
Tree Polymatrix Games are PPAD-hard1

Argyrios Deligkas2

Royal Holloway University of London, UK3

Argyrios.Deligkas@rhul.ac.uk4

John Fearnley5

University of Liverpool, UK6

John.Fearnley@liverpool.ac.uk7

Rahul Savani8

University of Liverpool, UK9

Rahul.Savani@liverpool.ac.uk10

Abstract11

We prove that it is PPAD-hard to compute a Nash equilibrium in a tree polymatrix game with twenty12

actions per player. This is the first PPAD hardness result for a game with a constant number of actions13

per player where the interaction graph is acyclic. Along the way we show PPAD-hardness for finding14

an ε-fixed point of a 2D-LinearFIXP instance, when ε is any constant less than (
√

2− 1)/2 ≈ 0.2071.15

This lifts the hardness regime from polynomially small approximations in k-dimensions to constant16

approximations in two-dimensions, and our constant is substantial when compared to the trivial17

upper bound of 0.5.18

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;19

Exact and approximate computation of equilibria20

Keywords and phrases Nash Equilibria, Polymatrix Games, PPAD, Brouwer Fixed Points21

Digital Object Identifier 10.4230/LIPIcs...22

© Argyrios Deligkas, John Fearnley, and Rahul Savani;
licensed under Creative Commons License CC-BY

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/326512456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Argyrios.Deligkas@rhul.ac.uk
mailto:John.Fearnley@liverpool.ac.uk
mailto:Rahul.Savani@liverpool.ac.uk
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/3.0/

XX:2 Tree Polymatrix Games are PPAD-hard

1 Introduction23

A polymatrix game is a succinctly represented many-player game. The players are represented24

by vertices in an interaction graph, where each edge of the graph specifies a two-player game25

that is to be played by the adjacent vertices. Each player picks a pure strategy, or action, and26

then plays that action in all of the edge-games that they are involved with. They then receive27

the sum of the payoffs from each of those games. A Nash equilibrium prescribes a mixed28

strategy to each player, with the property that no player has an incentive to unilaterally29

deviate from their assigned strategy.30

Constant-action polymatrix games have played a central role in the study of equilibrium31

computation. The classical PPAD-hardness result for finding Nash equilibria in bimatrix32

games [4] uses constant-action polymatrix games as an intermediate step in the reduction [4,5].33

Rubinstein later showed that there exists a constant ε > 0 such that computing an ε-34

approximate Nash equilibrium in two-action bipartite polymatrix games is PPAD-hard [15],35

which was the first result of its kind to give hardness for constant ε.36

These hardness results create polymatrix games whose interaction graphs contain cycles.37

This has lead researchers to study acyclic polymatrix games, with the hope of finding38

tractable cases. Kearns, Littman, and Singh claimed to produce a polynomial-time algorithm39

for finding a Nash equilibrium in a two-action tree graphical game [11], where graphical40

games are a slight generalization of polymatrix games. However, their algorithm does not41

work, which was pointed out by Elkind, Goldberg, and Goldberg [9], who also showed that42

the natural fix gives an exponential-time algorithm.43

Elkind, Goldberg, and Goldberg also show that a Nash equilibrium can be found in44

polynomial time for two-action graphical games whose interaction graphs contain only paths45

and cycles. They also show that finding a Nash equilibrium is PPAD-hard when the interaction46

graph has pathwidth at most four, but there appears to be some issues with their approach47

(see Appendix A). Later work of Barman, Ligett, and Piliouras [1] provided a QPTAS for48

constant-action tree polymatrix games, and then Ortiz and Irfan [13] gave an FPTAS for49

this case. All three papers, [1,9,13], leave as a main open problem the question of whether it50

is possible to find a Nash equilibrium in a tree polymatrix game in polynomial time.51

Our contribution. In this work we show that finding a Nash equilibrium in twenty-52

action tree polymatrix games is PPAD-hard. Combined with the known PPAD containment53

of polymatrix games [5], this implies that the problem is PPAD-complete. This is the first54

hardness result for polymatrix (or graphical) games in which the interaction graph is acyclic,55

and decisively closes the open question raised by prior work: tree polymatrix games cannot56

be solved in polynomial time unless PPAD is equal to P.57

Our reduction produces a particularly simple class of interaction graphs: all of our games58

are played on caterpillar graphs (see Figure 3) which consist of a single path with small59

one-vertex branches affixed to every node. These graphs have pathwidth 1, so we obtain a60

stark contrast with prior work: two-action path polymatrix games can be solved in polynomial61

time [9], but twenty-action pathwidth-1-caterpillar polymatrix games are PPAD-hard.62

Our approach is founded upon Mehta’s proof that 2D-LinearFIXP is PPAD-hard [12].63

We show that her reduction can be implemented by a synchronous arithmetic circuit with64

constant width. We then embed the constant-width circuit into a caterpillar polymatrix65

game, where each player in the game is responsible for simulating all gates at a particular66

level of the circuit. This differs from previous hardness results [5, 15], where each player is67

responsible for simulating exactly one gate from the circuit.68

Along the way, we also substantially strengthen Mehta’s hardness result for LinearFIXP.69

A. Deligkas, J. Fearnley, and R. Savani XX:3

She showed PPAD-hardness for finding an exact fixed point of a 2D-LinearFIXP instance, and70

an ε-fixed point of a kD-LinearFIXP instance, where ε is polynomially small. We show PPAD-71

hardness for finding an ε-fixed point of a 2D-LinearFIXP instance when ε is any constant72

less than (
√

2 − 1)/2 ≈ 0.2071. So we have lifted the hardness regime from polynomially73

small approximations in k-dimensions to constant approximations in two-dimensions, and74

our constant is substantial when compared to the trivial upper bound of 0.5.75

Related work. The class PPAD was defined by Papadimitriou [14]. Years later, Daskalakis,76

Goldberg, and Papadimitriou (DGP) [5] proved PPAD-hardness for graphical games and77

3-player normal form games. Chen, Deng, and Teng (CDT) [4] extended this result to78

2-player games and proved that there is no FPTAS for the problem unless PPAD = P. The79

observations made by CDT imply that DGP’s result also holds for polymatrix games with80

constantly-many actions (but with cycles in the interaction graph) for an exponentially81

small ε. More recently, Rubinstein [16] showed that there exists a constant ε > 0 such that82

computing an ε−NE in binary-action bipartite polymatrix games is PPAD-hard (again with83

cycles in the interaction graph).84

Etessami and Yiannakakis [10] defined the classes FIXP and LinearFIXP and they proved85

that LinearFIXP = PPAD. Mehta [12] strengthened these results by proving that two-86

dimensional LinearFIXP equals PPAD, building on the result of Chen and Deng who proved87

that 2D-discrete Brouwer is PPAD-hard [3].88

On the positive side, Cai and Daskalakis [2], proved that NE can be efficiently found in89

polymatrix games where every 2-player game is zero-sum. Ortiz and Irfan [13] and Deligkas,90

Fearnley, and Savani [7] produced QPTASs for polymatrix games of bounded treewidth (in91

addition to the FPTAS of [13] for tree polymatrix games mentioned above). For general92

polymatrix games, the only positive result to date is a polynomial-time algorithm to compute93

a (1
2 + δ)-NE [8]. Finally, an empirical study on algorithms for exact and approximate NE in94

polymatrix games can be found in [6].95

2 Preliminaries96

Polymatrix games. An n-player polymatrix game is defined by an undirected interaction97

graph G = (V,E) with n vertices, where each vertex represents a player, and the edges of98

the graph specify which players interact with each other. Each player in the game has m99

actions, and each edge (v, u) ∈ E of the graph is associated with two m×m matrices Av,u100

and Au,v which specify a bimatrix game that is to be played between the two players, where101

