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Abstract: Extending current deterministic tools to incorporate significant stochastic wind power is becoming an important as 
well as challenging task for present-day power system decision-making. This paper proposes a novel probabilistic assessment 
method to assess the available transfer capability (ATC). Usually, a large number of ATC evaluations is needed to obtain 
accurate results using time-consuming Monte Carlo simulations (MCS). To alleviate the computation burden of probabilistic 
ATC, a statistically-equivalent surrogate model for the ATC solution is constructed by introducing canonical low-rank 
approximation (LRA). By implementing LRA for the base case and a set of enumerated contingencies, the uncertainties of 
wind power generation and load, as well as transmission equipment outages, are addressed in an efficient way. With the 
proposed method, the probability of ATC is characterised, and the most influential uncertain factors are identified, which 
helps to determine a suitable ATC level. The effectiveness of the proposed method is validated via case studies with a 
modified IEEE 118-bus system. 
 

1. Introduction 

The exploitation and utilisation of wind power are 

regarded as an effective way to tackle the challenges of 

climate change and the energy crisis. Due to its stochastic 

nature, the actual wind power generation can vary 

significantly from its scheduled value [1]. In order to integrate 

a high proportion of wind power into power systems, there is 

a pressing need to quantify the impact of its uncertainty on 

power system operation indices and, hence, ensure a secure 

and reliable transmission network. In order to utilise the 

transmission network rationally, the North American Electric 

Reliability Corporation (NERC) has defined the available 

transfer capability (ATC) as a measure of the power transfer 

capability remaining in the transmission network for further 

commercial activities over and above already-committed uses 

[2]. It quantifies the amount of power in MW that can be 

exchanged between areas without violating any security 

constraints in both pre- and post-contingency conditions. For 

electricity market participants, the information on the ATC 

serves as a reference for designing purchase and sale 

contracts, while for system operators, the precalculated ATC 

value can be used as a security indicator of the transmission 

infrastructure. 

Conventionally, ATC is evaluated by a deterministic 

approach, for instance, sensitivity-based power flow [3], 

continuation power flow (CPF) [4], repeated power flow 

(RPF) [5] and optimal power flow (OPF) [6]. It is widely 

recognised that the ATC calculation should accommodate 

reasonable uncertainties in the system conditions to guarantee 

flexible and reliable system operations [2]. In a power system 

with a significant proportion of wind power generation, 

where the principle of addressing uncertainty attracts more 

attention, probabilistic ATC calculation is considered to be 

more promising than deterministic methods [7-10]. Monte 

Carlo simulations (MCS) are widely used for assessing 

probabilistic ATC [11-14]. Even though the stochastic 

behaviors of ATC can be accurately characterized, the 

application of MCS to time-sensitive cases is not technically 

feasible due to it involves a huge number of ATC evaluations 

for the randomly sampled states to reach convergence. The 

efficiency of MCS can be improved by adopting variance 

reduction techniques that reduce the number of trials [15-16]. 

In recent years, polynomial chaos expansion (PCE) has been 

proved as a promising solution to alleviate the computation 

burden of MCS [17-18]. In PCE, a surrogate model for 

generating ATC samples is built up by a series expansion of 

multivariate orthogonal polynomials, and the probabilistic 

ATC evaluation is accelerated due to the simulations on the 

time-consuming original model are reduced. However, the 

necessary number of original model simulations increases 

exponentially with the dimension of inputs [19], which makes 

the efficiency merit of PCE disappears in those practical 

power system problems involving a great number of 

uncertain parameters concerning loads, generations and 

others. Besides MCS and PCE, small-sample methods, like 

Table 1 Probabilistic ATC methods comparison 

Method Attractive points Defects 

MCS 
It is accurate to characterize 
the stochastic behaviors of 

ATC.  

Heavy computation burden 
is involved to reach 

convergence. 

PCE 

It saves computation effort 
of MCS by employing a 

surrogate model to generate 

random samples of ATC. 

The advantage of efficiency 

disappears in high-
dimensional applications. 

PEM 

It carries out a few 
deterministic routines with 

selected points to estimate 

the statistical moments of 
ATC. 

The accuracy of series 

expansion to estimate the 
probability distribution of 

ATC is not guaranteed. 

bootstrap 

The statistical moments of 

ATC are estimated by 
repeated sampling from 

historical data.  

It is difficult to guarantee 

the validity of the results 
depending on the selected 

ATC samples.  
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point estimation methods (PEM) [20] and bootstrap methods 

[21], require fewer random samples of ATC but extra 

mathematical treatments. Although the computational effort 

is attractive, small-sample methods are not always accurate 

enough. For example, PEM would have bad performance 

when selecting unsuitable series to fit the probability 

distributions of random variables [22]. The pros and cons of 

these methods are summarized and compared in Table 1. In 

general, a probabilistic ATC method ensuring both accuracy 

and efficiency is still in need. 

Besides the aforementioned concern, the probabilistic 

ATC framework could be further improved by providing 

information about which uncertain factors would have the 

greatest effect on ATC variation. Such uncertainty 

importance measure can help to identify random variables or 

parameters needed for improved forecast or modelling, so 

that more reliable probabilistic ATC results can be provided 

[23]. Moreover, the quantification of uncertainty importance 

can also guide system operators towards taking effective 

control actions, for example installing energy storage next to 

important renewable energy plants identified to mitigate the 

ATC variability [24]. Several uncertainty importance 

measures are investigated in ref. [25], among which variance-

based global sensitivity analysis (GSA) is recognized as an 

applicable one in the context of power system. Because GSA 

is conducted with a large number of structural samples of 

random inputs [26], its computational burden has become a 

concern and prohibited its applications to problems including 

the ATC assessment.  

