brought to you by CORE

www.bio-protocol.org/exxxx

Bio-protocol 9(xx): exxxx. DOI:10.21769/BioProtoc.xxxx

Pancreatic Acinar Cell Preparation for Oxygen Consumption and Lactate Production Analysis Jane A Armstrong¹, Robert Sutton¹ and David N Criddle²

3 4

1 2

⁵ ¹Department of Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool,

6 UK; ²Department of Molecular and Cellular Physiology, Institute of Translational Medicine, University

7 of Liverpool, UK

8 *For correspondence: criddle@liv.ac.uk

9

10 [Abstract] Mitochondrial dysfunction is a principal feature of acute pancreatitis (AP) although the 11 underlying mechanisms are still unclear. AP precipitants induce Ca2+-dependent formation of the 12 mitochondrial permeability transition pore (MPTP) in pancreatic acinar cells (PACs), leading to ATP depletion and necrosis. Evaluations of mitochondrial bioenergetics have mainly been performed in 13 14 isolated PACs using confocal microscopy, with assessment of mitochondrial membrane potential, 15 NADH/FAD⁺ and ATP levels, coupled with patch-clamp electrophysiology. These studies are technically 16 demanding and time-consuming. Application of Seahorse flux analysis now allows detailed 17 investigations of bioenergetics changes to be performed in cell populations using a multi-well plate-18 reader format; rates of oxygen consumption (OCR) and extracellular acidification (ECAR) provide 19 important information about cellular respiration and glycolysis, respectively. Parameters such as 20 maximal respiration, ATP-linked capacity and proton leak can be derived from application of a respiratory 21 function "stress" test that involves pharmacological manipulation of the electron transport chain. The use 22 of Seahorse Flux analysis therefore provides a quick, and convenient means to measure detailed 23 cellular bioenergetics and allows results to be coupled with other plate-reader based assays, providing 24 a fuller understanding of the pathophysiological consequences of mitochondrial bioenergetics 25 alterations.

Keywords: Mitochondrial dysfunction, Bioenergetics, Seahorse, Respiration, Glycolysis, Pancreatic
 acinar cells, Acute pancreatitis

28

29 [Background] Mitochondrial dysfunction is a core feature of acute pancreatitis (AP), a debilitating and 30 potentially fatal disease for which there is currently no specific therapy (Criddle 2016; Habtezion et al., 31 2019). The elucidation of pivotal pathological mechanisms which underlie mitochondrial damage in 32 pancreatic acinar cells (PACs) is paramount for the development of new therapies. Previously evaluation 33 of mitochondrial bioenergetics in isolated PACs have been mostly performed using confocal microscopy, including assessments of mitochondrial membrane potential (tetramethyl rhodamine methyl ester: 34 35 TMRM), NADH/FAD⁺ autofluorescence and ATP (Magnesium Green), coupled with patch-clamp 36 electrophysiology (Voronina et al., 2002; Criddle, et al., 2004; Criddle et al., 2006). Such studies have 37 pinpointed a reduction of ATP in response to precipitants of AP, via the opening of the mitochondrial permeability transition pore (MPTP), as a critical event that leads to necrotic cell death (Criddle et al., 38 39 2006; Mukherjee et al., 2016); supplementation with intracellular ATP ameliorated damage. Furthermore,

bio-protocol

40 luciferase measurements in PACs have provided details of changes of both mitochondrial and cytosolic ATP concentrations induced by pathophysiological stimulation (Voronina et al., 2010). Such 41 42 experimental approaches in single cells, however, are technically difficult and time-consuming. In 43 contrast, population-based assays provide important information about mitochondrial dysfunction and 44 cell death using a convenient plate-reader format (Armstrong et al., 2019). The use of Seahorse Flux 45 analysis allows a detailed evaluation of bioenergetics changes to be performed in PACs, measuring 46 rates of oxygen consumption (OCR) and extracellular acidification (ECAR); these inform about cellular 47 respiration and glycolysis, respectively. A respiratory function "stress" test can further be applied in which 48 pharmacological manipulation of the electron transport chain (ETC) is used to derive parameters such 49 as the maximal respiration, Spare Respiratory Capacity, ATP-linked turnover and non-mitochondrial 50 respiration. Such detailed bioenergetics information can be coupled with parallel studies of apoptosis 51 and necrosis to inform the influence of mitochondrial dysfunction on cell death patterns (Armstrong et 52 al., 2018). 53 54 **Materials and Reagents**

