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Large Nf calculations in deep inelastic scattering
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Abstract. We describe the evaluation of the anomalous dimensions of twist-2 deep in-
elastic light cone operators to O(1/Nf) as a check on future perturbative calculations. In
particular we present recent results for the singlet gluonic operator dimension in polarised
and unpolarised scattering and give three loop predictions for the O(1/Nf) gluonic eigen-
operator. The section of the 3-loop O(1/Nf) DGLAP splitting function proportional to
the adjoint quadratic Casimir is also calculated for the singlet gluonic operators.
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1 Introduction.

Our modern view of hadronic matter is based upon the rich quantum field theory of
Quantum Chromodynamics (QCD) (for a review see [1]) in which we picture hadrons as
bound states of valence quarks in a sea of vacuum excitation quark/antiquark pairs and
gluons. Because QCD has the remarkable property of asymptotic freedom [2] we can use
high momentum transfer reactions such as deep inelastic scattering (lepton + nucleon
−→ lepton + hadrons) to compare experiment with the predictions of perturbative QCD
(pQCD) and so refine our ideas on the structure of strongly interacting particles.

The formal QCD approach to deep inelastic scattering (DIS) allows us to predict struc-
ture function behaviour using moment sum rules. Key to this method is the formalism
of the light cone expansion (LCE) in which the non-local time ordered product of elec-
tromagnetic quark currents appearing in the general DIS cross-section is expanded in a
series of local, spin-n operators together with c-number Wilson co-efficients. The LCE
is easily seen to be dominated by operators of lowest twist (τ = operator dimension −

operator spin). For QCD the lowest twist operators available are twist-2. It can be shown
by using the anomalous dimensions associated with the renormalisation of insertions of
these operators in 2-point Green functions, that we can determine the evolution of the
moment sum rules with the large momentum transfer scale.

The unpolarised twist-2 operators are [3],

O
NSi
µ1...µn

= in−1
Sψ̄γµ1

Dµ2
. . .Dµn

1

2
λiψ

Oq
µ1...µn

= in−1Sψ̄γµ1
Dµ2

. . .Dµn
ψ

Og
µ1...µn

= 1

2
in−2S Gµ1αDµ2

. . .Dµn−1
Gα

µn

(1.1)

and the polarised twist-2 operators are [4],

RNSi
σµ1 ...µn−1

= in−1Sψ̄γ5γσDµ1
. . .Dµn−1

1

2
λiψ

R
q
σµ1 ...µn−1

= in−1
Sψ̄γ5γσDµ1

. . .Dµn−1
ψ

Rg
σµ1 ...µn−1

= 1

2
in−2S ǫσαβγG

βγDµ1
. . .Dµn−2

Gα
µn−1

(1.2)

Here, ψ is the quark field, Gµν is the gluon field strength tensor, Dµ is the QCD covariant
derivative, λi are the generators of SU(Nf ), S stands for symmetrisation over Lorentz
indices and NS denotes the non-singlet operator under SU(Nf ) as opposed to the other
singlet operators.

An alternative, less abstract means of providing theoretical predictions for DIS is
given by the parton model. Here the structure functions may be expressed in terms of
parton distribution functions (PDFs). These give the probability that the struck nucleon
constituent (parton) carries a particular fraction of the total nucleon momentum. The
evolution of the PDFs are then governed by the DGLAP equation [5]. This contains
the DGLAP ‘splitting functions’ which express the probabilities for the struck parton
undergoing certain collinear decays as the energy scale changes. The DGLAP splitting
functions can be explicitly obtained from the previously mentioned operator anomalous
dimensions through an inverse Mellin transform. Solutions of the full DGLAP equation
provide us with scale dependent PDFs which may than be used as inputs for other hard
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scattering processes where the formal QCD approach is not necessarily applicable as well
as giving us a deeper insight into hadron structure in the asymptotic regime.

