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Thesis abstract 

Remote sensing is the most accurate and cost effective way to monitor forests at large spatial 

scales. The preceding decade has seen incredible progress in accurate forest monitoring from 

space, with operationalized deforestation and fire alerts available in near-real-time globally. In 

contrast, methods for detecting and mapping forest degradation from selective logging have 

lagged behind; despite recognition that selective logging is a key driver of both deforestation 

and forest degradation. In this these I develop novel methods that utilize detailed spatial and 

temporal logging records to train machine learning algorithms to detect and map tropical 

selective logging. First, I utilized optical satellite data from the Landsat program and show that 

imagery acquired before the cessation of logging activities (i.e. the final cloud-free image of the 

dry season during logging) was best for detection, displaying a 90% detection rate (with 

roughly 20% commission and 8% omission error rates). Next, I tried extending this 

methodology to the detection of logging with synthetic aperture radar (SAR) data, but poor 

performance made logging predictions too uncertain. I go on to show that SAR data from 

Sentinel-1 display a distinct breakpoint in the time series of pixels logged under higher 

intensities (> 20 m3 ha-1) and could be used to detect more intensive selective logging within the 

Amazon. I then assess if combining optical and SAR data improve the detection of logging over 

the use of either on their own. I show that a combined model performs worse than optical data 

alone and including SAR data adds uncertainty that lowers model performance. Finally, I refine 

the optical approach developed in the beginning, generalizing the methodology to facilitate a 

large spatial and temporal scale assessment of selective logging. We create annual estimates of 

selective logging between 2000 and 2019 over the Brazilian state of Rondônia. I estimate that 

41.0% of the State of Rondônia remained undisturbed forest through 2019, with 3.4% having 

undergone selective logging and 25.7% being deforested (with 13% Commission Error and 45% 

Omission Error over the twenty year period). In general, rates of selective logging were twice as 

high in the first decade relative to the last decade of the period. My results show improved 

access to data and technologies will enable advances in space-based forest monitoring and 

reiterate the value of free and open data access policies. Our approach is step in the direction of 

an operationalized selective logging monitoring system capable of detecting subtle forest 

disturbances over large spatial scales. 
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“…one natural feature of [the Amazon], the interest and grandeur of which may be fully 

appreciated in a single walk: it is the virgin forest. Here no one who has any feeling of the 

magnificent and the sublime can be disappointed 

̶ Alfred Russel Wallace, 1849 

 

1.1 Background 

The value of tropical forests is incalculable. Despite only covering about 10% of Earth’s land 

surface, tropical forests are estimated to host at least two-thirds of terrestrial biodiversity 

(Gardner et al. 2009). The have immense conservation value and are the reservoirs of functional 

and phylogenetic diversity. In addition, the goods and services provided by forests links them 

intimately to human livelihoods and the global economy. Nearly one-third of the world’s 

population relies on wood fuel as their primary energy source, with the proportion rising 

dramatically in the tropics (FAO 2017). Tropical forests are the last lifeline for communities 

living on the edge of extreme poverty and provide a means to generate an income, find building 

materials, and access food and medicines in the absence of wages.  

 Tropical forests also play a crucial role in Earth’s carbon and hydrological cycle. Forests 

regulate stream flow, filter water, and reduce soil erosion and sedimentation. In addition, 

evapotranspiration actually induces cloud formation and precipitation, influencing rainfall 

patterns and seasonality in the tropics (Salati et al. 1979; Wright et al. 2017). While much of the 

tropics sit on relatively nutrient poor soils (Vitousek 1984), they play a vital role in the global 

carbon and nitrogen cycles, accounting for nearly 40% of terrestrial net primary productivity 

and storing about 25% of global biomass (Townsend et al. 2011). The tropical carbon cycle has 

received considerable attention in recent years, owing to the climate implication of their 

massive carbon sequestration potential and the emissions associated with their loss (Maxwell et 

al. 2019).  

  In addition to anthropocentric value, tropical forests house some of the largest 

wildernesses and hold immense intrinsic value as wild places. However, a rapidly rising global 

population and continued loss and degradation of intact forested landscapes are putting 

incredible pressures on tropical forests globally. The tropics are thought to be nearing a tipping 

point where fragmentation will begin to dramatically increase (Taubert et al. 2018). Moreover 

recent work has shown that tropical forests globally are composed of over 50 million forest 

fragments, encompassing nearly 50 million km of edge (Brinck et al. 2017). At the current pace, 
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the tropical forests of the future are destined to be considerably higher, steeper, and of lower 

conservation, economic, and intrinsic value (Betts et al. 2017; Edwards et al. 2019). 

Conversion to agriculture is the primary driver of deforestation, accounting for almost 

80% of the world’s forest losses (Gibbs et al. 2010; Hosonuma et al. 2012; FAO 2018; Curtis et 

al. 2018). However, the specific drivers and the contribution of particular disturbance types 

have shifted through time and varies across continents (Rudel et al. 2009; Hosonuma et al. 

2012). While the same is true of forest degradation in the tropics, forest management practices 

and fuelwood extraction collectively account for >75% of tropical forest degradation activities 

globally (Hosonuma et al. 2012; Pearson et al. 2014). Specifically, production of charcoal is the 

primary driver of forest degradation in Africa’s wooded savannas, while commercial logging 

operations dominate in Congo and the rest of the tropics (Hosonuma et al. 2012). Selective 

logging operations in the tropics are often the first anthropogenic disturbance event to impact 

primary forests. The network of roads facilitates access and promotes additional sources of 

degradation (e.g. fires, fuel wood extraction, defaunation, illegal logging and mining). Over time 

many forest tracts are eventually cleared for agriculture or human settlements as the logging 

frontier shifts to the next region of primary forest. 

Improvements in data and technologies have increased the accuracy and speed of forest 

monitoring systems on a global scale (Hansen et al. 2013; Gorelick et al. 2017). Near real-time 

deforestation alerts are now possible from a variety of sources, like Global Forest Watch (e.g. 

FORMA and GLAD) and the Brazilian Space Agency (e.g. DETER). In addition, the ability to map 

fires over large spatial and temporal scales has been aided by platforms like Google Earth 

Engine (Gorelick et al. 2017), though the carbon implications are not well understood. In 

contrast, however, monitoring and mapping of selective logging activities has lagged behind, 

despite the recognition of the role it plays in driving both deforestation and fires (Asner et al. 

2009; Hosonuma et al. 2012).  

Satellites are considered the most accurate and cost effective way to monitor forests at 

large spatial scales. The same tools and technologies that have advanced deforestation can be 

brought to bear in the efforts to map selective logging. Now that the scientific community has, to 

some extent, cracked the deforestation problem there is increasing attention on improving 

abilities to monitor forest degradation. The principle aim of this thesis is to contribute to that 

body of work. I provide a brief review of tropical forest degradation and forest management 

practices, with an emphasis on Brazil, and discuss the impacts on the global carbon cycle, 

biodiversity and the other key ecosystem processes. I review and discuss technologies and 

methodological advancements to monitor tropical forests globally. Finally, I outline the aims 

and objectives of this thesis in regards to the major research needs and the key knowledge gaps. 
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1.2 Forest degradation 

1.2.1 Characterizing degradation 

While there is no internationally agreed definition of forest degradation, there is general 

agreement that it embodies disturbances within a forest that persists as a forest (Simula 2009; 

Ghazoul et al. 2015). This ambiguity has made generalizing the impacts of forest degradation 

difficult, because it can include forests subject to varying intensities of selective logging, fire, 

mining, fuelwood extraction, hunting pressure, infestation of invasive species, etcetera. This 

lack of consensus has, in part, also hampered the development of coordinated international 

forest policies to track and monitor forest degradation (Sasaki and Putz 2009; Herold et al. 

2011; Ghazoul et al. 2015). However, there is growing agreement that the Intergovernmental 

Panel on Climate Change (IPCC) guidelines on how to report and monitor forest degradation 

under the United Framework Convention on Climate Change (UNFCCC) will form the basis for 

an internationally agreed framework under the Reducing Emissions from Deforestation and 

forest Degradation (REDD+) mechanism (FAO 2011; Herold et al. 2011). Thus, global action on 

forest degradation will largely be linked to climate mitigation potential, with the anticipation of 

achieving secondary benefits for biodiversity and human livelihoods. 

 

1.2.2 Tropical forest degradation and the global carbon budget 

Under REDD+, forest degradation represents a loss of carbon stocks within forested landscapes 

(UN-REDD 2018). Activities associated with forest degradation are thought to impact more than 

100 million hectares annually (Herold et al. 2011), quadruple the area deforested every year 

(Hansen et al. 2013). From the perspective of the global carbon budget, forest degradation is 

thought to be a major source of carbon emissions, comprising up to an additional 50% of 

emissions from forest losses alone (Asner et al., 2005, 2010; Grace et al., 2014; Bustamante et 

al., 2016). However, quantifying and monitoring the carbon implications of tropical forest 

degradation remains a major technical challenge and large uncertainties remain in the 

estimates of carbon emissions (Bustamante et al. 2016; de Andrade et al. 2017; Mitchell et al. 

2017). Indeed, the emissions estimates from tropical land use are currently lumped into a single 

net value (comprising degradation, deforestation, and forest regrowth) in the global carbon 

budget and represent the difference between the sum of all other components to balance the 

budget (Le Quéré et al. 2018). About half of the anthropogenic emissions remain in the 

atmosphere, with the rest being taken up by the land and ocean sinks (Le Quéré et al. 2018, 

Figure 1.1). While tropical forests are thought to make an approximately neutral contribution to 

the global carbon cycle (Mitchard 2018; Sellers et al. 2018), there is growing evidence that they 

can easily become net carbon emitters if not properly managed (Grace et al. 2014; Baccini et al. 

2017; Maxwell et al. 2019). 
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1.3 Selective logging 

Selective logging in the tropics generally occurs in waves, following a well-documented cycle. 

First logging roads are built to enter forested tracts and facilitate a managed harvest. The 

largest and most economically valuable trees are usually harvested first. After logging has 

finished many of the smaller, internal logging roads are decommissioned and the forest is left to 

regenerate before the next harvest cycle in 20-60 years (Pinard and Putz 1996; Putz et al. 2001, 

2012; Blaser et al. 2011). There is growing evidence that in order to increase the sustainability 

of forest management practices in the tropics harvest cycles should be nearer 100 years, but the 

trend appears to be in the opposite direction with premature reentry being increasingly 

common (Blaser et al. 2011; Putz et al. 2012; Richardson and Peres 2016). After successive 

rounds of logging many forested tracts are cleared for agriculture or settlements as the logging 

frontier moves elsewhere. 

 Two main types of forest management plans occur in the tropics and are referred to as 

Conventional Logging (CL) and Reduced Impact Logging (RIL). RIL differs from CL in that there 

is careful road and skid trail planning, directional felling of trees to minimize collateral damage 

to adjacent trees, and pre-harvest liana cutting where possible to limit additional canopy 

damage (Putz and Pinard 1993). For decades RIL saw little uptake and application because of 

Figure 1.1 Global carbon cycle representation, showing the emissions from fossil fuels (and 

concrete), the two components of the land sink, and the oceanic sink. Image modified from Sellers 

et al. 2018, with units in GtCyr-1. 

Deforestation 
& 

Degradation 
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entrenched ideology, assumed cost, and lack of information (Putz et al. 2000; Asner et al. 2009). 

While use of RIL practices remains generally low, growing concerns about the impacts of poor 

forest stewardship on biodiversity and carbon has made RIL an appealing win-win strategy for 

balancing development and ecological goals (Gibson et al. 2011; Ellis et al. 2019; Maxwell et al. 

2019). Specifically, after accounting for the amount of wood volume removed, RIL activities do 

better at maintaining biodiversity than CL practices (Bicknell et al. 2014) while simultaneously 

sequestering more carbon during regrowth (Putz et al. 2008; Martin et al. 2015). However, if the 

current trends in loss and degradation of tropical forests continue, there is reason to believe 

tropical forests may transition to being a net carbon source (Mitchard 2018). The development 

and championing of policy actions consistent with RIL practices are needed and ought to be 

included in national climate mitigation strategies. 

Globally, the intensity of selective logging operations vary by an order of magnitude 

(<10 m3 ha-1 to >150 m3 ha-1); however intensities are generally <50 m3 ha-1 outside of 

Southeast Asia and very low (<10 m3 ha-1 ) in Africa (Sist 2000; Putz et al. 2001). Historically 

Brazil encouraged logging and land clearance as part of its settlement and development activity 

between 1970 and 1990 (Asner et al. 2009). Widespread, unmanaged logging ravaged large 

portions of Mato Grosso, Pará, and Rondônia, accounting for more than 90% of production from 

the Brazilian Amazon (Asner et al. 2009). In an effort to address some of the impacts rampant 

deforestation and logging had caused, Brazil adopted the CONAMA resolution (CONAMA 2009), 

which imposed a number of restrictions on logging operations, including (among other things) 

limiting logging intensities to 30 m3 ha-1.  

 The ecological impacts of selective logging on tropical forests are well studied. 

Selectively logged forests have been shown to have increased microclimatic variability 

(Stratford and Robinson 2005), increased soil erosion (Douglas 1999; Hartanto et al. 2003), 

reduced tree diversity (Berry et al. 2008; Martin et al. 2015), altered forest phenology (Koltunov 

et al. 2009), and lowered levels of biodiversity (Burivalova et al. 2014). In addition, logging road 

networks have big implications for primary tropical forests (Kleinschroth et al. 2015, 2016; 

Kleinschroth and Healey 2017), becoming pipelines of human access into previously 

inaccessible forested areas. Roads also create forest edges that can alter abiotic processes like 

microclimate (Williams-Linera et al. 1998), change plant and animal species composition 

(Tabarelli et al. 2012), increase fire susceptibility (Armenteras et al. 2013), and ultimately 

weaken forest resilience (Murcia 1995; Kleinschroth and Healey 2017). However, forests 

subjected to selective logging generally maintain higher levels of biodiversity than other 

anthropogenic land use types in the tropics, such as plantations or secondary forests (Gibson et 

al. 2011; Edwards et al. 2014). These findings have resulted in some authors advocating for the 
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conservation value of logged forests, arguing that preventing their clearance should be seen as 

the next-best alternative to protecting primary forest in the tropics (Edwards et al. 2011, 2014). 

Large uncertainties remain in assessing the true impacts of selective logging because the 

technological advances in detecting and monitoring logging at large spatial scales are only just 

emerging (Hethcoat et al. 2019). Improvements in detection of selective logging in the tropics 

would enable the mapping of intact primary forest as well as identify regions previously logged 

that possess high conservation value. Equally, there is an ever-increasing need to detect and 

account for the estimated 50-90% of tropical timber on the international market harvested 

illegally at very low intensities (Kleinschmit et al. 2016; Brancalion et al. 2018). Reliable 

mapping of forest degradation from selective logging is a key piece in understanding the 

terrestrial portion of the carbon budget and the role of land-use in turning tropical forests into 

net carbon emitters (Baccini et al. 2017; Mitchard 2018). Moreover, verifiable forest monitoring 

systems are urgently needed for tropical nations and conservation groups seeking to report 

and/or mitigate carbon emissions through improved forest stewardship (GOFC-GOLD, 2016). 

Earth observation technologies will play a key role in the current and future development of 

forest monitoring systems to track forest degradation, as they have with deforestation in the 

past (GFOI 2016). 

 

1.4 Remote sensing of forest disturbances 

Remote sensing is the most accurate and cost effective way to monitor forests at large scales 

(GFOI 2016). The last decade has seen the realization of comprehensive deforestation 

monitoring globally (Hansen et al. 2013), enabling operationalized forest monitoring programs 

on the national and international level. These advances were made possible, in part, because of 

the opening of the Landsat archives in 2009 for free use. The 60-fold increase in data downloads 

and the rapid growth in the scientific, private, and civil sectors resulted in similar policies being 

adopted under the European Space Agency’s (ESA) Copernicus Program (Zhu et al. 2019). Free 

Earth observation data is now available on a scale like never before, and with deforestation 

monitoring having achieved an operationalized quality, attention has now shifted to pursuing 

equivalent gains in monitoring degradation (Langner et al. 2018; Bullock et al. 2018).  

 

1.4.1 Optical data approaches 

The satellites in the Landsat program have provided an unprecedented view of global change 

over the last forty years (Figure 1.2). Landsat 5 was the longest running Earth observation 

satellite in history, spanning more than 29 years of active duty in space. Ironically, Landsat 5 did 

not have a systematic acquisition plan from the outset. However, the value of the data was soon 
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recognized and a consolidated global archive was created with the help of cooperating nations 

partnered with the Landsat program (Goward et al. 2006; Wulder et al. 2016). Over the years 

Landsat data has come to dominate the study of forested systems and has proven invaluable in 

improving our understanding of the Earth system (Wulder et al. 2016).  

 Several studies have sought to monitor selective logging in the tropics with Landsat data 

(Souza and Barreto 2000; Asner et al. 2002, 2004, 2005; Monteiro et al. 2003; Souza et al. 2005, 

2013; Matricardi et al. 2007, 2010; Shimabukuro et al. 2014), with the vast majority of 

approaches utilizing spectral unmixing models. Briefly, spectral unmixing is a method that 

enables the fractions of various spectral features (often referred to as endmembers) within a 

single pixel to be estimated. Thus, the proportion of photosynthetic vegetation within a pixel, for 

example, can be estimated to look for changes in canopy cover through time. However all of the 

applications have involved moderately high logging intensities (>20 m3 ha-1) and their methods 

for identifying logging used simplistic decision trees with hardwired thresholds of change in 

endmember values to classify forest disturbances through time (e.g. Asner et al. 2005; Souza et 

al. 2013). The authors have generally acknowledged their methods are conservative and detect 

areas of selective logging at moderately high intensities that possess large canopy gaps and an 

abundance of spectrally distinct features, like log landing decks or large road networks. 

However, current forest monitoring methods (i.e. Hansen et al. 2013) now classify many of 

these areas as scattered deforestation detections (Figure 1.3). Consequently, Landsat data has 

been assumed to be too coarse to map and quantify selective logging at lower logging intensities 

and the amount of forest disturbance overlooked using these techniques is unknown. 

 More recently, time-series methods for detecting forest disturbances have been 

developed (Zhu et al. 2012; Zhu and Woodcock 2014; Bullock et al. 2018). These approaches 

have only just become practical with the development of Google Earth Engine (GEE) and its 

continued growth over the last two years (Gorelick et al. 2017). Previously, researchers needed   

Figure 1.2 Timeline of the Landsat program missions (adapted from www.usgs.gov) 
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to download every Landsat image in the time series in order to perform the analyses, which 

could consume large volumes of data storage. However, with the help of GEE, large-scale 

applications of these methods are now emerging in the literature and hold great promise at 

improving the detection of subtle forest disturbances (Zhu et al. 2016; Bullock et al. 2018).  

 

1.4.2 Synthetic Aperture Radar data approaches 

While the preceding decade has seen a number of improvements in detecting forest 

disturbances from space (Hansen et al. 2013; Tyukavina et al. 2017; Hethcoat et al. 2019), 

advances in forest monitoring have almost universally relied on optical satellite data from the 

Landsat program (Wulder et al. 2016). Yet, the effectiveness of optical data is limited in tropical 

Figure 1.3 Deforestation detections from the Hansen et al. (2013) data (in red) in the Saracá-

Taquera National Forests, Pará overlaid with selective logging tree locations (harvested at 

approximately 21 m3 ha-1) from the same year (grey circles). The deforestation detections here 

are selective logging activities. The map is centered at 56.17 W, 1.60 S. 

  0                     1 km 



Chapter 1:  Introduction 

 

11 
 

regions with frequent cloud cover. Synthetic Aperture Radar (SAR) data have a couple key of 

advantages over optical data that make it ideal for use in tropical systems. First, SAR data are an 

active signal, meaning they do not require solar illumination to acquire data and the transmitted 

signal can penetrate clouds and acquire data in regions obscured by cloud cover. In addition, the 

properties of the SAR signal (wavelength and polarization) influence its interaction with forest 

architecture and can provide detailed information about forest structure. In particular, SAR data 

in L- and P-band are known to exhibit a consistent relationship with aboveground biomass 

(Mitchard et al. 2009; Koch 2010; Saatchi et al. 2011), while X- and C-band SAR generally 

interact only with the forest canopy (Figure 1.4).  

SAR data have been used in forestry applications since the early 1990s, with much of the 

initial development and early work utilizing aerial radar systems affixed to aircraft (Flores-

Anderson et al. 2019). The launch of ERS-1 in 1991 was quickly follow by JERS-1 in 1992 and 

earmarked the start of continuous spaceborne SAR observation of Earth (Figure 1.5). However, 

the spaceborne SAR missions lack coordinated observation and scientific strategies (though we 

recognize comparing multiple missions across many national space agencies with the Landsat 

program is unfair). Consequently, the SAR data archives are spatially and temporally 

fragmented and in many cases the data products required commercial licences (i.e. a fee) to use.  

As a result, uptake by users has been more limited than optical data and the full potential of SAR 

has likely been under-utilized (Reiche et al. 2016).  

 Longer wavelength SAR (L- and P-band) primarily interacts with large branches and 

trunks, resulting in high backscatter from double-bounce. This enables accurate differentiation 

between forest and non-forest areas, because the loss of trees strongly decreases backscatter, 

and has been well studied over the years (Woodhouse 2005). In contrast shorter wavelength 

SAR, like X- and C-band, is less sensitive to forest change. Shorter wavelength SAR signals 

interact with an intact forest canopy in a similar manner as remnant understory vegetation 

(after deforestation). However, forest mapping has been demonstrated effectively in some 

applications (Saatchi et al. 1997; Antropov et al. 2016). More recently, polarimetric and 

interferometric methods have been developed that utilize phase information in the SAR signal   

 

 

Figure 1.4 Differences in SAR signal interaction with forest canopy associated with wavelength 

(adapted from Flores-Anderson et al. 2019). 
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to detect forest changes (Deutscher et al. 2013; Mathieu et al. 2013; Lei et al. 2018; Flores-

Anderson et al. 2019). Yet, the limited temporal and spatial coverage of SAR data have 

hampered widespread application and use of these techniques to monitor forest disturbances 

(e.g. single-pass interferometric SAR is only available with TanDEM-X data).  

The launch of Sentinel-1A in 2014 represented the first continuous global acquisition 

strategy for open SAR data. The rapidly expanding archives of Sentinel-1 have resulted in a 

number of time series methods for detecting forest change (Reiche et al. 2018a, b). With the 

successful launch of SAOCOM 1A in late 2018, the planned continuation of the Sentinel-1 

missions (with C and D), and the anticipated launches of SAOCOM 1B in 2019 and NISAR in 

2021, vast amounts of free C- and L-band SAR data will soon be available. Accordingly, methods 

are needed that utilize SAR data for large-scale forest monitoring, yet no study has used SAR for 

detection of selective logging activities with the aim of operationalized forest monitoring. Again, 

however, advancements in monitoring selective logging with SAR data are generally lacking, 

despite widespread recognition of both the need and the role it could play (Reiche et al. 2016; 

Mitchell et al. 2017).   

 

 

Figure 1.5 Timeline of spaceborne SAR missions (adapted from www.unavco.org). 
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1.5 Thesis aims and outline 

The overarching objective of this thesis is to improve current abilities to monitor tropical 

selective logging with remote sensing data. We utilize both optical- and SAR-based methods for 

detecting logging and evaluate errors with field data from logging concessions across Brazil. 

Operationalized forest monitoring systems for detecting of selective logging at large spatial 

scales are urgently needed in all sectors of society and we sought to contribute to this body of 

work. The core of this thesis is composed of four chapters that generally build on or extend 

elements from earlier findings (Figure 1.6).   

 In Chapter 3, we develop an approach that uses detailed logging records, from a single 

logging concession in Rondônia, Brazil, to build machine learning algorithms for detecting 

selectively logged pixels in Landsat imagery. We demonstrate the feasibility of the approach and 

validate its effectiveness at a second logging concession, approximately 1500 km away, in Pará, 

Brazil.  

 In Chapter 4, we attempt to extend the approach that worked successfully in Chapter 3 with 

optical data to the detection of logging with synthetic aperture radar (SAR) data, with an 

expanded dataset on logging from across Brazil. Three different SAR datasets (two C-band and 

one L-band) are used to detect logging, but with poor performance. We go on to examine if a 

dense time series of C-band SAR from Sentinel-1 displayed a distinct breakpoint with the onset 

of logging. 

  

 

 

 
Figure 1.6 Overview of links between data chapters of this thesis. 
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 In Chapter 5, we combine the approaches from Chapters 3 and 4 to understand how 

incorporating both optical and SAR data might improve detection of logging over the use of 

either on their own. We utilized a completely independent dataset from the earlier chapters; 

composed of selective logging records from across Brazil. We assess the results over a logging 

concession in Rondônia where we have knowledge of logging, generally, but no field data. 

 In Chapter 6, we further refine the approach developed in Chapter 3, generalizing the 

methodology to facilitate a large spatial and temporal scale assessment of selective logging. We 

create annual estimates of selective logging from 2000-2019 in Rondônia, Brazil and asses 

trends in logging through time. 

 Finally, in Chapter 7, I start by summarize the core thesis results. I then turn to discussing 

the implications of our findings for the development of regional- to pan-tropical scale logging 

maps and how this information can inform assessments of carbon losses and biodiversity 

impacts from selective logging at scale as well as enable the development of near real-time 

monitoring of selective logging expansion. 
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2.1 Conceptualizing forest degradation  

2.1.1 Definitions and drivers 

There is no singular definition of degradation, as forests vary substantially around the world (in 

structure, diversity, functions, values, perceptions, etc.). Yet, degradation has generally come to 

be viewed, conceptually, as a loss of resilience; a reduction in the capacity to return to a pre-

disturbance state (Ghazoul et al., 2015; Olsson et al., 2019; Simula, 2009; Thompson et al., 

2013). Normally, degradation is reserved for anthropogenic disturbances, though the 

distinctions between natural and anthropogenic factors seem increasingly vague (e.g. global 

climate change affecting hurricane frequency in the Caribbean or shifting rainfall patterns in the 

Amazon basin). Nevertheless, throughout this thesis degradation is regarded as an 

anthropogenic phenomenon that is demonstrably linked (directly or indirectly) to human 

activities. 

The global drivers of forest degradation include selective logging, anthropogenic fires, 

charcoal production, fuelwood collection, and livestock grazing within forests (Hosonuma et al., 

2012). The prominence of particular drivers varies geographically, for example, selective 

logging constitutes >75% of all degradation within South America and Asia, but fuelwood 

collection and charcoal production dominate in tropical Africa (Hosonuma et al., 2012; Kissinger 

et al., 2012). While the global extent, severity, and expansion of various forest degradation 

activities are not well quantified, there is general agreement that degradation is an urgent and 

widespread problem. 

The desire to monitor forest degradation (for the reasons outlined in Chapter 1) 

imposes the problematic task of first identifying the best metric(s) to track (i.e. define 

degradation), then determining appropriate spatial and temporal scales that sufficiently capture 

the transition or state-change to a degraded forest. These are no small achievements and the 

multitude of working definitions of forest degradation reflects a bespoke approach to defining 

degradation that suits local, regional, or national interests (Ghazoul et al., 2015). Nearly every 

aspect of degradation is contextual, because it is so complex and value-laden (Warren, 2002). 

Nevertheless, the UNFCCC (under REDD+) have reduced the idea down to a single, quantifiable 

metric of reduction in forest carbon stocks for the purposes of monitoring, verifying, and 

reporting progress under REDD+ (UN-REDD, 2018). Moreover, remote sensing technologies, 

used in combination with other available data, will be the primary tool for generating globally 

consistent metrics that can track degradation over appropriate time scales. 

 

2.1.2 Selective logging and degradation 

Selective logging activities that do not exceed the capacity for regrowth (i.e. sustainable forest 

management; SFM) are not regarded as degradation under REDD+; the idea being that forests 
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will recover if responsibly managed. However there is strong evidence that this is a gross 

oversimplification. First, even when SFM is performed, a lack of governance, monitoring, and 

enforcement mechanisms can result in subsequent degradation by other actors. Second, early 

re-entry into forests is increasingly common and the harvest regimes should be closer to 100 

years, not the 30-40 years typical of the tropics (Blaser et al., 2011; Putz et al., 2012; Richardson 

& Peres, 2016). Finally, post-logging species composition has been shown to never fully recover 

after the initial harvest, a consequence of over-reliance upon relatively few, high value species 

that become functionally extinct within former logging concessions (Richardson & Peres, 2016). 

For the purposes of this thesis, we regard selective logging as forest degradation and use the 

terms interchangeable at times. However, we recognize that SFM practices can be done in such a 

way that selective logging does not constitute degradation. Crucially, the moniker of SFM 

requires evidence that has not been sufficiently demonstrated. Regardless of whether or not 

selective logging is considered degradation, there is an undeniable need to quantify the extent, 

intensity, and expansion of logging activities globally in order to inform progress toward climate 

targets, but also to better understand the impacts to the suite of goods and services forests 

provide.  

 

2.2 Remote sensing  

2.2.1 Satellite sensors and land surface attributes 

2.2.1.1 Passive sensor data 

Optical satellite sensors rely on capturing solar radiation that has been reflected by the Earth. 

Essentially a sophisticated spaceborne digital camera, the passive sensors onboard are sensitive 

to a section of the electromagnetic spectrum (Figure 2.1). Satellites further subdivide the optical 

region of the electromagnetic spectrum into numerous bands that record incoming radiation at 

 

Figure 2.1 The electromagnetic spectrum with key wavelength ranges labelled (from Briottet, 

2016). 
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specific wavelengths. The number of bands and the range of wavelengths each band covers 

differ slightly from instrument to instrument, but with broad overlap (Figure 2.2). For example, 

Landsat 8 data are divided into 11 sections (or bands), MODIS has 36 bands, and Hyperion (not 

shown in Figure 2.2) has 220 bands. The remainder of this section focuses on Landsat band 

designations, however, the general interpretations are the same for other satellite sensors with 

comparable wavelengths.  

 Table 2.1 provides detailed information about Landsat bands and includes some details 

on the particular features each band can discriminate. For example, the first band in Landsat 8 is 

regarded as an aerosol band - its sensitivity to deep blues and violets make it primarily used for 

mapping shallow water and detecting fine particles like dust or smoke in the atmosphere. Blue 

light tends to be easily scattered by the Earth’s atmosphere and fine particles, consequently, the 

aerosol band is typically not used for terrestrial applications. Bands 2-7 are the workhorses for 

mapping land surface phenomena, correspond with the visible and infrared (IR) portions of the 

electromagnetic spectrum (Table 2.1). The visible bands (blue, green, red) are most similar to 

what the human eye would see; healthy vegetation appears green, unhealthy vegetation and 

soils are brown, urban features appear white and grey,  and water is dark blue or black. The IR 

region is particularly useful in forest applications, as plants reflect, transmit, and absorb 

different portions of the near-IR spectrum. For example, healthy vegetation absorbs blue and 

red light during photosynthesis (and reflects green). In addition, plants with more chlorophyll 

tend to reflect more near-IR energy than unhealthy plants – a result of stronger chlorophyll 

reflectance. Thus, analyzing absorption and reflectance in visible and IR wavelengths can 

provide useful information about the productivity and health of vegetation as well as assist in 

identifying exposed soils. The optical signal associated with selective logging, depending on the 

Figure 2.2 Band designation comparison between the MODIS, ASTER, Landsat, and Sentinel-2 

sattelites. Note, the Y-axis relates to the grey spectral reflectance curve in the background (image 

from USGS Landsat Program). 
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Table 2.1 Comparison of Landsat 7 (ETM+) and Landsat 8 (OLI) band designations, pixel size, wavelength coverages, and brief notes on applications (adapted from 
USGS Landsat Program). 

Landsat 7 ETM+ (µm) Landsat 8 OLI (µm) Applications 

  30m  Coastal/Aerosol  
 (0.435 - 0.451)  
 

Band 1 Coastal and aerosol studies (fine dust and smoke). 

Band 1  30m  Blue   
(0.441 - 0 0 514) 
  

30m  Blue   
(0.452 - 0.512) 

Band 2 Distinguishing soil from vegetation and deciduous from coniferous 
vegetation. 

Band 2  30m  Green  
(0.519- 0.601)  
 

30m  Green  
 (0.533 - 0.590) 

Band 3 Emphasizes peak vegetation, which is useful for assessing plant vigor. 
Barren lands, urban areas, and roads appear brighter. 

Band 3  30m  Red   
(0.631 - 0.692)  
 

30m  Red   
(0.636- 0.673) 

Band 4 Discriminates vegetation and soil - strong chlorophyll absorption and 
strong reflectance for most soils. 

Band 4  30m  NIR   
(0.772- 0.898)  
 

30m  NIR   
(0.851 - 0.879) 

Band 5 Emphasizes chlorophyll content and shorelines (water absorbs NIR). 
Best spectral region to distinguish vegetation varieties and conditions. 

Band 5  30m  SWIR-l  
 (1.547 - 1.749) 
 

30m  SWIR-l   
(1.566 - 1.651) 

Band 6 Discriminates moisture content of soil and vegetation; penetrates thin 
clouds. 

Band 6  60m  TIR  
 (10.31 - 12.36)  
 

100m  TIR-1   
(10.60-11.19) 

Band 10 Thermal mapping and estimated soil moisture. 

  100m  TIR-2   
(11.50-12.51) 
 

Band 11 Improved thermal mapping and estimated soil moisture. 

Band 7  30m  SWIR-2   
(2.064- 2.345)  

30m  SWIR-2   
(2.107 - 2.294) 
 

Band 7 Improved moisture content of soil and vegetation; penetrates thin 
clouds. 

Band 8  15m  Pan  
( 0.515-0.896)  

15m  Pan  
 (0.503 - 0.676) 
 

Band 8 Sharper image definition. 

    30m  Cirrus   
(1.363 - 1.384) 

Band 9 Improved detection of cirrus cloud contamination. 
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intensity, tends to relatively subtle and short lived in the Brazilian Amazon (Broadbent et al., 

2006). Within the context of this thesis, however, the visible and IR bands associated with 

Landsat (Table 2.1) are predicted to show a discernable shift in the spectral response of pixels 

with the onset of selective logging (from exposed soils, loss of canopy cover, an increase in 

woody debris, etc.). Moreover,  

 

2.2.1.2 Active sensor data  

Synthetic Aperture Radar (SAR) data is an active signal, meaning it provides its own 

illumination in the form of microwave energy and does not, therefore, require reflected or 

radiated solar energy to detect features (Figure 2.1). Fundamentally, SAR works by measuring 

the Doppler shift of returned radar signals - resulting from the forward motion of the satellite. 

In doing so, SAR satellites also measure the portion of the transmitted signal that is returned; 

termed backscatter. Backscatter is influenced by a number of factors (see next sections), but this 

quantity forms the basis for all SAR imaging. Yet, because of the way microwaves interact with 

the atmosphere and ground, only a subset of the full radar frequencies are generally used in SAR 

satellites (Figure 2.3). The applications of SAR are numerous and include geology, crop 

monitoring, deforestation detection, sea ice measurement, disaster monitoring, and oceanic 

vessel monitoring, however, the remainder of this section focuses on terrestrial applications of 

SAR data, with a particular emphasis on forests. 

SAR frequency plays an important role in determining the nature of the returned signal, 

as an object on the ground will tend to scatter longer and shorter wavelengths differently. 

Regardless of the wavelength, however, the nature of the returned signal depends on the 1) 

slope, 2) roughens, and 3) the dielectric properties (the ratio of the reflectivity of the signal 

relative to a vacuum) of scattering objects (Flores-Anderson et al., 2019; Woodhouse, 2005). In 

particular, rougher and wetter objects result in higher backscatter (appear brighter), while the 

effect of slope depends on the terrain aspect relative to the sensor. For example, higher 

backscatter results from slopes facing the sensor (foreshortening) and is seen as brighter facing 

 
Figure 2.3 A portion of the radar region of the electromagnetic spectrum (from Ouchi, 2013). 
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slopes and dark back slopes stretching away from the sensor. For steep slopes, the position of 

the terrain relative to the sensor may cause these distortions to be greatly exaggerated, 

producing layover and shadowing. In layover the higher portions of the terrain are imaged first 

and makes high ridges or peaks appear to fall over toward the nadir. In shadowing the radar 

signal from the back slope is invisible to the sensor because the terrain blocks the signal from 

reaching the back slopes. Both result in a loss of data in the affected areas. The work presented 

in this thesis covers flat terrain of the Amazon basin and we were not impacted by these factors. 

The properties of the SAR signal itself (wavelength and polarization) influence its 

interaction with forest architecture and can provide detailed information about forest structure. 

As a general rule, longer wavelengths penetrate further than shorter wavelength SAR data. For 

example, X- and C-band SAR data are generally scattered by the upper canopy of a forest 

whereas L- and P-band tend to interact only with large stems and trunks (Figure 2.4). This 

phenomenon in particular makes SAR data at longer wavelengths useful in assessing changes in 

forest biomass, however because of signal saturation, the relationship only applies to forests 

with biomass <150 Mg ha-1 (Koch, 2010; Mitchard et al., 2009; Saatchi et al., 2011).  

In addition to wavelength, the polarization information associated with the SAR signal – 

that is the orientation of the plane of propagation (horizontal and vertical) – also impacts how 

the signal interacts with objects on the ground (and thus its backscatter). Briefly, there are three 

types of scattering: (1) rough surface, (2) double-bounce, and (3) volume (Figure 2.5).  Each 

polarimetric channel tends to favour certain scattering mechanisms, such that the strength of 

the backscatter in specific channels can give an indication of the primary scattering mechanisms 

(Flores-Anderson et al., 2019). This information can greatly assist image classifications, as 

particular habitats, vegetation structures, land forms, soils types, etc. can produce unique 

combinations of backscatter across channels. Within the context of this thesis, we predicted 

discernible signals associated with SAR polarization, but also differences in logged and unlogged 

areas resulting from changes in backscatter after logging. 

