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 8 

ABSTRACT 9 

The magmatic-hydrothermal system at Krafla Volcano, North-East Iceland, is an important source of 10 

fluids exploited for geothermal energy. Here, we employ laboratory measurements to constrain the 11 

porosity and permeability of the main lithologies forming the reservoir, and investigate the impacts of 12 

different thermal and mechanical stimulation practices to improve fluid flow. 13 

 14 

Six main rock types were identified and sampled: three basalts (a dense and a porous lava, and a 15 

surficial dyke); a hyaloclastite; an obsidian; an ignimbrite; a felsite; and a gabbro. Permeability 16 

measurements were made in a hydrostatic cell using the steady-state flow method at a range of 17 

confining pressures (1-100 MPa). The measurements show that permeability generally increases with 18 

porosity, but that permeability may vary significantly for a given porosity, depending on the presence 19 

of pore connectivity and micro-fractures. We note that an increase in effective pressure results in a 20 

decrease in permeability due to closure of pre-existing cracks, abundant in some rocks. When 21 

unloading, samples fail to recover pre-loading permeability, as cracks do not necessarily entirely 22 

reopen. To further examine the hysteresis imposed by crack closure, we cyclically loaded/ unloaded a 23 

felsite sample ten times by varying pore pressure which resulted in a further nonlinear decreases in 24 

permeability with each pressurisation cycle; thus an understanding of the pressurisation path may be a 25 

requirement to constrain fluid flow variations in geothermal systems. 26 

 27 



To test the effects of thermal stimulation on fluid flow, samples of dense basalt and felsite were 28 

thermally stressed by heating to 450 °C and cooling at different rates (in air, in water and at a 29 

controlled rate of <5 °C.min-1). The results show that the permeability of originally highly fractured 30 

rocks is not affected by thermal stressing, but originally unfractured rocks show a nonlinear increase in 31 

permeability with each thermal stressing cycle, especially with the largest thermal shock imposed by 32 

quenching in water; thus thermal stimulation may not be expected to result in a similar magnitude of 33 

permeability creation along the length of a borehole. 34 

 35 

Finally, following the permeability measurements on intact rocks, the Brazilian tensile testing method 36 

was employed to impart one and two (orthogonal) macro-fractures, and permeability was measured 37 

after each step. The creation of one macro-fracture strongly enhanced the permeability of the rock 38 

(especially dense rocks), resulting in a narrower range of permeability (as a function of porosity) for 39 

the fractured rocks. Imparting a second fracture had trivial additional impact on the permeability of the 40 

rock. Yet, the presence of fine fragments and possible minor offset of fracture interfaces was found to 41 

obstruct fracture closure, which resulted in higher permeability irrespective of effective pressure; thus 42 

hydraulic fracturing may locally increase fluid flow, especially when employing proppants to obstruct 43 

fracture closure and ensure a stable permeable network in a reservoir.  44 

 45 

We discuss the implications of the findings for a first order constraint on the permeability of the 46 

reservoir rock and the potential of thermal and mechanical stimulation methods on energy production 47 

in geothermal systems nested in active volcanic fields. 48 

 49 

1 Introduction 50 

1.1 Fluid flow in reservoirs 51 

Fluid flow in geomaterials has been the subject of numerous studies since the pioneering efforts of 52 

Henry Darcy (Darcy, 1856; Darcy, 1857). These studies have highlighted the central importance of 53 

fluid flow in many environments, namely: water aquifers (e.g. Strehlow et al., 2015), petroleum and 54 

gas reservoirs (e.g. Jansen, 2011), volcanoes (e.g. Edmonds and Herd, 2007), and hydrothermal 55 



systems utilised for geothermal energy (e.g. Darling and Armannsson, 1989) – the subject of this 56 

study.  57 

 58 

Hydrothermal systems are widespread on Earth and whilst they have been utilised for their thermal 59 

output in many cultures (e.g. Carlino et al., 2012; Gallois, 2007), they have long been recognised to be 60 

a source of devastating volcanic hazards (e.g. Gudmundsson et al., 2008; Hansell and Oppenheimer, 61 

2004). Within active hydrothermal systems, the porous and fracture networks of the reservoir rocks 62 

may store high-pressure and temperature fluids that can be extracted for geothermal energy production 63 

(Gudmundsson, 1995) – a procedure established in 1904 by Italian scientist Piero Ginori Conti (Tiwari 64 

and Ghosal, 2005), and increasingly practiced in our efforts to deliver clean, renewable energy. The 65 

storage capacity of a reservoir is directly related to the porosity of the rock and the compressibility of 66 

the fluids (dependent on their chemistry), and our ability to extract these fluids requires a high degree 67 

of pore connectivity (e.g. Siratovich et al., 2014). Hence, permeability within exploited geothermal 68 

fields has an important control on both productivity and the sustainability of fluid flow within the 69 

reservoir. The development of permeability (whether natural or anthropogenic) has a great impact on 70 

the success, magnitude, and sustainability of energy production (Mock et al., 1997; Zimmermann et 71 

al., 2009). 72 

 73 

The architecture of the porous network of rocks and, as a result permeability, varies widely in nature 74 

(e.g. Ashwell et al., 2015; Brace, 1980; Eichelberger et al., 1986; Farquharson et al., 2015; Heap et al., 75 

2014a; Heap and Kennedy, 2016; Heap et al., 2014b; Heap et al., 2016; Jouniaux et al., 2000; 76 

Kendrick et al., 2016; Kendrick et al., 2013; Klug and Cashman, 1996; Kushnir et al., 2016; Lamur et 77 

al., 2017; Mueller et al., 2005; Okumura and Sasaki, 2014; Saar and Manga, 1999; Schaefer et al., 78 

2015; Stimac et al., 2004). This is especially the case for volcanic rocks, as they have undergone 79 

complex petrogenetic and deformation histories during their formation (Farquharson et al., 2015; 80 

Kendrick et al., 2013; Klug and Cashman, 1996; Schaefer et al., 2015). For instance, during 81 

explosions, the pores which store the gas that triggers fragmentation are frozen into the lavas as they 82 

erupt; in contrast, the pore geometry of effusive lavas reflect a complex history of deformation, which 83 



results from bubble growth, coalescence, collapse and fracturing. Dense volcanic rocks are generally 84 

found to contain flattened and/ or irregular (concave) pores and multiple micro-fractures, whereas 85 

highly vesicular volcanic rocks tend to have sub-rounded (convex) pores. As a result, explosive 86 

products have been described to hold a different permeability-porosity relationship than effusive 87 

products (Mueller et al., 2005). In addition, it has been suggested that there is a porosity change point 88 

(14~20 %) in microstructural control on effusive volcanic rock permeability, due to changes in relative 89 

tortuosity and pore throat size of the variably constructed porous networks of dense and porous rocks 90 

