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Abstract. In this paper, we introduce price index insurances on agricultural goods. Seemingly similar to 

derivatives, there are significant differences between price index insurances and derivatives. First, unlike 

derivatives, there are no entrance barriers for purchasing insurances, making them the risk management tools that 

are accessible to almost all farmers. Second, since insurances are issued at a certain number for any individual 

farm, unlike futures for example, they cannot be used for speculation and are used solely for hedging price risk. 

Third, unlike forwards, they are heavily regulated and do not default and cause counterparty risk. Besides all 

differences (or benefits), such products have just recently been introduced in the agricultural insurance market. 

In this paper, we investigate if there could have been a financially viable market where these products are traded. 

More precisely, we investigate if an insurance company can design a portfolio of optimal contracts that gives 

higher Sharpe ratio than the financial market index prices (in our paper FTSE 100 and other three major indexes). 

To reach the papers objective we take three steps, by considering theoretical, practical and corporation 

standpoints. In the first step, we will see that how an optimal contract would look like from the demand side in a 

theoretical setup and we obtain the optimal contract from the farmers' standpoint. In the second step, by adopting 

a more practical approach, by meeting the Key Performance Indicators (KPI) requirements set by the market 

participants (both demand and supply side), we find the optimal policies specifications from the first step, in the 

market equilibrium. This step also helps to find some unobservable market parameters like volatility. Finally, by 

adopting a corporation standpoint4 we encounter our model to the UK farm index prices and find an optimal 

portfolio of the products on products from 10 commodities. We find out that investing in such a business is 

financially viable, as the optimal insurance portfolio produces a Sharpe ratio that outperforms FTSE 100 and 

other major market indexes. 
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1. Introduction 

There are two major risks in the agricultural industry: the production risk, and the risk of the prices. To manage these 

risks, there are three categories of agricultural insurances: first, crop insurances (Miranda, 1991), (Miranda and Glauber, 

1997), second, revenue insurances (Turvey and Amanor-Boadu, 1989), (Stokes, Nayda, and English, 1997), (Stokes, 

2000) and third, derivatives (Black, 1976), (Geman, 2014). While crop insurances are focused on damages to the harvest 

and low yields, revenue insurances guarantee a minimum income. On the other hand, derivatives, particularly futures, 

in the exchange markets and forwards in the OTC markets, manage the risk of prices.  

 

According to (Geman, 2014), the nature of commodity prices is more volatile and unstable than other financial prices.   

Managing the risk of prices is one of the farmers’ biggest problems (Huchet-Bourdon, 2011) that is also of high priority 

for governments and policymakers (Bellemare, 2015). It is even of greater concern due to volatility spill-over effect 

through the vertical supply chain and in different market channels; see (Buguk, Hudson, and Hanson, 2003) and (Apergis 
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and Rezitis 2003). However, the existing price risk management tools including futures and forwards are always with 

caveats which will be briefly explained below: 

 

• The entrance barriers in the derivative markets, such as large deposit requirements, technical trading skills, 

transaction costs, and regulations make the access to the commodity derivative markets almost impossible for small 

and medium-sized farms (SMF). According to Eurostat5, in 2013, there were 4.9 million physically very small (< 2 

hectares of the utilized agricultural area) and 4.5 million physically small (2-20 hectares) farms in the EU-28, 

accounting for almost 9 out of 10 (86.3 %) farms in the EU. 

• Since 1848, when the Chicago Board of Trade (CBOT) was formed, the futures’ perspective has evolved from the 

initial insurance contracts hedging against price risks to financial tools for arbitragers and portfolio managers; see, 

(Pennings, 2003) and (Johnson, 1960).  This is contrary to the fact that insurance contracts are risk management 

tools on insurable risks and not for speculation. 

• Forwards, that are traded over the counter between the two parties, are usually non-transferrable and under-regulated 

which carry counterparty default risk and therefore, necessitates valuation adjustment that proven to be difficult; 

see (Brigo, Chourdakis, and Bakkar, 2008) and (Brigo, Morini, and Pallavicini, 2013). 

