix.

Furthermore, from the analysis in Chapter 4, it could be seen that, although only a

subset of the SNPs in the analysis has to be linked to the model in order to capture the

correlation, especially when analysing the distance to separatrix, this would have to be a

substantial part of the total set of SNPs. In fact, when there were only 50 samples, around

70% of the RSR had to be linked to the model for the simulations to yield a significant

correlation (p-value < 0.05) in at least 95% of the cases (Figure 4.26a). However, when

using 100 samples a little less than 50% of the RSR had to be linked to the model for the

same results (Figure 4.26b).

Given the small number of genes in the model of investigation, the number of SNPs

affecting the expression of any of these genes in the total SNP data set is not likely to

be very large. Indeed, when looking at the genes closest to the SNPs, not a single SNP

was linked to any of the genes in the model. However, through literature research, 12

SNPs were identified which were deemed likely to affect the expression of at least one

of the four genes, either by being transcriptional regulators with a binding site in the

gene’s promoter, or by otherwise having been associated with gene expression regulation.

Out of these 12 SNPs, the genotypes for 9 SNPs were available for the breast tissue later
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used in this chapter. Furthermore, out of these 9 SNPs, 4 SNPs were indicated to be

transcriptional regulators with binding sites in one of the genes promoters. Using the

set of 12 and 9 SNPs, there was a significant correlation between the RSR and time to

apoptosis, but not using only the set of 4 SNPs. Interestingly the trends in all 3 cases

were towards decreased time to apoptosis as RSR increased.

It is known that the immortalisation process can affect the expression of XIAP [114,

115] and in the total data set 7 individuals were identified (2 female and 5 male), which

had a much higher expression of XIAP. These individuals also had a much longer time to

apoptosis as calculated by the model. Upon examination, these individuals did not have

any copy number aberrations in the region around the XIAP gene and the difference in

XIAP expression was attributed to the immortalisation process. Excluding these samples

did result in a significant correlation using the smallest subset of 4 SNPs as well. It did

not, however, alter the direction of the trends in any of the cases.

This might be contrary to what would be expected, given that the increased sensi-

tivity resulting from decreased response time would be expected to kill cells before they

develop to cancer cells. However, this hypothesis is only valid for tissues for which the

SNP is associated with cancer susceptibility. It is possible that a SNP associated with

breast cancer is acting by desensitising the immune system and decreasing the immune

response to the breast cancer cells. In fact, several breast cancer associated SNPs have

been predicted to alter the expression of genes known to play a role in immune system

related cells [116]. Furthermore, these correlations were not seen using male individuals,

suggesting that the associations are gender specific.

Even if these results are not what would, at first, be expected, they are not directly

inconsistent with the hypothesis, that the SNPs act together to affect the dynamics of

the model and thereby increase the risk of cancer developing. However, it does not verify

this effect in the target tissue. The focus was therefore shifted to breast tissue samples

from TCGA.

Using all SNPs associated with breast cancer, no correlation between RSR and either

time to apoptosis or distance to separatrix was found. However, when the SNPs were

limited to the 9 SNPs previously identified to be likely to affect any of the genes in the

model a significant correlation between RSR and time to apoptosis was found (p-value:

0.042). Furthermore, when comparing this correlation with all possible correlations of 9

SNPs from the original data set, it proved to be one of the most positive and with one of

the lowest p-values. When comparing the correlations using a single SNP at a time, the

set of 9 SNPs chosen was overrepresented among the more positively correlated SNPs,

although, only one was significant. Although this does not prove that there is in fact a
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causation between the risk score and the model output, it suggests that there is indeed a

link between the two measures.

When comparing the RSRs of either the 9 SNPs or single SNPs at a time, there was

no significant correlation between the RSR and the expression values of the four genes in

the model. This indicates that the the correlation between the RSR and time to apoptosis

is not due to a few SNPs affecting one or two genes in the model, but the result of small

perturbations caused by several SNPs over larger parts of the network. Furthermore, it

indicates that it is not a one-to-one relation between a SNP and change in expression of

a gene.

Given that the correlation between RSR and time to apoptosis was just below signif-

icance level, and that the results from Chapter 4 indicate that the distance to separatrix

is more weakly correlated with RSR than time to apoptosis, it is not surprising that no

significant correlation could be identified, even when limiting the analysis to the 9 se-

lected SNPs. However, even though the correlation using the subset of 9 SNPs was not

significant, it was in the right direction, with a shorter distance as RSR increased.

To further assess the possibility of the method to link genotype to risk of phenotype

change, the correlation between prostate cancer associated SNPs and time to apoptosis

as well as distance to separatrix in normal prostate tissue was investigated. This was

a smaller data set than that for breast cancer (50 samples for prostate cancer and 85

for breast cancer), but there is a large number of SNPs associated with prostate cancer

development. As with breast cancer, there was no correlation between RSR and time to

apoptosis using all SNPs in the data set. When selecting 7 SNPs thought to be affecting

any of the genes in the model, a weak correlation was seen, although not significant with

a p-value of 0.104. As with breast cancer, the correlation of the smaller data set with

time to apoptosis was one of the better correlations possible given the data. Also, when

looking at single SNPs at a time, there was a clear preference for positive correlations,

compared to the total data set.

Again, as with the breast tissue samples, when looking at the expression values, there

were no significant correlations using either all 7 SNPs or one SNP at a time. However,

the correlations for the 7 prostate cancer associated SNPs were further from the centre

of the distributions than those for 9 breast cancer associated SNPs. Likewise, the single

correlations of the 7 SNPs were more skewed towards positive ones for the inhibitors XIAP

and BFAR and towards negative ones for the two activators CASP8 and CASP3, than

the equivalent correlations for the 9 breast cancer associated SNPs.

Although the RSR could not be linked to the distance to separatrix in any of the three

sample sets and it could only be linked to the time to apoptosis in the lymphoblastoid
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cell lines and the breast tissue dataset, it is worth pointing out that for both breast

and prostate tissue the regression trend did go in the expected direction, that is with a

decreased distance with increased RSR. Furthermore, the correlation between RSR and

the time to apoptosis for the prostate tissues was in the expected direction (increased time

with increased RSR), although not significant. The distributions of the correlations using

single SNPs, both when correlating with time to apoptosis and distance to separatrix,

were skewed in the expected direction compared to the distribution of the total dataset.

Furthermore, the negative controls of both tissues indicate that the trends are tissue

specific, as would be expected. Altogether, these results suggest that these methods could

indeed be used to link the RSR to the mechanics of increased risk of developing cancer

through these dynamical models. What prevented such a link from being statistically

verified in this study was likely the sample size.

From the theoretical analysis in Chapter 4 it could be seen that, using 50 samples, a

significant correlation between RSR and distance to separatrix could be expected most

times, even when very low fractions of the the RSR is linked to the model (Figure 4.26). A

correlation with time to apoptosis could be expected to be significant with an even lower

fraction of the RSR actually effecting the model and consequently it could be argued that a

correlation should have been seen for both tissues (Figure 4.25). However, the theoretical

work assumed a perfect correlation between expression values and protein levels and a

perfect correlation between genotype and expression values. The experimental data for

the two tissue types do have noise in both of these correlations and any correlation between

the RSR and the model output would therefore be expected to be much weaker than the

theoretical work might suggest.

Since the correlation between RSR and time to apoptosis was just below significance

level for breast tissue with 85 samples, it is not surprising that the correlation was not

significant for prostate tissue with only 50 samples. Likewise, since the correlation with

distance was shown to be weaker in the previous chapter, it is not surprising that there

was no significant correlation in either case using the experimental data.

To truly be able to verify the method, a larger data set would have to be used.

Unfortunately no such dataset was to be found at the time.

The links between RSR and model output in all three cell types, combined with

the successful correlation between RSR and distance to separatrix using simulated data

(Chapter 4), do suggest that the work performed is a path worth further exploration.

Furthermore, the fact that the RSR barely correlated with any expression values and that

no single SNPs correlated with the model output suggests that these type of models are
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necessary in order to identify synergetic effects of larger sets of SNPs, which have small

effects on larger parts of a pathway.
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Chapter 6

Conclusions

The work presented in this thesis was based on a very ambitious project. By combining

what is generally known about the biology of the cell and cancer development, with

genetics and mathematical modelling, we aimed to gain a deeper understanding of the

mechanistics behind the risk of developing cancer. More precisely we were interested in

finding out how genetic variations with very small effects on the initial system could cause

an increased risk of developing cancer over time.

The introductory chapter in this thesis played two roles; first, to give an understanding

of the biology of cancer development and the role genetics plays, as well as to show how

extensive the problem of understanding cancer development and the risk of developing

cancer is; second, to show various ways in which mathematical models have been used

so far in this pursuit, and what possibilities and limitations have been encountered when

using them. It became apparent that no dynamical model will ever be able to cover the

full scope of cancer development. Instead, previous research has focused on small parts

of key pathways in order to gain a deep understanding of some of the mechanisms which

drive carcinogenic behaviour.

6.1 Understanding Risk

When trying to understand the way genetics affects the risk of developing cancer there is

no one obvious part of the process to focus on. As was seen in Chapter 1, genetic variations

associated with and altering the risk of developing cancer can be found spread over large

parts of the genome. In Chapter 2 attempts were made to find pathways with relevant

enrichments of breast cancer associated Single Nucleotide Polymorphisms (SNPs). The

term “relevant enrichment” is important as not all pathways known to be important in

cancer development have been studied to the same extent. As a consequence, the degree

to which deep knowledge required for building mathematical models has been acquired
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and the extent to which the knowledge has been translated into models of value with

regards to predictability varies greatly between the pathways.

The choice to map SNPs to the Boolean model of the carcinogenic process was an

attempt to anchor any enrichment onto the key genes of the identified pathways, in the

hope of being more likely to identify models covering these genes. It quickly became clear

that the very limited set of genes in the model was not enough to link the SNPs to models.

Even extending the network by considering intermediate connections, thereby allowing the

SNP to be two-times-removed from the gene in the model, yielded a surprisingly small

number of connections. However, a small number of SNPs could be linked to genes

involved in, or thought to be regulating, the apoptotic pathway. This became the main

entry point for further studies.

Out of the many models of the apoptotic pathway available, two complementing mod-

els were chosen. The first is a large model by Schlatter et al. [91] capturing both intra-

cellular and extracellular signalling of apoptosis. The other model, published by Eissing

et al. [95] is smaller and focuses the core parts of the apoptotic pathway, the activation

of Caspase 8 and Caspase 3. While the larger model gives a more complete picture of the

apoptotic signalling pathway, the smaller model allowed for a more in-depth analysis of

the dynamics due to its lower dimensionality.

