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the baseline amplitude of cortical oscillations differently. The value of effort was
evaluated using a cognitive effort discounting task (COGED).
In both experiments, RTs decreased significantly with higher rewards. Reward level
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Response to Reviewers: Explanation of changes made in the revised ms. EXBR-D-19-00605R1
We are grateful to the Reviewer for their constructive and helpful feedback, and to the
Editors for the opportunity to amend our work. We are thankful for and have accepted
every point raised by the Reviewer and hope that our ms may now receive acceptance.
Response: Please find our detailed responses to each of the Reviewer’s points below.
Reviewer #1
Summary: In their revision, Byrne and colleagues have addressed a number of points I
raised in my prior review. I appreciate the efforts they took to more clearly articulate
several methods and analyses.

Unfortunately, I am still concerned about key analytical methods and inferences which I
don't think the Authors have addressed adequately. In particular, I am worried that the
permutation test might have been done incorrectly in a way that undermines key
analyses. I am also still concerned about the process of selecting individual electrodes
and what we can infer from that.
***
I should note that unless some of these concerns can be addressed, I am currently
unconvinced that Experiment 1 reveals anything about how incentives impact
oscillatory dynamics and how those in turn impact performance beyond showing that
oscillations are different when people react fast and slow. The result in Experiment 2
showing incentive linked effects on oscillatory dynamics are a bit more convincing, by
contrast, but need shoring up.

Response:
We are thankful to Reviewer #1 for their constructive evaluation, and, in the revised
ms., we endeavoured to address all points of concern and hope that the ms. can now
receive acceptance.

Point 1: Regarding the permutation test, the thing that concerns me most is that the
Authors state that they conducted tests "with the electrode labels being permuted". The
standard practice is to form null distributions on cluster extents by permuting condition
labels (e.g. incentive amounts), not electrode labels. If they did permute electrode
labels, then the null distribution they created would be artificially liberal because the
process of permuting electrode labels would break the spatial dependencies inherent
in the data. Thus, they give themselves and unfair chance to find "significant clusters".
Perhaps this was just a mistake in writing, though, and the Authors did actually
permute condition labels? Also, note that the Authors cannot conduct a permutation
test on one effect and use surviving clusters to analyze other effects. For example, it is
invalid to conduct permutation tests the effects of RT on RBP, and then select among
surviving clusters to analyze the effects of
incentives. Instead, if the Authors want to make inferences about the effects of
incentives, they need to first conduct permutations on incentive labels.
Response: We apologise and take full responsibility for this error in the manuscript.
Reviewer 1 is correct that reward conditions, not electrode labels, were permuted in
this analysis. We closely followed the algorithm given in the EEGlab-Matlab package
by Maris & Oostenvald (2007) and have updated the description given in the ms to
describe their method more accurately.
See page 14
 “Further, to tackle the risk of a false positive error due to the large number of tests, a
hypothesis-independent permutation analysis, implemented in the statcond.m program
in the EEGLab package (Makeig et al., 2004), was used to identify clusters of
electrodes with significant main effects of reward or response-speed, or interactions
between these conditions, separately (Maris and Oostenveld, 2007). This cluster-
based method provides a data-driven approach to assess effects of conditions on RBP
in specified frequency bands (8-12 Hz, 16-24 Hz, and 4-7 Hz) across all electrodes
without making a priori assumptions, while also controlling for multiple comparisons
with no loss in statistical power.
“In this analysis, we calculated the test statistics for the main effects and interactions of
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both response-speed and reward on RBP in the specified frequency bands over all
electrodes. The RBP from all experimental conditions was then collected into a single
dataset. Data points were randomly drawn from this set and placed into subsets having
the same size as the two response-speed and three reward conditions, forming a
‘random partition’, or dataset representing randomly shuffled versions of the three
reward and two response-speed conditions. The test statistics for the main effects and
interactions of reward and response-speed in this random partition were then
calculated. Next, the creation and analysis of the random partition was repeated 5000
times, and a histogram of the produced test-statistics was constructed for all
electrodes. The proportion of random partitions that resulted in a larger statistic than
the test-statistic first calculated for the non-shuffled data was calculated for all
electrodes, and this was defined as the p-value. Electrodes that exceeded a predefined
threshold on the calculated p-values (uncorrected, p < .01) for the main effects of, or
interactions between, reward and response-speed were selected and clustered based
on spatial adjacency.”

Point 2: I also remain concerned about how the Authors select individual electrodes for
further analysis and reporting. Key examples include electrode 40 in Fig. 4, 124, 21,
and 5 in Fig. 5, 172, 136, and 16 in Fig. 6. How were these selected? Were they just
picked at random from among significant clusters? Or, are they representative
somehow? Are they peak electrodes (those with strongest statistics)? Or is these
instances of cherry-picking where the Authors found individual electrodes showing
interesting patterns and chose to highlight those? If it was the latter case, then I think
the Authors should drop these, and choose electrodes based on a principled approach
(like picking the centroid, the peak, or averaging over all electrodes in the cluster).
Response: We are grateful for this comment and endeavoured to correct it. Electrodes
were selected for further analysis based on those which passed a combined threshold
based on the difference-from-0 tests and the permutation analysis. Electrode clusters
were selected if the electrodes were adjacent and showed similar effects of reward or
response speed. However, if only one electrode showed a statistically significant effect,
only that electrode was reported. In the result section, electrodes 40, 124, 21 and 5 in
experiment 1 showed statistically significant effects of either reward or response speed
but none of these electrodes were surrounded by electrodes showing similar
statistically significant effect and they are, therefore, reported as single electrodes.
This has been explained in the ms on page 20
“Electrode 40, over the left-central area, was the only electrode found to pass both the
difference from 0 t-test and the permutation-based threshold, and was, therefore the
only electrode selected for further analysis.”
And page 21
“Three electrodes passed both the difference from 0 and the permutation-based
threshold, and were therefore selected for further analysis.”

In contrast, Fig 6., demonstrated that the ERD/ERS expected to occur, based on
previous research, was found in response to the experimental cues in all conditions.
Time courses of ERD changes were shown over electrodes selected apriori, over
areas of the scalp expected to show ERD effects due to task demands (e.g., ERD in
the alpha- and beta-bands was expected over contralateral sensorimotor areas while
participants prepared a speeded motor response). This was included to show the
replications of previous literature and show the validity of the experimental procedure.
This has been explained in the ms on page 26
“Fig 6., shows ERD/ERS scalp topographies over specified time periods (0.5 s, 2 s, 2.5
s, and 3.3 s following the presentation of the cue stimulus) in (A) the alpha-band, (B)
the beta band, and (C) the theta band. Time courses of percentage power changes
over specified electrodes are also shown. Electrodes were selected apriori at areas of
the scalp where band power was expected to be modulated by task demands based
on previous research. For example, an ERD was expected over contralateral
sensorimotor areas in the alpha- and beta-bands during motor preparation (Rhodes,
2019; Pfurtscheller and Berghold, 1989; Tzagarakis et al., 2010; Tzagarakis et al.,
2015; Fox et al., 2016; Ishii et al., 2019).”

Point 3: Relatedly, why did the Authors pick electrode 124 in Fig 4. to analyze the
correlation between RT and RBP changes, and not 21 and 5 which were just
highlighted in this same section? It is necessary to motivate such choices. It is not
okay to just pick strong examples.
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Response: We are thankful for this feedback, and we apologise for not making this
clear in the manuscript. Correlations were assed in all electrode clusters selected for
further analysis, but only significant correlations were reported.
This has been corrected in the revised ms., page 18
“Bivariate correlations were conducted in all electrode clusters or single electrodes
selected for further analysis, however, only statistically significant correlation
coefficients are reported.”

Point 4: Concerning representativeness, I am unsure what we are to infer about
electrodes from the same cluster showing apparently opposite results. This comes up,
for example, for Fig. 5 and the contrast of RT effects on electrode 21 which showed
lower beta power on fast trials, while electrode 5 showed higher beta power on fast
trials. This pattern of contrasting results seems to undermine the interpretability and the
implicit claim that electrodes are representative. If one electrode shows an effect in one
direction and another electrode shows the opposite, what should we infer about the
cluster overall? And what does it mean that they show opposite effects? More
importantly, what did we learn from conflicting results?
Response: We are grateful for Reviewer’s feedback. The Reviewer is correct that
electrodes 21 and 5 showed contrasting results. This effect was caused by a
topographic change of the beta-ERD cluster in prefrontal and frontal-central electrodes
with fast movements showing greater ERD in fronto-central electrodes than slow
movements.
A similar pattern of changes has been found for beta-band synchronisation (Alegre et
al 2004), with beta-band synchronisation over frontal regions of the scalp being more
focused around central areas in Go compared to NoGo trials. The researchers
interpreted this more central synchronisation as reflecting a signal originating from the
anterior cingulate cortex, a neural region associated with motor control or adjustment in
response to changing rewards (Heilbronner and Hayden, 2016; Rushworth et al., 2003;
Chudasama et al., 2013), as well as the persistence of effortful behaviour (Floden and
Stuss, 2006; Warden et al., 2012; Chudasama et al., 2013; Parvizi et al., 2013). While
our data do not allow inferences on locations of cortical generators, it is likely that fast
and slow movements recruited the medial frontal cortex differently resulting in
prefrontal and fronto-central electrodes showing different effects of response speed on
beta-band ERD.
This has been expanded on in the discussion.
Please see page24
“Beta-band increases were stronger and more focused over fronto-central regions
preceding fast responses compared to slow responses, reflected in a different pattern
of ERD changes in electrodes 5 and 21. A similar pattern of a prominent fronto-central
focus of beta-band synchronization due to topographic expansion has been found for
Go, compared to NoGo, responses (Alegre et al., 2004). While our data do not allow
inferences on underlying cortical generators, the shape differences in the large ERD
cluster in prefrontal and fronto-central electrodes suggests that the fast- compared to
slow movements were preceded by a stronger activation in premotor regions residing
in the medial frontal cortex.”