55 56

1. 70 μm filters (Fisherbrand, catalog number: 22363548)

- 57 2. Tissue paper
- 58 3. 30G needle
- 59 4. 1.5 ml microcentrifuge tube
- 60 5. 15 ml falcon tube
- 61 6. Pipette tips
- 62 7. Male CD1 or C57BL6/J mice, 8-12 week old (Charles River).
- 63 8. Collagenase (Worthington Biochemical Corporation, Lakewood, NJ)
- 64 9. PI-Cassette[™] (Chemometec, Nucleocounter, catalog number: 941-0001)
- 65 10. Reagent A100, Lysis buffer (SKU: 910-0003, Chemometec, Nucleocounter)
- 66 11. Reagent B; Stabilizing buffer (SKU: 910-0002, Chemometec, Denmark)
- 12. XF24 Fluxpak, containing cell plates, cartridge consisting of sensor and utility plates and
 Seahorse XF calibrant (Agilent, Seahorse, catalog number: 100850-100)
- 69 13. Matrigel basement membrane matrix (Corning, catalog number: 354234)
- 70 14. Dimethyl sulfoxide (DMSO, Sigma, catalog number: D2650)
- 71 15. Ethyl alcohol, Pure (Sigma, catalog number: 459836)
- 72 16. Oligomycin A (Sigma, Merck, catalog number: 75351)
- 17. Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP, C2920, Sigma, Merck)
- 18. Antimycin A from *Streptomyces* sp. (Sigma, Merck, catalog number: A8674)
- 75 19. Rotenone (Sigma, Merck, catalog number: R8875)
- 76 20. DMEM (Sigma, Merck, catalog number: D5030)
- 77 21. L-Glutamine 100x (Gibco, Life Technologies, catalog number: 25030-081)
- 78 22. D-Glucose (Sigma, Merck, catalog number: G7528)

79	23.	Sodium pyruvate (Sigma, Merck, catalog number: P8574)
80	24.	Sodium chloride (Sigma, Merck, catalog number: S9888)
81	25.	Potassium chloride (Sigma, Merck, catalog number: P3911)
82	26.	Magnesium chloride (Sigma, Merck, catalog number: M1028)
83	27.	Calcium chloride (Sigma, Merck, catalog number: 21115)
84	28.	Extracellular solution (see Recipes)
85	29.	Seahorse media (see Recipes)
86		
87	<u>Equipr</u>	nent
88		
89	1.	Surgical scissors
90	2.	Water bath
91	3.	-20 °C freezer
92	4.	Seahorse XF24 Extracellular Flux Analyser (Agilent)
93	5.	Cell Counter NucleoCounter [®] NC-100 [™] (900-0004, ChemoMetec, Denmark)
94	6.	Inverted light microscope
95		
96	<u>Softwa</u>	<u>re</u>
97		
98	1.	Wave (Seahorse, Agilent. <u>https://www.agilent.com</u>)
99	2.	Prism (GraphPad Software Inc., La Jolla, CA. https://www.graphpad.com)
100		
101	Proced	lure
102		
103	<u>Day 1</u>	
104	A. Pa	ncreatic acinar cell preparation
105	1.	Terminate young (8-12 week old) adult CD1 or C57BL/6 (wild type) mouse using an approved
106		Schedule 1 procedure.
107	2.	Place mouse down on right hand side on fresh tissue paper.
108	3.	Using forceps and scissors cut away fur in the side abdominal area. Once removed make a
109		similar removal of lower skin epidermis to expose the abdominal cavity.
110	4.	Locate the pancreas below the spleen gently with forceps and cut free with a small pair of
111		surgical scissors.
112	5.	Place the freshly excised pancreas in 7 ml extracellular solution and keep on ice until digestion.
113	6.	Pre-warm 1 ml of collagenase (200 U ml ⁻¹) to 37 °C in a water bath.
114	7.	Carefully inject the pre-warmed collagenase using a 30G needle into the pancreas samples
115		placed in a weighing boat until the pancreas inflates. Draw up any remaining collagenase not
116		retained within the pancreas from the weighing boat and re-inject into pancreas.
117	8.	Place the inflated pancreas into a 1.5 ml microcentrifuge tube and add any remaining

