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Abstract
Musculoskeletal modelling is an important platform on which to study the biome-
chanics of morphological structures in vertebrates and is widely used in clinical, zoo-
logical and palaeontological fields. The popularity of this approach stems from the 
potential to non-invasively quantify biologically important but difficult-to-measure 
functional parameters. However, while it is known that model predictions are highly 
sensitive to input values, it is standard practice to build models by combining muscu-
loskeletal data from different sources resulting in ‘generic’ models for a given species. 
At present, there are little quantitative data on how merging disparate anatomical 
data in models impacts the accuracy of these functional predictions. This issue is 
addressed herein by quantifying the accuracy of both subject-specific human limb 
models containing individualised muscle force-generating properties and models 
built using generic properties from both elderly and young individuals, relative to 
experimental muscle torques obtained from an isokinetic dynamometer. The results 
show that subject-specific models predict isokinetic muscle torques to a greater de-
gree of accuracy than generic models at the ankle (root-mean-squared error – 7.9% 
vs. 49.3% in elderly anatomy-based models), knee (13.2% vs. 57.3%) and hip (21.9% 
vs. 32.8%). These results have important implications for the choice of musculoskel-
etal properties in future modelling studies, and the relatively high level of accuracy 
achieved in the subject-specific models suggests that such models can potentially 
address questions about inter-subject variations of muscle functions. However, de-
spite relatively high levels of overall accuracy, models built using averaged generic 
muscle architecture data from young, healthy individuals may lack the resolution and 
accuracy required to study such differences between individuals, at least in certain 
circumstances. The results do not wholly discourage the continued use of averaged 
generic data in musculoskeletal modelling studies but do emphasise the need for to 
maximise the accuracy of input values if studying intra-species form–function rela-
tionships in the musculoskeletal system.
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1  | INTRODUC TION

Musculoskeletal modelling allows for detailed simulations and pre-
dictions of biomechanical performance during complex movements 
and behaviours (locomotion, feeding, etc.), which may be difficult 
or even impossible to replicate in experimental conditions. For this 
reason, it has become a widely used research tool across clinical 
(Falisse et al., 2019; Trinler et al., 2019), veterinary (Watson et al., 
2014; Lerner et al., 2015; Becker et al., 2019), zoological (Sellers 
et al., 2013; Rankin et al., 2016; Goh et al., 2017; Charles et al., 2018; 
Ellis et al., 2018; Sellers and Hirasaki, 2018) and palaeontological 
fields (Sellers et al., 2005; Bates et al., 2012; Bates and Schachner, 
2012; Crompton et al., 2012; Sellers et al., 2017; Bishop et al., 2018). 
However, with this popularity and desire to build increasingly com-
plex models, there comes a necessity to fully optimise and validate 
such models. Across these fields, it is becoming recognised that, 
where possible, model predictions should be validated against ex-
perimental measures (Sellers et al., 2005; Sellers and Manning, 
2007; Bates et al., 2012; Shi et al., 2012; Groning et al., 2013). This 
is necessary not only to validate the computational methods them-
selves (and their mathematical representations of mechanics and 
animal physiology), but also because musculoskeletal models are 
rarely constructed from homogeneous data sets where all aspects 
of morphology and physiology are measured from a single individ-
ual or even individuals with similar demographics or morphometry. 
Indeed, in zoological research, values for certain input parameters 
are often unavailable in the literature for the species under study, 
and as a result, values qualitatively considered ‘average’ for verte-
brates in general are used (Bates et al., 2010; Hutchinson, 2012). In 
both circumstances, researchers have often conducted sensitivity 
analyses in acknowledgement of the potential for abstraction or in-
accuracy in their model predictions (Sellers et al., 2005; Sellers and 
Manning, 2007; Bates et al., 2010; Bates et al., 2012; Groning et al., 
2013). These sensitivity analyses have particularly highlighted the 
potential errors in performance predictions (muscle forces, running 
speeds, bite forces, etc.) related to parameters that underpin the 
force-generating capacity of muscles, often referred to as muscle 
architecture (Hutchinson et al., 2007; Bates et al., 2010; Bates et al., 
2012; Groning et al., 2013; Bates and Falkingham, 2018).

Clearly, the gold standard approach would be to construct a 
model or models in which all anatomical input data, including mus-
cle architecture and musculoskeletal geometry (bones and muscle 
attachments), are measured in the individual or individuals being 
modelled, thus creating a highly subject-specific modelling frame-
work. However, such subject-specific models are currently much 
more expensive and time-consuming to produce relative to gener-
ic-based or ‘averaged’ models and as such have rarely been used 
to this extent in any species. However, research into the validity of 

subject-specific models of the human musculoskeletal system is be-
coming more widespread, as it is thought that such models may be 
more accurate for certain tasks than the often used generic or scaled 
generic models (Lenaerts et al., 2008; Scheys et al., 2008; Scheys 
et al., 2009; Scheys et al., 2011; Valente et al., 2014; Navacchia et al., 
2016; Prinold et al., 2016; Dejtiar et al., 2020; Gu and Pandy, 2020; 
Modenese and Kohout, 2020; Nardini et al., 2020). For example, 
models with subject-specific musculoskeletal geometry have been 
shown to be more effective for predicting muscle moment arms 
and joint contact forces, with respective differences of 36% (Scheys 
et al., 2008) and 0.61 xBW (Lenaerts et al., 2008) relative to generic 
models. Large differences in model outputs such as these could sub-
stantially affect the conclusions drawn from subject-specific models 
and simulations relative to scaled generic equivalents and reaffirm 
the need for accurate and possibly individualised input data in mus-
culoskeletal modelling studies.