Point 5: Finally, I am concerned about the disconnect between results and the
inferences made in the abstract and discussion. Most notably, the authors found no
relationships between incentive effects on brain activity and incentive effects on
behavior. Thus we cannot directly infer that incentives altered behavior because of
changes in these oscillatory dynamics of interest. This should be stated clearly in the
abstract and the discussion. Also, there are some incorrect inferences made at points.
In the interim discussion following Experiment 1 results, the Authors state, for example,
"the presence of monetary incentives shortened RTs, and increased and focused
cortical beta oscillations over frontal scalp regions…" However, incentives had no
effects on frontal beta oscillations over frontal (or any regions). They found that RT
effects on oscillations were stronger in one incentive condition than another, but this
*interaction* is not the same thing as a main effect of reward.
Similarly in the first sentence of the Conclusion, the Authors state that "Decreasing
RTs as the result of the presence and magnitude of reward was associated with
cortical oscillatory changes in both experiment 1 and experiment 2", while in the
abstract, they state "Reward level increased the amplitude of beta-band oscillations
over frontal electrodes in experiment 1" - neither of which is true. The Authors should
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ensure that such inferences are directly supported by the data.
Response: We are thankful for Reviewer’s comment which allows us to phrase the
relevant section of Discussion and Abstract more accurately than in previous version of
the ms.
We have modified both the abstract and discussion sections to state that there was no
relationship on the effect of reward on RTs and the effect of reward on oscillatory
changes.
Please see changes to the abstract on page 2
“However, neither the shortening of RT with increasing reward nor the value of effort
correlated with oscillatory changes. This implies that amplitudes of cortical oscillations
may shape upcoming motor responses but do not translate higher-order motivational
factors into motor performance.”
And this is further expanded on in the general discussion on pages 34 and 35
“However, while a significant correlation was found between RTs and oscillatory
changes between fast and slow responses, no significant relationship was found
between the effects of incentives on oscillatory changes and the effect of incentives on
RTs, meaning that it is difficult to directly infer that incentives altered behaviour through
oscillatory changes. This may be due to other factors modulating how incentives
affected RTs, such as individual or state differences, or due to a low level of statistical
power.”

For an updated discussion regarding the results of incentive on RBP changes in
experiment 1, please see changes to the abstract on page 2:
“and sharpened increased inhibition in the frontal cortex under fast responses
(experiment 1).”
And, for changes to the discussion, please see page 23
“fast responses were associated with stronger synchronisation in the alpha band over
the left-central area of the scalp and stronger and more focused synchronisation in the
beta band over fronto-central regions of the scalp, an effect which was particularly
apparent in high-reward conditions.”
And page 24
“Both the alpha- and beta-band results suggest faster response speeds, especially
under high reward, were associated with increased motor inhibition in the time window
preceding movement.”

Minor comments:
Line 22 on page 24, says "alpha-band power changes", but I believe the authors meant
"RT changes"
 Response: Corrected

Line 18 on page 11, says "A Bivariate", but should be "A bivariate"
Response: Corrected
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Dear Editors, 

Please find uploaded our ms. “The cortical oscillatory patterns associated with varying levels of 
cognitive effort.” 

Cognitive effort has been conceptualised in an economic framework as discounting from the value of 
an expected reward. Previous research has showed that monetary incentives and individual 
valuations of cognitive effort can modulate reaction-times (RT) in a sustained vigilance task. 
However, while cognitive effort has been posited to modulate cortical inhibition and activation, the 
effect of reward and effort on these processes has yet to be investigated. Changes in oscillatory 
cortical power has been implicated in the activation and inhibition of relevant cortical areas, 
providing a measure of these processes. 

In the present study, increases and decreases in oscillatory power were analysed using the event-
related desynchronization method as participants performed a series of speeded RT responses while 
expecting one of three monetary rewards (0p, 1p, 10p) if they responded faster than their median 
RT. Electrophysiological responses were recorded using a 129-channel EEG system. Two experiments 
are reported; in the first experiment, the reward amount was consistent within each block, and, in 
the second experiment, participants were informed about the reward before each trial. Each 
experiment evaluated the baseline amplitude of cortical oscillations differently, providing unique 
measures of cortical activation and inhibition. Individual effort values were evaluated using a 
cognitive effort discounting task.  

In both experiments, higher rewards caused participants to respond significantly faster. Reward level 
increased the amplitude of beta band oscillations over frontal electrodes in experiment 1 – an effect 
associated with cortical inhibition – and decreased the amplitude of beta-band oscillations in the 
ipsilateral sensorimotor cortex in experiment 2. Individual effort values did not significantly correlate 
with cortical oscillatory changes or RTs in either experiment.  

Our study shows, for the first time, that the amount of reward expected during a sustained vigilance 
task modulates cortical activation in the sensorimotor cortex (experiment 2) and inhibition in the 
frontal cortex (experiment 1) while participants prepare a speeded RT response. This provides a 
novel contribution to the understanding of the cortical role of cognitive effort, demonstrating that it 
modulates relevant cortical activation and inhibition. It is our hope that you will consider this work 
worthy for the Journal of Experimental Brain Research.  

 

 

 

       Adam Byrne, MRes. 

       corresponding author 
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ABSTRACT  1 

We explored how reward and value of effort shapes performance in a sustained 2 

vigilance, reaction time (RT) task. It was posited that reward and value would hasten RTs and 3 

increase cognitive effort by boosting activation in the sensorimotor cortex and 4 

inhibition in the frontal cortex, similar to the horse-race model of motor actions.  5 

Participants performed a series of speeded responses while expecting differing 6 

monetary rewards (0 pence (p), 1 p, and 10 p) if they responded faster than their median RT. 7 

Amplitudes of cortical alpha, beta, and theta oscillations were analysed using the event-8 

related desynchronization method. In experiment 1 (N = 29, with 12 females), reward was 9 

consistent within block, while in experiment 2 (N = 17, with 12 females), reward amount was 10 

displayed before each trial. Each experiment evaluated the baseline amplitude of cortical 11 

oscillations differently. The value of effort was evaluated using a cognitive effort discounting 12 

task (COGED).  13 

In both experiments, RTs decreased significantly with higher rewards. Reward level 14 

sharpened the increased amplitudes of beta oscillations during fast responses in experiment 1. 15 

In experiment 2, reward decreased the amplitudes of beta oscillations in the ipsilateral 16 

sensorimotor cortex. Individual effort values did not significantly correlate with oscillatory 17 

changes in either experiment. 18 

Results suggest that reward level and response speed interacted with the task- and 19 

baseline-dependent patterns of cortical inhibition in the frontal cortex and with activation in 20 

the sensorimotor cortex during the period of motor preparation in a sustained vigilance task. 21 

However, neither the shortening of RT with increasing reward nor the value of effort 22 

correlated with oscillatory changes. This implies that amplitudes of cortical oscillations may 23 

shape upcoming motor responses but do not translate higher-order motivational factors into 24 

motor performance.  25 
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INTRODUCTION 1 

Cognitive effort is prevalent in a number of settings such as education (Von Stumm et 2 

al., 2011; Cacioppo et al., 1996), the workplace (Kidwell Jr and Bennett, 1993; Van 3 

Iddekinge et al., 2018), and consumer behaviour (Heidig et al., 2017). In psychiatric or mood 4 

disorders (e.g., depression), a loss of motivation to face cognitively or physically challenging 5 

tasks has been reported (Treadway et al., 2012; Cohen et al., 2001). However, while the 6 

decision to make an effort has been extensively researched, and the subjective experience of 7 

effort is familiar to most people, the effects of reward and the value of effort on performance 8 

in an effortful task and the neural basis of this are not yet fully understood.  9 

In behavioural economic theories of decision making, effort is framed as a 10 

discounting factor that reduces the value of rewards when an effort is required to achieve 11 

them (Inzlicht et al., 2014; Kurzban et al., 2013). The discounting effect of effort can be 12 

measured using the COGED method (Westbrook et al., 2013; Westbrook and Braver, 2015), 13 

which offers staircase iterated rewards across multiple levels of effort until an indifference 14 

point is reached, indicating the amount of money required for participants to agree to put 15 

more effort into the task (Westbrook et al., 2013; Massar et al., 2016). The value of effort, 16 

determined using COGED, has been shown to correlate with individual engagement 17 

(Westbrook et al., 2013) and performance (Massar et al., 2016) in cognitive tasks. Further, 18 

the level of engagement in a cognitive task can be manipulated by varying performance-19 

based rewards (Massar et al., 2016; Dinges and Powell, 1985; Knutson et al., 2000).  20 

The discounting effect of cognitive effort has been attributed to a number of processes 21 

(Gailliot and Baumeister, 2007; Lazarus, 1993; Tooby and Cosmides, 2008; Christie and 22 

Schrater, 2015), but is commonly thought to be the consequence of top-down cognitive 23 

control (Botvinick and Braver, 2015; Kaplan and Berman, 2010; Shenhav et al., 2013b). This 24 

would be required to control task-relevant cortical activation and inhibition at the expense of 25 
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task-irrelevant activation and inhibition, and may be localised to the dorsal anterior cingulate 1 

cortex, which has been implied to mediate cognitive control during attentional tasks (Shenhav 2 

et al., 2013a).  3 

Processes which may to be controlled during motor actions are proposed by the horse-4 

race theory of motor inhibition in the stop-signal task (Logan and Cowan, 1984; Band et al., 5 

2003; Schultz, 2015). This model posits opposing processes of motor readiness during stop-6 

signal tasks, where motor activation occurs in response to a ‘GO’ signal and motor inhibition 7 

occurs in response to a ‘STOP’ signal, and a movement is only successfully inhibited if the 8 

inhibitive processes complete before the movement is finished, meaning that successful 9 

responses to ‘STOP’ signals are based on the relative speed of these competing processes (for 10 

more information see Band et al. 2003, Fig. 1).  11 

Visual acuity (Mathewson et al., 2009), visual detection threshold (Ergenoglu et al., 12 

2004), visual discrimination (Hanslmayr et al., 2005) and pain sensitivity (Babiloni et al., 13 

2006) have been shown to be enhanced if stimuli occurred during a period of suppressed 14 

alpha-band oscillations. In a similar vein, motor readiness or preparation seconds before a 15 

self-paced voluntary movement (Chatrian et al., 1959), or during an imagined, or observed 16 

movement (Nagai and Tanaka, 2019; Pfurtscheller et al., 2005), often manifests in amplitude 17 

decreases of cortical alpha- and beta-band oscillations (Rhodes, 2019; Pfurtscheller and 18 

Berghold, 1989; Tzagarakis et al., 2010; Tzagarakis et al., 2015; Fox et al., 2016; Ishii et al., 19 

2019). This has been found to increase prior to self-paced finger movements requiring large 20 

force (Stancak et al., 1997), and during fast compared to slow movements (Stancak and 21 