This paper addresses the needs above by developing a 

novel probabilistic ATC calculation method based on the 

low-rank approximation (LRA) technique. LRA offers a 

promising alternative to PCE for developing surrogate 

models based on the idea of canonical decompositions [27]. 

The canonical decompositions are typically used to compress 

and extract information of a tensor and have been used in a 

broad range of fields, like signal processing and data mining 

[28-30]. Recently, it also attracts interest in the probabilistic 

power flow problem [31]. The number of coefficients in 

canonical decompositions grows linearly rather than 

exponentially with the input dimension [32], making LRA 

more powerful in dealing with high-dimensional problems. 

The main benefits of the proposed method are:  

i. Under the base case and a set of transmission 

contingency cases, the LRA representation for the 

ATC solution is built and used as a surrogate model 

to calculate ATC coping with uncertain load and 

wind power. 

ii. The statistics and probability distributions of ATC， 

as well as the global sensitivity index (GSI) of 

random input are expressed according to the law of 

total probability, by which the discrete-distributed 

transmission status are analytically handled.  

Consequently, the proposed method improves the efficiency 

of the probabilistic ATC calculation while ensuring high 

accuracy.  

The remainder of the paper is organised as follows. 

The problem formulation of the probabilistic ATC calculation 

is provided in Section 2. Section 3 describes the 

implementation procedure of the canonical LRA. Section 4 

presents the realisation of the LRA-based probabilistic ATC 

assessment in detail, followed by numerical case studies on a 

modified IEEE 118-bus system in Section 5. Conclusions are 

drawn in Section 6. 

2. Probabilistic ATC Assessment   

2.1. Mathematical formulation for ATC 
According to the NERC definition, ATC can be 

expressed as the total transfer capability (TTC) less the 

transmission reliability margin (TRM), less the sum of 

existing transmission commitments (ETC) and the capacity 

benefit margin (CBM), that is: 

 ( )ATC TTC TRM ETC CBM= − − +   (1) 

where TTC indicates the maximum MW power that can be 

transferred over the transmission network without violating 

the security constraints for a set of defined pre- and post- 

contingency conditions; ETC is determined for a specific base 

case, which is a system operating state determined by 

parameters including load demands, generation outputs and 

network configurations, etc; TRM is defined as the amount of 

transfer capability necessary to ensure the reliable and secure 

operation of transmission networks under a range of 

uncertainties in system conditions; CBM is a locally applied 

margin reserved by load-serving entities to ensure access to 

generation from elsewhere in the interconnected systems to 

meet generation reliability requirements. 

In practice, TRM and CBM, as two transfer capability 

margins, are usually treated as fixed values or percentages of 

TTC to meet specific reliability requirements and are 

therefore neglected in some ATC calculation methods for 

simplicity [33]. In this paper, the determination of TRM is 

addressed in the probabilistic ATC scheme to accommodate 

the wind power uncertainty. It will be discussed in section 4. 

The ATC calculation for a deterministic case, e.g., the 

base case, can be expressed by the mathematical formulation 

below: 

 

Min  - ( )

 

( )=0,   ( ) 0

f

subject to



u

g u h u

  (2) 

where u denotes the vector of the state and control variables. 

The model objective f(u) is to maximize the active power 

transferred through a transmission network or line without 

compromising system security, i.e., satisfying the constraints 

on g(u) and h(u). 

 

2.2. OPF based deterministic ATC evaluation 
In this paper, the OPF model incorporating the thermal 

and voltage security limits is used as the ATC calculator. 

Moreover, it is not difficult to include the dynamic stability 

limits by implementing the stability-constrained optimal 

power flow (SCOPF). In SCOPF, dynamic equations are 

converted to numerically equivalent algebraic equations and 

then integrated into the standard OPF formulation [34]. 

Specifically, the OPF objective function f(u) is 

expressed as: 

 ( )G G ,0
( )

i i

i

f P P


= −
SE

u   (3) 

The equality constraints g(u) include: 

1) the physical power flow equations: 
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2) the load increase pattern: 

 
D D ,0 D D D D ,0 D ,0

,   / /
i i i i i i i

P P b Q P Q P− = =   (5) 

The inequality constraints h(u) include: 

3) the generation capacity limits: 

 
G ,min G G ,max

, 
i i i

P P P i   SE   (6) 

 
G G ,0

, 
i i

P P i=  SE   (7) 

 
G ,min G G ,max

,  
i i i

Q Q Q i     (8) 

4) the load demand limits 

 
D ,0 D ,0

0,  ,    0,  
i i

b i b i  = SI SI   (9) 

5) the voltage limits: 

 
,min ,max

,  
i i i

V V V i     (10) 

6) the thermal limits 

 2 2 2

L L L ,max
,  

ij ij ij
P Q S ij+     (11) 

where PGi and QGi are the active and reactive generations; PDi 

and QDi are the active and reactive load demands at bus i in 

the maximum-transfer case, respectively; PGi,0, PDi,0 and QDi,0 

are those in the base case; PGi,min and QGi,min, and PGi,max and 

QGi,max are the lower and upper bounds of the active and 

reactive generations at bus i, respectively; PWi and QWi are 

active and reactive wind generation, that remain unchanged 

in the base and maximum-transfer cases because wind power 

is non-dispatchable; λ is a scalar parameter representing the 

load increment; bDi is the constant specifying the load 

increase rate; Vi and θi are the voltage magnitude and angle of 

bus i; θij = θi − θj; Gij and Bij are the elements of the system 

admittance matrix; Vi,min and Vi,max are the lower and upper 

bounds of Vi; PLij and QLij are the active and reactive power 

on line i–j; and SLij,max is its apparent power capacity. SE and 

SI are the set of buses in the source and sink areas. 