While the inclusion of individualised musculoskeletal geometry 
has been readily shown to improve musculoskeletal models, the 
effect of including detailed subject-specific muscle architecture 
data in particular is less clear. Within musculoskeletal models, the 
force-generating capacity of individual musculotendon unit (MTU) 
actuators is usually represented with the standard Hill-type model 
(Zajac, 1989), where force generation is calculated using four main 
input parameters: maximum isometric force (Fmax), optimal fibre 
length (Lf), fibre pennation angles (θ) and tendon slack length (Lts). 
In traditional generic musculoskeletal models, these force-generat-
ing properties are often obtained from a combination of published 
muscle architecture data sets (Arnold et al., 2010; Rajagopal et al., 
2016). Many of these data sets contain important parameters (such 
as muscle fibre lengths) obtained from dissection studies, which usu-
ally include elderly cadaveric specimens due to difficulties in exten-
sively obtaining similar data in vivo (Wickiewicz et al., 1983; Ward 
et al., 2009). However, because of known changes in muscle archi-
tecture and functional capability due to ageing (Narici et al., 1985; 
Narici et al., 2008; Moore et al., 2014), these properties are unlikely 
to be representative of the wider human population. While other 
muscle architecture parameters such as muscle masses and volumes 
(from which maximum force can be derived) have been commonly 
estimated from more representative populations using magnetic res-
onance imaging (MRI) or similar methods (Infantolino et al., 2007; 
Handsfield et al., 2014; Nijholt et al., 2017; Charles et al., 2019), esti-
mating a muscle's potential maximum force output has traditionally 
relied on fibre properties such lengths and pennation angles from 
cadaveric studies. Concerns could therefore be raised over the ap-
plicability of many aspects of generic muscle architecture data for 
musculoskeletal modelling, particularly when studying stronger in-
dividuals or investigating subtle or complex between-subject varia-
tions in muscle functions. This could also be particularly important 
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in clinical contexts, for example if predictions of orthopaedic sur-
gery outcomes or personalised rehabilitation protocols are being 
informed by outputs from musculoskeletal models and simulations 
(Arnold et al., 2006; Seth et al., 2018).

Several methods have been proposed for overcoming the 
assumed functional limitations of generic muscle architecture. 
Musculoskeletal model outputs have been shown to be highly sensi-
tive to variations in muscle fibre lengths and tendon slack lengths in 
particular (Scovil and Ronsky, 2006; Redl et al., 2007; Ackland et al., 
2012; Charles et al., 2016), with studies attempting to optimise these 
parameters based on a subject's anthropometry to reduce these er-
rors (Winby et al., 2008; Modenese et al., 2016). Alternatively, muscle 
maximum isometric force values have been scaled to different indi-
viduals based on various metrics such as relative body mass (van der 
Krogt et al., 2016), a combination of relative body mass and relative 
musculotendon lengths (Correa and Pandy, 2011), regression equa-
tions (Handsfield et al., 2014) or dynamometer-based approaches 
(Kainz et al., 2018). However, the lack of subject specificity of these 
scaled muscle force-generating properties could present crucial er-
rors if used in studies investigating detailed muscle dynamics.

Diffusion tensor imaging (DTI), a form of MRI, of skeletal muscle 
has recently emerged as a viable and repeatable method of obtain-
ing muscle architecture in vivo (Bolsterlee et al., 2019; Charles et al., 
2019), thereby circumventing traditional difficulties of obtaining es-
timates of individualised estimates of muscle force-generating prop-
erties. The DTI technique has been shown to accurately visualise 
detailed in vivo anatomy within a variety of muscle groups (Froeling 
et al., 2012; Sieben et al., 2016; Bolsterlee et al., 2018) within indi-
viduals of a variety of ages and with various pathologies (Malis et al., 
2019; Sahrmann et al., 2019), as well as to build a novel data set of 
in vivo muscle architecture from young, healthy individuals (Charles 
et al., 2019). However, despite its widespread use, how accurately 
these muscle data simulate individual muscle functions and overall 
biomechanical performance within subject-specific musculoskele-
tal models relative to scaled or optimised generic data has not been 
tested.

Herein, these important issues surrounding model design and 
resolution are addressed by quantifying the absolute accuracy of 
both subject-specific human limb models, containing individualised 
muscle force-generating properties, and various models built using 
generic human properties. Specifically, the use of in vivo individu-
alised muscle force-generating properties in subject-specific lower 
limb musculoskeletal models built from MRI and DTI is investigated 
by comparing simulated maximal muscle torques to those measured 
experimentally. Torques from the same models with generic data 
based on both elderly and young individuals will also be compared 
to these experimental data, to not only assess the accuracy of ge-
neric muscle models but also elucidate exactly how much individ-
ualised detail is needed in subject-specific musculoskeletal models 
to optimise their accuracy. It is hypothesised that models with sub-
ject-specific muscle force-generating properties from MRI will simu-
late muscle torques to a significantly higher degree of accuracy than 
those with generic data. It is also hypothesised that generic data will 

show smaller errors in simulated torques in individuals with lower 
muscle strengths compared to those with higher strengths.

2  | METHODS

For this study, anatomical and experimental data were gathered from 
10 subjects (Table S1; 5 males, 5 females; age – 29 ± 3 years; body 
mass – 67.9 ± 9 kg; height – 175 ± 7 cm; BMI – 21.9 ± 1.6 kg/m2) who 
signed informed consent prior to participating in the study in accord-
ance with ethical approval from the University of Liverpool's Central 
University Research Ethics Committee for Physical Interventions 
(Reference number: 3757).

Here, a similar method to that described previously (Charles 
et al., 2019; Charles et al., 2019) is used to estimate subject-specific 
muscle architecture data from 31 muscles of the right lower limb 
from each subject. This involves the use of two MRI sequences, T1-
weighted anatomical turbo spin-echo (TSE) to estimate muscle vol-
umes and visualise muscle attachment points, and diffusion tensor 
imaging (DTI) to estimate muscle fibre lengths and pennation angles. 
The general framework has been validated and described in detail by 
Charles et al. (2019) but is also outlined below.

2.1 | MR image acquisition

All MR images were obtained using a Siemens 3.0 T Prisma scan-
ner (Siemens) with the following sequence parameters: T1-weighted 
anatomical TSE – voxel size 0.4395 × 0.4395 × 6.5 mm3; repeti-
tion time [TR] – 700 ms; echo time [TE] – 28 ms; number of slices 
– 36 per segment; number of signal averages (NSA) – 1; diffusion-
weighted single-shot dual-refocusing spin-echo planar – voxel size 
2.96 × 2.96 × 6.5 mm3; TR/TE – 7900/67 ms; 12 direction diffusion 
gradients; b value – 0 and 400 s/mm2; strong fat suppression – spec-
tral attenuated inversion recovery [SPAIR]; number of slices – 36 per 
segment; NSA – 1; and bandwidth – 2,350 Hz/pixel. All the MR im-
ages were acquired from the iliac crest to the plantar surface of the 
foot, with each subject in a supine position and with the lower limbs 
in the anatomical position. For each subject, images were acquired 
in an axial slice orientation and repeated for a total of five to six seg-
ments, for a total image acquisition time of ~35 mins. The diffusion 
tensor images were merged to form a continuous stack during post-
processing using the Stitching plugin for Fiji/ImageJ (Preibisch et al., 
2009; Schindelin et al., 2012).