 

In this paper we introduce insurance contracts on price indexes that distance the disadvantages of the futures and forward 

contracts and account for their advantages: first, with no entrance barrier they are accessible to ALL farmers, including 

SMFs; second, their prices cannot be driven by speculation as they are issued at a certain number for an individual farm; 

third, insurances are heavily regulated and there is a much smaller chance of counterparty risk comparing to forward 

contracts. Furthermore, since the insurances we introduce are on price indexes, they can benefit from the good properties 

of the index insurances relying on a trusted third-party public index. The major benefit of index-based risk management 

tools is to remove the risk of moral hazard, as the index is usually agreed based on reports by an independent party. It 

is worth mentioning that, agricultural risk management tools are either index-based (e.g., weather index, area yield 

index), or non-index-based (e.g., yield insurance); see (Jensen and Barrett, 2017) and (Mahul, 1999). It is worth 

mentioning that insurance on agricultural prices are very recently initiated on a very limited scale. For instance, in China 

recently these types of insurances are introduced in vegetable markets, Guan et al (2017). 

 

The main aim of this paper is to show if offering index price insurances on agricultural goods in a market can be 

financially a viable business.  

 

To achieve our goal, we have developed a framework which takes three steps from a fully theoretical to an approach 

that is used in a corporation. First, we need to see how an optimal contract looks like from the demand side, second, 

we find the optimal contract specification in the first step in the market equilibrium, and third, we use an approach that 

is adopted by a corporation to find the company’s optimal portfolio.  

 

Now let us explain the steps in slightly more details. Following the steps that we have mentioned above, first, by 

considering a risk-averse farmer who measures her risk according to a given risk measure, we find the optimal insurance 

contract on price indexes that minimizes the global loss risk. We find that a two-layer insurance policy (specifically put 

and call spreads on price indexes) solves the optimal insurance problem and we will find how the policy specifications 

vary with market and farmer-specific parameters. Even though we solve the demand-side problem and find the optimal 

policies, we need to understand what the appealing (or optimal) contracts that can yield highly enough benefit to the 

insurance companies would look like. Therefore, in the second step we consider two ends of an insurance market: the 

demand-side and the supply-side and find the specification of the optimal contract from the first step in market 

equilibrium. However, since the model contains lots of unobservable parameters, it is practically impossible to find the 

optimal contracts unless we also find these parameters as an outcome of the market equilibrium. Therefore, in the second 

step by adopting a more practical approach we find the optimal contracts, their prices and the (unobservable) parameters 

in the market equilibrium. More specifically, we consider the same form of the contracts we found earlier in step one 

(two-layer policies) and find the optimal layers, by tuning the model prices and parameters in such a way that the 

demand-side’s and the supply-side’s Key Performance Indicators (KPI) meet specific requirements. From the economic 

perspective, we consider a partial equilibrium problem where the market participants are rationalized based on their 

KPIs. On the other hand, however, there are only specific insurance contracts that can be offered in the market and we 

only can focus our attention to those contracts and create a portfolio from them. Given that, the major challenge then 

becomes to find the price of those contracts, which can be found within reaching market equilibrium and also parameters 

that are found in the second step. Due to the business reality that implies further restrictions on contract and portfolio 
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design, in the third step, we found that based on 10 UK agriculture product index prices, forming a market that trades 

such two-layer policies is financially viable for investment. We observe that the optimal insurance portfolio has higher 

Sharpe ratio than the FTSE 100 index and other major market indexes. 

 

Figure 1 is a schematic view of the steps, and that how they are related to each other. 

 

Figure 1: A schematic view of the paper's steps toward reaching the main objective 

 

 

It is worth mentioning that from a technical point of view, we benefit different strands in the literature. First, we use the 

economics literature which uses models from financial engineering. As we will see that the structure of an optimal 

insurance contract can be regarded as the difference of options. Financial engineering is a commonly used approach to 

studying agricultural insurances in the literature; see, (Turvey and Amanor-Boadu, 1989), (Turvey, 1992), (Stokes, 

Nayda, and English, 1997), (Stokes, 2000), (Turvey and Stokes, 2008), (Turvey, 2010), (Turvey, Woodard and Liu, 

2014), (Assa, 2015) and (Assa, 2016). The second strand of the literature we consider is the literature on optimal 

insurance design; see for instance (Assa, 2015b) and (Zhuang, et al. 2016). Besides the literature of economic modelling 

in financial engineering and optimal insurance design, there is a very limited literature on price insurance, among which 

one can name Guan et al. (2017), McCarthy and Sun (2004), Ye et al. (2017) and Wang et al. (2018). Our paper has 

added to the literature by designing the optimal contract and investigating the fact that if a market of price index 

insurances can be financially viable. Notably, we do not consider any subsidizing intervention and solely look at the 

problem from farmers and corporations (insurance company) standpoint. From technical point of view, we also have 

introduced a new approach by combining the financial engineering and optimal contract design in an economic 

equilibrium framework.  