With the OPF model above, the maximum-transfer 

case is established by solving the constrained nonlinear 

programming problem that provides the ATC of the 

transmission network. 

2.3. Probabilistic ATC using surrogate model 
The statistical and probabilistic properties of ATC are 

evaluated by the probabilistic method. Typically, it can be 

realised by the MCS procedure: 

i. Generate Nsim samples for wind generation, loads 

and network topologies by random sampling 

ii. Execute deterministic model simulation to evaluate 

ATC for each sample 

iii. Get statistics and probability distributions of ATC. 

The procedure above is quite time-consuming since a 

large number of repeated simulations is needed to achieve 

convergence so that a reliable result is obtained. The iteration 

can be terminated when MCS sim
/ N  is smaller than a 

specified level, where σMCS is the standard deviation of ATC. 

It provides a rule to decide whether the amount of simulations 

is sufficient or not. 

In order to improve the MCS-based probabilistic 

method, it is proposed to take advantage of a statistically-

equivalent surrogate model which is able to predict the ATC 

solutions with less computation effort. This procedure is 

illustrated in Fig. 1. The surrogate model, i.e., PCE or LRA, 

is built with results of a few rounds of deterministic ATC 

simulations in the first stage, and used for generating enough 

ATC samples subsequently in the second stage. Because Ned 

is far less than Nsim, the computation burden of the 

probabilistic ATC assessment is greatly alleviated.   

Ned input 
samples

Deterministic 
ATC model

Ned ATC 
samples

Construction 
process

Surrogate modelNsim input 
samples

Nsim ATC 
samples

ATC statistics and 
probabilities  

Fig. 1. Probabilistic ATC assessment with surrogate model 

3.  Canonical Low-Rank Approximation 

In this section, the general form for the canonical low-

rank representation of a computation model in the stochastic 

space is presented. Typically, it consists of four parts, as 

follows. 

 

3.1. Representation of input random variables 
In this step, the uncertainty sources are expressed in 

terms of the standard random variables (SRVs) ξ, e.g., 

Gaussian, Beta, Uniform, etc. The SRVs are statistically 

independent. However, the random variables modeling the 

uncertainties in the physical system, X = [X1, …, Xn]T might 

be correlated. To address the correlation issue, the copula 

theory [35] is employed in this paper. 

According to Sklar’s theorem, the joint distribution of 

X can be expressed as: 

 
1 1

( ) ( ( ), , ( ))
n n

F Cp F x F x=
X

x   (12) 

where FX is the joint cumulative distribution function (CDF) 

of X, Fi is the marginal CDF of Xi, and Cp denotes the copula 

function. 

Then, the correlated random variables are modeled by: 

iv. Determining the marginal distributions for each and 

every random variable Xi 

v. Selecting a suitable copula function to represent the 

dependence structure of multiple random variables 

X 

vi. Expressing X in terms of SRVs ξ with the principle 

of equal probability 

Consequently, the invertible transformation between 

X and ξ is established and denoted as ξ = T(X). 

 

3.2. Low-rank Approximation with Polynomial 
Basis 

For a computation model in the stochastic space, its 

output response Y can be approximately represented by a sum 

of rank-one functions: 

 
1

( ) ( )
r

l l

l

Y M b w
=

= ξ ξ   (13) 

where scalars bl, l = 1, …, r, are normalising factors, and wl 

is the l-th rank-one function of ξ in the form of: 

 ( )

1

( ) ( )
n

i

l l i

i

w v ξ
=

=ξ   (14) 

where vl
 (i) denotes the i-th dimensional univariate function in 

the l-th rank-one function. 

The right-hand side of (13) constitutes a canonical 

rank-r decomposition of the original model which might not 

be unique. It is usually of interest to find a decomposition 

consisting of a small number of terms that approximates the 

output response with sufficient accuracy, which is known as 

the canonical LRA. 
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The LRA expressed by (13) is further realised by 

expanding vl
 (i) onto an orthogonal polynomial basis: 

 ( ) ( )

,

1 01

ˆ ( ) [ ( ( ))]
ipnr

i i

r l k l k i

l ki

Y M b z  
= ==

 = ξ   (15) 

where ϕk
 (i), k = 0, …, pi, denotes the k-th degree univariate 

polynomial of the i-th input random variable ξi, and zk,l
 (i)is the 

expansion coefficient of ϕk
 (i) in the l-th rank-one function wl. 

The univariate polynomials ϕk
(i) are selected according 

to the marginal probability distribution of ξi, for example, 

Hermite polynomials for a Gaussian distribution, Legendre 

polynomials for a uniform distribution, and Jacobi 

polynomials for a Beta distribution [36]. 