 

 

 

Figure 2.4 Differences in SAR signal interaction with forest structure associated with wavelength 

(adapted from Flores-Anderson et al. 2019). 
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2.2.2 Spatial context  

Mapping any land surface phenomena that operates across spatial scales, from a few pixels to 

globally abundant, can be aided by combining spectral and spatial information. That is, in 

addition to an individual pixel’s spectral information, the spectral properties of adjacent or 

nearby pixels can help to further discriminate boundaries or changes in the arrangement of land 

surface features.  A common way to include spatial-spectral information is by calculating image 

texture, essentially spatial variations in greyscale levels within a neighborhood. Such metrics 

can be grouped into what are known as first-order and second-order statistics, and are 

summarized for an individual pixel and thus preserve the spatial resolution of the original data. 

First-order statistics are the familiar summaries, like mean, variance, standard deviation, etc. 

within a particular window or neighborhood size. Second-order statistics summarize the grey-

level differences between pairs of pixels within the neighborhood (Figure 2.6). A Grey Level Co-

occurrence Matrix (GLCM) summarizes probabilities of co-occurring grey level pairs in various 

directions (Haralick et al., 1973). A suite of metrics can be calculates from the GLCM and their 

use has been widespread in remote sensing applications since their initial formulation, often 

improving per-pixel classifications (Hall-Beyer, 2017).  

 Second-order texture measure are used throughout this thesis to improve detection of 

selective logging activities. Logging affects patches of forest, not isolated pixels and context 

matters, since roads and skid trails accompany canopy gaps in logged forests. Moreover, the 

spatial resolution of Landsat and the freely available SAR imagery are such that a canopy gap 

may occupy more than a single pixel. There is, however, a need to better understand and 

integrate the particular forest attributes that are captured by the GLCM statistics. These metrics 

are often employed to improve classification, but their interpretation often remains an 

abstraction (Hall-Beyer, 2017).  While we agree using GLCM metrics requires consideration, an  

Figure 2.5 The three main scattering types for SAR data (from Flores-Anderson et al. 2019). 
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explicit understanding or detailed definition of the forest attributes captured by particular 

GLCM metrics may simply be beyond simple interpretation. Indeed, interpretation of tuning 

parameters associated with the hidden layers of neural networks are deeply abstract and often 

beyond simple interpretation. Nevertheless, we agree that a deeper understanding of GLCM 

interpretations are generally needed within the remote sensing community. 

 

2.3 Machine learning theory 

2.3.1 Overview  

The objective of training a machine learning algorithm is to have it perform well, not just on the 

training data, but on new data it has never seen before. Thus, generalizable models are sought 

(i.e. neither under nor overfit). Machine learning methods could formerly be subdivided into 

two broad categories; supervised and unsupervised approaches, but the field has since widened 

to include varieties that do not fit neatly into either (e.g. semi-supervised, reinforced learning, 

self learning, meta-learning, etc.). We briefly touch on a few different approaches in the next 

section, however, this thesis exclusively utilizes supervised learning methods.   

 

 

Figure 2.6 An illustration of how Haralick texture measures are computed. In a 4 × 4 image, three grey-
levels are represented by numerical values from 1 to 3. The GLCM is constructed by considering the 
relation of each pixel to its neighborhood. In this simple example we only look at the neighbor to the 
right, however a rotationally invariant form is typically calculated. The GLCM acts like a counter for 
every combination of grey-level pairs in the image. For each pixel, its value and the neighboring pixel 
value are counted in a specific GLCM element. The normalized GLCM represents the estimated 
probability of each combination to occur in the image – since there are 12 right neighbor comparisons 
in this example. The Haralick texture measures are functions of the normalized GLCM, where different 
aspects of the grey-level distribution in the neighborhood are represented. For example, diagonal 
elements in the GLCM represent pixel pairs with equal grey-levels. The “Sum Average” texture measure 
is an average of the neighborhood, whereby individual pixel values are not weighed by its frequency of 
occurrence alone (as with the familiar mean), but by its frequency of occurrence in combination with 
certain neighbor pixel values. The “Contrast” equation results in elements with similar grey-level 
values having low weight, but elements with dissimilar grey-levels having high weight, this highlighting 
differences between combinations of shade in the neighborhood (figure adapted from Lofstedt et al., 
2019; see Haralick et al., 1973 for notation details). 

… 
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2.3.2 Machine learning approaches 

Machine learning methods, including regression trees, support vector machines, and Random 

Forests, for classification of satellite imagery have been used for over two decades and can turn 

a suite of predictor variables weakly correlated with a response into a relatively strong 

classifier (Schulz et al., 2018). Throughout this thesis we utilized an ensemble supervised 

machine learning method known as Random Forests (Breiman, 2001). Over the last few years, 

owing to increased computational power, machine learning ensemble methods have become 

increasingly popular in remote sensing applications (Belgiu et al., 2016).  Ensemble classifiers 

utilize two main approach, bagging (Breiman, 1996) and/or boosting (Schapire, 1990). Bagging 

involves training models on random subsets of the training data, in parallel, to make a 

conclusion about an observation that represents the average of all the decision trees built. In 

contrast, boosting is an iterative process whereby all the training data are used to the build a 

model and the misclassified observation are given higher emphasis in the next iteration 

(Schapire, 1990). The development of ensemble methods offers an opportunity to move beyond 

deterministic decision trees or simple rule-based thresholding for classifying changes (e.g. 

Asner et al., 2005; Souza et al., 2013) in remotely sensed imagery (Belgiu et al., 2016). However, 

these methods require adequate training data and sufficient datasets have previously not been 

available. The dataset we have compiled on selective logging, across a range of logging 

intensities, provides an opportunity to assess the suitability of ensemble methods for detecting 

subtle forest disturbances.   

Most recently, a sub-genre of the broader family of machine learning methods, known as 

deep learning, has shown real promise for the future of remote sensing applications (Brodrick 

et al., 2019). In particular, convolutional neural networks (CNNs) have become one of the most 

popular methods for classifying remotely sensed imagery because of the way spatial context 

information is used to identify features (Brodrick et al., 2019; Nogueira et al., 2017). However, 

CNNs (and other deep learning methods) require large numbers of labelled images and are 

computationally demanding, making them impractical to design from scratch for remote 

sensing applications (Cheng et al., 2017; Nogueira et al., 2017). Indeed, the use of pre-trained 

CNNs with little to no modification have shown encouraging results recently (Nogueira et al., 

2017), though the problem of detecting small objects amongst dense scenes (e.g. selective 

logging within continuous tropical forest) persists (Fu et al., 2019). Ultimately, however, CNNs 

(and other deep learning methods) are still so new that their development is somewhat limited 

to proof-of-concepts and they have yet to be made scalable within platforms like Google Earth 

Engine, unlike the ensemble methods mentioned previously (Gorelick et al., 2017).  
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2.4 Detection theory 

Throughout this thesis we utilize a number of concepts from detection theory, a broad field with 

applications spanning signal processing, psychology, game theory, medicine, artificial 

intelligence, and others. More specifically, we rely on theory surrounding the sensitivity or 

discriminability of a signal. Conceptually, sensitivity refers to how easy it is to detect a 

particular signal within background noise. Different signals can be rare but strong, common and 

faint, or anything in between. The signal of selective logging within the Amazon basin is almost 

certainly faint, but the prevalence is not well known because of current inabilities to reliably 

detect it. Nevertheless, selective logging is assumed to be fairly uncommon, relative to the 

vastness of the Amazon; 10-20,000 km2 of logging per year (Asner et al., 2005) is approximately 

0.25% annually. While selective logging is almost certainly more common than this, we have 

regarded it as a rare event for the purposes of defining the framework by which we built our 

detection system. 

Classifying a single pixel as logged or unlogged (i.e. making a prediction about its status) 

can be thought of like a hypothesis – one that can be tested using field data on each pixel’s 

logging history. Thus, classifying a satellite image represents potentially millions of hypothesis 

tests. In a two-class problem such as this, millions of tests can result in potentially hundreds of 

thousands of false positive results (i.e. labelling a truly unlogged pixel as logged; Table 2.2). This 

is obviously unacceptable and is the primary reason we focused on methods to control the 

Type-I error rate (i.e. falsely rejecting the null hypothesis of unlogged forest). We rely on two 

concepts within detection theory that relate to hypothesis testing, defining acceptable rates of 

false discovery (Benjamini & Hochberg, 1995) and false alarm (Figure 2.7).  

It may not be immediately noticeable, but choosing a false alarm rate (FAR) is the way 

null hypotheses are typically tested. An alpha is chosen, often 0.05, such that anything below 

this value is the rejection region (or a detection of logging in our case). Thus, a tolerable error 

rate is pre-determined and the detection rate (DR) is a direct a consequence of this value (i.e. 

one cannot control both the false alarm and the detection rate). Constant FARs have a long 

 

Table 2.2 Confusion matrix outlining the definitions of true positives (TP), true negatives (TN), false 
positives (FP), false negatives (FN), detection rate (DR), false alarm rate (FAR), and false discovery rate 
(FDR) in the detection of selective logging used throughout this thesis. 
 

DR = TP/(TP+FN) 

FAR = FP/(FP+TN) 

FDR = FP/(TP+FP) 

 

Reference 

Logged Unlogged 

Predicted 
Logged TP FP 

Unlogged FN TN 
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history in radar detection systems and are useful even when no targets exist (i.e. there is only 

background noise - or unlogged forest in our case). Linking it to an example of detecting 

selective logging, let us assume we want to define a threshold of canopy cover to map logging. 

We need to select a suitable canopy cover value that does not result in too many false detections 

of logging, so we might say we were willing to accept a 2% FAR. Thus 2% of all unlogged forest 

that was analyzed would be incorrectly labelled as logged. Crucially here, the FAR rate is the 

proportion of all unlogged pixels that are false positives (Figure 2.7, Table 2.2). This kind of 

selection process would be useful when one does not have field data on logging, yet a threshold 

of canopy cover needed to be identified. One could use a national park or some region known to 

have remained unlogged and identify a threshold value that produces the desired FAR. Thus, 

using a constant FAR, unlike FDRs, does not require both classes to be present and makes them 

extremely flexible. 

In contrast to FARs, setting a FDR focusses on all the detections (i.e. everything above the 

threshold in Figure 2.7) and defining an acceptable proportion that are wrong. This difference is 

𝑫     

𝑪     

𝑩     

𝑨     

Figure 2.7 Diagram representing the trade-off between the detection rate (DR) and the false alarm 

rate (FAR) associated with using a threshold T (vertical black line) in the value of an arbitrary 

variable (X) to label pixels as logged and unlogged. The purple and orange colors correspond to 

density plots (scaled by the abundance of each class) for hypothetical logged and unlogged 

observations, respectively. The areas A and B are observations of unlogged and logged pixels, 

respectively, that will be labelled as unlogged. Similarly, C and D are observations of logged and 

unlogged pixels, respectively, that will be labelled as logged. Thus, region B is Type-II error and 

region C is Type-I error. 

DR  =  
𝑫

𝑩 + 𝑫
  

  

FAR  =  
𝑪 

𝑨 + 𝑪
 

  

FDR =
𝑪 

𝑪 + 𝑫 
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subtle, but FDR controls the Type-I error rate and requires both classes to be present (i.e. any 

detection of logging in unlogged forest is wrong and thus a 100% FDR even with 1 false 

detection). Throughout this thesis we generally use FDRs, but discuss applications or scenarios 

where using a FAR would be more appropriate. Controlling Type-I error (i.e. using FDR) has an 

intuitive appeal over controlling the FAR in that the size or amount of unlogged forest is not 

known. Therefore defining an acceptable proportion of an unknown, presumable large quantity 

(unlogged forest in the Amazon) poses non-trivial uncertainty. In contrast, emphasizing 

detections, and the proportion of those detection that were wrong (i.e. FDR) presented a 

tractable solution to dealing with unknown quantities. The use of FDRs is not extremely 

common in remote sensing applications. However, given the imbalance in the abundance of the 

two land cover classes (logged and unlogged forest), the consequences of a particular fixed 

error rate can be dramatically different for the more abundant class (i.e. 10% of millions is 

many more than 10% of thousands). Thus, the use of FDRs and FARs  

 

2.5 Conclusion 

This thesis integrates the range of concepts outlined within this chapter. In particular, we 

explore changes in spatial-spectral features, aided by current machine learning models and key 

concepts from detection theory, to improve current abilities to detect and map tropical selective 

logging. We have tried to maintain a wide view of these concepts, however, specific details 

about each can be found within the text of each chapter as they relate to particular 

advancements. 
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Abstract 

Hundreds of millions of hectares of tropical forest have been selectively logged, either legally or 

illegally. Methods for detecting and monitoring tropical selective logging using satellite data are at 

an early stage, with current methods only able to detect more intensive timber harvest (>20 m3 ha-

1). The spatial resolution of widely available datasets, like Landsat, have previously been 

considered too coarse to measure the subtle changes in forests associated with less intensive 

selective logging, yet most present-day logging is at low intensity. We utilized a detailed selective 

logging dataset from over 11,000 ha of forest in Rondônia, southern Brazilian Amazon, to develop 

a Random Forest machine-learning algorithm for detecting low-intensity selective logging (< 15 

m3 ha-1). We show that Landsat imagery acquired before the cessation of logging activities (i.e. the 

final cloud-free image of the dry season during logging) was better at detecting selective logging 

than imagery acquired at the start of the following dry season (i.e. the first cloud-free image of the 

next dry season). Within our study area the detection rate of logged pixels was approximately 90% 

(with roughly 20% commission and 8% omission error rates) and approximately 40% of the area 

inside low-intensity selective logging tracts were labelled as logged. Application of the algorithm 

to 6152 ha of selectively logged forest at a second site in Pará, northeast Brazilian Amazon, 

resulted in the detection of 2316 ha (38%) of selective logging (with 20% commission and 7% 

omission error rates). This suggests that our method can detect low-intensity selective logging 

across large areas of the Amazon. It is thus an important step forward in developing systems for 

detecting selective logging pan-tropically with freely available data sets, and has key implications 

for monitoring logging and implementing carbon-based payments for ecosystem service schemes. 
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3.1 Introduction 

Earth’s tropical forests are being rapidly lost and degraded by agricultural expansion and 

commercial logging operations, with population growth projected to further increase pressures 

on forests globally (Asner et al. 2005; DeFries et al. 2010). The ability to monitor forest 

disturbances is an important component in sustainable forest management, understanding the 

global carbon budget, and implementing climate policy initiatives, such as the United Nation’s 

(UN) Reducing Emissions from Deforestation and Forest Degradation (REDD+) programme, 

which seeks to mitigate climate change and biodiversity losses through improved forest 

management practices (GOFC-GOLD, 2016). The UN anticipates that payments to nations under 

REDD+ initiatives, which compensate countries for conserving forests (and sequestering 

carbon), could reach $30 billion annually (Phelps et al., 2010, UN‐REDD Programme, 

http://www.un‐redd.org).  

Remote sensing is considered the most accurate and cost-effective way to systematically 

monitor forests at broad spatial scales (Herold and Johns 2007; Achard et al. 2007; 

Shimabukuro et al. 2014). Large-scale monitoring of deforestation has significantly improved in 

recent years, and forest losses can be identified with accuracies greater than 90% using freely 

available satellite data (Hansen et al. 2013). In addition, near real-time deforestation tracking 

and alert systems are now possible with systems like DETER (Shimabukuro et al., 2012), 

FORMA (Hansen et al. 2013; Hammer et al. 2014), and Global Forest Watch (Hansen et al. 2016). 

In contrast, methods for detecting and monitoring forest degradation are less developed. Forest 

degradation is an ambiguous term, with over 50 different definitions and no internationally 

established description (Simula 2009; Ghazoul et al. 2015). This makes generalizing its impacts 

difficult, in part because degradation can include forests subject to varying intensities of 

selective logging, fire, artisanal gold mining, fuelwood extraction, etc., which has hampered the 

development of coordinated international forest policies to track and monitor forest 

degradation (Sasaki and Putz 2009; Ghazoul et al. 2015). 

Here we focus on detecting a key driver of forest degradation globally, commercial 

logging operations. In contrast to forest clearance (i.e. deforestation), selective logging 

represents a more diffuse disturbance wherein only a subset of trees (typically the most 

economically valuable) are harvested (Putz et al. 2001; Fisher et al. 2014). The resulting forest 

maintains some degree of its original composition (e.g. canopy cover, biodiversity measures, 

carbon content, etc.) but is punctured by treefall gaps and logging roads and consequently lies 

on a continuum between primary forest and complete deforestation (Thompson et al. 2013; 

Ghazoul et al. 2015). The intensity of selective logging operations can vary in two main ways: 

(1) the volume of wood harvested typically ranges up about 50 m3 ha-1, as high as 150 m3 ha-1 in 

Asia (Putz et al. 2001; Burivalova et al. 2014) and (2) the degree to which reduced-impact 
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logging is practiced, in which damage to the remaining forest is minimized by careful planning 

of road networks, skid trails, and directional felling of trees to limit additional tree or canopy 

damage (Putz and Pinard 1993). We acknowledge wood biomass can vary substantially across 

forest types globally and may not, by itself, be a perfect indicator of logging intensity. However, 

in this manuscript we define logging intensity in terms of wood volume extracted to be 

consistent with legal restrictions outlined in the Brazilian forest code. 

Selective logging activities are often the first anthropogenic disturbance to affect 

primary tropical forests (Nepstad et al. 1999; Asner et al. 2009b) and are thought to be a major 

source of carbon emissions from degradation (Hosonuma et al. 2012; Pearson et al. 2017). 

Moreover, road networks associated with logging are often precursors to additional land-use 

changes (such as agricultural conversion or development of human settlements) and facilitate 

further degradation (e.g. increased susceptibility to fires or illegal logging) and forest losses 

(Matricardi et al. 2010; Kumar et al. 2014; Alamgir et al. 2017). Estimates suggest over 400 

million ha of tropical forest, an area the size of the European Union, are earmarked in the 

tropical timber estate to be logged (Blaser et al. 2011). However, the extent of forest subjected 

to selective logging across the tropics has yet to be estimated (Asner et al. 2005). 

Several authors have tried to address the challenges of using satellite data to estimate 

forest disturbances from selective logging in the tropics (Souza and Barreto 2000; Asner et al. 

2002, 2004a; Souza et al. 2005; Asner et al. 2005; Matricardi et al. 2007, 2010; Shimabukuro et 

al. 2014). The majority of approaches employ classification of fractional images derived from 

spectral unmixing of Landsat scenes. Despite these advancements, Landsat imagery has been 

considered too coarse to monitor less intensive selective logging activities, with nearly all 

applications involving logging intensities > 20 m3 ha-1 (Souza and Barreto 2000; Asner et al. 

2002, 2004a; Souza et al. 2005; Asner et al. 2005; Matricardi et al. 2007, 2010; Shimabukuro et 

al. 2014). While most authors acknowledge their methods can detect areas of selective logging 

at moderately high intensities (> 20 m3 ha-1; 3-7 trees ha-1), that possess large canopy gaps and 

an abundance of spectrally distinct features, like log landing decks or large road networks, their 

respective abilities to detect lower logging intensities are unknown. Therefore, using Landsat 

data to map and quantify selective logging at lower logging intensities (< 20 m3 ha-1) remains a 

major challenge, and the amount of forest disturbance overlooked using currently available 

techniques is unknown. Yet, growing concerns over the impacts of selective logging on carbon 

and biodiversity (Putz et al. 2008; Bicknell et al. 2014; Edwards et al. 2014; Martin et al. 2015; 

França et al. 2017) has led to increased use of improved forest management practices, such as 

reduced-impact logging (Putz and Pinard 1993). Consequently, the extent of tropical forests 

being logged at lower intensities and with reduced-impact is almost certainly expanding. In 

addition, there is an ever-increasing need to detect and account for the estimated 50-90% of 
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tropical timber on the international market harvested illegally at very low intensities 

(Kleinschmit et al. 2016; Brancalion et al. 2018). Therefore methods to detect subtle forest 

disturbances from satellite systems with regular global coverage are urgently needed, both to 

establish reference levels from historical data (e.g. the vast amount of freely available Landsat 

archives) and to obtain maximum benefit from current and future systems, such as Landsat 8, 9 

and Sentinel-2 (Drusch et al. 2012; Roy et al. 2014). 

The primary objective of this study was to develop a new method for detecting selective 

logging in moist tropical forest with Landsat data. It focuses on reduced-impact selective logging 

of intensity < 15 m3 ha-1 (1-2 trees ha-1), much lower than is typically reported in studies that 

use remote sensing data to estimate selective logging (Asner et al. 2004a; Souza and Roberts 

2005; Asner et al. 2005), but still more than three times the background rate of natural 

mortality estimated for tropical forests (Clark et al. 2004; Brienen et al. 2015). We used detailed 

spatial and temporal logging records from Rondônia, Brazil, together with Landsat data, to build 

a machine learning algorithm for detecting selectively logged Landsat pixels. Machine learning 

(neural networks, decision trees, support vector machines, etc.) for classification of satellite 

imagery has been used with increasing success in recent years (Tuia et al. 2011) and can turn a 

suite of predictor variables weakly correlated with a response into a relatively strong classifier 

(Breiman 2001). The successful application of this algorithm to a test site in northern Pará, 

Brazil, approximately 1500 km from the location of algorithm development, demonstrates that 

this approach is transferable and can greatly improve existing methods of detecting subtle 

selective logging activities in the tropics. 

 

3.2 Study sites and satellite imagery 

Data from two test sites in the Brazilian Amazon were used in this study (Figure 3.1a). The 

Jamari site consists of terra firme tropical forest inside the Jamari National Forest, Rondônia, 

Brazil. The logging concession was subdivided into forest management units (FMUs) that were 

each approximately 2,000 ha (Figure 3.1b). Selective logging occurred within a single FMU in 

each year, at an intensity of approximately 10 m3 ha-1 (1-2 trees ha-1), beginning at the end of 

the wet season (roughly June) and continuing through the dry season (until November) from 

2011 through 2015. Forest inventory measurements were recorded by trained foresters and 

included the spatial location of each marketable. At the Jamari site, heavy cloud cover typically 

occurs between October and May, but cloud-free images from Landsat 5 Thematic Mapper (TM), 

Landsat 7 Enhanced Thematic Mapper (ETM+), and Landsat 8 Operational Land Imager (OLI) 

were acquired approximately annually for 2008 to 2016 in the intervening dry season (Table 

3.1). Note that the 2012 ETM+ images suffered from missing data as a result of the scanline 

corrector error and appear striped (Storey et al. 2005). For the analyses, we distinguished 
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“early” and “late” images for a given region. The early image was the last cloud-free image of the 

dry season in the same year the FMU was logged (typically in August, approximately 2-3 months 

before cessation of logging activities for the season). The late image was the first cloud-free 

image of the dry season in the year after cessation of logging activities (typically in June, 

approximately 8-12 months after the FMU was logged). We used early and late imagery to 

generate two separate datasets and build two separate algorithms in order to assess which time 

period provided better detection of selective logging. This is illustrated for a hypothetical 

logging season in Figure 3.2. The selection of two time periods reflects the fact that after 8-12 

months, regrowth of foliage and other vegetation can reduce the spectral signatures required to 

identify canopy gaps and woody debris in tropical systems (Asner et al. 2004b, a; Broadbent et 

al. 2006).  

(b) (a) 

Figure 3.1 Location of the Jamari (black 

star) and Jari (grey star) study sites in the 

Brazilian Amazon (a). Landsat 8 image 

(RGB bands 6,5,4) of the Jamari site (b) 

from June 2016 in Rondônia, Brazil. The 

six southern forest management units 

(outlined in black) include the locations of 

data inputs for machine learning algorithm 

development, while the northern 2 units 

remained unlogged. Landsat 8 image 

(bands 6,5,4) of the Jari site (c) from 

September 2016 in Pará, Brazil. Jamari and 

Jari were selectively logged from 2011-

2015 and in 2012, respectively. 

(c) 0                             10 

        kilometres 

0                             10 

        kilometres 
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The Jari site (Figure 3.1c) in Pará, Brazil, consists of terra firme tropical forest inside the 

12,500 ha Jari concession that was selectively logged at an intensity of approximately 12 m3 ha-1 

(1-3 trees ha-1) between July and December 2012. In contrast to Jamari, the Jari site lacked 

detailed information on where trees were removed, but the volume of wood (m3) removed was 

recorded for 10 ha (400 m x 250 m) blocks in the concession. The Jari site allowed us to assess 

whether the algorithms developed using the Jamari dataset, located approximately 1500 km 

away, were transferable to this distant site. At Jari heavy cloud cover is common throughout the 

year, but we used the early and late time period imagery with the lowest cloud cover available 

to assess logging before and after logging activities occurred within the FMU (Table 3.1). 

 

 

 

Table 3.1 Landsat 5 (TM), 7 (ETM+), and 8 (OLI) scenes used to build and assess Random Forest 
models developed to detect selective logging. The Jamari study site is path 232, row 066 and the Jari 
site is path 226, row 061.  

Study Site Acquisition Date Scene Timing Solar Zenith Angle Landsat Sensor 

Jamari 2008-07-28 Early 49.75 TM 

 2009-07-31 Early 50.00 TM 

 2010-07-18 Early 46.36 TM 

 2011-08-06 Early 51.67 TM 

 2012-08-16 Early 54.05 ETM+ 

 2013-08-27 Early 57.07 OLI 

 2014-08-30 Early 58.84 OLI 

 2015-09-02 Early 60.19 OLI 

 2009-06-29 Late 43.79 TM 

 2010-07-02 Late 43.63 TM 

 2011-07-05 Late 44.30 TM 

 2012-06-13 Late 41.64 ETM+ 

 2013-07-10 Late 42.26 OLI 

 2014-06-11 Late 40.43 OLI 

 2015-06-14 Late 40.47 OLI 

 2016-06-16 Late 40.37 OLI 

Jari 2011-11-08 Early 123.31 ETM+ 

 2012-11-10 Early 125.27 ETM+ 

 2011-07-03 Late 48.12 ETM+ 

 2013-08-17 Late 60.92 OLI 
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3.3 Methods 

3.3.1 Data inputs for detecting selective logging 

For the Landsat scenes given in Table 3.1, the surface reflectance values for the Blue, Green, Red, 

Near Infrared, Shortwave Infrared 1 and Shortwave Infrared 2 bands were measured at each 

pixel where logging occurred (n = 13699) and 2000 randomly selected pixels in an adjacent 

FMU that remained unlogged. In addition, since logging activities tend to be accompanied by 

surrounding disturbances (residual damage to neighbouring unharvested trees and skid trails 

along which logs are extracted), seven texture measures were calculated for each band (mean, 

variance, homogeneity, contrast, dissimilarity, entropy, and second moment) to provide a local 

context for each pixel (Haralick et al. 1973; Castillo-Santiago et al. 2010; Beekhuizen and Clarke 

2010; Rodriguez-Galiano et al. 2012). These were calculated within a 7x7 pixel window, chosen 

as a trade-off between minimizing window size while still capturing the disturbances in a 

selectively logged forest compared to an unlogged forest (see Section 3.4.1 for a brief 

comparison of larger and smaller window sizes). The various texture metrics were assigned to 

the centre pixel, thus maintaining pixel size (i.e. 30 m), and were added after preliminary 

modelling efforts with only the surface reflectance bands were found to perform inadequately 

(i.e. approximately double the rate of omission error of logged pixels; see Tables A1.1 - A1.4 for 

details). Because of possible Landsat inter-sensor differences, we added one final categorical 

variable that represented the sensor (TM, ETM+, or OLI) from which the image was acquired. 

The dataset thus comprised a 49-element vector (6 surface reflectance bands, 7 texture 

measures for each band, and a sensor-type indicator) for each pixel where logging occurred and 

an additional 2000 randomly selected pixels in an adjacent FMU that remained unlogged 

between 2008 and 2016. 

The early and late datasets were reduced to exclude data from time periods close to 

when each FMU was logged. In the early dataset, for each FMU we excluded data from the year 

before logging because access roads were built and pixel values would therefore not represent 

Figure 3.2 Timeline representation of a single forest management unit in the Jamari study site. 
Vertical blue lines indicate image acquisitions during the early and late time periods (black boxes) 
relative to when logging occurred (red box). In this example the early Landsat image was acquired 
part way through the logging season, so part of the management unit has yet to be cut. The late image 
is the first cloud-free image of the following dry season and is acquired approximately 8 months after 
the management unit was selectively logged. 
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undisturbed forest. In addition, data from all years following logging were excluded (see Table 

A1.5 for details). For example, for an FMU logged in 2014 the early dataset comprised data from 

around August in 2008 through 2012 (representative of unlogged conditions) and August 2014 

(representative of logged conditions), but excluded data from August 2013, 2015 and 2016. The 

same procedure was used for the late dataset. For example, for an FMU logged in 2014 the 

unlogged dataset included data acquired around June in 2008 through 2012, while the logged 

data was for June 2015. Data were excluded from June 2013 (roads being built in the FMU), 

2014 (logging recently initiated), and June 2016 (2 years post-logging). In both the early and 

late datasets the data from 2000 randomly selected pixels in an adjacent FMU that remained 

unlogged were retained from all years because they were never logged. Note that for early data, 

the imagery was acquired before the final part of the FMU was logged; this introduced some 

errors into model training, because some pixels labelled as logged in the training data were still 

unlogged. Despite this, we demonstrate in Section 3.4.1 that detection of selective logging was 

better with early time period data. 

 

3.3.2 Random Forest for detection of selective logging 

We built Random Forest (RF) models using the randomForest package in program R version 

3.3.1 (Liaw and Wiener, 2002; R Development Core Team, 2016). The RF algorithm (Breiman 

2001) is a machine learning technique that uses an ensemble method to identify a response 

variable (here, whether a pixel was logged or unlogged) given a set of predictor variables (e.g. 

surface reflectance values). In contrast to a single decision tree, RF models employ multiple, 

independent decision trees (hence a forest). Random subsets of the training data are drawn, 

with replacement, to construct many trees in parallel, with each tree casting a vote on which 

class should be assigned to the input data. The withheld subset of the data, called the out-of-bag 

fraction, can be used for validation in the absence of independent validation data (Breiman 

2001). To reduce generalization error and minimize correlations amongst predictors, RF uses a 

random subset of predictor variables in the decision at each node within a tree during 

construction. Prior to model training, feature selection was performed with the Boruta package 

(version 6.0.0) in Program R (version 3.3.1) and all variables were deemed significant (Figure 

A1.1). 

We split the early and late datasets into 75% for training and 25% was withheld for 

validation. We used the out-of-bag data during model training to determine the threshold value 

for classification (i.e. model calibration, see Section 3.3.3.1). In order to ensure independence, 

the training and validation datasets were spatially filtered such that no observations in the 

training dataset were within 90 m of an observation in the validation dataset. RF models have 

only two tuning parameters: the number of classification trees to be produced (k), and the 
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number of predictor variables used at each node (m). We used 10-fold cross-validation to 

identify the number of trees (k = 1000) and the number of variables to use at each node (m = 5) 

that minimized the out-of-bag error rate on the training data.  

 

3.3.3 Algorithm evaluation 

3.3.3.1 Calibration: selecting the detection threshold 

RF models typically use a simple majority vote to assign an observation to a particular 

class, for example, in binary decisions when more than 50% of the trees assign a pixel to a 

particular class (Breiman 2001). However, the proportion of votes cast for a particular class 

from the total set of trees can be obtained for each pixel and a classification threshold can be 

applied to this proportion (Liaw and Wiener 2002). We adopted this approach here, wherein 

the proportion of votes that predicted each observation to be logged, denoted as X and 

informally termed the likelihood a pixel was logged, was used to select the classification 

threshold. Model calibration (with the out-of-bag data) was then used to define a threshold, T, 

such that if X > T the pixel was classified as logged (Figure 3.3).  

Detection of logging involves only two classes, logged and unlogged forest, so the 

confusion matrix has the form: 

 Reference 

L UL 

Predicted L DL DUL 

UL NL – DL NUL – DUL 

 

where L and UL refer to logged and unlogged, NL and NUL are the numbers of logged and 

unlogged observations in the reference dataset, and DL and DUL are respectively the numbers of 

logged and unlogged pixels detected as logged. The total number of observations is N = NL + NUL. 

Since logging is a relatively rare event, both in our data and on the landscape (i.e. NL << NUL), it is 

appropriate to use the terminology of detection theory. Accordingly, we define the detection 

probability 𝑃𝑑 = 𝐷𝐿/𝑁𝐿 and false detection probability 𝑃𝑓𝑑 =  𝐷𝑈𝐿/𝑁𝑈𝐿 as the probabilities that a 

logged or unlogged pixel is classified as logged, respectively. 𝑃𝑑 is equivalent to 1 – the omission 

error of the logged class and 𝑃𝑓𝑑 is the omission error of the unlogged class.  
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A pixel was classified as logged if X, the proportion of votes from RF that predict the 

pixel as logged, exceeds a given threshold T. Hence the detection and false detection 

probabilities depend on T and can be written  

 

 𝑃𝑑(𝑇) = ∫ 𝑓𝐿
1

𝑇
(𝑋)𝑑𝑋                   (3.1a) 

and  

𝑃𝑓𝑑(𝑇) = ∫ 𝑓𝑈𝐿
1

𝑇
(𝑋)𝑑𝑋                 (3.1b) 

 

where 𝑓𝐿(𝑋) and 𝑓𝑈𝐿(𝑋) are the probability distributions of X for the logged and unlogged 

classes, respectively (see Figure 3.3).  

The selection of T involves a trade-off between increasing 𝑃𝑑 and reducing 𝑃𝑓𝑑  (Figure 

3.3). In making this choice, the overall accuracy, given by 

Pd =  
𝑫

𝑩 + 𝑫
  

  

Pfd =  
𝑪 

𝑨 + 𝑪
 

  

dpL =
𝑫 

𝑪 + 𝑫 
 

𝑫     

𝑪     

𝑩     

𝑨     

Figure 3.3 Diagram representing the trade-off between the probability of detection (Pd) and the 
probability of false detection (Pfd) associated with using a threshold T (vertical black line) on the 
variable X (the proportion of votes that predicted each observation to be logged) to label pixels as 
logged and unlogged. Here the purple and orange colors correspond to probability distribution 
functions of X for hypothetical logged, 𝑓𝐿(𝑋), and unlogged, 𝑓𝑈𝐿 (𝑋), observations, respectively 
(scaled by the sample size in each group). Thus, the areas A and B are the portions of the 
observations from unlogged and logged pixels, respectively, that will be labelled as unlogged. 
Similarly, C and D represent the portions of the observations from logged and unlogged pixels, 
respectively, that will be labelled as logged. 
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 𝐴 =  
𝐷𝐿  + (𝑁𝑈𝐿− 𝐷𝑈𝐿) 

𝑁
,                     (3.2) 

is not a good guide, since it can be shown that A is maximal (equivalently, the overall probability 

of error is a minimum) when  

 
𝑓𝐿(𝑋)

𝑓𝑈𝐿(𝑋)
=

𝑁𝑈𝐿

𝑁𝐿
.                      (3.3) 

If NL and NUL were equal, the threshold would then be chosen at the intersection of fL(X) and 

fUL(X), but since NL << NUL it has a much higher value (i.e. it moves to the right in Figure 3.3). This 

is because to increase overall accuracy it is more effective to reduce 𝑃𝑓𝑑 than to increase 𝑃𝑑 , 

since there are so many more unlogged pixels (Schwartz 1984), and maximizing accuracy would 

lead to very few (or even no) detections. For example, if only 1% of an area was logged and all 

the pixels were classified as unlogged, the overall accuracy would be 99%. Thus, overall 

accuracy would not sufficiently balance the trade-off between true and false detections to meet 

our objectives.  

Various criteria could be used to select a classification threshold, including maximizing 

Cohen’s kappa (Cohen 1960) or defining an acceptable rate of omission error; ultimately 

however, there is no wrong threshold, since this depends on the objectives of prediction. The 

criterion used in this study to define T was to fix the proportion of detected pixels that were 

truly logged, defined here as 𝑑𝑝𝐿: 

 𝑑𝑝𝐿 =
𝐷𝐿

𝐷𝐿+𝐷𝑈𝐿
 =

1

1+(
𝑁𝑈𝐿

𝑁𝐿
)(

𝑃𝑓𝑑

𝑃𝑑
)
 .                   (3.4) 

Adopting this criterion is equivalent to a Constant False Discovery Rate detector which is widely 

used in detection problems with rare events (Benjamini and Hochberg 1995; Neuvial and 

Roquain 2012). This fixes the rate of prediction error (i.e. type I) when labelling pixels as logged, 

because 𝑑𝑝L is equal to 1 minus the commission error of the logged class, thus limiting the rate 

of commission error. This approach enables the user to select the proportion of detections that 

will be false. It was chosen because in the detection of rare events (e.g. selective logging within 

the Amazon Basin, for example), the implications of a particular error rate when predicting over 

the majority class (i.e. unlogged forest) are greater than an equivalent error rate when 

predicting over the minority class (i.e. 10% of millions of unlogged pixels is far greater than 

10% of thousands of selectively logged pixels). Thus, in order to avoid being swamped by false 

detections, we wanted to fix the proportion of all detected pixels that were incorrect and accept 

the level of accuracy associated with this criterion. The approach outlined here, therefore, 
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should be viewed from a detection theory perspective as opposed to simply being a 

classification problem.  