118			collagenase.
119		9.	Place in a 37 °C water bath for 17 min
120			Note: This time is dependent on the brand and concentration of collagenase used. You may
121			need to optimize so that you get a optimal amount of cell viability and cell number achieved.
122		10.	After incubation for 17 min remove from water bath and decant contents of the 1.5 ml
123			microcentrifuge tube into a 15 ml falcon tube labelled 'Panc', quickly add 5 ml of extracellular
124			solution.
125		11.	Using a 1 ml pipette tip, cut at an angle across the tip and the volume set at 700 μl vigorously
126			pipette the whole pancreas tissue up and down in and out of the pipette tip to allow for tissue
127			dissociation (trituration).
128		12.	Repeat pipetting up and down until the mixture becomes cloudy with the release of cells.
129		13.	Upon cessation of pipetting quickly remove the cellular solution into a fresh 15 ml tube labelled
130			'Cells', using a squeezy pipette being careful to leave behind any pieces of pancreas tissue.
131		14.	Add 5 ml of extracellular solution to the 15 ml tube 'Panc'.
132		15.	Using a fresh 1 ml pipette tip, cut at smaller angle than previously across the tip and the volume
133			set at 700 μI vigorously pipette the whole pancreas tissue in and out of the pipette tip to allow
134			further tissue dissociation.
135		16.	Upon cessation of pipetting quickly remove the cellular solution into 15 ml tube 'Cells', using a
136			squeezy pipette and being careful to leave behind any pieces of pancreas tissue.
137		17.	Repeat Steps A14-A16 for a third and final time.
138		18.	Discard any tissue remaining in a 15 ml tube labelled 'Panc'
139		19.	Centrifuge 15 ml tube labelled 'Cells' for 2 min, 130 <i>x g</i> , room temp.
140		20.	Carefully pour off the supernatant leaving behind the loose cell pellet.
141		21.	Resuspend the cell pellet in 1 ml of extracellular solution.
142		22.	Add an additional 9 ml of extracellular solution.
143		23.	Set up a 70 micron filter in a 50 ml tube (labelled and dated) and pre-wet with a small amount
144			of extracellular fluid.
145		24.	Filter the 10 ml of cell suspension from the 15ml tube 'Cells' through the filter into the 50 ml tube.
146		25.	Rinse the filter with plenty of extracellular fluid until the tube is filled to the 40 ml mark.
147		26.	Centrifuge 50 ml tube labelled 'Cells' for 2 min, 130 <i>x g</i> , room temp.
148		27.	Carefully pour off the supernatant leaving behind the loose cell pellet.
149		28.	Resuspend the cell pellet in 1 ml of extracellular solution.
150		29.	Add an additional 9 ml of extracellular solution.
151		30.	Place the tube overnight in at 4 °C.
152			
153	В.	Ox	ygen consumption and lactate production analysis cell plate preparation and cartridge
154		reh	ydration
155		1.	Remove a Seahorse XF 24 well cell plate and remove from packaging
156		2.	Take a pre-aliquotted 250 µl vial of Matrigel from storage in a -80 °C freezer and thaw on ice.