Pfurtscheller, 1996b; a). Suppressions of alpha- beta-band band power may, therefore, be 22 

representative of the excitatory processes posited by the horse-race theory.  23 

Conversely, inhibitory processes are employed in tasks which require withholding a 24 

response under the state of strong motor readiness, for example during a stop-signal task 25 
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(Leimkuhler and Mesulam, 1985). Cortical inhibition or idling has been found to manifest as 1 

an increase in the amplitude of alpha- or beta-band oscillations (Visani et al., 2019; Korzhik 2 

et al., 2018; Salmelin and Hari, 1994; Pfurtscheller et al., 1996a; Jensen et al., 2005; Fry et 3 

al., 2016), and frontal beta-band synchronisation has been shown to occur during periods of 4 

motor inhibition (Alegre et al., 2006; Wessel and Aron, 2013; Swann et al., 2009; Fonken et 5 

al., 2016; Wagner et al., 2018). Functional brain imaging studies point to a major role of the 6 

right prefrontal cortex in employing the inhibition of motor actions (Feng et al., 2014; 7 

Garavan et al., 2002; Simmonds et al., 2008), perhaps through dopaminergic innervations 8 

(Miller and D'Esposito, 2005; Fuster, 2015; Chao and Knight, 1995). Moreover, frontal beta-9 

band synchronisation has been shown to occur during periods of motor inhibition (Alegre et 10 

al., 2006; Wessel and Aron, 2013; Swann et al., 2009; Fonken et al., 2016; Wagner et al., 11 

2018). These areas may be expected to show an increase in alpha- and beta-amplitudes during 12 

increased motor inhibition, representing a temporary withholding of movement under the 13 

state of high motor readiness. 14 

Theta-band oscillations, in contrast, have been found to increase over mid-frontal 15 

electrodes during periods of sustained attention (Angelidis et al., 2018; Rajan et al., 2018; 16 

Basar-Eroglu et al., 1992; Klimesch, 1999), and have been hypothesised to be a correlate of 17 

cognitive effort or fatigue (Arnau et al., 2017). We, therefore, assumed that oscillatory power 18 

in the theta band may be involved in the attentional, or top-down processes required during 19 

effortful tasks. 20 

The present study combined a modified sustained vigilance task (Massar et al., 2016) 21 

with a monetary incentive delay task (Knutson et al., 2000) to examine the effects of varying 22 

levels of rewards and the value of effort on cortical activation and inhibition. The vigilance 23 

task required participants to execute speeded reaction-time (RT) responses during a stream of 24 

visual cues occurring in short iterations, and it has been shown that requiring participants to 25 
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complete a sustained vigilance task, with each block offering different rewards (no reward, 1 

low reward, or high reward) for each fast response (faster than the participant’s median RT) 2 

results in reward-related changes in task performance and sympathetic arousal (Massar et al., 3 

2016), however the effects of reward on cortical oscillatory activity during this task has not 4 

yet been investigated. 5 

Experiment 1 aimed to analyse the change in amplitudes of cortical alpha, beta, and 6 

theta oscillations in the time-window just preceding the cue prompting a speeded response 7 

during a vigilance task, and to test whether individual subjective values of effort, evaluated 8 

using a COGED method, would correlate with performance and cortical oscillatory changes. 9 

Stimuli were presented in three blocks, with each differing in the incentive for fast responses 10 

(0p, 1p, 10p), and EEG data was recorded over a 90-s time window preceding each block to 11 

take the baseline into account during the calculation of relative-band power (RBP). Due to 12 

this block design, and as participants did not know when the target stimulus would occur, a 13 

constant state of motor activation was required, meaning a greater likelihood of observing a 14 

modulation of inhibition in cortical oscillatory changes was expected, as the release of 15 

inhibition would be required for movement. We therefore hypothesised that reward and 16 

response-speed would modulate sensorimotor alpha-band and frontal beta-band 17 

synchronisation, with stronger synchronisation being found preceding fast trials and in larger 18 

reward blocks, representing stronger inhibition.  19 

Since the type of baseline employed in experiment 1 cannot fully account for fast 20 

changes in arousal and motivation occurring during a lengthy vigilance task, experiment 2 21 

was carried out to analyse the effect of reward on cortical activation in a vigilance task using 22 

a standard event-related desynchronization (ERD) paradigm (Pfurtscheller and Aranibar, 23 

1977). The time course of the relative band power changes was analysed in a period of time, 24 

seconds before each trial. Trials involving no reward (0p), a small reward (1p) and a high 25 
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reward (10p) were presented in a random order, with a visual cue 2 seconds before the 1 

stimulus prompting a speeded response.  In this experiment, we aimed to measure the cortical 2 

processes associated with motor activation. As the participants knew when the target stimulus 3 

would occur, we predicted fast response-speeds and higher rewards would be associated with 4 

stronger alpha- and beta-band ERD over sensorimotor regions, as well as stronger theta-band 5 

synchronisation over central frontal regions. We also predicted, in both experiments, that 6 

participants who showed less effort-discounting in the COGED task would show stronger 7 

changes in RT and ERD/RBP as a function of reward. 8 

 9 

METHODS 10 

Experiment 1 11 

Participants 12 

29 subjects (12 females) were recruited. Five subjects were removed from subsequent 13 

EEG analysis due to excessive muscle artefacts. Therefore, the final sample included 24 14 

participants (10 females), aged 23.34 ± 2.44 (mean ± SD). The procedure used was approved 15 

by the Research Ethics Committee of the University of Liverpool and all participants gave 16 

fully informed written consent at the start of the experiment in accordance with the 17 

Declaration of Helsinki. 18 

Procedure 19 

Participants were required to complete two tasks. The participants first completed a 20 

modification of the sustained vigilance tasks used by Massar et al. (2016) and Dinges and 21 

Powell (1985), while EEG was recorded. The second task was a short discounting task 22 

requiring the participants to make a series of 36 choices between a high-effort, high-reward 23 

option and a low-effort, low-reward option. The purpose of this task was to estimate the 24 
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subjective value (SV) attributed to each level of effort offered during the task and to evaluate 1 

individual indifference points equalling monetary value and units of effort 2 

The vigilance task consisted of 1 five-minute practice block with no EEG recordings 3 

and 3 ten-minute experimental blocks with EEG recordings included. The five-minute block 4 

consisted of 50 trials, and each ten-minute block consisted of 100 trials. Overall, the 5 

participants completed 350 trials throughout the experiment. Participants were offered 6 

different rewards for each fast response in each block (0p, 1p, or 10p), and feedback 7 

regarding the amount of money and number of points the participants had currently earned 8 

was given after each block. Effort was measured behaviourally using the participants’ mean 9 

RTs and electrophysiologically using the participants’ change in RBP in the 1-s epoch 10 

preceding the presentation of the target stimulus and during the 90 second baseline period of 11 

each block. 12 

Sustained vigilance task 13 

The sustained vigilance task was an adaptation of the Psychomotor Vigilance Test 14 

used by Dinges and Powell (1985). This was a 10-minute sustained attention task in which 15 

participants were required to respond with a button press (left mouse button) with their right 16 

hand as quickly as possible whenever they are presented with a target stimulus. The scheme 17 

of the vigilance task is shown in Fig 1A. 18 

After the application of the EEG net, participants were taken into a dimly lit, sound 19 

attenuated room and were asked to complete the sustained vigilance task. Participants were 20 

seated in front of a 19-inch CRT monitor and used their right hand to make responses on a 21 

computer mouse. The stimuli were presented using Cogent 2000 software (UCL, London, 22 

United Kingdom) for Matlab R2016b. (Mathworks, Inc., USA). 23 

Participants were presented with a white fixation cross in the centre of a black screen 24 

monitor. The target stimulus occurred when the fixation cross disappeared for 0.5 seconds. 25 
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The presentation of the target stimuli was separated by uniformly distributed inter-trail 1 

intervals which ranged from 3.5 to 9 seconds. Participants first completed a five-minute 2 

practice run of the task with no rewards offered. During this baseline run the participants’ 3 

median RT was calculated, which was then used as the target RT in the following 3 ten-4 

minute blocks. 5 

Following the practice block, participants were required to complete three 6 

experimental ten-minute blocks of the same task. In one of the experimental blocks the 7 

participants were not offered any reward and were instructed to respond as quickly and as 8 

accurately as possible whenever the target stimulus occurred, and in the other two 9 

experimental blocks the participants were offered a monetary reward whenever they 10 

responded to the target stimulus faster than, or as fast as, their previously calculated median 11 

RT. In one of these two blocks participants were offered 1p per fast response and were 12 

offered 10p per fast response in the other block. Participants were presented with 100 target 13 

stimuli in each block, meaning they were offered a total of £1 or £10 in the two reward 14 

blocks respectively if they received the reward on every trial. In order to prevent practice or 15 

fatigue effects the order of the three experimental blocks was randomly generated by a 16 

computer at the start of each experiment, and a one-sample chi-square test was conducted to 17 

check the transitional probability of block order, confirming that any block order was not 18 

presented significantly more often than the others (p = .40).   19 

EEG recordings were acquired throughout the study. At the start of each of the three 20 

blocks, a 90-second baseline period was recorded, during which participants were instructed 21 

to look at the fixation cross presented on the monitor. The cross would not disappear and the 22 

participants were not required to make a response. 23 

Trials were split in half based on whether participants responded faster than their 24 

median RT were encoded as fast trials and trials where participants responded slower than 25 
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their median RT were encoded as slow trials. Behavioural measures of attention were taken 1 

as being the mean RT for each participant in each experimental block (0p, 1p, 10p) and 2 

response-speed trials (fast and slow).  3 

Discounting task 4 

The discounting task (Massar et al., 2016; Westbrook et al., 2013) was used to evaluate 5 

subjective costs of six levels of effort (5, 10, 15, 20, 25, and 30 minutes) for each participant 6 

using a series of monetary decisions.  7 

Participants were first told that they would be required to complete the previous 8 

sustained vigilance task again for an amount of time (ranging from one minute to thirty 9 

minutes) based on the choices made in the discounting task.  10 

Following this, participants were presented with 36 pairs of monetary offers, with 11 

each pair always consisting of one low-effort, low-reward option, and one high-effort, high-12 

reward option (Fig. 1C). The low-effort option always required participants to complete the 13 

task again for only one minute, whereas the amounts of time given in the high-effort option 14 

was varied based on which condition the trial was in. Participants were offered a fixed reward 15 

of £12 in the high-effort option in every trial. In comparison, the reward offered for the low-16 

effort option was adjusted following a staircase titration method (i.e., the offer was increased 17 

if the high effort option was chosen and decreased if the low effort option was chosen). The 18 

participants were first offered £6 for the low-effort choice with an extra £2.50 being added to, 19 

or taken away from, this amount depending on participant choice. The amount of money 20 

added to, or taken away from, the low-effort option was then halved each time the participant 21 

made a decision. The participants made six choices during each effort block (5, 10, 15, 20, 22 