 Model calibration was used to calculate 𝑃𝑑 , 𝑃𝑓𝑑, and 𝑑𝑝L across the full range of 

threshold values. In practice this involved iterating through all values of T between 0 and 1 (in 

steps of 0.001), building each confusion matrix, and calculating the associated values of 𝑃𝑑 , 𝑃𝑓𝑑 , 

and 𝑑𝑝L. The threshold value was chosen such that 𝑑𝑝L = 0.85 in the training data (i.e. 15% of 

pixels classified as logged were actually unlogged). We initially set 𝑑𝑝L to 95% to strongly limit 

the rate of false detections, but this resulted in very high omission error of truly logged pixels 

(>75%). Consequently, 𝑑𝑝L was reduced to 0.85 by lowering the threshold, thus causing the 

detection and false detection rates to increase and causing more logged pixels to be detected. 

This value was then used to estimate 𝑃𝑑 and 𝑃𝑓𝑑 during model assessment with the validation 

dataset.  

 

3.3.3.2 Validation: assessing model accuracy 

RF models were validated using a random, independent subset of the early and late 

datasets (described in Section 3.3.2). The threshold value of T, chosen during model calibration, 

was applied to the validation data and the associated error rates were calculated. The values of 

𝑃𝑑 , 𝑃𝑓𝑑 , and 𝑑𝑝L are presented across full range of threshold values to thoroughly illustrate 

model performance. Good practices outlined by Olofsson et al. (2014) were used to assess 

agreement and calculate unbiased error estimates when mapping selective logging detections. 

During mapping, non-forested areas were excluded using Brazil's national forest change 

product, PRODES (INPE 2015), and cloudy pixels were masked using the cloud mask provided 

with Landsat surface reflectance imagery. In addition, we provide the value of Cohen’s kappa, , 

for comparison with other studies (Cohen 1960).  

 

3.4 Results  

3.4.1 Random Forest classification of selective logging at Jamari 

The rates of true and false detection probabilities for the early and late validation data are 

shown in Figure 3.4 for the full range of T (black lines). These curves indicate how a given 

threshold value used for classification influenced the associated values of 𝑃𝑑 , 𝑃𝑓𝑑 , , and 𝑑𝑝L in 

the validation data. For example, if a 𝑑𝑝L of 0.90 was used (indicating 10% of logging detections 

would be spurious) then the false detection rate (𝑃𝑓𝑑) would be < 1% for both datasets, but the 

detection rate (𝑃𝑑) would be approximately 55% and 30% for the early and late datasets, 

respectively. These plots clearly demonstrate that there is no unambiguous way to choose an 
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optimal value for T, and the choice about its value is a trade-off between the number of true and 

false detections.  

In general, these plots indicate that the early data provided a higher detection rate than 

the late data, for a given false detection rate. The early and late data had similar rates of 

commission error when labelling logged pixels, which is not surprising given we used this 

measure to constrain models during training. However, the late data had higher rates of 

omission error of logged pixels and detected less logging (Table 3.2). In addition, these plots 

demonstrate why using the threshold that maximized Cohen’s  would lead to higher false 

detection rates, as the threshold value is higher when 𝑑𝑝L  = 0.85 than at maximum  (i.e. pixels 

classified as logged must have a higher likelihood). Furthermore, because  is high across a wide 

range of range of threshold values for both early and late data, slight differences in the 

likelihoods produced by the validation data could result in dramatic shifts in the value of T. 

Although 𝑑𝑝L  was fixed at 0.85 during model calibration (i.e. with the training data), the 

values calculated with the validation dataset were slightly lower (Table 3.2). Thus, the threshold 

value determined during model training did not produce the same values for 𝑑𝑝L  when used 

against the validation dataset (i.e. some loss of performance). Slight differences in the 

proportion of logged observations (16.3% and 14.5% in training and validation, respectively) 

and minor differences in the ratio of 𝑃𝑓𝑑: 𝑃𝑑 between the training and validation datasets 

account for the disparity (see equation 3.4). In general model assessments seldom give identical 

performance across training and validation phases, and the difference here were marginal and 

yielded comparable model behavior. 
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Figure 3.4 Trade-off curves between true (Pd) and false (Pfd) detection rates (solid and dashed 
black lines, respectively) for the early (top) and late (bottom) Random Forest models at the Jamari 
site as a result of varying the threshold value (T) for classification. Also shown are the 
corresponding values of dpL (the proportion of detections that were truly logged) and Cohen’s 
kappa (solid and dashed grey lines, respectively).  
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The early data displayed higher spatial correspondence between high likelihoods and the locations of logging in Jamari. This is illustrated in 

Figure 3.5, where the likelihood of logging provided by RF is shown on a colour scale and the individual locations of tree removal are indicated by 

black squares. The early model yields much higher likelihoods and these match well with reference logging data, whereas there is generally lower 

correspondence between reference logging locations and regions of highest likelihood in the late predictions. Note that we expect some logging 

locations to be omitted in the early data as the corresponding satellite data were acquired part way through the logging period and missed later 

logging. Evidence for this is provided by the inset regions expanded at the bottom of Figure 3.5 where the locations of the last 200 trees in the 

logging records for the season are displayed as crosses instead of 

 

Table 3.2. Confusion matrix summarizing unbiased (Olofsson et al., 2014) results from Random Forest (RF) model classifications of logged and unlogged 
observations at Jamari derived from Landsat data at labelled points (observations before and after selective logging). The classification threshold (T) for RF 
models was set during model calibration such that the proportion of detections that were truly logged (dpL) was fixed at 0.85, resulting in a T of 0.40 and 0.65 for 
the early and late datasets, respectively. The corresponding values for overall accuracy (OA), Cohen’s kappa (), the proportion of detected pixels that were truly 
logged (dpL), and the detection probability (Pd) are provided. 
EARLY 

  
LATE 

 
  

OA: 89.7%  

 : 0.78 

dpL: 0.80 

Pd: 0.92 

 
  OA: 91.7% 

 : 0.40 

dpL: 0.80 

Pd: 0.30 

 
  

Reference Class   Reference  Class  

Logged Unlogged Commission   Logged Unlogged Commission 

  Error (%)    Error (%) 

Predicted 

Class 

Logged 0.313 0.076 19.5 
 

Predicted 

Class 

Logged 0.032 0.008 19.9 

Unlogged 0.027 0.584 4.4 
 

Unlogged 0.075 0.885 7.8 

         

Omission Error (%) 8.0 11.5      Omission Error (%) 70.1 1.0  
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Early 
2013-08-27 

Figure 3.5 Example of a forest management unit in Jamari logged in 2013 showing the RF 
predicted likelihood that each pixel was logged (highest likelihoods in red) for the early and late 
data. Logging roads are thin black lines and tree removal locations are displayed as black squares 
and crosses. The black crosses (see insets for detail) coincide with the final 200 trees in the logging 
records for 2013. 

3 km 

Early                                               1 km 

Late 
2014-06-11 

Late                                                   

Likelihood Pixel was Logged 
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squares. Many of these locations occur in low likelihood regions in the early data because these 

locations were probably unlogged at the time of the image acquisition (dates for specific tree 

removal were unavailable). 

A further marked difference between the predictions is that, in general, far more pixels 

were labelled as logged in the early data than in the late, as can be seen by comparing the 

classifications in Figure 3.6, which shows the years between 2011 and 2015 for the early (top) 

and late (bottom) datasets, respectively. The FMU where logging occurred in each year is 

outlined in yellow and the 2015 image also shows the FMU to be logged in 2016 outlined in 

white. The early classifications appear to show some indication of a retained signal from the 

previously logged FMU (particularly 2012-08-16 and 2013-08-27 in Figure 3.6) that are less 

visible in the late classifications. In addition, the range of predicted logging likelihoods with late 

data was more variable from scene to scene, which resulted in some scenes having very few 

pixels of high likelihood of logging (see 2012-06-13 in Figure 3.6) and others with most of the 

study area predicted as logged (see 2016-06-16 in Figure 3.6). This suggests the threshold value 

from model calibration could not be used reliably for all late images and a scene-specific 

threshold value might need to be calculated for each image to provide better correspondence 

with logging activities.  

The true proportion of logged pixels in each FMU (from the logging records) was 

roughly 12% in a given year (mean = 11.8%; standard deviation = 2.4%), but the early 

classifications consistently labelled a greater number of pixels as logged (Figure 3.7). For 

example, the proportion of pixels assigned in each FMU for early acquisitions was expected to 

be around 25% (10% truly logged and 15% false positives), but nearly twice as many were 

identified. However, forest disturbances from selective logging affect patches of forest and not 

just the pixels where trees were logged. Extra detections would be expected because of 

additional tree and canopy damage associated with tree removals, roads, and construction of 

skid trails. Note that the rate of false detections over unlogged FMUs (open diamonds in Figure 

3.7) is roughly as expected for the early algorithm and most dates for the late algorithm, but is 

significantly different for the late algorithm for the FMU logged in 2015. The late scene for this 

FMU clearly shows anomalous behaviour and displays high likelihood of logging over most of 

the study area, including known unlogged regions (see Figure 3.6).
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Figure 3.6 Classifications for Jamari between 2011 and 2016 with early (top) and late (bottom) Landsat data. The forest management units (FMUs) are 
outlined in black and the FMU logged in each year (where logging should be detected) is outlined in yellow. Blue and green represent classifications for logged 
and unlogged forest, respectively. White areas are no-date and correspond to the Landsat 7 scan-line corrector error (stripes) and pixels that were non-forest 
(irregular patches) in Brazil’s Program to Calculate Deforestation in the Amazon (PRODES) database. The FMU logged in 2016 is outlined in white (far right) 
and the top two FMUs in each image remained unlogged. 

 5 km 

2011-08-06 2013-08-27 
 

2012-08-16 2014-08-30 2015-08-17 

2012-06-13 2013-07-10 2014-06-11 2015-06-14 2016-06-16 
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We used the early algorithm to predict over the available Landsat time series in Jamari 

that coincided with logging in four FMUs (see Table A1.6 for image dates) and plotted the 

detections of logging through time (Figure 3.8). As expected, the proportion of detected pixels 

increased through the logging season during the year a given FMU was logged. There was also a 

drift upwards in the unlogged FMU, but the detections peaked just above the expected rate of 

12% by late August (Figure 3.8). Importantly, known unlogged regions will not exhibit a 𝑑𝑝L of 

0.85 (i.e. a false discovery rate of 15%), as any and all detections in known unlogged areas are 

wrong (i.e. a 𝑑𝑝L = 0). Consequently, the false alarm rate is the expected proportion of 

detections (i.e. Pfd = 11.5% in Table 3.2). This suggests that the algorithm performed as would 

be expected for tracking forest disturbances through time in both logged and unlogged FMUs. In 

particular, forest patches subjected to selective logging should display measurable increases in 

detections as the logging season progresses and known unlogged regions will exhibit the 

expected false alarm rate.  

 

Figure 3.7 The proportion of pixels in each FMU that were classified as logged in Figure 3.6 for the 
early (open symbols) and late (closed symbols) algorithms. Circles are the logged FMUs in each year 
and diamonds are values from an FMU that remained unlogged. The black line represents the mean ± 
1 standard deviation (dashed lines) of the true rate of logging across all FMUs. Values are unbiased 
(Olofsson et al., 2014) to account for possible sampling bias in the validation data.  
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We assessed the impact of the window size used to calculate texture measures on the 

proportion of pixels labelled as logged FMUs for three logged and one unlogged FMU in the early 

data (Figure 3.9). Reducing the window size from 7x7 to 3x3 lowered the proportion labelled as 

logged by nearly 50% within each FMU, resulting in smaller clusters of pixels with high 

likelihoods (Figure 3.9). However, as noted above, forest disturbance from selective logging 

affects chunks of forest and not just the pixels where trees are cut. Thus, depending on the scale 

of interest, larger or smaller window sizes may be better for identifying patches of forest that 

have been selectively logged. In contrast, reducing the window size had little impact on the false 

detection rate over unlogged regions, remaining close to the 12% expected irrespective of 

window size (Figure 3.9). This suggests that the choice of window size is independent of the 

false positive rate over undisturbed forested areas and primarily affects likelihoods around 

pixels that the algorithm identifies as disturbed.  

Figure 3.8. The proportion of pixels classified as logged through time in three logged and one 
unlogged FMU using the early RF model. Triangles, circles, and squares represent logged FMUs 
(solid lines) and diamonds are an unlogged FMU (dotted line). The grey horizontal line at 12% is 
the approximate detection rate expected for unlogged regions. Values are unbiased (Olofsson et 
al., 2014) to account for possible sampling bias in the validation data. 
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3.4.2 Random Forest predictions of logging at Jari 

The majority of the best available (sufficiently cloud-free) Landsat scenes over Jari were from 

the ETM+ sensor, which suffered the scan-line corrector error, so approximately 22% of each 

image has missing data that appear as white stripes in Figures 3.10 and 3.11 (Storey et al. 

2005). Nonetheless, this allowed us to see behaviour similar to Jamari, wherein predictions 

using early data clearly identified active logging (Figure 3.10) and predictions using late data 

detected very little logging (Figure 3.11). In particular, with late data most of the study area was 

classified as unlogged both before and after logging. Additionally, with early data the 

predictions of logged pixels in the year before logging were close to the expected rate of false 

positives over unlogged regions (approximately 12%). However, with late data the rate of false 

positives was not close to the expected rate over unlogged regions. Maps for the year before 

logging are displayed to demonstrate that the early dataset identified the correct year in which 

logging occurred and did not simply predict high amounts of logging for every year.  

Figure 3.9 The proportion of pixels classified as logged in three logged FMUs and one unlogged FMU 
from RF models using texture measures with different window sizes. Triangles, circles, and squares 
represent windows used for texture calculation of 7x7, 5x5 and 3x3 pixels, respectively. The dashed 
line at 12% is the approximate detection rate expected for unlogged regions. Values are unbiased 
(Olofsson et al., 2014) to account for possible sampling bias in the validation data. 
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 2011-11-08 
(pre-logging) 

Figure 3.10 Logged (blue) and unlogged (green) predictions at the Jari study site using a Random 
Forest model trained from early Landsat inputs. Predictions from November 2011 (top) were 
before logging activities began and from November 2012 (bottom) while active logging was 
ongoing. Clouds were masked out and appear as irregular white patches (top). Missing data 
regions from the Landsat 7 scan-line corrector error appear as white stripes through the maps. 
Black boxes indicate the 10 ha blocks inside the Jari concession that were not logged. 

 

 2012-11-10 
(active logging in FMU) 
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 2011-07-03 
(pre-logging) 

Figure 3.11. Logged (blue) and unlogged (green) predictions at the Jari study site using a Random 
Forest model trained from late Landsat inputs. Predictions from July 2011 (top) were before 
logging activities began and from August 2013 (bottom), approximately 8 months post-logging. 
Clouds were masked out and appear as irregular white patches. Missing data regions from the 
Landsat 7 scan-line corrector error appear as white stripes through the map (top). Black boxes 
indicate the 10 ha blocks inside the Jari concession that were not logged. 

 

 2013-08-17 

(8 months post logging) 
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In total, an area of 6152 ha was visible in Jari after removing clouds and missing data gaps from the SLC error in the year of logging. Of this 

area, 1710 ha was not logged (black boxes in Figures 3.10 and 3.11). Since we lacked detailed logging records and only knew which 10 ha blocks 

were logged, a formal accuracy assessment of logging detections was not possible. However, when using the unbiased proportions and the threshold 

from Table 3.4 to classify predictions, the early algorithm labelled 2316 ha (38%) as logged (Figure 3.10). This value is consistent with predictions 

from Jamari where approximately 40% of logged FMUs were labelled with early data (see Figure 3.7). In addition, the rate of commission error when 

predicting logged pixels (i.e. 1 - dpL) was 19.8%, which is also consistent with the rate of commission error between the validation data and 

prediction errors found for the Jamari site.  

 

 

 

Table 3.3  Confusion matrix summarizing  unbiased (Olofsson et al. 2014) results from Random Forest (RF)  model classifications of logged and unlogged 
observations at Jari with Landsat data. The thresholds (T) developed at Jamari were used to classify predictions at Jari and were 0.40 and 0.65 for the early and 
late datasets, respectively (Table 3.2).  The corresponding values for overall accuracy (OA), Cohen’s kappa (), the proportion of detected pixels that were truly 
logged (dpL), and the detection probability (Pd) are provided. 
EARLY 

  
LATE 

 
  

OA: 89.0%  

 : 0.77 

dpL: 0.80 

Pd: 0.93 

 
  OA: 92.2% 

: 0.05 

dpL: 0.80 

Pd: 0.03 

 
  

Reference Class   Reference  Class  

Logged Unlogged Commission   Logged Unlogged Commission 

  Error (%)    Error (%) 

Predicted 

Class 

Logged 0.351 0.085 19.5 
 

Predicted 

Class 

Logged 0.002 0.005 19.9 

Unlogged 0.025 0.538 4.4 
 

Unlogged 0.078 0.919 7.8 

         

Omission Error (%) 6.7 13.7      Omission Error (%) 97.3 0.06  
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3.5 Discussion 

The spatial resolution of Landsat data has previously been considered too coarse to monitor 

selective logging activities (Asner et al. 2002), with most applications involving logging 

intensities >20 m3 ha-1 at sites with an abundance of spectrally distinct features (Souza and 

Barreto 2000; Souza et al. 2005; Asner et al. 2005). However, we have demonstrated that 

Landsat surface reflectance data can be used effectively, in a supervised machine learning 

framework, to detect subtle spectral changes from selective logging at low intensities. Although 

a definitive estimate of the amount of logging activities that have previously gone undetected is 

difficult to determine, a dataset of 824 logging permits from the state of Pará, Brazil found 18% 

of permits authorized for logging were harvested at intensities < 20 m3 ha-1 (Richardson and 

Peres 2016). Thus, our approach has the potential to significantly increase current abilities to 

detect and monitor selective logging activities that up to now have been, at best, marginally 

detectable (see Appendix A1, Section A1.5 for a comparison between our method and CLASlite, 

Asner et al., 2009a). In addition, the approach outlined here has the distinct advantage of being 

able to make predictions about forests on a single scene to map disturbances, instead of 

requiring successive cloud-free images like many approaches (Asner et al. 2009a). This is 

particularly important since a single, low-cloud scene may be all that is available for a given 

region (see Souza, Jr et al. 2013). 

 Only the algorithm developed with data close to the time of active logging (i.e. the early 

data) performed well at detecting selective logging.  Many logged pixels were omitted when 

using data from the first cloud-free image of the next dry season (i.e. late). In addition, only the 

algorithm trained with imagery close in time to the logging events was transferable to new 

areas (Figures 3.10 and 3.11). Thus, our results suggest images acquired during, or very soon 

after, active logging are needed to map low intensity selective logging. This is partly because 

logging activities typically occur in the dry season when cloud-free imagery is more likely to be 

available, but also because the spectral changes associated with low-intensity selective logging 

practices are subtle and short-lived and rapidly become obscured under even limited regrowth 

(Broadbent et al. 2006).  

The decision to fix the proportion of logging detections that were correct (i.e. limiting the 

commission error when predicting logged pixels) defined the classification threshold applied to 

the likelihoods produced by the RF models developed at Jamari. This threshold would likely give 

different values of dpL in regions that contain different proportions of logged and unlogged 

observations (see equation 3.4). Indeed, the threshold value from model training produced a 

slightly higher dpL when assessed against the validation dataset, yet these data were from the 

same study site. In addition, depending on the distribution of likelihoods produced by the RF 

models, different datasets might yield different threshold values, for example because of higher 
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selective logging intensities. However, assuming both classes are present, the proportion of 

detected pixels that are wrong (i.e. 1 - dpL) would be expected to remain invariant. Hence if the 

same threshold were applied over the whole of the Amazon basin, we would expect 

approximately 20% of all detections to be wrong and 11.5% of truly intact forest pixels to be 

identified as logged. This could be used to refine the algorithm (in the absence of field data on 

logging locations) by examining the rate of false detections over known unlogged regions or 

protected areas to achieve a similar error rate. Adopting this threshold (i.e. Pfd = 11.5) would 

make the method equivalent to a Constant False Alarm Rate detector which is widely used in 

detection problems with rare events (Scharf, 1991). A dpL of 85% was the value chosen here as a 

compromise that gives a high detection rate (0.92 for early data, see Table 3.2) while keeping 

the proportion of detections that are false to an acceptable level. However, other values of dpL 

could be chosen, depending on the predictive objectives of the particular application. This is 

precisely why Figure 2.4 shows the full range of threshold values; to enable a detailed 

assessment of model performance with higher or lower values of T or dpL. 

An important issue when assessing detections of selective logging is that patches of forest 

are affected, not just the isolated pixels where trees are removed. The area around logged pixels 

is certain to be disturbed because of canopy damage associated with tree removals and the 

construction of roads and skid trails, but the precise amount is unknown. Consequently, taking 

as a reference purely the pixels where trees were known to be removed is inadequate for 

assessing the disturbance due to logging. Indeed, the true rate of logged pixels at Jamari was 

approximately 12% (mean = 11.8%; standard deviation = 2.4%), but this represents a minimum 

expected detection rate and the associated forest disturbances would result in more detections. 

The early algorithm labelled approximately 40% of the area inside FMUs in Jamari and Jari as 

logged. This may be a more realistic estimate and is likely close to the upper limit of what 

constitutes forest disturbance for this level of logging. However, because the choice of window 

size for texture measure calculation affected the proportion of pixels labelled as logged (Figure 

3.9), the appropriate window size for a particular application needs to be considered. Smaller 

windows resulted in fewer detections, but use of too small a window risks being unable to 

adequately measure texture arising from forest disturbances from selective logging. Thus, the 

specific application would best dictate the optimum approach and the user should, if possible, 

use window sizes matched to the expected or known spatial spread of forest disturbance 

around tree removals. 

Selective logging rates in the Brazilian Legal Amazon (BLA) are thought to have remained 

relatively stable since 2000, with Pará and Mato Grosso enduring the highest rates of selective 

logging (Souza et al. 2013; Betts et al. 2017). However, our findings suggest that their 

assessments of forest disturbance and the associated carbon emissions are likely 
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underestimated. Machine learning approaches (neural networks, decision trees, support vector 

machines, etc.) for classification of satellite imagery have been used with increasing frequency 

and success since their initial applications to remote sensing questions in the 1990’s (Tuia et al. 

2011), but their effectiveness relies heavily on adequate training data. Our results suggest that 

detailed logging records ought to be a reporting requirement for logging companies or for 

REDD+ projects related to logging. These datasets could be used for building, improving, and 

updating models similar to the one presented here, with the aim of facilitating the creation of 

pan-tropical estimates of (legal and illegal) selective logging activities. 

From a conservation perspective, the ability to identify regions of forest that are 

selectively logged is useful for mapping primary forest, but also for delineating logged forests 

with conservation value. Forests subjected to selective logging generally maintain far higher 

levels of biodiversity than other modified habitats, such as plantations or secondary forests 

(Gibson et al. 2011; Edwards et al., 2014). Moreover, even after accounting for the amount of 

wood removed, reduced impact logging activities (like those at our study site in Jamari) do 

better at maintaining biodiversity than conventional selective logging practices (Bicknell et al. 

2014) while simultaneously sequestering more carbon during regrowth (Putz et al. 2008; 

Martin et al. 2015). Thus, in the context of REDD+ or alternative conservation initiatives, forests 

affected by low intensity selective logging offer high biodiversity value and carbon 

sequestration potential. Accordingly, our method could be used for identifying and prioritizing 

forest tracts suitable for such initiatives.  

 

3.5.1 Study limitations 

While the minimum mapping unit remained 30 m, the use of texture measures resulted in some 

spatial aggregation of logging predictions (see Figures 3.5 and 3.6). This was expected around 

logged pixels, as a result of canopy gaps, skid trails, and roads, but clustered detections were 

also present in unlogged FMUs (see Figure 3.6). Ideally, predictions of logging in unlogged FMUs 

would have shown a diffuse 12-15% of spurious detections. Attempts to refine the accuracy of a 

final predictive map, by performing a post-processing step in which either likelihoods or 

classified pixels are re-examined (e.g. using a window analysis to apply neighbourhood rules 

whereby likelihoods or counts of nearby pixels are re-evaluated against some criteria) to 

enhance the detection rate or limit the false detection rate further, would prove difficult (Huang 

et al. 2014). However, using a smaller window size for texture calculation, such as 5x5 pixels, 

would reduce this effect. Ultimately, the optimal window size for textures depends on the 

objectives of the application and understanding how different window sizes affect detection and 

false detection rates. 
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Landsat surface reflectance data is known to exhibit occasional strong scene-to-scene and 

within-scene variations because of discontinuities across focal plane modules (Morfitt et al. 

2015) and seasonal changes in solar viewing angles (Roy et al. 2016), respectively. We did not 

take these effects into account and likely affected algorithm performance in some instances (e.g. 

2016-06-16 in Figure 3.6). Thus, a large scale application of the approach outlined here should 

include a step to normalize surface reflectance data across scenes to facilitate detection of the 

subtle and short lived spectral changes associated with low-intensity selective logging practices 

(Broadbent et al. 2006). 

Our analysis used a binary classification (logged and unlogged forest) yet tropical forest 

landscapes are a heterogeneous mixture of land uses (e.g. secondary forests, burned areas 

inside forests, agricultural fields). We avoided some of these complexities by using the PRODES 

forest designations to remove urban areas, agricultural fields, and deforested areas that had 

regenerated to secondary forest. However, our method cannot distinguish between disturbance 

types and is best suited for tracts of remaining forest that contain logging concessions. In 

addition, selective logging represents a range of forest disturbance intensities and we would 

have preferred to use the logging dataset in a regression framework (i.e. a continuous response, 

such as logging intensity).  However, the range of logging intensities within our Jamari dataset 

was very limited, since it was such a low intensity concession. Consequently, a regression 

approach was not suitable for the Jamari dataset and we chose to use classification. Additional 

datasets could fold into the framework here and might facilitate a continuous response 

approach as those datasets become available.  

Finally, our analyses used freely available optical datasets. However, the problems 

associated with using optical imagery in the tropics, including the limited availability of cloud-

free images over many regions and the rapid regeneration of tropical forest vegetation, remain 

major obstacles to pan-tropical assessments of tropical selective logging rates. Methods that 

integrate optical and radar dataset into a single algorithm would likely further improve the 

detection of tropical selective logging activities (Joshi et al. 2016; Higginbottom et al. 2018; 

Reiche et al. 2018). 

 

3.6 Conclusion 

Loss and degradation of forests in the tropics has important implications for global climate 

change, local populations and biodiversity (Lewis et al. 2015). Methods to reliably map forest 

disturbances from selective logging would be a key contribution to quantifying the terrestrial 

portion of the carbon budget and the role of land-use change in tropical forests emissions 

(Baccini et al. 2017). In addition, reliable forest monitoring systems are actively sought after by 

tropical nations and conservation groups tasked with mitigating global climate change through 
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improved forest management practices (GOFC-GOLD, 2016). Our results should stimulate 

further assessments of regional rates of low-intensity selective logging in tropical forests. 

Our analysis, based on training Random Forest models with detailed records of tree 

removals, has demonstrated that Landsat data can be effective at detecting selective logging at 

much lower intensities than has previously been reported. To be successful, the input satellite 

data needs to be acquired within a few months of the logging, as the subtle signal caused by 

logging (and the more extensive disturbance associated with logging) is rapidly lost. Although 

we had less complete knowledge of logging activities at the Jari site, the algorithm developed at 

Jamari appeared to transfer successfully to this site (despite being 1500 km away). Hence there 

is reason to expect that it could be applied at much wider scales. 
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Abstract 

Selective logging is the primary driver of forest degradation in the tropics and reduces the capacity 

of forests to harbour biodiversity, maintain key ecosystem processes, sequester carbon, and 

support human livelihoods. While the preceding decade has seen a tremendous improvement in the 

ability to monitor forest disturbances from space, advances in forest monitoring have almost 

universally relied on optical satellite data from the Landsat program, whose effectiveness is limited 

in tropical regions with frequent cloud cover. Synthetic aperture radar (SAR) data can penetrate 

clouds and have been utilized in forest mapping applications since the early 1990s, but no study 

has exclusively used SAR data to map tropical selective logging. A detailed selective logging 

dataset from three lowland tropical forest regions in the Brazilian Amazon was used to assess the 

effectiveness of SAR data from Sentinel-1, RADARSAT-2 and PALSAR-2 for monitoring tropical 

selective logging. We built Random Forest models in an effort to classify pixel-based differences in 

logged and unlogged areas. In addition, we used the BFAST algorithm to assess if a dense time 

series of Sentinel-1 imagery displayed recognizable shifts in pixel values after selective logging. 

Random Forest classification with SAR data (Sentinel-1, RADARSAT-2, and ALOS-2 PALSAR-2) 

performed poorly, having high commission and omission errors for logged observations. This 

suggests little to no difference in pixel-based metrics between logged and unlogged areas for these 

sensors. In contrast, the Sentinel-1 time series analyses indicated that areas under higher intensity 

selective logging (> 20 m3 ha-1) show a distinct spike in the number of pixels that included a 

breakpoint during the logging season. BFAST detected breakpoints in 50% of logged pixels and 

exhibited a false alarm rate of approximately 10% in unlogged forest. Overall our results suggest 

that SAR data can be used in time series analyses to detect tropical selective logging at high 

intensity logging locations within the Amazon (> 20 m3 ha-1). These results have important 

implications for current and future abilities to detect selective logging with freely available SAR 

data from SAOCOM 1A, the planned continuation missions of Sentinel-1 (C and D), ALOS PALSAR-1 

archives (expected to be opened for free access in 2020), and the upcoming launch of NISAR. 
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4.1 Introduction 

Selective logging is the primary driver of forest degradation in the tropics (Curtis et al. 2018; 

Hosonuma et al. 2012). Logging reduces the capacity of forests to harbour biodiversity, 

maintain key ecosystem processes, sequester carbon, and support human livelihoods (Baccini et 

al. 2017; Barlow et al. 2016; Lewis, Edwards, and Galbraith 2015). However, large uncertainties 

remain in assessing the true impact of selective logging because the technological advances in 

detecting and monitoring logging at large scales are only just emerging (Hethcoat et al. 2019). 

The ability to reliably map forest degradation from selective logging is a key element in 

understanding the terrestrial portion of the carbon budget and the role of land-use in turning 

tropical forests into net carbon emitters (Baccini et al. 2017). In addition, reliable forest 

monitoring systems are urgently needed for tropical nations and conservation groups seeking 

to report and/or mitigate carbon emissions through improved forest stewardship (GOFC-GOLD, 

2016). 

While the preceding decade has seen a tremendous improvement in the ability to detect 

forest disturbances from space (Hansen et al. 2013; Hethcoat et al. 2019; Tyukavina et al. 2017), 

advances in forest monitoring have almost universally relied on optical satellite data from the 

Landsat program. Yet, the effectiveness of optical data is limited in tropical regions with 

frequent cloud cover like the northwest Amazon and central Africa. Synthetic aperture radar 

(SAR) data can penetrate clouds and have been utilized in forest mapping applications since the 

early 1990s (reviewed in Koch, 2010). However, the SAR data archives are spatially and 

temporally fragmented, and in many cases the data products required commercial licences for 

their use. Consequently, uptake by users has been more limited than optical data and the full 

potential of SAR has likely been under-utilized (Reiche et al. 2016).  

SAR backscatter, particularly at L- and P-band, is sensitive to changes in carbon stocks in 

forests with biomass < 300 Mg ha-1 (Koch 2010; Mitchard et al. 2009; Saatchi et al. 2011). This 

enables accurate differentiation between forested and non-forested areas and has been well 

studied (e.g. Shimada et al., 2014). More recently, polarimetric and interferometric methods 

have been developed that utilize information in the SAR signal to detect forest changes 

(Deutscher et al. 2013; Flores-Anderson et al. 2019; Lei et al. 2018; Mathieu et al. 2013). Yet, the 

limited temporal and spatial coverage of SAR data have hampered widespread application and 

use of these techniques to monitor forest disturbances (e.g. single-pass interferometric SAR is 

only available with TanDEM-X data). Moreover, advancements in monitoring selective logging 

with SAR data are generally lacking, despite widespread recognition of both the need and the 

role it could play (Mitchell, Rosenqvist, and Mora 2017; Reiche et al. 2016).   

The launch of Sentinel-1A in mid-2014 represented the first continuous global 

acquisition strategy for open SAR data. Since that time two studies have exclusively used 
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Sentinel-1 to map deforestation (Antropov et al. 2016; Delgado-Aguilar et al. 2017), with others 

utilizing a fusion of optical and SAR data (Joshi et al. 2016; Reiche et al. 2015; Reiche, 

Hamunyela, et al. 2018; Reiche, Verhoeven, et al. 2018). While methods that fuse optical and 

Sentinel-1 have been successful, their continued dependence on optical imagery nevertheless 

limits their utility in regions with frequent cloud cover. With the successful launch of SAOCOM 

1A in late 2018, the planned continuation of the Sentinel-1 missions (with C and D), and the 

anticipated launches of SAOCOM 1B in 2019 and NISAR in 2021, vast amounts of free C- and L-

band SAR data will soon be available. Accordingly, methods are needed that utilize SAR data for 

large-scale forest monitoring, yet no study has used Sentinel-1 for detection of selective logging 

activities. 

The primary objective of this paper was to assess the ability of Sentinel-1 to detect 

tropical selective logging. Detailed spatial and temporal logging records from three regions in 

Brazil were used to develop and test the effectiveness of two different detection techniques: (1) 

exploiting pixel-based differences between logged and unlogged locations in single images and 

(2) detecting change in a time series of pixels known to be logged.  

Pixel-based methods for detecting changes in remotely sensed imagery often utilize 

differences between pixel values or other mathematically derived metrics in time or space, for 

example before and after some disturbance or in areas known to be disturbed and undisturbed 

within the same image (reviewed in Hussain et al., 2013). These differences can be used for 

classification, employed in machine learning, or analyzed temporally to map change. Recently, 

the detection of selectively logged regions in single images has been demonstrated successfully 

with optical data from Landsat (Hethcoat et al. 2019).  Accordingly, we sought to evaluate 

whether similar methods could be transferred to SAR data. The selective logging records were 

used to build supervised machine learning models to detect selective logging. Machine learning 

methods have many applications in remote sensing and have been used with increasing 

frequency and success (Lary et al., 2018). We performed equivalent analyses with SAR data 

from the C-band RADARSAT-2 and L-band PALSAR-2 sensors to compare the performance of 

longer wavelength (i.e. L-band PALSAR-2) and higher resolution data (both RADARSAT-2 and 

PALSAR-2 have higher sensor resolution).  

In addition, we used all the available Sentinel-1 archives in a time series analysis to 

monitor pixel values for breakpoints in the time series of locations that had been selectively 

logged. Time series methods have increasingly been used for monitoring changes in pixel 

values, in part because of the availability of vast archives of imagery on cloud computing 

platforms like Google Earth Engine (Gorelick et al. 2017), but also because of the recognition 

that seasonal or longer term trends in pixel values can be less susceptible to erroneously 

characterizing change (Bullock, Woodcock, and Olofsson 2018; Verbesselt, Zeileis, and Herold 
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2012; Zhu 2017). Given that forest disturbances from selective logging are often subtle and 

short-lived, detecting changes with SAR data over large regions will present technological and 

algorithmic challenges. However, a critical assessment of detection capabilities and a careful 

understanding of the performance of these data types is essential for advancing forest 

monitoring techniques in the tropics. 

 

4.2 Study area and data 

4.2.1 Study area and selective logging data 

Selective logging data from three lowland tropical forest regions in the Brazilian Amazon were 

used in this study (Figure 4.1). The Jacunda and Jamari regions are inside the Jacundá and 

Jamari National Forests, Rondônia, while the Saraca region is inside the Saracá-Taquera 

National Forest, Pará. Forest inventory data from 14 forest management units (FMUs) 

selectively logged between 2012 and 2017 were used, comprising over 32,000 individual tree 

locations. Unlogged data from three additional locations, one inside each study region, 

comprised over 11,500 randomly selected point locations known to have remained unlogged 

during the study period (Table 4.1). 

 

4.2.2 Satellite data and pre-processing 

All available C-band Sentinel-1A Ground Range Detected scenes in descending orbit and 

Interferometric Wide mode (VV and VH) were utilized in Google Earth Engine (GEE) over the 

study regions through November 2018. These had incidence angles of 38.7°, and 38.7°, and 

31.4° for Jacunda, Jamari and Saraca, respectively. GEE is a cloud computing platform hosting 

calibrated, ortho-corrected Sentinel-1 scenes that have been processed in the following steps 

using the Sentinel-1 Toolbox: (1) thermal noise removal; (2) radiometric calibration; and (3) 

terrain correction using the Shuttle Radar Topography Mission (SRTM) 30 m digital elevation 

model (DEM). The resulting images had a pixel size of 10 m. 

Single Look Complex C-band RADARSAT-2 scenes in Fine mode (HH and HV) were 

obtained from the Canadian Space Agency. Twelve ascending scenes, with an incidence angle of 

30.7°, coincided with selective logging records and were acquired between 2011 and 2012. Pre-

processing of images was done with the Sentinel-1 Toolbox and included: (1) radiometric 

calibration; (2) multi-looking (by a factor of 2 in azimuth) to produce square pixels; and (3) 

terrain correction using the SRTM 30 m DEM. The resulting images had a pixel size of 10 m. 

Level 2.1 L-band PALSAR-2 scenes (HH and HV) were obtained from the Japan 

Aerospace Exploration Agency (JAXA) with a pixel size of 6.25 m. Four geometrically corrected 

scenes coincided with selective logging records and were acquired between 2016 and 2017 
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with incidence angles of 28.5° in ascending orbit. Image digital number was converted to 

normalized backscatter using the calibration factors provided by JAXA.  

 

4.2.3 Speckle filtering 

SAR data are inherently speckled from interference between scattering objects on the 

ground (Woodhouse, 2017) and often require reduction of speckle prior to analyses. Many 

speckle-reduction methods involve spatial averaging, but the associated loss of spatial 

resolution was likely to hinder the detection of the subtle signal from selective logging activities. 