157		3.	Adapt Corning's 'Thin Coating Method' for use on a Seahorse XF24 cell plate as follows:
158		4.	Using cooled pipettes, mix the BD Matrigel Basement Membrane Matrix to homogeneity.
159		5.	Dilute Corning Matrigel Basement Membrane Matrix using serum-free medium Seahorse media.
160		6.	Carefully add 36 µl diluted BD Matrigel Basement Membrane Matrix to Seahorse XF 24 well cell
161			plate being sure not to create any bubbles.
162		7.	Incubate at room temperature for 30 min.
163		8.	Aspirate unbound material and gently rinse using serum-free Seahorse media.
164		9.	Pipette 100 µl serum-free Seahorse media into each well and leave at 4 °C until ready for use.
165		10.	Remove a Seahorse XF 24 cartridge from packaging.
166		11.	Remove the sensor plate (green upper half of the cartridge) and place lid down on the bench.
167		12.	Pipette 1 ml of XF callibrant into each of the 24 wells of the utility plate and return the sensor
168			plate so the probes of each well are submerged in XF callibrant.
169		13.	Place in a 37 °C CO ₂ free incubator overnight until ready for use.
170			
171	Da	<u>y 2</u>	
172	C.	Ass	sess pancreatic cell viability
173		1.	The next day the cell suspension is mixed to obtain a homogenous suspension by gently
174			pipetting up and down using a 1 ml pipette.
175		2.	Pipette a 1 ml cell sample from the cell suspension into a 1.5 ml microcentrifuge tube.
176		3.	Label a PI-Cassette [™] 'NV' (non-viable).
177		4.	Draw the cell suspension into a PI-Cassette ^{TM} by inserting the tip of the cassette into the cell
178			suspension in the 1.5 ml microcentrifuge tube and pressing the piston.
179		5.	Set aside the 'NV' PI-Cassette™ to be analysed.
180		6.	Pipette 100 μl of the 1ml cell sample from the 1.5 ml microcentrifuge tube into a second 1.5 ml
181			microcentrifuge tube. Return any cell sample remaining to the original cell suspension 50 ml
182			centrifuge tube 'Cells'.
183		7.	Add 100 µl volume of Reagent A100 to the microcentrifuge tube with the 100 µl cell sample.
184		8.	Mix by pipetting.
185		9.	Add 100 μ l volume of Reagent B to the mixture of cell suspension and Reagent A100.
186		10.	Mix by pipetting.
187		11.	Label a PI-Cassette [™] 'T' (total)
188		12.	Draw the diluted cell suspension into a PI-Cassette $^{\mbox{\scriptsize TM}}$ by inserting the tip of the cassette into the
189			cell suspension and pressing the piston.
190		13.	Immediately place the loaded PI-Cassette TM in the NucleoCounter [®] NC-100 TM sample tray, press
191			RUN.
192		14.	After approximately 45 s the total cell concentration (cells/ml) is presented in the bottom right.
193		15.	The cell count produced will normally be in the order of x 10^5 . Divide by 10 to achieve x 10^6 for
194			the following calculations
195		16.	Calculate total cell number and percent viability as follows:

196	Cell viability = ['NV' / ('T' x 3)] x 100
197	Total viable cell count = $[(T' x 3) - NV'] x$ volume of cell suspension
198	
199	Examples of total cell count and percent viability previously achieved when isolating acinar cells
200	from two separate pancreas (taken from two animals) at the same time and pooled for analysis

are shown in Table 1.

202 203

Total read	Total	cell	Non-viable	Viability (%)	Volume (ml)	Total cell
out	count		cell count			count (x10 ⁶)
0.324	0.972		0.137	85.9	10	8.35
0.211	0.633		0.091	85.6	10	5.42
0.462	1.386		0.161	88.4	10	12.25
0.351	1.053		0.018	98.3	10	10.35
0.302	0.906		0.165	81.8	10	7.41
0.326	0.978		0.145	85.2	10	8.33
0.238	0.714		0.152	78.7	10	5.62
0.224	0.672		0.101	85.0	10	5.71
0.372	1.116		0.207	81.5	10	9.09
0.364	1.092		0.219	79.9	10	8.73
			Mean ± S.D	85.0 ± 5.6		8.1 ± 2.2

Table 1. Examples of total cell count and percent viability previously achieved

17.	Centrifuge 50 ml tube labelled 'Cells' for 2 min, 130 <i>x g</i> , room temp.
18.	Carefully pour off the supernatant leaving behind the loose cell pellet.
19.	Resuspend the cell pellet with 1 ml of extracellular solution.
20.	The cell suspension needs to be adjusted to a concentration of 1 x 10 ⁶ /ml. This is achieved by
	adjusting the volume to the same value as the total number of cells. (Total viable cell count = 5
	x 10 ⁶ , adjust cell volume to 5 ml). Centrifuge 50 ml tube labelled 'Cells' for 2 min, 130 $x g$, room
	temp.
21.	The cells are now ready to be seeded onto the Matrigel coated Seahorse XF 24 well cell plate
	(Figure 1).
22.	Remove the XF 24 well cell plate and remove the 100 μl serum-free Seahorse media from each
	well.
23.	Continuously mixing the cell suspension during seeding by pipetting up and down, transfer 75
	μI of cell suspension into each well leaving the following cells blank to give a total of 75,000
	murine pancreatic cells per well.
	17. 18. 19. 20. 21. 22.