Av,u specifies the payoffs to player v from their interaction with player u.102

Each player in the game selects a single action, and then plays that action in all of the103

bimatrix games with their neighbours in the graph. Their payoff is the sum of the payoffs104

that they obtain from each of the individual bimatrix games.105

A mixed strategy for player i is a probability distribution over the m actions of that player,106

a strategy profile is a vector s = (s1, s2, . . . , sn) where si is a mixed strategy for player i. The107

vector of expected payoffs for player i under strategy profile s is pi(s) :=
∑

(i,j)∈E A
i,jsj . The108

expected payoff to player i under s is si ·pi(s). A strategy profile is a mixed Nash equilibrium109

if si · pi(s) = max pi(s) for all i, which means that no player can unilaterally change their110

strategy in order to obtain a higher expected payoff. In this paper we are interested in the111

problem of computing a Nash equilibrium of a tree polymatrix game, which is a polymatrix112

game in which the interaction graph is a tree.113

Arithmetic circuits. For the purposes of this paper, each gate in an arithmetic circuit114

will operate only on values that lie in the range [0, 1]. In our construction, we will use four115

XX:4 Tree Polymatrix Games are PPAD-hard

specific gates, called constant introduction denoted by c, bounded addition denoted by +b,116

bounded subtraction denoted by −b, and bounded multiplication by a constant denoted by ∗bc.117

These gates are formally defined as follows.118

c is a gate with no inputs that outputs some fixed constant c ∈ [0, 1].119

Given inputs x, y ∈ [0, 1] the gate x+b y := min (x+ y, 1).120

Given inputs x, y ∈ [0, 1] the gate x−b y := max (x− y, 0).121

Given an input x ∈ [0, 1], and a constant c ≥ 0, the gate x ∗b c := min (x ∗ c, 1).122

These gates perform their operation, but also clip the output value so that it lies in the123

range [0, 1]. Note that the constant c in the ∗bc gate is specified as part of the gate.124

Multiplication of two inputs is not allowed.125

We will build arithmetic circuits that compute functions of the form [0, 1]d → [0, 1]d. A126

circuit C = (I,G) consists of a set I = {in1, in2, . . . , ind} containing d input nodes, and a set127

G = {g1, g2, . . . , gk} containing k gates. Each gate gi has a type from the set {c,+b,−b, ∗bc},128

and if the gate has one or more inputs, these are taken from the set I ∪G. The connectivity129

structure of the gates is required to be a directed acyclic graph.130

The depth of a gate, denoted by d(g) is the length of the longest path from that gate to an131

input. We will build synchronous circuits, meaning that all gates of the form gx = gy +b gz132

satisfy d(gx) = 1 + d(gy) = 1 + d(gz), and likewise for gates of the form gx = gy −b gz. There133

are no restrictions on c-gates, or ∗bc-gates.134

The width of a particular level i of the circuit is defined to be w(i) = |{gj : d(gj) = i}|,135

which is the number of gates at that level. The width of a circuit is defined to be w(C) =136

maxi w(i), which is the maximum width taken over all the levels of the circuit.137

Straight line programs. A convenient way of specifying an arithmetic circuit is to write138

down a straight line program (SLP) [10].139

SLP 1 Example

x ← 0.5
z ← x +b in1
x ← x *b 0.5
out1 ← z +b x

SLP 2 if and for example

x ← in1 *b 1
for i in {1, 2, . . . , 10} do

if i is even then
x ← x +b 0.1

end
end
out1 ← x *b 1

140

Each line of an SLP consists of a statement of the form v ← op, where v is a variable, and141

op consists of exactly one arithmetic operation from the set set {c,+b,−b, ∗bc}. The inputs142

to the gate can be any variable that is defined before the line, or one of the inputs to the143

circuit. We permit variables to be used on the left hand side in more than one line, which144

effectively means that we allow variables to be overwritten.145

It is easy to turn an SLP into a circuit. Each line is turned into a gate, and if variable v146

is used as the input to gate g, then we set the corresponding input of g to be the gate g′147

that corresponds to the line that most recently assigned a value to v. SLP 1 above specifies148

a circuit with four gates, and the output of the circuit will be 0.75 +b in1.149

For the sake of brevity, we also allow if statements and for loops in our SLPs. These150

two pieces of syntax can be thought of as macros that help us specify a straight line program151

concisely. The arguments to an if statement or a for loop must be constants that do not152

depend on the value of any gate in the circuit. When we turn an SLP into a circuit, we unroll153

every for loop the specified number of times, and we resolve every if statement by deleting154

A. Deligkas, J. Fearnley, and R. Savani XX:5

the block if the condition does not hold. So the example in SLP 2 produces a circuit with155

seven gates: two gates correspond to the lines x ← in1 *b 1 and out1 ← x *b 1, while156

there are five gates corresponding to the line x ← x +b 0.1, since there are five copies of157

the line remaining after we unroll the loop and resolve the if statements. The output of the158

resulting circuit will be 0.5 +b in1.159

Liveness of variables and circuit width. Our ultimate goal will be to build circuits that160

have small width. To do this, we can keep track of the number of variables that are live at161

any one time in our SLPs. A variable v is live at line i of an SLP if both of the following162

conditions are met.163

There exists a line with index j ≤ i that assigns a value to v.164

There exists a line with index k ≥ i that uses the value assigned to v as an argument.165

The number of variables that are live at line i is denoted by live(i), and the number of166

variables used by an SLP is defined to be maxi live(i), which is the maximum number of167

variables that are live at any point in the SLP. The following is proved in Appendix B.168

I Lemma 1. An SLP that uses w variables can be transformed into a polynomial-size169

synchronous circuit of width w.170

3 Hardness of 2D-Brouwer171

In this section, we consider the following problem. It is a variant of two-dimensional Brouwer172

that uses only our restricted set of bounded gates.173

I Definition 2 (2D-Brouwer). Given an arithmetic circuit F : [0, 1]2 → [0, 1]2 using gates174

from the set {c, +b, −b, ∗b c}, find x ∈ [0, 1]2 such that F (x) = x.175

As a starting point for our reduction, we will show that this problem is PPAD-hard. Our176

proof will follow the work of Mehta [12], who showed that the closely related 2D-LinearFIXP177

problem is PPAD-hard. There are two differences between 2D-Brouwer and 2D-LinearFIXP.178

In 2D-LinearFIXP, all internal gates of the circuit take and return values from R rather179

than [0, 1].180

2D-LinearFIXP takes a circuit that uses gates from the set {c,+,−, ∗c,max,min}, where181

none of these gates bound their outputs to be in [0, 1].182

In this section, we present an altered version of Mehta’s reduction, which will show that183

finding an ε-solution to 2D-Brouwer is PPAD-hard for a constant ε.184

Discrete Brouwer. The starting point for Mehta’s reduction is the two-dimensional185

discrete Brouwer problem, which is known to be PPAD-hard [3]. This problem is defined over186

a discretization of the unit square [0, 1]2 into a grid of points G = {0, 1/2n, 2/2n, . . . , (2n −187

1)/2n}2. The input to the problem is a Boolean circuit C : G→ {1, 2, 3} the assigns one of188

three colors to each point. The coloring will respect the following boundary conditions.189

We have C(0, i) = 1 for all i ≥ 0.190

We have C(i, 0) = 2 for all i > 0.191

We have C(2n−1
2n , i) = C(i, 2n−1

2n) = 3 for all i > 0.192

These conditions can be enforced syntactically by modifying the circuit. The problem is to193

find a grid square that is trichromatic, meaning that all three colors appear on one of the194

four points that define the square.195

I Definition 3 (DiscreteBrouwer). Given a Boolean circuit C : {0, 1}n×{0, 1}n → {1, 2, 3}196

that satisfies the boundary conditions, find a point x, y ∈ {0, 1}n such that, for each color197

i ∈ {1, 2, 3}, there exists a point (x′, y′) with C(x′, y′) = i where x′ ∈ {x, x + 1} and198

y′ ∈ {y, y + 1}.199

XX:6 Tree Polymatrix Games are PPAD-hard

2

3

1
 ε

︷ ︸︸ ︷ε

(a) Our stronger boundary conditions.

(−1, 1−
√

2) · ε (1, 1−
√

2) · ε

(0, 1) · ε

︸ ︷︷ ︸
(
√

2−1)·ε

(b) The mapping from colors to vectors.

Figure 1 Reducing ε-ThickDisBrouwer to 2D-Brouwer.