Thus, following the SAR pre-processing steps detailed above for each data type, the final step 

involved multi-temporal filtering to reduce speckle (Quegan and Yu 2001). Multi-temporal 

filtering reduces speckle by averaging a pixel’s speckle through time (as opposed to a spatial 

average). A 7x7 pixel window was used. The equivalent number of looks after speckle filtering 

for Sentinel-1, RADARSAT-2 and PALSAR-2 was approximately 15, 5 and 5, respectively. 

Figure 4.1 Location of the Jacunda (circle), Jamari (square), and Saraca (diamond) study 

regions in the Brazilian Amazon.  
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Table 4.1 Data used in the classification of selective logging from three study regions in the Brazilian 
Amazon. The forest management unit (FMU), logging intensity, sample size (pixels), and overlap with 
satellite data coverage are shown for Sentinel-1 (S), RADARSAT-2 (R), and PALSAR-2 (P).  
    

FMU 
Logging Intensity  

(m3 ha-1) 
N Coverage 

Jacunda_I_2016 6 2,290 S 

Jacunda_I_2017 9 2,822 S 

Jacunda_II_2015 15 2,613 S 

Jacunda_II_2016 10 1,815 S 

Jacunda_II_2017 7 1,310 S, R* 

Jacunda_Reserve  0 3,000 S*, R* 

Jamari_I_2015 22 1,094 S, R* 

Jamari_I_2016 10 653 S, R* 

Jamari_I_2017 12 911 S, R* 

Jamari_III_2012 10 3,071 R 

Jamari_III_2015 11 3,042 S, R* 

Jamari_III_2016 9 2,058 S, R*, P 

Jamari_III_2017 11 2,597 S, R*, P 

Jamari_Reserve  0 5,912 S*, R*, P* 

Saraca_Ia_2017 12 3,769 S 

Saraca_II_2016 25 3,223 S 

Saraca_II_2017 21 4,729 S 

Saraca_Reserve 0 3,000 S* 

* FMU was unlogged at time of acquisition and data represent unlogged observations 

 

 

4.3 Methods 

4.3.1 Supervised classification with Random Forest 

4.3.1.1 Data inputs for classifying selective logging 

For each satellite data type (Sentinel-1, RADARSAT-2, and PALSAR-2) data were extracted at 

each pixel where logging occurred and randomly selected pixels in nearby regions that 

remained unlogged. Thus, the data inputs for logged and unlogged observations came from a 

single scene for each study region (i.e. a space-for-time study design in contrast to images 

before and after logging from the same location). Selective logging at the study areas only 

occurred during the dry season, approximately June-October in a given year, and data were 

extracted from images acquired as late into the logging period as possible (Table A2.1) to 
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ensure the majority of pixels had been subjected to logging, but also before the onset of the 

rainy season (Hethcoat et al. 2019). In addition, logging activities tend to be accompanied by 

surrounding disturbances (canopy gaps, skid trails, patios, and logging roads) resulting in forest 

disturbances beyond just the pixels where a tree was removed. Accordingly seven texture 

measures were calculated for each polarization (sum average, sum variance, homogeneity, 

contrast, dissimilarity, entropy, and second moment) to provide a local context for each pixel 

(Haralick et al., 1973). These were calculated within a 7x7 pixel window, chosen as a trade-off 

between minimizing window size while still capturing the variability in selectively logged 

forests compared to unlogged forests. Finally, a composite band was calculated as the ratio of 

the co- polarized channel to the cross-polarized channel (i.e. HH/HV or VV/VH). Each dataset 

thus comprised a 17-element vector (2 polarization bands, their ratio composite band, and 7 

texture measures for each polarization) for each pixel where logging occurred and randomly 

selected pixels that remained unlogged.  

 

4.3.1.2 Random Forests for classification of selective logging 

We built Random Forest (RF) models using the randomForest package in program R version 

3.5.1 (Liaw and Wiener, 2002; R Development Core Team, 2018). The RF algorithm (Breiman 

2001a) is an ensemble learning method for classification. Each dataset was split into 75% for 

training and 25% was withheld for validation. In order to further ensure the independence of 

training and validation datasets, the validation data were spatially filtered such that no 

observations in the training dataset were within 90 m of an observation in the validation 

dataset. RF models have two tuning parameters: the number of classification trees grown (k), 

and the number of predictor variables used to split a node into two sub-nodes (m). We used a 

cross-validation technique to identify the number of trees and the number of variables to use at 

each node that minimized the out-of-bag error rate on each training dataset (Table A2.2). Prior 

to model training, feature selection was performed with the Boruta package (version 6.0.0) in 

Program R (version 3.3.1) and all variables were deemed significant (Figures A2.1-3).The 

importance of each predictor variable was assessed during model training, using Mean Decrease 

in Accuracy, defined as the decrease in classification accuracy associated with not utilizing that 

particular input variable for classification (Breiman 2001b). 

 

4.3.1.3 Model validation: assessing accuracy 

RF models were validated using a random subset of the full dataset for each sensor (described 

in Section 4.3.1.2). By default, RF models assign an observation to the class indicated by the 

majority of decision trees (Breiman, 2001a). However, the proportion of trees that voted for a 

particular class from the total set of trees can be obtained for each observation and a 
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classification threshold can be applied to this proportion (Hethcoat et al. 2019; Liaw and Wiener 

2002). We adopted such an approach, wherein the proportion of trees that predicted each 

observation to be logged, informally termed the likelihood a pixel was logged, was used to select 

the classification threshold. A threshold, T, was defined such that if likelihood > T the pixel was 

classified as logged (Figure 4.2).  

The confusion matrix then has the form: 

 Reference 

L UL 

Predicted L DL DUL 

UL NL – DL NUL – DUL 

 

where L and UL refer to logged and unlogged classes, NL and NUL are the numbers of logged and 

unlogged observations in the reference dataset, and DL and DUL are the numbers of logged and 

unlogged pixels detected as logged, respectively. We defined the detection rate 𝐷𝑅 = 𝐷𝐿/𝑁𝐿 and 

false alarm rate 𝐹𝐴𝑅 =  𝐷𝑈𝐿/𝑁𝑈𝐿 as the frequency that a logged or unlogged pixel was classified 

as logged, respectively. Thus, the DR is equivalent to 1 minus the omission error of the logged 

class and the FAR is the omission error of the unlogged class. In addition, we defined the false 

discovery rate (FDR): 

 FDR =
𝐷𝑈𝐿

𝐷𝐿+𝐷𝑈𝐿
 = 1 −  

1

1+(
𝑁𝑈𝐿
𝑁𝐿

)(
FAR

DR
)
 .                   (4.1) 

The FDR is the proportion of all observations that were detected as logged that were actually 

unlogged, and is equivalent to the commission error of the logged class. The FDR is an 

assessment of the rate of prediction error (i.e. type I) when labelling pixels as logged and can be 

used in detection problems with rare events or unbalanced datasets, such as selectively logged 

pixels within the Amazon Basin (Benjamini and Hochberg 1995; Hethcoat et al. 2019; Neuvial 

and Roquain 2012). A high DR and low FDR is clearly desirable, but these cannot be fixed 

independently in two-class detection problems and both depend on the threshold value (Figure 

4.2). For example, if achieving a 95% detection rate led to a FDR of 50%, then half of all 

predictions of logging would be incorrect. This level of performance would make estimates of 

selective logging extremely uncertain. The value of the classification threshold (T) therefore 

represents a trade-off between true and false detections. In practice, a viable detection method 

would expect to achieve a DR > 50% while limiting the FDR to 10-20% to have any value for 

widespread forest monitoring. The performance of each sensor was assessed by plotting the DR, 

FAR and FDR values as T varied from 0 to 1 to facilitate discussion of model performance. 
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4.3.1.4 Sentinel-1 classification of high intensity logging  

Most of the selective logging data in this study were low-intensity (<15 m3 ha-1) and we 

anticipated the logging signal to be weak and difficult to detect. Consequently, we also 

considered a reduced Sentinel-1 dataset that included only those FMUs with logging intensities 

above 20 m3 ha-1 (n = 3 sites) and the unlogged data (n = 3 sites) to assess if Sentinel-1 could be 

used for detecting selective logging activities near the legal limit within the Brazilian Legal 

Amazon. Unfortunately RADARSAT-2 and PALSAR-2 imagery did not cover the highest intensity 

logging sites, so we could not perform equivalent analyses with these datasets. RF classification 

and validation was performed on this subset of the Sentinel-1 data in the manner detailed above 

for the full dataset.  

 

4.3.2 Time series analyses 

We tested whether a time series of Sentinel-1 data displayed discernible changes in pixel values 

after selective logging with the Breaks for Additive Seasonal and Trend (BFAST) algorithm 

(Verbesselt et al. 2010, 2012) in program R (R Core Team, 2018). BFAST estimates the timing of 

abrupt changes within a pixel-wise time series (breakpoint hereafter) and has been successfully 

utilized with a range of data types (e.g. Landsat, MODIS, SAR, etc.) to map phenology, 

deforestation, water inundation, and more. BFAST was used to assess if a suitable model with 

DR  =  
𝑫

𝑩 + 𝑫
  

  

FAR  =  
𝑪 

𝑨 + 𝑪
 

  

FDR =
𝑪 

𝑪 + 𝑫 
 

𝑫     

𝑪     
𝑩     

𝑨     

Figure 4.2 Diagram representing the trade-off between the detection rate (DR) and the false alarm 
rate (FAR) associated with using a threshold T (vertical black line) to label pixels as logged and 
unlogged based upon the proportion of votes that each observation was predicted to be logged. The 
purple and yellow colors correspond to density plots for hypothetical logged and unlogged 
observations, respectively. Thus, the areas A and B are the portions of the observations from unlogged 
and logged pixels, respectively, that will be labelled as unlogged. Similarly, C and D represent the 
portions of the observations from logged and unlogged pixels, respectively, that will be labelled as 
logged. 
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one or no breakpoints was appropriate (i.e. the bfast01 command) and included tests for 

coefficient and residual-based changes in the expected value (i.e. the conditional mean). BFAST 

works in 4 steps; first a linear model is fit to the pixel-wise time series (the model is 

parameterized by the data internally), next a model with 1 breakpoint is estimated (one that 

minimizes the segmented residual sum of squares), then a sequence of tests are performed (BIC, 

supLM, supF, OLS-MOSUM) assuming a null hypothesis of zero breaks, finally each test result is 

aggregated and a single test decision can be used or the combined assessment for any test 

statistic (Verbesselt et al. 2010; Zeileis 2005). BFAST can test for multiple breakpoints within a 

pixel’s time series, however, given that our dataset only spanned a one-year time period we 

considered a single disturbance model to be most appropriate. 

The metrics used in searching for breakpoints in the full Sentinel-1 time series 

(approximately 55 scenes from October 2016 – August 2018) were the two most important 

predictor variables identified from RF models. The limited temporal coverage of RADARSAT-2 

and PALSAR-2 at our study sites precluded time series analyses with these datasets. Where 

breakpoints were identified, we determined if they coincided with the timing of selective 

logging activities (June – October) and regarded these as true detections. Breakpoints in 

unlogged areas and breakpoints outside the timing of logging activities were considered false 

detections. In addition, the relationship between the frequency of breakpoints within an FMU 

and its logging intensity was examined to understand potential thresholds in logging intensity 

above which variables could be used to monitor selective logging activities through time series 

analyses.  

Finally, we examined if the relationship between logging intensity and the rate of 

detections and false alarms was consistent between logging locations (i.e. a scattered subset of 

pixels in an area) and an entire region (i.e. all pixels within a bounding box). The timing of 

breakpoints was mapped for two 500 m X 500 m test regions within the Saraca study area (one 

logged and one unlogged). A limited number of small test regions were chosen because of the 

computationally expensive nature of the pull request in Earth Engine (e.g. two 1 km regions 

query > 1 million records for export). Only breakpoints during the time period associated with 

logging were mapped (June – October). 

 

4.4 Results  

4.4.1 Random Forest classification of selective logging  

The single-image detection results for all sensors revealed that in order to get false discovery 

rate (FDR) values sufficiently low (e.g. 10-20%), the corresponding detection rates (DR) of 

selective logging were of almost no value (< 5%) for reliably forest monitoring. In general, the 

following results suggest that regions that have experienced selective logging do not show 
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consistent differences from unlogged areas in the metrics we used for classification. The second 

analysis (section 4.4.2) therefore deals with detection of selective logging with time series data 

and provides better results.  

 

4.4.1.1 Sentinel-1 

Random Forest detection performance for Sentinel-1 is shown in Figure 4.3 (top). Both the 

detection and false alarm rates were close to 1 until the threshold exceeds ~0.4, meaning almost 

every pixel in an image would be detected as logged. This suggests difficulty distinguishing 

logged and unlogged observations, and many unlogged observations were being misclassified as 

logged (Figure A2.4). In general, the detection, false alarm, and false discovery rates (across the 

range of threshold values) were insufficient for reliable classification of selective logging with 

Sentinel-1 data at the intensities within our study areas (6-25 m3 ha-1). For example, even if a 

FDR of 30% were acceptable, this would yield a detection rate < 20%, which would be of little 

practical value. Thus, attempts to strongly limit the false discovery rate (commission error of 

logged observations) would require a high threshold value and result in very few detections. 

Overall, this suggests that using single images from Sentinel-1on their own to detect and map 

selective logging activities would be fraught with error with the classification approach used 

here.  

 

4.4.1.2 RADARSAT-2  

Random Forest performance for RADARSAT-2 is shown in Figure 4.3 (middle). Both the false 

alarm rate and the detection rate rapidly declined as the threshold value was initially increased, 

again suggesting difficulty in distinguishing logged and unlogged observations. In contrast to 

Sentinel-1, RADARSAT-2 was less likely to label an observation as logged and very few 

observations had likelihood values above 0.5 (Figure A2.5). It should be noted that the logging 

records that coincided with RADASAT-2 data were from a single FMU that was relatively low 

intensity (10 m3 ha-1). Consequently, the performance displayed here may not be a full appraisal 

of RADARSAT-2 capabilities. Given how poorly the model performed, however, it is uncertain 

that a vast improvement would occur with better training datasets. Overall, our results suggest 

that RADARSAT-2 data cannot be used to effectively monitor low-intensity selective logging 

activities using pixel-based differences between logged and unlogged areas. However, 

additional tests with data at higher logging intensities should be pursued. 

 

4.4.1.3 PALSAR-2 

Random Forest classification performance for PALSAR-2 is shown in Figure 4.3 (bottom). In 

general, the performance of PALSAR-2 was equally poor at distinguishing logged and unlogged 
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observations as RADARSAT-2 and Sentinel-1 (Figure A2.6). The final rise in the false discovery 

rate in Figure 4.3, before it drops to zero, is the result of calculating proportions from very small 

sample sizes (e.g. 5 of 10 observations predicted logged were actually unlogged). Similar to 

RADARSAT-2, the selective logging data that coincided with PALSAR-2 imagery was from two 

relatively low-intensity FMUs (9 - 11 m3 ha-1). Again, however, more data at higher logging 

intensities seems unlikely to improve classification performance to the desired level. For 

example when the data from Sentinel-1 was restricted to just the low intensity sites used in the 

PALSAR-2 analyses, there was effectively no change in the rates of detection and false discovery 

compared to the results from all logging intensities with Sentinel-1 (Figure A2.7 and Table 

A2.7). Thus, the lack of higher intensity logging data probably had little impact on the results for 

PALSAR-2. In general, this suggests that the limitations in distinguishing logged and unlogged 

pixels are inherent in the data and metrics we used for classification (for all three data sets). 

 

 4.4.1.4 Sentinel-1 classification of high intensity logging   

Detection performance of Sentinel-1 data for the highest intensity FMUs is shown in Figure 4.4. 

Despite limiting the detection task to the most intensively logged FMUs (as well as unlogged 

observations), the detection rate and false discovery rate values were comparable to the results 

that used the full range of logging intensities. Instead, improvement in model performance was 

associated with better discrimination of unlogged observations (i.e. compare the commission 

and omission errors for the unlogged class between Tables 4.2 and 4.5). Essentially, the model 

was able to better identify unlogged forest, presumably because the more “confusing” 

observations (i.e. the low intensity FMUs) were absent and could not muddle the distinction 

between logged and unlogged observations (Figures A2.8). Overall, our results suggest Sentinel-

1 data cannot be used in the classification of pixel-based differences to monitor selective logging 

activities with reasonable precision, even at the most intensively logged regions within the 

Amazon.  
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Figure 4.3 Random Forest model performance across the range of threshold values (T) for 
classification with SAR data. The Detection Rate (DR) and False Alarm Rate (FAR) are the solid and 
dashed black lines, respectively. Also shown are the corresponding values of the False Discovery Rate 
(FDR) and Cohen’s kappa (k) as solid and dotted grey lines, respectively. 

Sentinel-1 

RADARSAT-2 

PALSAR-2 
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4.2 Sentinel-1 time series analyses 

The two most important predictor variables from the Sentinel-1 RF model were the Sum 

Average metric (Haralick 1973) on the VV and VH bands (Figure A2.9, Equation A2.1). A plot of 

VV sum average values through time for six randomly selected tree harvest locations at the 

Saraca site is shown in Figure 4.5 and suggests selective logging decreased the value of this 

metric. In addition, histograms of the timings associated with all breakpoints at three FMUs are 

shown in Figure 4.6 and indicates the time frame of the breakpoints mainly occurred within the 

logging season for those FMUs logged above 20 m3 ha-1. In contrast, the time periods associated 

with breakpoints at lower logging intensities were shifted toward the onset of the rainy season 

in late 2017 – early 2018, however, all FMUs showed an uptick in breakpoints associated with 

the rainy season (Figure 4.6). This suggests that Sentinel-1 time series data could be used to 

detect and monitor selective logging activities from areas that have experienced logging close to 

the legal limit in Brazil (30 m3 ha-1), particularly if the detection time-frame is narrowed to 

within the known logging season. 

Figure 4.4 Random Forest model performance across the range of threshold values (T) for 
classification of Sentinel-1 data with a subset of the most intensively logged sites. The Detection Rate 
(DR) and False Alarm Rate (FAR) are the solid and dashed black lines, respectively. Also shown are the 
corresponding values of the False Discovery Rate (FDR) and Cohen’s kappa (solid and dashed grey 
lines, respectively). 

High intensity Sentinel-1 
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Figure 4.5 Breakpoint dates identified by the BFAST algorithm from six randomly selected points 
within the Saraca study region. The time series of the VV sum average texture measure is plotted in 
black, the selective logging period is shaded in grey, and the identified breakpoint date is labelled with 
a vertical dashed line. 
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Figure 4.6 Histograms of breakpoint dates associated with time series analyses of the Sentinel-1 sum average 
texture measure for three study regions in the Brazilian Amazon for the VV (top row) and VH (bottom row) 
bands. The logging intensity and the proportion of observations with breakpoints in the data are in the upper 
left of each panel. The time period coinciding with logging activities is shaded in grey.  
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When the value of the VV sum average metric was monitored through time in pixels 

known to be logged and unlogged, the proportion of pixels with a significant breakpoint in their 

time series increased as the logging intensity of the FMU increased (Figure 4.7A). 

Approximately 70% of logged pixels in high logging intensity FMUs had a breakpoint, however, 

nearly 25% of unlogged pixels showed a breakpoint in their time series (i.e. 25% false alarm 

rate). This false alarm rate was generally consistent through logging intensities approaching 15 

m3 ha-1 and suggests no signal in pixels logged at low to moderate intensities (Figure 4.7A). 

When the breakpoints were assessed only over the time period associated with logging (to 

remove the false peak associated with the rainy season), the relationship showed a similar 

pattern whereby the FMUs logged at the highest intensities showed a large rise in breakpoints 

above a background false alarm rate that was relatively constant up through moderate logging 

intensities (Figure 4.7B). At the highest intensities, the detection rate was > 50% and the false 

alarm rate was approximately 10%. These results further support the idea that FMUs logged at 

low to moderate intensities do not show a distinct time series signal whereas FMUs logged at 

higher intensities do. Overall, this suggests that FMUs logged at intensities closer to the legal 

limit within the Brazilian Legal Amazon (30 m3 ha-1) should show a noticeable spike in the 

number of breakpoints within its time series above a background false alarm rate and could be 

used to detect logging activities in the dry season. 

Approximately 55% and 20% of pixels in the logged and unlogged test regions had a 

breakpoint during the logging season (Figure 4.8A and B). These values are generally in 

agreement with our prior results from the subset of pixels where trees were removed (see 

Figure 4.7B). While 55% of the pixels in the logged test region did not have a tree removed, 

selective logging is associated with forest disturbances that go beyond the individually logged 

pixels (e.g. canopy gaps, skid trails, logging roads, etc.) and additional detections are expected. 

Only about 5% of the pixels in the logged test region were actually logged, however, it is clear 

from the Planet imagery (Figure 4.8C and D; Planet Team 2017) that more than 5% of the forest 

patch was disturbed by logging activities. Given the false alarm rate was around 20%, the 

difference between detections and false alarms might represent a value comparable with the 

amount of forest disturbance expected at this intensity (i.e. about 30%). 
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Figure 4.7 The relationship between the proportion of observation within a Forest Management Unit 
(FMU) that had a breakpoint identified within its Sentinel-1 VV sum average texture measure time 
series and the logging intensity of the FMU. The proportion of all observations (A) and the proportion 
that had a breakpoint that coincided with the logging season (B) are shown separately. The circle size 
corresponds to number of observations at each FMU and yellow, green, and purple colors represent 
the Saraca, Jamari, and Jacunda sites, respectively. See the supplementary material for the same 
analyses with the second and third best metric from Random Forest (Figure A2.10). 
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Figure 4.8 Map of predicted breakpoint dates for two 500m X 500m test regions, one logged (A) and one 
unlogged (B), in the Saraca National Forest, Para, Brazil. Logged tree locations are black crosses and the 
date of the breakpoint for each pixel is color coded by week, with white representing no breakpoint. Planet 
imagery (3 m) from 28 August 2017 overlaid with and without breakpoint locations (C and D) for the 
logged area (trees in white). Approximately 54% and 21% of the pixels in the logged and unlogged regions 
had breakpoints, respectively. 
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4.5 Discussion 

We present the first multi-sensor comparison of SAR data for monitoring a range of selective 

logging intensities in the tropics. We demonstrated that L-band PALSAR-2, C-band RADARSAT-

2, and C-band Sentinel-1 data performed inadequately at detecting tropical selective logging 

when using pixel-based attributes for classification. However, when analysing a time series of 

Seninel-1 texture measures, logged pixels displayed a strong tendency for a breakpoint in their 

time series as the logging intensity of the FMU increased. Moreover, the timing associated with 

the identified breakpoint generally coincided with active logging at the highest logging 

intensities. Overall, our results suggest that Sentinel-1 data could be used to monitor the most 

intensive selective logging, but a time series approach would be required to detect change. A 

number of studies have used Sentinel-1 time series data to monitor deforestation (Bouvet et al. 

2018; Reiche, Hamunyela, et al. 2018; Reiche, Verhoeven, et al. 2018), often in combination with 

optical data, however our study is the first to show it has the potential to be used exclusively to 

monitor selective logging. 

 

4.5.1 Variable importance 

In a number of cases the most important predictor variables from RF models involved the co-

polarized channel (Figure A2.9), despite the generally accepted view that the cross polarized 

channel is best for detecting changes in forest cover (Joshi et al. 2016; Reiche, Hamunyela, et al. 

2018; Ryan et al. 2012; Shimada et al. 2014). The HH polarization of PALSAR-2 data has 

previously been shown to be sensitive to the early stages of deforestation, resulting from single-

bounce scattering from felled trees (Watanabe et al. 2018). Our results support the idea that the 

co-polarized channel (for L- and C- band SAR) is useful and should not be ignored in forest 

disturbance detection analyses (e.g. Reiche et al., 2018a). While shorter wavelength SAR data, 

like C- and X-band, are known to be less sensitive to forest structure, because the radar signal 

mainly interacts with the forest canopy (Woodhouse, 2017;  Flores-Anderson et al., 2019), the 

higher backscatter values in the co-polarized channel for all three sensors suggests 

predominantly rough surface backscattering from the forest canopy (as volume scattering 

generally results in roughly equal backscatter between co- and cross-polarized channels). This 

suggests that forest tracts subjected to more intensive selective logging than we studied 

(conventional logging permits with larger canopy gaps, large road networks, and many log 

landing areas) should possess a signal in the co-polarized channel that could be used to detect 

changes in canopy cover and should not be discarded (e.g. Reiche et al., 2018a). 

Random Forest models offer an objective approach to selecting important variables for 

use in time series analyses. The Mean Decrease in Accuracy rankings were used to select the 

sum average texture measure in the time series results, corroborate their rankings (see Figures 
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4.7 and A2.9). The detection rate was highest with the best, lower with the second best, and 

lower still with the third.  SAR data often has fewer bands than optical data, for example, so the 

choice of which metric to use in time series analyses may be more straightforward. However, 

many studies do not compare the results among metrics to select an optimal, relying instead on 

supposition (e.g. Reiche et al., 2018a). Our findings suggest Mean Decrease in Accuracy is useful 

for variable selection, even if the Random Forest models themselves are of little practical use 

(e.g. Figure 4.3). 

 

4.5.2 Texture measures and detecting selective logging  

In all cases the texture measures had the highest variable importance rankings (Figure A2.9). 

This corresponds with previous results with optical data, where detection of selective logging 

relied on the contextual information embodied within their calculation (Hethcoat et al. 2019). 

Similar to their results, the predictions of logging in our test areas were spatially correlated, 

presumably a consequence of the spatial window used in the calculation. Again, however, extra 

detections are expected from the accompanying forest disturbances associated with logging. 

Yet, in the context of accuracy assessment, an issue that has not received much attention within 

the remote sensing literature is how to report selective logging detections in the absence of 

robust field data on canopy gaps, roads networks, skid trails, log landing decks, etc. Others have 

shown that selective logging can be associated with 30-50% forest disturbance (Asner et al. 

2002, 2004; Putz et al. 2019), depending on the intensity and logging practices (reduced impact 

versus conventional). Clearly Figure 4.8A has false discoveries associated with the breakpoint 

detections, but some of the detections that do not occur at a tree location undoubtedly 

correspond with canopy gaps seen in the Planet imagery. 

While the texture information clearly helped with detection of selective logging, a 

sensible understanding of what the sum average metric means, in terms of characterizing forest 

disturbances from selective logging or understanding the structural changes to forests 

associated with increasing and decreasing values, remains unknown. Attempts to generalize and 

interpret the meaning of textures have proven difficult over the years. However, some have 

suggested that high values in measures like variance, dissimilarity, entropy, and contrast were 

associated with visual edges whereas average, homogeneity, correlation, and angular second 

moment were associated with subtle irregular variations from continuous regions like forests or 

water (Hall-Beyer 2017). More work is needed to understand the interpretation of textures 

measures that are so often employed in remote sensing classifications. 

 

3.5.3 Combining sensors for classification 
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We chose not to combine any of the data types used here, partly because the inconsistent spatial 

and temporal coverage precluded such an analysis, but also because we wanted to assess the 

detection capabilities of each sensor on its own. Methods that combine data from multiple 

sensors (both other SAR platforms and/or optical data from Landsat or Sentinel-2) would likely 

perform better, corresponding with results for monitoring deforestation (Mercier et al. 2019; 

Reiche et al. 2015, 2016; Reiche, Verhoeven, et al. 2018). Indeed, prior work with Landsat data 

has shown strong detection of selective logging at similar intensities (Hethcoat et al. 2019), yet 

this work sought to establish a baseline with the SAR sensors available. The general direction 

and momentum for the advancement of detecting subtle forest disturbances from spaceborne 

SAR will likely require time series, polarimetric, and data fusion approaches, particularly in light 

of our findings that pixel-based differences between logged and unlogged areas with SAR 

backscatter alone cannot do the job effectively.  

 

4.5.4 Longer time series in the tropics 

Sentinel-1A began acquiring imagery regularly (approximately every 12 days) in late 2016 for 

most of Brazil, with Sentinel-1B following in late 2018. Consequently, a time series assessment 

was only possible for a single calendar year (roughly 2017) with the logging data sets we had 

access to. The BFAST algorithm is generally flexible and can be tuned with a baseline period if 

sufficient data are available, enabling assessments of longer and more variable time series 

(Verbesselt et al. 2010). The limited time series available is likely the reason many breakpoints 

for the less intensively logged sites occurred in December, presumably with the onset of the 

rainy season in earnest and an uptick in backscatter associated with moisture. Our analysis, 

however, was limited to a simpler test of one or no breakpoints – future work should explore 

how longer time series might improve detection of lower intensity logging, where seasonal 

patterns in backscatter can be established as a baseline to help reduce false alarms. 

 

4.6 Conclusion 

Tropical selective logging is fundamentally connected to global climate, biodiversity 

conservation, and human wellbeing (Lewis et al. 2015). Selective logging is often the first 

disturbance to affect primary forest (Asner et al. 2009), with road networks and ease of access 

facilitating further disturbances (e.g. increased fires, hunting or illegal logging). Efforts to detect 

and map selective logging with Sentinel-1, because of its global coverage and anticipated 

continuation missions (i.e. Sentinel-1C and D), are urgently needed to understand the 

capabilities this data stream might offer at advancing detection of tropical selective logging 

activities. With the successful launch of SAOCOM 1A in late 2018, the planned continuation of 

Sentinel-1 (with C and D), the opening of the ALOS PALSAR-1 archives, and the anticipated 
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launches of SAOCOM 1B in 2019 and NISAR in 2021, an immense volume of freely available C- 

and L-band SAR data will, hopefully, usher in a new era of forest monitoring from space with 

SAR data. Our findings suggest that time series methods should be effective at detecting the 

most intensive selective logging in the Amazon with these data sets. Moreover, if a distinct dry 

season is characteristic of the study region, focusing detecting during this time frame can 

further bolster detection by removing false positive detections associated with seasonal rainfall. 
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Abstract 

Earth’s tropical forests play a key role in the global carbon and hydrological cycles, maintaining 

biological diversity, and supporting the global economy and human livelihoods. Yet, continued loss 

and degradation of tropical forests, coupled with swelling population and energy demands, are 

putting increasing pressure on forests globally. In recognizing some of these challenges, the United 

Nation’s (UN) has developed the Reducing Emissions from Deforestation and Forest Degradation 

(REDD+) programme, which seeks to mitigate climate impacts and biodiversity losses through 

improved forest management. However, consistent and reliable forest monitoring systems are still 

needed to monitor tropical forests at large scales and REDD+ projects have seen little progress in 

reporting and monitoring impact. Recent advances in combining optical data and Synthetic 

Aperture Radar (SAR) data have shown promise for improved ability to monitor forest losses, 

particularly in cloudy regions. However, to date, no study has examined combining optical and SAR 

data from selective logging monitoring. We used detailed selective logging records from three 

lowland tropical forest regions in the Brazilian Amazon to test the effectiveness of combining 

Landsat and Sentinel-1 for selective logging detection. We built Random Forest models to classify 

pixel-based differences in logged and unlogged regions to understand if combining optical and SAR 

improved the detection capabilities over optical data alone. We found that the classification 

accuracy of models with optical data from Landsat 8 alone was slightly higher than models that 

combined SAR and Landsat. In general, detection of selective logging was high in both models 

(Landsat only and Landsat-SAR combined) with the validation dataset, but performance was lower 

over new regions. Overall our results show that adding SAR data did not improve the detection of 

selective logging and the optical data was dominating the importance and performance of models. 

The results have important implications for current and future abilities to detect selective logging 

with freely available satellite data. While we have shown limited capabilities with C-band here, the 

anticipated opening of the ALOS PALSAR-1 archives should stimulate research investigating 

similar methods to understand if longer wavelength SAR might help with classification. 
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5.1 Introduction 

Earth’s tropical forests play an important role in the global carbon and hydrological cycles, 

maintaining biological diversity, and supporting the global economy and human livelihoods 

(Pan et al. 2011; Lewis et al. 2015; Barlow et al. 2016; Baccini et al. 2017). However continued 

loss and degradation of tropical forests, coupled with swelling population and energy demands, 

are putting tremendous pressure on forests globally (Edwards et al. 2019). In recognizing some 

of these challenges, the United Nation’s (UN) has developed the Reducing Emissions from 

Deforestation and Forest Degradation (REDD+) programme, which seeks to mitigate climate 

impacts and biodiversity losses through improved forest management practices (GOFC-GOLD, 

2016). In order to be eligible for REDD+ funding, however, developing countries must show 

progress toward reducing degradation and deforestation emission. Yet, consistent and reliable 

forest monitoring systems are still needed to monitor tropical forests at large scales and most 

REDD+ projects have seen little progress in reporting and monitoring impact (Milbank et al. 

2018). 

Satellites offer the most accurate and cost effective way to monitor forests for country 

level reporting under REDD+. The technological capabilities to monitor tropical forests with 

satellite data have greatly improved over the last 10-15 years. Reliable deforestation alerts are 

available in near real-time from a number of organization, like Global Forest Watch and the 

Brazilian National Institute for Space Research (Hansen et al. 2013; Diniz et al. 2015). In 

contrast, detection and monitoring of forest degradation has lagged behind because of the 

complex and subtle disturbances associated with the range degradation activities (Ghazoul et al. 

2015). Recent advances in monitoring selective logging with optical data have showed promise 

in monitoring forest degradation (Bullock et al. 2018; Hethcoat et al. 2019), however, optical 

data are limited in some regions with frequent cloud cover.  

Synthetic Aperture Radar (SAR) data offers potential to advance detection of forest 

disturbances in regions with frequent cloud cover. SAR satellites transmit radio waves and do 

not require solar illumination for data acquisition. Thus SAR sensors can penetrate clouds and 

operate at night, and have been used in forest mapping since the early 1990s (reviewed in Koch, 

2010). Historically, the SAR data archives have been spatially and temporally scattered, with 

few programs operating systematically to acquire global data. The Japanese Space Agency 

(JAXA) are an exception with the ALOS missions, however, those data products are under 

commercial licenses and imagery costs over £1500. The launch of Sentinel-1 in late 2014 has 

provided free C-band SAR data with global coverage every 5-12 days.  This has spurred the 

development of using dense time series of Sentiel-1 for detecting deforestation (Reiche et al. 

2015, 2018b). In addition, methods that combine optical and SAR data have been developed to 

improve detection of deforestation (Vaglio Laurin et al. 2013; Reiche et al. 2015; Joshi et al. 
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2016; Mercier et al. 2019). However it remains unclear if the recent advances in degradation 

detection and monitoring (Bullock et al. 2018; Hethcoat et al. 2019) could be improved with the 

combination of optical and SAR data. 

We have chosen to focus on a key driver of forest degradation globally, selective logging 

operations. While selectively logged forests have been shown to have increased microclimatic 

variability (Stratford & Robinson, 2005), increased soil erosion (Douglas, 1999; Hartanto et al., 

2003), reduced tree diversity (Berry et al., 2008; Martin et al., 2015), altered forest phenology 

(Koltunov et al., 2009), and lowered levels of biodiversity (reviewed in Burivalova et al., 2014), 

forests subjected to selective logging generally maintain higher levels of biodiversity than other 

anthropogenic land use types, such as plantations or secondary forests (reviewed in Edwards et 

al., 2014). Moreover, recent works have shown that even after accounting for the amount of 

wood removed, RIL has a greater effect on maintaining biodiversity than conventional selective 

logging (CL) practices (Bicknell et al., 2014) while simultaneously sequestrating more carbon 

during regrowth (Putz et al., 2008b). Thus, in the context of REDD+ or alternative conservation 

initiatives, forests impacted by RIL offer high biodiversity value and carbon sequestration 

potential, making them ideal for carbon and biodiversity co-benefits. However, commercial 

logging is often the first anthropogenic disturbance event to affect primary forests and is an 

agent for additional changes, facilitating more forest losses and other forms of degradation 

(Nepstad et al., 1999; Asner et al., 2005, 2006, 2009). In general, improved methods are needed 

to detect and monitor tropical selective logging activities, whether for identifying areas for 

inclusion in REDD+ type programs or enabling national monitoring efforts to qualify for REDD+ 

funding. 

Recently, Hethcoat et al. (2019) have demonstrated success in detecting and mapping 

selective logging with optical data from the Landsat program. In addition, they also found that 

SAR data, on its own, was insufficient for accurately detecting selective logging across a range of 

logging intensities (Hethcoat et al. in prepaparation). The primary objective of this work was to 

extend those analyses (i.e. combine methods from Chapters 3 and 4) to understand how 

combining optical data from Landsat and SAR data from Sentinel-1 might improve detection 

capabilities of tropical selective logging. Specifically, while we showed promising detection 

capabilities with Landsat data on its own (Chapter 3) and weak detection with SAR data on its 

own (Chapter 4), we anticipated further increases in performance over those seen in Chapter 3. 

We utilized generally similar methods, but generated a completely independent data set from 

those used in Chapters 3 and 4.  

 

5.2 Study area and data 
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5.2.1 Study are and selective logging data 

Selective logging data from three lowland, terra firma tropical forest regions in the Brazilian 

Amazon were used in this study (Figure 5.1). The Jacunda and Jamari regions, inside the Jacundá 

and Jamari National Forests, Rondônia, and the Saraca region, inside the Saracá-Taquera 

National Forest, Pará. Forest inventory data from 11 forest management units (FMUs) 

selectively logged between 2016 and 2017 were used, comprising over 25,000 individual tree 

locations. Unlogged data from three additional locations, one inside each national forest 

(Jacunda, Jamari, and Saraca), comprised approximately 8,000 randomly selected point 

locations known to have remained unlogged during the study period (Table 5.1). 