(Farquharson et al., 2015).  91 

 92 

At depth, volcanic rocks may have different properties. Volcanic rocks buried by subsequent eruptive 93 

products – as is commonly the case in caldera systems (the setting of the geothermal system in this 94 

study) – tend to compact, closing micro-fractures (Kolzenburg et al., 2012), and if stress is sufficient, 95 

deformation may modify the architecture of the porous network (e.g. Heap et al., 2015a). Both micro-96 

fracture closure (e.g. Lamur et al., 2017; Tanikawa and Shimamoto, 2009) and shear-enhanced 97 

compaction (Heap et al., 2015a) generally decrease the permeability of rocks buried at depth. When 98 

directly emplaced in the crust, intrusive volcanics tend to have low contents of vesicles and micro-99 

fractures, and their permeability is equally low (Murphy et al., 1981), at least, at a small scale (Brace 100 

et al., 1968); yet, at a large scale, cooling contraction can trigger the development of columnar joints 101 

(Degraff and Aydin, 1993; Kantha, 1981), providing preferential fluid pathways. 102 

 103 

Geothermal exploitation relies heavily on the presence of fractures to optimise fluid flow and energy 104 

generation. During drilling operations, a number of methods have been applied to enhance the extent 105 

of permeable fractures (e.g. Aqui and Zarrouk, 2011), whether through hydraulic fracturing (e.g. 106 

Legarth et al., 2005; McClure and Horne, 2014; Miller, 2015; Murphy et al., 1981; Tomac and 107 

Gutierrez, 2017; Zang et al., 2014; Zimmermann et al., 2011) or thermal stimulation (e.g. Grant et al., 108 

2013; Siratovich et al., 2015b). In high-temperature, high-enthalpy geothermal reservoirs, where the 109 

rock may exhibit ductile behaviour (e.g. Violay et al., 2012), it is commonly presumed that fractures 110 

would not remain opened nor preferentially oriented for long periods of time (e.g. Scott et al., 2015). 111 



This may be the case if temperature is sufficient, such that the diffusivity of the main rock forming 138 

minerals and melt (if present), favours fracture healing (e.g. Farquharson et al., 2017; Lamur et al., In 139 

review; Tuffen et al., 2003) or viscous deformation of the porous network (Kendrick et al., 2013; 140 

Kushnir et al., 2017). However, such rapid closure of permeability can be overcome if the rock 141 

remains fractured by keeping stress sufficiently high (e.g. Lavallée et al., 2013), by building pore 142 

overpressure (e.g. Pearson, 1981) or by keeping temperature low (Lavallée et al., 2008), thus thermally 143 

contracting the rock (e.g. Siratovich et al., 2015b). Understanding the permeability of reservoir rocks, 144 

the sustainability of conditions and the longevity of production is key to characterising the potential 145 

exploitability of hydrothermal reservoirs for geothermal energy. Laboratory experimentation can help 146 

provide necessary constraints for material behaviour in simulated geothermal reservoir conditions 147 

(Ghassemi, 2012). For example, the presence of macroscopic fractures may significantly increase the 148 

permeability of rocks, especially of dense rocks (Eggertsson et al., 2016; Heap and Kennedy, 2016; 149 

Heap et al., 2015b; Lamur et al., 2017; Nara et al., 2012). 150 

 151 

1.2 Geological setting of the Krafla geothermal system 152 

Krafla is a caldera volcano, located in North-East Iceland (Figure 1a). The volcanic field hosts a partly 153 

filled caldera of about 8 x 10 km (Sæmundsson, 1991; Figure 1b) and is intersected by a 90 km long 154 

fissure swarm trending NNE (Hjartardottir et al., 2012). The caldera hosts an active hydrothermal 155 

system, approximately 10 km2 in size. In the Holocene, fissure eruptions recurring every 300-1000 156 

years characterised the volcanic activity (Sæmundsson, 1991). In 1724, the Myvatn fires occurred west 157 

of Krafla; this coincided with a 5-year explosive phreatomagmatic eruption at Viti, which exposed at 158 

the surface gabbroic and felsitic lithics originating at depth in the system. The most recent eruption 159 

was the Krafla fires, which initiated in 1975 and resulted in the outpouring of basaltic lava for 9 years 160 

(Einarsson, 1991). Magmatic activity associated with the eruption impacted the chemical composition 161 

of the fluids within the reservoir (Guðmundsson, 2001; Ármannsson, 1989) and led to increased 162 

hydrothermal activity (Einarsson, 1978; Einarsson, 1991; Sæmundsson, 1991). 163 

Deleted: Figure 1164 



 165 
Figure 1: (a) Location of the Krafla volcanic field in North-East Iceland. (b) Overview of the Krafla 166 

caldera, delimited by the line with tic marks (after Sæmundsson, 1991). The map shows the location of 167 

key features, in particular the power station, the Viti crater, the drill site of IDDP-1 and 168 

Hraftinnuhryggur (a large obsidian ridge). (c) Schematic of the lithologies comprising the Krafla 169 

geothermal reservoir. The uppermost 1000 - 1300 m of the reservoir are primarily made up of 170 

extrusive rocks, including lavas, ignimbrite and hyaloclastite. At greater depth, the reservoir is 171 

dominated by intrusive volcanics, gabbro and felsite (Mortensen et al., 2015). In a part of the system, 172 

rhyolitic magma was encountered at a depth of 2.1 km (Elders et al., 2014).  173 

 174 

In 1974, the government of Iceland initiated the construction of a geothermal power plant within the 175 

caldera. The aim was to install two turbines to produce 60MWe, but due to problems associated with 176 

the Krafla fires eruption, the power plant only used one turbine until 1999; now that both turbines 177 

operate, the power plant readily produces 60 MWe (Guðmundsson, 2001). In 2009 the Krafla 178 



geothermal field became site of the Iceland deep drilling project (IDDP-1), with the aim to source 179 

deep, high-enthalpy, supercritical geothermal fluids at a depth of 4-5 km (Fridleifsson et al., 2014). 180 

This attempt terminated abruptly as the drill string penetrated an active rhyolitic magma body at a 181 

depth of 2.1 km (Elders et al., 2014). During flow tests of this, the World’s hottest producing 182 

geothermal well, near-magmatic fluid entering the well head at a temperature exceeding 450 °C 183 

resulted in the transport of dry superheated steam at high pressures (40–140 bar), which due to its 184 

corrosive nature severely damaged the equipment and production ceased soon thereafter (Elders et al., 185 

2014). Yet, this unique opportunity demonstrated the possibility of producing 35 MWe from a single 186 

well (Ingason et al., 2014), and helped define parts of the geothermal system for the first time, 187 

constraining the pressure (Elders et al., 2011) and temperature (Axelsson et al., 2014; Elders et al., 188 

2011) conditions in the encountered rhyolite body. Volatile concentrations measured in glass shards 189 

recovered during drilling in magma were used to define a pressure of ~30-50 MPa (Zierenberg et al., 190 

2013), which is lower than that expected from lithostatic pressure (ca. 50-70 MPa; considering a depth 191 

of 2.1 km and assuming a range of rock densities between 2.5~3.3 kg.m-3), but above hydrostatic 192 

pressure (~21 MPa) for this depth (Elders et al., 2011). This pressure discrepancy suggests that fluid 193 

pressure at the encountered magma body may be affected by connectivity across the hydrothermal 194 

system (e.g. Fournier, 1999). 195 

 196 

Examination of drilling products (cores and cuttings) has provided a view of the rocks and structures 197 

hosting the reservoir fluids in the Krafla geothermal system. The observations suggest that the upper 198 