25, 30 minutes), and the order of conditions was randomly presented for each participant.  23 

Following the final choice, one trial was randomly chosen through the generation of a 24 

random number between 1 and 36, which would then refer to the chosen trial number. Next, 25 
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the participant would be required to complete the vigilance task for the amount of time 1 

chosen during the selected trial and would receive the amount of money associated with that 2 

choice. 3 

An indifference point was calculated for each condition, and used as a measure of the 4 

subjective value of effort. This was defined as the average of the largest low-effort monetary 5 

offer for which the participant chose the low-effort option, and the lowest low-effort 6 

monetary offer for which the participants chose the high-effort option (Massar et al., 2016; 7 

Westbrook et al., 2013).  8 

In order to control for temporal discounting, participants were informed that they 9 

would be required to remain in the laboratory for the full 30 minutes in total, including the 10 

time spent completing the task. This ensured that the participants made decisions during the 11 

discounting task based upon the effort required rather than the time taken to complete the 12 

task. The boredom associated with remaining in the laboratory was not explored directly, 13 

however all participants discounted higher levels (30 min) more than lower levels (5 min). 14 

The area under the curve (AuC) in the function representing associations between 15 

units of efforts and requested payoffs was computed in every participant (Myerson et al., 16 

2001). This measure corresponds to SV of effort and has been found to be correlated with 17 

need for cognition scores (Westbrook et al., 2013). A bivariate correlation was conducted to 18 

assess the relationship between this function to RTs and RBP values. 19 

EEG recordings 20 

EEG data was recorded continuously using a 129-channel Geodesics EGI System 21 

(Electrical Geodesics, Inc., Eugene, Oregon, USA) with a sponge-based HydroCel Sensor 22 

Net. The net was aligned with reference to three anatomical head landmarks: two preauricular 23 

points and the nasion landmark. Electrode-to-skin impedances were kept below 50 kΩ and 24 
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were kept at equal levels across all electrodes. A recording band-pass filter was set at 0.001-1 

200 Hz with a sampling rate of 1000 Hz. The Cz electrode was used as a reference electrode. 2 

Spectral analysis of EEG signals 3 

EEG data was pre-processed using BESA v 6.1 (MEGIS GmbH, Germany). EEG 4 

signals were re-referenced using a common average reference method (Lehmann, 1984) 5 

which restored the signal at electrode Cz. Eye blinks and electrocardiographic artefacts were 6 

removed using principal component analysis (Berg and Scherg, 1994). Further, data were 7 

visually inspected for the presence of any movement or muscle artefacts, and epochs 8 

contaminated with artefacts were excluded from subsequent analysis. 9 

While participants completed all trials behaviourally, the average number of trials 10 

accepted for EEG analysis in each condition was: 0p, 53.9 ± 14.0 (mean ± SD); 1p, 54 ± 15.5 11 

(mean ± SD); 10p, 55.8 ± 14.3 (mean ± SD). The average number of accepted trials did not 12 

differ across conditions (p > 0.05). A recording band-pass filter was set at 0.001-1000 Hz 13 

with a sampling rate of 1000 Hz.  14 

Continuous EEG data was split into two sets of 1-second epochs. One set of epochs 15 

comprised epochs preceding the disappearance of the fixation cross (-1.0 - 0.0 s). This set of 16 

epochs was uses to evaluate the cortical activation preceding the speeded RT response. The 17 

other set of 1-s epochs was selected from the 90-second resting period which was recorded at 18 

the start of each block. All artefact-free 1-second non-overlapping epochs were used. This set 19 

of epochs was used to evaluate the baseline amplitudes of cortical oscillations and was used 20 

further to evaluate RBP changes.  21 

EEG signals were down-sampled to 256 Hz. In both epochs, the power spectra were 22 

computed in Matlab (The Mathworks, Inc., USA) using Welch’s power spectral estimate 23 

method. All epochs comprising one set of epochs were aligned to form a quasi-continuous 24 

EEG signals. The power spectral densities were computed from non-overlapping 1-second 25 
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segments (256 points). Each data segment was smoothed using a Hanning window. The 1 

power spectral densities were estimated in the range 1-80 Hz with a frequency resolution of 1 2 

Hz. 3 

The RBP  in the alpha (8-12 Hz), beta (16-24 Hz) and theta (4-7 Hz) bands were 4 

evaluated in each of three conditions using the classical ERD transformation (Pfurtscheller 5 

and Aranibar, 1979): 6 

𝐷 = (100 ∗
𝑅 − 𝐴

𝑅
) 7 

Where D represents the RBP during epochs preceding the disappearance of the 8 

fixation cross (A) relative to the rest condition (R). Positive values of D correspond to the 9 

relative band power decreases which are considered to signify the presence of cortical 10 

activation. In contrast, negative D values refer to the amplitude increases of band power or 11 

cortical synchronisation.  12 

Statistical analysis 13 

The differences in the median RT across three blocks and two speed conditions of the 14 

vigilance task were compared using a 2×3 repeated measures ANOVA with three levels of 15 

reward (0p, 1p and 10p) and two levels of response-speed (fast and slow). As participants 16 

were rewarded based on whether they beat their median RTs, the two levels of response 17 

speed were an integral part of the experimental procedure. These were included in this 18 

analysis to confirm the separation of the two trial types and to allow for the investigation of 19 

interaction effects between response speeds and reward. For the choice task, the AuC in the 20 

function representing associations between units of efforts and requested payoffs was 21 

computed in every participant (Myerson et al., 2001). This measure corresponds to SV of 22 

effort and has been found to be correlated with need for cognition scores in a previous study 23 

(Westbrook et al., 2013). 24 
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The RBP changes were investigated separately in alpha (8-12 Hz), beta (16-24 Hz) 1 

and theta (4-7 Hz) frequency bands across all 129 electrodes using 2×3 repeated measures 2 

ANOVAs.  3 

A two-step procedure was used to identify electrodes suitable for further analysis. To 4 

remove electrodes with spurious results showing only minimal changes in power from the 5 

baseline (e.g., <1% changes) in each frequency band, T-tests with significance thresholds of 6 

.01 were used to test whether RBP changes over each electrode were significantly different 7 

from 0.  8 

Electrode clusters showing statistically significant effects in both the permutation 9 

analysis and the t-tests were explored further in SPSS v. 22 (IBM Inc., USA). The 10 

Greenhouse-Geisser epsilon correction was used to tackle a violation of the sphericity 11 

assumption found in the data. The correlations between individual RTs and individual 12 

changes in RBP were calculated to test for possible covariations between behavioural and 13 

electrophysiological effects in all significant electrode clusters.  14 

Further, to tackle the risk of a false positive error due to the large number of tests, a 15 

hypothesis-independent permutation analysis, implemented in the statcond.m program in the 16 

EEGLab package (Makeig et al., 2004), was used to identify clusters of electrodes with 17 

significant main effects of reward or response-speed, or interactions between these conditions 18 

separately (Maris and Oostenveld, 2007). This cluster-based method provides a data-driven 19 

approach to assess effects of conditions on RBP in specified frequency bands (8-12 Hz, 16-24 20 

Hz, and 4-7 Hz) across all electrodes without making a priori assumptions, while also 21 

controlling for multiple comparisons with no loss in statistical power.  22 

In this analysis, we calculated the test statistics for the main effects and interactions of 23 

both response-speed and reward on RBP in the specified frequency bands over all electrodes. 24 

The RBP from all experimental conditions was then collected into a single dataset. Data 25 
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points were randomly drawn from this set and placed into subsets having the same size as the 1 

two response-speed and three reward conditions, forming a ‘random partition’, or dataset 2 

representing randomly shuffled versions of the three reward and two response-speed 3 

conditions. The test statistics for the main effects and interactions of reward and response-4 

speed in this random partition were then calculated. Next, the creation and analysis of the 5 

random partition was repeated 5000 times, and a histogram of the produced test-statistics was 6 

constructed for all electrodes. The proportion of random partitions that resulted in a larger 7 

statistic than the test-statistic first calculated for the non-shuffled data was calculated for all 8 

electrodes, and this was defined as the p-value. Electrodes that exceeded a predefined 9 

threshold on the calculated p-values (uncorrected p < .01) for the main effects of, or 10 

interactions between, reward and response-speed were selected and clustered based on spatial 11 

adjacency. 12 

Experiment 2 13 

Participants 14 

17 subjects (12 females), aged 24.05 ± 3.65 (mean ± SD) were recruited. The 15 

procedure used was approved by the Research Ethics Committee of the University of 16 

Liverpool, and all participants gave fully informed written consent at the start of the 17 

experiment in accordance with the Declaration of Helsinki. 18 

Procedure 19 

The procedures employed in experiment 2 were identical to those used in experiment 20 

1 except for the structure of the blocks and the trials. The participants first completed an EEG 21 

experiment; completing a sustained vigilance task, which was a modification of the vigilance 22 

task used in experiment 1 (Dinges and Powell, 1985; Massar et al., 2016). Participants then 23 

completed the same discounting task as the one employed in experiment 1.  24 
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Participants were first presented with a white fixation cross (baseline period) followed 1 

by a cue stimulus which displayed the reward value of the next target stimulus (0p, 1p, or 2 