In this work, only deterministic models were considered. While it would not have

been possible to always use the same tools, the concepts explored in this thesis could

have been applied to stochastic models as well. However, this would have introduced

more complexity and uncertainty to an already complex question. When investigating

the sensitivity of the models, the stochastic results would have made it even more difficult

to establish the effect of a SNP on the system outcome. When investigating the distance

to the separatrix consideration would have had to be taken to the fact that what appeared

as a surface in a deterministic system, would have taken the shape of a density cloud,

where each point was associated with some probability of crossing over, making it even

harder to define and measure the distance to the separatrix. It is also not clear how such a

model could have been evaluated on biological data as was done in Chapter 5, as publicly

available expression data of tissues is almost exclusivity bulk sequencing of many cells.

This data is more suitable for deterministic systems, which often are designed to capture

the general, average behaviour.
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6.2 Does Model Sensitivity Explain Risk?

Once a pathway had been identified and two models had been chosen for further study,

the next task was to establish a methodology for evaluating model dynamic sensitivity in

terms of risk of causing the system to change from a phenotype representing a healthy

cell to a phenotype representing a cancer cell. In the case of the two apoptosis models

chosen, the signal representing the onset of apoptosis was activation of Caspase 3. Since

cancer cells are characterised by evading the onset of apoptosis, the natural criteria for

the two phenotypes became whether the concentration of activated Caspase 3 had reached

a predefined threshold within the time limit of the simulation.

In Chapter 3 the general theory of model sensitivity was covered and a set of standard

sensitivity tools was used to explore areas of parameter or variable space where the model

is more sensitive to perturbations caused by genetic variations.

The analysis showed that both models were very robust. Although small gradual

changes in the time to onset of apoptosis could sometimes be seen upon modest perturba-

tions of initial concentrations of proteins in the larger model, these changes were almost

non-existent in the smaller apoptosis model (upon perturbations in the production rates),

especially when stronger initial activation signals were considered. Furthermore, often

large changes in initial component concentration (or production rate in the case of the

smaller apoptosis model) of a single variables were required to shift the system output

from one corresponding to apoptosis to one corresponding to indifference to activation

signalling. This could be expected; If the system was operating close to the edge of the

basin of healthy phenotype (i.e. the set of system configurations for which the cell would

respond to the initial activation signal within the set time limit), cells would be expected

to frequently exhibit the aberrant phenotype by chance (due to the stochastic variation

between cells). It is also consistent with the results by Schlatter et al. [91], showing in

their paper that the time dependent behaviour of the Bax-Bak complex, JNK, and Cas-

pase 3 is very robust to most small local changes (increase of 1-10%) in single parameters

with Caspase 3 activation being especially robust. In addition to that they also showed

that the amount of final active Caspase 3 was very robust towards changes in parameters,

where many single parameter changes could span 4 orders of magnitude without chang-

ing the phenotypic outcome of any of the tested scenarios of signal activation or drug

treatment.

Changing one or a few parameter at a time, however, has its limitations. It is not

possible to detect how multiple parameters interact to regulate behaviour, and how a

change in one parameter can change the sensitivity of the system with regards to another

165



parameter. An attempt to overcome this limitation was made with the parameter scans,

where two parameters were changed at the same time, showing that the output often

did indeed depend on both of them. However, looking at two parameters at a time also

meant that the number of analyses increased dramatically. Furthermore, this approach

would have been difficult to extend beyond the interaction of three parameters, due to

the difficulties in visualising higher-dimensional spaces. Sensitivity analysis using SASSy

and SloppyCell revealed that the dynamics of the studied model is not dictated by a few

parameters, or even a few low dimensional Principal Components (PCs). Instead, the

singular value spectrum indicates that the behaviour of the system is spread over a large

number of PCs and even if they decrease in importance, it is not possible to directly set a

cut-off for important and unimportant PCs. This phenomenon has been seen in a number

of other systems and it has even been suggested that it is a general characteristic for

biological systems [102]. Furthermore, by combining SloppyCell with the parameter scan,

and assessing the sensitivity of all parameters at different starting positions, a broader

understanding could be gained about how the sensitivities change as the system develops

from a normal state to a more cancer-like state.

6.3 Development of New Sensitivity Method

Using the sensitivity tools mentioned above, it could be shown that the sensitivity of the

system depended on how deep within the basin of healthy phenotype the system was.

This behaviour exposed a potential to use these tools to assess under what circumstances

genetic germline variations could have an increased effect and cause a disease phenotype

to occur; however, it became clear that such an analysis would be very complex and time

consuming if larger numbers of the possible mutations an individual could acquire during

a lifetime were to be investigated. It would also be very difficult to say anything about

the relative effect size of two or more SNPs as the system’s sensitivity to them showed to

be very much dependent on the precise configuration of the system as a whole.

From the parameter scan, especially of the smaller apoptosis model, and to some

extent also by the SASSy and SloppyCell analysis, it became clear that due to the way

the two phenotypes had been defined, a sharp edge was formed in the parameter space,

separating systems having a healthy phenotype from systems having a diseased phenotype.

As the system got closer to this edge that sensitivities of parameters were shifting from

the original sensitivity.

Instead of asking under what conditions each genetic variation would be the final driver

pushing the system over to a disease phenotype, the question was somewhat reverted; Can
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different starting positions in the configuration space be linked to the risk of acquiring a

disease phenotype?

Since the two classes of behaviour shared similarities with the mathematical concept

of a separatrix in terms of separating the different types of behaviour in parameter space,

the term was used throughout this thesis. It is important though to keep in mind that this

is a separatrix between sets of model states which can be interpreted as distinct biological

phenotypes and not between mathematical basins of attraction.

Any attempt to formulate a biological process, because of its complexity, inevitably

will depend on a large number of assumptions about the process. To minimise artefacts

resulting from potentially erroneous assumptions, the method developed to link the risk

of acquiring a disease phenotype to the distance to the separatrix was kept as simple

as possible. Instead of focusing on various aspects of the separatrix, the mean distance

was chosen as a single measurement. Furthermore, the boundaries of the state space,

corresponding to all possible initial conditions of the model were kept constant when

small initial perturbations were introduced.

By applying this new method to the two apoptosis models it could be shown that

various parameters had different sensitivities with regards to the distance to the separatrix.

That is to say, the change in distance to the separatrix, which a perturbation of similar

size had varied between parameters.

A comparison of the outputs of the two models and a closer examination of a subset

of the larger model revealed some limitations of using the mean distance in separatrix

space to model risk. As the dimensions of the separatrix space increase, the effect any

one perturbation will have on the distance to any point on the separatrix will decrease.

As carcinogenesis is characterised by a general up-regulation of transcription this poses a

problem since one would want to take into account this general up-regulation when mod-

elling the transition from a healthy state to a diseased state. However, as the parameter

scans in Chapter 3 showed, there is a wide range of sensitivities with regards to individ-

ual components of the network. Thus, at least in the case of the larger apoptosis model

studied in this work, there could most likely be a reduction of the total set of variables

without sacrificing much of the potential explanatory value of the modelling.

A further limitation of the method was seen when considering large perturbations from

the original position in parameter space or when the initial position was relatively close

to the separatrix in any one dimension. In these cases, the assumption was no longer

valid, that the measured points on the separatrix surface were equally good estimates of

the old and the new potential to cross the separatrix and change phenotype. This poses a

great limitation on the method, in terms of the range of scenarios which can be studied.
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However, the goal of this thesis was never to study the effect of large perturbations on the

risk of developing disease. In the cases where the sensitivity of the system is dominated

by a few parameters, or where large perturbations are of interest, more standard tools of

sensitivity are better suited. The problem we set out to study was how small perturba-

tions affected the risk of phenotype change. If the problem is restricted in this way, the

parameters which are highly sensitive could arguably be excluded from the analysis. Like-

wise the effect of large perturbations are excluded from the study. These perturbations

tend to already be well studied as they are easier to model and measure experimentally.

To assess how strongly the distance to the separatrix correlates with the risk of de-

veloping a diseased phenotype, a theoretical dataset was created. Genotypes with known

effects on the expression levels of the proteins in the two models were simulated. By simu-

lating individuals with these genotypes and having them be exposed to somatic mutations

which further perturbed the expression values, before using these expression values in the

apoptosis models to calculate the time to onset of apoptosis, the effect each genotype

carried on the risk of developing a a cancer phenotype could be established.

The total risk score of the simulated individuals proved to be strongly correlated both

with the time to onset of apoptosis and the distance to the separatrix. By introducing

noise in the data, it could be shown that only a part of the measured risk score had to be

associated with altered expression of the proteins in the model in order to be able to see

this correlation.

6.4 Application to Data

When applying the methods developed on experimental data for breast and prostate

cancer the results were not as clear as with the simulated data. Neither breast cancer

nor prostate cancer associated SNPs could be correlated with an increased distance to

the separatrix in the smaller apoptosis model. Breast cancer associated SNPs did have

a statistically significant correlation with time to apoptosis in breast tissue, but not on

lymphoblastoid cell lines. Since breast cancer associated SNPs were used in the analysis

the results using breast tissue is arguably more relevant than the results derived from the

lymphoblastoid data. Consequently, the positive results from the former analysis should

weigh higher than the negative results from the latter. As was also pointed out in the

discussion of Chapter 5, the negative correlation using immune derived cells could be of

interest on their own, as breast cancer associated cells have already been predicted to

affect the expression of genes with known roles in immune cells [116]. Rendering the

cells more sensitive to apoptotic signalling could give the breast cancer cells an increased
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chance of evading the immune response. The prostate cancer associated SNPs did not

have a significant correlation with time to apoptosis. However, the trend was in the

expected direction, with an increased time to apoptosis as the risk score ratio increased.

Using all of the SNPs associated with a cancer type is likely to introduce a lot of

noise in the analysis, since only a small fraction of the SNPs are likely to be affecting the

expression of the proteins in the apoptosis model. When limiting the analysis to a smaller

set of SNPs, there was a significant correlation between the more restricted risk score and

the time to apoptosis, as calculated by the model for the breast cancer associated SNPs.

However there was still no significant correlation between the risk score and the distance

to the separatrix for either cancer type. Close examination of both datasets revealed an

enrichment of SNPs with individual effects promoting carcinogenesis among the chosen

subset of SNPs compared to the entire set of SNPs. Especially the risk score of the 12

breast cancer associated SNPs had one of the strongest positive correlations with time to

apoptosis possible from subsampling 12 SNPs from the original dataset. The correlation

between time to apoptosis and risk score for the 7 prostate cancer associated SNPs was

also among the most positive ones possible, although the pattern was not as clear. Also

the correlation between the risk scores of both cancer types and distance to separatrix

was clearly more negative than the average correlation possible from the total sets.