With facilities such as HERA currently opening up new kinematical regimes for unpo-
larised and (soon) polarised DIS, there presently exists a need to perform a NNLO twist-2
analysis to ensure a high precision examination of pQCD. This is especially important
where the new order’s effects are expected to be seen experimentally (as in low x, high
Q2 scattering at HERA). This programme requires the 2-loop Wilson co-efficients and
3-loop anomalous dimensions of all the DIS twist-2 light cone operators with full spin de-
pendence. Although the complete 2-loop operator dimensions have been known for many
years now [3, 6, 7, 8], the full 3-loop computations have only become viable in recent
years. The current state of play is that the 3-loop unpolarised singlet and non-singlet
operator dimensions have been calculated for particular spins of the operator (n = 2, 4, 6,
8 and n = 2, 4, 6, 8, 10 respectively) [9, 10]. In addition, the 2-loop finite parts required
for the full 3-loop results have recently been calculated for all twist-2 unpolarised and
polarised operators [11, 12]. As one might expect, these are particularly difficult calcu-
lations involving thousands of Feynman diagrams. It is clear that a check on the final
full 3-loop results would be useful. One way of approaching this would be to calculate
the dimensions using an alternative expansion parameter to the QCD coupling and check
that there is agreement where overlap exists. We can do this by use of the 1/Nf expansion
and a critical point approach.

2 The Method.

By applying the critical large Nf method developed in the series of papers [13] it is possible
to obtain expressions for the twist-2 operator dimensions to O(1/Nf). The method entails
the analysis of operator insertions in QCD Green functions at a d-dimensional non-trivial
renormalisation group fixed point. This fixed point may be found as a stable zero of the
d-dimensional four-loop QCD β-function [14] and is located at

ac =
3ǫ

4T (R)Nf

+
[

33

16
C2(G)ǫ −

(

27

16
C2(R) +

45

16
C2(G)

)

ǫ2

+
(

99

64
C2(R) +

237

128
C2(G)

)

ǫ3

+
(

77

64
C2(R) +

53

128
C2(G)

)

ǫ4 + O(ǫ5)
]

1

T 2(R)N2
f

+ O

(

1

N3
f

)

(2.1)

where ac is the strong coupling constant at criticality, C2(R) and C2(G) are the funda-
mental and adjoint quadratic Casimirs respectively, tr(T aT b) = 1

2
δab for T a the generators

of SU(Nc) and d = 4 − 2ǫ.

Several good things come out of using such an approach;

1. Propagators take on a simple, dressed, scaling form due to the scaling properties of
Green functions at a renormalisation group fixed point.
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For example, the quark and gluon propagators are respectively [15],

ψ(k) ∼
Ak/

(k2)µ−α
, Aµν(k) ∼

B

(k2)µ−β

[

ηµν − (1− b)
kµkν
k2

]

(2.2)

where b is the covariant gauge parameter, d = 2µ, A and B are momentum indepen-
dent amplitudes and the exponents α and β are defined using simple dimensional
analysis of the massless QCD action as

α = µ − 1 + 1

2
η , β = 1 − η − χ (2.3)

Here, the critical exponent η is the quark anomalous dimension associated with the
quark wave function renormalisation at the critical coupling and similarly χ is the
anomalous dimension of the quark-gluon vertex.

2. Using the critical renormalisation group it can be shown that the form of a particular
O(1/Nf) operator anomalous dimension at ac may be calculated by evaluating the
residues of first order poles (we use an analytic regularisation of the gluon dimension)
in appropriate O(1/Nf) two-point Green functions at ac. These Green functions
consist of an insertion of the operator into a QCD two-point function. (We also
need to take the field renormalisations into account).

3. Since, in the language of statistical mechanics, we are working at a critical point, we
know that we have an essentially massless theory which enables us to use integration
tricks such as uniqueness and conformal transformations to evaluate diagrams.

4. In d-dimensions and to O(1/Nf) there exists a universality equivalence between
QCD and the non-abelian Thirring model (NATM) at ac [16]. This may be seen
through the reproduction of the QCD triple and quartic gluon vertices by fermion
loop integration in three and four point NATM Green functions at ac using the above
propagators. The upshot of this is that we can use the simpler NATM interactions
in our calculations and dispense with the tricky three and four-point gluon vertices.