 

3.3. Estimation of Model Constants 
When the approximation model has been built in the 

form of (15), the undetermined constants, including the 

normalizing factors {b1, …, br} and the polynomial 

coefficients { zk,l
(i) | i = 1, …, n, k = 0, …, pi, l = 1, …, r}, are 

solved as following. 

Firstly, a set of SRV samples ξed = {ξ(1), …, ξ(Ned)}, 

termed as the experimental design (ED), are randomly 

generated based on the joint probability distribution of X, and 

the corresponding responses yed = {y(1), …, y(Ned)} are 

evaluated by the original model, i.e., y(i) = M(ξ(i)), i = 1, …, 

Ned. 

Then, a sequence of pairs of correction-updating 

operators is performed, so that the approximation model with 

the solved normalising factors and polynomial coefficients is 

accurate enough to represent the original model concerning 

the ED samples. Specifically: 

1) In the t-th correction step, a new rank-one function 

wt is formed and added into the approximation model to 

minimize the residue of Y at the (t−1)-th step: 
ed

( ) ( ) ( ) 2

1

1

ˆ( ) arg  min  [ ( ) ( )]
N

m m m

t t
w W

m

w y M w
−


=

= − −X ξ ξ   (16) 

2) In the t-th updating step, the existing normalizing 

factors b = [b1, …, bt] are determined by solving the 

minimization problem below: 

 
ed

( ) ( ) 2

1 1

arg  min  [ ( )]
r

N t
m m

l l

m l

y w


= =

= − b ξ
 R

  (17) 

The details of the solution process above are discussed 

in the literature [32] and omitted in this paper. However, it is 

worth mentioning here that LRA has two attractive features: 

i. The unknown constants to be estimated grow 

linearly with the dimension n of input random 

variables, i.e., r normalizing factors and r∙Σn 

i=1(pi+1) polynomial coefficients; 

ii. Only a series of small-size least-square regressions 

are involved in estimating the unknown constants in 

the sequential correction-updating scheme. 

 

3.4. Discussion 
So far, the LRA model is constructed based on the 

given parameters, i.e., rank r, polynomial degree pi and ED 

size Ned. The criteria for selection of the optimal parameters 

is not yet well established. In the existing literature, one 

solution is to specify a candidate set of parameters firstly, e.g., 

{1, 2, 3, 4, 5} for r and {2, 3, 4, 5} for pi. Then, the parameter 

selection is performed by progressively increasing the 

parameter and applying the error-based measure to select the 

best one [31].  The ED set is deemed insufficient if the final 

error measure is greater than a prescribed threshold, and 

should be enriched for a new investigation. It has been 

illustrated that the LRA with improper parameters would not 

predict the model response correctly [32], and therefore, leads 

to the invalid results. Although it seems setting r = 1or 2, and 

pi = 2 or 3, would be an appropriate choice for engineering 

applications, the optimal parameter selection is still an open 

question that calls for further investigations.  

4. Probabilistic ATC Assessment Based on LRA 

In this section, a probabilistic ATC method is 

developed by introducing LRA into the assessment scheme. 

The whole procedure has three stages as shown in Fig. 2.  

 

Wind power

model

Load demand

 model

Transmission line 

availability

Base case for transmission network 

(network configuration, generation 

dispatch, load increasing direction,  )

Contingency set

For case-m in the case list

Sampling for wind 

power and load demand

j = 1

Evaluate ATC 

for sample j

j = j + 1

Maximum j?

Get ATC statistics and 

distributions for case-i

All cases 

finished?
m = m + 1

Global sensitivity 

analysis for ATC
Yes

NoYes

No

Preparation Stage 

Post-processing Stage

Calculation Stage  
Fig. 2. Proposed probabilistic ATC assessment procedure 

 

4.1. Preparation Stage 
In the preparation stage, the uncertainties existing in 

system operation are modeled as random variables according 

to the historical or forecasted data available. There are two 

kinds of uncertainty sources considered in this paper. 

The first category is the uncertainty of wind power or 

load demand which can be modeled as a continuous variable. 

While it is common practice to express uncertain customer 

behaviour, i.e., load increase rate/direction bD in this study, as 

a Gaussian random variable, wind power uncertainty can be 

modeled in two ways. One is to first represent the wind speed 

v with a probability distribution like a Weibull distribution; 

then, active wind generation PW is calculated by the energy 

conversion curve, i.e., PW = PW(v). The other is to represent 

wind generation as a summation of its forecast value PW,f and 

the corresponding forecast error εW, i.e., PW = PW,f + εW, in 

which εW is subjected to a conditional probability distribution 

on PW,f and modeled as a Beta random variable or other 

suitable types. 

The second category is the status or availability of 

transmission lines. The random line outage would cause a 

contingency that impacts ATC. Therefore, a set of 

contingency cases should be considered apart from the base 

case to ensure that the system can withstand the effects of the 

most restrictive line outage. In this paper, the contingency list 

is made by state enumeration until a termination rule, e.g., 

minimum contingency probability or maximum contingency 
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number. The probabilities of the base case C0 and the 

contingency Ck are calculated as: 

 
0

Pr( ) (1 ( )) ( )

Pr( ) 1 Pr( )
k

k

ij ij

k

C

C ij ij

C C

 
 



 = − 



= −


 


a uaL L

CL

  (18) 

where γ(ij) is the outage rate of transmission line ij, La and 

Lua are the collections of available lines and unavailable lines, 

respectively, and CL is the contingency set. 