The sample size was smaller for prostate cancer than for breast cancer, with only 50

samples compared to 86 breast tissue samples. This could explain why the breast cancer

data set showed stronger correlations than the prostate cancer dataset. Another reason

could be that in one dataset a larger fraction of the SNPs were actually associated with

altered expression of the proteins in the model than the other dataset. When sample

sizes from the theoretical data similar to those available for the two cancer types were

used, it was estimated that about 50% of the Risk Score Ratio (RSR) would have to be

linked to the model in order to confidently be able to interpret a lack of a correlation in

the analysis as an absence of actually correlation between the genotype and the distance

to the separatrix. However, the estimation is very conservative as it assumes a perfect

correlation between the genotype and the transcription values and a perfect correlation

between the transcription values and the translation of the proteins in the model. The

subsampling of the SNPs was done based on literature research and the evidence for an

association was not always very strong and the effect size of the SNPs was rarely available.

It is quite possible that some of the chosen SNPs do not affect the expression values of

the proteins in question and that some of the ones that do have an effect, do so in a weak

manner.
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Overall the trend in the real data is fairly consistent with the simulated results and

supports the use of the method. Although, to get stronger results, more care would have

to be take to curate the SNPs used or increase the sample size.

6.5 Future Work

In this thesis, the study was limited to two apoptosis models. As was seen in chapter 1 this

pathway constitutes a very small, although important, part of the carcinogenesis process.

There are many more pathways to study, possibly with better links between genotype

and expression values of the proteins involved. One way of increasing the power of the

modelling would be to consider models which more accurately model the transcription

and translation machinery, or adding a layer between the model and the experimental

data to better model these processes.

If the problems arising with higher dimensional separatrix surfaces can be addressed

adequately, there is also the possibility of linking several models of different pathways in

order to study how they affect each other. For example a cell cycle model could be coupled

with an apoptosis model so that the time to apoptosis was more dynamically constrained

by a cell cycle which in turn itself was affected by perturbations of proteins involved.

Ultimately one would want to link models to all of the Hallmarks of cancer. However,

while there are strong links between many of the hallmarks, this is not necessarily the

case for all of them. Consequently, one would not need to incorporate all of the hallmarks

in one single separatrix surface.

These are just some of the possible areas for future work. We have established an initial

framework which can be used to examine the effect of SNPs that alter gene expression

on the risk of developing a cancer phenotype. Dynamical mathematical models have

previously been used to study the progression from healthy phenotype to cancer. However,

to our knowledge, this is the first time they have been used in combination with SNP

data in an attempt to study the mechanistics behind the risk of developing cancer. Even

though the results presented here were quite modest with regards to being able to apply

a theoretical framework to experimental data and gain understanding of the biological

process, it is my hope that it will serve as an inspiration and point towards the possibilities

in combining mathematical modelling and experimental data to explore the genotype-

phenotype landscape with regards to risk of developing a disease. I have no doubt that

the continuously more sophisticated mathematical models being developed paired with

the accumulation of more genotype and transcription data will strongly improve the power
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of the tools developed in this thesis and any other methods developed in the future by

people posing similar questions.

171



172



Appendix A

Breast Cancer SNPs Used During
Data Mining

Table A.1: Breast cancer associated SNPs.

rs ID Chromosome Risk Allele OR logOR
rs616488 1 A 0.94 0.061875
rs11552449 1 T 1.07 0.067659
rs11249433 1 G 1.16 0.148420
rs4849887 2 C 0.91 0.094311
rs2016394 2 G 0.95 0.051293
rs1550623 2 A 0.94 0.061875
rs13387042 2 A 1.19 0.173953
rs16857609 2 T 1.08 0.076961
rs6762644 3 G 1.07 0.067659
rs4973768 3 T 1.15 0.139762
rs12493607 3 C 1.06 0.058269
rs6788895 3 G 1.22 0.198851
rs9790517 4 T 1.05 0.048790
rs6828523 4 C 0.90 0.105361
rs10069690 5 T 1.18 0.165514
rs1092913 5 A 1.45 0.371564
rs4415084 5 T 1.17 0.157004
rs7716600 5 A 1.24 0.215111
rs16886165 5 G 1.23 0.207014
rs889312 5 C 1.17 0.157004
rs10472076 5 C 1.05 0.048790
rs1353747 5 T 0.92 0.083382
rs1432679 5 C 1.07 0.067659
rs11242675 6 T 0.94 0.061875
rs204247 6 G 1.05 0.048790
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Table A.1: (continued)

rs17530068 6 C 1.16 0.148420
rs2180341 6 G 1.41 0.343590
rs9485372 6 G 1.11 0.104360
rs3757318 6 A 1.30 0.262364
rs3734805 6 C 1.19 0.173953
rs2046210 6 A 1.29 0.254642
rs9383938 6 T 1.28 0.246860
rs9383951 6 G 1.14 0.131028
rs2048672 7 C 1.11 0.104360
rs720475 7 G 0.94 0.061875
rs9693444 8 A 1.07 0.067659
rs6472903 8 T 0.91 0.094311
rs2943559 8 G 1.13 0.122218
rs13281615 8 G 1.08 0.076961
rs1562430 8 T 1.16 0.148420
rs11780156 8 T 1.07 0.067659
rs1011970 9 T 1.09 0.086178
rs10759243 9 A 1.06 0.058269
rs865686 9 T 1.12 0.113329
rs2380205 10 C 1.06 0.058269
rs7072776 10 A 1.07 0.067659
rs11814448 10 C 1.26 0.231112
rs10822013 10 T 1.12 0.113329
rs10995190 10 G 1.16 0.148420
rs704010 10 T 1.07 0.067659
rs7904519 10 G 1.06 0.058269
rs11199914 10 C 0.95 0.051293
rs3750817 10 T 1.22 0.198851
rs2981579 10 A 1.30 0.262364
rs2981582 10 A 1.26 0.231112
rs10510102 10 C 1.12 0.113329
rs3817198 11 C 1.07 0.067659
rs909116 11 T 1.17 0.157004
rs3903072 11 G 0.95 0.051293
rs614367 11 T 1.15 0.139762
rs11820646 11 C 0.95 0.051293
rs7107217 11 C 1.08 0.076961
rs12422552 12 C 1.05 0.048790
rs17356907 12 A 0.91 0.094311
rs11571833 13 T 1.26 0.231112
rs2236007 14 G 0.93 0.072571
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Table A.1: (continued)

rs2588809 14 T 1.08 0.076961
rs999737 14 C 1.06 0.058269
rs4322600 14 G 1.18 0.165514
rs941764 14 G 1.06 0.058269
rs3803662 16 A 1.23 0.207014
rs4784227 16 T 1.24 0.215111
rs3112612 16 A 1.15 0.139762
rs17817449 16 T 0.93 0.072571
rs13329835 16 G 1.08 0.076961
rs527616 18 G 0.95 0.051293
rs1436904 18 T 0.96 0.040822
rs8170 19 A 1.26 0.231112
rs8100241 19 G 1.14 0.131028
rs4808801 19 A 0.93 0.072571
rs3760982 19 A 1.06 0.058269
rs10411161 19 T 1.42 0.350657
rs2284378 20 T 1.16 0.148420
rs132390 22 C 1.12 0.113329
rs6001930 22 C 1.12 0.113329
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Table A.2: Gene names mapping to proteins in the boolean cancer development model
by Fumiã & Martins [53].

AKT1 CHEK2 MDM2 SLC2A1
AMP COX4I2 MTOR SMAD1
ATM DVL1 MXI1 SMAD2
ATP E2F1 MYC SMAD3
ATR E2F2 NF1 SMAD4
APAF1 E2F3 NFKB1 SMAD5
APC E2F4 NFKB2 SMAD6
ARAF E2F5 PDK1 SMAD7
BAD E2F6 PIK3CD SMAD9
BAK1 E2F7 PIP3 SNAI1
BAX E2F8 PRKAA1 SNAI2
BCAT1 EEF2 PRKAA2 SSSCA1
BCAT2 EEF2K PRKAB1 TCF7
BCL2 FADD PRKAB2 TCF7L1
BCL2L FOS PRKAG1 TCF7L2
BRAF FOXO1 PRKAG2 TERC
CASP8 FOXO3 PRKAG3 TERT
CASP9 FOXO4 PKRCA TGFB1
CCNA1 FOXO6 PRKCB TNF
CCNA2 GLI1 PTEN TP53
CCNB1 GSK RAF1 TSC1
CCNB2 GSR RAG1 TSC2
CCND1 GSS RAG2 UBE2C
CCND2 HIF1A RB1 VEGFA
CCND3 IKBKB RHEB VEGFB
CCNE1 JUN RPS6KA1 VEGFC
CCNE2 KRAS RPS6KA2 VHL
CDC20 LDHA RPS6KA3 WNT1
CDH1 MAP3K7 RPS6KB1 ZMIZ1
CDKN1A MAPK1 RPS6KB2
CDKN2B MAPK8 RTK
CHEK1 MAX SF3B6
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Table A.3: Tabular form of interactions between genes targeted by eQTLs and proteins
in the Boolean cancer model as depicted by Figure 2.3.

eQTL target gene intermediate proteins model protein
EIF2S2 RPS3, RPS5, RPS6, RPS7, RPS8,

RPS9, RPS10, RPS13, RPS14,
RPS15A, RPS16, RPS19, RPS20,
RPS23, RPS24, RPS29, FAU

EEF2

ELL CDK7, MNAT1, CCNH CCNB1, CCND1,
CCNE1, CCNE2,
CDKN1A

ELL GTF2F2, GTF2F1, POLR2B,
POLR2C, POLR2D, POLR2E,
POLR2F, POLR2G, POLR2I,
POLR2L

SF3B6

ELL TCEB1, TCEB2 HIF1A, VHL
PLAUR PLG, SERPINE1 TGFB1
TNNT3 ACTN2 TGFB1
CHMP4B, TGFR2 UBA52 EEF2
CHMP4B, TGFR2 UBA52, UBB, UBC SMAD4, SMAD7,

TGFB1 CDC20,
CDKN1A, HIF1A,
UBE2C, VHL

TGFBR2 CGN, PARD6A, PARD3, UCHL5,
ARHGEF18, PPP1CC, TGFBR1,
PPP1CB, NED4L, USP15,
SMURF2

TGFB1

TGFBR2 SMURF2
NED4L

SMAD4

TGFBR2 UCHL5, SMURF2
PPP1CC, TGFBR1, PPP1CB,
NED4L, USP15

SMAD7

TGFBR2 SMURF2 SMAD9
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Table A.4: Tabular form of interactions betwee breast cancer associated SNPs and proteins
in the Boolean cancer model as depicted in Figure 2.5.