Our first deviation from Mehta’s reduction is to insist on the following stronger boundary200

condition, which is shown in Figure 1a.201

We have C(i, j) = 1 for all i, and for all j ≤ ε.202

We have C(i, j) = 2 for all j > ε, and for all i ≤ ε.203

We have C(i, j) = C(j, i) = 3 for all i > ε, and all j ≥ 1− ε.204

The original boundary conditions placed constraints only on the outermost grid points, while205

these conditions place constraints on a border of width ε. We call this modified problem206

ε-ThickDisBrouwer, which is the same as DiscreteBrouwer, except that the function is207

syntactically required to satisfy the new boundary conditions.208

It is not difficult to produce a polynomial time reduction from DiscreteBrouwer to209

ε-ThickDisBrouwer. It suffices to increase the number of points in the grid, and then to210

embed the original DiscreteBrouwer instance into the [ε, 1− ε]2 square in the middle of the211

instance. The proof of the following lemma can be found in Appendix C.212

I Lemma 4. DiscreteBrouwer can be reduced in polynomial time to ε-ThickDisBrouwer.213

Embedding the grid in [0, 1]2. We now reduce ε-ThickDisBrouwer to 2D-Brouwer. One214

of the keys steps of the reduction is to map points from the continuous space [0, 1]2 to the215

discrete grid G. Specifically, given a point x ∈ [0, 1], we would like to determine the n bits216

that define the integer bx · 2nc.217

Mehta showed that this mapping from continuous points to discrete points can be done218

by a linear arithmetic circuit. Here we give a slightly different formulation that uses only219

gates from the set {c,+b,−b, ∗bc}. Let L be a fixed constant that will be defined later.220

221

SLP 3 ExtractBit(x, b)

b ← 0.5
b ← x -b b
b ← b *b L

SLP 4 ExtractBits(x, b1, b2, . . . , bn)

for i in {1, 2, . . . , n} do
ExtractBit(x, bi)
y ← bi *b 0.5
x ← x -b y
x ← x *b 2

end

222

SLP 3 extracts the first bit of the number x ∈ [0, 1]. The first three lines of the program223

compute the value b = (x−b 0.5) ∗b L. There are three possibilities.224

If x ≤ 0.5, then b = 0.225

If x ≥ 0.5 + 1/L, then b = 1.226

A. Deligkas, J. Fearnley, and R. Savani XX:7

If 0.5 < x < 0.5 + 1/L, then b will be some number strictly between 0 and 1.227

The first two cases correctly decode the first bit of x, and we call these cases good decodes.228

We will call the third case a bad decode, since the bit has not been decoded correctly.229

SLP 4 extracts the first n bits of x, by extracting each bit in turn, starting with the first230

bit. The three lines after each extraction erase the current first bit of x, and then multiply x231

by two, which means that the next extraction will give us the next bit of x. If any of the232

bit decodes are bad, then this procedure will break, meaning that we only extract the first233

n bits of x in the case where all decodes are good. We say that x is well-positioned if the234

procedure succeeds, and poorly-positioned otherwise.235

Multiple samples. The problem of poorly-positioned points is common in PPAD-hardness236

reductions. Indeed, observe that we cannot define an SLP that always correctly extracts the237

first n bits of x, since this would be a discontinuous function, and all gates in our arithmetic238

circuits compute continuous functions. As in previous works, this is resolved by taking239

multiple samples around a given point. Specifically, for the point p ∈ [0, 1]2, we sample k240

points p1, p2, . . . , pk where pi = p+
(

i−1
(k+1)·2n+1 ,

i−1
(k+1)·2n+1

)
. Mehta proved that there exists241

a setting for L that ensures that there are at most two points that have poorly positioned242

coordinates. We have changed several details, and so we provide our own statement and243

proof here. The proof can be found in Appendix D.244

I Lemma 5. If L = (k + 2) · 2n+1, then at most two of the points p1 through pk have245

poorly-positioned coordinates.246

Evaluating a Boolean circuit. Once we have decoded the bits for a well-positioned point,247

we have a sequence of 0/1 variables. It is easy to simulate a Boolean circuit on these values.248

The operator ¬ x can be simulated by 1−b x.249

The operator x ∨ y can be simulated by x+b y.250

The operator x ∧ y can be simulated by applying De Morgan’s laws and using ∨ and ¬.251

Recall that C outputs one of three possible colors. We also assume, without loss of generality,252

that C gives its output as a one-hot vector. This means that there are three Boolean outputs253

x1, x2, x3 ∈ {0, 1}3 of the circuit. The color 1 is represented by the vector (1, 0, 0), the color254

2 is represented as (0, 1, 0), and color 3 is represented as (0, 0, 1). If the simulation is applied255

to a point with well-positioned coordinates, then the circuit will output one of these three256

vectors, while if it is applied to a point with poorly positioned coordinates, then the circuit257

will output some value x ∈ [0, 1]3 that has no particular meaning.258

The output. The key idea behind the reduction is that each color will be mapped to a259

displacement vector, as shown in Figure 1b. Here we again deviate from Mehta’s reduction,260

by giving different vectors that will allow us to prove our approximation lower bound.261

Color 1 will be mapped to the vector (0, 1) · ε.262

Color 2 will be mapped to the vector (1, 1−
√

2) · ε.263

Color 3 will be mapped to the vector (−1, 1−
√

2) · ε.264

These are irrational coordinates, but in our proofs we argue that a suitably good rational
approximation of these vectors will suffice. We average the displacements over the k different
sampled points to get the final output of the circuit. Suppose that xij denotes output i from
sampled point j. Our circuit will compute

dispx =
k∑
j=1

(x2j − x3j) · ε
k

, dispy =
k∑
j=1

(
x1j + (1−

√
2)(x2j + x3j)

)
· ε

k
.

Finally, we specify F : [0, 1]2 → [0, 1]2 to compute F (x, y) = (x+ dispx · ε, y + dispy · ε).265

XX:8 Tree Polymatrix Games are PPAD-hard

Completing the proof. To find an approximate fixed point of F , we must find a point266

where both dispx and dispy are close to zero. The dotted square in Figure 1b shows the267

set of displacements that satisfy ‖x − (0, 0)‖∞ ≤ (
√

2 − 1) · ε, which correspond to the268

displacements that would be (
√

2− 1) · ε-fixed points.269

The idea is that, if we do not sample points of all three colors, then we cannot produce a270

displacement that is strictly better than an (
√

2− 1) · ε-fixed point. For example, if we only271

have points of colors 1 and 2, then the displacement will be some point on the dashed line272

between the red and blue vectors in Figure 1b. This line touches the box of (
√

2− 1) · ε-fixed273

points, but does not enter it. It can be seen that the same property holds for the other pairs274

of colors: we specifically chose the displacement vectors in order to maximize the size of the275

inscribed square shown in Figure 1b.276

The argument is complicated by the fact that two of our sampled points may have poorly277

positioned coordinates, which may drag the displacement towards (0, 0). However, this effect278

can be minimized by taking a large number of samples. We show show the following lemma.279

I Lemma 6. Let ε′ < (
√

2− 1) · ε be a constant. There is a sufficiently large constant k such280

that, if ‖x− F (x)‖∞ < ε′, then x is contained in a trichromatic square.281

The proof of Lemma 6 can be found in Appendix E. Since ε can be fixed to be any282

constant strictly less than 0.5, we obtain the following.283

I Theorem 7. Given a 2D-Brouwer instance, it is PPAD-hard to find a point x ∈ [0, 1]2 s.t.284

‖x− F (x)‖∞ < (
√

2− 1)/2 ≈ 0.2071.285

Reducing 2D-Brouwer to 2D-LinearFIXP is easy, since the gates {c,+b,−b, ∗bc} can be286

simulated by the gates {c,+,−, ∗c,max,min}. This implies that it is PPAD-hard to find an287

ε-fixed point of a 2D-LinearFIXP instance with ε < (
√

2− 1)/2.288

It should be noted that an ε-approximate fixed point can be found in polynomial time if289

the function has a suitably small Lipschitz constant, by trying all points in a grid of width ε.290