55

62

68

10x

10x

10x

220							
221			Fiqu	re 1. Well allocation fo	or blank well for XF24 cell p	late	
222			0		•		
223		24.	Place	the lid back onto the X	F24 cell plate and place in a	37 °C CO2 free incub	ator for 1 hou
224			for the	cells to adhere.			
225		25.	Whilst	the cells are adhering	g the XF24 cartridge can b	e loaded with the co	mpounds that
226			compr	ise a mitochondrial "str	ess" test.		
227		26.	After c	one hour remove the 75	µl of extracellular solution fro	om the cells. Quickly a	add 450 µl pre-
228			warme	ed serum free Seahorse	e media to every well. Returr	n to a 37 °C CO ₂ free	incubator unti
229			ready	for use.			
230							
231	D.	Pre	eparing	and loading compound	s for the mitochondrial "stress	s" test	
232		1.	There	are two types of assays	s that can be performed:		
233			Standa	ard Assay – only involve	es the injection of modulators	included in the kit.	
234			Modifi	ed Assay – includes an	additional injection of a test co	ompound prior to oligo	mycin injection
235			and Po	ort A is used for the test	ing compound.		
236		2.	Refer	to Table 2 for loading	volume and port designation	for compounds in dif	ferent types of
237			assays	S.			
238							
239			Table	2. Loading regime for	mitochondrial stress test		
			Port	Standard Assay	Modified Assay	Port	Port
						Concentration	Volume
			Α	Oligomycin	Test compound	10x	50

- 240
- 3. Make a working concentration of 10x the final required concentration required from stock
 solutions stored at -20 °C as follows:

Oligomycin

Rotenone & Antimycin A

FCCP

243 a. Oligomycin stock solution in DMSO

FCCP

Empty

Rotenone & Antimycin A

244 10 µl in 1 ml of Seahorse media

В

С

D

- 245 For a 10 x solution of 10 μ g/ml for a final concentration of 1 μ g/ml.
- b. Carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone (FCCP) stock solution in DMSO

247			3 μl in 1 ml of Seahorse media
248			For a 10 x solution of 3 μ M for a final concentration of 0.3 μ M.
249			c. Rotenone stock solution in DMSO and Antimycin A stock solution in ethanol
250			10 μl of each in 1 ml of Seahorse media
251			For a 10 x solution of 20 μ g/ml for a final concentration of 2 μ g/ml.
252		4.	Make a vehicle control solution for any well or port that is not receiving a compound or stress
253			test with appropriate amounts of DMSO/Ethanol or other vehicle utilized for specific compounds.
254		5.	Remove both the sensor plate and the corresponding utility plate together from the 37 $^\circ$ C CO ₂
255			free incubator and remove the lid.
256		6.	Load the corresponding volume of each compound appropriate for the assay type into the
257			appropriate port on the Sensor plate.
258		7.	Once all the compounds have been added to the ports, the lid can be replaced on to the Sensor
259			plate and return to a 37 °C CO ₂ free incubator until ready for use.
260			
261	Ε.	Ox	ygen consumption and lactate production analysis
262		1.	Programme the Seahorse Extracellular Flux instrument as follows:
263			a. Calibration
264			b. Equilibration
265			c. [Mix – 2 min, Wait – 2 min, Measure – 2 min] x 5 to ensure a stable baseline
266			d. Inject Port A
267			e. [Mix - 2 min, Wait - 2 min, Measure - 2 min] x 3 for standard assay oligomycin injection
268			or x 5 typically for modified assay which gives 30 min for any test compound application.
269			f. Inject Port B
270			g. [Mix - 2 min, Wait - 2 min, Measure - 2 min] x 3 for standard assay FCCP injection and
271			also x 3 for modified assay, oligomycin injection
272			h. Inject Port C
273			i. [Mix – 2 min, Wait – 2 min, Measure – 2 min] x 2 for standard assay Antimycin A/Rotenone
274			injection and x 3 for modified assay, FCCP injection
275			j. Inject Port D (modified assay only)
276			k. [Mix - 2 min, Wait - 2 min, Measure - 2 min] x 2 for modified assay only, Antimycin
277			A/Rotenone injection
278		2.	After reviewing the group definitions, plate map layout, click Start Run.
279		3.	After you enter the save location for your result file (following completion of the assay), the tray
280			door on the XF24 Analyser will open.
281			Important! Before starting calibration, ensure:
282		4.	The sensor cartridge fits properly on the Utility plate.
283		5.	The lid is removed from the sensor cartridge.
284		6.	Proper orientation (direction) of the sensor cartridge on the Utility plate.
285		7.	Place the sensor cartridge (hydrated and loaded with compounds) and Utility plate onto the tray