 

 

 

 

Figure 5.1 Location of the Jacunda (circle), Jamari (square), and Saraca (diamond) study 

regions in the Brazilian Amazon.  
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Table 5.1 Data used in the classification of selective logging from eleven forest management units (FMU) 

at three study regions in the Brazilian Amazon. 

FMU 
Logging Intensity 

(m3 ha-1) 
N 

Jacunda_I_2016 6 2,290 

Jacunda_I_2017 9 2,822 

Jacunda_II_2016 10 1,815 

Jacunda_II_2017 7 1,310 

Jacunda_Reserve  0 3,000 

Jamari_I_2016 10 653 

Jamari_I_2017 12 911 

Jamari_III_2016 9 2,058 

Jamari_III_2017 11 2,597 

Jamari_Reserve  0 1,912 

Saraca_Ia_2017 12 3,769 

Saraca_II_2016 25 3,223 

Saraca_II_2017 21 4,729 

Saraca_Reserve 0 3,000 

 

 

5.2.2 Satellite data and processing 

The Landsat 8 and Sentinel-1 data archives were queried in Google Earth Engine (GEE) to obtain 

a single image over each FMU that was late into the dry season logging period, but before the 

onset of the rainy season each year (Hethcoat et al. 2019). This was to ensure that as many of 

the logging locations had been logged, but a cloud free Landsat 8 image was still available. While 

Sentinel-1 can penetrate clouds, backscatter can be affected by rainfall, surface water, and soil 

moisture (Flores-Anderson et al. 2019). Consequently, Sentinel-1 imagery was acquired within 

a similar time frame and the Landsat imagery at each site. A summary of image path, row, and 

acquisition dates can be seen in Table A3.1.  

GEE is a cloud computing platform hosting satellite imagery that has been processed to 

varying levels. We used the Landsat 8 Surface Reflectance collection and the Sentinel-1 Ground 

Range Detected, Interferometric Wide mode (VV and VH) collection. GEE calibrates and ortho-

corrects Sentinel-1 imagery in the following steps using the Sentinel-1 Toolbox: (1) thermal 

noise removal; (2) radiometric calibration; and (3) terrain correction using the Shuttle Radar 

Topography Mission (SRTM) 30 m digital elevation model (DEM). The resulting images have a 

pixel size of 10 m. We further processed the Sentinel-1 imagery to remove inherent noise (i.e. 
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speckle) in the SAR signal (Quegan and Yu 2001) and finally we reduced the pixel resolution 

(via a mean) to produce 30 m pixels that corresponded with Landsat 8 pixels at each location.  

Given that forest disturbances from selective logging affect patches of forest and have 

associated canopy gaps, skid trails, etc. we calculated four Grey Level Co-occurrence Matrix 

(GLCM) metrics for each band. A 5x5 window was used to calculate the Sum Average, Entropy, 

Contrast, and Angular Second Moment metrics (Haralick et al. 1973). A 5x5 window was used to 

further reduce the correlations amongst predictor variables and model predictions of logging 

(see Figure 3.9 and discussions therein). The full dataset thus comprised a 45-element vector (6 

Landsat surface reflectance bands, 24 Landsat texture measures, 3 SAR bands, 12 SAR texture 

measures) for each pixel where logging occurred and an additional 2000 randomly selected 

pixels in an adjacent FMU that remained unlogged between. The data were exported from GEE 

and collated in R version 3.5.1 (R Core Team 2018) for analyses. 

 

5.3 Methods 

5.3.1 Supervised classification with Random Forest 

We built Random Forest (RF) models using the randomForest package in program R version 

3.5.1 (Liaw and Wiener, 2002; R Development Core Team, 2018). The RF algorithm (Breiman 

2001) is a machine learning technique that uses an ensemble method to identify a response 

variable (here, whether a pixel was logged or unlogged) given a set of predictor variables (e.g. 

surface reflectance values). In contrast to a single decision tree, RF models employ multiple, 

independent decision trees (hence a forest). Random subsets of the training data are drawn, 

with replacement, to construct many trees in parallel, with each tree casting a vote on which 

class should be assigned to the input data. The withheld subset of the data, called the out-of-bag 

fraction, can be used for validation in the absence of independent validation data (Breiman 

2001). To reduce generalization error, RF also uses a random subset of predictor variables in 

the decision at each node within a tree during construction. 

We split the early and late datasets into 90% for training and 10% was withheld for 

validation. We spatially filtered the training and validation datasets such that no observation 

from training was within 90 m of an observation within the validation dataset. RF models have 

only two tuning parameters: the number of classification trees to be produced (k), and the 

number of predictor variables used at each node (m). We used 10-fold cross-validation to 

identify the number of trees (k = 500) and the number of variables to use at each node (m = 7) 

that minimized the out-of-bag error rate on the training data. 
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5.3.2 Model validation 

RF models were validated using a random subset of the full dataset for each sensor (described 

in Section 5.3.1). By default, RF models assign an observation to the class indicated by the 

majority of decision trees (Breiman, 2001a). However, the proportion of trees that voted for a 

particular class from the total set of trees can be obtained for each observation and a 

classification threshold (T) can be applied to this proportion (Liaw and Wiener 2002; Hethcoat 

et al. 2019). We used similar methods from Hethcoat et al. (2019) to selection the detection 

threshold, however for context, we provide model performance across all values of T.  

The confusion matrix then has the form: 

 Reference 

L UL 

Predicted 
L DL DUL 

UL NL – DL NUL – DUL 

 

where L and UL refer to logged and unlogged classes, NL and NUL are the numbers of logged and 

unlogged observations in the reference dataset, and DL and DUL are the numbers of logged and 

unlogged pixels detected as logged, respectively. We defined the detection rate 𝐷𝑅 = 𝐷𝐿/𝑁𝐿 and 

false alarm rate 𝐹𝐴𝑅 =  𝐷𝑈𝐿/𝑁𝑈𝐿 as the frequency that a logged or unlogged pixel was classified 

as logged, respectively. Thus, the DR is equivalent to 1 minus the omission error of the logged 

class and the FAR is the omission error of the unlogged class. In addition, we defined the false 

discovery rate (FDR): 

 FDR =
𝐷𝑈𝐿

𝐷𝐿+𝐷𝑈𝐿
 = 1 − 

1

1+(
𝑁𝑈𝐿
𝑁𝐿

)(
FAR

DR
)
 .                   (5.1) 

The FDR is the proportion of all observations that were detected as logged that were actually 

unlogged, and is equivalent to the commission error of the logged class. See Hethcoat et al. 

(2019) for further explanation. 

 

5.4 Results  

5.4.1  Landsat 8 only 

We present the results from a model that only used Landsat 8 data initially to form the baseline 

upon which the combined results will be compared. Random Forest performance for the model 

that used only Landsat 8 is shown in Figure 5.2. As the threshold value increased, the false alarm  
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rate declined gradually and the detection rate stayed very high, displaying an impressive ability 

to distinguish logged observations (Table 5.2). This detection rate was generally higher than the 

results from Chapter 3 (though the false alarm rate is initially higher here). We chose a very 

high threshold value in this case to strongly limit the FDR, causing higher omission of logging 

than Chapter 3. This was done because despite limiting FDR in model training it was generally 

slightly higher when predicting to new areas in Chapter 3 (see Figure 3.6). Thus, we hoped to 

pre-empt this when producing maps with future models. When this model was applied to  

 

Table 5.2 Confusion matrix summarizing Random Forest (RF) model classifications of logged and 
unlogged observations at three study areas in the Brazilian Amazon, derived from Landsat 8 data. Data 
were split into 90% training and 10% validation. Matrix numbers are pixel counts with the validation 
data (n = 4068). The classification threshold (T) for RF models was set to maximize Cohen’s kappa. The 
corresponding values for overall accuracy (OA), the false discovery rate (FDR), and the detection rate 
(DR) are provided against the validation dataset.  

Landsat 8 only 
  

T = 0.9 

OA: 87.3% 
   

 75 Reference  Class 
 

FDR: 0.7% Logged Unlogged Commission 

DR: 75.0%     Error (%) 

Predicted Class 
Logged 1514 11 0.7 

Unlogged 506 2037 19.9 

    
Omission Error (%) 25.0 0.5   

Figure 5.2 Random Forest model performance using Landsat 8, bands 2-7 and four GLCM 

textures measure for each band. The detection rate and the false alarm rate are the solid and 

dashed black lines, respectively. The false discovery rate and Cohen’s kappa are the solid and 

dashed grey lines, respectively. 

Landsat 8 only 
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Landsat 8 imagery over an entire logging concession, it was clear that the model did not 

perform quite as well as the validation suggested (Figure 5.3). The unlogged regions south and 

east of the units cut in 2017 showed more than half of the area predicted to have been logged. In 

addition, regions that had been logged previously showed a retained signal beyond a year or 

two that was observed in Chapter 3 (see Figure 3.6). Further refinements to get the highest 

possible accuracy were beyond the scope of our objectives here, as these results are for 

comparison to the combined Landsat Sentinel-1 model (next). In general, however, the results 

here are in line with previous findings in Chapter 3. 

10 km 

Figure 5.3 Classified map (using a 0.9 threshold) of selective logging detections for the Jamari 

region with the Landsat 8 model. The forest management units that have been logged are 

bounded in white, those yet to be logged are bounded in black. The reserve area that remained 

unlogged is along the top and outside the boundary of the logging concession (i.e. not outlined in 

black). Numbers correspond to the year of logging, with year 2011 being 1 through year 2018 

being 8. Note two FMUs were logging in 2017. 

Logged 
 

Unlogged 

 

 1 

 2 

 3  4 
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 6 

 7 

 7 
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5.4.2 Optical and SAR combined 

Random Forest performance for the model that used both Landsat 8 and Sentinel-1 is shown in 

Figure 5.4. Again, the false alarm rate gradually declined and the detection rate stayed very high 

as the threshold value increased. The detection rate declined slightly faster and the false alarm  

rate declined slightly slower in this combined model when compared to the Landsat only model, 

though the differences were negligible (Table 5.3). In general, the results with the combined 

model were very similar to those with the Landsat only model, suggesting very little 

performance boost. When this model was applied to Landsat 8 and Sentinel-1 imagery over an  

 

Table 5.3 Confusion matrix summarizing Random Forest (RF) model classifications of logged and 
unlogged observations at three study areas in the Brazilian Amazon, derived from Landsat 8 and Sentinel-
1 data. Data were split into 90% training and 10% validation. Matrix numbers are pixel counts with the 
validation data (n = 4068). The classification threshold (T) for RF models was set to maximize Cohen’s 
kappa. The corresponding values for overall accuracy (OA), the false discovery rate (FDR), and the 
detection rate (DR) are provided against the validation dataset.  

Combined  
  

T = 0.9 

OA: 82.7% 
   

 65 Reference  Class 
 

FDR: 1.0% Logged Unlogged Commission 

DR: 65.7%     Error (%) 

Predicted Class 
Logged 1328 13 1.0 

Unlogged 692 2035 25.4 

    
Omission Error (%) 34.3 0.6   

Combined 

Figure 5.4 Random Forest model performance using combined Landsat 8 and Sentinel 1 data. 

The detection rate and the false alarm rate are the solid and dashed black lines, respectively. The 

false discovery rate and Cohen’s kappa are the solid and dashed grey lines, respectively. 
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entire logging concession (Figure 5.5), it was clear that the predictions were being driven by the 

Landsat data, as Figures 5.3 and 5.5 are almost identical. In trying to understand the model’s 

performance, we examined the predictions from a separate model that only had Landsat 8 data 

and no GLCM texture measures (in an effort to further limit potential spatial autocorrelation in 

predictions and understand what could be causing large regions to be labelled logged). The 

results from this model further support the idea that the surface reflectance data were driving 

the classification in Figure 5.5 (Figure 5.6). We observed this phenomenon previously in our 

mapping efforts in Chapter 3, where subtle variations in surface reflectance, from varying solar 

angles, resulted in occasionally erratic predictive behaviour (see Figure 3.6, panel 2016-06-16).  

Figure 5.5 Classified map (using a 0.9 threshold value) of selective logging for the Jamari region 

using the combined Landsat 8 and Sentinel-1 model. Landsat data are from 2017-09-07 and the 

Sentinel-1 data are from 2017-09-25. The forest management units (FMU) that have been logged 

are bounded in white and those yet to be logged are bounded in black. The reserve area that 

remained unlogged is along the top and outside the boundary of the logging concession (i.e. not 

outlined in black). Numbers correspond to the year of logging, with year 2011 being 1 through 

year 2018 being 8. Note two FMUs were logging in 2017. 
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 7 

 Reserve 

 8 

10 km 
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Known as the bidirectional reflectance distribution function (BRDF), once characterized 

Landsat data can be adjusted to harmonize reflectance data and help reduce this effect (Roy et 

al. 2016). Ultimately, however, this would not change the fact that the adding SAR data did not 

improve detection of logging. Overall, these findings suggest that Sentinel-1 offers little extra 

information content within a supervised classification scheme and the Landsat data are driving 

the classification results. This extends our previous findings in Chapter 4, that SAR data was too 

noisy for supervised classification of selective logging on their own (see Figure 4.3), to include 

their use in combination with optical data (for supervised classification). 

 

Figure 5.6 Classified map (using a 0.9 threshold) of selective logging detections for the Jamari 

region with the Landsat 8 model without GLCM textures. The forest management units that have 

been logged are bounded in white, those yet to be logged are bounded in black. The reserve area 

that remained unlogged is along the top and outside the boundary of the logging concession (i.e. 

not outlined in black).  

10 km 

Logged 
  

Unlogged 
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5.4.3 Sentinel-1 only 

Random Forest performance for the model that only used Sentinel-1 data is shown in Figure 5.7. 

The false alarm and detection rates gradually declined as the threshold value increased, with 

the rates declining roughly in parallel, suggesting difficulty in distinguishing logged and 

unlogged observations (Table 5.4). These findings generally corroborate the results from 

Chapter 4, wherein classification performance with Sentinel-1 was poor.  Those data were at full 

resolution (i.e. not spatially averaged to align with Landsat 8 pixels) and included many more 

unlogged observations, yet the results are generally similar.  We have included the Sentinel-1 

only results here for completeness.  

 

 

 

Table 5.4 Confusion matrix summarizing Random Forest (RF) model classifications of logged and 
unlogged observations at three study areas in the Brazilian Amazon, derived from Sentinel-1 data. Data 
were split into 90% training and 10% validation. Matrix numbers are pixel counts with the validation 
data (n = 4068). The classification threshold (T) for RF models was set to maximize Cohen’s kappa. The 
corresponding values for overall accuracy (OA), the false discovery rate (FDR), and the detection rate 
(DR) are provided against the validation dataset.  

Sentinel-1 only 
  

T = 0.9 

OA: 52.9% 
   

 05 Reference  Class 
 

FDR: 24.1% Logged Unlogged Commission 

DR: 7.5%     Error (%) 

Predicted Class 
Logged 151 48 24.1 

Unlogged 1869 2000 48.3 

    
Omission Error (%) 92.5 2.3   

Sentinel-1 only 

Figure 5.7 Random Forest model performance using only Sentinel 1 data. The detection rate and 

the false alarm rate are the solid and dashed black lines, respectively. The false discovery rate and 

Cohen’s kappa are the solid and dashed grey lines, respectively. 
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5.5 Discussion 

We have shown that combining C-band SAR from Sentinel-1 with optical data from Landsat does 

not offer a performance advantage over simply using optical data to detect tropical selective 

logging. Prior studies have shown an improvement in deforestation monitoring by combining 

optical and SAR (Erasmi and Twele 2009; Vaglio Laurin et al. 2013; Reiche et al. 2015, 2018a). 

Unfortunately a similar improvement did not occur when detecting selective logging. It should 

be noted that most of the logging records were relatively low intensity (Table 5.1) and only 2 

sites were close to the legal limit within the Amazon (30m3 ha-1). However, we also show in 

Chapter 4 that classification with Sentinel-1 still performed relatively poorly even when 

restricted to the most intensively logged data, so this is unlikely to be the primary cause. Thus, it 

seems that other methods should be explored to detect selective logging with optical and SAR 

data (e.g. deep learning or time series methods). 

 The detection rates displayed in the results with the validation data were generally 

higher (and lower commission error) than the results from Chapter 3. A few factors are likely 

causing this. First, the dataset used here include sites logged at much higher logging intensities 

than in Chapter 3; in some cases >3 times the intensity (compare Table 5.1 and Appendix 1, 

Table A1.7). Areas logged at higher intensity are generally easier to distinguish from unlogged 

locations (Appendix 2, Figure A2.4). Second, GEE does not allow the user to specify two 

important parameters GLCM textures require for calculation (and the default settings are not 

listed within the documentation): 1) the number of grey levels to categorize the image into (i.e. 

the size of the GLCM matrix) and 2) the minimum and maximum value ranges within the data to 

quantize into the grey levels. This latter parameter is key, because if the range of minimum and 

maximum values in one particular region is greatly different from another (for example in SAR 

imagery occasionally high backscatter values can occur that are greatly outside the range 

expected from natural scattering objects) then the calculations for the texture measures are 

shifted between the regions and RF models can quickly pick up on this difference.  We had this 

problem in the original analyses of Chapter 4 (where one of the SAR data types initially showed 

nearly perfect classification performance, but it was later discovered to be being driven by this 

phenomenon).  When we manually controlled the range of values to reflect possible values of 

backscatter (power from 0-1 for example) the very high classification performance disappeared. 

In examining the raw values of Landsat and Sentinel-1 going into the GLCM calculations there 

don’t seem to be any particular sites that could be causing this (Figures A4.1 and A4.2). We 

removed Landsat 8 Band 3 to see if some of the variation seen in that variable was causing it, 

but the results did not change. The second possibility is that the training and validation data 

were very similar, despite the spatial filtering we performed. This was happening to some 

extent, as there was clearly more than 1% commission error of logged observations in Figure 
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5.5 (see Table 5.3). Finally, the difference between the proportion of the logged observations 

between training and testing datasets was different in Chapter 3. Here, the training was 65% 

logged and the validation was 50%, but in Chapter 3 the values were both approximately 15% 

(see the starting dpL values in Figure 3.4 and FDR values here). Random Forest classification 

performance, particularly in two-class problems, has previously been shown to be impacted by 

imbalanced datasets (Chen et al. 2004). This problem general affects extremely imbalanced 

datasets and we avoided this by defining our own classification threshold (as opposed to using 

the default settings). 

 Recent analyses have shown strong detection of forest degradation with a time series 

analysis of Landsat data (Bullock et al. 2018). In addition, our prior work has shown a time 

series approach is likely needed for utilizing SAR in logging detection (Chapter 4). Our results 

here should stimulate research looking to combine optical and SAR data in a joint time-series 

approach. While the availability of dense time series of historical SAR data are simply not there, 

this approach could be used in forward looking analyses or the development of alert systems 

that combine the frequency of data acquisitions of a combined Landsat, Sentinel-2 and Sentiel-1 

workflow. 
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Abstract 

Tropical forests harbour the highest biodiversity on the planet and are essential to human 

livelihoods and the global economy. However, continued loss and fragmentation of forested 

landscapes, coupled with a rapidly rising global population is placing incredible pressure on 

forests globally. The United Nations has developed the Reducing Emissions from Deforestation and 

forest Degradation (REDD+) programme in response to the challenges facing tropical forests and 

in recognition of the role they can play in climate mitigation. However, REDD+ requires consistent 

and reliable forest monitoring of forest disturbances and currently does not include for forest 

degradation because of an inability to track it effectively. In this paper we extend a recent analysis 

enabling the detection of selective logging at the scale of a logging concession to a regional-scale 

assessment of selective logging activities. We utilized logging records from across Brazil to train a 

supervised classification algorithm for detecting logged pixels in Landsat imagery then predicted 

the extent of logging over a 20 year period throughout Rondônia, Brazil with the help of Google 

Earth Engine. We estimate that 41.0% of the State of Rondônia remained undisturbed forest 

through 2019, with 3.4% having undergone selective logging and 25.7% being deforested between 

2000 and 2019. Selective logging was mapped with 13% Commission Error and 45% Omission 

Error over the twenty year period. In general, rates of selective logging were twice as high in the 

first decade relative to the last decade of the period. Our approach is step in this direction of an 

operationalized selective logging monitoring system capable of detecting subtle forest 

disturbances over large spatial scale. 
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6.1 Introduction 

The ten countries reporting the highest forest losses over the last fifteen years are all within the 

tropics (FAO, 2016). Tropical forests are among the most biodiverse ecosystems on the planet 

while simultaneously playing a crucial role in the global carbon and hydrological cycles and 

supporting human livelihoods and the global economy (Pan et al. 2011; Lewis and Maslin 2015; 

Edwards et al. 2019). Moreover, there is increasing recognition that tropical forests will play a 

vital role in nature-based solutions to mitigating climate impacts and reaching targets outlined 

in the Paris Climate Agreement (Houghton et al. 2015; Griscom et al. 2017). However continued 

loss and degradation of tropical forests, coupled with a rising global population and growing 

energy demands, are putting enormous pressure on forests globally (Edwards et al. 2019). 

In response to the both challenges and opportunities tropical forests present, the United 

Nations (UN) has developed the Reducing Emissions from Deforestation and forest Degradation 

(REDD+) programme. REDD+ aims to simultaneously mitigate climate impacts and maintain the 

myriad of services forests provide (e.g. flood prevention, control soil erosion, maintain 

biodiversity, cultural traditions, etc.) through sustainable forest management (UN-REDD 2018).  

An essential component in REDD+, however, is consistent and reliable monitoring systems for 

national-level reporting of greenhouse gas emissions associated with anthropogenic activities 

affecting forests. Methodological guidelines in monitoring and reporting emissions from 

degradation have been broadly linked to those used by the Intergovernmental Panel on Climate 

Change (IPCC) to facilitate a consistent framework for estimating reference levels and emissions 

from various REDD+ activities (GFOI, 2016). Yet the IPCC and REDD+ still lack specific  

methodological details on quantifying emissions from forest degradation (IPCC 2006; Pearson 

et al. 2014). This is because degradation is notoriously difficult to quantify, as it includes a 

variety of forest disturbances (e.g. fire, selective logging, mining, hunting, invasive species, etc.). 

In addition, forest degradation can often operate on a spatial and temporal scale incompatible 

(i.e. relatively small scale and short-lived) with reporting at the national level (Hosonuma et al. 

2012; Pearson et al. 2014; Ghazoul et al. 2015). Consequently, REDD+ initiatives do not 

currently report emission associated with degradation (Hosonuma et al. 2012).  

Advancements in remote sensing have made satellite data the most practical and cost-

effective way to monitoring forests at large spatial scales. The preceding decade has witnessed 

rapid improvement in the spatial and temporal accuracy of deforestation monitoring (Hansen et 

al. 2013, 2016; Reiche et al. 2018). Simultaneously, abilities to map both the spatial extent and 

severity of fires has improved their detection and assessment of impacts (Peres et al. 2006; 

Matricardi et al. 2010). Yet, widespread detection and monitoring of selective logging activities 

has lagged behind, despite recognition that selective logging is a key driver of both 

deforestation and forest degradation (Hosonuma et al. 2012; Pearson et al. 2017). While 
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sustainable management of forest that result in no longer-term loss of carbon stocks (through 

less destructive harvest techniques like reduced-impact logging) are not considered 

degradation in the context of REDD+, there is clearly a need to take account of and adequately 

monitor extractive practices that could result in reduced carbon stocks. Selective logging is 

often the initial anthropogenic disturbance event to impact primary forests, with the opening of 

road networks and improved access to forested lands facilitating further degradation (e.g. fuel 

wood removal, spread of invasive species, illegal logging, mining, and fires) or forest clearance 

for pastures, agriculture, or human settlements. 

 Efforts to improve detection of selective logging have arisen periodically in the literature 

(e.g. Asner et al., 2005; Broadbent et al., 2008; Matricardi et al., 2010; Souza, Jr et al., 2013; 

Souza et al., 2005). In all cases the approach was either a proof-of-concept and not repeated at 

scale or the canopy damage associated with the intensity of selective logging was so high that 

many of the detections are later mapped as forest loss in the Hansen et al. (2013) data (e.g. 

Asner et al., 2006; see Results Section 6.3.2, Figure 6.9 and Appendix 4, Figure A4.4 in this study 

for more). Simultaneously, because of the role tropical forests are poised to play in tackling 

climate targets and growing concerns about the impacts to other services (biodiversity, water 

provisioning, cultural, etc.), the amount of tropical forests logged at lower intensity and with 

better management practices is likely to grow. In addition, there is an ever increasing need to 

detect and account for the estimated 50-90% of tropical timber on the international market 

harvested illegally at very low intensities (Kleinschmit et al. 2016; Brancalion et al. 2018).  

 The majority of the work focused on detecting logging has utilized spectral unmixing of 

before-after images to estimate forest disturbances between time steps (e.g. Souza, Jr et al., 

2013). This approach has been criticised, as a single image analyses can omit forest 

disturbances occurring later and/or cloudy regions not visible during scene acquisitions. More 

recently, advancements in data access and handling (e.g. Google Earth Engine) have enabled 

time series methods to be developed that track pixel values over a long period to monitor forest 

disturbances (Bullock et al. 2018). Yet, these same advancements have allowed for more 

complex image mosaics to be produced, where a single image can now be composed of 

individual pixels spanning any time period, minimizing scene loss from clouds  (Gorelick et al. 

2017).   

Recently, Hethcoat et al. (2019) developed a method that used logging records to train 

supervised classification algorithms for detecting logging activities. However, their methods 

have only been applied at the scale of the logging concession and have not been demonstrated 

operationally. The primary objective of this work was to extend the methodology proposed by 

Hethcoat et al. (2019), moving beyond the scale of a forest management plan or logging 

concession, to a regional-scale assessment of selective logging activities. We utilized detailed 
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logging records to train a supervised classification algorithm for detecting selectively logged 

pixels then predicted the extent of logging over a 20 year period throughout Rondônia, Brazil.  

 

6.2 Study area and data 

6.2.1 Study area 

The Brazilian state of Rondônia is located along the western edge of the country, bordering 

Bolivia. Comprising 237,576 km2, the state is one of the most deforested regions in the Amazon 

(Pedlowski et al., 2005; Tyukavina et al., 2017). While Pará and Mato Grasso have endured the 

highest rates of selective logging (Tyukavina et al. 2017), the smaller size of Rondônia and 

distinct dry season make it an ideal candidate for a preliminary upscaling of the methodology 

proposed by Hethcoat et al. (2019). 

 

6.2.2 Selective logging data  

Selective logging data from four lowland tropical forest regions in the Brazilian Amazon were 

used to build the detection algorithm (described in Section 6.3.1). The Jacunda and Jamari 

regions were inside the Jacundá and Jamari National Forests, in Rondônia, while the Saraca and 

Cikel regions were in the Saracá-Taquera National Forests and Paragominas municipality, Pará, 

respectively (Figure 6.1).  Forest inventory data from 19 forest management units (FMUs) 

selectively logged between 2010 and 2017 were used, comprising over 55,000 individual tree 

locations. Unlogged data from three additional locations, one inside each national forest 

(Jacunda, Jamari, and Saraca), comprised over 11,500 randomly selected point locations known 

to have remained unlogged during the study period (Table A4.1). 

  

6.2.3 Satellite data and processing 

6.2.3.1 Generating training data for logging detection algorithm 

All available Landsat 5, 7, and 8 surface reflectance data that coincided with logging were 

utilized in Google Earth Engine (GEE). At each FMU the Landsat archives were queried to find a 

single scene with the lowest cloud cover that was late into the dry season, but before the onset 

of the rainy season, to ensure the majority of logging was completed (Hethcoat et al. 2019). A 

linear spectral unmixing model, developed and validated over a range of forest disturbance 

types within the Amazon (Souza et al. 2005; Bullock et al. 2018), was used to convert surface 

reflectance into proportions of Bare Ground (BG), Photosynthetic Vegetation (PV), and Non-

Photosynthetic Vegetation (NPV) in each pixel (Table 6.1). In addition, the normalized burn 

ratio (NBR) was calculated (Equation 6.1), because it has been shown to highlight changes in BG 

and NPV relative to PV and has demonstrated strong change detection capabilities in evergreen 

tropical forests (Grogan et al. 2015; Shimizu et al. 2017; Langner et al. 2018). 
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 𝑁𝐵𝑅 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅2

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅2
                     (6.1) 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Location of the Cikel (triangle), Jacunda (circle), Jamari (square), and Saraca (diamond) 

study regions in the Brazilian Amazon. Cikel and Saraca are in Pará and Jacunda and Jamari are in 

Rondônia.  
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Table 6.1 Spectral endmembers used for unmixing analysis, developed from (Souza et al. 2005; Bullock 
et al. 2018), to calculate proportions of bare ground(BG), Photosynthetic Vegetation (PV), and Non-
Photosynthetic Vegetation (NPV). 
  

Endmember Blue Green Red NIR SWIR1 SWIR2 

BG 0.20 0.30 0.34 0.58 0.60 0.58 

PV 0.05 0.09 0.04 0.61 0.30 0.01 

NPV 0.14 0.17 0.22 0.30 0.55 0.30 

        

The PV, NPV, and NBR values were spatially normalized in a self-referencing step to 

reduce subtle variation in their values through time, as a result of differing atmospheric 

conditions and solar illumination (Equation 6.2).  

 

 𝑃𝑉𝑛 = 𝑃𝑉𝑚𝑒𝑑𝑖𝑎𝑛 −  𝑃𝑉                                             (6.2a) 

and 

 𝑁𝑃𝑉𝑛 = 𝑁𝑃𝑉𝑚𝑒𝑑𝑖𝑎𝑛 −  𝑁𝑃𝑉                                             (6.2b) 

and 

 𝑁𝐵𝑅𝑛 = 𝑁𝐵𝑅𝑚𝑒𝑑𝑖𝑎𝑛 −  𝑁𝐵𝑅                              (6.2c) 

 

 

The median of a 150 m radius pixel window was calculated and the centre pixel value was 

subtracted from that median (Langner et al. 2018). Thus, normalized PV, NPV, and NBR values 

ranged between -1 and 1. An early version of our detection algorithm did not perform this step 

and suffered from extremely erratic predictive behaviour in adjacent Landsat paths from 

different dates (Figure A4.1). The values for the spatially normalized spectral unmixing and 

normalized burn ratio for the logged and unlogged observations were exported from GEE and 

compiled into a single dataset for Random Forest model training (Section 6.3.1). 

 

6.2.3.2 Generating annual mosaics for Rondônia 

All available Landsat 5, 7, and 8 data over Rondônia were utilized in Google Earth Engine (GEE). 

A cloud-free mosaic was made from the latest cloud-free pixel within the dry season (i.e. a 

quality mosaic using Julian day; see Table A4.2 for date ranges in each year). Clouds were 

masked using the QA band and an additional 300 m radius buffer was applied to cloudy pixels to 

minimize cloud shadows not identified by the QA mask. For the first year of analysis (2000) we 

only included pixels with forest cover > 90% (Hansen et al., 2013; Hansen data hereafter) in an 

effort to exclude open canopy forests, regenerating secondary forests, and areas generally not 

suitable for selective logging concessions that might result in false positives.  
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At each time step, the pixels that had been identified by the Hansen data as being 

deforested in that year were removed (i.e. since those areas had been identified as deforestation 

in that year we did not want to predict logging there). In addition, deforested pixels in the 

preceding year had one pixel buffer removed from its edges to reduce logging detections 

associated with deforestation. Finally, regions identified by the Moderate Resolution Imaging 

Spectrometer (MODIS) monthly burned area product (MCD64A1.006) were removed. Thus, the 

resulting “valid” pixels that the model could assess if they had been logged were regions that 

had greater than 90% tree cover in the year 2000, had not been deforested that year (or years 

prior), and had not burned. These annual mosaics were exported from GEE to be used for 

predicting the occurrence of selective logging in each year (Section 6.3.1). 

 

6.3 Methods 

A diagrammatic overview of the approach from Sections 6.2 and 6.3 can be seen in Figure 6.2. 

 

5.3.1 Building a detection algorithm  

We built Random Forest (RF) models using the randomForest package (version 4.6) in program 

R version 3.5.1 (Liaw and Wiener, 2002; R Development Core Team, 2018). The RF algorithm 

(Breiman, 2001) is a machine learning technique that uses an ensemble method to identify a 

response variable (here, whether a pixel was logged or unlogged) given a set of predictor 

variables. In contrast to a single decision tree, RF models employ multiple, independent decision 

trees where random subsets of the training data are drawn to construct many trees in parallel. 

Each tree casts vote on which class should be assigned to the input data. The withheld subset of 

the data, called the out-of-bag fraction, can be used for validation in the absence of independent 

validation data (Breiman, 2001).  

We randomly allocated 90% of the data for training and withheld 10% for validation. In 

addition, the training and validation datasets were spatially filtered such that no observations in 

the training dataset were within 90 m of an observation in the validation dataset. RF models 

have only two tuning parameters: the number of classification trees to be produced (k), and the 

number of predictor variables used at each node (m). We used 10-fold cross-validation to 

identify the number of trees (k = 700) and the number of variables to use at each node (m = 2) 

that minimized the out-of-bag error rate on the training data. 

 

6.3.2 Algorithm evaluation 

6.3.3.1 Selecting the detection threshold 

RF models typically use a majority vote to assign an observation to a particular class, with the 

class that received the most votes being assigned (Breiman 2001). However, the proportion of 
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votes cast for a particular class from the total set of trees can be obtained for each pixel and a 

classification threshold can be applied to this proportion (Liaw and Wiener 2002; Hethcoat et al. 

2019). We adopted this approach here, wherein the proportion of votes that predicted each 

observation to be logged, informally term the probability a pixel was logged, was used to select 

the classification threshold. A threshold, T, was defined such that if probability > T the pixel was 

classified as logged. 
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Figure 6.2 Workflow summarizing methods. The platform utilized for each step is in parentheses, with GEE being Google Earth 

Engine and R being the statistical software developed by R Core Team. 
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In this case detection of logging involved only two classes, logged and unlogged forest, so 

the confusion matrix has the form: 

 Reference 

L UL 

Predicted 
L DL DUL 

UL NL – DL NUL – DUL 

 

where L and UL refer to logged and unlogged classes, NL and NUL are the numbers of logged and 

unlogged observations in the reference dataset, and DL and DUL are the numbers of logged and 

unlogged pixels detected as logged, respectively. We defined the detection rate 𝐷𝑅 = 𝐷𝐿/𝑁𝐿 and 

false alarm rate 𝐹𝐴𝑅 =  𝐷𝑈𝐿/𝑁𝑈𝐿 as the frequency that a logged or unlogged pixel was classified 

as logged, respectively. Thus, the DR is equivalent to 1 minus the omission error of the logged 

class and the FAR is the omission error of the unlogged class. In addition, we defined the false 

discovery rate (FDR): 

 FDR =
𝐷𝑈𝐿

𝐷𝐿+𝐷𝑈𝐿
 = 1 − 

1

1+(
𝑁𝑈𝐿
𝑁𝐿

)(
FAR

DR
)
 .                   (6.3) 

The FDR is the proportion of all observations that were detected as logged that were actually 

unlogged, and is equivalent to the commission error of the logged class. The FDR is an 

assessment of the rate of prediction error (i.e. commission error or type I) when labelling pixels 

as logged and can be used in detection problems with rare events or unbalanced datasets, such 

as selectively logged pixels within the Amazon Basin (Benjamini and Hochberg 1995; Neuvial 

and Roquain 2012; Hethcoat et al. 2019). A high DR and low FDR is clearly desirable, but these 

cannot be fixed independently in two-class detection problems and both depend on the 

threshold value. For example, if achieving a 95% detection rate led to a FDR of 50%, then half of 

all predictions of logging would be incorrect. This level of performance would make estimates of 

selective logging extremely uncertain. The value of the classification threshold (T) therefore 

represents a trade-off between true and false detections. In practice, a viable detection method 

would expect to achieve a DR > 50% while limiting the FDR to 10-20% to have any value for 

widespread forest monitoring. Model performance was assessed by plotting the DR, FAR and 

FDR values as T varied from 0 to 1 to facilitate selection of an appropriate threshold for 

classification. 

 

6.3.3 Predicting selective logging through time 

6.3.3.1 Classification and post-processing 
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After the classification threshold was applied (Section 6.4.1) and a subset of pixels were 

assigned as logged we applied a post-processing step to remove isolated detections speckled 

amongst undisturbed forest. We applied a focal window and removed any detection with less 

than 3 other detections in a 7x7 pixel window. Thus, only detections with at least 3 others in the 

neighbourhood were considered valid and remained. The window size and number of other 

detections were chosen through an iterative process of testing different values over the Jamari 

test region. 

 

6.3.3.2 Assessing map accuracy 

Good practices outlined by Olofsson et al. (2014) were used to assess agreement and calculate 

unbiased error estimates when mapping selective logging detections. We only assessed the 

accuracies of selective logging and stable forest (i.e. logged and unlogged pixels) and did not 

consider deforestation and fires, as these have been done elsewhere (Hansen et al. 2013; 

Turubanova et al. 2018; Giglio et al. 2018).  