SNP target gene intermediate proteins model protein
CCND1 UBC, UBA52, UBB SMAD4, SMAD7,

VHL, CDC20,
HIF1A, UBE2C,
TGFB1

CCND1 CDK4 CCND1, E2F5,
E2F1, E2F4,
E2F2, RB1,
E2F3, ATM

CCND1 CDKN1B, TFDP1 E2F3, RB1,
E2F2, E2F1,
E2F5, E2F4

CCND1 RBL1 E2F4
CCND1 RBL2 E2F4, E2F5
CCND1 - CDKN1A, E2F1,

E2F2, E2F3,
E2F4, E2F5,
RB1

EIF2S2 RPS9, RPS5, RPS16, RPS15A,
RPS29, RPS20, FAU, RPS3,
RPS7, RPS19, RSP13, RPS6,
RPS8, RPS10, RPS23, RPS24,
RPS14

EEF2

ESR1 - TNF
MAP3k CHUK NFKB1, NFKB2,

MAP3K7, IKBKB
MAP3K1 - IKBKB
RAD23B RPA3 ATM
RAD23B CCNH, MNAT1, CDK7 CCND1, CDKN1A,

CCNE1, CCNB1,
CCNE2

TERT DKC1 TERT
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Appendix B

Smaller Apoptosis Model

d[C8]

dt
= −k2[C3∗][C8]− k9[C8] + k−9 (B.1)

d[C8∗]

dt
= k2[C3∗][C8]− k5[C8∗]− k11[C8∗][BAR] + k−11[C8∗ ∼ BAR] (B.2)

d[C3]

dt
= −k1[C8∗][C3]− k10[C3] + k−10 (B.3)

d[C3∗]

dt
= k1[C8∗][C3]− k3[C3∗][IAP ] + k−3[C3∗ ∼ IAP ]− k6[C3∗] (B.4)

d[IAP ]

dt
= −k3[C3∗][IAP ] + k−3[C3∗ ∼ IAP ]− k4[C3∗][IAP ]− k8[IAP ] + k−8 (B.5)

d[C3∗ ∼ IAP ]

dt
= k3[C3∗][IAP ]− k−3[C3∗ ∼ IAP ]− k7[C3∗ ∼ IAP ] (B.6)

d[BAR]

dt
= −k11[C8∗][BAR] + k−11[C8∗ ∼ BAR]− k12[BAR] + k−12 (B.7)

d[C8∗ ∼ BAR]

dt
= k11[C8∗][BAR]− k−11[C8∗ ∼ BAR]− k13[C8∗ ∼ BAR] (B.8)
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Table B.1: Standard parameter settings of the smaller apoptosis model.

Parameter name Value Unit
k1 5.8E-5 cell ·mol−1 ·min−1

k2 1.0E-5 cell ·mol−1 ·min−1

k3 5.0E-4 cell ·mol−1 ·min−1

k4 3.0E-4 cell ·mol−1 ·min−1

k5 5.8E-3 min−1

k6 5.8E-3 min−1

k7 1.73E-2 min−1

k8 1.16E-2 min−1

k9 3.9E-3 min−1

k10 3.9E-3 min−1

k11 5.0E-4 cell ·mol−1 ·min−1

k12 1.0E-3 min−1

k13 1.16E-2 min−1

k−3 0.21 min−1

k−8 464 cell ·mol−1 ·min−1

k−9 507 cell ·mol−1 ·min−1

k−10 81.9 cell ·mol−1 ·min−1

k−11 0.21 min−1

k−12 40 cell ·mol−1 ·min−1

Table B.2: Standard variable settings of the smaller apoptosis model. All values are in
molecules/cell.

Variable name Value
C8 130000.0
C8∗ 1000.0
C3 21000.0
C3∗ 0.0
BAR 40000.0
BAR-C8∗ 0.0
IAP 40000.0
IAP-C3∗ 0.0
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Appendix C

Larger Apoptosis Model

d[com0]

dt
= −k19[TNF ][com0] + k43 ∗ incom0 ∗ (1− actD)− k43[com0] (C.1)

d[com1]

dt
= k19[TNF ][com0]− k20[com1][FADD]− k44[com1] (C.2)

d[proMKK7]

dt
= −k23[com1][proMKK7] + k27[MKK7][phos.] (C.3)

d[MKK7]

dt
= k23[com1][proMKK7]− k27[MKK7][phos.] (C.4)

d[JNK]

dt
= −k24[MKK7][JNK] + k34[pJNK][MKP ] + k33[ROS] (C.5)

d[pJNK]

dt
= k24[MKK7][JNK]− k34[pJNK][MKP ] (C.6)

d[prophos.]

dt
= −k25[prophos.][pJNK] + k26[phos.] (C.7)

d[phos.]

dt
= k25[prophos.][pJNK]− k26[phos.] (C.8)

d[FADD]

dt
= −k20[com1][FADD]− k47[Fas][proD][FADD] (C.9)

d[proD]

dt
= −k47[Fas][proD][FADD] (C.10)

d[C8]

dt
= −k21[com2][C8]− k22[D][C8] (C.11)
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d[C8a]

dt
= k21[com2][C8] + k22[D][C8]− k8[C8a] (C.12)

d[c2]

dt
= k20[c1][FADD]− k39[c2][cF ] + k41[c2F ]− k45[c2] (C.13)

d[D]

dt
= −k40[D][cF ] + k42[DcF ]− k46[D] + k47[Fas][proD][FADD] (C.14)

d[c2F ]

dt
= k39[com2][cF ]− k41[c2F ] (C.15)

d[DcF ]

dt
= k40[D][cF ]− k42[DcF ] (C.16)

d[cF ]

dt
= −k38[cF ][iPPP ]− k39[c2][cF ]− k40[D][cF ] + k41[c2F ] + k42[DcF ] (C.17)

d[itch]

dt
= −k35 ∗ CHX[itch][pJNK] (C.18)

d[itchP ]

dt
= k35 ∗ CHX[itch][pJNK]− k36[itchP ][pJNK] (C.19)

d[itchPP ]

dt
= k36[itchP ][pJNK]− k37[itchPP ][pJNK] (C.20)

d[itchPPP ]

dt
= k37[itchPP ][pJNK] (C.21)

d[IKKn]

dt
= kprod ∗ (1− actD)− kdeg[IKKn]− TR ∗ k1[IKKn] (C.22)

d[A20t]

dt
= c2 ∗ (1− actD) + c1[NFκBn] ∗ (1− actD)− c3[A20t] (C.23)

d[IκBαt]

dt
= c2α ∗ (1− actD) + c1α[NFκBn] ∗ (1− actD)− c3α[IκBαt] (C.24)

d[PmRNA]

dt
= c1c[NFκBn] ∗ (1− actD)− c2c[PmRNA] (C.25)
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d[P ]

dt
= k28[PmRNA]− k30[P ][ROS] (C.26)

d[MKP ]

dt
= −k31[ROS][MKP ] + k32[MKPox] (C.27)

d[MKPox]

dt
= k31[ROS][MKP ]− k32[MKPox] (C.28)

d[ROS]

dt
= [ROSfree]− k30[P ][ROS]− k31[ROS][MKP ] (C.29)

d[JNK]

dt
= −k1[TNF ][JNK] (C.30)

d[pJNK]

dt
= k1[TNF ][JNK]− k2[pJNK] (C.31)

d[Bim]

dt
= −k3[pJNK][Bim] (C.32)

d[pBim]

dt
= k3[pJNK][Bim]− k4[pBim]− k5[pBim][Bcl2] (C.33)

d[C8]

dt
= −k21[com2][C8]− k22[D][C8] (C.34)

d[C8∗]

dt
= k21[com2][C8] + k22[D][C8]− k8[C8∗] (C.35)

d[C3]

dt
= −k14[C3][C8∗]− k15[C3][CytCfree]− k16[C3][C3∗] (C.36)

d[C3∗]

dt
= k14[C3][C8∗] + k15[C3][CytCfree] + k16[C3][C3∗]− k17[C3∗]− k18[C3∗][XIAP ]

(C.37)

d[Bid]

dt
= −k9[C8∗][Bid] (C.38)

d[tBid]

dt
= k9[C8∗][Bid]− k10[tBid]− k11[tBid][Bcl2] (C.39)

d[BaxBak]

dt
= −k6[pBim][BaxBak]− k12[tBid][BaxBak] + k13[BaxBak

∗] (C.40)
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d[BaxBak∗]

dt
= k6[pBim][BaxBak] + k12[tBid][BaxBak]− k13[BaxBak∗] (C.41)

d[XIAP ]

dt
= −k18[C3∗][XIAP ] (C.42)

d[Bcl2]

dt
= −k5[pBim][Bcl2]− k11[tBid][Bcl2] (C.43)

Fas(t) = H(t− a) ∗ 100 (C.44)

CytCfree(t) = H(BaxBak∗(t)− 90) ∗ 100 (C.45)

Where: H(n) =

{
0, n < 0

1, n = 0
(C.46)

ROSfree(t) =
1

0.03 ∗ 2π
e

1
2
( t−4
0.03

)2 ∗ 100 ∗ (1−BHA) (C.47)
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Table C.1: Initial variable settings of the larger apoptosis model. All values are in arbi-
trary units (AU)

Variable name Value complex0 100
TNF 100 complex1 0
JNK 100 complex2 0
pJNK 0 cFLIP 100
Bim 100 c2FLIP 0
pBim 0 P 0
C8 100 ROS 0
C8∗ 0 MKP 50
C3 100 MKPox 0
C3∗ 0 proMKK7 100
Bid 100 MKK7 0
tBid 0 prophosphatase 100
BaxBak 100 phosphatase 0
BaxBak∗ 0 itch 100
XIAP 80 itchP 0
Bcl2 100 itchPP 0
FADD 200 itchPPP 0
proDISC 100 DISC 0
DcFLIP 0 cgent 0.0
IKKn 0.2 A20t 0.0
IkBat 0.0 PmRNA 0.0
IKKa 0.0 IKKi 0.0
IKKaIkBa 0.0 IKKaIkBaNFkB 0.0
NFkB 0.00033705498019754324 NFkBn 0.002203216237184229
A20 0.004590033827467142 IkBa 0.0019900111439232052
IkBan 0.002294747386858693 IkBaNFkB 0.05890045169239104
IkBanNFkBn 0.00008426374504938584
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Table C.2: Standard parameter settings of the larger apoptosis model.