286		when prompted.
287	8.	Press "Start" to initiate sensor cartridge calibration.
288	9.	Time to complete calibration is approximately 10-20 min (for assays at 37°C). For XF assays
289		performed at temperatures other 37°C an additional 30 min of pre-calibration time will be added
290		to ensure accurate data acquisition.
291	10.	Once sensor cartridge calibration is complete, the instrument controller will display the Load
292		Cell Plate dialogue
293	11.	Click Open Tray to eject the Utility plate and load the Cell Plate on the tray. The sensor cartridge
294		remains inside the XF Analyser for this step.
295		Important! Before loading the Cell plate, ensure:
296	12.	The lid is removed the Cell Plate.
297	13.	Proper orientation (direction) of the Cell Plate on the tray.
298	14.	After placing the Cell Plate on the tray, click Load Cell Plate to initiate equilibration.
299	15.	After completing equilibration, the assay will automatically begin acquiring baseline
300		measurements (as outlined in your instrument protocol).
301	16.	Once the final measurement command in the instrument protocol is completed, Wave Controller
302		software will display the Unload Sensor Cartridge dialog.
303	17.	Click Eject when ready to eject the sensor cartridge and cell plate. Set aside for later analysis if
304		necessary (example - cell count normalization).
305	18.	After removing the sensor cartridge and cell plate, the Assay Complete dialogue will appear.
306	19.	Click View Results to immediately open your assay result file. Download both files for the
307		experiment
308	20.	Excel file
309	21.	Xfd. file
310		
311	<u>Data ar</u>	nalysis
312		
313	1.	Open the Xfd file in Wave software.
314	2.	You need to change the file format into a Prism file by selecting 'save as' and then choosing
315		the .pzfx format.
316	3.	The data can now be opened directly in prism.
317	4.	Each experimental condition needs at least 3 wells per plate and for statistics needs at least n
318		= 6 plates using fresh pancreas isolated from a separate mouse each time.
319	5.	Exclusion criteria:
320		a. Unstable baseline, usually when the baseline shows a steady rate of decline excessively
321		low or high baseline <200 or > 800 pMol/min OCR.
322		b. Lack of response by stress test control wells to stress test compounds.
323		c. Outlier data points – entire series for a well and/or individual data points

324

325	<u>Notes</u>						
326							
327	Im	p ortant! – Before you start your XF Assay					
328	1.	Vis	ually inspect the injection ports for ever	n loading. The liquid shou	ld be in the port, make	e sure	
329		the	re are no residual drops on the top of th	ne sensor cartridge.			
330	2.	Vie	ew cells under a microscope to:				
331		a.	Confirm cell health, morphology, seed	ing uniformity and purity ((no contamination).		
332		b.	For adherent cells, ensure cells are a	adhered with a consister	nt monolayer and we	e not	
333			washed away during washing step.				
334	<u>Recipe</u>	S					
335							
336	1.	Ext	tracellular solution (mM)				
337		14() mM NaCl				
338		4.7	mM KCI				
339		1.1	3 mM MgCl ₂				
340		1 n	וM CaCl₂				
341		10	mM D-glucose				
342		10	mM HEPES (adjust to pH 7.25 using N	aOH)			
343	2.	Se	ahorse media				
344		a.	Prepare DMEM by adding 800 ml dH ₂	O to powdered DMEM.			
345		b.	Prepare assay medium by suppleme	enting DMEM medium w	ith 1 mM pyruvate, 2	2 mM	
346			glutamine, and 10 mM glucose as in th	ne table below (Table 3):			
347							
348			Table 3. Recipe for serum free non-	buffered Seahorse medi	ia		
			Reagent/Part Number	Final Concentration	Volume		
			DMEM Medium	-	1.0 L		
			D-Glucose (1.0 M solution)	10 mM	1.8 g		
			Pyruvate (100 mM solution)	1 mM	10 ml		
			L-Glutamine (200 mM solution)	2 mM	10 ml		
349							
350		C.	Bring XF medium with supplements to	pH 7.4 and adjust the fin	al volume to 1 litre, tra	ansfer	
351			into a Class 2 microbiological safety ca	abinet.			
352		d.	Filter with a filter pipette into sterile 50	ml aliquot centrifuge tube	es. Store in a fridge for	up to	
353			1 month.				
354							
355	<u>Ackno</u>	wlee	<u>dgments</u>				
356							
357	Thi	s wo	ork was supported by the Wellcome Tr	ust (102381/Z/13/Z) and	by the National Institu	ite for	