1000-1300 m of the reservoir, where temperatures are ca. 100-300 ˚C, primarily consists of variably 199 

indurated and welded ignimbrite, intact as well as fractured basaltic lavas and variably compacted 200 

hyaloclastite. At depths below 1000-1300 m, where temperature may reach ca. 350 ˚C, the reservoir is 201 

made up of intrusive volcanics, primarily gabbro and felsite, which both show variable degrees of 202 

fracture damage (Bodvarsson et al., 1984; Mortensen et al., 2014; Sæmundsson, 1991). The last rock 203 

encountered before reaching the near aphyric magma body during IDDP-1 was a felsite sill (argued to 204 

be the crystallised, mushy, magmatic aureole) which totalled ~80 m in thickness (Mortensen et al., 205 

2014). This magmatic aureole is characterised by a sharp temperature increase from ~400 to ~900 ˚C 206 



(e.g., Mortensen et al., 2014; Axelsson et al., 2014; Elders et al., 2014). Thus, 40 years of extensive 207 

drilling operations in and around the Krafla caldera has provided us with invaluable information that 208 

helped reconstruct the reservoir rock (Figure 1c). This study aims to constrain the permeability of 209 

these rocks, and assess how different thermal and mechanical stimulation methods may improve fluid 210 

flow in the hydrothermal system, and ultimately inform decisions to improve geothermal productivity 211 

in high-enthalpy systems. 212 

 213 

2 Materials and Methods 214 

2.1 Rock samples 215 

During a field survey in Autumn 2015, and through information gathered from previous drilling 216 

exercises, six main rock types were identified and sampled to carry out this study (see Supplementary 217 

Data): three basalts (a lava with 11 to 27 % porosity, a basalt dyke with 31-36% porosity, and a porous 218 

lava with 34 to 60 % porosity); one hyaloclastite (35-45 % porosity); one obsidian (1-5 % porosity); 219 

one ignimbrite (14-17 % porosity); one felsite (9-18% porosity) and one gabbro (11-15 % porosity). 220 

The samples host a spectrum of pore micro-structures (Figure 2), which we anticipated would result in 221 

equally diverse permeability properties. The samples were loose blocks (therefore not orientated), 222 

collected from surface outcrops without hammering to prevent adding fracture damage and 223 

compromising the porosity and permeability values determined here; the felsite and microgabbros 224 

(which form the roof of the magma reservoir; Mortensen et al., 2014) were erupted explosively 225 

through, and scattered around, Víti crater during the Mývatn fires (Sæmundsson, 1991).  226 



  227 

Figure 2: Backscattered electron (BSE) images (obtained by scanning electron microscope (SEM)) of 228 

the main Krafla reservoir lithologies. (a) Microcrystalline basalt with 11 % porosity, consisting of 229 

irregular vesicles with a range of sizes (< 1 mm), tortuosity and connectivity; micro-fractures are 230 

sparsely present but too narrow to be visible at this scale. (b) Microcrystalline basalt with 45 % 231 

porosity, comprising a bimodal porous network made of large and generally rounded, though slightly 232 

irregular, vesicles (<2 mm) and small irregularly-distributed vesicles; micro-fractures are sparsely 233 

;aͿ ;bͿ 

;cͿ ;dͿ 

;eͿ ;fͿ 

;gͿ ;hͿ 



present but too narrow to be visible at this scale. (c) Basalt dyke sample with 32 % porosity, 234 

predominantly made of relatively evenly-distributed, sub-rounded vesicles (100-400 microns); the 235 

rock contains a trivial amount of very narrow micro-fractures. (d) Felsite with 11.5 % porosity, 236 

consisting of very few small and irregular vesicles, sometimes connected by micro-fractures, up to 10-237 

20µm wide. (e) Gabbro with 12 % porosity, made up of a connected network of many small, irregular-238 

shape vesicles, and poorly-developed micro-fractures. (f) Hyaloclastite with 40 % porosity, made up 239 

of irregular-shape pores between a highly fragmental, angular glass and crystalline assemblage. Micro-240 

fractures as wide as 20 µm are visible in larger fragments. (g) Ignimbrite with 15 % porosity, 241 

comprising generally elongate and sub-rounded vesicles, and a lack of micro-fractures visible at any 242 

scale. (h) Dense obsidian with scarce micro-vesicles (<0.01 %) and no obvious micro-fractures.  243 

 244 

2.2 Experimental methods 245 

Here, we aim to constrain the natural range of permeability of reservoir rocks and investigate how to 246 

enhance fluid flow by testing the effects of thermal and mechanical stimulation methods; including the 247 

impact of pressure oscillations, thermal stressing and fracturing. This was done in several steps: first, 248 

we measured the porosity and permeability of all rock samples as collected; second, we subjected 249 

them to the thermal or mechanical stimulation methods (see below); and finally, we measured the 250 

permeability anew.  251 

 252 

In this study over 120 core samples were prepared from large blocks of the aforementioned six rock 253 

types, and tested to constrain the range of porosity and permeability of each: As loose samples of 254 

blocks were collected from outcrops with no strong fabrics, cores were prepared in no particular 255 

orientation, yet parallel to one another within a given block. To examine the influence of a macro-256 

fracture on the permeability of rocks core samples with a diameter of 26 mm and a thickness of ~13 257 

mm were prepared; to investigate the impact of pressure fluctuations on permeability, cylindrical 258 

samples of felsite with a diameter and thickness of 26 mm were tested; for the investigation of thermal 259 

stressing impact on permeability, cylindrical samples of felsite and basalt with diameter of 25 mm and 260 

length of 50 mm were prepared and tested. The samples were kept in a drying oven at 75 ˚C after 261 

preparation, then left to cool in a desiccator before determinations of the porosity and permeability. 262 

The permeability dataset, obtained through the above experimental program, was complemented by 263 

additional porosity/ permeability measurements on 50 mm long by 25 mm diameter core samples (see 264 



Supplementary Data), which will be used in a future mechanical study of Krafla rocks (Eggertsson et 265 

al., in preparation).  266 

 267 

2.2.1 Porosity and Permeability 268 

The connected porosity of the cores was determined using an AccuPyc 1340 Helium pycnometer from 269 

Micromeritics. The device measures the sample skeletal volume (i.e., the volume of the solid rock as 270 

well as isolated pores which cannot be accessed by helium gas) in chambers of 100 cm3 and 35 cm3 271 

(depending on the size of the sample), which provides a volume determination accuracy for the sample 272 

of ±0.1 %. The measurement, together with the sample weight, constrains the relative sample density 273 

(including isolated pore space), and as we know the volume of the initial sample core, we can 274 

determine the fraction of connected pores. 275 

  276 

The permeability of the cores was measured in a hydrostatic pressure cell from Sanchez Technologies 277 