 

 

The rest of the paper is organized as follows. In section 2, the underlying models and premiums are defined. In section 

3, we consider the demand-side, find the form of the optimal contracts and discuss the sensitivity analysis. Section 4 

very briefly introduces the data set. Section 5 considers both the demand and supply-side and discusses how to 

practically set the strike prices and how to do the calibration by filtering out the contracts that do not meet the demand 

and supply KPIs requirement. Section 6, by adopting a corporation point of view, presents the empirical results and 

discusses that based on the UK data, an insurance market on index prices is absent in the UK. Section 7 includes 

conclusion and a critical reflection of the paper’s discussions. The proofs and a table of optimal portfolio weights are 

presented in the Appendix. 

 



 

 

2. Price Model 

In this section we briefly discuss what is the risk model, the loss variable, and how the contracts on loss 

variables can be priced. 

 

Following the Black model for commodity prices (Black, 1976), let us consider the price index process (𝐼𝑡) is 

following a geometric Brownian Motion process 

 

𝑑𝐼𝑡 = 𝜇𝐼𝑡𝑑𝑡 + 𝜎𝐼𝑡𝑑𝐵𝑡,   𝐼0 > 0. 
 

This process has an explicit form that can be expressed as follows: 

 

𝐼𝑡 = 𝐼0 exp((𝜇 −
1

2
𝜎2) 𝑡 + 𝜎𝐵𝑡). 

 (1) 

 

Here 𝜇 and 𝜎 are constant numbers for drift and volatility and 𝐵𝑡 is a standard Brownian motion. Let us 

consider a time horizon 𝑇, at which we want to introduce a loss variable and make an insurance contract to 

hedge against the risk of the losses. 

 

2.1. Risk model 

To be able to define the loss variable, we need to predict the future index value. It is important to note that the 

losses cannot include the seasonality as they are known to all parties. As a result, we always assume that the 

losses are based on the de-seasonalized indexes. The de-seasonalizing process will be done in the next parts 

when we employ a seasonal ARIMA (or SARIMA) model for the index price time series.  

 

Let us denote the predicted value by  𝐼𝑇. We just assume that  𝐼𝑇 is based on all available information by today, 

which is just a constant number. Based on the predicted value  𝐼𝑇, one can introduce two loss variables: one 

concerning the price falls 𝐿 = (𝐼𝑇 − 𝑒
−𝑟𝑇𝐼𝑇)+  and one concerning the price rise 𝐿 = (𝑒−𝑟𝑇𝐼𝑇 − 𝐼𝑇)+ where 

here (𝑥)+ = max{𝑥, 0}.  
 

Both losses above are important for a farmer since the first one can reduce the price risk of their product 

(outputs), and the second one can reduce the price risk of the inputs (like fuel and fertilizer price). Here we 

remark that all the results below are derived for losses due to price falls however, the same results can be 

derived for losses due to price rise. 

  

So, let us essentially use 𝐿 = (𝐼𝑇 − 𝑒
−𝑟𝑇𝐼𝑇)+. 

 

Proposition 1. The cumulative distribution function of the loss is given as follows  

𝐹𝐿(𝑥) =

{
 
 

 
 

0, 𝑥 < 0

𝑁(
(𝜇 − 𝑟 −

1
2𝜎

2) 𝑇 − log (
𝐼𝑇 − 𝑥
𝐼0

) 

𝜎√𝑇
) , 0 ≤ 𝑥 < 𝐼𝑇

1, 𝑥 ≥ 𝐼𝑇

 

Here, 𝑁 is the cumulative distribution function of a standard normal distribution. 

 



 

 

The graph of 𝐹𝐿(𝑥) is depicted in Figure 2. 