10p) the fixation cross was then displayed in the centre of the screen. After 2.5 seconds the 3 

target stimulus occurred (the fixation cross would disappear for 0.5 seconds). The 4 

presentation of the baseline period and the cue stimulus was separated by uniformly 5 

distributed inter-trial intervals which ranged from 3.5 to 9 seconds and the cue stimulus was 6 

presented for 1 second (Fig 1B). The participants first completed a practice block of the test 7 

which lasted for 15 trials with no rewards offered. The participants’ median RT was 8 

calculated during the practice block and was then recalculated separately for each reward 9 

condition following each trial in the experimental portion of the task.  10 

Following this baseline block, participants were presented with target stimuli in 11 

groups of three, containing one trial from each reward condition (0p, 1p, and 10p). The order 12 

of trials was pseudo-randomly rearranged at the start of each set of 3 trails, meaning that the 13 

participants could not predict the order of presentation of trials and that there were an equal 14 

number of trials in each reward condition presented throughout the duration of the 15 

experiment. In the 0p condition participants were offered one point rather than a monetary 16 

reward whenever they responded to the target stimulus faster than (or as fast as) their 17 

previously calculated median RT. In two of the reward conditions participants were offered a 18 

monetary reward whenever they responded to the target stimulus faster than (or as fast as) 19 

their previously calculated median RT. Participants were offered 1p per fast response in one 20 

condition, and were offered 10p per fast response in the other. The participants were 21 

presented with 100 target stimuli for each condition, meaning that the participants were 22 

offered a total of £0, £1 or £10 across all the trials in each reward condition. During the 23 

baseline periods of the experiment, participants were instructed to look at the fixation cross 24 

presented on the monitor without making a response.  25 
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Trials were divided in half, whereby trials which participants responded faster than 1 

their median RTs were encoded as fast trials and trials where participants responded slower 2 

than their median RTs were encoded as slow trials. Behavioural measures of attention were 3 

taken as being the mean RTs for the participants in each experimental block (0p, 1p, 10p) and 4 

response speed condition (fast, slow). The average number of trials in each condition was: 0p 5 

73.67 ± 14.62 (mean ± SD); 1p 76.76 ± 12.84 (mean ± SD); 10p 74.95 ± 11.53 (mean ± SD). 6 

The average number of trials accepted did not differ across conditions (p > 0.05). Fewer trials 7 

were removed from the EEG analysis in this experiment compared to experiment 1 due to 8 

overall cleaner data.  9 

Event-related desynchronization analysis 10 

ERD in alpha, beta and theta bands was computed at every electrode by first calculating the 11 

absolute band-power value from 1-s time epochs shifted in 100-ms steps across a 9-s trial 12 

window. The trial time window ranged from 2 s before and 7 s after the onset of the cue 13 

signalling the amount of reward. The power spectral densities in every one of the 81time-bins 14 

were computed using the Welch method. Each data epoch was smoothed using a Hanning 15 

window. The epoch ranging from -1.5 to -0.5 s was used to evaluate rest amplitudes of 16 

cortical oscillations and this value was used to compute ERD at every time point across the 17 

trial according to the ERD transform (Equation 1). ERD values in the time epoch ranging 18 

from 2 to 3 s after the cue onset and immediately preceding the disappearance of the fixation 19 

cross were averaged for further statistical analysis. 20 

Statistical analysis 21 

The differences in the median RTs across three blocks and two speed conditions of the 22 

vigilance task were compared using a 2×3 repeated measures ANOVA with three levels of 23 

reward (0p, 1p and 10p) and two levels of response-speed (fast and slow). For the choice 24 
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task, each participant’s indifference point was calculated for each effort block (5, 10, 15, 20, 1 

25, 30 minutes).  2 

ERD was investigated in theta (4-7 Hz), alpha (8-12 Hz) and beta (16-24 Hz) 3 

frequency bands across all 129 electrodes using 2×3 repeated measures ANOVA. To tackle 4 

the risk of a false positive error due to the large number of tests the P values were corrected 5 

using a permutation analysis (Maris and Oostenveld, 2007), implemented in the statcond.m 6 

program in the EEGLab package (Makeig et al., 2004). To prevent multiple comparisons 7 

from creating false effects electrode clusters were selected using a permutation analysis with 8 

5000 permutations. Electrodes with statistically significant main effects or interactions were 9 

selected for further analysis. T-tests with significance thresholds of 0.001 were used to test 10 

whether ERD over each electrode was significantly different from 0. Only electrodes which 11 

passed significance thresholds in both tests were selected for subsequent analysis. The 12 

combined statistical and amplitude threshold ensured that results were extracted only from 13 

electrodes showing task-related responses. 14 

Electrode clusters showing a statistically significant effects in both the permutation 15 

and t-test analyses were explored further in SPSS v. 22 (IBM Inc., USA). Greenhouse-16 

Geisser epsilon correction was used to tackle the violation of the sphericity assumption due to 17 

more than two levels in the independent variable.  18 

To test possible covariations between band power, RT changes, and individual SVs, 19 

difference variables were created. These were defined as the mean difference between fast 20 

and slow trials for each participant, which were calculated by subtracting fast trial RTs and 21 

RBP from slow trial RTs and RBP power. The RBP and RT difference variables were 22 

correlated with each other and individual AuC of SVs using bivariate correlations. Bivariate 23 

correlations were conducted in all electrode clusters or single electrodes selected for further 24 

analysis, however, only statistically significant correlation coefficients are reported. 25 
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RESULTS 1 

Experiment 1 2 

Vigilance task 3 

Differences in median RTs across the three reward conditions (0p, 1p, 10p), and across fast 4 

and slow trials were analysed using a 2×3 repeated measures ANOVA. A statistically 5 

significant main effect of reward was found (F(2,56) = 6.75, p = .003, 𝜂𝑝2 = .19) with a 6 

significant negative linear trend (p = .001). This was found to be the result of a difference 7 

between the 10p reward block and both the 1p (p = .047) and the 0p reward blocks (p = .001). 8 

Median RTs in slow and fast trials in each reward category are shown in Fig. 2A.  9 

A statistically significant interaction between reward and response-speed was also 10 

found (F(2,56) = 5.03, p = .012, 𝜂𝑝2 = .15). A test of simple effects showed that this 11 

interaction was due to an effect of reward on RTs for slow trials only (F(2,46) = 7.15, p = 12 

.003) with a statistically significant negative linear trend (p = .002). The main effect was 13 

found to be the result of a difference between the 10p reward block and both the 0p (p = .001) 14 

reward block. No statistically significant effect of reward was found for fast responses. 15 

RT difference variables were correlated with the value of effort evaluated as AuC in 16 

individual COGED graphs representing amount of money to be paid for each of the six task 17 

durations, with no statistically significant correlation being found between RT changes and 18 

individual SVs of effort (see Fig. 3B). 19 

Discounting task 20 

A linear regression analysis was used to compare the change in SV for each effort condition 21 

(5, 10, 15, 20, 25 & 30 minutes). The mean discounting values across offered 5-30 min task 22 

durations are shown in Fig. 3A. There was a statistically significant exponential relationship 23 

between the levels of effort and SVs (F(1 , 172) = 32.87, p < .001,  𝑅2 = .17). The regression 24 

model showed a negative exponential regression with an equation of:  25 
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Y = 6 × exp (-0.041 × X) + ε, 1 

where Y is the SV, X is the effort level, and ε is an error element.  2 

Alpha-band changes 3 

Fig 4A shows the grand average topographic maps of RBP over all trials (left), as well 4 

as the electrodes found to be different from 0 (right). Electrodes responding with amplitude 5 

changes in the alpha band included the posterior parietal and occipital cluster of electrodes, 6 

the left central-temporal cluster, and two electrodes over the right frontal and prefrontal 7 

region of the scalp. The grand average topographic maps of RBP in each of the three reward 8 

conditions are shown for slow (Fig 4B) and fast (Fig 4C) trials, as well as across all trials (Fig 9 

4D). 10 

The topographic maps show widespread increases in alpha RBP, with larger RBP 11 

increases preceding fast compared to slow trials over left-central region of the scalp. 12 

Electrode 40, over the left-central area, was the only electrode found to pass both the 13 

difference from 0 t-test and the permutation-based threshold, and was, therefore the only 14 

electrode selected for further analysis. To investigate RBP changes over this electrode a 2×3 15 

repeated measures ANOVA was conducted, with 3 levels of reward (0p, 1p and 10p) and 2 16 

levels of response-speed (fast and slow). A significant main effect of response-speed was 17 

found (F(1,23) = 4.37, p = .048), where fast responses were found to elicit significantly 18 

stronger synchronisation compared to slow responses. Electrode location is shown in Fig 4E 19 

and RBP values for electrode 40 are shown in Fig 4F. 20 

In order to assess the relationship between RBP changes and RTs, difference variables 21 

were created. These were defined as the mean difference between fast and slow trials for each 22 

participant, being calculated by subtracting fast trial RTs and RBP from slow trial RTs and 23 

RBP power. There was a significant positive correlation between alpha RBP and RT 24 

difference variables in the 10p reward block (r(24) = .42, p = .015), showing that participants 25 
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with stronger synchronisation in fast relative to slow trials had shorter RTs in fast relative to 1 

slow trials. However, no significant correlations were found between the same RT and RBP 2 

difference variables created in either the 0p (r(24 = -.015, p = .95), or 1p (r(24 = .29, p = .15)) 3 

reward blocks. Results of these correlations are shown in Fig 4G-I. 4 

The changes in alpha RBP were also correlated with the value of effort evaluated as 5 

AuC in individual COGED graphs representing amount of money to be paid for each of the 6 

six task durations. However, no statistically significant correlation was found between alpha-7 

band power changes and individual SVs of effort acquired in COGED task. 8 

Beta-band changes 9 

Fig 5A (right panel) shows the grand average topographic maps of beta RBP over all 10 

trials (left), showing strong increases in RBP over frontal regions of the scalp at electrodes 11 

surpassing a combined statistical and amplitude threshold highlighted with red circles (left 12 

panel). The grand average topographic maps of relative band power in each of the three 13 

reward conditions are shown for slow (Fig 5B) and fast (Fig 5C) trials as well as across all 14 

trials (Fig 5D). Three electrodes passed both the difference from 0 and the permutation-based 15 

threshold and were, therefore, selected for further analysis. 16 

A statistically significant interaction between reward and response-speed was found 17 

over the right-frontal region of the scalp (electrode 124) (F(2,46) = 4.51, p = .016). The 18 

interaction was found to be due to an effect of response-speed in the 10p reward block 19 

(F(1,23) = 9.37, p = .006), where fast responses were found to elicit statistically significantly 20 

more beta-band synchronisation compared to slow responses. Electrode location is shown in 21 

Fig 5E and mean values of beta-band RBP in all conditions are shown in Fig 5F. 22 

A statistically significant main effect of response-speed was found over a frontal 23 

electrode (electrode 21) (F(1,23) = 5.64, p = .026), where fast responses were found to elicit 24 
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significantly weaker beta band synchronisation compared to slow-responses. In contrast, 1 

electrode 5, located in the midline fronto-central area of the scalp (Fig. 5G), showed a 2 

stronger beta-band power increase in fast compared to slow responses (F(1,23) = 9.23, p = 3 