 

6.4 Results 

6.4.1 Detection algorithm performance against validation data 

The performance of the detection algorithm for classifying the validation dataset is shown for all 

threshold values in Figure 6.3.  The false alarm rate rapidly declined as the threshold initially 

increased and was very low above thresholds of 0.5, suggesting an excellent ability to identify 

unlogged observations. In addition, the detection rate remained around 50% (after initially 

decreasing) through a threshold of about 0.6, then declined more rapidly. This suggests about 

half of the logged observations had very low probabilities and few logged observations had 

probabilities between 25-50% (Figures A4.2 and A4.3). Thus, the best detection we could 

obtain, while reducing the false alarm rate to a tolerable level, was approximately 50%. We 

chose a threshold value of 0.6 for labelling an observation as logged for two reasons. First, the 

detection rate was close to 50% and the FDR was around 15%; roughly aligning with the 

minimum level of performance we sought. Second, above thresholds of 0.6 the detection rate 

dropped quickly with little change in the FDR (Figure 6.3). In general, this suggests our model 

was relatively conservative at labelling an observation as logged, as we were willing to forego 

detecting more than half of the selective logging actually present in order to reduce false alarms 

in unlogged regions. A confusion matrix summarizing model performance at this threshold 

value can be seen in Table 6.2. 
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Table 6.2 Confusion matrix summarizing results from Random Forest (RF) model of logged and unlogged 
observations at four study regions in the Brazilian Amazon. The classification threshold (T) for RF models 
was set to limit FDR to approximately 15%. The corresponding values for overall accuracy (OA), the false 
discovery rate (FDR), and the detection rate (DR) are provided against the validation dataset.  

OA: 94.3% 
  

T = 0.6 

 53 Reference  Class 
 

FDR: 12.9% Logged Unlogged Commission 

DR: 40.4%     Error (%) 

Predicted Class 
Logged 1212 179 12.9 

Unlogged 1785 31450 5.4 

    
Omission Error (%) 59.6 0.6   

 

 

 

6.4.2 Mapping selective logging through time 

We estimate that 41.0% of the State of Rondônia remained undisturbed forest through 2019, 

with 3.4% having undergone selective logging and 25.7% being deforested between 2000 and 

2019 (Figure 6.4). In general, there was little spatial bias associated with logging activities and 

detections were distributed evenly throughout the state (Figure 6.5). The areas in Figure 6.4 are 

the sum of all deforestation and selective logging events in a given year. Moreover, once 

Figure 6.3 Random Forest model performance across the range of threshold values (T) for 
detecting selectively logged observations in the validation dataset. The Detection Rate (DR) and 
False Alarm Rate (FAR) are the solid and dashed black lines, respectively. Also shown are the 
corresponding values of the False Discovery Rate (FDR) and Cohen’s kappa (k) as solid and dotted 
grey lines, respectively. The vertical line at 0.6 represents the chosen detection threshold value 
used for classification. 
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deforested or identified as having been logged, the pixel retained the first disturbance value (i.e. 

pixels could not undergo multiple disturbances events and thus be double counted). The 

amount of selective logging was about twice as high in the first ten years of the period relative 

to the last ten years. In addition, selective logging rates were generally not well correlated with 

the rates of deforestation. Thus, knowing the amount of forest loss in a given year would not 

necessarily inform the amount of selective logging expected (Figure 6.4). Interestingly, the rates 

of selective logging were lowest in the final couple years of the period, with the exception of 

2010 which we believe is slightly underestimated (see Discussion Section 6.5). In addition, the 

deforestation data from 2019 were unavailable at the time of analyses and so some of the 

selective logging detections in that year likely occurred in deforested areas that would have 

been removed (i.e. the rates for 2019 are probably a little inflated). 

Many of the detections were obviously logging road networks (both main access roads 

and smaller internal roads) that generally go undetected by the Hansen dataset (Figure 6.6). In 

addition, there are countless instances where detections preceded deforestation by a year or 

two (Figure 6.7), demonstrated by logging detections occurring inside areas later identified as 

deforested (i.e. subtle forest disturbances preceding total clearance was detected). These 

instances are the only cases when pixels could get included in calculations of logging and 

deforestation (i.e. double counted in Figure 6.4), but only if the logging detections were in years 

preceding deforestation. This is because once a pixel was identified as having been deforested it 

was removed from consideration for logging.  

Finally, we explore the results the scale of a forest management unit at a location where 

we have general knowledge of logging, but limited field data. First, a forest management unit 

that was selectively logged in 2018, but where we did not have any data on logging locations, 

shows some false detections (in the colors preceding 2018), but both the year of logging are 

correctly identifiable and the internal logging road construction in 2015 was accurately 

detected (Figure 6.8). Next, the number of false alarms over an area known to have remained 

unlogged (a forest reserve area associated with the logging concession) a false alarm rate of 

approximately 2% (Figure 6.9). These results bolster confidence in the estimates of selective 

logging and demonstrate their effectiveness.  

The bias adjusted confusion matrix, summarizing errors for the proportions of mapped 

classes (Olofsson et al. 2014), is shown in Table 6.3 and is generally consistent with the results 

from the validation data. These findings reiterate a 55% omission of logging detections and a 

13% FDR (i.e. 13% commission error when predicting logged observations). Consequently, our 

estimates of selective logging should be viewed as conservative, particularly in light of the fact 

that we excluded areas considered deforested by the Hansen data. Indeed, in some cases regions 

known to be selectively logged were identified as deforestation by the Hansen data (Figures 
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6.10 and A4.4), limiting our ability to detect them that year. Thus, the annual amounts of 

permitted, legal selective logging may be closer to double what is reported here. 

Consistently, about 55% (±8% SD) of selective logging detections were within 1km of 

deforestation activities occurring in the same year (Figure 6.11). Thus, the majority of selective 

logging activities in Rondônia occurred in close proximity to deforestation presently detectable 

through the weekly Global Land Analysis & Discovery alerts system (Hansen et al. 2016). This 

result is in line with the well documented cycle involving selective logging as a driver of and 

precursor to land clearance (Curtis et al. 2018). 

 

 

 

 

Deforestation 
25.7% 

Selective Logging 
3.4% 

Figure 6.4 Annual amount of Rondônian forest affected by deforestation (from Hansen et al. 
2013) and selectively logging (this study). Note the deforestation data from 2019 were 
unavailable at the time of analyses.  
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Figure 6.5 Spatial distribution of selective logging detections throughout Rondônia 
(density plots along outside axes). Note, the 30m scale of the detections (in purple) was 
distorted in the process of plot rendering and the pixels shown here should not be 
interpreted as either comprehensive or precise. They were left in only to give the 
impression of very general locations of detections (see Figures 6.6-6.9 for a detailed 
view of detections). 
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  0                     2 km 

Figure 6.6 Example region showing selective logging road networks, with stable forest in black, Hansen forest losses in grey shades, and the Preto River 
in white. The map is centred on 62.875 W, 8.478 S. 
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  0                       2 km 

Figure 6.7 Example region showing early detection of deforestation. The expansion of roads and early forest disturbances (A, in green-yellow-orange colors) 
were detected before the deforestation events occurred, hence they are on top of the forest loss layer from Hansen (in grey shades). Stable forest is in black, 
burned areas are white squares, and the Jiparaná River is the in top right in white. The map is centred on 62.722 W, 8.410 S. 
 

A 



Chapter 6:  Regional-scale mapping of selective logging with Landsat 

 
 

117 
  

Figure 6.8 Example forest management unit (FMU) showing detections of 
logging in 2018. The logging road detected in 2015 is in accordance with 
field data (white lines) and the detections along the southern FMU border 
are a main access road winding into the logging concession. Stable forest is 
in black, Hansen forest losses are in grey shades, and white squares are 
areas burned. The map is centred on 63.002 W, 9.406 S.  

1 km 
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Figure 6.9 Example forest reserve area (i.e. unlogged forest) inside a logging concession in the Jamari National Forest showing false detections. Stable 
forest is in black, Hansen forest losses are in grey shades, and white areas are burned forest and water. Only 2.3% of pixels (n=796) are false alarms within 
the reserve over the 20 year period. The map is centred on 63.022 W, 9.266 S.  

1 km 
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  0                       2 km 

Figure 6.10 Example region showing deforestation detections by the Hansen dataset (in grey shades) that resulted from selective logging activities (A). 
These areas were excluded prior to prediction and thus limited our ability to fully map selective logging. Stable forest is in black and burned areas are in 
white. The map is centred on 64.825W, 9.665 S. 
 

A 
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Figure 6.11 Selectively logging detections over four distance categories from deforestation activities in the same year. 
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Table 6.3 Confusion matrix summarizing unbiased (Olofsson et al., 2014) area estimates from mapping 
logged and unlogged pixels in Rondônia, Brazil. The classification threshold (T) for RF models was set 
during model training to limit FDR to approximately 15%. The corresponding values for overall accuracy 
(OA), the false discovery rate (FDR), and the detection rate (DR) are provided against the validation 
dataset.  

OA: 94.0% 
  

T = 0.6 

 64 Reference  Class 
 

FDR: 12.9% Logged Unlogged Commission 

DR: 44.5%     Error (%) 

Predicted Class 
Logged 0.06 0.01 12.9 

Unlogged 0.05 0.88 5.4 

    
Omission Error (%) 45.5 1.0   

 

 

6.5 Discussion 

We have demonstrated the scalability of the approach outlined by Hethcoat et al. (2019) to map 

tropical selective logging with Landsat data, advancing beyond the scale of a logging concession 

or forest management plan to regional-scale assessments of logging activities with historical 

data. Achieving this required changes to the original methodology detailed therein, moving 

away from surface reflectance values and utilizing a spatial normalization step to ameliorate 

abrupt shifts in pixel values resulting from varying solar illumination and atmospheric 

conditions in image mosaics. In doing so, however, we have further demonstrated how 

invaluable Landsat data are, and will continue to be, for monitoring Earth’s forests. 

Advancements in data, tools, and techniques continue to enable greater abilities to monitor 

forests from space and offer great hope for conservation, yet they increasingly inform us of the 

extent of the damages already realized. 

Two decisions fundamentally affected estimates of selective logging; the value of the 

classification threshold (T) and the values associated with the window size and the number of 

additional detections needed in the post-processing routine. At the time of writing the 

sensitivity of the results to changes in these values is being explored. In particular, we seek to 

decrease the omission of logging through lowering the threshold and/or altering the window 

size and detection requirements in the post-processing step. However a detailed understanding 

of how these changes would impact FDR is needed and these analyses are currently ongoing. In 

addition to the methodological decisions mentioned, an additional choice made from the outset 

was to exclude forests with canopy cover <90%, as defined within the Hansen data. Brazil 

defines a forest as having >10% canopy cover and >5 m height (GFOI 2016). However, we 

sought to restrict our analyses to continuous tropical forests (i.e. not secondary forest, cerrado, 

gallery forests, or otherwise modified forests) as best as we could. The Amazon Deforestation 
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Satellite Monitoring Project (PRODES) dataset begins in 2001 and could not be used for 

removing secondary forests, plantations, or areas previously deforested and predicting over 

older secondary forest (e.g. >15 years) in some cases could not be completely avoided.  

However, for financial viability reasons, most commercial logging leases occur in relatively 

intact tropical forest this likely did not affect our estimates greatly. 

In general, our numbers on annual logging rates are almost certainly underestimates for 

a few key reasons. First, as stated in the omission error rates, about half of the logging was 

actually detected in a given year (Table 6.3). In addition, while our method makes predictions 

on the scale of the individual pixel, forest disturbances from selective logging affect patches of 

forest, not isolated pixels. Thus, the amount of intact forest within a selectively logged FMU can 

vary substantially from 50-75% (Putz et al. 2019), despite the proportion of pixels having had a 

tree removed being closer to 10%. Some have utilized a buffer (often 180 m) around logging 

road networks or landing decks (Souza and Barreto 2000; Monteiro et al. 2003; Matricardi et al. 

2010), yet the authors have acknowledge high commission and omission errors associated with 

this approach. We welcome a renewed discussion from the community on best practices for 

estimating area affected by selective logging in the absence of extensive field data. 

Two particular years from our analyses need further discussion. The selective logging 

detections from 2010 are almost certainly an underestimate and the detections from 2011 are 

likely an overestimate (relative to other years and not in the manner previously discussed 

above). Two factors working concurrently are believed to be impacting the predictions from 

those years. First, the cloud free window was more limited in 2010 and the time frame 

associated with the dry season mosaic was earlier and narrower than most other years (Table 

A4.2). The cloudiness of 2010 has been documented in other forest mapping exercises in the 

Brazilian Amazon recently (Qin et al. 2019). On its own this would have resulted in fewer 

detections, because the dry season mosaic was about three weeks narrower than average and 

fewer pixels would have been logged at that point in the season. Second, 2010 was a particularly 

high fire year within the Amazon (Aragão et al. 2018), consequently large regions were 

excluded from our analyses that probably coincided with some logging detections (Figure 6.12). 

Very much related, logging detections increased dramatically in 2011 (Figure 6.4), likely the 

result of delayed detection of logging activities missed in 2010 (i.e. showing up a year later), 

combined with additional detections from the fire scars from 2010 that were insufficiently 

mapped by the MODIS burned area product. While these idiosyncrasies might affect an annual 

estimate of logging, these kinds of anomalies would be dampened in an operationalized product 

that utilized the 5-year rolling average under reference level reporting for REDD+ (GFOI 2016).  
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A comparison between our results and others is difficult, as detection of selective 

logging exclusively has not been done before. However, our estimates are generally higher than 

other work quantifying degradation within Rondônia. For example, the only other studies to 

assess degradation over a similar time period combined all forms of degradation (Souza et al. 

2013; Bullock et al. 2018). Souza et al. (2013) estimated about 500,000 ha of annual 

degradation within the whole of the Amazon from 2001- 2010 (but twice that amount in 2008), 

with roughly ~7% occurring in Rondônia (35,000 ha annually). Bullock et al. (2019) estimated 

roughly 50,000 ha annually from 2000-2005 and >75,000 ha annually from 2006-2013 within 

Rondônia. Our estimates are closer to those from Bullock et al. (2019) and the total area 

selectively logged over the period (3.4%) is about half of the 6% they found for degradation 

(logging and fire). Yet, our estimate of about 40,000 ha of logging annually from 2000-2010 

occupies a large fraction of both their estimates of degradation, particularly given what we 

know about fire history in Rondônia over the period (Figure 6.12). However neither study had 

access to selective logging data specifically for training and validation of their results. In 

addition, if we breakdown the 1% omission error of unlogged forest (Table 6.3), this suggests 

about 97,000 ha of unlogged forest were identified as logged over the 20 year period (i.e. <2,000 

ha per year). Thus, our estimates likely reflect a demonstration of the advancement in detection 

our method has enabled and do not suggest they are erroneously inflated.  

Figure 6.12 Annual amount of Rondônia burned, calculated by the MODIS MCD64A1.006 
product. Note the MCD64A1 data are incomplete for 2000 and 2019, as the product became 
operational in late 2000 and the archives were only queried through September 2019. These 
summaries include all fires (i.e. in non-forest and prior deforested lands). In addition, fires in 
previously burned areas were included in tallies and thus represent an annual amount of total 
burned area. 
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One of the immediately noticeable aspects in the detections of selective logging was the 

abundance of linear features within forest tracks (i.e. logging roads). Road building has big 

implications for primary tropical forests (Kleinschroth et al. 2015, 2016; Kleinschroth and 

Healey 2017) and improving their detection is critical to our understanding of their tenure and 

the continued loss of intact forest landscapes (Potapov et al. 2008, 2017). Roads create forest 

edges that can alter abiotic processes like microclimate (Williams-Linera et al. 1998), change 

plant and animal species composition (Tabarelli et al. 2012), increase fire susceptibility 

(Armenteras et al. 2013), and ultimately weaken forest resilience (Murcia 1995; Kleinschroth 

and Healey 2017). Moreover recent work has shown that tropical forests globally may be 

nearing a tipping point where fragmentation will begin to dramatically increase (Taubert et al. 

2018). The tropics are thought to have around 50 million forest fragments, encompassing nearly 

50 million km of edge (Brinck et al. 2017). Monitoring the emergence and spread of roads is 

therefore critical to understanding the disturbance frontiers of intact forests globally. 

It is important to highlight some caveats regarding our approach and the results. First, 

like all studies in the tropics that use exclusively optical data, some areas were excluded from 

analyses each year because of clouds. Despite creating a mosaic of all available pixels in each 

year, approximately 260,000 ha annually (± 240,000 ha SD; min: 5,600 ha; max: 893,000 ha; 

~1% of Rondônia) was impacted by clouds in a given year and were re-included in the 

subsequent year assuming no disturbance had occurred. Second, each mosaic was made up of 

only a single pixel per location and was tantamount to a single image analysis. While the use of 

spatial normalization enabled us to overcome the weaknesses associated with vary solar 

illumination and atmospheric conditions, any selective logging that might have occurred after 

the date of the cloud-free pixel in the mosaic was excluded, further limiting our ability to detect 

logging. Third, there was generally an inability for our approach to distinguish between logging 

and fire. We limited this by removing burned areas annually, in the MCD64 burn product, yet 

the difference between the scale of those datasets (500 m) and Landsat (30 m) is certain to 

result in commission and omission of burned area removal. Collectively, most of the caveats 

further suggest we underestimated the amount of selective logging annually.  

 

6.6 Conclusion 

Globally, only 25% of forests are considered undisturbed (i.e. primary forest), with the 

remaining 75% being described as “other naturally regenerated forest” (FAO, 2016). Large-

scale monitoring of forest degradation remains an elusive goal for supporting REDD+ initiatives 

and reporting country-level contributions toward emissions reductions (GFOI 2016). While 

sustainable management of forest that result in no longer-term loss of carbon stocks (through 

less destructive harvest techniques like reduced-impact logging) are not considered 
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degradation in the context of REDD+, there is clearly a need to take account of and adequately 

monitor extractive practices that could result in reduced carbon stocks. Selective logging is 

often the initial anthropogenic disturbance event to impact primary forests.  The opening of 

road networks and improved access to regions once heavily forested can facilitate additional 

activities associated with degradation (e.g. fuel wood removal, spread of invasive species, illegal 

logging, mining, and fires) or forest clearance for pastures, agriculture, or human settlements. 

Our approach is step in this direction, towards an operationalized selective logging monitoring 

system capable of detecting subtle forest disturbances over large spatial scale. 
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7.1 Primary findings 

This thesis has advanced our understanding of the capabilities and limitations optical and SAR 

data possess for large-scale monitoring of selective logging from space. We have demonstrated 

that Landsat data can be used to detect forest degradation and will continue to be an invaluable 

resource for forest monitoring applications globally. In contrast, SAR data (C-band Sentinel-1, 

RADARSAT-2 and L-band PALSAR-2) was shown to be ineffective for monitoring selective 

logging within a classification framework. However, time series analyses with Sentinel-1 

displayed a change in the SAR signal with the onset of logging and likely offer a way of detecting 

high intensity commercial logging with the Amazon and potentially beyond.  

Improving current abilities to detect and map tropical selective logging is essential for 

understanding the impacts on global biodiversity and tracking and mitigating the climate 

implications of forest degradation. Yet, large uncertainties remain in understanding the true 

impacts of selective logging because the advances in detection and monitoring at large spatial 

scales are only just emerging (Hethcoat et al. 2019). Progress in detection of selective logging in 

the tropics would enable the mapping of primary forest as well as identify logged regions that 

possess high conservation value. In addition, quantifying the extent of forest degradation from 

selective logging is a key step in refining our understanding of the terrestrial portion of the 

carbon budget (Baccini et al. 2017; Mitchard 2018; Le Quéré et al. 2018). Below, I summarize 

and discuss the key findings of this thesis within the context of the development of regional- to 

pan-tropical scale logging maps. Specifically, I discuss how this information can inform 

assessments of carbon losses and biodiversity impacts from selective logging at scale. I go on to 

outline the application of these results and the further work needed to develop an 

operationalized selective logging product and consider the potential for the development of a 

near real-time monitoring system.   

 Landsat data has previously been assumed to be too coarse to monitor selective logging 

in the absence of distinct spectral features like networks of logging roads and landing decks. We 

have shown that surface reflectance data can be used in a supervised machine learning 

framework to detect subtle spectral changes to forests from selective logging at low intensities. 

In Chapter 3, we begin on the scale of a logging concession and develop an algorithm that 

demonstrates high detection of logging (around 90%), with about 40% of the area inside 

logging concessions being identified as logged. We show that spatial-contextual information 

(from Grey Level Co-occurrence Matrix (GLCM) texture measures) was crucial in improving 

detection of logging. Unlike previously developed methods, our approach was able to make 

predictions about logging on a single image of a region, instead of requiring successive cloud-

free acquisitions to compare changes in pixel values (Asner et al. 2005, 2009; Souza et al. 2013). 

This is particularly important in the tropics, because a single, low-cloud acquisition is 
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sometimes the best you get in a region (see Souza, Jr et al. 2013). Thus, our approach has the 

potential to significantly increase current abilities to detect and monitor selective logging 

activities that up to now have been, at best, marginally detectable. 

 In Chapters 4 and 5 we aim to extend this methodology to include SAR data, but with 

limited success. In Chapter 4 we present the first multi-sensor comparison of SAR data for 

monitoring a range of selective logging intensities in the tropics. We demonstrated that L-band 

PALSAR-2, C-band RADARSAT-2, and C-band Sentinel-1 data performed inadequately at 

detecting tropical selective logging when using pixel-based attributes for classification, even 

when using only the most intensely logged data. Indeed, when SAR data was used in 

combination with optical data, classification performance was lower than results with optical 

data alone (Chapter 5). However, we found that about 50% of the pixels in forest management 

units logged at the upper end of intensities with the Legal Amazon (20-30 m3 ha-1) showed a 

clear breakpoint in their time series of Sentinel-1 data (Chapter 4). Moreover, the breakpoints 

generally coincided with the timing of active logging. While these results are not a detection 

algorithm as such, since the accuracy of this approach was crude and relied on identifying 

regions of accumulated detections, they do represent a first demonstration of the potential. The 

timing of our logging data and the time series available precluded a longer time series analysis, 

but these results should stimulate more research into tracking Sentinel-1 data for moniroting 

intensive commercial harvest. Another important takeaway from our results in Chapters 4 and 5 

was the finding that the co-polarized channel (i.e. VV or HH) was an important variable in 

classification. This is in contrast with the generally accepted view that the cross polarized 

channel is best for detecting changes in forest cover (Joshi et al., 2016; Reiche et al., 2018a; Ryan 

et al., 2012; Shimada et al., 2014). Our results support the idea that the co-polarized channel (for 

L- and C- band SAR) is useful and should not be ignored in forest disturbance detection analyses 

(e.g. Reiche et al., 2018a). 

On the scale of a Brazilian state, or indeed the Amazon basin, the methodology 

developed in Chapter 3 was intractable. Image mosaics, composed of many satellite acquisitions 

merged together, are required to monitor forests at regional scales. Varying solar illumination 

and atmospheric effects impact the quality of each scene and, when combined, can result in 

abrupt changes in pixel values that can confuse an algorithm resulting in a cloud shadow being 

labelled as forest disturbance. Informed with what worked in Chapter 3 we amended the 

methodology to reduce atmospheric aberrations (by using spectral unmixing) and modified the 

way spatial context each pixel was included (i.e. the spatial referencing rather than GLCMs). In 

general estimates of logging were more conservative in Chapter 6 compared to Chapter 3. The 

sacrifice for working at scale was some loss of power in detection; though we could have 

detected more but would have had more false alarms and sought to avoid this. Critically, we 
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have produced a general methodology that is capable of detecting selective logging over large 

spatial and temporal scales and demonstrated its effectiveness.  

 

7.2 Implications  

Tropical forests store billions of tons of carbon. While the emissions estimates from selective 

logging are much lower than those from deforestation (Asner et al. 2010), recent work has 

shown that taking full accounting of degradation activities suggests much higher emissions than 

previously thought (Maxwell et al. 2019). However, Maxwell et al. (2019) simulated selective 

logging in proximity to road networks, because we just do not have the ability to estimate the 

full extent of selective logging globally. Maps of forest degradation from selective logging would 

enable the identification of regions suitable for inclusion in REDD+ initiatives and better 

accounting of the climate implications. In addition, RIL techniques that emphasize reduce 

carbon emissions (RIL-C) have been suggested as a tool to incentivize voluntary carbon markets 

(Ellis et al. 2019). However a lack of emissions verification systems, because of the difficulty in 

monitoring logging, has limited the adoption of these practices (Ellis et al. 2019). While the UN 

anticipates that payments to nations under REDD+ initiatives, could reach $30 billion annually 

(Phelps et al., 2010), large-scale monitoring of forest degradation remains an elusive goal for 

supporting REDD+ initiatives and reporting country-level contributions toward emissions 

reductions (GFOI 2016). 

 Logged tropical forests have been shown to restore much of their aboveground carbon 

in under 20 years (West et al. 2014). While forest  management practices that result in no 

longer-term loss of carbon stocks are not considered degradation in the context of REDD+, 

others have suggested that current logging practices touted as sustainable are driving 

economically viable species to extinction and never fully recover (Richardson and Peres 2016). 

In addition, it has been shown that carbon-centered conservation strategies are likely to leave 

behind the most diverse tropical forests (Ferreira et al. 2018). More specifically, Ferreira et al. 

(2018) found that while biodiversity and carbon were positively associated in highly degraded 

and secondary forests, intact forests showed no relationship between carbon and biodiversity. 

Reliable logging maps would enable a better accounting of the relationships between timber 

harvest and the full suite of goods and services tropical forests provide. 

The impacts of selective logging on biodiversity have been the focus of countless studies 

over the years, with the vast majority showing negative impacts for most taxa (Gibson et al. 

2011; Burivalova et al. 2014). Improved abilities to map selective logging are critically 

important for projecting biodiversity losses from forest disturbances across scales. In addition, 

the identification of selectively logged forests with high conservation value falls under the 

umbrella of “+” activities that address biodiversity and development goals within REDD+ (Goetz 
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et al. 2015). Moreover, recent work has shown that when deforestation and forest degradation 

are studied together, their effects have mainly been examined in isolation of one another over 

the years, biodiversity losses are much higher (Barlow et al. 2016). 

 Selective logging is not a binary treatment. Logging represents a gradient of disturbance 

most closely linked to the intensity of harvest (Putz et al. 2019). Indeed, a global meta-analysis 

of logging impacts on biodiversity found intensity was the greatest predictor of species richness, 

after accounting for taxa, with a halving of species richness (or more) at logging intensities 

around 50 m3 ha-1 (Burivalova et al. 2014). However, they also found that for most taxa, species 

richness was relatively stable at logging intensities <10 m3 ha-1 (Burivalova et al. 2014). The 

methodologies developed in this thesis have shown the capability of detecting logging at these 

lower intensities (Chapters 3 and 6). Estimates of the amount of logging activities globally at 

these intensities are currently unavailable, however, intensities are generally lower in Africa 

and Latin America than Asia (Sist 2000; Putz et al. 2001). Yet, a dataset of over 800 logging 

permits from the state of Pará, Brazil found only 15 were for harvest intensities < 10 m3 ha-1 

(Richardson and Peres 2016). While low intensity permits probably represent a minority of 

legitimate, sustainable harvest practices, it has been estimated that some 50-90% of tropical 

timber on the international market is harvested illegally and at very low intensities 

(Kleinschmit et al. 2016; Brancalion et al. 2018). The extent to which our methodologies are 

capable of detecting illegal logging remains to be seen, but they will almost certainly depend 

upon the destructive quality and spatial extent of the operation (Brancalion et al. 2018). In 

general, however, the lower limit of logging intensities detectable with the methodology we 

present is not well understood and deserves further exploration. 

 

7.3 Limitations  

Our method was not able to take account of logging intensity. We examined and discussed the 

relationships between logging intensity and the likelihood a pixel was labelled as logged in a 

number of places throughout the thesis, but we did not estimate a logging intensity for a given 

pixel explicitly. Random Forest models can be used in a regression framework (as opposed to 

classification) and, technically, pixel attributes could be used to develop a model relating 

specific pixel values to logging intensities. We chose not to take this approach, because initially 

we only had access to a limited dataset on logging that was primarily composed of lower 

intensities (Chapter 3). As a consequence, relating logging intensity to pixel attributes gets 

reduced to whether large trees can be detected being removed, since a large proportion of the 

volume comes from a smaller number of big trees. In addition, the spatial resolution of Landsat 

data is likely too coarse at those lower logging intensities and sufficient variation in intensity 

just does not exist within a management unit. With the expanded datasets we utilized in later 
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chapters, however, such an approach might be possible and we are keen to explore this 

potential in future work. 

 Throughout the thesis I discuss the tradeoffs associated with detection and false alarms 

in identifying selective logging. Conceptually this is identical to the specificity-sensitivity 

tradeoff often exhibited in medical diagnostic tests and forms the basis of the receiver-operator 

characteristic (ROC) analysis. However, the detection, false alarm, specificity, and sensitivity 

measures are independent of changes in the prevalence of particular classes (e.g. the number of 

logged and unlogged pixels within a landscape) and they receive equal weight in balancing the 

trade-off in ROC analyses (i.e. assumed to be of equal importance for classification). Ignoring 

class imbalances inherent within data on selective logging would not offer the best approach, as 

the amount of unlogged forest in the Amazon likely dwarfs the locations selectively logged; 

certainly within many of our datasets this was true. Consequently, we utilized an approach 

meant to limit the rate of type-I error, because we cared more about erroneously labelling truly 

unlogged pixels as having been logged (i.e. 𝑑𝑝L from Chapter 3 and FDR in Chapters 4-6). Fixing 

this measure, the rate of commission error when predicting data as logged, enables the user to 

specific a level of prediction error deemed acceptable for a given application, while balancing 

the trade-offs in detection and false alarm. However, the use of row statistics (i.e. commission 

errors) within a confusion matrix depends on the prevalence of particular classes on the 

landscape. Thus fixing an FDR for one particular dataset and application does not mean the 

same FDR on another dataset will yield comparable rates of detection.  

We did not utilize optical data from the Sentinel-2 program, despite some overlap in the 

logging datasets (Sentinel-2 starts in mid-2015). The increased spatial resolution of the Blue, 

Green, and Red channels (10 m relative to 30 m Landsat data) in the Sentinel-2 program likely 

offer increased detection abilities. However, we were interested in initially taking an historical 

perspective on logging, with the knowledge of the planned continuation mission and 

commitments to harmonizing data products across future Landsat missions (Loveland and 

Dwyer 2012; Wulder et al. 2019). Moreover, increased spatial resolution is not necessarily the 

silver bullet approach to building a large-scale detection system. First, geolocation data under 

dense canopy often have a 3-5m error associated with their position. Second, the computational 

burden is 9-fold for 10 m over 30 m spatial resolution, however, increased access to high 

performance systems like Google Earth Engine have helped. The Sentinel-2 program is a 

constellation of 2 satellites separated by 180°, enabling image acquisition every 5 days. This 

feature will greatly improve global forest monitoring and help with advancing better near-real-

time systems. Future work on near-real-time logging detection systems should incorporate 

Sentienl-2 for individual, given Landsat’s revisit period is about 16 days in the tropics, but also 

for use in combination with other optical datasets. For example, incorporating imagery from 
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Landsat 9, Sentinel-2, and Landsat 9 (2020) will provide a re-v-sit period of around 2-days 

(Wulder et al. 2019).  

 

7.4 Conclusion 

Tropical selective logging is fundamentally connected to global climate, biodiversity 

conservation, and human wellbeing. Improving land use maps of logging will enable a better 

understanding of biodiversity impacts, help refine the role tropical forest play in the carbon 

budget, and assist in prioritizing conservation efforts aimed at achieving biodiversity and 

carbon co-benefits. We have shown that logging records can be used to build a detection 

algorithm for monitoring selective logging activities at regional scales. In order to be effective 

our results show images acquired during, or very soon after, active logging are needed to map 

selective logging. This is partly because logging activities typically occur in the dry season when 

cloud-free imagery is more likely to be available, but also because the spectral changes 

associated with selective logging practices are subtle and short-lived and rapidly become 

obscured under even limited regrowth (Broadbent et al. 2006). Access to similar datasets could 

immediately fold into the analyses presented here and, potentially, further improve detection. 

Selective logging within national forests, or otherwise government controlled lands, represents 

a use of collectively owned resources and those datasets are part of a national heritage and 

should be available to promote the benefit of the national interest.  The extent of logged forest in 

the tropic is vast, yet they represent the next best alternative to the protection of primary forest. 

Given that financially viable pathways for global action on forest degradation will be linked to 

climate mitigation potential, with the aim of achieving secondary benefits for biodiversity and 

human livelihoods, an improved understanding of selective logging’s role the nexus of REDD+ is 

essential.  
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A1.1 Model performance without GLCM texture measures 

Table A1.1 Confusion matrix summarizing EARLY Random Forest (RF) model classifications of logged and 
unlogged observations at Jamari derived from Landsat data at labelled points (observations before and 
after selective logging). Data were split into 75% training and 25% validation. Matrix numbers are pixel 
counts with the validation data (n = 17,809). The classification threshold (T) for RF models was set during 
model calibration such that the proportion of detections that were truly logged (dpL) was fixed at 0.85, 
resulting in a T of 0.69. The corresponding values for overall accuracy (OA), Cohen’s kappa (k), the 
proportion of detected pixels that were truly logged (dpL), and the detection probability (Pd) are provided. 

 
EARLY - without GLCM 
Overall: 90.0%  
Kappa: 0.50  
dpL: 0.77 
Pd: 0.43 

   

Actual Class 
  

Logged Unlogged 
Commission  

Error (%) 
  

Predicted 

Class 

Logged 1116 328 22.7 
 

Unlogged 1470 14900 
 

9.0  

Omission  

Error (%) 
56.8 2.2   

 

 

 

 

Table A1.2 Confusion matrix summarizing EARLY Random Forest (RF) model classifications of logged and 
unlogged observations at Jamari derived from Landsat data at labelled points (observations before and 
after selective logging) and GLCM texture measures. Data were split into 75% training and 25% validation. 
Matrix numbers are pixel counts with the validation data (n = 17,809). The classification threshold (T) for 
RF models was set during model calibration such that the proportion of detections that were truly logged 
(dpL) was fixed at 0.85, resulting in a T of 0.69. The corresponding values for overall accuracy (OA), Cohen’s 
kappa (k), the proportion of detected pixels that were truly logged (dpL), and the detection probability (Pd) 
are provided. 

 
EARLY – with GLCM 
Overall: 93.5%  
Kappa: 0.73  
dpL: 0.81 
Pd: 0.73 

   

Actual Class 
  

Logged Unlogged 
Commission  

Error (%) 
  

Predicted 

Class 

Logged 1898 460 19.5 
 

Unlogged 685 14766 
 

4.4  

Omission  

Error (%) 
26.5 3.0   
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Table A1.3 Confusion matrix summarizing LATE Random Forest (RF) model classifications of logged and 
unlogged observations at Jamari derived from Landsat data at labelled points (observations before and 
after selective logging). Data were split into 75% training and 25% validation. Matrix numbers are pixel 
counts with the validation data (n = 17,847). The classification threshold (T) for RF models was set during 
model calibration such that the proportion of detections that were truly logged (dpL) was fixed at 0.85, 
resulting in a T of 0.66. The corresponding values for overall accuracy (OA), Cohen’s kappa (k), the 
proportion of detected pixels that were truly logged (dpL), and the detection probability (Pd) are provided. 
 

LATE - without GLCM 
Overall: 91.0%  
Kappa: 0.60  
dpL: 0.81 
Pd: 0.54 

   

Actual Class 
  

Logged Unlogged 
Commission  

Error (%) 
  

Predicted 

Class 

Logged 1390 331 19.2 
 

Unlogged 1187 14943 
 

7.4  

Omission  

Error (%) 
46.1 2.2   

 

 

 

 

 

Table A1.4 Confusion matrix summarizing LATE Random Forest (RF) model classifications of logged and 
unlogged observations at Jamari derived from Landsat data at labelled points (observations before and 
after selective logging) and GLCM texture measures. Data were split into 75% training and 25% 
validation. Matrix numbers are pixel counts with the validation data (n = 17,847). The classification 
threshold (T) for RF models was set during model calibration such that the proportion of detections that 
were truly logged (dpL) was fixed at 0.85, resulting in a T of 0.66. The corresponding values for overall 
accuracy (OA), Cohen’s kappa (k), the proportion of detected pixels that were truly logged (dpL), and the 
detection probability (Pd) are provided. 
 

LATE - with GLCM 
Overall: 91.0%  
Kappa: 0.58  
dpL: 0.80 
Pd: 0.51 

   

Actual Class 
  

Logged Unlogged 
Commission  

Error (%) 
  

Predicted 

Class 

Logged 1310 325 19.9 
 

Unlogged 1261 14943 
 

7.8  

Omission  

Error (%) 
49.0 2.1   
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A1.2 Landsat pixels in RF model inputs 

Table A1.5 Number of pixels from each forest management unit (FMU) used to build Random Forest 
models to detect selective logging with early and late Landsat scenes. Numbers of pixels from imagery 
acquired in 2012 are lower because of missing data regions resulting from the scan-line corrector error 
aboard Landsat 7. 
 

Time 
period 

Cut 
status 

FMU       Image year         

EARLY 

  

2008 2009 2010 2011 2012 2013 2014 2015 2016 

 

Unlogged 

          

  

FMU 1 2554 2554 

       

  

FMU 2 2728 2728 2728 

      

  

FMU 3 1631 1631 1631 1631 

     

  

FMU 4 2128 2128 2128 2128 1541 

    

  

FMU 5 2658 2658 2658 2658 1889 2658 

   

  

FMU 6 2000 2000 2000 2000 1468 2000 2000 

  

            

 

Logged 

          

  

FMU 1 

   

2554 

     

  

FMU 2 

    

2035 

    

  

FMU 3 

     

1631 

   

  

FMU 4 

      

2128 

  

  

FMU 5 

       

2658 

 

            LATE 

           

 

Unlogged 

          

  

FMU 1 2554 2554 

       

  

FMU 2 2728 2728 2728 

      

  

FMU 3 1631 1631 1631 1631 

     

  

FMU 4 2128 2128 2128 2128 1531 

    

  

FMU 5 2658 2658 2658 2658 1870 2658 

   

  

FMU 6 2000 2000 2000 2000 1332 2000 2000 

  

            

 

Logged 

          

  

FMU 1 

    

1894 

    

  

FMU 2 

     

2728 

   

  

FMU 3 

      

1631 

  

  

FMU 4 

       

2128 

     FMU 5                 2658 
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A1.3 Feature selection 

The Boruta package, version 6.0.0, was used to assess feature importance and all were deemed to contribute significantly to classification.