We are able to obtain a lower bound for constant ε because our functions have exponentially291

large Lipschitz constants.292

4 Hardness of 2D-Brouwer with a constant width circuit293

In our reduction from 2D-Brouwer to tree polymatrix games, the number of actions in the294

game will be determined by the width of the circuit. This means that the hardness proof295

from the previous section is not a sufficient starting point, because it produces 2D-Brouwer296

instances that have circuits with high width. In particular, the circuits will extract 2n bits297

from the two inputs, which means that the circuits will have width at least 2n.298

Since we desire a constant number of actions in our tree polymatrix game, we need to299

build a hardness proof for 2D-Brouwer that produces a circuit with constant width. In this300

section we do exactly that, by reimplementing the reduction from the previous section using301

gadgets that keep the width small.302

Bit packing. We adopt an idea of Elkind, Goldberg, and Goldberg [9], to store many bits303

in a single arithmetic value using a packed representation. Given bits b1, b2, . . . , bk ∈ {0, 1},304

the packed representation of these bits is the value packed(b1, b2, . . . , bk) :=
∑k
i=1 bi/2i. We305

will show that the reduction from the previous section can be performed while keeping all306

Boolean values in a single variable that uses packed representation.307

Working with packed variables. We build SLPs that work with this packed representation,308

two of which are shown below.309

A. Deligkas, J. Fearnley, and R. Savani XX:9

310

SLP 5 FirstBit(x, b) +0 variables

// Extract the first bit of x
into b

b ← 0.5
b ← x -b b
b ← b *b L

// Remove the first bit of x
b ← b *b 0.5
x ← x -b b
x ← x *b 2
b ← b *b 2

SLP 6 Clear(I, x) +2 variables

x’ ← x *b 1
for i in {1, 2, . . . , k} do

b ← 0
FirstBit(x’, b)
if i ∈ I then

b ← b *b 1
2i

x ← x -b b
end

end

311

The FirstBit SLP combines the ideas from SLPs 3 and 4 to extract the first bit from a312

value x ∈ [0, 1]. Repeatedly applying this SLP allows us to read out each bit of a value in313

sequence. The Clear SLP uses this to set some bits of a packed variable to zero. It takes as314

input a set of indices I, and a packed variable x = packed(b1, b2, . . . , bk). At the end of the315

SLP we have x = packed(b′1, b′2, . . . , b′k) where b′i = 0 whenever i ∈ I, and b′i = bi otherwise.316

It first copies x to a fresh variable x′. The bits of x′ are then read-out using FirstBit.317

Whenever a bit bi with i ∈ I is decoded from x′, we subtract bi/2i from x. If bi = 1, then318

this sets the corresponding bit of x to zero, and if bi = 0, then this leaves x unchanged.319

We want to minimize the the width of the circuit that we produce, so we keep track of320

the number of extra variables used by our SLPs. For FirstBit, this is zero, while for Clear321

this is two, since that SLP uses the fresh variables x′ and b.322

Packing and unpacking bits. We implement two SLPs that manipulated packed variables.323

The Pack(x, y, S) operation allows us to extract bits from y ∈ [0, 1], and store them in324

x, while the Unpack(x, y, S) operation allows us to extract bits from x to create a value325

y ∈ [0, 1]. This is formally specified in the following lemma, which is proved in Appendix F.326

I Lemma 8. Suppose that we are given x = packed(b1, b2, . . . , bk), a variable y ∈ [0, 1], and327

a sequence of indices S = 〈s1, s2, . . . , sj〉. Let yj denote the jth bit of y. The following SLPs328

can be implemented using at most two extra variables.329

Pack(x, y, S) modifies x so that x = packed(b′1, b′2, . . . , b′k) where b′i = yj whenever330

there exists an index sj ∈ S with sj = i, and b′i = bi otherwise.331

Unpack(x, y, S) modifies y so that y = y +b
∑j
i=1 bsi

/2i332

Simulating a Boolean operations. As described in the previous section, the reduction333

only needs to simulate or- and not-gates. Given x = packed(b1, b2, . . . , bk), and three indices334

i1, i2, i3, we implement two SLPs, which both modify x so that x = packed(b′1, b′2, . . . , b′k).335

SLP 7 implements Or(x, i1, i2, i3), which ensures that b′i3 = bi1 ∨ bi2 , and b′i = bi for i 6= i3.336

SLP 8 implements Not(x, i1, i2), which ensures that b′i2 = ¬bi1 , and b′i = bi for i 6= i2.337

These two SLPs simply unpack the input bits, perform the operation, and then pack338

the result into the output bit. The Or SLP uses the Unpack operation to set a = bi1 +b bi2 .339

Both SLPs use three extra variables: the fresh variable a is live throughout, and the pack340

and unpack operations use two extra variables. The variable b in the Not SLP is not live341

concurrently with a pack or unpack, and so does not increase the number of live variables.342

These two SLPs can be used to simulate a Boolean circuit using at most three extra variables.343

XX:10 Tree Polymatrix Games are PPAD-hard

SLP 7 Or(x, i1, i2, i3) +3 vari-
ables

a ← 0
Unpack(x, a, 〈i1〉)
Unpack(x, a, 〈i2〉)
Pack(x, a, 〈i3〉)

SLP 8 Not(x, i1, i2) +3 vari-
ables

a ← 0
Unpack(x, a, 〈i1〉)
b ← 1
a ← b -b a
Pack(x, a, 〈i2〉)

I Lemma 9. Let C be a Boolean circuit with n inputs and k gates. Suppose that x =344

packed(b1, . . . , bn), gives values for the inputs of the circuit. There is an SLP Simulate(C, x)345

that uses three extra variables, and modifies x so that x = packed(b1, . . . , bn, bn+1, . . . , bn+k),346

where bn+i is the output of gate i of the circuit.347

Implementing the reduction. Finally, we can show that the circuit built in Theorem 7348

can be implemented by an SLP that uses at most 8 variables. This SLP cycles through each349

sampled point in turn, computes the x and y displacements by simulating the Boolean circuit,350

and then adds the result to the output. The following theorem is proved in Appendix H351

I Theorem 10. Given a 2D-Brouwer instance, it is PPAD-hard to find a point x ∈ [0, 1]2352

with ‖x− F (x)‖∞ <
√

2−1
2 even for a synchronous circuit of width eight.353

5 Hardness for tree polymatrix games354

Now we show that finding a Nash equilibrium of a tree polymatrix game is PPAD-hard. We355

reduce from the low-width 2D-Brouwer problem, whose hardness was shown in Theorem 10.356

Throughout this section, we suppose that we have a 2D-Brouwer instance defined by a357

synchronous arithmetic circuit F of width eight and depth n. The gates of this circuit will be358

indexed as gi,j where 1 ≤ i ≤ 8 and 1 ≤ j ≤ n, meaning that gi,j is the ith gate on level j.359

Modifying the circuit. The first step of the reduction is to modify the circuit. First,360

we modify the circuit so that all gates operate on values in [0, 0.1], rather than [0, 1]. We361

introduce the operators +b
0.1, −b0.1, and ∗b0.1, which bound their outputs to be in [0, 0.1]. The362

following lemma, proved in Appendix I, states that we can rewrite our circuit using these363

new gates. The transformation simply divides all c-gates in the circuit by ten.364

I Lemma 11. Given an arithmetic circuit F : [0, 1]2 → [0, 1]2 that uses gates from365

{c,+b,−b, ∗b}, we can construct a circuit F ′ : [0, 0.1]2 → [0, 0.1]2 that uses the gates from366

{c,+b
0.1,−b0.1, ∗b0.1}, so that F (x, y) = (x, y) if and only if F ′(x/10, y/10) = (x/10, y/10).367

Next we modify the structure of the circuit by connecting the two outputs of the circuit368

to its two inputs. Suppose, without loss of generality, that g7,1 and g8,1 are the inputs and369

that g7,n and g8,n are outputs. Note that the equality x = y can be implemented using the370

gate x = y ∗b0.1 1. We add the following extra equalities, which are shown in Figure 2.371

We add gates g9,n−1 = g7,n and g10,n−1 = g8,n.372

For each j in the range 2 ≤ j < n− 1, we add g9,j = g9,j+1 and g10,j = g10,j+1.373

We modify g7,1 so that g7,1 = g9,2, and we modify g8,1 so that g8,1 = g10,2.374

Note that these gates are backwards: they copy values from higher levels in the circuit to375

lower levels, and so the result is not a circuit, but a system of constraints defined by gates,376

with some structural properties. Firstly, each gate gi,j is only involved in constraints with377

A. Deligkas, J. Fearnley, and R. Savani XX:11

g1,1 g2,1 · · · g7,1 g8,1 g9,1 g10,1

g1,2 g2,2 · · · g7,2 g8,2 g9,2 g10,2

...
...