Parameter name Value Unit Parameter name Value Unit
k3 0.04 AU−1h−1 k45 0.05 h−1

k4 0.001 h−1 k46 0.05 h−1

k5 1.0 AU−1h−1 k47 0.005 AU−2h−1

k6 0.005 AU−1h−1 t1 360.0 h−1

k8 0.01 h−1 t2 360.0 h−1

k9 0.002 AU−1h−1 c1a 0.0018 h−1

k10 0.001 h−1 c2a 0.0 AU−1h−1

k11 1.0 AU−1h−1 c3a 1.44 h−1

k12 0.1 AU−1h−1 c4a 1800 h−1

k13 0.0001 h−1 c5a 0.36 h−1

k14 0.002 AU−1h−1 c6a 0.072 h−1

k15 0.05 AU−1h−1 c1 0.0018 h−1

k16 0.007 AU−1h−1 c2 0.0 AU−1h−1

k17 0.01 h−1 c3 1.44 h−1

k18 0.05 AU−1h−1 c4 1800 h−1

k19 0.05 AU−1h−1 c5 1.08 h−1

k20 0.001 AU−1h−1 ik1 9.0 h−1

k21 0.08 AU−1h−1 ik2 360 h−1

k22 0.8 AU−1h−1 ik3 5.4 h−1

k23 0.05 AU−1h−1 kprod 0.09 AU−1h−1

k24 0.4 AU−1h−1 kdeg 0.45 h−1

k25 0.05 AU−1h−1

k26 0.05 h−1 kv 3.0 -
k27 2.0 AU−1h−1 i1 9.0 h−1

k28 90000 h−1 i1a 3.6 h−1

k30 1.0 AU−1h−1 e1a 1.8 h−1

k31 0.1 AU−1h−1 e2a 36.0 h−1

k32 0.01 h−1 c1c 0.0018 h−1

k33 2.0 h−1 c2c 0.36 AU−1h−1

k34 0.9 AU−1h−1 c3c 1.44 h−1

k35 0.015 AU−1h−1 time 12.0 h
k36 0.025 AU−1h−1 ActD 1 AU−1h−1

k37 0.045 AU−1h−1 TNF 100.0 AU−1h−1

k38 0.05 AU−1h−1 BHA 0 AU−1h−1

k39 0.8 AU−1h−1 CHX 0 AU−1h−1

k40 8.0 AU−1h−1 incomp0 100 AU
k41 0.008 h−1 a1 1800 AU−1h−1

k42 0.008 h−1 a2 720.0 AU−1h−1

k43 0.001 h−1 a3 3600.0 AU−1h−1

k44 0.05 h−1
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Appendix D

Sensitivity Analysis of the Smaller
Apoptosis Model
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Figure D.1: Time to maximum Caspase 3 signalling when perturbing two parameters
between 0 and 2 time the initial value. The value of the parameters is depicted on the
respective axis and time time is colour coded from 0 (dark blue) to 20,000 (dark red).
Upon initial perturbations, the time to apoptosis does not alter much. However, within a
very small window of parameter perturbation, the time changes from very short, to very
long. The white indicates where the value exceeded the limit of the scale.
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Figure D.2: Time to apoptosis on the y-axis as a function of parameter perturbation.
Blue and green lines show an additional 10% perturbation of a second parameter whereas
red show the initial value.
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Appendix E

Sensitivity Analysis of the Larger
Apoptosis Model
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(a) BaxBak (b) Bcl2 (c) Bid (d) Bim

(e) C3 (f) C8 (g) cFLIP (h) FADD

(i) itch (j) JNK (k) MKP (l) proDISC

(m) proMKK7 (n) prophospatase (o) XIAP

Figure E.1: Concentration of activated Caspase 3 in the larger model over time as one
initial concentration if permuted. Colours indicate concentration from 0 (dark blue) to
36 (deep red) and the concentration of the perturbed variable is indicated on the y-axis
from 0-2 times normal value. The white indicates where the value exceeded the limit of
the scale.
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(a) time to max C3*: Bcl2-BaxBak (b) max C3*: Bcl2-BaxBak

(c) time to max C3*: XIAP-BaxBak (d) max C3*: XIAP-BaxBak

(e) time to max C3*: BaxBak-Bid (f) max C3*: BaxBak-Bid

Figure E.2: Left: time to maximum concentration of activated Caspase 3 as two initial
concentrations are perturbed. Right: Maximum concentration of activated Caspase 3
within 20 hours as the same initial concentrations are perturbed. The white indicates
where the value exceeded the limit of the scale.
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(a) (b)

(c) (d)

(e) (f)

Figure E.3: Left: time to maximum concentration of activated Caspase 3 as two initial
concentrations are perturbed. Right: Maximum concentration of activated Caspase 3
within 20 hours as the same initial concentrations are perturbed. The white indicates
where the value exceeded the limit of the scale.
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(a) (b)

(c) (d)

(e) (f)

Figure E.4: Left: time to maximum concentration of activated Caspase 3 as two initial
concentrations are perturbed. Right: Maximum concentration of activated Caspase 3
within 20 hours as the same initial concentrations are perturbed. The white indicates
where the value exceeded the limit of the scale.
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(a) (b)

(c) (d)

(e) (f)

Figure E.5: Left: time to maximum concentration of activated Caspase 3 as two initial
concentrations are perturbed. Right: Maximum concentration of activated Caspase 3
within 20 hours as the same initial concentrations are perturbed. The white indicates
where the value exceeded the limit of the scale.
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(a) (b)

(c) (d)

(e) (f)

Figure E.6: Left: time to maximum concentration of activated Caspase 3 as two initial
concentrations are perturbed. Right: Maximum concentration of activated Caspase 3
within 20 hours as the same initial concentrations are perturbed. The white indicates
where the value exceeded the limit of the scale.
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(a) (b)

(c) (d)

(e) (f)

Figure E.7: Left: time to maximum concentration of activated Caspase 3 as two initial
concentrations are perturbed. Right: Maximum concentration of activated Caspase 3
within 20 hours as the same initial concentrations are perturbed. The white indicates
where the value exceeded the limit of the scale.
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(a) (b)

(c) (d)

Figure E.8: Left: time to maximum concentration of activated Caspase 3 as two initial
concentrations are perturbed. Right: Maximum concentration of activated Caspase 3
within 20 hours as the same initial concentrations are perturbed. The white indicates
where the value exceeded the limit of the scale.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure E.9: Maximum concentration of activated Caspase 3 within 20 hours as the same
initial concentrations are perturbed. The white indicates where the value exceeded the
limit of the scale.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure E.10: Maximum concentration of activated Caspase 3 within 20 hours as the same
initial concentrations are perturbed. The white indicates where the value exceeded the
limit of the scale.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure E.11: Maximum concentration of activated Caspase 3 within 20 hours as the same
initial concentrations are perturbed. The white indicates where the value exceeded the
limit of the scale.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure E.12: Maximum concentration of activated Caspase 3 within 20 hours as the same
initial concentrations are perturbed. The white indicates where the value exceeded the
limit of the scale.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure E.13: Maximum concentration of activated Caspase 3 within 20 hours as the same
initial concentrations are perturbed. The white indicates where the value exceeded the
limit of the scale.
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Appendix F

Simulated SNPs Used in the
Separatrix Analysis

Table F.1: Simulated SNPs used in the smaller apoptosis model.

parameter model effect allele frequency OR p-value
k10neg 0.95 0.36 1.032 1.20359e-41
k10neg 0.95 0.26 1.03 2.49977e-31
k10neg 1.071 0.23 0.962 2.58248e-48
k10neg 0.93 0.21 1.047 2.18451e-63
k10neg 1.03 0.18 0.987 1.72789e-05
k10neg 0.954 0.12 1.027 1.84265e-14
k10neg 1.03 0.45 0.981 7.1697e-18
k10neg 0.917 0.45 1.055 1.01507e-127
k10neg 1.102 0.03 0.94 7.67061e-21
k10neg 0.964 0.4 1.019 1.88442e-16
k10neg 1.037 0.38 0.975 3.83447e-27
k10neg 0.983 0.27 1.011 5.6875e-05
k10neg 1.063 0.36 0.967 2.23132e-47
k10neg 1.08 0.03 0.951 3.46198e-14
k12neg 1.063 0.49 1.032 5.71594e-46
k12neg 1.048 0.15 1.027 3.78085e-17
k12neg 0.919 0.21 0.959 3.44214e-52
k12neg 0.95 0.47 0.977 1.29765e-25
k12neg 0.905 0.18 0.946 9.63293e-84
k12neg 0.908 0.09 0.947 4.40034e-44
k12neg 0.973 0.45 0.986 1.51826e-09
k12neg 1.073 0.16 1.039 1.33633e-35
k12neg 1.032 0.16 1.02 8.24874e-10
k12neg 1.109 0.19 1.057 5.37317e-86
k12neg 1.085 0.26 1.05 5.30302e-83
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Table F.1: (continued)

k12neg 0.956 0.34 0.974 4.76778e-29
k12neg 1.022 0.18 1.014 4.06008e-06
k12neg 1.023 0.21 1.014 8.02893e-07
k12neg 1.032 0.07 1.019 7.84828e-05
k8neg 1.014 0.24 1.011 0.00014383
k8neg 0.957 0.43 0.972 6.54515e-36
k8neg 1.027 0.24 1.015 2.29851e-08
k8neg 1.037 0.25 1.023 9.93833e-18
k8neg 0.952 0.33 0.971 1.49403e-35
k8neg 0.965 0.44 0.975 1.73741e-28
k8neg 0.989 0.31 0.988 2.7434e-06
k8neg 0.96 0.13 0.972 1.92351e-17
k8neg 0.95 0.45 0.967 1.5715e-51
k8neg 1.066 0.34 1.04 2.52785e-63
k8neg 0.946 0.19 0.968 4.7838e-30
k9neg 1.051 0.25 0.976 1.24591e-20
k9neg 1.022 0.38 0.991 0.00049929
k9neg 1.153 0.2 0.931 6.51419e-149
k9neg 1.087 0.05 0.952 3.56676e-21
k9neg 0.977 0.11 1.017 9.60811e-06
k9neg 1.05 0.27 0.976 2.81066e-22
k9neg 0.915 0.46 1.05 5.56154e-108
k9neg 1.053 0.2 0.975 4.13315e-19
k9neg 0.961 0.2 1.024 1.07521e-16
k9neg 0.954 0.44 1.024 1.34972e-26
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Table F.2: Simulated SNPs used in the larger apoptosis model.