Contingencies concerning generator outages can be 

handled in a similar way. However, generator outage might 

cause the redispatch of generations and loads. As a result, the 

base case condition for the ATC will be changed. 

According to the forecasted wind generations, load 

demands and facility status, a base case is defined based on 

the projected parameters concerning system configuration, 

generation dispatch, base scheduled transfers, etc. The load 

increase pattern and contingency are also specified for the 

next stage. 

 

4.2. Calculation Stage 
In the calculation stage, ATC is evaluated using the 

OPF model (3)~(11) for the base case at first. Then, the 

influence of uncertainties is addressed. For the base case and 

each contingency, wind generation PW and load increment 

rate bD are regarded as the input random variables, i.e., X = 

[PW; bD], of the OPF model whose LRA representation is 

constructed with a small number of model simulations. And 

then, the LRA is employed as the surrogate model to generate 

abundant ATC samples. The procedure is shown below. 

 

Procedure of probabilistic ATC with LRA 

For the base case and each contingency: 

1. Generate the ED samples (ξed, yed): 

a. Generate Ned samples in the SRV space: ξed = {ξ(1), …, 

ξ(Ned)}; 

b. Transform ξ to X with the copula: xed = T−1(ξed); 

c. Evaluate the ATC responses through the OPF model: 

yed = {y(1), …, y(Ned) }, y(j) = M(T−1(ξ(j))) = M(x(j)); 

2. Build the LRA representation of the OPF model using 

(ξed, yed); 

3. Sample ξ extensively, e.g., Nsp (>> Ned) samples, then 

employ the LRA as the surrogate model to evaluate the 

ATC response for all these samples. 

After traversing the case list: 

4. Store the LRA model and the ATC samples for all cases. 

 

In the LRA-based method above, the OPF model is 

simulated (1+k)∙Ned times, where k is the size of the 

contingency set. If the same amount of ATC samples is 

generated, saying (1+k)∙Nsp, the total number of OPF 

executions Nsim would equate the (1+k)∙Nsp in the MCS-based 

method. There are two reasons why it can significantly reduce 

the computation effort: (i) the number of OPF model 

simulations is reduced since Ned is far less than Nsp; (ii) it 

takes negligible time to evaluate the ATC response through 

the surrogate model since only linear algebraic operations are 

involved. 

 

4.3. Post-Processing Stage 

In the post-processing stage, the probabilistic ATC are 

characterised. According to the law of total probability, the 

probability density function (PDF) of ATC is expressed as: 

 
0

( ) ( ) Pr( )
k

m m

m

pdf ATC C
=

=  y   (19) 

where ym is the ATC samples for the m-th case, and ρ(ym) 

denotes the conditional density function of ATC fitted with 

ym. 

The statistical moments, e.g., mean μATC and variance 

σ2
ATC, of ATC are calculated as: 

 
ATC

0

E( ) Pr( )
k

m m

m

C
=

=  y   (20) 

 2 2 2

ATC ATC

0

E( ) Pr( ) ( )
k

m m

m

C 
=

=  − y   (21) 

where E denotes the expectation of samples. 

The probabilistic ATC calculation provides a range of 

ATC values with their probabilities instead of a deterministic 

value. Therefore, the probability-based or risk-based indices 

can be extracted and help system operators decide a proper 

ATC level [37]. For example, the TRM can be evaluated as: 

 
0

( )TRM ATC invcdf = −   (22) 

where ATC0 is calculated when the input random variables are 

set at the predicted values, invcdf denotes the inverse CDF of 

ATC, and γ is a percentile of the CDF specifying the risk level. 

Furthermore, variance-based GSA makes up the 

second part of the post-processing stage. Its purpose is to 

quantify the importance of each random input on ATC 

variability, so that the most influential uncertainty sources are 

identified. For each case Cm, m = 0, …, k, the GSI is defined 

by decomposing the variance of ATC into fractions which can 

be attributed to inputs or sets of inputs: 

 

~

.

2 2

2 2

Var [E ( | )]

Var( )

E [(E( )| ) ] (E( ))
     

E( ) (E( ))

i i

i

X m i

m i

m

X m i m

m m

Y X
S

Y

Y X Y

Y Y

=

−
=

−

X

  (23) 

where Var denotes the sample variance, Sm.i denotes the GSI 

of the i-th input random variable Xi in the m-th case, Ym is the 

ATC response, and X~i is the sub-vector consisting of the 

variables in X except Xi. 

The expression (23) can be estimated in a numerical 

way, with the stored LRA model [38], specifically: 
gsa

gsa

gsa

( )

1gsa

2 ( ) 2

1gsa

2 ( ) ( ) ( )

~

1gsa

1 ˆE( ) ( )
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j
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j

m r

j
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j j j

X m i r r i i

j

Y M
N

Y M
N

Y X M M x
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x

x

x x

  (24) 

where x = {x(1), …, x(Ngsa)} is sampled according to the joint 

PDF of X, and gsa( )(1)

~ ~ ~
{ ,  ..., }

N

i i i
  =x x x  is sampled according 

to the conditional PDF of X~i, when Xi = xi. 

Subsequently, Sm,i,  m = 0, …, k, are weighted to give 

the final sensitivity measure for the i-th input Xi: 

 
.2

1 ATC

Pr( )Var( )k

m m

i m i

m

C
S S

=

 
=  

 


y
  (25) 

The random inputs possessing larger weighted GSI 

values are supposed to have significant contributions to the 
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variability of ATC. Moreover, the sample size required in the 

numerical expression (24) is Ngsa∙(2n+2) for all n input 

variables in each case. Since the ATC responses are evaluated 

by the LRA surrogate model, instead of solving the nonlinear 

OPF problem, the GSIs can be calculated in a shorter time 

than conventional methods. 