 

Figure A1.1 Variable importance measures 

from the Boruta package. Bars with green fill 

indicate significant contribution to 

classification, while yellow and red (not 

shown) indicate marginal and non-

significant contributions, respectively. Thus, 

all variables were deemed important. 
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A1.4 Detection of selective logging through time at Jamari 

Table A1.6 Landsat 8 (OLI) scene dates used from path 232, row 066 used to create Figure 
3.8 in Chapter 3. 

 

UPA2013 UPA2014 UPA2015 Unlogged 

2013-07-10 2014-06-11 2015-06-14 2015-06-14 

2013-07-26 2014-07-13 2015-06-30 2015-06-30 

2013-08-11 2014-08-30 2015-08-01 2015-08-01 

2013-08-27 
 

2015-08-17 2015-08-17 

    2015-09-02 2015-09-02 

 

 

A1.5 Comparisons with CLASlite 

A1.5.1 The CLASlite software  

CLASlite is an unsupervised, pixel-based classification program developed specifically for 

mapping tropical deforestation and forest degradation (Asner et al., 2009a). It employs a 

spectral unmixing model that utilizes a vast spectral library (>250,000 observations) to 

distinguish the proportion of three endmembers within each image pixel: Bare Ground (BG), 

Photosynthetic Vegetation (PV), and Non-Photosynthetic Vegetation (NPV) that collectively sum 

to 100%. Changes in endmember values between time steps (i.e. image pairs) are used to 

identify forest disturbances. Specifically, CLASlite looks for a sharp rise in NPV (i.e. dead and 

dying vegetation from felled trees) and a simultaneous drop in PV (i.e. canopy cover) or an 

increase in BG (from roads, skid trails, or log decks used to stack cut tree before transport) to 

identify forest disturbance associated with loss of tree cover. Detection of forest degradation by 

CLASlite is automated and changes in pixel values between time steps are labelled as degraded 

using an internal decision tree (Asner et al., 2009a).  

 

A1.5.2 Methods 

CLASlite version 3.3 was used to process Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI 

scenes spaced approximately annually over the Jamari site between 2008 and 2016.  CLASlite is 

actively maintained and updated (e.g. Sentinel-2 capabilities have been recently added) and the 

developers have continued to add features that enable the user to adjust settings, given their 

knowledge of the study site. One such feature attempts to filter out pixels erroneously labelled 
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as degraded by insisting that a pixel can only be classified as degraded if 5 pixels within its 

surrounding 7x7 window are also classified as degraded. This is because forest disturbances do 

not occur in isolation and other pixels in the neighbourhood would be expected to experience 

changes in endmember values related to degradation. This feature was turned off since the 

spectral signature of logging at Jamari was likely to be very subtle and we wished to give 

CLASlite the best opportunity to identify real changes. Hence all pixels that met CLASlite’s 

criteria for changes in endmember values between time steps were labelled as degraded.   

 

A1.5.3 Results 

A1.5.3.1 CLASlite detection of degradation at Jamari  

CLASlite did not label a single pixel as logged when using post-disturbance Landsat scenes 

(late), and, out of the 184 pixels labelled as logged in the full set of early time period images, 

only 34 (out of 11,006) had actually been logged. In addition, approximately 40% of CLASlite’s 

detections were from the expansion of logging roads (Figure A1.2 and Table A1.7). Hence 

almost no degradation was detected by CLASlite in either the early or late time period Landsat 

scenes. Similarly, road networks were largely invisible, with only 74 pixels detected from more 

than 100 km of roads digitized in the Jamari site. 

 

A1.5.3.2 CLASlite detections at Jari 

CLASlite only labelled 71 ha of forest as degraded (Figure A1.3). In addition, CLASlite does not 

correct for the Landsat 7 scan-line corrector error and missing data regions are not ignored. In 

contrast, RF models with early data labelled 2316 ha as logged (Figure A1.3). Importantly, our 

method has the advantage of being able to make predictions about forest disturbances on a 

single scene to map degradation, as opposed to requiring successive cloud-free images, like 

CLASlite.   
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Figure A1.2 Example of a forest management unit in Jamari (logged in 2011) showing the 
locations of pixels that were logged in grey. CLASlite true and false detections using early Landsat 
scenes are shown as red and yellow respectively. GPS digitized logging roads are displayed as thin 
black lines. Pixels that coincided with mapped logging roads were removed from tallies of false 
detections.  
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Table A1.7 Summary of degradation detections by CLASlite using early Landsat scenes from the Jamari site between 2010 and 2015, with NL and 
NUL being the number of logged and unlogged observations, respectively. The time periods correspond to pre-logging and the year of logging for 
each forest management unit (FMU). From 2010 to 2014 logging road pixels were excluded from the number of false detections, however, only a 
partial road layer (a single, main access road) was available for the final FMU logged in 2015. Consequently road detections are underestimated 
and false detections are likely overestimated for FMU 5. The corresponding values for true (Pd) and false (Pfd) detection probabilities, the 
proportion of detections that were truly logged (dpL), and Cohen’s kappa () are also given. 
 

FMU 
logged 

Time period 
(years) 

Approximate 
logging  

intensity  
(m3 ha-1) 

NL 

(pixels) 
NUL 

(pixels) 

CLASlite 
detections 

(pixels) 

Road 
detections 

 (pixels) 

True 
detections 

(pixels) 

False 
detections 

(pixels) 

Pd  

(%) 
Pfd  

(%) 
dpL 

(%) 

Cohen’s 
kappa1 

() 

1 2010-2011 8.5 2554 15109 70  32 3 35 0.12 0.23 7.89 -0.002 

2 2011-2012 9.9 2724 13647 12  3 2 7 0.07 0.05 22.22 0.001 

3 2012-2013 8.2 1633 19959 12  4 5 3 0.31 0.02 62.50 0.005 

4 2013-2014 8.0 2128 17648 21  17 3 1 0.14 0.01 75.00 0.002 

5 2014-2015 11.3 2658 18755 69  18 21 30 0.79 0.16 41.17 0.011 
1 negative values for Cohen’s Kappa occur when agreement is smaller than would be expected by chance 
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Figure A1.3 Classified maps of the Jari study site using CLASlite (top) and Random Forest (RF) 
models trained with early Landsat data (bottom). The image pairs used to create the classifications 
were from 8 November 2011 and 10 November 2012. Note that CLASlite does not correct for the 
Landsat 7 scan-line corrector error and missing data regions do not appear as white stripes. A 
threshold value of 0.65 was used for labelling logged pixels in RF models (see Table 2 in 
manuscript). Logged and unlogged forest pixels are displayed in blue and green, respectively. Black 
boxes are the 10 hectare blocks inside the Jari concession that were not logged. 
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A1.6 Random Forests and Gradient Boosted Model comparison 

We compared the performance of gradient boosted models (Friedman et al., 2000; Friedman, 

2002; Lawrence et al., 2004) and Random Forest models (Breiman, 2001) for classifying logged 

and unlogged pixels from the Jamari data set.  We used the gbm package (Ridgeway, 2015) and 

the randomForest package (Liaw & Wiener, 2002) in program R (version 3.3.1).  Gradient 

boosted models (GBMs) are sequentially built decision trees, as opposed to being built in 

parallel like Random Forest (RF) models. Decision trees (i.e. models) are fit iteratively to the 

training data and at each step the variation in the response that was not explained by the model 

is evaluated. We used the data inputs described in section 3.3.1 (Landsat Surface Reflectance, 

texture measures, etc.) and executed 10 runs for each model type.  In each run a random subset 

of 70% of the data was used to train the model and the remaining 30% was used to evaluate the 

model built in that iteration. We present a confusion matrix with commission and omission 

errors associated with classification from a single model run and provide means and standard 

deviations of accuracies from the 10 model runs (Tables A1.8 and A1.9).  

In general accuracies were very similar across modelling approaches (i.e. RF versus 

GBM models) and changes to the threshold criteria (i.e. cutoff values for labelling a pixel as 

logged or unlogged) would have had little impact on accuracies. The main advantages of using 

RF models were the fewer tuning parameters and shorter execution time in R (i.e. 4 minutes for 

each RF model to complete being trained and ready for use in predictions versus nearly 20 

minutes for each GBM). 

 

Table A1.8 Confusion matrix summarizing results from Random Forest classification models that utilized 
56073 labelled point locations of known fate (before and after selective logging). Data were split into 70% 
training and 30% validation. Matrix numbers are representative outputs from a single model run with the 
test data. Error percentages are means from 10 model runs and standard deviations are given in 
parentheses. 

 
Overall: 92.8% (0.2)  

Kappa: 0.70 (0.01) 

   

Actual Class 
  

Logged Unlogged 
Commission  

Error (%) 
  

Predicted 

Class 

Logged 2122 295 12.5 (0.5) 
 

Unlogged 1152 17257 
 

6.5 (0.2)  

Omission  

Error (%) 
36.3 (0.6) 1.7 (0.1)   
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Table A1.9 Confusion matrix summarizing results from gradient boosted classification models that 
utilized 56073 labelled point locations of known fate (before and after selective logging). Data were split 
into 70% training and 30% validation. Matrix numbers are representative outputs from a single model 
run with the test data. Error percentages are means from 10 model runs and standard deviations are 
given in parentheses. 
 

Overall: 92.4% (0.1)  

Kappa: 0.69 (0.2) 

   

Actual Class 
  

Logged Unlogged 
Commission  

Error (%) 
  

Predicted 

Class 

Logged 2157 442 17.2 (0.6) 
 

Unlogged 1151 17079 
 

6.2 (0.2)  

Omission  

Error (%) 
33.6 (0.8) 2.6 (0.1)   
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Figure A1.4 Histograms of predicted probabilities from pixels in the test dataset that were left out of 

algorithm training from Random Forest (top) and Gradient Boosted (bottom) models. 
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A1.7 Removing NDVI and EVI from RF models 

An early version of our algorithm included two vegetation indices (NDVI and EVI) and had 

modest classification accuracies (Table A1.10). However, when we applied this algorithm back 

through time to track changes in the probabilities that a pixel had been logged at our study site 

(as a very simple validation exercise), predicted probabilities were either 0 or 100% depending 

on the year (i.e. the entire scene was classified as logged or unlogged). We examined the 

distributions of NDVI and EVI values through time from a large region that remained unlogged 

within the concession and noticed strong annual variations in NDVI and EVI values (Figures 

A1.5 and A1.6). We suspected this variation in NDVI and EVI across years (potentially from 

differences in phenology or foliar moisture content) would influence our ability to forecast to 

new areas. If NDVI and EVI were poor predictors within the same site through time we had little 

confidence in their abilities to forecast over new locations with potentially different phenology 

patterns. A common criticism of machine learning algorithms centre on overfitting of training 

datasets, resulting in loss of predictive performance when applied to new data or new regions. 

Consequently, we removed NDVI and EVI from model development. 

Interestingly, EVI showed clear differences across Landsat sensors, with Landsat 8 OLI 

values being consistently higher that Landsat 5 and 7 (Figure A1.6).  This effect is known for 

NDVI and some solutions have been suggested to overcome spectral differences across sensors 

(Roy et al. 2016) to enable use of long time-series datasets. However, to date, we have not seen 

any work demonstrating these effects for EVI.  

 

Table A1.10 Confusion matrix summarizing results from Random Forest model classification that 
included EVI and NDVI at 69,430 labelled point locations of known fate (before and after selective logging). 
Data were split into 70% training and 30% validation. Matrix numbers are representative outputs from a 
single model run with the test data (n=20,829 pixels). Errors are means from 10 model runs and standard 
deviations are given in parentheses.  

Overall: 89.1% (1.1)  

Kappa: 0.59 (0.02) 

   

Actual Class 
  

Logged Unlogged 
Commission  

Error (%) 
  

Predicted 

Class 

Logged 1803 636 25.8 (2.0) 
 

Unlogged 1534 16850 
 

8.5 (0.3)  

Omission  

Error (%) 
45.8 (1.2) 3.5 (1.6)   
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Figure A1.5 Density plots of the Normalized Difference Vegetation Index (NDVI) from 

8 different forest management units (FMUs) within the Jamari site. All the FMUs 

remained unlogged over the 10 years plotted. Each panel represents a different FMU 

and the NDVI values are plotted for 2000 randomly selected pixels and colored by 

year. Regionally, FMUs displayed similar patterns in NDVI values (i.e. the FMU in 

upper left has similar NDVI values to the FMU in the lower left), but the same pixels 

showed strong differences across years (different colors within the same panel do 

overlap in some years). 

Figure A1.6 Density plots of the Enhanced Vegetation Index (EVI) from 8 different 
forest management units (FMU s) within the Jamari site. All the FMU s remained 
unlogged over the 10 years plotted. Each panel represents a single FMU and the EVI 
values are plotted for 2000 randomly selected points and colored by year. Regionally, 
UPAs displayed similar patterns in EVI values (i.e. the FMU in upper left has similar 
EVI values to the FMU in the lower left), but the same pixels showed strong differences 
across years (different colors within the same panel do overlap in some years). 
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A1.8 CLASlite: A review and validation with logging data 

A1.8.1  Introduction 

Earth’s forests are being lost and degraded from, primarily, commercial logging operations (Eva 

et al. 2012; Hansen et al. 2013). Between 2000-2012, a combined area the size of Peru and 

Ecuador was cleared globally- a third of which was tropical forest (Hansen et al., 2013). The 

rapid depletion of forests in the tropics has severe implications for global climate change, local 

populations and biodiversity. Assessments of global carbon stocks suggest tropical forests store 

40–60% of all carbon held in terrestrial vegetation (Saatchi et al. 2011; Pan et al. 2011; Baccini 

et al. 2012). In addition, tropical forests are known to harbour untold levels of biodiversity that 

are increasingly threatened by a myriad of anthropogenic disturbances (Gibson et al. 2011). 

Logging, whether selectively or clearcutting, is often a precursor to additional land-use changes 

(such as agricultural conversion or development of human settlements), with road networks 

facilitating further degradation and forest losses (Laurance et al. 2009, 2014). 

The ability to map and quantify forest disturbances are an essential component of global 

conservation initiatives, such as the Reducing Emissions from Deforestation and Forest 

Degradation (REDD+) program. In addition, successful implementation of programs like REDD+ 

require the establishment of baseline data and reliable forest monitoring systems that enable 

accurate tracking of changes in carbon content or biodiversity measures. Remote sensing is 

considered the most accurate and cost-effective way to systematically monitor forests (Herold 

and Johns 2007; De Sy et al. 2012; Saatchi et al. 2015). Satellite monitoring of deforestation has 

come of age, with accuracies of 90 to 95% achievable with mid-resolution imagery to 

discriminate between forest and non-forest (Arino et al. 2015). In addition, near real-time 

tracking and alert systems are now possible with systems like DETER, FORMAS (Hammer et al. 

2014), and others (Hansen et al. 2016). Present methods for detecting forest degradation, 

however, are poorly developed because the widely available data sets (e.g., Landsat or MODIS) 

are considered too coarse to measure the more subtle changes in forest structure associated 

with degradation (Herold et al. 2011). 

Estimates vary widely, but forest degradation is thought to be a major contributor of 

greenhouse gas (GHG) emissions, comprising up to an additional 50% of emissions from forest 

loss alone (Asner et al. 2005, 2010b; Grace et al. 2014; Bustamante et al. 2016). However, forest 

degradation is an abused word, with over 50 different definitions and no internationally 

established description (Simula 2009; Ghazoul et al. 2015). While this makes generalizing the 

literature difficult, as degradation can include forests with varying intensities of selective 

logging, fire, or artisanal gold mining for example, a prescriptive application of a singular, rigid 
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characterization of forest degradation may not be appropriate either (Simula, 2009). In this 

review we have chosen instead to focus on a key driver of forest degradation, selective logging, 

as it is often the first anthropogenic disturbance event and is an agent for additional land-use 

changes (Nepstad et al., 1999; Asner et al., 2005, 2006, 2009). 

In contrast to forest clearance (i.e., deforestation), forest degradation from selective 

logging represents a more diffuse disturbance wherein only a subset of trees (typically the most 

economically valuable) are harvested (Simula, 2009). The resulting forest maintains some 

semblance of its original structure (e.g., canopy cover, biodiversity measures, carbon content, 

etc.) and consequently falls along the continuum between primary forest and complete 

deforestation (Fearnside, 2000; Simula, 2009; Thompson et al., 2013; Ghazoul et al., 2015). The 

intensity of selective logging operations can vary in two main ways. First, and most 

straightforward, the number of trees removed (or volume of wood) can range from less than 1 

tree ha-1 to greater than 20 (reviewed in Burivalova et al., 2014). Second, the degree to which 

damages to the remaining forest are minimized (e.g., careful planning of road networks or skid 

trails and directional felling of trees to minimize additional tree or canopy damage; termed 

reduced-impact logging). Studies of reduced-impact logging (RIL) practices have garnered 

increasing attention by researchers concerned with logging impacts on carbon stocks and 

biodiversity conservation (Putz & Pinard, 1993; Pereira et al., 2002; Asner et al., 2004a; Putz et 

al., 2008a; Edwards et al., 2012; Wilcove et al., 2013; Bicknell et al., 2014; Sist et al., 2014). 

While selectively logged forests have been shown to have increased microclimatic variability 

(Stratford & Robinson, 2005), increased soil erosion (Douglas, 1999; Hartanto et al., 2003), 

reduced tree diversity (Berry et al., 2008; Martin et al., 2015), altered forest phenology 

(Koltunov et al., 2009), and lowered levels of biodiversity (reviewed in Burivalova et al., 2014), 

forests subjected to selective logging generally maintain higher levels of biodiversity than other 

anthropogenic land use types, such as plantations or secondary forests (reviewed in Edwards et 

al., 2014). Moreover, recent works have shown that even after accounting for the amount of 

wood removed, RIL has a greater effect on maintaining biodiversity than conventional selective 

logging (CL) practices (Bicknell et al., 2014) while simultaneously sequestrating more carbon 

during regrowth (Putz et al., 2008b). Thus, in the context of REDD+ or alternative conservation 

initiatives, forests impacted by RIL offer high biodiversity value and carbon sequestration 

potential, making them ideal for carbon and biodiversity co-benefits.  

Several authors have tried to address the challenges of using remotely sensed data to 

assess forest degradation from selective logging (Souza & Barreto, 2000; Asner et al., 2002, 

2004a, 2005; Souza et al., 2005; Matricardi et al., 2007, 2010; Hirschmugl et al., 2014; 

Shimabukuro et al., 2014). Among these methods, the CLASlite software (Asner et al., 2009) 
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represents the state-of-the-art in automated optical imagery mapping to understand forest 

structure. In contrast to whole pixel classification, where a raster pixel is assigned to a single 

dominant land cover type, CLASlite uses spectral mixture analysis to determine the proportion 

of each land cover type inside each pixel. CLASlite’s automated Monte Carlo unmixing 

(AutoMCU) algorithm utilizes a vast spectral library (over 250,000 observations) to distinguish 

3 land cover types within each pixel; Bare Ground (BG), Photosynthetic Vegetation (PV), and 

Non-Photosynthetic Vegetation (NPV) whose proportions collectively sum to 100%. The Monte 

Carlo approach randomly selects spectra from the PV, NPV, and BG libraries and solves a set of 

linear equations to determine the fractional cover of each end member (Figure 1b).  The 

selection process is repeated many times in each pixel to obtain the final fractions 

corresponding to the mean solution for BG, PV, and NPV (with a root mean squared error also 

calculated).  

CLASlite has 4 main steps:  

1- Convert the satellite image to surface reflectance (i.e., correct for atmospheric effects) 

2- Estimate the proportion of BG, PV, and NPV within each pixel (AutoMCU described 

above)  

3- Map forest cover within a single scene (i.e., generate a forest/non-forest map)  

4- Map deforestation and forest degradation between image pairs (i.e., look for changes in 

BG, PV, and NPV through time steps)   

 

In order to generate the forest cover map (step 3) CLASlite utilizes a simple decision tree to 

convert the AutoMCU output (proportions of BG, PV, and NPV from step 2) into a forest/non-

forest map. The decision tree in step 3 defines forest as a pixel with PV ≥ 80% AND BG ˂ 20%. 

As a consequence, non-forest is defined as a pixel with PV ˂ 80% OR BG ˃ 20%. Degradation is 

not assessed in step 3 and is only mapped through a time series analysis in step 4, where 

thresholds for changes in pixel values define the rules for classifying deforestation and 

degradation. The decision tree in step 4 is summarized below.  The numbers following the 

CLASlite endmembers (BG, PB, and NPV) identify the time period associated each endmember 

value. 
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Deforestation:   

(PV1 – PV2) ≥ 25% 

OR  

(BG1 ≤ 5%) AND (BG2 – BG1) ≥ 15% 

OR  

(PV2 < 80%) AND (NPV2 – NPV1) ≥ 20% 

Degradation:   

(NPV2-NPV1) ≥ 10 AND (PV1-PV2) > 10%  

OR  

(BG1 ≤ 5%) AND ((BG2-BG1) > 10%) AND (BG2 ≤ 15%) 

 

 

 

CLASlite’s internal decision tree provides some insight into the key spectral features 

used to identify areas experiencing forest degradation. Specifically, CLASlite looks for either a 

spike in NPV (i.e., dead and dying vegetation from felled tree, termed slash) and a drop in PV, or 

an uptick in BG (from roads, skid trails, or log decks used to stack cut tree before transport). 

Finally, in an effort to reduce the number of unlogged pixels that are classified as degraded, 

CLASlite uses a pixel filter at the end of step 4.  To pass through the filter (and be classified as 

degraded) 5 pixels (non-contiguous) within a 7x7 moving window must also be classified as 

degraded. The idea here being that forest disturbance does not happen in isolation and other 

pixels in the neighbourhood should experience changes in end member fractions related to 

degradation. 

Identifying and quantifying forest degradation from selective logging with remotely 

sensed data represents the vanguard of current technologies, and the literature suggests 

CLASlite is only capable of detecting selective logging areas of moderately high intensities 

(greater than 3 trees ha-1).  Specifically, CLASlite has been validated over regions possessing 

spectrally distinct features like log landing decks, road networks, or significant amounts of slash 

(Asner et al., 2004a, 2004b, 2005, 2006, 2010; Broadbent et al., 2006; Oliveira et al., 2007; 

Carlson et al., 2013). However, with increasing prevalence of RIL and growing concerns over 

impacts on carbon and biodiversity, the extent of tropical forests that have been logged at lower 

intensities (less than 2 trees ha-1) is rapidly expanding. 

Here, we review the existing literature on CLASlite to determine who, aside from Gregory 

Asner’s group, has used the software, what intensities of degradation have been assessed, and in 

general, what key unknowns remain.  In addition, we carried out two sets of analyses to better 

understand CLASlite.  First, we explored correlations among the MODerate-resolution Imaging 

Spectroradiometer (MODIS) Vegetation Continuous Fields (VCF) product and PV values from 

CLASlite.  Lastly, we tested the ability of CLASlite to distinguish regions that had undergone low 
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levels of selective logging (approximately 1 tree ha-1) from areas that had not been logged 

(primary forest) in a test site located in the Brazilian Amazon (Figure A1.8.1a). Crucially, we 

wanted to understand the lower limits of CLASlite’s abilities to detect selective logging. 

 

A1.8.2 Review of CLASlite literature 

We searched Google Scholar using the keywords “claslite” and "Carnegie Landsat Analysis 

System" to identify papers containing reference to Asner’s (2009) software.  In addition, we 

utilized the search tool available within Google Scholar to list the manuscripts that had 

specifically cited the CLASlite reference. We only considered published papers and excluded 

reports or book chapters. Moreover, we chose to include papers that contained results not 

relevant to logging or selective logging in order to understand the range of applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1 km 

(a)                                                                                (b) 

Figure A1.7 (a) Location of study site (black box) in the Jamari National Forest, Rondônia, Brazil and (b) 

CLASlite output from same location. Inset zoom (in b) illustrates the 30m x 30m pixels wherein unique colors 

indicate the combination of BG, PV, and NPV at each cell location. Bare ground (BG), photosynthetic 

vegetation (PV), and non-photosynthetic vegetation (NPV) are displayed in the colors red, green, and blue, 

respectively. 
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Literature searches yielded 197 papers under the keyword “claslite” and 99 papers under 

"Carnegie Landsat Analysis System”; note that these numbers included overlapping findings. An 

additional 115 papers were listed as having cited the CLASlite reference, again including 

overlapping results. From these lists we identified 36 papers that had used CLASlite, of which 12 

did not include Gregory Asner as a co-author. Only 1 of the 12 papers assessed degradation; 8 

calculated deforestation (forest/non-forest classifications) and simply referenced degradation 

within the introduction or discussion (i.e., no results), and 3 studies only used CLASlite to pre-

process Landsat imagery to account for atmospheric effects (i.e., to convert from radiance to 

surface reflectance). The lone paper that included results on degradation assessed declines in 

forest canopy cover in the decades following the construction of a hydroelectric dam. The 

authors had no ground information regarding the intensity of disturbance and defined their 

own thresholds for deforestation and degradation.  Deforestation was canopy cover (PV pixel 

values) less than 38% and degradation was PV values between 38% and 72% (Chen et al. 2015). 

However, Asner’s papers indicate that, in densely forested tropical areas (like the Amazon basin 

where this study is from), PV values less than 67% represent total canopy opening- a 

consequence of light scattering effects and pixel adjacencies (Asner et al. 2006).  In addition, 

CLASlite relies on changes in fractional endmembers between time steps, rather than threshold 

values within a single scene like the authors used, to classify degradation. Thus, most of the 

regions assessed as degraded by the above study were actually deforested 

 In general, there appears to be a lack of uptake and use of the CLASlite software outside 

of researchers linked to Asner’s group.  This may be, in part, a result of publication bias, since 

we chose to focus on manuscripts or book chapters and did not include reports from agencies or 

non-governmental organizations (NGOs). This latter user base is the target group Asner’s 

CLASlite is largely intended for, in an effort to aid the accurate tracking of carbon stocks for 

global conservation initiatives like REDD+. That said, however, CLASlite does not overcome any 

of the standard limitations of using optical imagery in the tropics, including the limited 

availability of cloud-free images over many tropical regions, which can impede monitoring 

efforts (Asner 2001) and the rapid regeneration of tropical forest vegetation, which can hinder 

the detectability of canopy gaps or other important spectral features (Stone and Lefebvre 1998; 

Asner et al. 2004a). CLASlite’s benefits, however, include the fact that the software is freely 

available (after completing and passing a series of online tutorials and examinations), its use of 

freely available datasets (Landsat archives and ASTER, now those data have been released for 

free use to the public), its simplicity in pre-processing satellite imagery (converting radiance to 

surface reflectance) and  generating a deforestation layer, its future potential (now that Landsat 

8 is operational and the problems associated with using Landsat 7 images that contain the scan 
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line corrector error will diminish), and finally the ability to integrate its outputs with other data 

types (e.g., LiDAR, synthetic aperture radar (SAR), vegetation indices like NDVI, or field data) 

into an analysis workflow.  

 Finally, we reviewed the CLASlite papers Asner’s group has published, examining 

everything that used the CLASlite system, while paying particular attention to studies that dealt 

with forest degradation. Similar to the earlier studies we reviewed, the vast majority of Asner’s 

papers utilized CLASlite to generate forest/non-forest maps (i.e., map deforestation) and only 

referenced degradation within the introduction and discussion. A lack of tree harvest (or 

volume) data from most manuscripts limits our ability to understand the lower limits of 

CLASlite’s abilities to detect selective logging. Only their earlier studies (Asner et al. 2004b, a; 

Broadbent et al. 2006), indicate logging intensities (around 3-6 trees ha-1) from field sampling 

locations, while their more recent papers treat airborne LiDAR data as “truth” and correlate 

remotely sensed PV with LiDAR based estimates of canopy coverage (Asner et al. 2010a; Carlson 

et al. 2012). The earlier studies that assessed degradation (Asner et al. 2004b, a; Broadbent et al. 

2006), however, utilized imagery that was acquired within 6 months of forest disturbance 

events (to limit rapid regrowth of tropical foliage that might hide the signal). This final point is 

likely to be a key limit to CLASlite application. Researchers looking to identify new forest 

disturbances must deal with the frequency of cloud coverage over many tropical regions and, 

simultaneously, require imagery within a narrow window of time after disturbance (6 months). 

Collectively, these works have highlighted the need to explore finer resolution optical 

imagery (e.g., WorldView, QuickBird, IKONOS), incorporate data from multiple sensors (e.g., 

SAR or hyperspectral imagery), and develop sophisticated image analysis techniques that 

integrate different data types (Joshi et al. 2016). Importantly, SAR data probably offers the best 

opportunities to overcome the limitations mentioned above. The absence of reliance upon 

cloud-free imagery and the regular return intervals SAR satellites provide make it an obvious 

choice. Finally, questions remain as to the lower limits of CLASlite’s sensitivity to selective 

logging.  The purpose of the remainder of this report is to address this question. We outline two 

sets of analyses carried out to better understand CLASlite and its limitations. 

 

A1.8.3 Analyzing CLASlite’s relation to MODIS VCF 

In order to gain further information about the limits of CLASlite’s abilities to detect selective 

logging, we compared the MODerate-resolution Imaging Spectroradiometer (MODIS) Vegetation 

Continuous Fields (VCF) product with the PV estimates from CLASlite over the same regions. 
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The VCF collection is derived from all seven bands of the MODIS sensor on-board NASA's Terra 

satellite and contains continuous estimates for percent vegetative cover globally at 

approximately 250m spatial resolution (product MOD44B.051, available at 

http://e4ftl01.cr.usgs.gov/MOLT/MOD44B.051/). We wanted to test how correlated CLASlite’s 

PV values were with the VCF product. 

 

A1.8.3.1 Methods- CLASlite’s relation to MODIS VCF 

CLASlite was used to process a single Landsat 8 scene (10 July 2013, path 232 row 66) over a 

test site in the Jamari National Forest, Rondônia, Brazil (Figure A1.8.1a) to generate the 

proportion of BG, PV, and NPV in each pixel (Figure 1.8.1b). The VCF product was then resized 

from 231m pixel resolution to 240m, using the nearest neighbour method, to allow a perfect 

alignment with the CLASlite output (i.e., 1 VCF pixel aligning with a set of 8x8 CLASlite pixels).  

The CLASlite output was then aggregated over an 8x8 pixel window, calculating the mean PV 

value for that area. Finally, values from the VCF product and the corresponding average PV 

values were extracted from 2000 randomly selected pixel locations. The relationship between 

VCFs and CLASlite PV values was tested using simple linear regression.  

During this analysis (while re-reading the user guide for CLASlite) we discovered PV 

values from CLASlite are normalized based upon VCF values from the same locations (Asner et 

al. 2009). CLASlite looks at every pixel with PV values greater than 80% and compares it to the 

corresponding geographical location in the VCF product. CLASlite then adjusts the PV values 

such that the mean of the distributions of the coincident pixels from the VCF and the CLASlite 

image are equal. The NPV and bare substrate fractions are “adjusted accordingly” so that the 

sum of BG, PV, and NPV remains close to 100%. Consequently, in addition to examining the 

relationship between PV and VCFs across the entire range of values, we also pay particular 

attention to those data points within the upper range of PV values (1742 of the original 2000 

points). 

 

A1.8.3.2 Results and Discussion- CLASlite’s relation to MODIS VCF 

Across the full range of values, MODIS VCFs and CLASlite’s PV values were highly correlated 

(Pearson’s r = 0.899; Figure A1.8a). This result is not surprising, given what we learned about 

CLASlite’s internal relation to the VCF product. However, the relationship between VCF and PV 

across the upper range of PV values (the region standardized by CLASlite) was not as highly 

correlated as Asner’s notes suggest (Pearson’s r = 0.528; Figure A1.8b). Because the CLASlite 

documentation indicates the mean PV values are adjusted to match the VCF values, a tighter 

relationship within this upper range of VCF values was expected. It is important to recall the PV 

http://e4ftl01.cr.usgs.gov/MOLT/MOD44B.051/
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values presented here are a mean PV over an area of approximately 5.8 hectares. While the 

relationship is statistically significant, probably because the bulk of the data points fall within a 

narrow range of VCF values (between 88 - 96% tree cover), it suggests CLASlite’s internal PV 

normalization methods are different from the approach carried out here.  

 

 

 

 

 

 

 

 

 

 

 

 

A number of older studies used VCF data (at 500m resolution) to generate estimates of 

tree cover over various regional scales (Hansen et al. 2000, 2002, 2008; Zhan et al. 2002).  

These works suggested a VCF value of around 25% signified deforested areas, whereas values in 

the more recent VCF product (250m resolution) approach zero over deforested areas (DiMiceli 

et al. 2011). Interestingly, as the CLASlite documentation suggests, PV values less than 67.5% 

signify total canopy openings (i.e., deforestation) in forested regions. This value corresponds 

quite well with the intercept (i.e., a VCF value of zero) from the equation describing the 

relationship between VCF and PV in figure 2b (Ŷ = 68.848 + 0.254 × VCF). It is unclear if this is 

where Asner derived his estimates of minimum PV, if so, it suggests our approach was a close 

approximation and perhaps the internal CLASlite normalization requires a significant 

relationship (and not a near one-to-one relationship). Ultimately, however, this exercise did not 

give us any insight into the break point at which loss of forest is no longer detectable with 

CLASlite.  We address this in the next section. 

Ŷ = 18.978 + 0.790(VCF) 

P < 0.001 

Ŷ = 68.848 + 0.254(VCF) 

P < 0.001 

(a)                                                                                                   (b) 

Figure A1.8 Scatterplot and linear regression for relationship between MODerate-resolution Imaging Spectro-

radiometer (MODIS) Vegetation Continuous Fields (VCF) values and CLASlite photosynthetic vegetation (PV) 

values from (left) 2000 randomly selected point locations and (right) a subset of the same points (n=1742) that 

have PV values greater than 80. PV values were extracted from a July 2013 Landsat 8 scene that had been 

processed in CLASlite and MODIS values were obtained from an annual composite from 2013. Frequency 

histograms are overlaid on the opposite axes for each variable.   
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A1.8.4 Testing CLASlite with field data 

We wanted to understand CLASlite’s abilities to discriminate regions that had undergone low 

levels of selective logging (approximately 1 tree ha-1) from areas that had not been logged 

(primary forest). CLASlite was used to process Landsat (5 and 8) scenes over a test site in 

Rondônia, Brazil (Figure A1.7a). The site encompasses tropical forests included in the 46,000 

hectare Jamari Logging Concession, inside the Jamari National Forest. The concession is 

subdivided into management units that are approximately 1500 ̶ 2000 ha in area. Selective 

logging activities occur within a single management unit in each year, beginning at the end of 

the wet season (approximately April) and continuing through the dry season (until 

approximately November). A long-term study is in place within this concession with the 

objective of assessing the impacts of logging intensity and management techniques on tree 

biodiversity and carbon stocks. Forest inventory measurements have been recorded since 

operations began in 2011 and include detailed spatial information on each marketable tree 

species within the concession, its height, diameter, volume, and if it was logged in subsequent 

years. This dataset provided a means to assess the accuracy of CLASlite’s ability to detect low 

selective logging (approximately 1 tree ha-1) because there was a detailed account of where and 

when trees were selectively removed. 

The objectives of this study were to answer 4 key questions: 

1- Does CLASlite detect selective logging at the intensities present in the Jamari test site? 

2- If not, can CLASlite’s AutoMCU outputs (BG, PV, and NPV) be used to develop a novel 

decision tree classification system? 

3- Again, if not, if we focus only on the most intense locations (pixels with most trees or 

volume removed) does this improve classification accuracy? 

4- Finally, would adding additional metrics (like NDVI) improve the classification accuracy 

from our own decision tree?  

 

A1.8.4.1 Methods Objective 1: Can CLASlite detect low intensity selective logging at the Jamari site? 

CLASlite was used to process 2 Landsat scenes (before and after selective logging) over a single 

management unit that was selectively logged in 2012. The pre-logging image was from 6 August 

2011 and the post-logging image was from 11 August 2013. Forest/non-forest maps at each 

time period (from step 3 in CLASlite) were used with all default settings to produce a 
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degradation map (step 4) between 2011 and 2013.  The degradation output (from step 4) was 

visually inspected over the Jamari test site to determine if logging activities were detected. The 

number of pixels correctly classified as degraded is reported as a measure of accuracy. 

 

A1.8.4.2 Results and Discussion Objective 1 

With default settings, CLASlite did not identify a single pixel as degraded within the test site. 

Thus, on its own, CLASlite’s internal decision tree system is not sufficient to identify the levels of 

selective logging (around 1 tree ha-1) present in the Jamari test site. CLASlite does allow for 

some settings to be customized by the user, but these are limited to adjusting the thresholds for 

the deforestation map in step 3 to allow the users to exclude agricultural areas or regrowth that 

were incorrectly classified as forest (i.e., no settings can be adjusted for degradation in step 4). 

While this suggests CLASlite cannot be used to map degradation at our study site, it does not 

rule out using the outputs from the AutoMCU algorithm (BG, PV, and NPV fractional covers) to 

develop our own decision tree.   

 

A1.8.4.3 Methods Objective 2: Can CLASlite outputs be used to make a novel decision tree? 

We used CLASlite to process Landsat (5 and 8) scenes before and after selective logging 

activities at 4 management units that were cut sequentially between 2011 and 2015. Landsat 

scenes acquired after selectively logging were processed from 2 time periods (Figure A1.9); 1) 

the first cloud-free image of the dry season following the cessation of logging activities 

(approximately 8-12 months after logging, termed “late” hereafter), and 2) the last cloud-free 

image in the same year of logging (approximately 2-3 months before the cessation of logging 

activities for the season, termed “early” hereafter).  The early time period was added after a 

review of the literature on CLASlite, since the regrowth of foliage (after 8-12 months) can 

reduce the spectral signatures required to identify canopy gaps (PV) and slash (NPV) in tropical 

systems (Asner et al. 2004b, a; Broadbent et al. 2006). Thus, we wanted to evaluate which time 

period after selective logging provided the best detection of logging activities at our site.  