...
...

...
...

g1,n g2,n g7,n g8,n g9,n g10,n· · ·

Figure 2 Extra equalities to introduce feedback of g7,n and g8,n to g7,1 and g8,1 respectively.

v1

m1

c1

m2

v2

m3

c2

m4

v3

m5

. . . vn

m2n−1

Figure 3 The structure of the polymatrix game.

gates of the form gi′,j+1 and gi′,j−1. Secondly, finding values for the gates that satisfy all of378

the constraints is PPAD-hard, since by construction such values would yield a fixed point of F .379

The polymatrix game. The polymatrix game will contain three types of players.380

For each i = 1, . . . , n, we have a variable player vi.381

For each i = 1, . . . , n− 1, we have a constraint player ci, who is connected to vi and vi+1.382

For each i = 1, . . . , 2n− 1, we have a mix player mi. If i is even, then mi is connected383

to ci/2. If i is odd, then mi is connected to v(i+1)/2.384

The structure of this game is shown in Figure 3. Each player has twenty actions, which are385

divided into ten pairs, xi and x̄i for i = 1, . . . , 10.386

Forcing mixing. The role of the mix players is to force the variable and constraint387

players to play specific mixed strategies: for every variable or constraint player j, we want388

sj(xi) + sj(x̄i) = 0.1 for all i, which means that the same amount of probability is assigned389

to each pair of actions. To force this, each mix player plays a high-stakes hide-and-seek390

against their opponent, which is shown in Figure 4. This zero-sum game is defined by a391

20× 20 matrix Z and a constant M . The payoff Zij is defined as follows. If i ∈ {xa, x̄a} and392

j ∈ {xa, x̄a} for some a, then Zij = M . Otherwise, Zij = 0. For each i the player mi plays393

XX:12 Tree Polymatrix Games are PPAD-hard

M

−M

M

−M

M

−M

M

−M

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

M

−M

M

−M

M

−M

M

−M

x̄1

x1

x̄2

x2

x̄1 x1 x̄2 x2
mi

ci/2

...

· · ·

. . .

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

M

−M

M

−M

M

−M

M

−M

x̄20

x20

x̄20 x20

Figure 4 The hide and seek game that forces cj/2 to play an appropriate mixed strategy. The
same game is used to force v(j−1)/2 mixes appropriately.

against player j, which is either a constraint player ci′ or a variable player vi′ . We define394

the payoff matrix Ami,j = Z and Gj,mi = −Z. The following lemma, proved in Appendix J,395

shows that if M is suitably large, then the variable and constraint players must allocate396

probability 0.1 to each of the ten action pairs.397

I Lemma 12. Suppose that all payoffs in the games between variable and constraint players398

use payoffs in the range [−P, P]. If M > 40 · P then in every mixed Nash equilibrium s, the399

action sj of every variable and constraint player j satisfies sj(xi) + sj(x̄i) = 0.1 for all i.400

Gate gadgets. We now define the payoffs for variable and constraint players. Actions xi401

and x̄i of variable player vj will represent the output of gate gi,j . Specifically, the probability402

that player vj assigns to action xi will be equal to the output of gi,j . In this way, the strategy403

of variable player vj will represent the output of every gate at level j of the circuit. The404

constraint player cj enforces all constraints between the gates at level j and the gates at405

level j + 1. To simulate each gate, we will embed one of the gate gadgets from Figure 5,406

which originated from the reduction of DGP [5], into the bimatrix games that involve cj .407

The idea is that, for the constraint player to be in equilibrium, the variable players must408

play xi with probabilities that exactly simulate the original gate. Lemma 12 allows us to409

treat each gate independently: each pair of actions xi and si must receive probability 0.1 in410

total, but the split of probability between xi and si is determined by the gate gadgets.411

Formally, we construct the payoff matrices Avi,ci and Aci,vi+1 for all i < n by first setting412

each payoff to 0. Then, for each gate, we embed the corresponding gate gadget from Figure 5413

into the matrices. For each gate ga,j , we take the corresponding game from Figure 5, and414

embed it into the rows xa and x̄a of a constraint player’s matrix. The diagrams specify415

specific actions of the constraint and variable players that should be modified.416

For gates that originated in the circuit, the gadget is always embedded into the matrices417

Avj−1,cj−1 and Acj−1,vj , the synchronicity of the circuit ensures that the inputs for level418

j gates come from level j − 1 gates. We have also added extra multiplication gates that419

A. Deligkas, J. Fearnley, and R. Savani XX:13

0
0

1
0

0
0

1
0

0
0

0
1

0
0

0
0

0
0

0
0

0
1

1
0

x̄b xb x̄c xc x̄a xa

x̄a

xa

cj−1
vj−1 vj

ga,j = gb,j−1 +b
0.1 gc,j−1

0
0

c

0
0

0
0

1

0
0

0
0

0
1

1
0

x̄b xb x̄c xc

x̄a

xa

cj/j−1
vj′ vj

ga,j = gb,j′ ∗b0.1 c

0
0

1
0

0
0
−1

0
0

0
0

1

0
0

0
0

0
0

0
0

0
1

1
0

x̄b xb x̄c xc x̄a xa

x̄a

xa

cj−1
vj−1 vj

ga,j = gb,j−1 −b0.1 gc,j−1

c

0
c

1

0
1

1
0

x̄i

xi

x̄i xi
cj
vj

gi,j = c

Figure 5 DGP polymatrix game gadgets.

copy values from the output of the circuit back to the input. These gates are of the form420

gi,j = gi′,j+1, and are embedded into the matrices Avj ,cj and Acj ,vj+1 .421

The following lemma, proved in Appendix K, states that, in every Nash equilibrium, the422

strategies of the variable players exactly simulate the gates that have been embedded.423

I Lemma 13. In every mixed Nash equilibrium s of the game, the following are satisfied for424

each gate gi,j.425

If gi,j = c, then svj
(xi) = c.426

If gi,j = gi1,j−1 +b
0.1 gi2,j−1, then svj (xi) = svj−1(xi1) +b

0.1 svj−1(xi2).427

If gi,j = gi1,j−1 −b0.1 gi2,j−1, then svj
(xi) = svj−1(xi1) −b0.1 svj−1(xi2).428

If gi,j = gi1,j′ ∗b0.1 c, then svj
(xi) = svj′ (xi1) ∗b0.1 c.429

Lemma 13 says that, in every Nash equilibrium of the game, the strategies of the variable430

players exactly simulate the gates, which by construction means that they give us a fixed431

point of the circuit F . Also note that it is straightforward to give a path decomposition for432

our interaction graph, where each node in the decomposition contains exactly two vertices433

from the game, meaning that the graph has pathwidth 1. So we have proved the following.434

I Theorem 14. It is PPAD-hard to find a Nash equilibrium of a tree polymatrix game, even435

when all players have at most twenty actions and the interaction graph has pathwidth 1.436

6 Open questions437

For polymatrix games, the main open question is to find the exact boundary between438

tractability and hardness. Twenty-action pathwidth-1 tree polymatrix games are hard,439

but two-action path polymatrix games can be solved in polynomial time [9]. What about440

two-action tree polymatrix games, or path-polymatrix games with more than two actions?441