5. The fact that we work with a fixed d-dimensional spacetime with an analytic rather
than a dimensional regularisation seems to alleviate some of the problems caused
when treating γ5 in arbitrary dimensions [17]. This obviously becomes important
in the calculation of the dimensions of the polarised operators.

3 Comparing singlet operator dimensions at O(1/Nf )

with perturbation theory

A slight complication in this calculation arises due to mixing of the singlet operators in
both polarised and unpolarised scattering. Since the singlet light cone operators share
the same quantum numbers and have equal canonical dimension in strictly four dimen-
sions, they mix under renormalisation. This means that we have to consider a matrix of
renormalisation constants for these operators

Oi
ren = Z ijO

j

bare (3.1)
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Here the indices i, j = q, g and we are refering to the operators (1.1) and (1.2). The
anomalous dimensions, γij(a), are defined by

γij(a) =

(

γqq(a) γgq(a)
γqg(a) γgg(a)

)

(3.2)

where γij(a) = β(a)(∂/∂a) lnZij and β(a) is the renormalization group function governing
the running of the QCD coupling constant a. The entries in γij(a) depend on the colour
group parameters, Nf and n and since it is the 1/Nf corrections that we are interested in,
we define the explicit form of the entries as

γqq(a) = a1a + (a21Ñf + a22)a
2 + (a31Ñ

2

f + a32Ñf + a33)a
3 +O(a4)

γgq(a) = b1a+ (b21Ñf + b22)a
2 + (b31Ñ

2

f + b32Ñf + b33)a
3 +O(a4)

γqg(a) = c1Ñfa+ c2Ñfa
2 + (c31Ñ

2

f + c32Ñf + c33)a
3 +O(a4)

γgg(a) = (d11Ñf + d12)a + (d21Ñf + d22)a
2 + (d31Ñ

2

f + d32Ñf + d33)a
3 +O(a4)(3.3)

where Ñf = T (R)Nf and the coefficients aij , bij , cij and dij depend on n and the colour
group Casimirs.

We note that this matrix of anomalous dimensions has eigenvalues

λ±(a) =
1

2
(γqq + γgg) ±

1

2

[

(γqq − γgg)
2 + 4γqgγgq

]

1

2 (3.4)

Expanding in powers of a and retaining the same orders in 1/Nf with the definitions (3.3)
we find,

λ−(a) =

(

a1 −
b1c1
d11

)

a+

(

a21 −
b21c1
d11

)

Nfa
2 +

(

a31 −
b31c1
d11

)

N2

f a
3 +O(N3

f a
4)

λ+(a) =

(

d11Nf + d12 +
b1c1
d11

)

a+

(

d21 +
b21c1
d11

)

Nfa
2

+

(

d31 +
b31c1
d11

)

N2

f a
3 +O(N3

f a
4) (3.5)

Here we can see that λ+(a), λ−(a) are dominated by contributions from the gluonic and
fermionic operators respectively.

When in our approach we consider the singlet sector operators in d-dimensions at ac,
we find that they no longer mix. (It is easy to see that the difference is O(ǫ).) This means
that by calculating in d-dimensions, we are accessing the above mixing matrix eigenvalues
in perturbation theory. This is borne out by explicit calculations. By evaluating the
graphs required for γgg(ac), γqq(ac) we actually obtain λ+(ac) and λ−(ac) respectively,
with the universality equivalence between QCD and NATM at O(1/Nf) accounting for
the contributions from the off-diagonal dimensions.

4 Results

The unpolarised non-singlet operator dimension at O(1/Nf) was published in [18]. The
polarised non-singlet operator result was published in [19] together with the expressions
for λ−(ac) to O(1/Nf) and λ+(ac) to O(1) for polarised and unpolarised scattering.
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We now give new results [20, 21] for λ+(ac) to O(1/Nf) for the unpolarised and po-
larised gluonic operator together with the 3-loop n-dependent eigenvalue predictions for
comparison with perturbation theory (3.5). The relevant graphs are given in Fig. 1 with
a different operator insertion Feynman rule [7, 22] used for the separate unpolarised and
polarised cases.