For the late time period BG, PV, and NPV values were extracted from 7192 point 

locations of known tree removals 2 years before logging (i.e., still primary forest) and at the 

same locations in the year following selective logging for a total of 14,384 points of known fate.  
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For the early time period BG, PV, and NPV values were extracted from 7072 point locations of 

known tree removals 2 years before selective logging and at the same locations in the midst of 

the logging season for a total of 14,144 points of known fate. These numbers differ slightly 

(14,483 late points and 14,144 early points) because there is a gap in the available Landsat 

archive in the year 2012 and no imagery exists. Consequently, point locations that required a 

2012 scene to be used to assess changes in end members after logging were excluded.  Thus, for 

pixels logged in 2012, the early period would have required an image from approximately 

October 2012, but these data were not available and were excluded.  Similarly, for the late time 

period, pixels logged in 2011 required imagery from approximately early June 2012 that was 

unavailable and therefore excluded. As a result, the early period analysed pixels from 

management units cut in 2011, 2013, and 2014, whereas the late period analysed pixels from 

management units cut in 2012, 2013, 2014. 

The Random Forests decision tree algorithm (Breiman 2001; Liaw and Wiener 2002) 

was used to analyse the CLASlite outputs and build a new decision tree based on the attributes 

of known fate locations.  Random Forests is an ensemble classifier that uses predictor variables 

(in this case our 3 constituent end-members from CLASlite; BG, PV, and NPV) to classify a 

response variable (whether the pixel was logged or unlogged forest). Bootstrapped samples are 

drawn to construct multiple decision trees (n = 500) and the predictors used to find the best 

split at each node are identified. Per convention, 70% of the data was assigned for classification 

development and the remaining 30% was used for validation. Here, accuracy was defined as the 

proportion of pixels correctly assigned by Random Forests as being selectively logged and 

unlogged, respectively. 

Figure A1.9 Timeline representation of a single forest management unit selectively logged in 2013. Blue boxes 

indicate when the Landsat imagery was acquired relative to when selective logging occurred (red box) for the early 

and late time periods. In this example, the selective logging occurred in year 2013 and the Landsat scene was 

acquired part way through the logging season for the early period (some of the management unit, to the right of the 

blue box, has yet to be cut). The late time period is the first cloud-free image of the dry season in the following 

calendar year and is approximately 8-12 months after selective logging occurred within the management unit. 
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A1.8.4.4 Results and Discussion Objective 2 

Random Forest classification accuracy of selectively logged and unlogged pixels was around 

60% using BG, PV, and NPV outputs from CLASLite, for both late and early time periods (Table 

A1.11). Pixels from unlogged forested areas were accurately classified only about 55-60% of the 

time in either scenario. In general, irrespective of time period, the Random Forest classification 

performed better than CLASlite’s internal decision tree (zero pixels classified as degraded using 

CLASlite in objective 1 and ~60% from Random Forests here), but this value is still below an 

acceptable level of error. This suggests CLASlite’s endmembers do not provide enough 

information to build a reliable classification system using just BG, PV, and NPV.  Moreover it 

indicates a need to explore additional explanatory variables (such as vegetation indices or SAR 

backscatter) in order to help discriminate regions that have been selectively logged. In the next 

section, areas that had been selectively logged under the highest intensities within the 

concession were analysed in an attempt to improve classification accuracy and further clarify 

the criteria Random Forests used for classification. 

 

 

Table A1.11 Confusion matrix for objective 2 summarizing results from Random Forests classification using only end-
members derived from the CLASlite output at 14384 labelled point locations (late time period) and 14144 labelled points 
(early time period) of known fate (before and after selective logging). Data were split into 70% training points and 30% 
validation points in each case. Numbers are representative outputs from a single run of the Random Forest model with the 
test data. Accuracy percentages are means from 10 model runs and standard errors are given in parentheses. Overall 
accuracy was 63% (0.2) and 59% (0.1) for the late and early time periods, respectively. 

Late Predicted Class 
  

Early Predicted Class 
 

  Logged Unlogged 
User’s 

Accuracy 
    Logged Unlogged 

User’s 
Accuracy 

Actual 
Class 

Logged 1353 790 
65.3%  

(0.7) 
 

Actual 
Class 

Logged 1262 912 
57.6% 

(0.7) 

Unlogged 785 1388 

 

61.0% 
(0.6) 

 
Unlogged 791 1279 

60.7% 
(0.7) 

Producer’s 
Accuracy 

62.4% 
(0.3) 

63.9% 
(0.5) 

    Producer’s Accuracy 
59.7% 
(0.4) 

58.6% 
(0.2) 
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A1.8.4.5 Methods Objective 3: Does accuracy improve when only using pixels of highest logging 

intensity? 

To address this objective we restricted the analysis to pixels from areas with the highest levels 

of logging intensity occurred.  We focused on pixels where 3 or more trees had been removed 

and, separately, pixels where greater than 20m3 of wood volume was removed. In all other 

respects, data analysis methods followed those of objective 2. 

 

A1.8.4.6 Results and Discussion Objective 3 

Overall Random Forest classification accuracy of logged and unlogged pixels was around 60 -

70%, irrespective of the time frame the imagery came from (late versus early), and metric of 

logging intensity (trees versus wood volume) used (Table A1.12). The dataset that only 

contained pixels where 3 or more trees had been removed had higher accuracies than the 

dataset that only contained pixels where more than 20m3 of wood had been removed. We only 

display a confusion matrix for the trees removed dataset (and not wood volume) because 

results were similar.  Wood volume accuracies were consistently lower by about 10% for each 

category.   

The aim of focusing only on areas that were selectively logged under the highest 

intensities was based on the assumption that BG, PV, and NPV values would be sufficiently 

altered and this signal would assist Random Forests in classification.  A comparison of 

accuracies between Table A1.11 and Table A1.12 shows only a modest improvement in 

classification, from ~60% with all the data (Table A1.11) to ~70% here (Table A1.12). While 

this result is an improvement, a target of 85% overall accuracy and no class less than 70% 

accurate is generally regarded a minimum criteria (Thomlinson et al. 1999). Thus, without any 

additional attributes from tree removal locations (such as vegetation indices or SAR 

backscatter) the Random Forest classification system falls short of acceptable with just BG, PV, 

and NPV. In the next section a vegetation index was calculated over the same locations and 

corresponding time periods to test if Random Forest classification was improved by the 

additional information. 
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Table A1.12 Confusion matrix for objective 3 summarizing results from Random Forests classification using only end-

members derived from the CLASlite output at 390 labelled point locations (late time period) and 432 labelled points (early 

time period) of known fate (before and after logging). Data were split into 70% training points and 30% validation points in 

each case. Numbers are representative outputs from a single run of the Random Forest model with the test data. Accuracy 

percentages are means from 10 model runs and standard errors are given in parentheses. Overall accuracy was 69.0% (1.1) 

and 67.1% (1.1) for the late and early time periods, respectively. 

Late Predicted Class 
  

Early Predicted Class 
 

  Logged Unlogged 
User’s 

Accuracy 
    Logged Unlogged 

User’s 

Accuracy 

Actual 

Class 

Logged 1353 790 
68.4%  

(2.3) 
 

Actual 

Class 

Logged 1262 912 
65.5% 

(1.7) 

Unlogged 785 1388 

 

69.8% 

(2.2) 
 

Unlogged 791 1279 
69.1% 

(2.0) 

Producer’s 

Accuracy 

68.0% 

(1.6) 

70.6% 

(1.9) 
    

Producer’s 

Accuracy 

67.6% 

(1.9) 

67.1% 

(1.7) 
  

 

 

A1.8.4.7 Methods Objective 4: would adding NDVI improve the classification accuracy? 

The same datasets from objectives 2 and 3 were used in objective 4, but in this step a 

Normalized Difference Vegetation Index (NDVI) product that had been calculated in ENVI was 

added. These data were extracted from the corresponding point locations at each of time 

periods mentioned above.  Another run of the Random Forest decision tree classification was 

performed, this time adding the NDVI predictor to the datasets from objectives 2 and 3.  

 

A1.8.4.8 Results and Discussion Objective 4 

In every case the addition of NDVI improved classification accuracy of logged and unlogged 

points (in both time periods) for all tree removal pixels, only pixels where 3 or more trees were 

removed, and only pixels where greater than 20m3 of wood was removed (Tables A1.13-15). 

The highest classification accuracies came when using all tree cut locations (objective 2 

datasets) during the late period (Table A1.13) and the highest wood volume areas (objective 3 

data) in the early period (Table A1.15). Finally, a summary table of classification accuracies with 

and without NDVI is provided (Table A1.16). 
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It is clear that NDVI can be used to improve the classification accuracy of selectively 

logged and unlogged pixels, which suggests that additional predictors (potentially from radar 

data or other vegetation metrics) might increase classification accuracy even further. In the 

future, radar datasets will be acquired over the Jamari test site in order to apply additional 

measures of forest structure with the goal of improving classification accuracy. Finally, the 

Random Forests output provides a scaled measure of variable importance, called the Gini index, 

which represents how much a model fit decreases with the exclusion of that particular variable. 

The Gini index for NDVI was roughly 4 times higher than NPV, 5 times higher than PV, and 10 

times higher than BG.  This result indicates a strong drop in model fit with the exclusion NDVI, 

an important next step would be an exploration of why NDVI improved classification so 

dramatically. What additional information was it providing and, in particular, how it might be 

correlated with measures of PV from CLASlite. 

 

 

 

 

 

Table A1.13 Confusion matrix for objective 4 summarizing results from Random Forests classification using end-members 

derived from the CLASlite output and an NDVI product calculated in ENVI at 14384 labelled point locations (late time period) 

and 14144 labelled points (early time period) of known fate (before and after logging). Data were split into 70% training 

points and 30% validation points in each case. Numbers are representative outputs from a single run of the Random Forest 

model with the test data. Accuracy percentages are means from 10 model runs and standard errors are given in parentheses. 

Overall accuracy was 87% (0.2) and 80% (0.2) for the late and early time periods, respectively. 

Late Predicted Class 
  

Early Predicted Class 
 

  Logged Unlogged 
User’s 

Accuracy 
    Logged Unlogged 

User’s 

Accuracy 

Actual 

Class 

Logged 1760 424 
80.2%  

(0.4) 
 

Actual 

Class 

Logged 1566 549 
75.7% 

(0.3) 

Unlogged 129 2003 

 

93.7% 

(0.2) 
 

Unlogged 262 1867 
85.2% 

(0.3) 

Producer’s Accuracy 
92.8% 

(0.2) 

82.4% 

(0.4) 
    Producer’s Accuracy 

83.5% 

(0.3) 

78.0% 

(0.2) 
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Table A1.14 Confusion matrix for objective 4 summarizing results from Random Forests classification using end-members 

derived from the CLASlite output and an NDVI product calculated in ENVI at 390 labelled point locations (late time period) 

and 432 labelled points (early time period) of known fate (before and after logging). Data were split into 70% training points 

and 30% validation points in each case. Numbers are representative outputs from a single run of the Random Forest model 

with the test data. Accuracy percentages are means from 10 model runs and standard errors are given in parentheses. Overall 

accuracy was approximately 86% (1.0) and 87% (1.0) for the late and early time periods, respectively. 

Late Predicted Class 
  

Early Predicted Class 
 

  Logged Unlogged 
User’s 

Accuracy 
    Logged Unlogged 

User’s 

Accuracy 

Actual 

Class 

Logged 51 5 
86.3%  

(1.3) 
 

Actual 

Class 

Logged 48 10 
85.0% 

(1.4) 

Unlogged 13 48 

 

85.8%  

(1.7) 
 

Unlogged 11 61 
88.5% 

(1.1) 

Producer’s Accuracy 
85.8% 

(1.9) 

86.3% 

(1.5) 
    Producer’s Accuracy 

87.8% 

(1.1) 

86.0% 

(1.3) 
  

 

 

Table A1.15 Confusion matrix for objective 4 summarizing results from Random Forests classification using end-members 

derived from the CLASlite output and an NDVI product calculated in ENVI at 650 labelled point locations (late time period) 

and 506 labelled points (early time period) of known fate (before and after logging). Data were split into 70% training points 

and 30% validation points in each case. Numbers are representative outputs from a single run of the Random Forest model 

with the test data. Accuracy percentages are means from 10 model runs and standard errors are given in parentheses. Overall 

accuracy was approximately 79% (1.2) and 90% (0.9) for the late and early time periods, respectively. 

 

Late Predicted Class 
  

Early Predicted Class 
 

  Logged Unlogged 
User’s 

Accuracy 
    Logged Unlogged 

User’s 

Accuracy 

Actual 

Class 

Logged 77 17 
77.3%  

(2.1) 
 

Actual 

Class 

Logged 74 6 
89.5% 

(1.0) 

Unlogged 15 86 

 

81.3% 

(1.4) 
 

Unlogged 2 70 
91.9% 

(1.0) 

Producer’s 

Accuracy 

80.2% 

(1.5) 

78.7% 

(1.8) 
    Producer’s Accuracy 

91.8% 

(0.9) 

89.6% 

(1.2) 
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A1.8.5 Conclusions 

Taken together, our results show that CLASlite cannot detect selective logging at the levels that 

occurred at the Jamari test site (approximately 1 tree ha-1). In particular, we showed that 

CLASlite did not identify a single pixel as degraded. This is certainly a drawback of the built-in 

decision tree CLASlite uses to label pixels as degraded, wherein a spike in NPV and a drop in PV 

are required to signal degradation. This is precisely why the early time period was added to our 

analyses, in an effort to detect a drop in canopy cover (PV) and an increase in slash (NPV) from 

the active logging. The fact that our classification from objective 2, where we used Random 

Forests to build a more complex decision tree than CLASlite, still underperformed (with 

accuracies around 60%) demonstrates the difficulties associated with detecting more subtle 

changes in forest attributes with Landsat-scale imagery.  In most cases imagery from this early 

time period introduced more error (as some points were labelled logged before the selective 

logging had occurred in that year) and resulted in lower classification accuracies.  

Another factor that probably impacted CLASlite’s abilities to detecting degradation at 

Jamari was the final filtering process used (where CLASlite requires 5 other degraded pixels to 

be present in a 7x7 moving window in order to be classified as degraded).  This is meant to 

minimize classifying unlogged pixels as degraded, since any anthropogenic disturbance event 

does not occur in isolation and should result in other associated disturbances. It may be that 5 

pixels in a 7x7 moving window is too conservative to identify lower levels of selective logging. 

An option to adjust these settings within the software would prove useful, as this would enable 

users to fine-tune the output to correspond with their knowledge of the site. 

 

 

Table A1.16 Summary table for accuracy results from objectives 2, 3, and 4 displaying the highest classification accuracies 

from either late or early time period. Underlined percentages were highest for the early time period. 

With 

NDVI 

User   Producer 
 

Withou

t 

NDVI 

User   Producer 

logge

d 

unlogge

d 
  

logge

d 

unlogge

d 
  

logge

d 

unlogge

d 
  

logge

d 

unlogge

d 

all pixels 

80.2

% 93.7% 

 

92.8

% 82.4% 

  

65.3

% 61.0% 

 

62.4

% 63.9% 

≥ 3 trees 

85.0

% 88.5% 

 

87.8

% 86.0% 

  

68.4

% 69.8% 

 

68.0

% 70.6% 

≥ 20m3 

volume 

89.5

% 91.9%   

91.8

% 89.6%     

61.4

% 59.4%   

60.8

% 60.7% 
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It is also important to recognize that the levels of selective logging generally reported 

equate to an average measure of intensity (i.e., number of trees removed over an entire 

management unit or concession). The arrangement of surface disturbances can greatly impact 

this measure of intensity.  As an extreme example, consider rates of trees removal if ¼ of a 

management unit were deforested and the remaining ¾ left intact. Indeed, our test site was 

selectively logged at roughly 1 tree ha-1, but there are dozens of regions where the intensity 

approaches 10-15 trees removed ha-1 and many other regions where no trees were removed 

within a hectare. CLASlite has been extensively validated, but with the lowest harvest intensities 

around 3-6 trees ha-1 (Asner et al. 2004b, a; Broadbent et al. 2006). Even though CLASlite could 

not detect degradation in Jamari, the fact that our results from objective 3, where we focused on 

areas of the highest selective logging intensities and used Random Forests to build a more 

complex decision tree than CLASlite, still underperformed (with accuracies around 70%) 

demonstrates how difficult detecting this type of disturbance can be. 

Finally, our analyses used a before-after approach, where we analysed the same pixels 2 

years before and in the year following logging.  It would be useful to test other methods for 

assessing CLASlite’s performance, such as cut locations after logging and randomly selected 

unlogged points from the same time period.  This process would only require a single scene and 

might reduce the levels of uncertainty in the analysis. Moreover, now that a combined dataset of 

CLASlite outputs and NDVI increased classification above an acceptable level, an important next 

step will be to develop a predictive map over Jamari from Random Forests.  

Overall, without being able to adjust CLASlite’s internal decision tree system or modify 

the final degraded pixel filtering process, CLASlite should be thought of as an additional tool that 

researchers can use to derive forest attributes (BG, PV, and NPV). The need for a more 

sophisticated classification algorithm (like Random Forests) was required to leverage the 

information content, but still fell short of acceptable (around 60% accurate).  Assuming we are 

able to identify additional metrics (beyond NDVI) that increase classification accuracy, this 

would produce a stronger paper overall- rather than simply criticizing the limitations of 

CLASlite (i.e., offer a method for improvement). In addition, with the ASTER datasets being 

made freely available (these are compatible with CLASlite), there may be additional 

improvement in performance with these data sets.  In particular, the first 3 ASTER bands (near 

infra-red) are at 15m spatial resolution.  We will be exploring these datasets in the weeks to 

come. 
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Table A2.1 Acquisition dates for 
Sentinel-1, RDARSAT-2, and PALSAR-2 
imagery used in classificication of 
selective logging. 

    

Sensor Dates 

 
2016-02-15 

 
2016-09-27 

 
2016-09-30 

Sentinel-1 2017-08-20 

 
2017-08-22 

 
2017-08-29 

 
2018-08-15 

 
2018-08-29 

  

  

  RADARSAT-2 2012-08-19 

  

  

  
PALSAR-2 

2016-09-06 

  2017-07-05 

   

 

 

 

Table A2.2 Cross-validation results for the number of of 
trees (k) and the number of variables to use at each 
node (m) that minimized the out-of-bag error rate on 
each training dataset. 

      

Sensor nTree (k) mTry (m) 

Sentinel-1 600 1 

RADARSAT-2 700 5 

PALSAR-2 700 4 

Sentinel-1 subset 800 1 
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A2.1 Feature selection 

The Boruta package, version 6.0.0, was used to assess feature importance and all were deemed to contribute significantly to classification.

 

Figure A2.1 Sentinel-1 variable importance 

measures from the Boruta package. Bars 

with green fill indicate significant 

contribution to classification, while yellow 

and red (not shown) indicate marginal and 

non-significant contributions, respectively. 

Thus, all variables were deemed important. 
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.  

 

Figure A2.2 PALSAR-2 variable importance 

measures from the Boruta package. Bars 

with green fill indicate significant 

contribution to classification, while yellow 

and red (not shown) indicate marginal and 

non-significant contributions, respectively. 

Thus, all variables were deemed important. 
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.  

Figure A2.3 RADARSAT-2 variable 

importance measures from the Boruta 

package. Bars with green fill indicate 

significant contribution to classification, 

while yellow and red (not shown) indicate 

marginal and non-significant contributions, 

respectively. Thus, all variables were 

deemed important. 
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A2.2 Confusion Matrices from SAR classification 

Table A2.3. Confusion matrix summarizing Random Forest (RF) model classifications of 
logged and unlogged observations at three study areas in the Brazilian Amazon, derived 
from Sentinel-1 data. Data were split into 75% training and 25% validation. Matrix 
numbers are pixel counts with the validation data (n = 13,401). The classification threshold 
(T) for RF models was set to maximize Cohen’s kappa. The corresponding values for overall 
accuracy (OA), the false discovery rate (FDR), and the detection rate (DR) are provided 
against the validation dataset. 

          

Sentinel -1  
  

T = 0.71 

OA: 64.3% 
   

 25 Reference  Class 
 

FDR: 44.6% Logged Unlogged Commission 

DR: 53.5%     Error (%) 

Predicted Class 
Logged 2861 2299 44.6 

Unlogged 2489 5752 30.2 

    
Omission Error (%) 46.5 28.6   

 
 
 
 
 
 
 
 
 
 

 

 

 
 
Table A2.4 Confusion matrix summarizing Random Forest (RF) model classifications of 
logged and unlogged observations at two study areas in the Brazilian Amazon, derived 
from RADARSAT-2 data. Data were split into 75% training and 25% validation. Matrix 
numbers are pixel counts with the validation data (n = 4,903). The classification threshold 
(T) for RF models was set to maximize Cohen’s kappa. The corresponding values for overall 
accuracy (OA), the false discovery rate (FDR), and the detection rate (DR) are provided 
against the validation dataset. 

          

RADARSAT-2  
  

T = 0.24 

OA: 75.6% 
   

 .12 Reference  Class 
 

FDR: 75.0% Logged Unlogged Commission 

DR: 27.4%     Error (%) 

Predicted Class 
Logged 211 643 75.0 

Unlogged 559 3490 13.8 

 
  

 
Omission Error (%) 72.6 15.4   
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Table A2.5 Confusion matrix summarizing Random Forest (RF) model classifications of 
logged and unlogged observations at two study areas in the Brazilian Amazon, derived 
from PALSAR-2 data. Data were split into 75% training and 25% validation. Matrix 
numbers are pixel counts with the validation data (n = 4,122). The classification 
threshold (T) for RF models was set to maximize Cohen’s kappa. The corresponding 
values for overall accuracy (OA), the false discovery rate (FDR), and the detection rate 
(DR) are provided against the validation dataset. 

  
      

PALSAR-2  
 

 T = 0.36 

OA: 64.2%  
 

  

 14 Reference Class 
 

FDR: 62.4% Logged Unlogged Commission  

DR: 40.5%     Error (%) 

Predicted Class 
Logged 471 782 62.4 

Unlogged 692 2177 24.1 

    
Omission Error (%) 59.5 26.4   

 
 

 

 

 

 
 
 
 
 
 
 
 
 
Table A2.6 Confusion matrix summarizing Random Forest (RF) model classifications of 
the most intensively logged and unlogged observations at three study areas in the 
Brazilian Amazon, derived from Sentinel-1 data. Data were split into 75% training and 
25% validation. Matrix numbers are pixel counts with the validation data (n = 7,431). The 
classification threshold (T) for RF models was set to maximize Cohen’s kappa. The 
corresponding values for overall accuracy (OA), the false discovery rate (FDR), and the 
detection rate (DR) are provided against the validation dataset. 

          

Sentinel-1 High subset 
 

 T = 0.67 

OA: 88.5%  
 

  

 32 Reference Class 
 

FDR: 55.9% Logged Unlogged Commission  

DR: 33.2%     Error (%) 

Predicted Class 
Logged 261 331 55.9 

Unlogged 524 6315 7.7 

    
Omission Error (%) 66.8 5.0   
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Figure A2.4 Histograms of the likelihoods (the proportion of votes for each class) for each observation with the full Sentinel-1 dataset (separated by FMU).  
The logging intensity is listed in the upper left of each panel. 
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Figure A2.5 Histograms of the likelihoods (the proportion of votes for each class) for each observation with the RADARSAT-2 dataset (separated by FMU).  
The logging intensity is listed in the upper left of each panel. 
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Figure A2.6 Histograms of the likelihoods (the proportion of votes for each class) for each observation with the PALSAR-2 dataset (separated by FMU).  The 
logging intensity is listed in the upper left of each panel. 
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Table A2.7 Confusion matrix summarizing Random Forest (RF) model classifications of low-
intensity logged and unlogged observations at two study areas in the Brazilian Amazon, 
derived from Sentinel-1 data (the same subset of sites used in the PALSAR-2 analyses). Data 
were split into 75% training and 25% validation. Matrix numbers are pixel counts with the 
validation data (n = 9,447). The classification threshold (T) for RF models was set to 
maximize Cohen’s kappa. The corresponding values for overall accuracy (OA), the false 
discovery rate (FDR), and the detection rate (DR) are provided against the validation dataset. 

          

Sentinel-1 Low subset 
 

 T = 0.62 

OA: 64.7%  
 

  

 23 Reference Class 
 

FDR: 50.6% Logged Unlogged Commission  

DR: 50.3%     Error (%) 

Predicted Class 
Logged 1659 1700 50.6 

Unlogged 1638 4450 26.9 

    
Omission Error (%) 49.7 27.6   

Figure A2.7 Random Forest model performance across all threshold values (T) for classification with 
Sentinel-1 (the same subset of low-intensity logging sites with that was used with the PALSAR-2). 
The Detection Rate (DR) and False Alarm Rate (FAR) are the solid and dashed black lines, 
respectively. Also shown are the corresponding values of the False Discovery Rate (FDR) and Cohen’s 
kappa (k) as solid and dashed grey lines, respectively. 

Low intensity Sentinel-1 
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Figure A2.8 Histograms of the likelihoods (the proportion of votes for each class) for each observation with the subset Sentinel-1 dataset (separated by FMU).  
The logging intensity is listed in the upper left of each panel. 
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Figure A2.9 Random Forest model variable importance for Sentinel-1 (top), RADARSAT-2 (middle), 
and PALSAR-2 (bottom). 
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Figure A2.10 The relationship between the proportion of observation within a Forest Management 
Unit (FMU) that had a breakpoint identified within its Sentinel-1 sum average texture and 
dissimilarity measure time series and the logging intensity of the FMU for VH (bottom row). The 
proportion of all observations (A and C) and the proportion that had a breakpoint that coincided with 
the logging season (C and D) are shown separately. The circle size corresponds to number of 
observations at each FMU and yellow, green, and purple colors represent the Saraca, Jamari, and 
Jacunda sites, respectively. 
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Equation A2.1 

𝑇𝑒𝑥𝑡𝑢𝑟𝑒 ∑ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =  ∑ 𝑖𝑝𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=2

 

Ng: Number of distinct gray levels in quantized image 

𝑥 and 𝑦 are the coordinates (row and column) of an entry in the co-occurance matrix 

𝑝𝑥+𝑦(𝑖) is the probability of co-occurances matrix coordinates summing to x+y 
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A3.1 Summary of satellite imagery 
 

Table A3.1 Satellite imagery acquisition dates over the forest 
management units (FMU) in the Brazilian Amazon used in Random 
Forest classification of selective logging. 

  
FMU 
 

Landsat 8  
PathRow_Date 

Sentinel-1  
Date 

Jacunda_I_2016 232066_20160920 20161012 

   Jacunda_I_2017 232066_20170907 20170901 

   Jacunda_II_2016 232066_20160920 20161012 

   Jacunda_II_2017 232066_20170907 20170913 

   Jacunda_UNL 232066_20160803 20160930 

 
232066_20170806 20170901 

   Jamari_I_2016 232066_20160819 20160930 

   Jamari_I_2017 232066_20170923 20170925 

   Jamari_III_2016 232066_20160803 20161012 

   Jamari_III_2017 232066_20170907 20170913 

   Jamari_UNL 232066_20160803 20161012 

 
232066_20170907 20170925 

   Saraca_Ia_2017 229061_20171105 20170927 

   Saraca_II_2016 228061_20161111 20170822 

   Saraca_II_2017 228061_20170911 20170822 

   Saraca_UNL 228061_20161111 20161002 

  228061_20170911 20170927 
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Figure A4.1 Violin plot of Landsat input variables used for GLCM calculations  

A3.2 Summary of raw inputs to RF models 
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Figure A4.2 Violin plot of Sentinel-1 input variables used 

for GLCM calculations 
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A3.3 Additional figures 
 

 

 

 

 

10 km 

Figure A4.1 Map of selective logging probability for the Jamari region using the Landsat 8 

model. Landsat data are from 2017-09-07. The forest management units that have been logged 

are bounded in white and those yet to be logged are bounded in black. The reserve area that 

remained unlogged is along the top and outside the boundary of the logging concession (i.e. not 

outlined in black).  
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10 km 

Figure A4.1 Map of selective logging probability for the Jamari region using the combined 

Landsat 8 and Sentinel-1 model. Landsat data are from 2017-09-07 and the Sentinel-1 data are 

from 2017-09-25. The forest management units that have been logged are bounded in white and 

those yet to be logged are bounded in black. The reserve area that remained unlogged is along 

the top and outside the boundary of the logging concession (i.e. not outlined in black).  
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10 km 

Figure A4.3 Map of selective logging probability for the Jamari region using the Sentinel-1 

model from 2017-09-25. The forest management units that have been logged are bounded in 

white and those yet to be logged are bounded in black. The reserve area that remained unlogged 

is along the top and outside the boundary of the logging concession (i.e. not outlined in black).  
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A4.1 Summary of Landsat imagery 
 

Table A4.1 Image acquisition dates from Landsat 5 
(pre-2013) and Landsat 8 (post-2011) over the study 
regions 
  

Site PathRow_Date 

Cikel_2011 223063_20060724 

 
223063_20070913 

 
223063_20081001 

 
223063_20090817 

  Jacunda_I_2016 232066_20050906 

 
232066_20060808 

 
232066_20070912 

 
232066_20080930 

 
232066_20091003 

 
232066_20100718 

 
232066_20110806 

 
232066_20130827 

 
232066_20140830 

 
232066_20150918 

 
232066_20160920 

  Jacunda_I_2017 232066_20050906 

 
232066_20060808 

 
232066_20070912 

 
232066_20080930 

 
232066_20091003 

 
232066_20100718 

 
232066_20110806 

 
232066_20130827 

 
232066_20140830 

 
232066_20150918 

 
232066_20160718 

 
232066_20170907 

  Jacunda_II_2015 232066_20050906 

 
232066_20060808 

 
232066_20070827 

 
232066_20080930 

 
232066_20090816 

 
232066_20100819 

 
232066_20110806 

 
232066_20130827 

 
232066_20140830 

 
232066_20150918 
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  Jacunda_II_2016 232066_20050906 

 
232066_20060808 

 
232066_20070912 

 
232066_20080930 

 
232066_20091003 

 
232066_20100819 

 
232066_20110806 

 
232066_20130827 

 
232066_20140830 

 
232066_20150918 

 
232066_20160920 

  Jacunda_II_2017 232066_20050906 

 
232066_20060824 

 
232066_20070912 

 
232066_20080930 

 
232066_20091003 

 
232066_20100819 

 
232066_20110806 

 
232066_20130827 

 
232066_20140830 

 
232066_20150918 

 
232066_20170907 

  Jacunda_UNL 232066_20050906 

 
232066_20060808 

 
232066_20070912 

 
232066_20080728 

 
232066_20091003 

 
232066_20100819 

 
232066_20110806 

 
232066_20130811 

 
232066_20140814 

 
232066_20150918 

 
232066_20160803 

 
232066_20170806 

  Jamari_I_2015 232066_20060925 

 
232066_20070912 

 
232066_20080829 

 
232066_20091003 

 
232066_20100819 

 
232066_20110806 

 
232066_20130827 

 
232066_20140830 
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232066_20150918 

  Jamari_I_2016 232066_20060808 

 
232066_20070912 

 
232066_20080728 

 
232066_20090731 

 
232066_20100819 

 
232066_20110907 

 
232066_20130827 

 
232066_20140830 

 
232066_20150918 

 
232066_20160819 

  Jamari_I_2017 232066_20060808 

 
232066_20070912 

 
232066_20080728 

 
232066_20091003 

 
232066_20100819 

 
232066_20110907 

 
232066_20130827 

 
232066_20140830 

 
232066_20150918 

 
232066_20160819 

 
232066_20170923 

  Jamari_III_2011 232066_20060925 

 
232066_20070912 

 
232066_20080829 

 
232066_20091003 

 
232066_20100819 

 
232066_20111009 

  Jamari_III_2012 232066_20060925 

 
232066_20070912 

 
232066_20080829 

 
232066_20090816 

 
232066_20100819 

 
232066_20111009 

  Jamari_III_2013 232066_20060925 

 
232066_20070912 

 
232066_20080829 

 
232066_20091003 

 
232066_20100819 

 
232066_20111009 

 
232066_20130827 
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  Jamari_III_2014 232066_20060925 

 
232066_20070912 

 
232066_20080829 

 
232066_20091003 

 
232066_20100819 

 
232066_20110806 

 
232066_20130827 

 
232066_20140830 

  Jamari_III_2015 232066_20060925 

 
232066_20070827 

 
232066_20080829 

 
232066_20091003 

 
232066_20100819 

 
232066_20110806 

 
232066_20130827 

 
232066_20140830 

 
232066_20150918 

  Jamari_III_2016 232066_20050720 

 
232066_20060925 

 
232066_20070912 

 
232066_20080829 

 
232066_20091003 

 
232066_20100819 

 
232066_20111009 

 
232066_20130827 

 
232066_20140830 

 
232066_20150918 

 
232066_20160803 

  Jamari_III_2017 232066_20060925 

 
232066_20070827 

 
232066_20081016 

 
232066_20091003 

 
232066_20100819 

 
232066_20110806 

 
232066_20130827 

 
232066_20140830 

 
232066_20150918 

 
232066_20160803 

 
232066_20170907 

  Jamari_UNL 232066_20060925 

 
232066_20070912 
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232066_20080829 

 
232066_20091003 

 
232066_20100819 

 
232066_20110806 

 
232066_20130827 

 
232066_20140830 

 
232066_20150918 

 
232066_20160803 

 
232066_20170907 

  Saraca_Ia_2017 228061_20050910 

 
228061_20060913 

 
228061_20071002 

 
228061_20091023 

 
228061_20111029 

 
229061_20080909 

 
229061_20131212 

 
229061_20141215 

 
229061_20150929 

 
229061_20161017 

 
229061_20171105 

  Saraca_II_2016 228061_20051028 

 
228061_20060828 

 
228061_20071002 

 
228061_20080801 

 
228061_20091007 

 
228061_20111029 

 
228061_20130916 

 
228061_20140903 

 
228061_20151008 

 
228061_20161111 

  Saraca_II_2017 228061_20051028 

 
228061_20060828 

 
228061_20071002 

 
228061_20080801 

 
228061_20091007 

 
228061_20111029 

 
228061_20130916 

 
228061_20140903 

 
228061_20150906 

 
228061_20160924 

 
228061_20170911 

  Saraca_UNL 228061_20050926 
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228061_20071002 

 
228061_20080801 

 
228061_20091007 

 
228061_20110826 

 
228061_20140903 

 
228061_20151008 

 
228061_20161111 

  228061_20170911 
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A4.2 Spectral unmixing and spatial normalization 
 

 

 

C D 

Figure A4.1 Examples of abrupt changes in Surface Reflectance (RGB of Landsat 5 bands 5,4,3) in 

adjacent Landsat paths (A) and the resulting impact on spectral unmixing (B). While more subtle 

than surface reflectance the resulting predictions of logging along abrupt changes were impacted, 

resulting in entire swaths of mosaics being predicted logged (C).  The spatial normalization 

removed abrupt changes across adjacent paths and did not impact mode predictions (D). 

A B 
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A4.3 Summary of GEE mosaic dates 
 

 

Table A4.2  Start and stop dates for the annual mosaic creation for Rondônia 2000-2019 and the number 
of days within the window (n Days). Landsat 5, 7 and 8 are TM, ETM, and OLI, respectively. 

Year startDate stopDate n Days Landsat 

2000 2000-07-01 2000-08-25 55 TM 

2001 2001-07-01 2001-08-20 50 TM 

2002 2002-06-15 2002-08-21 67 TM 

2003 2003-06-15 2003-08-15 61 TM 

2004 2004-06-20 2004-08-05 46 TM 

2005 2005-07-01 2005-08-10 40 TM 

2006 2006-07-01 2006-08-15 45 TM 

2007 2007-07-01 2007-08-15 45 TM 

2008 2008-07-01 2008-08-23 53 TM 

2009 2009-07-01 2009-08-31 61 TM 

2010 2010-07-01 2010-08-10 40 TM 

2011 2011-07-01 2011-09-01 62 TM 

2012 2012-07-01 2012-09-01 62 ETM 

2013 2013-07-01 2013-09-12 73 OLI 

2014 2014-07-01 2014-09-11 72 OLI 

2015 2015-07-01 2015-09-20 81 OLI 

2016 2016-07-01 2016-09-10 71 OLI 

2017 2017-07-01 2017-09-06 67 OLI 

2018 2018-07-01 2018-09-28 89 OLI 

2019 2019-07-01 2019-09-30 91 OLI 

 

 

 

 

 

 

 

 

 

 



Appendix A4:  Supplementary material to Chapter 6 – selective logging in Rondônia 2000-2019 

 

202 
 

A4.4 Additional figures 
 

 

 

 

 

 

Figure A4.2 Histogram of predicted probabilities from the Random Forest model for logged 

observations in the validation dataset (all study sites pooled).  
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Figure A4.3 Histogram of predicted probabilities from the Random Forest model for logged observations in the validation dataset (separated by study site). 
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Figure A4.4 Deforestation detections from the Hansen data (in red) in the Saracá-Taquera 

National Forests, Pará overlaid with selective logging tree locations from the same year (grey 

circles). The deforestation detections here are selective logging and thus lowered our detection 

rate in some cases, as we excluded deforested areas before predicting logging. The map is 

centered at 56.17 W, 1.60 S. 

  0                     1 km 
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