For 2D-Brouwer and 2D-LinearFIXP, the natural question is: for which ε is it hard to442

find an ε-fixed point? We have shown that it is hard for ε = 0.2071, while the case for ε = 0.5443

is trivial, since the point (0.5, 0.5) must always be a 0.5-fixed point. Closing the gap between444

these two numbers would be desirable.445

XX:14 Tree Polymatrix Games are PPAD-hard

References446

1 Siddharth Barman, Katrina Ligett, and Georgios Piliouras. Approximating Nash equilibria in447

tree polymatrix games. In Proc. of SAGT, pages 285–296, 2015.448

2 Yang Cai and Constantinos Daskalakis. On minmax theorems for multiplayer games. In Proc.449

of SODA, pages 217–234, 2011.450

3 Xi Chen and Xiaotie Deng. On the complexity of 2D discrete fixed point problem. Theoretical451

Computer Science, 410(44):4448–4456, 2009.452

4 Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-player453

Nash equilibria. Journal of the ACM, 56(3):14:1–14:57, 2009.454

5 Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The complexity455

of computing a Nash equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009.456

6 Argyrios Deligkas, John Fearnley, Tobenna Peter Igwe, and Rahul Savani. An empirical study457

on computing equilibria in polymatrix games. In Proc. of AAMAS, pages 186–195, 2016.458

7 Argyrios Deligkas, John Fearnley, and Rahul Savani. Computing constrained approximate459

equilibria in polymatrix games. In Proc. of SAGT, pages 93–105, 2017.460

8 Argyrios Deligkas, John Fearnley, Rahul Savani, and Paul G. Spirakis. Computing approximate461

Nash equilibria in polymatrix games. Algorithmica, 77(2):487–514, 2017.462

9 Edith Elkind, Leslie Ann Goldberg, and Paul W. Goldberg. Nash equilibria in graphical games463

on trees revisited. In Proc. of EC, pages 100–109, 2006.464

10 Kousha Etessami and Mihalis Yannakakis. On the complexity of Nash equilibria and other465

fixed points. SIAM Journal on Computing, 39(6):2531–2597, 2010.466

11 Michael L. Littman, Michael J. Kearns, and Satinder P. Singh. An efficient, exact algorithm467

for solving tree-structured graphical games. In Proc. of NIPS, pages 817–823. MIT Press,468

2001.469

12 Ruta Mehta. Constant rank two-player games are PPAD-hard. SIAM J. Comput., 47(5):1858–470

1887, 2018.471

13 Luis E. Ortiz and Mohammad Tanvir Irfan. Tractable algorithms for approximate Nash472

equilibria in generalized graphical games with tree structure. In Proc. of AAAI, pages 635–641,473

2017.474

14 Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient475

proofs of existence. J. Comput. Syst. Sci., 48(3):498–532, 1994.476

15 Aviad Rubinstein. Settling the complexity of computing approximate two-player Nash equilibria.477

In Proc. of FOCS, pages 258–265, 2016.478

16 Aviad Rubinstein. Inapproximability of Nash equilibrium. SIAM J. Comput., 47(3):917–959,479

2018.480

A. Deligkas, J. Fearnley, and R. Savani XX:15

A An issue with the lower bound in [9]481

This section refers to the result in [9], which purports to show that finding a Nash equilibrium482

in a graphical game of pathwidth four is PPAD-hard. Like this paper, their proof reduces from483

discrete Brouwer, but unlike this paper and other work [4,5,12,15], the proof attempts to484

carry out the reduction entirely using Boolean values. In other words, there is no step (like485

Lemmas 4 and 5 in this paper), where the Boolean outputs of the circuit are converted to486

arithmetic values. In all reductions of this type, this is carried out by averaging over multiple487

copies of the circuit, with the understanding that some of the circuits may give nonsensical488

outputs.489

It is difficult to see how a reduction that avoids this step could work. This is because490

the expected payoff for a player in a polymatrix game is a continuous function of the other491

player’s strategies. But attempting to reduce directly from a Boolean circuit would produce492

a function that is discontinuous.493

It seems very likely that the proof in [9] can be repaired by including an explicit averaging494

step, and it this may still result in a graph that has bounded pathwidth, though it is less495

clear that the pathwidth would still be four. On the other hand, our work makes this less496

pressing, since the repaired result would still be subsumed by our lower bound for polymatrix497

games with pathwidth one.498

B Proof of Lemma 1499

Proof. The idea is to make each level of the circuit correspond to a line of the SLP. We500

assume that all for loops have been unrolled, and that all if statements have been resolved.501

Suppose that the resulting SLP has k lines, and furthermore assume that at each line of the502

SLP, we have an indexed list v1, v2, . . . , vl of the variables that are live on each line, where503

of course we have l ≤ w.504

We will build a circuit with k ·w gates, and will index those gates as gi,j , where 1 ≤ i ≤ k505

is a line, and 1 ≤ j ≤ w is a variable. The idea is that the gate gi,j will compute the value of506

the jth live variable on line i. The gate gi,j will be constructed as follows.507

If there are fewer than j variables live at line k of the SLP, then gi,j is a dummy c-gate.508

If line i of the SLP is vj ← op, then we define gi,j = op. If op uses a variable x as an509

input, then by definition, this variable must be live on line i− 1, and so we find the index510

j′ for x on line i− 1, and we substitute gi−1,j′ for x in op. We do this for both arguments511

in the case where op is +b or −b.512

If line i of the SLP does not assign a value to vj , then by definition, the variable must be513

live on line i− 1. As before, let j′ be the index of this variable on line i− 1. We define514

gi,j = gi−1,j′ ∗b 1.515

It is not difficult to see that this circuit exactly simulates the SLP. Moreover, by construction,516

we have d(gi,j) = i. Hence, each level of the circuit has width exactly w, and so the overall517

width of the circuit is w.518

J519

C Proof of Lemma 4520

Proof. Suppose that we are given a DiscreteBrouwer instance defined by a circuit C521

over the grid Gn = {0, 1/2n, 2/2n, . . . , (2n − 1)/2n}2. Let n′ be an integer such that522

2n/2n′ < (1 − 2ε). We will build an ε-ThickDisBrouwer instance defined by a circuit C ′523

over the grid Gn′ = {0, 1/2n′ , 2/2n′ , . . . , (2n′ − 1)/2n′}2. We will embed the original instance524

XX:16 Tree Polymatrix Games are PPAD-hard

in the center of the new instance, where the point (x0, y0) = (0.5− 2n−1/2n′ , 0.5− 2n−1/2n′)525

in G′ will correspond to the point (0, 0) in G. We use the following procedure to determine526

the color of a point (x, y) ∈ Gn′ .527

1. If 0 ≤ x− x0 ≤ 2n and 0 ≤ y − y0 ≤ 2n, then C ′(x, y) = C(x− x0, y − y0).528

2. Otherwise, if x− x0 < 0, then C(x, y) = 1.529

3. Otherwise, if y − y0 ≤ 0, then C(x, y) = 2.530

4. Otherwise, C(x, y) = 3.531

Observe that532

x0 = 0.5− 2n−1

2n′ > 0.5− (1− 2ε)
2 = ε,533

where the second inequality used the definition of n′. Moreover534

x0 + 2n = 0.5 + 2n−1

2n′ < 0.5 + (1− 2ε)
2 = 1− ε,535

where again the second inequality used the definition of n′. The same inequalities hold for536

y0. Hence, the first step of our procedure perfectly embeds the original instance into the537

new instance, while the other steps ensure that the ε-ThickDisBrouwer boundary conditions538

hold.539

Points in the boundary cannot be solutions, because the boundary constraints ensure540

that at least one of the three colors will be missing. Hence, every solution of C ′ on G′ must541

also be a solution of C on G. J542

D Proof of Lemma 5543

Proof. Observe that SLP 3 produces a bad decode if and only if x is in the range [0.5, 0.5 +544

1/L). Since SLP 4 extracts n bits, multiplying x by two each time, it follows that one of the545

decodes will fail if546

x ∈ I(a) =
[
a

2n ,
a

2n + 1
L

)
,547

for some integer a.548

Hence, the point pi = (p1
i , p

2
i) has a poorly-positioned coordinate if there is some integer a549

such that p1
i ∈ I(a), or p2

i ∈ I(a). For a fixed dimension j ∈ {1, 2}, we have two properties.550

There cannot be two points pi and pi′ such that pji and p
j
i′ both lie in the same interval551