 

2.2. Premium 

Using the standard risk-neutral approach to pricing, we can price any contract 𝐻 = ℎ(𝐼𝑇) by solving the 

following PDE 

 

𝜕𝐷

𝜕𝑡
+ (𝜇 − 𝜆𝜎)𝑥

𝜕𝐷

𝜕𝑥
+
1

2
𝜎2𝑥2

𝜕2𝐷

𝜕𝑥2
− 𝑟𝐷 = 0, 

 

 𝐷(𝑇, 𝑥) = ℎ(𝑥), 
 
where, 𝐷 is the dynamic of the derivative with final condition 𝐷(𝑇, 𝑥) = 𝐻 = ℎ(𝑥) and 𝜆 is the market price 

of risk. By the Feynman-Kac theorem, we find the price as a solution to the PDE above 

 

𝑝𝑟𝑖𝑐𝑒 = 𝑒−𝑟𝑇𝐸(ℎ(𝑋𝑇)), 

 

where 

 

𝑑𝑋𝑡 = (𝜇 − 𝜆𝜎)𝑋𝑡𝑑𝑡 + 𝜎𝑋𝑡𝑑𝑊𝑡, 𝑋0 = 𝐼0, 0 ≤ 𝑡 ≤ 𝑇, 
 

for a standard Brownian motion 𝑊𝑡. Looking at the primary process for the index prices, 𝑑𝐼𝑡 = 𝜇𝐼𝑡𝑑𝑡 +
𝜎𝐼𝑡𝑑𝐵𝑡, we understand that by changing the variable 𝑊𝑡 = 𝐵𝑡 − (−𝜆𝜎𝑡) one can reach the process for 𝑋𝑡 from 

the dynamic of 𝐼𝑡. Based on Girsanov’s Theorem the necessary change of measure for this change of variable 

is done by 𝑍 = exp (−𝜆𝜎𝐵𝑇 −
1

2
𝜆2𝜎2𝑇), i.e., 

𝐸(ℎ(𝑋𝑇)) = 𝐸(𝑍ℎ(𝐼𝑇)). 

Since 𝐼𝑇 = 𝐼0 exp ((𝜇 −
1

2
𝜎2) 𝑇 + 𝜎𝐵𝑇), one can see that 𝐵𝑇 =

log(
𝐼𝑇
𝐼0
)−(𝜇−

1

2
𝜎2)𝑇

𝜎
. Putting this inside 𝑍 we get: 

 

𝑍 = exp (−𝜆𝜎𝐵𝑇 −
1

2
𝜆2𝜎2𝑇) = exp (−𝜆 (log (

𝐼𝑇
𝐼0
) − (𝜇 −

1

2
𝜎2) 𝑇) −

1

2
𝜆2𝜎2𝑇) 

= exp (−𝜆 log (
𝐼𝑇
𝐼0
)) exp (𝜆 (𝜇 −

1

2
𝜎2) 𝑇 −

1

2
𝜆2𝜎2𝑇) 

= exp (𝜆 (𝜇 −
1

2
𝜎2) 𝑇 −

1

2
𝜆2𝜎2𝑇)

⏟                    
Const

(
𝐼𝑇
𝐼0
)
−𝜆

= Const (
𝐼𝑇
𝐼0
)
−𝜆

 

 

Figure 2: Loss densities 



 

 

As a result, using the Radon-Nikodym derivative notation, we have moved from a probability 𝑄 to the physical 

probability 𝑃, i.e., 

 

𝑃𝑟𝑖𝑐𝑒 = 𝑒−𝑟𝑇𝐸𝑄(ℎ(𝐼𝑇)) = 𝑒
−𝑟𝑇𝐸 (

𝑑𝑄

𝑑𝑃
ℎ(𝐼𝑇)) 

 (2) 

where, 

𝑑𝑄

𝑑𝑃
= Const (

𝐼𝑇
𝐼0
)
−𝜆

, 
 (3) 

 (for more details see (Assa 2015c) and (Assa and Gospodinov, 2018)).  

 

Proposition 2. One can show that for any non-increasing function ℎ we have 

𝜋(ℎ(𝐼𝑇)) = 𝐸 (
𝑑𝑄

𝑑𝑃
ℎ(𝐼𝑇)) = ∫ VaR𝑡  (ℎ(𝐼𝑇))𝑑Γ(𝑡),

1

0

 
 (4) 

where Γ(𝑡) = 𝑁(𝑁−1(𝑡) − 𝜆𝜎√𝑇) and 𝑁 is the cumulative distribution function of a standard normal 

distribution. 