.006) (Fig. 5H). 4 

To evaluate the relationship between RTs and RBP over right-frontal regions 5 

(electrode 124) a difference variable was calculated in both RTs and RBP values representing 6 

the differences between fast and slow trials in the 10p reward block only, being calculated by 7 

subtracting fast trial RBP and RTs from slow trial RBP and RTs. The Pearson product-8 

moment correlation showed a statistically significant positive relationship between the 9 

difference values computed for RTs and RBP over electrode 124 (r(24) = .44, p = .033) (Fig. 10 

5I). This shows that participants with a stronger increase in beta-band power in fast trials 11 

compared to slow trials in the 10p reward bock also had a greater difference in RTs between 12 

slow and fast trials in this block. No significant correlation was found between RBP changes 13 

in the beta band and individual discounting results.  14 

Data was also analysed in the theta frequency band, however, no electrodes were 15 

found to pass both significance thresholds in this frequency range. 16 

Absolute band power changes 17 

In order to confirm that the effects found within the alpha- and beta-bands were not the 18 

results of changes in baseline power, the absolute power of the baseline conditions was 19 

compared over relevant electrodes in the alpha- and beta-bands. No significant differences in 20 

baseline were found across reward conditions for any of the relevant electrodes (p > .05) in 21 

either frequency band, confirming that the results of experiment 1 were not the result of 22 

variations within the baseline power.  23 

 24 
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Discussion 1 

The results of experiment 1 show that the presence of monetary incentives shortened 2 

RTs, and fast responses were associated with stronger synchronisation in the alpha band over 3 

the left-central area of the scalp and stronger and more focused synchronisation in the beta 4 

band over fronto-central regions of the scalp, an effect which was particularly apparent in 5 

high-reward conditions. Individual values of subjective effort, however, were not associated 6 

with band-power increases in either the alpha or beta frequency bands. Thus, we were unable 7 

to replicate the correlation of r = 0.31 between the value of effort and the shortening of RTs 8 

found in previous research (Massar et al., 2016). However, the order of the three reward 9 

blocks was randomised in the present study, whereas in previous research the no reward 10 

block was always presented first. This procedural difference may explain the lack of a 11 

statistically significant correlation between the individual value of effort and performance.  12 

The effects of response-speed were seen as modulations of amplitude increases in 13 

both alpha- and beta-band power in the 1-s epoch preceding the motor response, compared to 14 

the baseline. In the alpha band, a stronger increase in oscillatory power was observed in fast 15 

compared to slow trials over a left-central electrode. This effect was significantly correlated 16 

with the individual differences between fast and slow mean RTs in the 10p reward block. An 17 

effect of reward was present only in the beta band, as a stronger synchronisation of beta-band 18 

oscillations prior to fast compared to slow responses in 10p condition but not in 0p or 1p 19 

conditions. Individuals with the largest differences between slow and fast RTs also showed 20 

the strongest increase in beta-band power at the frontal electrode.  21 

Amplitude increases in the alpha-band over central regions have traditionally been 22 

associated with motor inhibition (Fry et al., 2016; Jensen et al., 2005; Pfurtscheller et al., 23 

1996b; Salmelin and Hari, 1994). This is thought to be due to the absence of excitatory 24 

impulses from lower brain centres (e.g., the reticular formation) (Zaaimi et al., 2018; Steriade 25 
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and Demetrescu, 1962; Bonvallet and Newman-Taylor, 1967)  and due to the synchronised 1 

firing of GABAergic neurons (Faust et al., 2016; Tritsch et al., 2016; Jensen et al., 2005; 2 

Klimesch et al., 2007).  3 

Beta-band increases were stronger and more focused over fronto-central regions 4 

preceding fast responses compared to slow responses, reflected in a different pattern of ERD 5 

changes in electrodes 5 and 21. A similar pattern of a prominent fronto-central focus of beta-6 

band synchronization due to topographic expansion has been found for Go, compared to 7 

NoGo, responses (Alegre et al., 2004). While our data do not allow inferences on underlying 8 

cortical generators, the shape differences in the large ERD cluster in prefrontal and fronto-9 

central electrodes suggests that the fast- compared to slow movements were preceded by a 10 

stronger activation in premotor regions residing in the medial frontal cortex. This 11 

interpretation is supported by findings of activations in the right frontal cortex during stop-12 

signal and Go/No Go task, and of increased beta-band synchronisation over frontal electrodes 13 

during motor inhibition (Alegre et al., 2006; Wessel and Aron, 2013; Swann et al., 2009; 14 

Fonken et al., 2016; Wagner et al., 2018). The pattern of cortical oscillations in experiment 1 15 

matched the inhibitory processes posited by the horse-race theory (Logan and Cowan, 1984; 16 

Logan, 1994; Band et al., 2003), showing that active inhibition was required during motor 17 

preparation and that this was modulated by response-speed, especially under conditions of 18 

high reward.  19 

Both the alpha- and beta-band results suggest faster response speeds, especially under 20 

high reward, were associated with increased motor inhibition in the time window preceding 21 

movement. This relates to the experimental design, where the target was not cued, so motor 22 

activation was required to be maintained throughout each block. The increased inhibition 23 

found may relate to higher engagement with the task or be due to a faster motor response, and 24 
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the correlation found between RTs and RBP in the 10p reward block supports this 1 

explanation. 2 

 3 

Experiment 2 4 

Vigilance task 5 

Differences in median RTs in response to the target stimulus were assessed across the 6 

3 reward conditions (0p, 1p & 10p) in both fast and slow trials using a 2×3 repeated measures 7 

ANOVA. A significant main effect of reward was found (F(2,32) = 12.58, p = .001, 𝜂𝑝2 = 8 

.44), with a significant negative linear trend (p =.002). This main effect was found to be the 9 

result of significant differences between the 10p reward condition and both the 1p (p = .003) 10 

and the 0p (p = .002) reward conditions. The mean values of RTs in each reward and 11 

response-speed conditions are shown in Fig. 2B. 12 

A significant interaction was also found between reward and response-speed (F(1,32) 13 

= 10.80, p = .002, 𝜂𝑝2 = .40) and, in order to investigate this interaction one-way repeated 14 

measures ANOVAs assessed the effect of reward on RTs during fast and slow trials 15 

separately. The interaction was related to the statistically significant modulation of RTs 16 

during slow trials only (F(2,32) = 12.84, p = .001, 𝜂𝑝2 = .45) with a significant negative 17 

linear trend (p = .001). Further analysis of post-hoc effects revealed a significant difference 18 

between the 10p reward condition and both the 1p (p = .001) and 0p (p = .001) reward 19 

conditions. No statistically significant simple effect of reward on RTs were found in fast 20 

trials.   21 

A difference variable representing the high reward RTs subtracted from low reward 22 

RTs (10p-0p) correlated with the AuC in individual COGED graphs. However, no 23 

statistically significant correlation was found between RT changes and individual SVs of 24 

effort acquired in COGED task (see Fig. 3D). 25 
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Discounting task 1 

A linear regression analysis was conducted to compare the change in SV for each 2 

block during the discounting task (5, 10, 15, 20, 25, 30 minutes). There was a significant 3 

exponential relationship between the levels of effort and SVs (F(5 , 15) = 6.66, p < .002,  𝑅2 4 

= .69) (Fig. 3C). The regression model showed a negative exponential regression with an 5 

equation of:  6 

Y = 7.36X — 0.14 + ε, 7 

where Y is the SV, X is the effort level, and ε is an error element.  8 

ERD patterns across trials. 9 

Fig 6., shows ERD/ERS scalp topographies over specified time periods (0.5 s, 2 s, 2.5 10 

s, and 3.3 s following the presentation of the cue stimulus) in (A) the alpha-band, (B) the beta 11 

band, and (C) the theta band. Time courses of percentage power changes over specified 12 

electrodes are also shown. Electrodes were selected apriori at areas of the scalp where band 13 

power was expected to be modulated by task demands based on previous research. For 14 

example, an ERD was expected over contralateral sensorimotor areas in the alpha- and beta-15 

bands during motor preparation (Rhodes, 2019; Pfurtscheller and Berghold, 1989; Tzagarakis 16 

et al., 2010; Tzagarakis et al., 2015; Fox et al., 2016; Ishii et al., 2019). Oscillations during 17 

the cue interval (0.5 s after cue onset) were featured by an ERD over occipital electrodes in 18 

the alpha band (Fig. 6A). This is consistent with the presence of attentional and visual 19 

processing of a reward cue. During the period of motor readiness (2-2.5 s after cue onset), 20 

alpha-ERD was prominent in left (contralateral) parietal, and central electrodes. After the cue 21 

disappeared and during the time of motor response, alpha-ERD was distributed bilaterally in 22 

parietal, and central electrodes. 23 

In the beta band (Fig. 6B), a comparatively weak ERD appeared in the contralateral 24 

central electrodes during the period of motor readiness preceding the disappearance of the 25 
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fixation cross. A beta-ERS was seen at the vertex electrode during motor preparation (2.5 s 1 

after cue onset). This increased during the motor response period (3.3 s after cue onset).  2 

Finally, in the theta band (Fig. 6C), activation during the cue interval (0.5 s after cue 3 

onset) was confounded by the presence of the phase-locked evoked response causing an 4 

increase of theta power over the whole scalp. The period of motor readiness (2.5 s after cue 5 

onset) was featured with a theta-ERS at central and precentral midline electrodes.  6 

Alpha-band ERD 7 

The grand average topographic maps showing alpha-band ERD for all trials as well as 8 

the electrodes found to be significantly different from zero are shown in Fig 7A. Two clusters 9 

of electrodes, one in bilateral parietal and central electrodes and another in frontal electrodes, 10 

showed alpha-ERD surpassing both the combined amplitude and statistical thresholds.  11 

Topographic maps showing ERD in each of the three reward conditions are shown In 12 

Fig. 7B for slow, and Fig 7C for fast trials, and in Fig 7D for all trials irrespective of the 13 

speed of the motor response.  14 

To investigate the effects of response-speed and reward on ERD values 2×3 repeated 15 

measures ANOVAs were computed to assess the significant main effects and interactions of 16 

response-speed (fast & slow) and reward (0p, 1p, 10p) on ERD recorded by electrodes which 17 

passed the combined statistical and amplitude thresholds. This ensured that only electrodes 18 

showing a robust ERD across conditions were analysed.  19 

Statistically significant main effects of reward were found in both frontal and occipital 20 

regions of the scalp. Over frontal electrodes (cluster 1) ERD grew significantly stronger as 21 

reward increased (F(2,32) = 7.95, p = .003, ηp2 = .44), and a statistically significant positive 22 

linear trend was found (p = .005). The observed main-effect of reward was due to a difference 23 

between ERD in 10p reward trials and both 0p (p = .005) and 1p reward trials (p = 0.008). 24 