(Figure 3a) using the steady-state flow method. A water-saturated core was placed inside a rubber 278 

jacket and loaded in the pressure vessel, making sure that the pore pressure line was water saturated. 279 

The sample assembly was then slowly pressurised using silicon oil to the desired confining pressures 280 

(5-100 MPa), spanning the conditions of the Krafla geothermal reservoir. As the sample was 281 

pressurised, the volume of water displaced by the sample compaction was monitored with a 282 

volumometer to track changes in the porosity (from the original porosity, measured by He-283 

pycnometry) of the sample at various confining pressure. [The accuracy of the volumometer on the 284 

two Stigma 300 pumps (from Sanchez Technologies; now Core Lab) is 0.002 ml, which, when 285 

measuring fluid volume for the smallest sample volume of 6.9 cm3, results in an accuracy of porosity 286 

determination of 0.05 %.] Once equilibrated at the first confining pressure increment (e.g., 5 MPa) the 287 

rock permeability was measured using water, by imposing a pore pressure gradient of 1.5 MPa across 288 

the sample (2 MPa upstream and 0.5 MPa downstream) at an average pore pressure of 1.25 MPa, and 289 

by monitoring the flow rate at the sample exit; the permeability was only determined when the flow 290 

rate had stabilised. To assess the need for the use of Klinkenberg or Forchheimer corrections, the flow 291 

rate was varied by changing the pressure gradient and to check whether obtained permeability values 292 



changed; for the pressure gradient of interest, no such corrections were needed here. Once the 293 

permeability measurement was completed (after 20 to 600 minutes), the confining pressure was 294 

increased to the next increment (e.g., 10 MPa), whilst monitoring pore volume changes [generally, the 295 

pore volume decrease would stabilise (within resolution of the volumometer) after 1-10 min]; then the 296 

permeability was measured anew.  297 

 298 

To further constrain the elastic limits of the weak, porous hyaloclastite, we constrained the effective 299 

pressure threshold for inelastic, destructive compaction (defined as P* of the rock), beyond which, an 300 

accelerated, irrecoverable compaction occurs (Zhang et al., 1990). This was done by loading a water-301 

saturated sample in the permeameter. The confining pressure and pore pressure were increased slowly 302 

(to keep the effective pressure below 5 MPa) to 53 and 50 MPa, respectively. Then, the pore pressure 303 

was reduced (and thus the effective pressure was increased) at a rate of 0.1 MPa.min-1 and the volume 304 

of water within the sample was monitored. P* was defined as point of negative inflection following a 305 

linear decrease in pore volume during effective pressure loading. 306 



 307 

Figure 3: (a) Schematic of the setup (hydrostatic cell and pumps) used to determine the permeability of 308 

rocks. The permeability was measured using water (blue) by imposing a pressure gradient of 1.5 MPa 309 

across the sample at an average pore pressure of 1.25 MPa (upstream: 2 MPa; downstream: 0.5 MPa) 310 

for a range of confining pressures (5-100 MPa) exerted by silicon oil (in yellow). (b) Illustration of the 311 

sample assembly to determine the tensile strength using the indirect Brazilian testing method. Here, a 312 

disc of 2:1 ratio (26 mm diameter by 13 mm thickness) is diametrically loaded at a constant 313 

displacement rate of 3 µm.s-1 between the pistons of an Instron press, and the load is continuously 314 

recorded. 315 

 316 

 317 

2.2.2 Pressure fluctuations 318 

We tested the effects of pore pressure fluctuations over 10 cycles, whilst keeping the confining 319 

pressure constant to simulate the impact of well pressure fluctuations associated with water injection 320 

during drilling operations. This was performed on felsite samples which we loaded to 39.5 MPa 321 

(a) 

(b) 



confining pressure and 1.5 MPa pore pressure (= 38 MPa effective pressure, assuming a simple 322 

effective pressure law). An effective pressure of 38 MPa may be representative of conditions at ca. 2 323 

km depth, near the hydrothermal-magmatic system interface (Mortensen et al., 2015). We then 324 

measured the permeability at these conditions by imposing a pressure gradient of 1 MPa across the 325 

sample (2 MPa upstream and 1 MPa downstream). Once the permeability was measured, the pore 326 

pressure was increased to 3.5 MPa and the permeability was measured by applying a pressure gradient 327 

of 1 MPa (4 MPa upstream and 3 MPa downstream). When the permeability had been measured at the 328 

lower effective pressure (higher pore pressure), the pore pressure was lowered back down to 1.5 MPa 329 

and the same procedure repeated, in total 9 times. The effective pressure change between each stage 330 

was therefore 1.5 MPa (from 38 MPa to 36.5 MPa effective pressure and back).  331 

 332 

2.2.3 Thermal stimulation 333 

The impact of thermal stimulation was tested on the samples of basalt (10.9-12.1 % porosity) and 334 

felsite (9.4-10.3 % porosity). The porosity and permeability of 3 cores of each sample was first 335 

measured as discussed above. The samples were then heated to 450 °C at 5°C/min in a box furnace 336 

and left for 1 hour to dwell. After that, one sample of each rock type was cooled in a furnace, with a 337 

set cooling rate of 5 ˚C.min-1; one sample of each rock was removed from the furnace and left to cool 338 

at ambient conditions on a benchtop; and finally, one sample of each rock type was removed from the 339 

furnace and quenched in a water-filled bucket at ambient temperature. Once cooled (estimated to be 340 

sufficient to cool the whole sample after 30 min – 12 hours, depending on the cooling method), the 341 

samples were then dried and their porosity and permeability were measured again. This procedure was 342 

repeated and the porosity and permeability were measured again after five and fifteen cycles. The 343 

cooling rates were chosen to represent different cooling rates experienced at different distances from 344 

boreholes during drilling activities and thermal stimulation procedures. 345 

 346 

2.2.4 Fracturing 347 

To induce a radial macro-fracture through the samples, the Brazilian tensile testing method was 348 

employed (Figure 3b). A cylindrical sample was loaded diametrically in a 5969 Instron uniaxial press 349 



at a displacement rate of 3 µm.s-1 until a through-going fracture was produced. To ensure that the 350 

samples would not disintegrate during indirect tensile fracturing, the samples were carefully wrapped 351 

in electrical tape around the circumference (thus the mechanical data are not of publishable quality). 352 