3. Theoretical approach: optimal insurance design 

In this section, we design the optimal contract from the demand-side (famer) point of view. We assume that 

the farmer is a risk averse agent that wants to minimize her global losses. It is important to note that since the 

market of index price insurances are incomplete, the optimal contracts and their prices are under the farmer 

risk behaviour influence. 

 

3.1. Risk and hedging assumptions 

Let us consider a risk measure to model the farmers’ risk behaviour. We assume that the farmers are risk-

averse, and their risk are measured by a distortion risk measure 𝜌 on the set of non-negative random variables 

defined as follows: 

 

Definition 1. A distortion risk measure is a mapping defined on the set of random variables that can be 

represented as follows  

𝜌(𝑋) = ∫ VaR𝑡(𝑋)𝑑Π(𝑡).
1

0

 

Here Π: [0,1] → [0,1] is a non-decreasing function so that Π(0) = 0 and Π(1) = 1.  

 

This family of risk measures covers very important examples, e.g., Value at Risk where Π(𝑡) = 1[𝛼,1] or 

Conditional Value at Risk where Π(𝑡) =
𝑡−𝛼

1−𝛼
1[𝛼,1]. 

 

After we fixed a risk measure, we study a hedging problem to minimize the risk of farmer’s losses. In this 

paper, we consider the contracts in the form of 𝑋 = 𝑘(𝐿), where 𝑘 is called the indemnity function and 𝑖(𝑥) =
𝑥 − 𝑘(𝑥) is called the retained loss function. Inspired by (Cong, Tan, and Weng 2012) and (Cong, Tan, and 

Weng 2014), to avoid ill-posed hedging, we impose some conditions on the insurance contracts. First, we 

assume zero loss needs no indemnity and no retained loss, i.e.,  𝑘(0) = 𝑖(0) = 0. Second, we assume that the 

indemnity is compatible with the loss increase; meaning that, larger losses need larger indemnity. This 

assumption implies that 𝑘 is a non-decreasing function. Third, we assume that the insurance company will not 

over-hedge the losses by assuming that 𝑖 is non-decreasing which can be justified since larger risk cannot 

imply smaller retained losses.  

 



 

 

Summarizing all the assumptions, we can list them as follows:  

 

1- Zero risk assumption: 𝑘(0) = 𝑖(0) = 0; 

 

2- Risk compatibility: 𝑥1 ≤ 𝑥2 ⇒ 𝑘(𝑥1) ≤ 𝑘(𝑥2); 
 

3- No over-hedging: 𝑥1 ≤ 𝑥2 ⇒ 𝑖(𝑥1) ≤ 𝑖(𝑥2). 
 

Remark 1. Even though price index does not generate risk of moral hazard, but it is worth mentioning that 

similar conditions are justified in the literature on actuarial mathematics dealing with the risk of moral hazard 

(e.g., see (Assa, 2015b) and (Zhuang, et al. 2016) and the references therein). 

 

The conditions above can be summarized in Assumption 1 below 

 

Assumption 1. We consider contracts 𝑋 = 𝑘(𝐿),  where 𝑘 belongs to the following set: 

 

𝐶 = {𝑘: 𝑅+ → 𝑅+|
𝑘(𝑥) and 𝑥 − 𝑘(𝑥)

 are nonnegative, non − decreasing
}. 

 

The following lemma can be found in (Assa 2015b). 

 

Lemma 1. For any 𝑘 ∈ 𝐶, the derivative of 𝑘 and 𝑖 exists a.s., and we have 0 ≤ 𝑘′, 𝑖′ ≤ 1 a.s. 

 

Remark 2. It is important to emphasize that the price index insurance is fundamentally different from a 

traditional indemnity-based insurance for which a Lipschitz condition, that is implied by Assumption 1, is 

almost always assumed, because of two reasons: First, loss in the problem setting is based on a “per unit” 

basis linking to the change of price index, but not the real total exposure that the insured have. Therefore, 

even if Assumption 1 holds and there is no over-hedging for buying one unit of this price index insurance, it 

could be still generally possible for the insured to over-hedge if purchasing multiple shares of insurance is 

possible6. Second, in the case that insurance relies on a trusted third-party public index and thus there is a 

minimum level of moral hazard, it may not be necessary to explicitly rule out over-hedging. 