2.2 | MR image processing

The T1-weighted MR images were digitally segmented in Mimics 
(Materialise) to create three-dimensional meshes of each muscle 
(Figure 1a–c). All DT images were pre-processed prior to analy-
sis, using similar steps to those outlined in previous studies (see 
Charles et al., (2019); Charles et al., (2019) for more details). First, 
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all diffusion images were registered to their respective B0 images 
using an affine transformation in Dtistudio (Jiang et al., 2006) to ac-
count for image artefacts and noise as a result of movement during 
scanning or spatial distortion (e.g. eddy currents and/or magnetic 
field inhomogeneity). To reduce signal-to-noise ratio, the images 
were then filtered in Medinria (www.med.inria.fr) software using 
a Rician noise suppression algorithm (Aja-Fernandez et al., 2008). 
Diffusion tensors were calculated for each voxel using DSI Studio 
software as explained previously (Bolsterlee et al., 2019). Fibre 
tractography using a deterministic algorithm (Yeh et al., 2013) was 
then carried out in DSI studio software to obtain 5,000 raw fibre 
tracts, which were assumed here to be functionally equivalent to 
muscle fascicles and by extension muscle fibres from each muscle 
of the lower limb (see Charles et al., (2019); Charles et al., (2019) 
for a discussion of this assumption). The tracts were created from 

seed regions of interest (ROIs) placed by overlaying the anatomical 
T1 images over the DT images and terminated when one of the fol-
lowing stopping criteria was met: step size – 1 mm; fractional ani-
sotropy – >0.5; and angle between segments – >30°. A maximum 
tract length stopping criteria was also used but was altered for 
each muscle. The value was set based on muscle belly length val-
ues measured from the volumetric muscle meshes obtained from 
the T1 MR images (assuming that muscle fascicle length cannot 
exceed muscle length) (Figure 1d–f).

A measurement of muscle fibre length was obtained for each 
muscle using an ‘anatomically constrained tractography’ post-pro-
cessing method previously described (Bolsterlee et al., 2019). Here, 
the raw fibre tracts are constrained in their length based on their 
corresponding volumetric mesh from the T1 images, which ensures 
no muscle fibre travels beyond a muscle boundary or is beyond an 

F I G U R E  1   Overview of the subject-
specific musculoskeletal modelling 
framework. Individualised musculoskeletal 
geometry (bones and muscle attachment 
points) for each subject was obtained 
from digital segmentation of 31 
muscles of the lower limb from T1 
magnetic resonance images (a–c). 
Muscle architecture for each muscle 
was estimated from diffusion tensor 
imaging (DTI), where fibre orientations 
can be estimated based on relative water 
diffusion (d; blue colour represents 
proximo-distal fibre orientation, and red 
represents antero-posterior orientation). 
The resulting muscle fibre lengths (e) 
and muscle volumes (f) were used to 
calculate maximum isometric force, 
which were input as force-generating 
properties into subject-specific lower limb 
musculoskeletal models (g)

a d

b

c

e

g

f
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anatomically realistic length. A value for pennation angle for each 
muscle was also calculated using this framework.

2.3 | Calculating muscle force-generating properties

Estimates of Lf for each MTU were obtained from:

where Lf is optimal fibre length, Lf′ is raw fibre length (measured from 
DTI), Ls is sarcomere length, and 2.7 µm is a generic value for optimal 
sarcomere length (Felder et al., 2005). Ls values were obtained from 
Ward et al. (2009), who measured Ls in fixed muscles dissected from 
limbs with most joints (other than the ankle joint) in the anatomical 
position, as in the present study. Values for Lts were estimated from 
a numerical optimisation algorithm, which estimates this parameter 
based on MTU and fibre lengths (Manal and Buchanan, 2004). Muscle 
volumes (Vm) were estimated for each muscle from volumetric muscle 
meshes from digital segmentation of the T1 MR images.

These parameters were then used to calculate physiological 
cross-sectional area (PCSA, mm2), a major determinant of muscle 
force output, using the equation (from Sacks and Roy (1982)):

where Vm is muscle (belly) volume (mm3), Lf is optimal muscle fibre 
length (mm), and θ is muscle fibre pennation angle. To estimate Fmax, in-
dividual PCSA values were multiplied by the isometric stress of skeletal 
muscle (or specific tension; 0.3 N/mm2; Zajac (1989)).

2.4 | Building musculoskeletal models

Subject-specific musculoskeletal models of both lower limbs were 
created for each subject in this study using NMSBuilder (Valente 
et al., 2017) (Figure 1g). Each model consisted of 7 bodies (pelvis, 
right thigh, left thigh, right leg, left leg, right foot and left foot) 
and 92 musculotendon unit actuators. The mass properties of 
these bodies (mass, centre of mass and inertia) were estimated 
from volumetric meshes of each segment created from the T1 MR 
images. A density of 1,062 kg/m3 was assumed for the limb bod-
ies and 1,013 kg/m3 for the pelvis body (Dempster and Gaughran, 
1967. Joint centres of rotation and body coordinate systems were 
placed and oriented for the hip, knee and ankle joints based on 
ISB recommendations (Wu et al., 2002). Muscle attachment (ori-
gins and insertions) and via points were placed based on the volu-
metric meshes of the muscles themselves obtained from digital 
segmentation of the T1 MR images, with each attachment point 
placed as close to the observed centroid of muscle attachment as 
possible. Muscles with broad origins were represented by multiple 
MTU actuators in each model to better recreate their functions. 

Here, the gluteus maximus, gluteus medius and gluteus minimus 
muscles were each represented by 3 MTUs, while the adductor 
magnus muscle was represented by 2 MTUs. To account for this, 
the calculated Fmax value for these muscles was equally divided 
between the MTUs, which is a common assumption within mus-
culoskeletal models (Gatesy and English, 1993; Arnold et al., 2010; 
Charles et al., 2016). Wrap objects were placed throughout the 
lower limb in order to ensure each MTU followed a realistic path 
of action around bones and other MTUs (see Table S3 for general 
properties of these wrapping objects).

For each subject, five musculoskeletal models were created, 
each based on the same individualised musculoskeletal geometry 
created in NMSBuilder. That is, all five models retained the same 3D 
bone geometry and muscle paths, but varied in Fmax, θ, Lf and Lts in 
the following ways:

• Subject-specific (SS) – Individualised musculoskeletal geometry 
and muscle force-generating properties from MRI and DTI. These 
properties are listed in Tables S4-S13.