After sample failure, the tape was carefully removed and the sample loaded into the pressure vessel for 353 

another series of permeability determinations. 354 

 355 

For six basalt samples, a second set of fractures was then imparted, perpendicular to the first fracture 356 

in the samples. This time, however, the sample was left in the rubber jacket during loading in the press 357 

to ensure coherence. After sample failure, the permeability was measured once again under the same 358 

range of conditions as detailed above. 359 

 360 

 361 

3 Results 362 

3.1 Storage capacity of intact rocks 363 

The porosity of a rock is a measure of the storage capacity for fluids and varies as a function of 364 

effective pressure (Wong and Baud, 2012). Here, we combine He-pycnometry measurements at 365 

atmospheric pressure (i.e., effective pressure of 0 MPa) and fluid volume changes measured by the 366 

volumometer in each pump during pressurisation and depressurisation in the hydrostatic pressure 367 

vessel, to constrain the evolution of porosity upon confinement.  368 

 369 

The lithologies tested exhibit a wide range of porosities; especially the three basalt samples, which 370 

contain between 11 and 60 vol. % porosity. The porosity evolution as a function of effective pressure 371 

could only be measured for four rock types (Figure 4), as the obsidian and the ignimbrite had 372 

permeabilities too low to be determined using our setup in its current configuration (which cannot 373 

accurately constrain permeability lower than ~10-18 m2). In all cases, the samples show a nonlinear 374 

decrease in pore volume with effective pressure. We note that the spread of porosity within each 375 

sample set is not particularly sensitive to effective pressure, suggesting that the nonlinear decrease in 376 

porosity with effective pressure is similar for a given rock type. For the most porous samples, the 377 



porosity decrease is slightly more pronounced (Figure 4b,e), which may be accentuated if the effective 378 

pressure exceeds P*, resulting in crushing of the rock and compaction (e.g., hyaloclastite; inset Figure 379 

4e).  380 

 381 

 382 

Figure 4: Porosity evolution with effective pressure for intact (a) dense basalt (shown in Figure 2a; 10 383 

samples tested), (b) porous basalt (shown in Figure 2b; 6 samples), (c) felsite (14 samples), (d) gabbro 384 

(10 samples), and (e) hyaloclastite (8 samples) as a function of effective pressure. Here, the initial 385 

porosity measurement is made by He-pycnometry, with subsequent measurements extrapolated by 386 

monitoring volume gain in the pumps (hence volume loss in the samples) during permeability 387 

measurements. The figure shows a nonlinear decrease in porosity with effective pressure, indicative of 388 

micro-fracture closure. Across the lithologies, porosity decreases most rapidly as effective pressure is 389 

increased up to ~10 MPa. Note that the scale of each graph differs. The inset in (e) shows the inelastic 390 

(destructive) compaction beyond P*, where the rock strength is not sufficient withhold the increased 391 

pressure and starts to collapse.  392 

 393 

3.2 Permeability of intact rocks 394 

The permeability of rocks varies as a function of porosity (e.g., Mueller et al., 2005), fracture density 395 

(e.g. Heap and Kennedy, 2016; Koudina et al., 1998) and effective pressure (e.g. Alam et al., 2014; 396 

Walsh, 1981). Here, we present permeability measurements on 60 intact samples; the basalt (1.9x10-16 397 

m2 – 2.5x10-13 m2), felsite (1.8x10-15 m2 – 1.1x10-13 m2), gabbro (7.2x10-16 m2 – 1.0x10-14 m2) and 398 

hyaloclastite (6.0x10-14 m2 – 1.8x10-13 m2) samples show a range of permeabilities (Figure 5). The data 399 



show that sample length (used here) has no effect on the permeability of a rock (see Supplementary 400 

Data). The basalts displayed the widest range of permeabilities (Figure 5: 5a, b), as might be expected 401 

from their variable initial porosities (Figures 2a-c, 4a, b). [Note that the basalt dyke was not measured 402 

under such conditions.] The densest basalt shows little change in permeability with increased pressure 403 

(Figure 5a). The basalt samples with the highest porosities (>34 vol. % porosity; Figure 5b) show a 404 

small decrease of permeability with confining pressure (up to 20-25 MPa); lower than may be 405 

anticipated due to the porosity decrease witnessed upon pressurisation (Figure 4b). The felsite and 406 

gabbro samples exhibit relatively larger decreases in permeability (Figure 5c,d) in response to 407 

effective pressure than the basalts (Figure 5a), owing to the highly fractured nature of these rocks. Yet, 408 

despite a fragmental origin of the hyaloclastite (Figure 5e), it only exhibited moderate decrease in 409 

permeability within the low effective pressure range tested (before the samples could not sustain the 410 

effective pressure); however, the samples compacted inelastically above an effective pressure of 18 411 

MPa (inset Figure 4e), which resulted in a significantly lower permeability. 412 

 413 

Figure 5: Intact rock permeability evolution with effective pressure of (a) dense basalt (10 samples 414 

tested), (b) porous basalt (6 samples), (c) felsite (14 samples tested), (d) gabbro (10 samples tested), 415 

and (e) hyaloclastite (8 samples tested). The general nonlinear decrease in permeability with effective 416 

pressure is attributed to the compaction and closure of micro-fractures as observed by the porosity 417 

volume decrease in Figure 4. 418 

 419 



3.3 Impact of pressure fluctuations 420 

During a well operation, changes in pore pressure are inevitable, from injection during drilling to 421 

functional operation at different pressures. These changes can be considered minor, but their resulting 422 

influence on the rock permeability remains poorly tested. Here, we investigate the impact on the 423 

permeability of pressurising and depressurising highly fractured felsite samples. When decreasing the 424 

pore pressure applied to a sample (at a set confinement), we note a slight increase in the rock porosity 425 

and permeability (Figure 6a); yet, not as significant as the magnitude of porosity and permeability 426 

decrease monitored during pressurisation. Thus, pressurisation and depressurisation of porous rocks 427 

leads to hysteresis of its permeable structure on the timescales investigated here.  428 

 429 

Figure 6: Variations of: (a) Permeability and porosity of felsite resulting from pore pressure (and thus 430 

effective pressure) loading/ unloading cycles to 100 MPa. The figure shows a degree of hysteresis; as 431 

effective pressure is decreased the sample does not recover the initial (i.e., lower pressure) 432 

permeability and porosity of the rock. (b) Permeability evolution of felsite during pore pressure 433 

(hence, effective pressure) oscillations of 1.5 MPa. The data (zoomed-in inset in b) shows that each 434 

unloading cycle never fully recovers permeability efficiency, and the permeability lowers further with 435 

each loading cycle due to further closure of permeable pathways. 436 

 437 

The hysteresis of a rock porous structure to pressure fluctuations were investigated further by testing 438 

the impact of 10 pressurisation/ depressurisation cycles on the felsite by first pressurising the sample 439 

to the target confining pressure of 38 MPa (left for 30 min to equilibrate each time the pressure was 440 



changed), and fluctuating the pore pressure by 1.5 MPa (Figure 6b). Interestingly, we note that each 441 

pressurisation cycle decreases the permeability of the rocks, which never fully recover during 442 

depressurisation (Figure 6b). The impact is most pronounced in the first few cycles, but persists 443 

throughout all 10 cycles.  444 

 445 

3.4 Impact of thermal stimulation 446 

 447 

Table 1. Porosity of volcanic rocks subjected to thermal stressing cycles. 448 
 

Porosity (%) 