3.2. Optimal contract 

The farmer’s global loss can be defined as the uncovered losses added up to the premium: 

 

𝐺𝑙𝑜𝑏𝑎𝑙 𝑙𝑜𝑠𝑠 = 𝐿 − 𝑋 + 𝛿𝜋(𝑋), 
 

for a risk-loading factor 𝛿 > 1. Since distortion risk measures are cash invariant (i.e., for any real number 𝑐, 
and random variable 𝑌, 𝜌(𝑌 + 𝑐) = 𝜌(𝑌) + 𝑐), the risk of the global loss is 

 

𝜌(𝐺𝑙𝑜𝑏𝑎𝑙 𝑙𝑜𝑠𝑠) = 𝜌(𝐿 − 𝑋) + 𝛿𝜋(𝑋). 
  

Now, we set an optimal insurance problem as follows: 

 

min
𝑘∈𝐶

𝜌(𝐿 − 𝑘(𝐿)) + 𝛿𝜋(𝑘(𝐿)). 

 

We use the following lemma to rewrite the problem above in terms of marginal indemnity functions, i.e., the 

derivative of 𝑘 (for a proof see (Assa, 2015b) or (Zhuang, et al. 2016)). 

 
6 In the real world though this cannot happen if we assume the insurance only covers the insurable risk. To clarify this, consider a farmer with limited number of 

livestock that only can buy insurances on a specific number proportional to the number of the animals.  



 

 

 

Lemma 2: Let 𝑓 be a non-decreasing real function, then for a distortion risk measure 𝜌 we have 𝜌(𝑓(𝑋)) =

∫ (1 − Π(𝐹𝑋(𝑡))) 𝑓
′(𝑡)𝑑𝑡

∞

0
, where 𝑓′ is the derivative of 𝑓. 

 

Note that 𝐿 = 𝐿(𝐼𝑇), where 𝐿(𝑥) = (𝐼0 − 𝑒
−𝑟𝑇𝑥)

+
 is a non-increasing function. So, for any function 𝑘 ∈ 𝐶 

we get that 𝑘(𝐿) = 𝑘 ∘ 𝐿 (𝐼𝑇) is also a non-increasing function and based on proposition 2 we have   

𝜋(𝑘(𝐿)) = 𝜋(𝑘 ∘ 𝐿 (𝐼𝑇)) = ∫ VaR𝑡 (𝑘 ∘ 𝐿 (𝐼𝑇))𝑑Γ(𝑡)
1

0

= ∫ VaR𝑡 (𝑘(𝐿))𝑑Γ(𝑡).
1

0

 

Now, based on lemma 2, our optimal problem can be re-written as follows 

 

min
0≤𝑘′≤1

∫ (𝛿 (1 − Γ(𝐹𝐿(𝑡))) − (1 − Π(𝐹𝐿(𝑡)))) 𝑘
′(𝑡)𝑑𝑡,

∞

0

 

 

Here, 𝑘′ is the derivative of 𝑘. Having this, and using lemma 1, the optimal solution is given by 𝑋 = 𝑘(𝐿), 
where 

 

𝑘′(𝑡) = {
1, 1 − Π(𝐹𝐿(𝑡)) > 𝛿 (1 − Γ(𝐹𝐿(𝑡)))

0, 1 − Π(𝐹𝐿(𝑡)) ≤ 𝛿 (1 − Γ(𝐹𝐿(𝑡)))
. 

 

The following assumption is very helpful to find optimal policies in the continuation, that holds true for many 

risk measures: 

 

Assumption 2. We assume that there are 𝑎, 𝑏 ∈ (0,1)so that 1 − Π(𝑥) > 𝛿(1 − Γ(𝑥)) on (𝑎, 𝑏) and 1 −

Π(𝑥) < 𝛿(1 − Γ(𝑥)) on (0, 𝑎) ∪ (𝑏, 1). 