• Generic elderly (GE) – Individualised musculoskeletal geometry 
with cadaveric muscle force-generating properties from literature 
(Ward et al., 2009) (age – 89 ± 3 years; body mass – 82.7 ± 15.3 kg), 
which has been used to wholly or partially inform various iterations 
of generic musculoskeletal models within the SIMM or OpenSim 
frameworks (Delp et al., 1990; Delp and Loan, 2000; Thelen et al., 
2003; Arnold et al., 2010; Rajagopal et al., 2016).

• Generic elderly optimised (GEO) – Individualised musculoskeletal 
geometry with pennation angle values from cadaveric studies and 
optimised Lf and Lts obtained using a muscle optimiser algorithm 
(Modenese et al., 2016). This optimises these values based on a 
validated reference musculoskeletal model (Rajagopal et al., 2016) 
and the anthropometry of the target (subject-specific) model ge-
ometry, and therefore ensures the MTUs operate on the correct 
part of their force–length curve. Fmax values were scaled to each 
individual based on using the following formula from van der 
Krogt et al. (van der Krogt et al., 2016):

where Msubject is the body mass of each subject in this study, and 
Mgeneric is the body mass of a standard generic model, taken here 
as 75.3 kg (from Rajagopal et al. (2016)).• Generic young 
(GY) – Individualised musculoskeletal geometry with muscle 
force-generating properties from young, healthy individuals (age 
– 28 ± 4 years; body mass – 71.9 ± 11 kg). This is a combined 
average of the data collected in the present study and a previ-
ously published in vivo data set collected using similar methods 
(Charles et al., 2019). Relative to the elderly generic data, the 
muscles within this data set are characterised by higher muscle 
volumes and Fmax values, longer fibre lengths (particularly in more 
distal functional groups) and larger pennation angles (Figure 2).

(1)Lf=Lf�

(

2.7μm

Ls

)

(2)PCSA= (Vm ∗cos�)∕(Lf)

(3)Fscaled
max

=Fgeneric
max

×

(

Msubject

Mgeneric

)(2∕3)
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• Generic young optimised (GYO) – Individualised musculoskeletal 
geometry with pennation angle values from young, healthy indi-
viduals, and optimised Lf and Lts values obtained from the same 
algorithm as the GEO models. Fmax values were scaled using equa-
tion (3), but with Mgeneric in this case set as 71.9 kg (the mean body 
mass of the individuals used to generate that anatomical data set).

2.5 | Isokinetic and isometric torque measurement

To provide an experimental, functional metric against which to vali-
date the musculoskeletal models, an isokinetic dynamometer (HUMAC 
NORM, CSMi) was used to measure right maximal lower limb muscle 
torques from each subject. Torques were measured through ankle 
plantarflexion–dorsiflexion, knee extension–flexion and hip extension–
flexion during both isokinetic and isometric conditions. For each of 

these rotations, each subject's maximum flexion and extension angles 
were measured to ensure each isokinetic trial measured muscle torques 
throughout their entire respective ranges of motion (average joint an-
gles are reported in Table S14). For each isokinetic trial, each subject 
was restrained in a way to allow only the joint of interest to rotate, in 
accordance with CSMi guidelines (see Figure 3). Each isokinetic trial 
was composed of 5 repetitions, while each isometric repetition lasted 
5 s with 5-s rest between each repetition, for a total of 5 repetitions 
(see Table S14 for more information). Each subject was given verbal en-
couragement during each trial to ensure they exerted maximum torque.

2.6 | Simulation procedure

For each subject, one representative isokinetic repetition from 
each joint was simulated in the SS, GE, GEO, GY and GYO mod-
els within OpenSim 4.0 (Seth et al., 2018). To do so, the measured 

F I G U R E  2   Functional group mean scaled maximum isometric force values (a), muscle fibre lengths (b) and pennation angles (c) from an 
elderly generic anatomical data set (Ward et al., 2009), a young generic data set collected from MRI (a combination of data collected here 
and previously (Charles et al., 2019)) and subject-specific data (averaged data collected here). For muscle functional groupings, see Table S1
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isokinetic torques throughout each movement from each subject 
were converted to an external force and applied to the models at 
the appropriate point (ankle plantarflexion/dorsiflexion – the meta-
tarsophalangeal joint; knee extension/flexion – the distal tibial shaft; 
hip extension/flexion – the distal femoral shaft; see Figure 3). With 
these external forces applied, static optimisation was used to predict 
a set of individual MTU forces and activations which could satisfy 
the applied loads, with the objective function of minimising squared 
muscle activations. To facilitate a direct comparison to the experi-
mentally measured torques (Te) from the isometric dynamometer, the 
relevant predicted muscle forces from each simulation were multi-
plied by their respective moment arms and then summed to obtain 
a value for total predicted muscle torque (Tp). In a wholly accurate 
model and simulation, Tp would be equal to Te, as the MTUs within the 
model would be able to produce enough force to satisfy the external 
loads and perfectly simulate in vivo muscle torques measured by the 
isokinetic dynamometer. If the models are unable to satisfy the ex-
ternal loads, the MTUs will reach maximal activation and be unable 

to produce enough force to produce the desired motion, resulting in 
a failed static optimisation. No reserve actuators were applied to the 
static optimisation simulations, in order to ensure that these analyses 
were focusing only on the functional capabilities of the MTUs within 
the models (see Appendix S1 for details and outputs of simulations 
performed with reserve actuators appended to each model).

For each simulation, root-mean-squared errors (RMSE) of Tp rel-
ative to Te were calculated to quantify the agreement between the 
two data sets in SS, GE, GEO, GY and GYO models:

A one-way ANOVA with Tukey’s post hoc comparisons was 
performed to test for statistically significant differences between 
the RMSE values obtained from the models of each subject. These 
statistical analyses were performed in OriginPro software (version 
2016. OriginLab Corporation).