5. Case Study 

Numerical tests were carried out on a modified IEEE 

118-bus system, whose basic parameters are available from 

the data files in ref. [39]. All tests were implemented in 

MATLAB on a PC with a 1.99-GHz Intel Core i7 and 16GB 

of RAM. The UQLab toolbox [40] was adopted for the 

construction of LRA and PCE. 

The system is divided into two areas, as shown in Fig. 

3, where Area-1 and Area-2 are the source area and sink area, 

respectively. 

 

Area-2

33 37

34 37

35 37

30 38

34 43

24 70

71 70

Area-1

 
Fig. 3. Decomposition of IEEE 118-bus system 

 

Twenty wind farms (WFs) of 100 MW each are 

connected to the network and replace conventional generators. 

These WFs are grouped into three sets, i.e., {1, 15, 18, 19, 32, 

36}, {42, 46, 55, 56, 62}, and {70, 74, 76, 85, 91, 92, 104, 

105, 110}. The normalised active wind generation is assumed 

to follow a Beta distribution. The associated parameters are α 

= 1.28, β = 2.97 for the first group, α = 2.63, β = 2.63 for the 

second group, and α = 3.78, β = 1.62 for the third group. In 

this paper, these parameters are selected according to ref. [41]. 

Moreover, the power outputs of WFs in the same group are 

supposed to be dependent and described by the Gaussian 

copula with a correlation coefficient of 0.5. 

Besides wind power, the load increase rates are 

modeled as normally distributed variables. The mean value of 

normal variables is the active load demand in the base case, 

and the standard deviation is defined as 5% of the 

corresponding mean. The load increase rates are independent 

of each other. 

Two test scenarios are designed as below: 

Scenario S1: Only active wind generation is 

considered as random variables. The total number of random 

inputs is 20. This case is designed to study the impacts of 

wind power uncertainty on transmission ATC. 

Scenario S2: Besides the WF outputs, the increase 

rates of loads with active powers greater than 10 MW are also 

assumed as random variables. The total number of random 

inputs is 110. This case is designed to test the capability of 

the proposed method in tackling high-dimensional problems. 

 

5.1. ATC Assessment Without Considering 
Contingencies 

In this study, only the uncertainties of load and wind 

powers are considered in the probabilistic ATC evaluation. In 

the proposed method, the LRA representation has been 

constructed with rank r = 1 and polynomial degree pi = 2. In 

order to assess the LRA performance as a surrogate model, 

the relative generalisation error measure of model responses 

is calculated for the samples in the validation set: 

 
vld

( ) ( ) 2

1vld

1
[ ( ) ] / Var( )

N

i i

G sm om om

i

err atc atc
N =

= − atc   (26) 

where atcsm and atcom are the ATC responses evaluated by the 

surrogate model and the original model, respectively. Nvld is 

the size of the validation set, set as 1 × 104 in this study. 

The LRA representations are built up separately under 

a range of ED sizes, varying from 1n to 10n where n is the 

number of input random variables. Because ED is generated 

randomly by simple random sampling (SRS), 100 trials of 

independent tests are conducted under each ED size. The 

maximum errG and the average errG curves versus the ED size 

Ned are plotted in Fig. 4. 
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Fig. 4. Error curves of the surrogate model in evaluating 

output response 

 

As indicated by the error curves, both the accuracy and 

robustness of LRA in evaluating ATC are improved with an 

increased ED size. However, further enrichment of ED 

samples contributes little to improve the performance of LRA 

above Ned = 5n. Therefore, the LRA representations 

constructed with 100 ED samples for scenario S1 and 550 for 

scenario S2 are regarded as the effective surrogate models 

and adopted for the following probabilistic ATC evaluations. 

Furthermore, the influence of parameters selected on 

the LRA performance is discussed. Under ED size Ned = 5n, 

the errG indexes of model built with different combinations 

of rank r and polynomial degree pi are presented in Table 2.  

The increased rank or polynomial degree leads to more terms 

added into the LRA model, which would require enriched ED 

set to determine those unknown constants in subsequence. 

According to the results in the table, the combination of r = 1 

and pi = 2 produces a better surrogate model.   

 

Table 2 Influence of parameters selected on surrogate model 
  pi = 1 pi = 2 pi = 3 

S1 
r = 1 2.00 × 10-2 1.54 × 10-2 1.92 × 10-2 

r = 2 8.71 × 10-2 6.48 × 10-2 3.61 × 101 

S2 
r = 1 4.65 × 10-2 4.10 × 10-2 7.09 × 10-2 

r = 2 2.41 × 101 1.65 × 101 3.57 × 102 

 

1) Statistical and Probabilistic Results of ATC: The 

MCS-based probabilistic ATC results serve as the benchmark 

for assessing the accuracy of the proposed method in 

estimating statistics and probabilities of ATC. In MCS, 5000 

times of the OPF-based simulations are conducted so that its 

result is converged. The statistical results of ATC provided 
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by LRA and MCS are listed in Table 3. The compared indices 

include the mean value μ, the standard deviation σ, and the 

inverse CDF value invcdfγ at cumulative probability γ.  