Gene model effect allele frequency OR p-value
BaxBak 1.122 0.42 0.967 1.11418e-08
BaxBak 1.168 0.42 0.958 2.23527e-13
Bcl2 1.095 0.13 1.113 9.63618e-38
Bcl2 1.14 0.08 1.158 5.38188e-45
Bcl2 1.095 0.31 1.123 1.2197e-81
Bcl2 1.062 0.21 1.059 4.48351e-16
Bcl2 0.936 0.04 0.923 1.34632e-07
Bcl2 1.063 0.26 1.072 6.73065e-27
Bcl2 1.148 0.36 1.13 4.19788e-96
Bcl2 1.078 0.18 1.07 2.63944e-19
Bcl2 1.077 0.15 1.095 4.57887e-31
Bcl2 0.902 0.33 0.902 3.10136e-67
Bid 0.793 0.49 1.109 1.43063e-75
Bid 1.191 0.12 0.904 6.85768e-31
Bid 0.909 0.41 1.024 0.000187298
Bid 0.921 0.38 1.034 5.3376e-08
Bid 1.053 0.26 0.97 1.25909e-05
Bim 0.962 0.35 1.025 0.000127028
Bim 0.881 0.18 1.078 1.12158e-24
Bim 0.867 0.24 1.076 1.3871e-28
Bim 0.934 0.02 1.062 0.00909134
Bim 0.905 0.16 1.061 3.26709e-14
Bim 0.84 0.36 1.095 1.08044e-53
Bim 0.943 0.39 1.027 1.82145e-05
Bim 0.935 0.1 1.061 9.24635e-10
C3 0.907 0.02 1.255 3.60061e-30
C3 1.088 0.29 0.829 4.19751e-202
C3 1.025 0.28 0.932 4.79703e-29
C3 0.928 0.3 1.153 6.36487e-119
C3 1.026 0.28 0.948 4.28202e-17
C8 0.88 0.23 1.024 0.00161818
C8 0.993 0.06 1.034 0.0181449
C8 0.815 0.09 1.038 0.000650635
FADD 1.135 0.41 1.017 0.0125757
JNK 1.22 0.41 0.96 4.17705e-12
JNK 0.851 0.45 1.032 9.84555e-08
JNK 0.827 0.08 1.032 0.00751134
XIAP 0.958 0.45 0.947 1.02727e-21
XIAP 0.946 0.01 0.923 0.0156286
XIAP 0.953 0.11 0.917 2.05165e-21
XIAP 0.964 0.45 0.951 1.26106e-18
XIAP 1.101 0.36 1.138 4.64115e-110
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Table F.2: (continued)

XIAP 1.151 0.27 1.225 2.57747e-233
XIAP 0.955 0.49 0.921 2.31732e-48
XIAP 0.911 0.05 0.862 2.88533e-29
XIAP 0.804 0.1 0.728 6.09411e-250
proMKK7 1.158 0.45 0.985 0.0223308
prophosphatase 0.866 0.44 0.98 0.00199392
prophosphatase 1.16 0.35 1.027 2.10535e-05
prophosphatase 0.814 0.06 0.955 0.000436115

208



Appendix G

Separatrix Analysis of the Larger
Apoptosis Model
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(b) 1% perturbation
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(c) -5% perturbation
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(d) 5% perturbation

Figure G.1: Percentage mean distance change per percentage parameter change for each
separatrix surface of the larger apoptosis model as each variable is perturbed one at a
time, 0.01 (a-b) or 0.05 (c-d) times the initial value. (from left to right: proMKK7, JNK,
prophosphatase, FADD, proDISC, Caspase 8, cFLIP, itch, MKP, Bim, Caspase 3, Bid,
BaxBak, XIAP and Bcl2).
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(a) -10% perturbation
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Perturbation: 10.0%

(b) 10% perturbation

Figure G.2: Percentage mean distance change per percentage parameter change for each
separatrix surface of the larger apoptosis model as each variable is perturbed one at a
time, 0.01 (a-b) or 0.05 (c-d) times the initial value. (from left to right: proMKK7, JNK,
prophosphatase, FADD, proDISC, Caspase 8, cFLIP, itch, MKP, Bim, Caspase 3, Bid,
BaxBak, XIAP and Bcl2).
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Figure G.3: Distance from starting point to separatrix surface for larger apoptosis model,
calculated as mean distance to all points on the surface before and after each variable
is perturbed 0.1, 0.05, -0.05 and -0.1 times the initial value. The first data indicate
distances from original starting point to 10 surfaces and the rest indicate distances after
perturbations or respective production rate parameter.
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Figure G.4: 50 calculations of correlations between RSR and a: time to apoptosis and,
b: distance to separatrix for the larger apoptosis model. Each simulations contained 50
individuals with a 10 SNPs randomly chosen from SNPs with a variable effect size between
0.96 and 1.06 and a random number of those SNPs linked to the model. Both maximum
time to apoptosis and separatrix surface was set to 25 hours and only variables around
the Caspase signalling were used.
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Figure G.5: 50 calculations of correlations between RSR and a: time to apoptosis and,
b: distance to separatrix for the larger apoptosis model. Each simulations contained 50
individuals with a 10 SNPs randomly chosen from SNPs with a variable effect size between
0.96 and 1.06 and a random number of those SNPs linked to the model. Both maximum
time to apoptosis and separatrix surface was set to 25 hours and only variables around
the Caspase signalling were used.
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Figure G.6: 50 calculations of correlations between RSR and a,c and e: time to apoptosis
and, b, d and f: distance to separatrix for the larger apoptosis model. Each simulations
contained 50 individuals with a 10 SNPs randomly chosen from the entire data set of SNPs
linked to included variables and a random number of those SNPs linked to the model.
Both maximum time to apoptosis and separatrix surface was set to 25 hours (a–b), 50
hours (c–d) or 100 hours (e–f) and only variables around the Caspase signalling, excluding
BaxBak, were used.
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Figure G.7: 50 calculations of correlations between RSR and a, c and e: time to apoptosis
and, b, d and f: distance to separatrix for the larger apoptosis model. Each simulations
contained 50 individuals with a 10 SNPs randomly chosen from SNPs with a variable
effect size between 0.97 and 1.03 and a random number of those SNPs linked to the
model. Both maximum time to apoptosis and separatrix surface was set to 25 hours (a–
b), 50 hours (c–d) or 100 hours (e–f) and only variables around the Caspase signalling,
excluding BaxBak, were used.
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Appendix H

Cancer associated SNPs

Table H.1: Breast cancer associated SNPs. When a closest gene was given in the literature,
this is stated in the Gene column. If the SNP was used for the analysis using breast tissue
and lymphoblastoid cell lines this is indicated by a 1 in the column breast and 1kG
respectively

rs ID oncoarray OR (95%CI) Genes breast 1kG
rs6596100 0.94(0.92–0.96) HSPA4 1 1
rs79724016 0.93(0.88–0.97) HIVEP3 1 1
rs6678914 1(0.99–1.02) LGR6 1 1
rs11075995 1.03(1.01–1.06) FTO 1 1
rs527616 0.97(0.95–0.98) - 1 1
rs745570 1.03(1.01–1.05) - 1 1
rs6562760 0.95(0.93–0.97) - 1 1
rs7297051 0.89(0.87–0.91) - 1 1
rs11820646 0.96(0.94–0.98) - 1 1
rs3903072 0.97(0.95–0.99) - 1 1
rs11199914 0.96(0.94–0.98) - 1 1
rs13294895 1.06(1.03–1.08) - 1 1
rs10816625 1.11(1.07–1.15) - 1 1
rs10759243 1.06(1.04–1.08) - 1 1
rs13281615 1.11(1.09–1.13) - 1 1
rs13365225 0.91(0.89–0.93) - 1 1
rs9693444 1.06(1.04–1.08) - 1 1
rs17529111 1.02(1–1.04) - 1 1
rs2012709 1.02(1–1.04) - 1 1
rs4849887 0.91(0.88–0.94) - 1 1
rs12710696 1.03(1.01–1.04) - 1 1
rs4245739 1.02(1–1.04) MDM4 1 1
rs1550623 0.95(0.93–0.98) CDCA7 1 1
rs1432679 1.08(1.06–1.1) EBF1 1 1
rs17356907 0.91(0.9–0.93) NTN4 1 1
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Table H.1: (continued)

rs4593472 0.97(0.95–0.99) FLJ43663 1 1
rs6762644 1.05(1.03–1.07) EGOT/ITPR1 1 1
rs12493607 1.05(1.03–1.07) TGFBR2 1 1
rs6507583 0.92(0.89–0.96) SETBP1 1 1
rs204247 1.04(1.02–1.06) RANBP9 1 1
rs2943559 1.1(1.07–1.14) HNF4G 1 1
rs10474352 0.94(0.92–0.97) ARRDC3 1 1
rs4973768 1.11(1.09–1.13) SLC4A7 1 1
rs3817198 1.05(1.03–1.07) LSP1 1 1
rs941764 1.03(1.02–1.05) CCDC88C 1 1
rs4577244 1.01(0.99–1.03) WDR43 1 1
rs7904519 1.03(1.01–1.05) TCFL2 1 1
rs2290203 0.94(0.92–0.96) PRC1 1 1
rs1436904 0.95(0.94–0.97) CHST9 1 1
rs11627032 0.96(0.94–0.98) RIN3 1 1
rs7707921 0.96(0.94–0.98) ATG10 1 1
rs6964587 1.03(1.02–1.05) AKAP9 1 1
rs6828523 0.91(0.88–0.93) ADAM29 1 1
rs1053338 1.05(1.02–1.07) ATNX7 1 1
rs704010 1.07(1.05–1.09) ZMZ1 1 1
rs4808801 0.93(0.91–0.95) ELL 1 1
rs17426269 1.05(1.02–1.07) - 1 1
rs16991615 1.1(1.06–1.14) MCM8 1 1
rs2594714 0.97(0.95–0.99) - 1 1
rs4496150 0.96(0.94–0.98) - 1 1
rs206966 1.05(1.02–1.07) - 1 1
rs17268829 1.05(1.03–1.07) - 1 1
rs6815814 1.06(1.04–1.08) - 1 1
rs12479355 0.96(0.94–0.98) - 1 1
rs7529522 1.06(1.04–1.08) - 1 1
rs12624860 1.04(1.01–1.07) - 1 1
rs7971 0.96(0.94–0.98) DNAH11, CDCA7L 1 1
rs310302 1.05(1.02–1.07) - 1 1
rs1707302 0.96(0.95–0.98) PIK3R3, LOC101929626 1 1
rs738321 0.95(0.93–0.97) PLA2G6 1 1
rs11117758 0.95(0.93–0.97) ESRRG 1 1
rs6805189 0.97(0.95–0.99) FOXP1 1 1
rs2965183 1.04(1.02–1.06) GATAD2A, MIR640 1 1
rs6569648 0.94(0.92–0.96) L3MBTL3 1 1
rs10760444 1.03(1.02–1.05) LMX1B 1 1
rs10022462 1.04(1.02–1.06) LOC105369192 1 1
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Table H.1: (continued)