 

With this assumption, the contract is a two-layer policy given as follows: 

 

𝑘(𝑥) = ∫ 𝑘′(𝑡)𝑑𝑡
𝑥

0

= ∫ 1{𝐹𝐿(𝑡)∈(𝑎,𝑏)}(𝑡)𝑑𝑡
𝑥

0

 

= ∫ 1𝑑𝑡
min{𝑢,𝑥}

max{𝑙,𝑥}

= {
0, 𝑥 < 𝑙

𝑥 − 𝑙, 𝑙 ≤ 𝑥 < 𝑢
𝑢 − 𝑙, 𝑥 ≥ 𝑢

, 

  

(5) 

where 𝑙 = VaR𝑎(𝐿) and 𝑢 = VaR𝑏(𝐿). 
 

Definition 2. A two-layer policy with lower and upper bounds l and u, respectively, is defined as 

 

𝑘(𝑥) = {
0, 𝑥 < 𝑙

𝑥 − 𝑙, 𝑙 ≤ 𝑥 < 𝑢
𝑢 − 𝑙, 𝑥 ≥ 𝑢

= (𝑥 − 𝑙)+ − (𝑥 − 𝑢)+  
  

 

 

The following proposition shows some popular risk measures have the property in Assumption 2.  

 

Proposition 3. Assumption 2 holds for 𝜌 = VaRα  and CVaR𝛼. For VaR, 𝑏 = 𝛼 and 𝑎 is the solution to 

𝛿(1 − Γ(𝑡)) = 1, which gives 

𝑎 = 𝑁 (𝑁−1 (1 +
1

𝛿
) + 𝜆𝜎√𝑇). 

 



 

 

For CVaR, 𝑎 is the same as in the case of VaR, and 𝑏 is the solution to the following equation 

 
1 − 𝑡

1 − 𝛼
= 𝛿(1 − Γ(𝑡)) = 𝛿 (1 − 𝑁(𝑁−1(𝑡) − 𝜆𝜎√𝑇)) = 𝛿 (𝑁 (𝜆𝜎√𝑇 − 𝑁−1(𝑡))). 

 

 

In Figure 3, we have shown how 𝑎, 𝑏 can be found for VaR and CVaR. 

 
Figure 3: Possible solutions for cases with VaR and CVaR. In this figure one can see the interval (𝑎, 𝑏) within which the 𝑥 ↦ 𝛿(1 − 𝛤(𝑥)) is 

below 𝑥 ↦ 1 − 𝛱(𝑥). 

 

 

The following proposition is important, and, for illustration purposes, one can see Figure 4. 

 

Proposition 4. If 𝐹𝐿(0) < 𝑎 then the contract is a two-layer policy with lower and upper bounds as  

𝑙 = 𝐼𝑇 − 𝐼0exp(𝜎√𝑇 ((𝜆 −
1

2
𝜎)√𝑇 − 𝑁−1(𝑎))), 

𝑢 = 𝐼𝑇 − 𝐼0exp (𝜎√𝑇 ((𝜆 −
1

2
𝜎)√𝑇 − 𝑁−1(𝑏))). 

 

 

 
Figure 4: Illustrations of proposition 4, where for simplicity we take 𝜇 − 𝑟 = 𝜆𝜎. This figure shows how the layers can be specified.  

 

Finally, we want to show that the policy introduced above is not only a two-layer policy on losses are put 

spreads on index prices. This way we can then use the financial engineering formalism to price the contracts.  

𝑙 

𝑢 



 

 

So, let us consider a two-layer policy 𝑘 (like above). The policy coverage is 𝑘(𝐿) where 𝐿 =

(𝐼𝑇 − 𝑒
−𝑟𝑇𝐼𝑇)+. So, if we denote 𝑓(𝑥) = (𝐼𝑇 − 𝑒

−𝑟𝑇𝑥)
+

, we have 𝑘(𝐿) = 𝑘 ∘ 𝑓(𝐼𝑇). But we can easily see 

that 

𝑘 ∘ 𝑓(𝑥) =

{
 

 
0, (𝐼𝑇 − 𝑒

−𝑟𝑇𝑥)
+
< 𝑙

(𝐼𝑇 − 𝑒
−𝑟𝑇𝑥)

+
− 𝑙, 𝑙 ≤ (𝐼𝑇 − 𝑒

−𝑟𝑇𝑥)
+
< 𝑢

𝑢 − 𝑙, (𝐼𝑇 − 𝑒
−𝑟𝑇𝑥)

+
≥ 𝑢

 

= {

0, 𝐼𝑇 − 𝑙 < 𝑒
−𝑟𝑇𝑥 

𝐼𝑇 − 𝑙 − 𝑒
−𝑟𝑇𝑥, 𝐼𝑇 − 𝑢 ≤ 𝑒

−𝑟𝑇𝑥 < 𝐼𝑇 − 𝑙

𝑢 − 𝑙, 𝑒−𝑟𝑇𝑥 ≤ 𝐼𝑇 − 𝑢

. 