(4)RMSE=

√

(

Te−T
2

p

)

F I G U R E  3   The experimental and 
simulation procedures, where isokinetic 
trials on an isokinetic dynamometer 
through ankle plantarflexion–dorsiflexion 
(a), knee extension–flexion (b) and hip 
extension–flexion (c) are replicated using 
subject-specific musculoskeletal models 
within OpenSim to estimate the abilities 
of the musculotendon units to produce 
the desired motion. The green arrows 
represent the external forces applied to 
each model through each motion, which 
are derived from the experimentally 
derived muscle torques measured from 
the isokinetic dynamometer
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The linear regression function in OriginPro software was used to 
test for correlations between experimentally derived maximum isomet-
ric torque (Tmax; from isometric trials on the isokinetic dynamometer) 
values from each subject and individual RMSE values for each isoki-
netic trial in SS, GE, GEO, GY and GYO models. This was used to test 
the hypothesis that generic data will show smaller errors in simulated 
torques in individuals with lower muscle strengths compared to those 
with higher strengths. Here, Tmax values were assumed to be represen-
tative of an individual's maximal muscle strength. For example, a strong 
positive correlation between Tmax and RMSE through a particular joint 
rotation within a particular model type would mean that muscle torques 
in stronger individuals are predicted by the simulation less accurately 
than those in weaker individuals, thus supporting this hypothesis.

In order to assess the ability of each type of model to predict 
inter-subject variations in muscle outputs, Spearman's rank correla-
tion coefficient was calculated (IBM SPSS Statistics for Windows, 
version 25.0. Armonk, NY: IBM Corp) for the predicted maximum 
isokinetic muscle torques through ankle plantarflexion, knee exten-
sion and hip extension from each model for each subject relative to 

their experimentally measured isokinetic muscle torques from the 
isokinetic dynamometer (p < 0.05). This test was used to give an indi-
cation of how well each model predicts the ranked order of subjects 
in terms of measured maximum isokinetic torque and therefore po-
tentially how well each type of model is able to reflect inter-subject 
variations in muscle forces and functions.

3  | RESULTS

3.1 | RMS errors

At the ankle, knee and hip joints, the fully subject-specific musculo-
skeletal models predicted muscle torques to a greater average accu-
racy than all other models (Figures 4-7). On average, the SS models 
predicted ankle plantarflexion and ankle dorsiflexion muscle torques 
with RMS errors of 11.6% (% of maximum Te) and 7.4%, respectively 
(Figure 4e), while the GE and GEO models showed errors of 27.3% 
and 16.6% through plantarflexion, and 49.3% and 21.5% through 

F I G U R E  4   Mean (±standard error) 
normalised predicted ankle muscle 
torques from static optimisation in 
the Generic elderly (a), Generic elderly 
optimised (b), Generic young (c), Generic 
young optimised (d) and Subject-specific 
(e) models against mean experimentally 
derived normalised ankle muscle 
torques measured from an isokinetic 
dynamometer. Root-mean-squared errors 
expressed in Nm/kg and as % of maximum 
isokinetic torque show that on average, 
the subject-specific models predicted 
maximal muscle torques to the greatest 
degree of accuracy through both ankle 
plantarflexion and dorsiflexion relative to 
all other models
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dorsiflexion, respectively (Figure 4a, b). The errors in the GE models 
through ankle plantarflexion and dorsiflexion were statistically sig-
nificantly higher than those in the GY, GYO and SS models on average 
(p < 0.05); Figure 7). The errors in the GY and GYO models were closer 
to those in SS models, with RMS errors of 13.5% and 15.5% through 
plantarflexion and 18.9% and 10.9% through dorsiflexion, respectively 
(Figure 4c, d). Knee extension and knee flexion muscle torques were 
predicted less well than ankle muscle torques by the SS models on av-
erage (RMSE – 13.2% and 14.3%), but nevertheless more accurately 
than both the GE and GEO models (Figure 5a, b, e), where errors ranged 
from 57.3% to 22.1% through extension and 32.5% to 33.3% through 
knee flexion. The best agreement to the experimental data through 
knee extension on average was in the GY models (11.5%) (Figure 5c), 
but through knee flexion the errors were slightly larger than the SS 
models (17.5%). Both knee extension and flexion errors were higher 
in the GYO models than the SS models (18.1% and 23.4%) (Figure 5d). 
Indeed, only the SS models had significantly lower errors than the 
GE and GEO models through knee flexion (p = 0.02 and 0.01, respec-
tively), while all other models had significantly lower errors than the GE 

models through knee extension (Figure 7). The highest average errors 
in SS models were seen through hip flexion and extension, with errors 
of 21.9% and 25% (Figure 6f). However, these errors were smaller than 
those seen in the GE and GEO models, which showed errors of 32.8% 
and 33.6% during hip extension and 45.7% and 47.7% during hip flex-
ion (Figure 6a, b). Both GY and GYO models had larger errors than the 
SS models through hip extension (23.9% and 24.4%), but the errors 
through hip flexion were smaller in the GY models on average (20.2%) 
(Figure 6c, d). Only the SS models had significantly smaller errors than 
the GE models through hip extension (p = 0.04), while the SS and GY 
models had significantly smaller errors than the GE models through hip 
flexion (p = 0.02 and 0.002, respectively). The GY and SS models all 
showed significantly smaller errors than the GEO models through hip 
flexion on average (p = 0.001 and 0.01, respectively; Figure 7).

Between all the subjects, the smallest RMS errors in the SS mod-
els were seen in Subject 5 through ankle dorsiflexion (0.05% of max 
Te), while the largest errors were seen in Subject 6 through hip flexion 
(44.5%). In the GE models, the largest errors were generally seen in 
knee extension, with Subject 4 having the largest at 65.6%, and the 

F I G U R E  5   Mean (±standard error) 
normalised predicted knee muscle torques 
from static optimisation in the Generic 
elderly (a), Generic elderly optimised 
(b), Generic young (c), Generic young 
optimised (d) and Subject-specific (e) 
models against mean experimentally 
derived normalised knee muscle 
torques measured from an isokinetic 
dynamometer. Root-mean-squared 
errors, expressed in Nm/kg and as % of 
maximum isokinetic torque, show that the 
generic young models predicted maximal 
muscle torques to the greatest degree of 
accuracy through knee extension, while 
the subject-specific models were the most 
accurate through knee flexion
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same individual also had the smallest error through ankle plantarflex-
ion at 9.14%. Subject 10 had the smallest error of the GEO models, 
with an RMS error of 0.27% through ankle dorsiflexion, while Subject 
7 showed the largest error in these models (58% through hip flexion). 
Similar to the SS models, the smallest error in the GY models was 
seen in Subject 5 through ankle dorsiflexion (0.94%), but the largest 
error was seen in Subject 4 through hip flexion (46.3%). Subject 3 had 
the smallest error of the GYo models, with an error of 1.30% through 
ankle dorsiflexion, while Subject 7 had the largest error with 67.1% 
through hip flexion. See Tables S15 and S16 for individual RMSE val-
ues for all models of each subject in this study, and see Table S17 
for the statistical significance (p values) of the differences between 
these RMSE values within each model as predicted by the ANOVA.