rs9833888 1.06(1.04–1.08) CMSS1, FILIP1L 1 1
rs16857609 1.06(1.04–1.09) DIRC3 1 1
rs2981578 1.23(1.21–1.25) FGFR2 1 1
rs11814448 1.12(1.06–1.19) DNAJC1 1 1
rs7072776 1.05(1.03–1.07) DNAJC1 1 1
rs999737 0.91(0.89–0.93) RAD51B 1 1
rs2588809 1.06(1.03–1.08) RAD51B 1 1
rs2380205 0.98(0.96–0.99) ANKRD16 1 1
rs720475 0.96(0.94–0.98) NOBOX, ARHGEF6 1 1
rs1292011 0.92(0.9–0.94) TBX3 1 1
rs6001930 1.12(1.09–1.16) MKL1 1 1
rs4784227 1.23(1.2–1.25) TOX3 1 1
rs3819405 0.96(0.94–0.97) ATXN1 1 1
rs13329835 1.07(1.05–1.09) CDYL2 1 1
rs2823093 0.94(0.92–0.96) NRIP1 1 1
rs11780156 1.05(1.03–1.08) MYC 1 1
rs9397437 1.17(1.14–1.21) ESR1 1 1
rs3757322 1.08(1.06–1.1) ESR1 1 1
rs6725517 0.96(0.94–0.98) ADCY3 1 1
rs116095464 1.06(1.02–1.1) AHRR 1 1
rs1895062 0.94(0.92–0.95) ASTN2 1 1
rs3760982 1.05(1.03–1.07) KCCN4, LYPD5 1 1
rs17156577 1.05(1.02–1.08) CREB5 1
rs34207738 1.06(1.04–1.08) ZBTB38 1
rs78269692 1.09(1.04–1.13) NFIX1 1
rs71801447 1.09(1.05–1.13) BCL2L11 1
rs113577745 1.08(1.05–1.11) GRHL1 1
rs151090251 1.10(1.05–1.16) SMAD3 1
rs6597981 0.96(0.94–0.97) PIDD1 1
rs35383942 1.12(1.08–1.17) PHLDA3 1
rs6882649 0.97(0.95–0.99) NREP 1
rs11389348 0.94(0.92–0.96) - 1
rs6062356 1.09(1.06–1.12) - 1
rs4233486 0.97(0.95–0.98) - 1
rs140850326 0.97(0.95–0.99) - 1
rs58058861 1.06(1.04–1.09) - 1
rs77528541 0.95(0.92–0.97) - 1
rs72749841 0.93(0.91–0.96) - 1
rs35951924 0.95(0.93–0.97) - 1
rs4562056 1.05(1.03–1.07) - 1
rs71557345 0.92(0.88–0.96) - 1
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Table H.1: (continued)

rs12207986 0.97(0.95–0.98) - 1
rs514192 1.05(1.03–1.07) - 1
rs58847541 1.08(1.05–1.1) - 1
rs67958007 1.09(1.06–1.12) - 1
rs140936696 1.04(1.02–1.07) - 1
rs202049448 0.95(0.93–0.97) - 1
rs28539243 1.05(1.03–1.07) - 1
rs6122906 1.05(1.03–1.07) - 1
rs28512361 1.05(1.02–1.08) - 1
rs2223621 1.04(1.02–1.06) CDKAL1 1
rs9358466 0.96(0.94–0.98) CASC15 1
rs71559437 0.93(0.91–0.96) CUX1 1
rs2992756 1.06(1.04–1.08) KLHDC7A 1
rs12546444 0.93(0.91–0.96) ZFPM3 1
rs73161324 1.06(1.02–1.09) XRCC6 1
rs4971059 1.05(1.03–1.07) TRIM46 1
rs2432539 1.03(1.02–1.05) AMFR 1
rs71338792 1.05(1.03–1.07) GIPR 1
rs117618124 0.89(0.85–0.92) GAREM1 1
rs13066793 0.94(0.91–0.97) VGLL3 1
rs10623258 1.04(1.02–1.06) ADSSL1 1
rs72826962 1.2(1.11–1.3) CNTNAP1 1
rs1830298 1.06(1.04–1.08) CASP8/ALS2CR12 1
rs2747652 0.94(0.92–0.96) ESR1 1
rs35054928 1.27(1.25–1.3) FGFR2 1
rs45631563 0.81(0.78–0.85) FGFR2 1
rs11242675 1(0.98–1.02) FOXQ1 1
rs2236007 0.93(0.91–0.95) PAX9 1
rs12048493 1.04(1.02–1.06) OTUD7B 1
rs11571833 1.35(1.23–1.48) BRCA2 1
rs17879961 1.26(1.11–1.42) CHEK2 1
rs75915166 1.28(1.24–1.33) CCND1 1
rs34005590 0.82(0.79–0.86) IGFBP5 1
rs132390 1.04(0.99–1.09) EM1D1 1
rs1353747 0.96(0.93–0.99) PDE4D 1
rs11552449 1.04(1.01–1.06) DCLRE1B 1
rs6796502 0.92(0.89–0.95) - 1
rs13162653 0.99(0.97–1.01) - 1
rs10941679 1.15(1.13–1.18) - 1
rs11977670 1.06(1.04–1.08) - 1
rs6472903 0.94(0.92–0.96) - 1
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Table H.1: (continued)

rs12422552 1.06(1.04–1.08) - 1
rs2787486 0.93(0.91–0.94) - 1
rs67397200 1.03(1.01–1.05) - 1
rs17817449 0.95(0.93–0.96) FTO 1
rs12405132 0.97(0.95–0.99) RNF115 1
rs9790517 1.04(1.01–1.06) TET2 1
rs1011970 1.07(1.04–1.09) CDKN2A, CDKN2B 1
rs62355902 1.18(1.15–1.21) MAP3K1 1
rs72755295 1.15(1.09–1.2) EXO1 1
rs10069690 1.06(1.04–1.08) TERT 1
rs3215401 0.93(0.91–0.95) TERT 1
rs10472076 1.03(1.01–1.04) RAB3C 1
rs13267382 1.03(1.01–1.05) LINC00536 1
rs2016394 0.95(0.94–0.97) DLX2-AS1 1
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Table H.2: Prostate cancer associated SNPs used in the analysis using prostate tissue.
The SNP present in the array data and consequently used in the analysis in stated in the
Proxy column. If any closest gene was given in the literature, this is stated in the Gene
column.

SNP Proxy OR(OncoArray) Gene
rs34925593 rs11691325 1.06 CDCA7
rs59308963 rs6754084 1.05 CASP8
rs1283104 rs1283102 1.04 DUBR
rs182314334 rs17370164 1.10 MBNL1
rs10793821 rs329114 1.05 RNU6-456P
rs9296068 rs9296068 1.05 HLA-DOA
rs9469899 rs2814971 1.05 UHRF1BP1
rs17621345 rs17621345 1.07 SUGCT
rs1048169 rs1048169 1.07 HAUS6
rs1182 rs2274507 1.07 TOR1A
rs141536087 rs12769002 1.10 LARP4B
rs7094871 rs7094463 1.04 TCF7L2
rs11290954 rs17749618 1.07 C11orf30, EMSY
rs1800057 rs1800056 1.13 ATM
rs878987 rs11223780 1.07 B3GAT1
rs10845938 rs10845938 1.06 RNU6-491P
rs7968403 rs2682714 1.07 RASSF3
rs5799921 rs10777195 1.08 RNU6-148P
rs11629412 rs910507 1.06 PAX9
rs4924487 rs4924490 1.06 CASC5
rs112293876 rs17851970 1.07 MAP2K1
rs12956892 rs8094161 1.05 OACYLP
rs10460109 rs7228257 1.04 TSHZ1
rs11666569 rs11666569 1.06 MYO9B
rs118005503 rs9304829 1.11 THEG5
rs11480453 rs4911110 1.05 DNMT3B
rs6091758 rs6126982 1.09 BCAS1
rs17599629 rs17599629 1.05 GOLPH3L
rs1218582 rs4845678 1.04 KCNN3
rs4245739 rs4245739 1.10 MDM4
rs9287719 rs6432112 1.08 -
rs1465618 rs4340576 1.09 THADA
rs721048 rs13417792 1.10 EHBP1
rs10187424 rs10198569 1.07 GGCX/VAMP8
rs12621278 rs16860397 1.26 ITGA6
rs3771570 rs17386695 1.09 FARP2
rs2660753 rs1865866 1.12 -
rs7611694 rs7611694 1.08 SIDT1
rs10934853 rs10934853 1.10 EEFSEC
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Table H.2: (continued)

rs6763931 rs1344672 1.04 ZBTB38
rs1894292 rs1894292 1.05 AFM, RASSF6
rs12500426 rs7662466 1.05 PDLIM5
rs17021918 rs12500116 1.07 PDLIM5
rs7679673 rs10007915 1.11 TET2
rs12653946 rs10866528 1.08 IRX4
rs2121875 rs1482672 1.02 FGF10
rs3096702 rs9267873 1.05 NOTCH4
rs1983891 rs1983891 1.09 FOXP4
rs9443189 rs6906615 1.07 MYO6
rs2273669 rs6904998 1.06 ARMC2, SESN1
rs339331 rs339331 1.09 GPRC6A/RFX6
rs1933488 rs4083914 1.07 RSG17
rs9364554 rs12194182 1.10 SLC22A3
rs12155172 rs12155172 1.08 SP8
rs10486567 rs11982766 1.15 JAZF1
rs56232506 rs7801481 1.04 TNS3
rs6465657 rs11768309 1.10 LMTK2
rs2928679 rs2003976 1.05 SLC25A37
rs1512268 rs1160267 1.14 NKX3.1
rs11135910 rs6984769 1.06 EBF2
rs12543663 rs6984837 1.11 -
rs10086908 rs7842175 1.12 -
rs16901979 rs16901949 1.51 -
rs620861 rs1668875 1.16 -
rs6983267 rs6983267 1.21 -
rs1447295 rs7814837 1.43 -
rs17694493 rs17694493 1.05 CDKN2B-AS1
rs3850699 rs7904396 1.06 TRIM8
rs4962416 rs12769019 1.06 CTBP2
rs7931342 rs7109672 1.16 -
rs80130819 rs17122571 1.10 RP1-228P16.4
rs902774 rs902774 1.13 KRT8
rs1270884 rs1920568 1.07 TBX5
rs8008270 rs4901309 1.07 FERMT2
rs684232 rs1833459 1.09 VPS53, FAM57A
rs11649743 rs11649743 1.13 HNF1B
rs4430796 rs11651755 1.22 HNF1B
rs11650494 rs7216993 1.09 HOXB13, PRAX, SPOP, ZNF652
rs1859962 rs8072254 1.17 -
rs7241993 rs4799269 1.08 SALL3
rs8102476 rs7250689 1.11 -
rs11672691 rs2191139 1.09 -
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Table H.2: (continued)