 

Table 3 ATC statistics evaluated by two compared method 

 method μ / MW σ / MW 
invcdf0.1 
/ MW 

invcdf0.5 
/ MW 

invcdf0.9 
/ MW 

S1 
MCS 737.67 82.08 637.83 728.46 852.24 

LRA 737.78 81.28 634.05 728.78 853.51 

S2 
MCS 607.14 47.33 547.64 605.85 669.29 

LRA 607.00 47.17 546.55 605.85 668.80 

 

The results in the table above reveals that LRA with 

the effective surrogate model can give similar ATC statistics 

to those of MCS. This can attribute to that the surrogate model 

is statistically equivalent to the OPF model in estimating ATC. 

Even though the accuracy of LRA is proved.  

The efficiency of the probabilistic ATC evaluation has 

been also evaluated and Table 4 presents the computation 

time cost by the proposed method. The total time cost ttotal is 

divided into three parts, where torg is consumed by evaluating 

actual ATC with the OPF model, tlra is the cost by solving 

LRA constants, and tsrg is the time spent in assessing ATC by 

the surrogate model. In comparison, the MCS consumes more 

than 910 s to finish the whole simulation procedure in both 

scenarios. 

 

Table 4 Time cost of LRA for the probabilistic ATC  

 Ned ttotal / s torg / s tlra / s tsrg / s 

S1 100 18.82 18.27 0.37 0.18 

S2 550 101.51 100.49 0.80 0.22 

 

As shown in Tab. 2, the time cost of LRA is only about 

2% and 11% of MCS. The calculation time is reduced 

because the surrogate model is more efficient than the OPF 

model in yielding a large quantity of ATC outputs. 

Specifically, in scenario S1, it takes around 913.39 s through 

the OPF model and 0.18 s through the surrogate model for 

5000 ATC simulations. Moreover, it also founds that the 

majority of the computational time is taken by torg. Therefore, 

although it can improve the accuracy of the surrogate model 

partly by enriching the ED as shown in Fig. 3, more time cost 

for the probabilistic ATC evaluation is also expected. 

2) Global Sensitivity Analysis of ATC: Taking 

scenario S1 as an example, sensitivity analysis is performed 

in the post-processing stage. With expressions (23) and (24), 

it needs 1.1 × 104 ATC responses evaluated for 20 random 

inputs for the base case when setting Ngsa = 500. Two methods 

are compared here: (i) PM represents that ATC is assessed by 

the effective surrogate, and (ii) CM represents that ATC is 

evaluated by solving OPF. The absolute difference between 

the GSI values calculated in two ways is visualized in Fig. 5, 

which verifies that LRA is capable of estimating the right 

indices. Besides that, PM and CM cost 0.4 s and 33 min to 

finish the analysis, respectively. The advantage in efficiency 

highlights that LRA is a better choice for performing GSA. 
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Fig. 5. Absolute difference of GSI values calculated in two 

ways 

 

The GSA results reveal that six WFs in the first group 

are significantly important and dominate the ATC variability. 

The index values of other WFs are close to zero. It can be 

justified by looking at the OPF solution showing that the 

thermal limits of lines 5–8, 23–32 and 30–38 prevent further 

growth of the power exchange between areas. The important 

WFs identified are close to these critical paths, and their 

generation variation would have a more significant influence 

on the fluctuation of power carried by the critical lines, as 

well as the ATC variability. 

Furthermore, the effects of correlation are also 

investigated, with wind generation supposed to be either 

dependent (S1-dpt) or independent (S1-idpt), respectively. 

Table 5 presents the GSIs for the influential WFs. In the 

independent case, even though the WFs are under the same 

marginal distribution, their levels of importance can differ 

from each other, as suggested by the distinct GSI values. 

However, once the correlated wind power is taken into 

account, it seems all these WFs have similar impacts on ATC 

variance. 

 

Table 5 GSA results under different input conditions 
 WF1 WF15 WF18 WF19 WF32 WF36 

S1-dpt 0.606 0.579 0.612 0.609 0.582 0.470 

S1-idpt 0.304 0.148 0.149 0.124 0.223 0.003 

 

3) Comparison with the PCE-Based Method: The 

second-order sparse PCE is built up by least-angle regression 

[15] and used as the compared surrogate model. The study is 

conducted for scenario S2. For the same ED set, the errG 

measures are evaluated for LRA and PCE, respectively. As 

shown in Fig. 6, LRA can achieve better accuracy when the 

ED size is relatively small, e.g., Ned < 12n here. However, the 

error of PCE decreases faster and would beat LRA when the 

ED size is large enough. The other attractive feature of LRA 

is that the time consumed for constructing the surrogate 

model remains approximately invariant as the ED size 

increases. In contrast, it takes much more time for PCE when 

the ED size is large. This is attributed to PCE involving the 

solution of a large-scale regression problem with the sparse 

technique, while a series of small-size regression problems 

are addressed by LRA when building up the surrogate model. 
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Fig. 6. Accuracy and efficiency comparisons between LRA 

and PCE 

 