358 Health Research (UK) grant to the NIHR Liverpool Pancreas Biomedical Research Unit. This

359	pro	tocol was first published in the original article from Armstrong et al. (2018).
360		
361	Compe	eting interests
362		
363	The	e authors declare that they have no conflicts of interest with the contents of this article.
364		
365	Ethics	
366		
367	The	e animals were humanely sacrificed by increasing CO_2 (schedule 1 procedure) in accordance
368	with	n the Animals (Scientific Procedures) Act (1986) under Establishment License 40/2408 with
369	app	proval by the University of Liverpool Animal Welfare Committee and Ethical Review Body
370	(X7	0548BEB and PPL 70/8109).
371		
372	Refere	nces
373		
374	1.	Armstrong, J. A., Cash, N. J., Morton, J. C., Tepikin, A. V., Sutton, R. and Criddle, D. N. (2019).
375		Mitochondrial targeting of antioxidants alters pancreatic acinar cell bioenergetics and
376		determines cell fate. Int J Mol Sci 20(7).
377	2.	Armstrong, J. A., Cash, N. J., Ouyang, Y., Morton, J. C., Chvanov, M., Latawiec, D., Awais, M.,
378		Tepikin, A. V., Sutton, R. and Criddle, D. N. (2018). Oxidative stress alters mitochondrial
379		bioenergetics and modifies pancreatic cell death independently of cyclophilin D, resulting in an
380		apoptosis-to-necrosis shift. J Biol Chem 293(21): 8032-8047.
381	3.	Criddle, D. N. (2016). Reactive oxygen species, Ca ²⁺ stores and acute pancreatitis; a step closer
382		to therapy? Cell Calcium 60(3): 180-189.
383	4.	Criddle, D. N., Murphy, J., Fistetto, G., Barrow, S., Tepikin, A. V., Neoptolemos, J. P., Sutton, R.
384		and Petersen, O. H. (2006). Fatty acid ethyl esters cause pancreatic calcium toxicity via inositol
385		trisphosphate receptors and loss of ATP synthesis. Gastroenterology 130(3): 781-793.
386		PM:16530519
387	5.	Criddle, D. N., Raraty, M. G., Neoptolemos, J. P., Tepikin, A. V., Petersen, O. H. and Sutton, R.
388		(2004). Ethanol toxicity in pancreatic acinar cells: mediation by nonoxidative fatty acid
389		metabolites. Proc Natl Acad Sci U S A 101(29): 10738-10743.
390	6.	Habtezion, A., Gukovskaya, A. S. and Pandol, S. J. (2019). Acute pancreatitis: a multifaceted
391		set of organelle and cellularinteractions. <i>Gastroenterology</i> 156(7): 1941-1950.
392	7.	Mukherjee, R., Mareninova, O. A., Odinokova, I. V., Huang, W., Murphy, J., Chvanov, M., Javed,
393		M. A., Wen, L., Booth, D. M., Cane, M. C., Awais, M., Gavillet, B., Pruss, R. M., Schaller, S.,
394		Molkentin, J. D., Tepikin, A. V., Petersen, O. H., Pandol, S. J., Gukovsky, I., Criddle, D. N.,
395		Gukovskaya, A. S., Sutton, R. and Unit, N. P. B. R. (2016). Mechanism of mitochondrial
396		permeability transition pore induction and damage in the pancreas: inhibition prevents acute
397		pancreatitis by protecting production of ATP. <i>Gut</i> 65(8): 1333-1346.
		· · · · · · · · · · · · · · · · · · ·

- Voronina, S., Sukhomlin, T., Johnson, P. R., Erdemli, G., Petersen, O. H. and Tepikin, A. (2002).
 <u>Correlation of NADH and Ca²⁺ signals in mouse pancreatic acinar cells.</u> *J.Physiol* 539(Pt 1): 41 52.
- Voronina, S. G., Barrow, S. L., Simpson, A. W., Gerasimenko, O. V., da Silva Xavier, G., Rutter,
 G. A., Petersen, O. H. and Tepikin, A. V. (2010). <u>Dynamic changes in cytosolic and mitochondrial</u>
 <u>ATP levels in pancreatic acinar cells.</u> *Gastroenterology* 138(5): 1976-1987.
- 404