Fig. 1. Leading order diagrams for λ+(ac).

For the unpolarised gluonic singlet operator we have,

λ+,1(ac) = − [8µ3n2 + 8µ3n+ 8µ3 + 2µ2n4 + 4µ2n3 − 22µ2n2 − 24µ2n

− 28µ2 − 6µn4 − 12µn3 + 14µn2 + 20µn+ 32µ+ 5n4

+ 10n3 + n2 − 4n− 12]Γ(n+ 2− µ)Γ(µ− 1)µC2(R)η
o
1

/[(µ− 2)2(n+ 2)(n+ 1)(n− 1)Γ(2− µ)Γ(µ+ n)nT (R)]

+
2µ(µ− 1)S1(n)C2(G)η

o
1

(2µ− 1)(µ− 2)T (R)

− [32µ5n2 + 32µ5n + 32µ5 − 144µ4n2 − 144µ4n− 160µ4 − 4µ3n4

− 8µ3n3 + 240µ3n2 + 244µ3n+ 316µ3 + 16µ2n4 + 32µ2n3

− 180µ2n2 − 196µ2n− 306µ2 − 20µn4 − 40µn3 + 59µn2

+ 79µn+ 146µ+ 8n4 + 16n3 − 6n2 − 14n− 28]µC2(G)η
o
1

/[8(2µ− 1)(µ− 1)3(µ− 2)(n+ 2)(n+ 1)(n− 1)nT (R)]

+ [32µ5n2 + 32µ5n+ 32µ5 + 8µ4n4 + 16µ4n3 − 120µ4n2 − 128µ4n

− 160µ4 − 32µ3n4 − 64µ3n3 + 160µ3n2 + 192µ3n+ 316µ3 + 48µ2n4

+ 96µ2n3
− 78µ2n2

− 126µ2n− 306µ2
− 31µn4

− 62µn3 + 31µn

+ 146µ+ 7n4 + 14n3 + 7n2 − 28]Γ(n+ 2− µ)Γ(µ− 1)µC2(G)η
o
1

/[8(2µ− 1)(µ− 1)2(µ− 2)(n+ 2)(n+ 1)(n− 1)Γ(2− µ)Γ(µ+ n)nT (R)]

(4.1)
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implying,

d31 +
b31c1
d11

=
64(n2 + n + 2)2(S1(n))

2C2(R)

3(n+ 2)(n+ 1)2(n− 1)n2T (R)

−
64(10n6 + 30n5 + 109n4 + 168n3 + 155n2 + 76n+ 12)S1(n)C2(R)

9(n+ 2)(n+ 1)3(n− 1)n3T (R)

− 4[33n10+ 165n9
− 32n8

− 1118n7
− 5807n6

− 12815n5 − 16762n4 − 13800n3 − 7112n2

− 2112n− 288]C2(R)/[27(n+ 2)(n+ 1)4(n− 1)n4T (R)]

−
8(8n6 + 24n5 − 19n4 − 78n3 − 253n2 − 210n− 96)S1(n)C2(G)

27(n+ 2)(n+ 1)2(n− 1)n2T (R)

− 2[87n8 + 348n7 + 848n6 + 1326n5 + 2609n4 + 3414n3 + 2632n2

+ 1088n+ 192]C2(G)/[27(n+ 2)(n+ 1)3(n− 1)n3T (R)] (4.2)

For the polarised gluonic singlet operator we have,

λ+,1(ac) = −
(n+ 2)(n− 1)Γ(n+ 2− µ)Γ(µ+ 1)C2(R)η

o
1

(µ− 2)2(n+ 1)Γ(2− µ)Γ(µ+ n)nT (R)

+
2µ(µ− 1)S1(n)C2(G)η

o
1

(2µ− 1)(µ− 2)T (R)