There was also a statistically significant effect of reward on ERD found over right-parietal 25 
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regions (cluster 2) (F(2,32) = 4.31, p = .022, ηp2 = .31), with a statistically significant linear 1 

trend (p = .017). This effect was found to be the result of a difference between ERD 2 

calculated for 10p trials and for 0p trials (p = .017).  Electrodes with a main effect of reward 3 

are shown in Fig 7E, and results for both cluster 1 and cluster 2 are shown in Fig 7F. 4 

Significant main effects of response-speed were also found over frontal and occipital 5 

electrodes, where fast trials were found to elicit significantly stronger ERD when compared 6 

to slow trials. There was significantly stronger ERD found over electrode 9 (frontal) during 7 

fast trials compared to slow trials (F(1,16) = 6.21,  p = .024, ηp2 = .28), and stronger ERD 8 

over cluster 3 (occipital) during fast compared to slow trials (F(1,16) = 5.21, p .037, ηp2 = 9 

.25). Electrodes with a significant main effect of response-speed are shown in Fig 7G and 10 

ERD results for electrode 9 and cluster 3 are shown in Fig 7H.  11 

A difference variable was created to by subtracting fast from slow trials for both 12 

individual ERD values over electrode 9 and individual RTs. A significant negative 13 

correlation was found between these two difference variables (r(17) = -.55, p = .021), 14 

showing that stronger differences in ERD between fast and slow trials were associated with 15 

larger differences in RTs between these trials (Fig 7I).  16 

Difference variables were also created to calculate the mean difference between the 17 

ERD found during 10p reward trials and both 1p and 0p reward trials in cluster 1, and to 18 

calculate the mean difference in the participant’s indifference points taken from the COGED 19 

task during 5 min and 30 min effort conditions. There was, however, no statistically 20 

significant correlation between the SV of effort, evaluated as AuC of individual COGED 21 

functions, and alpha-band ERD. 22 

Beta-band ERD 23 

The grand average topographic map for all trials and the distribution of electrodes 24 

showing ERD significantly different from zero are shown in Fig. 8A. The electrodes with a 25 
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strong beta-ERD across conditions were located primarily in the left, right-central and 1 

parietal electrodes. The grand average topographic maps in each of the three reward 2 

conditions are shown for slow trials in Fig 8B, for fast trials in Fig 8C, and for all trials in 3 

Fig. 8D.   4 

ERD in the beta band featured a comparatively weak effect in the contralateral central 5 

and parietal electrodes in the 0p and 1p conditions compared to the 10p condition. Beta-ERD 6 

was also pronounced over ipsilateral central electrodes, however this effect was only found in 7 

the 10p condition. ERS can also be seen over central regions (electrodes Cz to Oz), an effect 8 

consistent with the ‘surround ERS’ (Suffczynski et al., 2001) found around areas showing 9 

ERD in previous studies (Pfurtscheller, 2003; Pfurtscheller et al., 2000; Neuper et al., 2006; 10 

Doyle et al., 2005). 11 

There was a significant main effect of reward in the ipsilateral (right) sensorimotor 12 

hand area (cluster 1, Fig. 8E) (F(2,32) = 10.14, p = .001, ηp2 = .58), with a significant 13 

positive linear trend (p = .004) (Fig. 8F). The main effect of reward was related to the 14 

statistically significant difference between 10p reward and both the 1p (p < .001) and 0p 15 

reward conditions (p < .001).  16 

In the contralateral (left) cluster of electrodes (cluster 2, Fig 8G), beta-band ERD was 17 

significantly stronger when preceding fast trials compared to slow trials (F(1,16) = 10.39, p = 18 

.005, ηp2 = .39) (Fig. 8H). There was no effect of reward in cluster 2 (p > .05). 19 

In order to evaluate the relationship between behavioural results and beta-ERD found 20 

ipsilateral to the hand movement a difference variable was created where the mean ERD 21 

difference between 10p reward trials and both 1p and 0p reward trials was calculated. 22 

However, there was no statistically significant correlation between beta-band ERD and RT 23 

difference values. Similarly, there was no statistically significant correlation between beta-24 

band ERD and the SV of effort in any of the electrode clusters (p > 0.05). 25 
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Similar to experiment 1, there were no statistically significant effects of reward or 1 

speed of response in theta band. 2 

Discussion 3 

Reward level quickened RTs, especially in slow movements. The COGED profiles 4 

showed decreasing SVs of reward as the associated effort was increased similar to previous 5 

studies (Massar et al., 2016; Westbrook et al., 2013). However, no significant correlation was 6 

found between the SV of effort and either RTs or cortical oscillatory changes. We were, 7 

again, unable to replicate the correlation between value of effort and RTs found in Massar et 8 

al. (2016). It appears that this correlation is difficult to replicate if the order of blocks or trials 9 

with different reward levels occurs in a random order, showing independence between the 10 

individual value of effort and the way rewards effected the modulation of effort during the 11 

vigilance task  12 

ERD in the alpha band showed reward-related increases, with the strongest ERD in 13 

the 10p condition in two clusters of electrodes, one in the frontal and the other the parietal 14 

region of the scalp. Both regions also showed a stronger ERD prior to fast, compared to slow 15 

motor responses. In the beta-band, ERD was localised in contralateral central regions of the 16 

scalp, purportedly overlaying the sensorimotor hand areas, and was stronger preceding fast 17 

compared to slow responses. This ERD response became bilateral during the 10p reward 18 

conditions before both fast and slow trials, but not during the 0p or 1p reward conditions.   19 

Theta-band oscillations showed fronto-central synchronisation prior to the target 20 

stimulus, a response associated with increased attention and effort (Angelidis et al., 2018; 21 

Rajan et al., 2018; Basar-Eroglu et al., 1992; Klimesch, 1999). This was, however, not 22 

modulated by reward or response speed, showing that it was not related motor preparation or 23 

may have a ceiling effect.  24 
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The alpha-band ERD in posterior parietal regions is likely to refer to the activation of 1 

regions involving visual-spatial coordination localised in the posterior parietal cortex (Ibos 2 

and Freedman, 2016; Whitlock, 2017; Assmus et al., 2005; Corbetta et al., 2000). ERD in 3 

posterior parietal electrodes has also been observed during the preparation of shoulder 4 

movements (Stancak et al., 2000). This may indicate more generalised motor readiness 5 

during intense effort, which may, initially, involve larger muscle groups even if the target 6 

movement is only a hand movement. The alpha-band ERD in the prefrontal regions supports 7 

the hypothesis that this region is implicated in motor preparation, or in the activation of 8 

cortical areas involved in motor preparation (e.g., motor areas or the basal ganglia) (Aron and 9 

Poldrack, 2006). This interpretation is strengthened by the significant correlation between 10 

alpha-band ERD and individual RTs, and the present results show that these effects can be 11 

elicited by increasing performance-based rewards.  12 

 Fast compared to slow motor responses were preceded by increased beta-ERD in 13 

electrodes overlying the contralateral sensorimotor cortex, which is likely to refer to 14 

increased motor preparation during fast trials (Ishii et al., 2019; Rhodes, 2019; Tzagarakis et 15 

al., 2015; Fry et al., 2016; Tewarie et al., 2018). The effect of reward on beta-band 16 

oscillations is supported by previous research, in which voluntary movements have been 17 

shown to be preceded by ERD in bilateral sensorimotor cortical regions (Little et al., 2018; 18 

Stancak et al., 1997; Stancak and Pfurtscheller, 1996a; Neuper and Pfurtscheller, 2001; Fry et 19 

al., 2016). A similar effect was found by Stancak et al. (1997), where desynchronization in 20 

the beta band manifested in the ipsilateral somatosensory region under intermediate, but not 21 

zero, external load. The results of the present study adds to the literature by showing that 22 

incentive can elicit this effect, possibly relating to a ceiling effect in the contralateral 23 

sensorimotor cortex, boosting motor readiness in the ipsilateral sensorimotor cortex under 24 

strong effort. 25 
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Overall, the results of experiment 2 show increases in cortical activation in parietal 1 

and central electrodes paralleling increases in reward and shortening of RTs. These 2 

associations between amplitude decreases of cortical oscillations, and reward and 3 

performance could relate to the heightened level of motor readiness assumed to underlie fast 4 

responses in the horse-race theory motor control (Logan and Cowan, 1984).  5 

 6 

General discussion 7 

The present results add weight to our current understanding of cognitive effort by suggesting 8 

that reward may modulate effort through the activation or inhibition of relevant cortical areas 9 

in the short epoch preceding a speeded motor response in a sustained vigilance task. 10 

However, results suggest that the cortical mechanisms employed differ widely depending on 11 

the structure of the vigilance task.  12 

If the task was conducted as a series of speedy movements executed under the same 13 

reward level (experiment 1) a sustained motor preparation was required which lasted 14 

throughout the entire block. Optimal motor performance was likely achieved as a 15 

combination of high motor readiness and inhibition in the frontal cortex; where the inhibitory 16 

component, indexed as increases of beta-band oscillations in frontal electrodes, prevailed.  17 

 In contrast, if the experiment was conducted with the three reward conditions 18 

alternating in a pseudo-random fashion with cues signalling the reward levels at the start of 19 

each trial (experiment 2), optimal performance could be achieved by a continuous build-up of 20 

activation in task-relevant cortical regions. This version of the sustained vigilance task 21 

allowed the cortical regions to reach a resting state after each movement because participants 22 

were certain that no motor response was required in the time period preceding the reward cue 23 

stimulus. Thus, to achieve a fast response, the activation in the sensorimotor, premotor and 24 

other cortical areas would need to increase from a state of low activation and reach a state of 25 
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high activation within the span of two to three seconds. This process of building activation in 1 

the sensorimotor cortex did not require a parallel inhibition like in experiment 1, in which 2 

short RTs would be achieved if the sensorimotor cortex was continuously active.  3 