Number of cycles  0 1 5 15 

FEL_TRI_29 10.3 10.5 10.3 10.5 

FEL_TRI_23 9.4 9.3 9.4 9.3 

FEL_PP_02 9.8 9.8 9.9 9.9 

BAS_TRI_43 11.5 11.5 11.4 11.4 

BAS_TRI_51 12.1 12.2 12.1 12.0 

BAS_TRI_63 10.9 11.1 10.9 11.1 

 449 

During well drilling and operation, the reservoir temperature fluctuates. To test the effect of 450 

temperature changes, we subjected felsite and basalt to thermal stress cycles by cooling from 450 °C 451 

to ambient temperature by cooling in a furnace (under controlled conditions), in air (on a benchtop) as 452 

well as in water (at ambient temperature, to quench). The data shows that the porosity and 453 

permeability of the felsite was not affected by thermal stressing, even after fifteen heating/cooling 454 

cycles (Table 1; Figure 7). On the other hand, the porosity of the basalt was relatively unchanged 455 

(Table 1), while the permeability of the basalt increased by over one order of magnitude after the first 456 

five cycles; the most drastic impact being imposed by quenching in water (Figure 7).  457 



 458 

Figure 7: Influence of thermal stressing (up to 450 ˚C) cycles on the permeability of basalt (BAS) and 459 

felsite (FEL) cooled under different conditions. The data show that the permeability of the felsite is 460 

insensitive to thermal fluctuations, presumably as the original sample contains multiple micro-461 

fractures (see Figure 2). In contrast, the permeability of the basalt non-linearly increases with thermal 462 

cycles (especially the first five cycles). We note that permeability is highest in samples cooled by 463 

water (triangles), compared to cooling in ambient air or under controlled conditions in the furnace 464 

(i.e., at <5 ˚C.min-1). 465 

 466 

3.5 Impact of one macro-fracture 467 

The effect of a macro-fracture on the permeability of a sample has been the focus of recent studies 468 

(Heap and Kennedy, 2016; Lamur et al., 2017; Nara et al., 2011); here we expand this dataset by 469 

testing the impact of macro-fractures on several lithologies. Of the lithologies tested here, the 470 

hyaloclastite did not withstand a fracture, but rather compacted during Brazilian tensile testing, and 471 

therefore the permeability of fractured hyaloclastite could not be measured. Similarly, of the felsite 472 

cores tested, only a few developed clean fractures during mechanical testing, therefore reducing the 473 

number of fractured samples measured for permeability. The basaltic dyke was not subjected to this 474 

testing method (as we had insufficient material). 475 

 476 

For the dense basalt and felsite, for which intact samples showed a wide range of permeabilities, the 477 

presence of a fracture narrowed the range of permeabilities to relatively high values (Figure 8a, c). In 478 

contrast, the permeability of the porous basalt was not affected by the addition of a macro-fracture 479 

(Figure 8b). For all other samples, imparting a fracture increased permeability by as much as 2-5 480 

orders of magnitude (Figure 8d-f).  481 



 482 

Effective pressure showed variable influences on the permeability (Figure 5) of these macro-fractured 483 

rocks; yet, permeability decrease was generally greatest in the early stages of confinement, and for 484 

most samples led to a nonlinear decrease of 1-2 orders of magnitude of permeability (Figures 8 and 9). 485 

The sensitivity of permeability of fractured samples to confinement was heightened as compared to 486 

their intact counterparts (Figures 5 and 8). Within one lithology (basalt) however, the sensitivity to 487 

confinement was variable (Figure 9); yet, these macro-fractures are irregular, and bordered by minor 488 

fractures and fragments (Figure 10). 489 

 490 

Figure 8: Permeability evolution with effective pressure of macro-fractured (a) dense basalt (10 491 

samples), (b) porous basalt (5 samples), (c) felsite (4 samples), (d) gabbro (6 samples tested), (e) 492 

Ignimbrite (5 samples), and (f) obsidian (2 samples). The shaded areas show the range of permeability 493 

of intact samples before they were fractured (from Figure 5: ), showing the variable effect of fractures 494 

on permeability. Note that the permeability of the intact ignimbrite and obsidian was below the 495 

detection limit for our apparatus (which was developed for permeable samples). 496 

 497 

3.6 Impact of two macro-fractures 498 

The basalts, being a key rock type in Iceland and the most mechanically consistent rock of the 499 

lithologies at Krafla, were used to test the impact of two orthogonal macro-fractures on the permeable 500 

porous network, as they display a wide range of initial porosities and permeabilities. The tests were 501 

systematically conducted on six samples, ranging between 10.9 and 21.3 vol. % porosity. 502 



503 
Figure 9: Permeability variations with effective pressure for intact samples, and the same samples with 504 

one fracture (F1) and two fractures (F2), imparted experimentally for basalts with a range of initial 505 

porosities from (a) 10.9 %, (b) 12.9 %, (c) 13.5 %, (d) 14.8 %, (e) 15.9 % to (f) 21.3 %.The data show 506 

a 0.5 to >2 order of magnitude increase in permeability due to fracturing, which is more significant at 507 

low porosity. Increasing effective pressure closes the fracture and the permeability nonlinearly 508 

decreases, trending towards that of the intact rock. This convergence is not always possible, 509 

presumably as in imperfect contact or dislodged fragments may obstruct fracture closure (See Figure 510 

10).  511 

 512 

The generation of a second, orthogonal fracture increased the permeability of the rocks further for 513 

samples across the range of porosities tested. The most porous sample (Figure 9f) was unable to 514 

sustain the fracture and crumbled. The permeability increase induced by the second fracture was not as 515 

significant as the first fracture (Figures 8-9), despite creating more fracture surface area and increasing 516 

porosity. This observation remains valid over the range of effective pressures tested; the interesting 517 

exception to this is the sample with 13.5 % porosity, for which the second fracture seems not to close 518 

adequately with an increase in effective pressure, resulting in a permeability nearly an order of 519 

magnitude higher than the single-fractured sample at 100 MPa effective pressure. For all other 520 

samples with 1 or 2 fractures, upon confinement, the permeability trends towards that of the intact 521 

rock. This convergence is not always possible, and appears less readily attainable in the lower porosity 522 

samples (Figure 9a-c), which have the lowest initial permeability values and for which the 523 

permeability is most affected by fracturing.  524 



 525 

 526 

 527 

Figure 10: Backscattered electron (BSE) images (obtained by scanning electron microscope (SEM)) of 528 

fractures generated in the felsite (average 11.5 % porosity). The images show that failure was 529 

accommodated by a macro-fracture, hosting small rock fragments and bordered by fine, branching 530 

subparallel fractures, with slight variability within one lithology. 531 

 532 

4 Discussion and implications 533 

The findings presented here enhance our understanding of the impacts of thermal and mechanical 534 

stimulation practices. The data shows that pore pressure fluctuations at pressures lower than the local 535 

confining pressure may not be an effective way to increase the permeability of a reservoir; yet, we 536 

surmise that if this pore pressure variation takes place at pressures nearing or exceeding the local stress 537 