− [4µ3n2 + 4µ3n− 8µ3 − 8µ2n2 − 8µ2n+ 16µ2 + 5µn2

+ 5µn− 9µ− n2 − n+ 2]Γ(n+ 2− µ)Γ(µ)µC2(G)η
o
1

/[8(2µ− 1)(µ− 1)3(n+ 1)Γ(3− µ)Γ(µ+ n)nT (R)]

− [32µ4 − 4µ3n2 − 4µ3n− 120µ3 + 16µ2n2 + 16µ2n

+ 160µ2 − 20µn2 − 20µn− 89µ+ 8n2 + 8n+ 18]µC2(G)η
o
1

/[8(2µ− 1)(µ− 1)3(µ− 2)(n+ 1)nT (R)] (4.3)

giving,

d31 +
b31c1
d11

= −
64(7n2 + 7n+ 3)(n+ 2)(n− 1)S1(n)C2(R)

9(n+ 1)3n3

+
64(n+ 2)(n− 1)S2

1(n)C2(R)

3(n+ 1)2n2

− 4[33n8 + 132n7 + 142n6
− 36n5

− 263n4
− 312n3

+ 280n2 + 408n+ 144]C2(R)/[27(n+ 1)4n4]

−
8(8n4 + 16n3 − 19n2 − 27n+ 48)S1(n)C2(G)

27(n+ 1)2n2

−
2(87n6 + 261n5 + 249n4 + 63n3 − 76n2 − 64n− 96)C2(G)

27(n+ 1)3n3
(4.4)

Throughout these calculations we used reduce [23] and form [24] to handle tedious
amounts of algebra. The quantity ηo1 is defined by

ηo1 =
(2µ− 1)(µ− 2)Γ(2µ)

4Γ2(µ)Γ(µ+ 1)Γ(2− µ)
(4.5)
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and we have set λ+(ac) =
∑

∞

i=0 λ+,i(ac)/N
i
f . The finite sum S1(n) is given by S1(n) =

∑n
i=1 1/i.

These expressions agree exactly with all known perturbative results. This can be seen
by putting µ = 2 − ǫ in (4.2) and (4.4) and expanding in powers of ǫ/Nf . An interesting
feature of the mixing matrix (3.2) is that the O(1/Nf) contribution to γgq(a) depends only
on the Casimir C2(R). This is evident from the one and two loop results for all n and
the three loop results for n ≤ 8. Assuming this to be true for all n at three loops we can
see from (4.2) and (4.4) that we can deduce the exact form of the coefficients d31 in the
C2(G) sector. This means that by using an inverse Mellin transform we can calculate the
O(1/Nf) part of the three loop DGLAP function Pgg for both unpolarised and polarised
cases. For the unpolarised splitting function we obtain,

Pgg(d31, C2(G)) =
1

4
C2(G)

(

64

27

[

1

1− x

]

+

−
64

27
−

58

9
δ(1− x) +

128

9
(x+ 1)Li2(x)

+
8

27

(x− 1)(52x2 + 19x+ 52)

x
ln(1− x) −

128

9
ψ′(1)(x+ 1)

−
8

27
(52x2 + 43x+ 76) ln(x) +

32

9
(x+ 1) ln2(x)

+
8

81

(x− 1)(236x2 + 47x+ 236)

x

)

(4.6)

Similarly for the polarised splitting function,

Pgg(d31, C2(G)) =
1

4
C2(G)

(

64

27

[

1

1− x

]

+

−
64

27
−

58

9
δ(1− x) +

128

9
(x+ 1)Li2(x)

−
128

9
ψ′(1)(x+ 1) +

32

9
(x+ 1) ln2(x) −

8

27
(67x− 56) ln(x)

−
328

9
(1− x) ln(1− x) −

920

27
(x− 1)

)

(4.7)

These results complete the programme to calculate the O(1/Nf) corrections for the
anomalous dimensions of the twist-2 light cone operators. At present it seems that a
continuation of this programme to include contributions of O(1/N2

f ) may be viable. We
conclude by noting that the results may also be useful in estimating the full three loop
corrections to the operator dimensions by using asymptotic Padé approximant techniques
[25].
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