I(a). This is because the width of the interval is552

1
L

= 1
(k + 2) · 2n+1 <

1
(k + 1) · 2n+1 ,553

where the final term is the defined difference between pji and p
j
i+1.554

There cannot be two distinct indices a and a′ such that pji ∈ I(a) and pji′ ∈ I(a′). This is555

because the distance between pj1 and pjk is at most556

k · 1
(k + 1) · 2n+1 <

1
2n+1 ,557

whereas the distance between any two consecutive intervals I(a) and I(a+ 1) is at least558

a+ 1
2n −

(
a

2n + 1
(k + 2) · 2n+1

)
= 1

2n −
1

(k + 2) · 2n+1 >
1

2n+1 .559

From these two facts, it follows that there is at most one point that has a poorly-positioned560

coordinate in dimension j, so there can be at most two points that have poorly positioned561

coordinates. J562

A. Deligkas, J. Fearnley, and R. Savani XX:17

E Proof of Lemma 6563

Proof. We argue that if ‖x − F (x)‖∞ < ε′/2, then there exist three indices i1, i2, and i3564

such that pij has well-positioned coordinates, and that the lower-left corner of the square565

containing pij has color j.566

Suppose for the sake of contradiction that this is not true. Then there must be a color567

that is missing, and there are two cases to consider.568

1. First suppose that color 1 is missing. Since there are at most two points with poorly-569

positioned coordinates, we know that we have at least k− 2 points j for which x2j = 1 or570

x3j = 1. Hence we have571

dispy ≤
(

(1−
√

2)(k − 2)
k

+ 2
k

)
· ε,572

where the 2/k term comes from the fact that the poorly positioned points can maximize573

dispy by fixing x1j = 1 and x2j = x3j = 0, and thus can contribute at most 2 · ε/k to574

the sum.575

As k tends to infinity, the right-hand side converges to (1−
√

2) · ε. Since ε′ < ε, we can576

choose a sufficiently large constant k such that dispy < (1 −
√

2) · ε′. Now, observing577

that 1−
√

2 is negative, we get the following578

‖x− F (x)‖∞ >
∣∣∣(1−√2) · ε′

∣∣∣ = (
√

2− 1) · ε′,579

giving our contradiction.580

2. Now suppose that one of colors 2 or 3 is missing. We will consider the case where color 3581

is missing, as the other case is symmetric. As before, since there are at most two points582

with poorly-positioned coordinates, we know that we have at least k − 2 points j for583

which x1j = 1 or x2j = 1. One of the two following cases applies.584

a. At least (
√

2− 1) · k − 2 well-positioned points satisfy x2j = 1. If this is the case, then585

we have586

dispx ≥
(

(
√

2− 1) · k − 2
k

− 2
k

)
· ε,587

where we have used the fact that there are no well positioned points with color 3, and588

the fact that the poorly-positioned points cannot reduce the sum by more than 2·ε
k .589

As k tends to infinity, the right-hand side tends to (
√

2− 1) · ε, so there is a sufficiently590

large constant k such that dispx > (
√

2− 1) · ε′, and so ‖x− F (X)‖∞ > (
√

2− 1) · ε′.591

b. At least k − (
√

2− 1) · k well-positioned points satisfy x1j = 1. In this case we have592

dispy ≥
k∑
j=1

(
x1j − (

√
2− 1)x2j

k
− 2
k

)
· ε593

≥

(
k − (

√
2− 1) · k

)
−
(

(
√

2− 1)(
√

2− 1) · k
)

k
− 2
k

 · ε594

=
(

(
√

2− 1) · k
k

− 2
k

)
· ε.595

596

The first line of this inequality uses the fact that we have no well-positioned points597

with color 3, and that the poorly-positioned points can reduce the sum by at most 2·ε
k .598

XX:18 Tree Polymatrix Games are PPAD-hard

The second line substitutes the bounds that we have for x1j and x2j . The third line599

uses the fact that
√

2− 1 is a solution of the equation x = 1− x− x2.600

As in the other two cases, this means that we can choose a sufficiently large constant601

k such that ‖x− F (X)‖∞ > (
√

2− 1) · ε′.602

Next we observe that the arguments given above all continue to hold if we substitute603

a sufficiently precise rational approximation
√

2 in our displacement vector calculation.604

This is because all three arguments prove that some expression converges to (
√

2− 1) · ε >605

(
√

2− 1) · ε′, thus we can replace
√

2 with any suitably close rational that ensures that606

the expressions converge to (x− 1) · ε > (
√

2− 1) · ε′ for some x.607

So far we have shown that there exist three well-positioned points pi1 , pi2 , and pi3 that608

have three distinct colors. To see that x is contained within a trichromatic square, it609

suffices to observe that ‖pk − p1‖∞ ≤ 1/2k, which means that all three points must be610

contained in squares that are adjacent to the square containing x.611

J612

F Proof of Lemma 8613

We construct SLPs for both of the operations.614

Packing bits. The Pack operation is implemented by the following SLP.615

SLP 9 Pack(x, y, S) +2 variables

Clear(S, x)
y’ ← y *b 1
for i in {1, 2, . . . , j} do

b ← 0
FirstBit(y’, b)
x ← b *b 1

2si

end

616

SLP 9 implements the pack operation. It begins by clearing the bits referenced by the617

sequence S. It then copies y to y’, and destructively extracts the first j bits of y’. These618

bits are then stored at the correct index in x by the final line of the for loop. In total, this619

SLP uses two additional variables y’ and b. Two extra variables are used by Clear, but620

these stop being live after the first line, before y’ and b become live.621

Unpacking bits. The Unpack operation is implemented by the following SLP.622

SLP 10 Unpack(x, y, S) +2 variables

x’ ← x *b 1
for i in {1, 2, . . . , k} do

b ← 0
FirstBit(x’, b)
if i = sj for some j then

b ← b *b 1
2sj

y ← y +b b
end

end

623

A. Deligkas, J. Fearnley, and R. Savani XX:19

SLP 10 implements the unpacking operation. It first copies x to x’, and then destructively624

extracts the first k bits of x’. Whenever a bit referred to by S is extracted from x’, it is625

first multiplied by 1
2sj , which puts it at the correct position, and is then added to y. This626

SLP uses the two additional variables x’ and b.627

G Proof of Lemma 9628

Simulating a Boolean circuit. Let 〈gn+1, gn+2, . . . , gn+k〉 be the gates of the circuit, and629

suppose, without loss of generality, that the gates have been topologically ordered. The630

following SLP will simulate the circuit C.631

SLP 11 Simulate(C, x) +3 variables

for i in {n+ 1, n+ 2, . . . , n+ k} do
if gi = gj1 ∨ gj2 then

Or(x, i, j1, j2)
end
if gi = ¬gj then

Not(x, i, j)
end

end

632

Assuming that the first n bits of x already contain the packed inputs of the circuit, SLP 11633

implements the operation Simulate(C, x) that computes the output of each gate. This simply634

iterates through and simulates each gate. The SLP introduce no new variables, and so it635

uses three additional live variables in total, which come from the Or and Not operations.636

H Proof of Theorem 10637

Dealing with the output. Recall that our Boolean circuit will output three bits, and that638

these bits determine which displacement vector is added to the output of the arithmetic circuit.639

We now build an SLP that does this conversion. It implements AddVector(x, i, outx, outy, k, dx, dy),640

where x = packed(b1, b2, . . . , bn), i ≤ n is an index, outx and outy are variables, k is an641

integer, and dx, dy ∈ [−1, 1]. After this procedure, we should have outx = outx + dx · bi/k,642

and outy = outy + dy · bi/k. SLP 12 does this operation. It uses three extra variables in643

total: the fresh variable a is live throughout, and the two unpack operations use two extra644

variables.645

XX:20 Tree Polymatrix Games are PPAD-hard

SLP 12 AddVector(x, i, outx, outy, dx, dy, k) +3
variables

// Add dx · bi to outx
a ← 0
Unpack(x, a, 〈i〉)
a ← |dx|/k *b a
outx ← outx +b a // Use -b if dx < 0

// Add dy · bi to outy
a ← 0
Unpack(x, a, 〈i〉)
a ← |dy|/k *b a
outy ← outy +b a // Use -b if dy < 0