– a condition favouring tensile fracture propagation (see section 4.1), then the effect may be quite 538 

contrasting (e.g. Rozhko et al., 2007). Thermal stimulation demonstrated variable influence on the 539 

resultant permeable porous network. Here, we noted that rocks void of micro-fractures were more 540 

liable to thermal stressing than micro-fractured rocks. This may be because, when present in a rock, 541 

micro-fractures may simply open during cooling contraction of the solid phase, without building large 542 

tensile stresses; in contrast, crack-poor rocks would build up large tensile stresses during cooling 543 

contraction, which may result in cracking, and thus enhanced fluid flow. The observed change in 544 

permeability of about one order of magnitude is moderate compared to Siratovich et al. (2015a), which 545 

showed a permeability change by three orders of magnitude for the dense andesite of the Rotokawa 546 

geothermal field. Thus, the permeability of hydrothermal reservoirs may be subject to changes in the 547 

lifetime of fluid extraction if it results in temperature changes, especially if rapidly heating and cooling 548 



dense unfractured lithologies. Yet ultimately, it is the generation of fractures, whether microscopic or 549 

macroscopic in nature, which controls permeability in the reservoirs, and arguably when fractures are 550 

mechanically impeded from adequate closure that they present the most persistent fluid pathways. 551 

 552 

4.1 On the permeability of intact and fractured volcanic rocks 553 

Detailed knowledge of the storage capacity and permeability of reservoir rocks is crucial to improve 554 

the utilisation of geothermal resources and to maximise energy production. The experimental work 555 

carried out here sheds light on the efficiency of fluid flow through the permeable porous network in 556 

the Krafla geothermal reservoir. The reservoir consists of a succession of mafic lavas, ignimbrites and 557 

hyaloclastites at shallow depth (<1 km) and at greater depth (>1 km), of cross-cutting mafic, 558 

intermediate and felsic intrusions (Mortensen et al., 2015). All the rocks display a range of porosities 559 

and permeabilities, and correspondingly, differing responses to effective pressure. The rocks found at 560 

shallow depths are highly variable: the basaltic rocks have a wide range of porosities and 561 

permeabilities, and the densest lithologies remain strong when pressurised (or, in natural terms, 562 

buried); whereas the porous basalt and hyaloclastite can only experience relatively low confinement 563 

without undergoing compaction (at P*). The intrusive rocks originating at depth were observed to be 564 

highly fractured, which led to high permeability (and higher dependence of permeability on effective 565 

pressure), despite their low porosities. The basaltic dyke however has low permeability, despite 566 

relatively high porosity (32-34 vol. % porosity; Figure 11), due to a predominantly isolated pore 567 

structure (Figure 2c). Within the reservoir, we expect that other dykes may be denser and less 568 

permeable.  569 

 570 

When compiled together, the permeability of the intact rocks increases non-linearly with porosity 571 

(Figure 11), as previously described (e.g. Ashwell et al., 2015; Brace, 1980; Eichelberger et al., 1986; 572 

Farquharson et al., 2015; Heap et al., 2014a; Heap and Kennedy, 2016; Heap et al., 2014b; Heap et al., 573 

2016; Jouniaux et al., 2000; Kendrick et al., 2016; Kendrick et al., 2013; Klug and Cashman, 1996; 574 

Kushnir et al., 2016; Lamur et al., 2017; Mueller et al., 2005; Okumura and Sasaki, 2014; Saar and 575 

Manga, 1999; Schaefer et al., 2015; Stimac et al., 2004). [It should be noted that previously published 576 



data collected at slightly different effective pressures (e.g. Tanikawa and Shimamoto, 2009) may 577 

increase scatter.] As permeability-porosity measurements of a variety of volcanic rocks accrue (e.g. 578 

Farquharson et al., 2015; Lamur et al., 2017; Mueller et al., 2005), a picture is rapidly emerging which 579 

depicts a wide range of permeabilities at all porosities (e.g., at ~10 % and ~35 % in Figure 11); here, 580 

we advance that the absence of a petrogenetic link between rocks with different porosities and 581 

permeabilities (owing to distinct petrological and deformational histories) may preclude the necessity 582 

to invoke a change point dividing two permeability regimes – fracture- vs vesicle-controlled – (even if 583 

statistically determined by the current dataset) and that a simple power-law regression may be an 584 

equally adequate approximation to be used in simulations, until a genetic link is established.  585 

 586 

Figure 11: Permeability (measured at Peff=3,75 MPa) as a function of porosity, showing the extensive 587 

variability of the lithologies examined. Data from this study correlate well with previously published 588 

data (measured at a range of effective pressures, which increases scatter further). Comparing the data 589 

to models to describe the porosity-permeability relationship, we note that the model for explosive 590 

products from Mueller et al. (2005) correlates very well with samples collected form a dyke. For the 591 

lower porosity samples, the model proposed by Farquharson et al., (2015) shows a better correlation 592 

than other models proposed, with a rapid increase in permeability over relatively narrow range of 593 

porosity, although above the inflection point the trend does not correlate well. Rather, it appears that 594 



the relationship for fractured rocks from Lamur et al. (2017) appropriately describes the upper limit of 595 

permeability observed here. 596 

 597 

The addition of a macro-fracture increases the permeability of porous volcanic rocks. Recent 598 

experimental investigations (Heap and Kennedy, 2016; Lamur et al., 2017) have proposed models to 599 

constrain the impact of fractures on permeability as a function of effective pressure, demonstrating 600 

that in the presence of one fracture, the permeability-porosity relationship follows a power law 601 

dependence (Lamur et al., 2017); here, our dataset appears to abide to such a power-law relationship 602 

(Figure 12). The permeability-porosity relationship of fractured volcanics further appears to limit the 603 

permeability of all porous rocks (>15 vol. % porosity) present at Krafla (Figure 11).  604 

 605 

Figure 12: The connected porous network of the fractured samples shows a very narrow variability of 606 

permeability across all lithologies, typically less than 1 order of magnitude (Peff=3.75 MPa) across a 607 

wide range of starting porosities. The data is compared to the relationship for fractured rock 608 

permeability described in Lamur et al. (2017) for the correct effective pressure. This relationship 609 

appropriately to describe the dataset with both 1 and 2 macrofractures, as well as appearing to describe 610 

the upper permeability limit of our intact samples (Figure 11). 611 

 612 

The data presented here further suggest that the obstruction of fractures by particles locally fragmented 613 

and offset between fracture planes may prevent complete fracture closure (Figure 10). This influence 614 

is more likely as more fractures are introduced, and results in persistence of high permeability even at 615 

high effective pressures. Perez-Flores et al. (2017) showed that the effect of fracture offset on 616 



permeability varies between lithologies, but at a certain offset length, the effect on permeability 617 

reached a maximum, which for fresh basalt, was around two orders of magnitude of permeability. 618 