4) Comparison with the PEM-Based Method: With a 

classical PEM scheme, the total rounds of deterministic ATC 

simulations are 41 for scenario S1 and 221 for scenario S2, 

which are less than LRA and MCS. It demonstrates the merit 

of efficiency of PEM as a small-sample method. Taking 

scenario S2 as an example, the mean and standard deviation 

of ATC assessed by PEM are 607.10 MW and 47.54 MW 

respectively, which indicates that PEM and LRA have similar 

accuracy levels for calculating statistics of ATC. However, 

the performance of PEM evaluating probability distributions 

depends on the series expansion combined [42]. In contrast, 

not only the statistics but also probability distributions of 

ATC can be accurately estimated by the proposed method 

without using any series expansion. The CDFs of ATC 

generated by Gram-Charlier series (PEM-GCS) and Cornish-

Fisher series (PEM-CFS), as well as MCS and LRA are 

plotted in Fig. 7. The CDF curves in the figure clearly 

demonstrate that LRA performs better than PEM in terms of 

probability distribution evaluations.  
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Fig. 7. CDFs of ATC assessed by different methods 

 

5.2. ATC Assessment Including Contingencies 
This study is conducted to validate the effectiveness 

of the proposed method in tackling contingencies and to 

investigate the effects of line outages on transfer capability. 

In scenario S1, eight contingencies are included in the ATC 

evaluation, i.e., the N-1 outage of lines 2–12, 11–13, 23–24, 

25–27, 17–30, 26–30, 38–37 and 38–65. The contingency is 

selected in this way to lead to a remarkable reduction in ATC. 

In order to exhibit the impacts clearly, the probability of each 

contingency is set as Pr(Ci) = 0.005, i = 1, …, 8. 

In MCS, the OPF model is simulated 5 × 104 times. In 

the proposed method, the LRA representations are 

constructed for the base case and eight contingency cases 

respectively. In each case, the OPF model is executed 900 

times. The time consumed by the proposed method is only 

about 2% of that by the MCS. Besides saving computation 

effort, the proposed method can also provide an accurate 

estimation for probability distribution curves and statistics of 

ATC, as shown in Fig. 8 and Table 6. 
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Fig. 8. PDFs of ATC assessed by two methods 

 

Table 6 ATC statistics evaluated by two compared method 
 

μ / MW σ / MW 
invcdf0.1 / 

MW 

invcdf0.5 / 

MW 

invcdf0.9 / 

MW 

MCS 728.34 95.63 625.57 725.61 850.18 

LRA 727.59 96.79 624.22 725.18 848.24 

 

And then, the GSIs for WFs are calculated for each 

case involved and then weighted to assess the WF importance. 

As shown by Table 7, both the values and rankings of the 

weighted GSI of a WF are different under each case. For 

example, WF1 is recognized as the most influential one when 

line 2–12 or 17–30 is out of service, and WF15 is more 

contributory to the ATC variation when line 11–13 is in the 

outage. 

 

Table 7 GSIs of WFs under the contingencies considered 

 WF1 WF15 WF18 WF19 WF32 WF36 

C0/BASE 0.606 0.579 0.612 0.609 0.582 0.470 

C1/2–12 0.986 0.289 0.376 0.342 0.308 0.346 

C2/11–13 0.412 0.797 0.586 0.658 0.370 0.418 

C3/23–24 0.613 0.564 0.664 0.578 0.567 0.485 

C4/25–27 0.460 0.455 0.555 0.479 0.806 0.484 

C5/17–30 0.729 0.565 0.611 0.584 0.499 0.470 

C6/26–30 0.622 0.547 0.667 0.592 0.593 0.478 

C7/38–37 0.587 0.606 0.654 0.564 0.539 0.565 

C8/38–65 0.551 0.519 0.645 0.569 0.549 0.575 

WEIGHTED 0.515 0.489 0.519 0.514 0.492 0.399 

 

According to the weighted indices, WF1, 15, 18, 19, 

32 and 36 are identified as the most significant uncertainty 

sources, while the other fourteen WFs are negligible as their 

GSIs are almost zero. This result can help to reduce the input 

random variables in the probabilistic ATC calculation. If only 

these six random variables are considered while setting the 

generation of the other fourteen WFs as constant at the 

forecast value, the probability distribution of ATC keeps 

almost unchanged, as illustrated in Fig. 9. This result 

confirms that the proposed weighted GSI is capable of 

identifying the most contributing variables. 

Finally, the probabilistic ATC calculation results are 

applied to decide a proper ATC level for the test system. If 

the uncertain factors are disregarded and fixed at their 

forecasted values, the ATC is evaluated as 746.89 MW. Then, 

the uncertainty of wind power is incorporated into the TRM, 
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that is equal to 129.91 MW using definition (22) at γ = 0.05. 

This margin is reserved as a countermeasure to the power 

variation of WF1, 15, 18, 19, 32 and 36, as discussed before 

and, consequently, ATC is reduced to 616.98 MW. 

Furthermore, if random line outages are also taken into 

consideration, the reserved TRM increases to 145.79 MW 

and ATC reduces 601.10 MW to ensure system security. 
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Fig. 9. PDFs of ATC under different random input 

conditions 

 

6. Conclusion 

This paper presents a novel probabilistic approach to 

evaluate ATC incorporating the uncertainties of load, wind 

power and transmission line failures. Numerical studies show 

that: 1) The proposed method can accurately and efficiently 

evaluate the probability distribution and statistics of ATC; 2) 

for high-dimensional problems LRA is better than either PCE 

or MCS, as it involves less computation effort while 

achieving comparable precision; 3) The weighted GSI 

provides a valid tool to identify the most influential random 

variables. The proposed method offers system operators a 

tool for deciding an appropriate ATC level for the 

transmission network.  
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