646

Implementing the reduction. Finally, we can implement the reduction from DiscreteBrouwer647

to 2D-Brouwer. We will assume that we have been given a Boolean circuit C that takes 2n648

inputs, where the first n input bits correspond to the x coordinate, and the second n input649

bits correspond to the y coordinate. Recall that we have required that C gives its output as650

a one-hot vector. We assume that the three output bits of C are indexed n+ k− 2, n+ k− 1,651

and n+ k, corresponding to colors 1, 2, and 3, respectively.652

SLP 13 Reduction(inx, iny, outx, outy) +4 variables

outx ← inx
outy ← iny
for i in {1, 2, . . . , k} do

inx ← inx +b 1/((k + 1) · 2n+1)
iny ← iny +b 1/((k + 1) · 2n+1)
x ← 0
Pack(x, inx, 〈1, 2, . . . , n〉)
Pack(x, iny, 〈n + 1, n + 2, . . . , 2n〉)
Simulate(C, x)
AddVector(x, n+k-2, outx, outy, k, 0, 1)
AddVector(x, n+k-1, outx, outy, k, 1,
1-
√

2)
AddVector(x, n+k , outx, outy, k, -1,
1-
√

2)
end

653

SLP 13 implements the reduction. The variables inx and iny hold the inputs to the circuit,654

while the variables outx and outy are the outputs. The SLP first copies the inputs to the655

outputs, and then modifies the outputs using the displacement vectors. Each iteration of the656

for loop computes the computes the displacement contributed by the point pi (defined in657

the previous section). This involves decoding the first n bits of both inx and iny, which can658

be done via the pack operation, simulating the circuit on the resulting bits, and then adding659

the correct displacement vectors to outx and outy.660

The correctness of this SLP follows from our correctness proof for Theorem 7, since all661

we have done in this section is reimplement while using a small number of live variables. In662

A. Deligkas, J. Fearnley, and R. Savani XX:21

total, this SLP uses four extra variables. All of the macros use at most three extra variables,663

and the fresh variable x during these macros. Since inx iny, outx and outy are all live664

throughout as well, this gives us 8 live variables in total.665

I Proof of Lemma 11666

Proof. The circuit F ′ consists of gates g′i,j for each 1 ≤ i ≤ 8 and 1 ≤ j ≤ n.667

If gi,j = c, then g′i,j = c/10.668

If gi,j = ga,b +b gx,y, then g′i,j = g′a,b +b
0.1 g′x,y.669

If gi,j = ga,b −b gx,y, then g′i,j = g′a,b −b0.1 g′x,y.670

If gi,j = ga,b ∗b c, then g′i,j = g′a,b ∗b0.1 c.671

Let (x, y) ∈ [0, 1]2. It is not difficult to show by induction, that if we compute F (x, y) and672

F ′(x/10, y/10), then g′i,j = gi,j/10 for all i and j. Hence, F (x, y) = (x, y) if and only if673

F ′(x/10, y/10) = (x/10, y/10). J674

J Proof of Lemma 12675

Proof. For the sake of contradiction, suppose that there is a Nash equilibrium s in which676

there is some variable or constraint player j that fails to satisfy this equality. Let I be the677

subset of indices that maximize the expression sj(xi) + sj(x̄i), ie., I contains the pairs that678

player j plays with highest probability. Note that since player j does not play all pairs679

uniformly, I does not contain every index, so let J be the non-empty set of indices not in I.680

Let mk be the mix player who plays against player j. By construction, the actions xi681

and x̄i have payoff (sj(xi) + sj(x̄i)) ·M for mk. Since s is a Nash equilibrium, mk may only682

place probability on actions that are best responses, which means that he may only place683

probability on the actions xi and x̄i when i ∈ I.684

Let i be an index that maximizes smk
(xi)+smk

(x̄i) for playermk. By the above argument,685

we have i ∈ I. The actions xi and x̄i for player j give payoff at most686

2P −M · (smk
(xi) + smk

(x̄i)) ≤ 2P −M/10687

< −2P.688
689

The first expression uses 2P as the maximum possible payoff that player j can obtain from690

the two other games in which he is involved. The first inequality uses the fact that i was the691

pair with maximal probability, and there are exactly 10 pairs. The second inequality uses692

the fact that M/10 > 4P .693

On the other hand, let i′ be an index in J . By the argument above, we have smk
(xi′) +694

smk
(x̄i′) = 0. Hence, the payoff of actions xi′ and x̄i′ to player j is at least −2P , since that695

is the lowest payoff that he can obtain from the other two games in which he is involved.696

But now we have arrived at our contradiction. Player j places non-zero probability on at697

least one action xi or x̄i with i ∈ I that is not a pure best response. Hence s cannot be a698

Nash equilibrium. J699

K Proof of Lemma 13700

Proof. We can actually prove this lemma for all four gates simultaneously. Let j′ be the701

index constraint player into which the gate gadget is embedded. Observe that all four games702

for the four gate types have a similar structure: The payoffs for actions xi and x̄i for player703

XX:22 Tree Polymatrix Games are PPAD-hard

vj are identical across all four games, and the payoff of action xi for cj′ are also identical;704

the only thing that differs between the gates is the payoff to player cj′ for action x̄i. We705

describe these differences using a function f .706

For c-gates, we define f(s) = c.707

For +b
0.1-gates, we define f(s) = svj−1(xi1) + svj−1(xi1).708

For −b0.1-gates, we define f(s) = svj−1(xi1) − svj−1(xi1).709

For ∗b0.1-gates, we define f(s) = svj′ (xi1) ∗ c.710

Observe that the payoff of action x̄i to player cj′ is f(s). To prove the lemma, we must show
that player vj plays xi with probability

min(max(f(s), 0.1), 0).

There are three cases to consider.711

If f(s) ≤ 0, then we argue that svj (xi) = 0. Suppose for the sake of contradiction that712

player vj places non-zero probability on action xi. Then action xi for player cj′ will have713

payoff strictly greater than zero, whereas action x̄i will have payoff f(s) ≤ 0. Hence, in714

equilibrium, cj′ cannot play action x̄i. Lemma 12 then implies that player cj′ must play715

xi with probability 0.1. If cj′ does this, then the payoff to vj for xi will be zero, and716

the payoff to vj for x̄i will be 0.1. This means that vj places non-zero probability on an717

action that is not a best response, and so is a contradiction.718

If f(s) ≥ 0.1, then we argue that svj (xi) = 0.1. Suppose for the sake of contradiction719

with Lemma 12 that svj
(x̄i) > 0. Observe that the payoff to player cj′ of action x̄i is720

f(s) ≥ 0.1, whereas the payoff to player cj′ of action xi is svj
(xi) < 0.1. So to be in721

equilibrium and consistent with Lemma 12, player cj′ must place 0.1 probability on action722

x̄i, and 0 probability on action xi. But this means that the payoff of action x̄i to player723

vj is zero, while the payoff of action xi to player vj is 0.1. Hence player vj has placed724

non-zero probability on an action that is not a pure best response, and so we have our725

contradiction.726

If 0 < f(s) < 0.1, then we argue that svj
(xi) = f(s). We first prove that player cj′ must727

play both xi and x̄i with positive probability.728

If player cj′ does not play x̄i then player vj will not play xi, and player cj′ will receive729

payoff 0, but in this scenario he could get f(s) > 0 by playing x̄i instead of his current730

strategy.731

If player cj′ does not play xi then player vj will not play x̄i. Player cj′ will receive732

payoff f(s) for playing x̄i, but in this scenario he could receive payoff 1 > f(s) for733

playing xi instead.734

In order for player cj′ to mix over xi and x̄i in equilibrium, their payoffs must be equal.735

This is only the case when svj
(xi) = f(s).736

J737

	Introduction
	Preliminaries
	Hardness of 2D-Brouwer
	Hardness of 2D-Brouwer with a constant width circuit
	Hardness for tree polymatrix games
	Open questions
	An issue with the lower bound in EGG
	Proof of Lemma 1
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Theorem 10
	Proof of Lemma 11
	Proof of Lemma 12
	Proof of Lemma 13