With time, offset fractures also withhold a better permeability, by keeping the fracture network open 619 

even if pressure changes (Hofmann et al., 2016), as we observe. Fracture closure and fracture network 620 

repsonse to changes in effective pressure have also been shown to be controlled by the mechanical 621 

properties of a rocktype, as stronger rocks may prevent efficient fracture closure, whereas weak rocks 622 

may deform and shut fractures (Milsch et al., 2016). Slurries containing sand particles with the 623 

purpose of obstructing fracture closure have been used to optimise reservoir permeability and fluid 624 

extraction (Brinton et al., 2011), and our findings corroborate these practices. We further suggest that 625 

strategic thermo-mechanical stressing to impart fractures which orthogonally intersect local or 626 

regional fractures may be an equally efficient way to increase the permeability of a reservoir and thus, 627 

its resultant energy output. The outcome of this practice may likely be enhanced if the fracture 628 

produced is strategically aligned at low angles to the principal stress (in an anisotropic stress field) to 629 

favour slight displacement/ misalignment of the fracture interfaces, which may leave gaps in the rock 630 

to permit extensive fluid flow. This effect may be central to the efficiency of thermo-mechanically 631 

derived fractures as pathways to increase connectivity in the reservoir. 632 

 633 

4.2 Permeability of the Krafla hydrothermal reservoir  634 

Today at Krafla, geothermal energy production focuses on fluid extraction at shallow depth up to 635 

about 2-3 km (Mortensen et al., 2015); yet, deeper fluid extraction is often contemplated in our pursuit 636 

of higher energy production (Fridleifsson et al., 2014). In doing so, efforts must be made to avoid 637 

intersecting the shallow magma reservoir located at a depth of 2.1 km (Elders et al., 2014). 638 

Geochemical investigation of the glass fragments recovered during drilling into the magma reservoir 639 

suggests that volatile concentration is in equilibrium with a temperature of 800-950 ˚C (Axelsson et 640 

al., 2014; Elders et al., 2011) and a pressure of 30-50 MPa (Elders et al., 2011). At Krafla, a depth of 641 

2.1 km corresponds to a lithostatic pressure of approximately 65 MPa, if we assume a rock density of 642 

3,100 kg/m3 for the predominantly basaltic chemistry of these volcanics; thus, the discrepancy 643 

between the estimated equilibrium and the approximation of the lithostatic load suggests that fluid 644 



connectivity in the hydrothermal system may be efficiently decrease local magmatic pressure to below 645 

lithostatic. Thus, we can assume that at any given depth in the Krafla hydrothermal reservoir, the 646 

effective pressure can be approximated by subtracting the hydrostatic pressure (i.e., the pore pressure 647 

in our experiments) from the lithostatic pressure (i.e., the confining pressure in our experiments). 648 

Therefore, a depth of 2-3 km may correspond to effective pressures of 40-50 MPa (in agreement with 649 

equilibrium conditions for the glass; Elders et al., 2011). The study shows that the storage capacity and 650 

permeability of the reservoir rocks nonlinearly increases by decreasing the effective pressure exerted 651 

in the system, so fluid extraction may be optimised by ensuring high pressure of fluid injected into the 652 

hydrothermal system to keep fractures open as wide as permits (whilst remaining stable and not 653 

creating undesired hydraulic fractures).  654 

 655 

During IDDP-1, drilling activities suffered from a loss in fluids shortly before intersecting the magma 656 

reservoir at 2.1 km (Palsson et al., 2014). This 50-m thick zone of fluid loss coincided with 657 

encountering felsite – a crystalline rock believed to represent the crystallised aureole that surrounds 658 

the magma reservoir (Mortensen et al., 2014). No large samples of felsite were retrieved by the 659 

drilling activities, but samples can be collected from the phreatomagmatic deposits that surround the 660 

Viti crater (Sæmundsson, 1991). In this study, we examined gabbro and felsite blocks from this 661 

phreatomagmatic event and we found that both samples are highly micro-fractured (Figure 2d, e), 662 

which results in high permeability (and fracture compressibility with effective pressure). 663 

Phreatomagmatic eruptions are known to be highly explosive (Austin-Erickson et al., 2008) and we 664 

postulate that the high fracture density observed in the samples tested here is congruent with their 665 

eruption and with a damaged source region. Deep-seated fragmentation at depths of ca. 2.1 km, 666 

perhaps even due to emplacement of the rhyolitic magma, may thus be at the origin of this felsitic 667 

zone with high-fracture density that led to important fluid loss during IDDP-1. If such is the case, the 668 

high permeability of fractured magmatic aureoles – commonly believed not to have open fractures due 669 

to their propensity to flow and heal (e.g. Scott et al., 2015) – may be key in ensuring fluid connectivity 670 

between the Earth’s surface and the magma reservoir. This permeable architecture may naturally 671 



prevent from the accumulation of excess volatile concentration, dissolved in the magma, making it not 672 

particularly buoyant and hence unlikely to erupt during drilling operations. 673 

 674 

The laboratory measurements performed on samples primarily collected from surficial outcrops at 675 

Krafla, offer a first order constraint on the storage capacity and permeability of the reservoir rock 676 

present at Krafla volcano. Yet, much remains to be investigated to obtain a complete picture of fluid 677 

flow in this hydrothermal system: from complexity arising from the effects of high-temperatures 678 

(Kushnir et al., 2017) to the influence exerted by devolatilisation (e.g. Heap et al., 2013), dissolution 679 

(Gislason and Arnorsson, 1993), clogging by fine fragments (e.g. Kendrick et al., 2016) and secondary 680 

mineral precipitation (e.g. Curewitz and Karson, 1997). Such descriptions are the subject of ongoing 681 

work as part of the international IDDP and KMT projects. 682 

 683 

5 Conclusions 684 

This experimental study describes the permeability and storage capacity of the lithologies found 685 

within the Krafla reservoir. We find that each lithology exhibits a wide range of porosity and 686 

permeability; both of which are found to decrease nonlinearly with effective pressure – an effect 687 

which is more pronounced in samples with significant presence of fractures. We tested the influence of 688 

pressure oscillations, thermal stressing and fracturing on fluid flow in these rocks. We found that 689 

pressurisation/ depressurisation cycles leads to the progressive shutting of micro-fractures, which 690 

result in an overall permeability decrease of the rocks, though our experiments fluctuated pore 691 

pressure at values significantly lower than confinement, and we postulate that the effect may be 692 

reversed if pore pressure locally exceeded confining pressure. Thermal stimulation (especially when 693 

thermal shocks are caused by water) results in an increase of the permeability of rocks which are 694 

originally devoid of significant micro-fractures; however, fractured rocks remain largely unaffected by 695 

thermal stressing. Imparting a single macro-fracture increases the permeability of a rock at low 696 

effective pressure, but as confinement increases, the fracture begins to close and permeability trends 697 

towards that of the intact rock; imparting a second orthogonal fracture offers only a slightly higher 698 

increase in permeability of the rocks, but increases the possibility of offset along the fractures and thus 699 



the persistence of high permeability under confinement. Where the fracture was slightly offset, or 700 

where fine fragments lodged themselves in the fracture, obstruction from closure at high effective 701 

pressure resulted in high, relatively pressure-independent permeabilities. The data suggests that when 702 

thermo-mechanically stimulating a reservoir, efforts should be made to generate fractures orthogonal 703 

to primary local faults and fractures, or at low angle to principal stresses in order to increase gap 704 

opening at their intersections and favour fluid flow in the hydrothermal system. These findings support 705 

the use of proppants, such as non-reactive granular materials, to open fractures and ensure efficient 706 

fluid flow in production wells. 707 
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