3.2 | Linear regression

The strongest correlations between Tmax and individual RMSE were 
generally seen in both the elderly generic models through ankle 

plantarflexion/dorsiflexion (Figure 8a, d) and knee extension/flex-
ion (Figure 9a, d). Statistically significant positive correlations were 
found during ankle dorsiflexion (R2 = 0.55) in the GEO models and 
during knee flexion and hip flexion in the GE models (R2 = 0.42 and 
0.34, respectively) (Figures 9a, 10a). In the GY models, only knee 
flexion Tmax was significantly positively correlated with RMSE (R2 = 
0.49) (Figure 9e), while in the GYO models, only ankle dorsiflexion 
Tmax was significantly correlated with RMSE (R2 = 0.41) (Figure 8e). 
Only through hip flexion were RMSE and Tmax significantly corre-
lated in the SS models (Figure 10f).

3.3 | Spearman's rank correlation coefficients

The maximum predicted isokinetic torques in the SS models had 
the largest Spearman's rank correlation coefficients (Table 1) rela-
tive to the measured isokinetic torques through all three movements 
tested (ankle plantarflexion – ρ = 0.988; knee extension – ρ = 0.976; 
hip extension – ρ = 0.927). The GY and GYO models also had high 

F I G U R E  6   Mean (±standard error) 
normalised predicted hip muscle torques 
from static optimisation in the Generic 
elderly (a), Generic elderly optimised 
(b), Generic young (c), Generic young 
optimised (d) and Subject-specific (c) 
models against mean experimentally 
derived normalised hip muscle 
torques measured from an isokinetic 
dynamometer. Root-mean-squared errors, 
expressed in Nm/kg and as % of maximum 
isokinetic torque, show that the subject-
specific models predicted maximal muscle 
torques to the greatest degree of accuracy 
through hip extension, but the generic 
young models were the most accurate 
through hip flexion
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coefficients at all joints (ρ = 0.988 and ρ = 0.939 through ankle 
plantarflexion, ρ = 0.952 and ρ = 0.939 through knee extension and 
ρ = 0.903 and ρ = 0.915 through hip extension), while the GE and 
GEO models had the lowest coefficients (ρ = 0.612 and ρ = 0.952 
through ankle plantarflexion, ρ = −0.442 and ρ = 0.806 through knee 
extension and ρ = 0.867 and ρ = 0.758 through hip extension).

4  | DISCUSSION

This study aimed to quantify the absolute and relative ability of sub-
ject-specific versus generic muscle architecture data to predict MTU 
forces and torques within musculoskeletal models. Torques were 
predicted using OpenSim within subject-specific skeletal models 
with subject-specific, generic and generic optimised muscle force-
generating properties (from both elderly and young individuals), and 
directly compared to experimentally derived isokinetic muscle tor-
ques from an isokinetic dynamometer.

These results provide relatively strong validation of the pre-
sented subject-specific musculoskeletal modelling framework, with 
the SS models (containing individualised muscle force-generating 
properties) matching the experimental data significantly better than 
their equivalent GE and GEO models at all joints tested. The differ-
ence to the GY and GYO models was smaller in terms of root-mean-
squared errors; however, for most of the movements analysed, the 
SS models predicted muscle torques to a greater degree of accu-
racy (Figures 4-7). This supports the initial hypothesis that muscu-
loskeletal models containing subject-specific muscle architecture 
and musculoskeletal geometry would simulate muscle torques to a 
greater degree of accuracy than those containing generic muscle 
force-generating properties. The failure of the elderly generic-based 
models to accurately simulate muscle torques, even with optimised 
muscle fibre lengths, was not surprising and reflects a shift away 
from exclusively using such data in recent biomechanical modelling 
studies with the increased availability of MRI-based anatomical data 
sets (Handsfield et al., 2014; Charles et al., 2019). Nevertheless, the 
results obtained here highlight and support some potentially inter-
esting functional effects of known changes in muscle architecture 
which occurs due to ageing. The largest RMS errors in these models 
were during knee extension (57% of maximum isometric torque), and 
it is within these muscles that decreases in muscle torque with age 
are the most apparent (Moore et al. (2014), see also Figure 3). While 
several factors have been proposed to be the cause of this func-
tional decline in muscle quality with age, such as decreases in motor 
unit activation and muscle fibre-specific tension (Narici et al., 1985; 
Narici et al., 2008), the results here suggest that muscle architecture 
could have a significant role.

Regarding the models based on muscle and fibre architecture 
data from young, healthy individuals, the relatively small RMSE val-
ues in the SS, GY and GYO models (Figures 4-7) suggest that such 
data obtained from MRI accurately reflect in vivo muscle force-gen-
erating capacities (on a muscle group level) and therefore could ac-
curately simulate muscle function in a computational context. This 

F I G U R E  7   Average root-mean-squared errors (expressed as % 
of maximum isokinetic torque, +1 standard deviation) of simulated 
muscle torques relative to experimentally measured ankle (a), knee 
(b) and hip (c) torques from an isokinetic dynamometer. *Indicates 
statistically significant differences in mean RMS errors as predicted 
by the ANOVA (p < 0.05). Through ankle plantarflexion and 
dorsiflexion, as well as knee extension, the Generic elderly (GE) 
models showed significantly larger RMSEs than the Generic young 
(GY), Generic young optimised (GYO) and Subject-specific (SS) models. 
Through knee flexion, hip extension and hip flexion, the SS models 
had significantly lower RMSEs than both the GE and Generic elderly 
optimised (GEO) models. Also through hip flexion, the GE models had 
significantly higher RMSEs than the GY models, while the GEO models 
had significantly higher RMSEs than the GY, Generic young optimised 
GYO and SS models. For specific p values, see Table S17
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supports the use of these and similar medical imaging-based ana-
tomical data in musculoskeletal models, particularly when simulating 
maximal effort tasks in young, healthy individuals. However, these 
results suggest that scaling these young generic data has little im-
pact on their potential accuracy. Scaling or optimising muscle archi-
tecture data to specific individuals based on relative body mass or 
anthropometry is an often used method of estimating personalised 
force-generating properties (Correa and Pandy, 2011; van der Krogt 
et al., 2016; Kainz et al., 2018). However, these adjusted properties, 
even those from young generic data, still appear to be less accurate 
than subject-specific data from MRI in predicting muscle torques 
and only provide significant improvements in accuracy within some 
muscle groups throughout the tested movements. In fact, while 
optimising elderly generic data improved the accuracy of the ca-
daver-derived muscle force-generating properties (statistically sig-
nificantly through ankle dorsiflexion), optimising the young generic 
properties on average had little effect on resulting RMS errors and 
even increased them through all movements other than ankle dor-
siflexion (Figures 4-7). Given the similar ages and body masses of 
the individuals in this study and in the young generic anatomical 
data set, the lack of change in errors after scaling was somewhat 
expected. Therefore, this should not necessarily discount the use of 

scaling, optimisation or regression methods to estimate individuals’ 
muscle force-generating properties for musculoskeletal models if 
methods to obtain subject-specific data are unavailable.