 A novel result was found in experiment 2, showing that when participants are offered 4 

sufficient reward (10p) activations are found bilaterally in the sensorimotor cortex. This 5 

indicates that strong enough motivation can lead to motor preparation being employed in both 6 

the contralateral and ipsilateral motor areas, and adds to previous research finding bilateral 7 

sensorimotor ERD during movement (Little et al., 2018; Stancak and Pfurtscheller, 1996a; 8 

Stancak et al., 1997; Neuper and Pfurtscheller, 2001; Fry et al., 2016). This suggests that this 9 

effect occurs due to activation from the contralateral region ‘spilling-out’ into, or employing 10 

resources from the ipsilateral region. Movement-related ERD has been found to be stronger 11 

and more bilateral in elderly compared to younger participants (Derambure et al., 1993; 12 

Vallesi et al., 2010). The present results suggest this effect occurs because elderly participants 13 

have to make more of an effort to make the same movement compared to younger 14 

participants. 15 

Taken together, the cortical oscillatory patterns seen in experiment 1 and 2 act 16 

according to the horse-race model (Logan et al., 1984). The horse-race model assumes two 17 

antagonised processes, one generating a response to the primary task and the other inhibiting 18 

it. In experiment 1, the increases of beta-band power in frontal cortical regions preceding fast 19 

responses in the high-reward condition could be the manifestation of the inhibition process. 20 

This would be expected to be found in the frontal cortex, which has been shown to mediate 21 

motor inhibition in stop-signal and go/no-go tasks (Wessel and Aron, 2015; Aron, 2007; 22 

Sakagami et al., 2006), perhaps via the subthalamic nucleus in the basal ganglia (Fischer et 23 

al., 2017; Aron, 2007; Eagle and Robbins, 2003). This may also relate to an optimization of 24 

dopamine levels in the prefrontal cortex, which has been associated with increased cognitive 25 
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stability (Sharp et al., 2016; Cools, 2016; Cools et al., 2002; Durstewitz et al., 2000), and 1 

may, therefore, be required in experiment 1 due to the block design. In experiment 2, the time 2 

courses of ERD in the alpha and beta band showed a build-up during the interval preceding 3 

the motor response (Fig 6A/B). This was motivationally relevant and occurred in areas 4 

associated with motor preparation and visuo-spatial attention (Fry et al., 2016; Tewarie et al., 5 

2018; Ibos and Freedman, 2016; Whitlock, 2017), possibly showing the excitatory 6 

components posited by the horse-race theory.  7 

The individual value of effort did not correlate with either amplitude increases in 8 

beta-band oscillations in experiment 1, or beta-band decreases in experiment 2. It is likely 9 

that individual values of effort are implemented during the decision about whether to engage 10 

into an effortful cognitive task, but not during an ongoing task. Expected reward level, on the 11 

other hand, acted as a modifier of effort by imposing a top-down modulation of the inhibitory 12 

and excitatory processes to boost performance. Our results also add weight to the idea of 13 

cognitive effort being the result of cognitive control (Shenhav et al., 2013b; Kurzban, 2016), 14 

a signal which modulates the task-appropriate inhibition and excitation of cortical response. 15 

This ties into to the horse-race model of motor control and shows that these responses can be 16 

modulated by monetary incentives. However, while a significant correlation was found 17 

between RTs and oscillatory changes between fast and slow responses, no significant 18 

relationship was found between the effects of incentives on oscillatory changes and the effect 19 

of incentives on RTs, meaning that it is difficult to directly infer that incentives altered 20 

behaviour through oscillatory changes. This may be due to other factors modulating how 21 

incentives affected RTs, such as individual or state differences, or due to a low level of 22 

statistical power. 23 

 24 
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Conclusion 1 

Decreasing RTs as the result of the presence and magnitude of reward was associated 2 

with cortical oscillatory changes in both experiment 1 and experiment 2. Experiment 1 3 

showed a modulation of response-speeds on cortical inhibition in frontal, prefrontal, and 4 

central regions, especially under high reward, suggesting that high reward modulated RTs 5 

through the holding and release of inhibition. Experiment 2 showed a modulation of cortical 6 

activation over motor, frontal, and posterior-parietal regions, suggesting that reward 7 

modulated RTs through changes in motor preparation and visuo-spatial co-ordination in this 8 

modified task. Taken together, these results show the dual-processes proposed by the horse-9 

race model of motor action, showing that both inhibition and preparation can be manipulated 10 

using performance-based rewards, and ties these to the hypothesis that cognitive effort results 11 

from top-down cognitive control, and can be encouraged with monetary incentives. 12 
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Figure legends. 1 

Fig 1. A schematic representation of trials presented to participants in the motivated vigilance 2 

task for (A) experiment 1 showing first the inter-trial interval, then the target stimulus, 3 

followed by the inter-trial interval for the following trial; (B) experiment 2, showing first the 4 

cue stimulus, then the period of preparation, followed by the target stimulus; and, finally the 5 

inter-trial interval, and (C) the discounting choice task for both experiments, showing, first an 6 

example choice offered to the participants, followed by feedback confirming the selected 7 

choice. 8 

Fig 2. A bar chart to show the mean RTs in each reward condition (0p, 1p, 10p) in slow 9 

(grey) and fast (white) trials in experiment 1 (A) and experiment 2 (B). Error bars represent 10 

the standard errors of the mean. 11 

Fig 3. A line graph to show the discounting curve in the choice task, with the mean subjective 12 

value shown for each block in the task (5, 10, 15, 20, 25, 30 minutes). A discounting curve is 13 

shown for both (A) experiment 1 and for experiment 2 (C). Error bars represent standard 14 

errors of the mean. And scatterplots to show the correlation between the area under the curve 15 

of SVs in the discounting task and the median RTs difference between high-reward and no 16 

reward conditions (0p-10p) for experiment 1 (B) and experiment 2 (D)  17 

Fig 4. The RBP changes in alpha band in experiment 1. (A) A grand average topographic 18 

map of alpha-RBP averaged across all conditions and subjects. (B) An overhead view of 19 

electrodes showing statistically significant changes in alpha band across all conditions.  (C) 20 

Grand average topographic maps of alpha-RBP in 0p, 1p and 10p conditions during trials 21 

with slow RTs. (D) Grand average topographic maps of RBP in three reward conditions in 22 

fast RT trials. (E) Grand average topographic maps of alpha RBP in three reward conditions 23 

across all trials and the location of electrode 40 showing an interaction between reward 24 
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values and speed of motor response. (F) The mean values of alpha RBP in slow (grey 1 

rectangles) and fast (white rectangles) in three reward conditions ate electrode 40. The error 2 

bars represent standard errors of the mean. Scatter plot and linear regression lines 3 

representing correlation between the difference alpha RBP (slow-fast trials) and the 4 

difference RT (slow-fast trials) at electrode 40 in 10p condition (G), the 1p condition (H), and 5 

the 0p condition (I). 6 

Fig 5. The relative band power changes in beta band in Experiment 1. A. Grand average 7 

topographic map of beta RBP across all conditions and subjects. B. An overhead view of 8 

electrodes showing statistically significant changes in beta band across all conditions.  C. 9 

Grand average topographic maps of beta RBP in 0p, 1p and 10p conditions during trials with 10 

slow RT. D. Grand average topographic maps of beta RBP in three reward conditions in fast 11 

RT trials. E. Grand average topographic maps of beta RBP in three reward conditions across 12 

both slow and fast RT trials. E. Location of electrode 124 showing an interaction between 13 

reward values and speed of motor response. F. The mean values of beta RBP in slow (grey 14 

rectangles) and fast (white rectangles) in three reward conditions at electrode 124. The error 15 

bars stand for standard errors of the mean. G. Locations of electrodes 121 and 5 showing a 16 

statistically significant main effect of response speed. H. The left-hand panel shows mean 17 

beta RBP at electrodes 121 and 5 in three reward conditions for slow (grey rectangles) and 18 

fast (white rectangles) trials. I. The scatter plot and linear regression line  with 95% 19 

confidence interval lines depicting association between differences in RT (slow-fast trials) 20 

and differences beta-band RBP (slow-fast trials) .  21 

Fig 6. Topographic maps of alpha (A),  beta (B) and theta (C) ERD at four time points: 22 

during presentation of visual cue (0.5 s), early period of anticipation of motor response (2 s), 23 

late period of motor response anticipation (2.5 s) and during motor response (3.3 s). In each 24 
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section (A-C), ERDs at selected electrodes are also shown. The grey rectangles covering the 1 

interval from 2 s to 3 s represent the epoch of interest preceding the motor response. 2 

Fig 7. Alpha-band ERD during anticipation of motor response A. Topographic map of alpha-3 

band ERD across all conditions and trials (left), and electrodes showing a prominent alpha-4 

band ERD across all conditions (right). B. Topographic maps of alpha-band ERD in three 5 

reward conditions during slow ER trials. C. Topographic maps in each of three reward 6 

conditions in fast RT trials. D.  7 

E. Location of electrodes in two clusters manifesting statistically significant effect of reward. 8 

F. Bar charts showing mean alpha-band ERD each of three reward conditions in slow (grey 9 

rectangles) and fast (white rectangles) RT trials. Error bars represent standard error of the 10 

mean. G. Locations of electrodes displaying a statistically significant main effect of speed of 11 

motor response. I. A scatterplot and the linear regression line with 95% confidence lines 12 

illustrating the statistically significant correlation between alpha-band ERD differences 13 

(slow-fast RT trials) and RT differences in electrode 9. 14 

Fig 8. Topographic maps and statistically significant effects in beta-band ERD. A. Grand 15 

average beta-band ERD across all trials and subjects (left panel) and locations of electrode 16 

clusters manifesting a statistically significant beta-band ERD (right panel). B. Topographic 17 

maps of beta-band ERD in three reward conditions (0p, 1p and 10p) in slow RT trials. C. 18 

Topographic maps of beta-band ERD in fast RT trials. D. Topographic maps of beta-band 19 

ERD in three reward conditions averaged across fast and slow trials. E. Location of the 20 

electrode cluster, labelled C1, showing a statistically significant effect of reward.  F. Mean 21 

values of beta-band ERD in the cluster shown in (F) in three reward conditions in slow (grey 22 

rectangles) and fast (white rectangles). The error bars stand for standard errors of the mean. 23 
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(G.) The location of electrode cluster, labelled C2, showing a statistically significant effect of 1 

speed of motor response. (H.) Mean values of beta-band ERD in three reward conditions in 2 

slow (grey rectangles) and fast (white rectangles) RT trials. 3 
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