rs12480328 rs6091237 1.11 ADNP
rs6062509 rs6011040 1.06 ZGPAT
rs1041449 rs2838053 1.04 TMPRSS2
rs5759167 rs5759167 1.17 BIL/TTLL1
rs2405942 rs6530331 1.04 SHROOM2
rs5945619 rs1891702 1.11 NUDT11
rs2807031 rs4291439 1.06 -
rs5919432 rs4827556 1.04 AR
rs34925593 rs11691325 1.06 CDCA7
rs59308963 rs6754084 1.05 CASP8
rs1283104 rs1283102 1.04 DUBR
rs182314334 rs17370164 1.10 MBNL1
rs10793821 rs329114 1.05 RNU6-456P
rs9296068 rs9296068 1.05 HLA-DOA
rs9469899 rs2814971 1.05 UHRF1BP1
rs17621345 rs17621345 1.07 SUGCT
rs1048169 rs1048169 1.07 HAUS6
rs1182 rs2274507 1.07 TOR1A
rs141536087 rs12769002 1.10 LARP4B
rs7094871 rs7094463 1.04 TCF7L2
rs11290954 rs17749618 1.07 C11orf30, EMSY
rs1800057 rs1800056 1.13 ATM
rs878987 rs11223780 1.07 B3GAT1
rs10845938 rs10845938 1.06 RNU6-491P
rs7968403 rs2682714 1.07 RASSF3
rs5799921 rs10777195 1.08 RNU6-148P
rs11629412 rs910507 1.06 PAX9
rs4924487 rs4924490 1.06 CASC5
rs112293876 rs17851970 1.07 MAP2K1
rs12956892 rs8094161 1.05 OACYLP
rs10460109 rs7228257 1.04 TSHZ1
rs11666569 rs11666569 1.06 MYO9B
rs118005503 rs9304829 1.11 THEG5
rs11480453 rs4911110 1.05 DNMT3B
rs6091758 rs6126982 1.09 BCAS1
rs17599629 rs17599629 1.05 GOLPH3L
rs1218582 rs4845678 1.04 KCNN3
rs4245739 rs4245739 1.10 MDM4
rs9287719 rs6432112 1.08 -
rs1465618 rs4340576 1.09 THADA
rs721048 rs13417792 1.10 EHBP1
rs10187424 rs10198569 1.07 GGCX/VAMP8
rs12621278 rs16860397 1.26 ITGA6
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Table H.2: (continued)

rs3771570 rs17386695 1.09 FARP2
rs2660753 rs1865866 1.12 -
rs7611694 rs7611694 1.08 SIDT1
rs10934853 rs10934853 1.10 EEFSEC
rs6763931 rs1344672 1.04 ZBTB38
rs1894292 rs1894292 1.05 AFM, RASSF6
rs12500426 rs7662466 1.05 PDLIM5
rs17021918 rs12500116 1.07 PDLIM5
rs7679673 rs10007915 1.11 TET2
rs12653946 rs10866528 1.08 IRX4
rs2121875 rs1482672 1.02 FGF10
rs3096702 rs9267873 1.05 NOTCH4
rs1983891 rs1983891 1.09 FOXP4
rs9443189 rs6906615 1.07 MYO6
rs2273669 rs6904998 1.06 ARMC2, SESN1
rs339331 rs339331 1.09 GPRC6A/RFX6
rs1933488 rs4083914 1.07 RSG17
rs9364554 rs12194182 1.10 SLC22A3
rs12155172 rs12155172 1.08 SP8
rs10486567 rs11982766 1.15 JAZF1
rs56232506 rs7801481 1.04 TNS3
rs6465657 rs11768309 1.10 LMTK2
rs2928679 rs2003976 1.05 SLC25A37
rs1512268 rs1160267 1.14 NKX3.1
rs11135910 rs6984769 1.06 EBF2
rs12543663 rs6984837 1.11 -
rs10086908 rs7842175 1.12 -
rs16901979 rs16901949 1.51 -
rs620861 rs1668875 1.16 -
rs6983267 rs6983267 1.21 -
rs1447295 rs7814837 1.43 -
rs17694493 rs17694493 1.05 CDKN2B-AS1
rs3850699 rs7904396 1.06 TRIM8
rs4962416 rs12769019 1.06 CTBP2
rs7931342 rs7109672 1.16 -
rs80130819 rs17122571 1.10 RP1-228P16.4
rs902774 rs902774 1.13 KRT8
rs1270884 rs1920568 1.07 TBX5
rs8008270 rs4901309 1.07 FERMT2
rs684232 rs1833459 1.09 VPS53, FAM57A
rs11649743 rs11649743 1.13 HNF1B
rs4430796 rs11651755 1.22 HNF1B
rs11650494 rs7216993 1.09 HOXB13, PRAX, SPOP, ZNF652
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Table H.2: (continued)

rs1859962 rs8072254 1.17 -
rs7241993 rs4799269 1.08 SALL3
rs8102476 rs7250689 1.11 -
rs11672691 rs2191139 1.09 -
rs12480328 rs6091237 1.11 ADNP
rs6062509 rs6011040 1.06 ZGPAT
rs1041449 rs2838053 1.04 TMPRSS2
rs5759167 rs5759167 1.17 BIL/TTLL1
rs2405942 rs6530331 1.04 SHROOM2
rs5945619 rs1891702 1.11 NUDT11
rs2807031 rs4291439 1.06 -
rs5919432 rs4827556 1.04 AR
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Appendix I

Separatrix Analysis Using
Experimental Data

Figure I.1: Distribution of normalised RNA expression for the four genes XIAP, BFAR,
CASP8 and CASP3 in lymphoblastoid cell lines from 1000 genome project. For each sam-
ple 95% of the difference between the expression and the mean expression was subtracted
and all samples, were then divided by the new mean expression.
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Figure I.2: Left: Correlation between RSR and time to apoptosis, as calculated by the
smaller apoptosis model, for the lymphoblastoid cell lines from the 1000 genome project.
Right: Correlation between RSR and distance to separatrix. In both cases the 12 previ-
ously selected SNPs were used to calculate the RSR and the 2 samples with an abnormal
response time were excluded from the analysis.

Figure I.3: Left: Correlation between RSR and time to apoptosis for the lymphoblastoid
cell lines from the 1000 genome project. Right: Correlation between RSR and distance to
separatrix. In both cases 9 SNPs thought to be linked to one of the genes in the model,
which could also be used for the breast tissue later on, were used to calculate the RSR.
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Figure I.4: Left: Correlation between RSR and time to apoptosis, as calculated by the
smaller apoptosis model, for the lymphoblastoid cell lines from the 1000 genome project.
Right: Correlation between RSR and distance to separatrix. In both cases the 9 previously
selected SNPs, which could also be used for the breast tissue later on, were used to
calculate the RSR and the 2 samples with an abnormal response time were excluded from
the analysis.

Figure I.5: Left: Correlation between RSR and time to apoptosis for the lymphoblastoid
cell lines from the 1000 genome project. Right: correlation between risk score ratio and
distance to apoptosis for the smaller apoptosis model. In both cases the 4 SNPs previously
identified to map to proteins with binding sites in a promoter of one of the genes in the
model were used to calculate the RSR and the 2 samples with an abnormal response time
were excluded from the analysis.
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Figure I.6: Left: Correlation between RSR and time to apoptosis for the lymphoblastoid
cell lines from the 1000 genome project. Right: correlation between RSR and distance to
apoptosis for the smaller apoptosis model. Out of the 9 previously selected SNPs the 4
SNPs which mapped to transcription regulators with binding sites in the promoter of one
of the four genes in the model were extracted and used to calculate the RSR.

Figure I.7: Distribution of normalised RNA expression for the four genes XIAP, BFAR,
CASP8 and CASP3 in normal breast tissue. For each sample 95% of the difference
between the expression and the mean expression was subtracted and all samples, were
then divided by the new mean expression.
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Figure I.8: Correlation between RSR on the x-axis and normalised RNA expression on
the y-axis for the four genes XIAP, BFAR, CASP8 and CASP3 in normal breast tissue.

Figure I.9: Correlation between RSR of the 9 selected breast cancer associated SNPs on
the x-axis and normalised RNA expression on the y-axis for the four genes XIAP, BFAR,
CASP8 and CASP3 in normal breast tissue.
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Figure I.10: Distribution of p-values and regression coefficients for correlations between
RSR of 9 randomly selected SNPs and the expression values of the four genes XIAP,
BFAR, CASP8 and CASP3 in normal breast tissue. The 9 SNPs previously selected for
further study are marked in red.

Figure I.11: Distribution of p-values and regression coefficients for correlations between
RSR of one SNP at a time and the expression values for the four genes XIAP, BFAR,
CASP8 and CASP3 in normal breast tissue. The 9 SNPs previously selected for further
study are marked in red.
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Figure I.12: Distribution of normalised RNA expression for the four genes XIAP, BFAR,
CASP8 and CASP3 in normal prostate tissue. For each sample 95% of the difference
between the expression and the mean expression was subtracted and all samples were
then divided by the new mean expression.

Figure I.13: Distribution of p-values and regression coefficients for correlations between
RSR of 7 randomly selected SNPs and the expression values of the four genes XIAP,
BFAR, CASP8 and CASP3 in normal prostate tissue. The 7 SNPs previously selected for
further study are marked in red.
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Figure I.14: Distribution of p-values and regression coefficients for correlations between
RSR of single SNPs and the expression values for XIAP, BFAR, CASP8 and CASP3 in
normal prostate tissue. The distribution of the correlations for 7 SNPs previously selected
for further study are marked in red.

234



Figure I.15: Sequence coverage of the X chromosome for the 7 lymphoblastoid cell lines
identified as having an over expression of XIAP (top 7 samples) and a subset of normal
samples for comparison. There is no difference in the copy number around the XIAP
gene (marked as red) compared to the rest of the chromosome. Nor is there a difference
between the abnormal and the normal samples. This indicates that the over-expression
is not due to a structural variation around the gene.

235



Figure I.16: Sequence coverage around the XIAP gene for the 7 lymphoblastoid cell lines
identified as having an over-expression of XIAP (top 7 samples) and a subset of normal
samples for comparison. There is no difference between the abnormal and normal samples,
indicating that the over-expression is not due to a structural variation around the gene.
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