However, while the use of using average muscle force-gen-
erating properties from young, healthy individuals appears to be 
valid way of simulating muscle function in individuals of a similar 
age demographic, correlations between individual RMS error and 
maximum isometric joint torque (indicative of an individual's over-
all strength) (Figures 7-9) suggest that this may be subject-depen-
dent. Significant correlations were seen through ankle dorsiflexion 
and knee flexion in the GY and GYO models, respectively (Figures 
8 and 9), suggesting that for individuals with low strengths around 
those joints, young generic data can accurately simulate muscle 
functions, but not for stronger individuals. These correlations were 
stronger in the elderly generic models, where individual RMSE val-
ues showed stronger correlations with Tmax through knee flexion, 
ankle plantarflexion and ankle dorsiflexion in the GEO relative to 
the GE models. The second hypothesis that generic data will show 
smaller errors in simulated torques in individuals with lower muscle 
strengths compared to those with higher strengths is supported by 
these results and suggests that generic properties may be applica-
ble for models of individuals with lower muscle force outputs, but 

F I G U R E  8   Linear regression between experimentally derived maximum isometric ankle muscle torque measured from an isokinetic 
dynamometer and root-mean-squared errors of predicted isometric muscle torques in Generic elderly, Generic elderly optimised, Generic 
young, Generic young optimised and Subject-specific models through ankle plantarflexion (a–c) and ankle dorsiflexion (d–f). Adjusted R2 
values are shown alongside associated p values. *Statistical significance (p < 0.05). The statistically significant positive correlations seen in 
the Generic elderly optimised and the Generic young optimised models through ankle dorsiflexion suggest that there is a trend for these 
models to accurately predict muscle torques within individuals with low muscle force capabilities, but these muscle data may not be suitable 
for simulating muscle functions in stronger individuals
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not those with higher torque-generating capacities. Indeed, RMS 
errors <5% of Te can be seen in the GEO models of S07, S09 and 
S10 during ankle dorsiflexion and S07 during knee flexion (Tables 
S15-S16). This has potential implications for musculoskeletal mod-
elling in a variety of contexts, such as in clinical studies where gait 
dynamics of pathological populations are investigated using bio-
mechanical simulations (e.g. cerebral palsy (Rosenberg and Steele, 
2017)). Such individuals are generally characterised by a reduction 
in muscle force-generating capacity relative to younger individ-
uals (D'Souza et al., 2019), similar to the elderly generic data set 
used here. Therefore, if gathering in vivo muscle data from MRI is 
not possible in these situations, optimising elderly generic muscle 
properties (Modenese et al., 2016) may be sufficient to investigate 
muscle functions in these individuals using musculoskeletal mod-
els. Similarly, when creating animal models, it can be difficult or 
impossible to obtain extensive muscle force-generating properties 
from the specific individual being modelled. The results presented 
here suggest that including these data from matched individuals 
(collected as primary data or from published data sets if available) 
or data from species of similar morphometry or ecologies may pro-
vide a suitable solution for predicting muscle functions if obtaining 
individualised muscle data is not possible.

Nevertheless, these results show that including muscle archi-
tecture data from MRI in subject-specific musculoskeletal models 
significantly improves accuracy regarding predictions and muscle 
torques, forces and functions. The data suggest this becomes in-
creasingly important in stronger individuals, and overall, the results 
indicate that the use of generic musculoskeletal models to assess 
high-performance activities in young individuals (particularly in 
sports biomechanics) is not optimal. This is particularly apparent 
when considering the inter-subject variations in predictions of muscle 
group outputs, as shown by Spearman's rank correlation coefficients 
for each model in predicted maximum isokinetic torque relative to 
measured values from the isokinetic dynamometer (Table 1), where 
the subject-specific models showed the highest coefficients of all 
the models through all movements tested. So, while the young ge-
neric-based models predicted muscle torques in general to a similar 
degree of accuracy than the subject-specific models when averaged 
over all subjects, they were not as consistent at doing so between all 
individuals. These results therefore support the notion that creating 
individualised models should be considered the optimal approach to 
investigate how small-scale variations in musculoskeletal geometry 
or muscle architecture between individuals influence musculoskele-
tal function, on a muscle group level at least, which is an exciting but 

F I G U R E  9   Linear regression between experimentally derived maximum isometric knee muscle torque measured from an isokinetic 
dynamometer and root-mean-squared errors of predicted isometric muscle torques in Generic elderly, Generic elderly optimised, Generic 
young, Generic young optimised and Subject-specific models through knee extension (a–c) and knee flexion (d–f). Adjusted R2 values are 
shown alongside associated p values. *Statistical significance (p < 0.05). The statistically significant positive correlations seen in the Generic 
elderly, Generic elderly optimised and the Generic young models through knee flexion suggest that there is a trend for these models to 
accurately predict muscle torques within individuals with low muscle force capabilities, but these muscle data may not be suitable for 
simulating muscle functions stronger in individuals
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as yet not fully explored benefit of subject-specific musculoskeletal 
modelling.

5  | FUTURE PERSPEC TIVES

While this study goes a long way to solidifying the presented 
framework of subject-specific musculoskeletal modelling as a valid 
method of obtaining predictions of muscle functions to a high de-
gree of accuracy, some factors may require greater consideration 
in future work. For example, while the subject-specific models 
showed good agreement with the experimental data relative to 
the generic models in all 3 of the movements tested, these were 
purely sagittal plane motions involving rotations through only one 
degree of freedom (DOF). It is possible that simulating more com-
plex movements (such as gait), where more rotational and trans-
lational DOFs are included, would introduce larger degrees of 
error into the model predictions. However, as experimental data 
against which to validate models during such movements are dif-
ficult to obtain, quantifying this error and validating such complex 

and dynamic simulations are a challenge and a limitation of many 
musculoskeletal modelling studies. Comparing predicted muscle 
activations against experimentally obtained muscle activity from 
electromyography (EMG) is the most commonly used validation 
method (Glitsch and Baumann, 1997; Lenaerts et al., 2008; Lund 
et al., 2012), and could be useful here to confirm that the models 
and simulations are truly replicating individual in vivo muscle func-
tion, rather than simply finding a different solution to satisfy the 
applied external forces. However, the functional redundancy within 
the vertebrate musculoskeletal system (Crowninshield and Brand, 
1981; Modenese et al., 2013; Simpson et al., 2015), which results in 
many different muscle activation pattern being able to produce the 
same movement, is an inherent drawback of this validation method 
and means agreements between predicted muscle activations and 
measured muscle activity can be difficult to obtain and qualify (see 
Lund et al. (2012) for further discussion on the limitations of EMG 
validation). So, while these results do not necessarily confirm that 
models constructed with subject-specific data predict individual 
muscle torques, forces and functions to a higher degree of accu-
racy than other models, the relatively low RMS errors through all 

F I G U R E  1 0   Linear regression between experimentally derived maximum isometric hip muscle torque measured from an isokinetic 
dynamometer and root-mean-squared errors of predicted isometric muscle torques in Generic elderly, Generic elderly optimised, Generic 
young, Generic young Optimised and Subject-specific models through hip extension (a–c) and hip flexion (d–f). Adjusted R2 values are shown 
alongside associated p values. *Statistical significance (p < 0.05). The statistically significant positive correlations seen in the Generic elderly 
models through hip flexion suggest that there is a trend for these models to accurately predict muscle torques within individuals with low 
muscle force capabilities, but these muscle data may not be suitable for simulating muscle functions in stronger individuals. The statistically 
positive correlations and high root-mean-squared errors in the subject-specific models through hip flexion suggest the framework of 
measuring muscle architecture from magnetic resonance images could underestimate the force-generating capacities of these muscles, a 
deficiency which is exacerbated in models of stronger individuals
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movements tested suggest they have the greatest potential to do 
so. Validating predictions from these models through simulations of 
more complex movements such as gait against experimental data in 
future studies will help to confirm these assertations.

Additionally, while the framework of including muscle archi-
tecture-derived MRI and DTI in subject-specific models presented 
here represents a novel contribution to the subject-specific model-
ling field, improvements could still be made to increase the level of 
individualisation. This is particularly apparent in the estimation of 
optimal fibre lengths and tendon slack lengths which, as previously 
discussed, are parameters to which musculoskeletal models are 
highly sensitive (Scovil and Ronsky, 2006; Redl et al., 2007; Ackland 
et al., 2012; Charles et al., 2016). Optimal fibre lengths were esti-
mated by normalising the DTI-derived muscle fibres to sarcomere 
lengths from previous literature (Ward et al., 2009), and tendon 
slack lengths were estimated using a numerical optimisation algo-
rithm (Manal and Buchanan, 2004). Both methods rely on generic 
muscle data or assumptions and therefore limit the subject specific-
ity of the force–length relationships in each muscle. However, given 
the current difficulties in measuring sarcomere lengths and tendon 
slack lengths in vivo in muscles throughout the lower limb, improving 
these data was not possible here, but does not lessen the impact 
of the results presented. Nevertheless, obtaining in vivo estimates 
of sarcomere lengths through micro-endoscope imaging (Chen and 
Delp, 2016; Chen et al., 2016) or tendon slack lengths through elas-
tography (Hug et al., 2013) for implementations into musculoskeletal 

models is a possible area of future study and opportunity to improve 
this subject-specific modelling framework.

Regarding the construction of the musculoskeletal models built 
here, the musculotendon unit attachment points were placed based 
on volumetric muscle meshes from digital segmentation of T1 MR 
images, which maximises the potential to accurately represent av-
erage muscle paths. However, the single-line actuators often used 
to represent single muscles within multi-body dynamics models may 
not be sufficient in reflecting in vivo anatomy at certain areas of the 
lower limb. It is possible that this is particularly important in the pel-
vis/hip region, where muscle paths and wrapping can be particularly 
complex (Lenaerts et al., 2008; Modenese et al., 2011; Modenese 
and Kohout, 2020), and failure to capture this complexity in the 
models created here could explain the high average RMSE values 
seen during hip extension/flexion movements in all models. Future 
implementations of the methods presented here could involve im-
aging the muscles of interest multiple times with the lower limb in 
different postures, which could allow for the visualisation of how 
muscles or even individual fibres wrap around and interact with 
other musculoskeletal structures. Increasing joint complexity or the 
anatomical accuracy of the MTU actuator models used to represent 
each muscle (Modenese et al., 2011; Modenese and Kohout, 2020) 
may reduce these errors; however, doing so was out of the scope of 
this study.

While the data presented here suggest that the subject-specific 
models were on average the most accurate relative to their generic 
equivalents across all joint tested, their predictions of muscle torques 
were not perfect and, in some cases, resulted in similar RMSE values 
than the generic young models. Therefore, this should not entirely 
discourage the use of scaled generic or even generic muscle proper-
ties in subject-specific models in all contexts, particularly if obtaining 
detailed individualised data is not possible. Indeed, generic-based 
models of the vertebrate musculoskeletal system have formed the 
foundations of the biomechanical modelling field for many years 
and have shown to be of great use in many clinical and non-clinical 
studies (Delp et al., 1990; Delp and Zajac, 1992; Delp et al., 1995; 
Herrmann and Delp, 1999; Murray et al., 2002; Erdemir and Piazza, 
2004; Hutchinson et al., 2005; Steele et al., 2012; O'Neill et al., 2013; 
Hicks et al., 2015; Hutchinson et al., 2015; Seth et al., 2018; Falisse 
et al., 2019; Imani Nejad et al., 2020). Ultimately, given the increased 
time and monetary costs associated with creating subject-specific 
musculoskeletal models relative to generic modelling, the goal and 
impact of a given study should dictate the degree of individualisa-
tion which is needed within the musculoskeletal models. However, 
for novel studies into form–function relationships within the mus-
culoskeletal system, the high accuracy and the inherent advantages 
provided by subject-specific models and simulations mean that they 
could become a gold standard and form the basis for future studies 
into how muscle functions relate to subject-specific anatomy.
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