That means a two-layer contract on losses is nothing but a put spread on price index with layers  𝑢̃ =
𝑒𝑟𝑇(𝐼𝑇 − 𝑙)  and  𝑙 = 𝑒𝑟𝑇(𝐼𝑇 − 𝑢); see Figure 5. Note how we have distinguished the layers of the two-layer 

policy 𝑙, 𝑢  from put-spread layers 𝑙, 𝑢̃. We also can consider call spreads for a client like a restaurant owner 

who is concerned with rise in prices as in Figure 6. 

 

 
Figure 5: Spreads payoffs (put spread) 

 
Figure 6: Spreads payoffs (call spread) 

Remark 3. While the optimality of the two-layer policies have been established for reinsurance contracts 

((e.g., see (Assa, 2015b) and (Zhuang, et al. 2016) and the references therein)), here our main challenge was 

to re-establish the result for our setup where we also show how the layers are tuned based on the market and 

non-market parameters, included in a general setup. As we will see in the next section, the relation between 

parameters and the layers perfectly make sense however, they are heavily non-linear and hard to be used in 

practice.  

 

It is important to note that with a similar machinery one can show that if the loss is given by 𝐿 =

(𝑒−𝑟𝑇𝐼𝑇 − 𝐼𝑇)+ then the resulting contract is a call spread on index prices. This is what we will use in our 

portfolio later in Section 6.  



 

 

3.3. Sensitivity analysis and model evaluation 

To better understand the impact of the parameters involved in designing and pricing the optimal insurance 

contracts, we present some sensitivity analysis based on the model we just provided.  

 

However, we can replace 𝜇 − 𝑟 with 𝜆𝜎 where 𝜆 is the market price of risk. Note that, by incorporating the 

market price of risk, we have: 

𝐹𝐿(𝑥) =

{
  
 

  
 

0, 𝑥 < 0

𝑁

(

 
 
(𝜆 −

1

2
𝜎)√𝑇 −

log (
𝐼𝑇 − 𝑥
𝐼0

) 

𝜎√𝑇

)

 
 
, 0 ≤ 𝑥 < 𝐼𝑇

1, 𝑥 ≥ 𝐼𝑇

 

  

 

  

The parameters we used are: 

 

• Start index price: 𝐼0 = 100.  
• Estimated index price at time 𝑇: 𝐼𝑇  = 100.  

• Underlying market volatility: 𝜎 = 0.1, 0.12, 0.14,… , 2.  
• VaR and CVaR criteria: 𝛼 = 99%.  

• Market price of risk factor: 𝜆 = 1.  
• Risk loading factor: 𝛿 = 1.01, 1.02,… , 1.99.  

• Risk-measures: VaR and CVaR. 

 

Note that, in all cases, we have found that, the parameters 𝜇 is irrelevant once we know 𝑟, 𝜆. Since in the 

sensitivity analysis we fix 𝜆, we really do not need to consider any value for 𝑟, 𝜇. We plot the upper and lower 

bounds for both VaR and CVaR risk measures with different volatilities. In Figure 7, one can see how the 

bounds are changing with respect to the growth of risks. There are three interesting observations. First, both 

the upper layer (𝑢) and the lower layer (𝑙) increase with respect to risks (i.e., 𝜎). This is due to the anticipated 

price movements in the future: the larger the volatility, the more price deviations can be expected from current 

prices later. Second, as we observed, the same trend of lower layers is observed for both measures. This is due 

to the value of 𝑎 in the calculation of 𝑢 in both scenarios. However, a slightly higher upper bound for the VaR 

compared to CVaR indicates that CVaR is capturing more risks than VaR - hence, the tight protection interval. 

The final point we notice is that, in our parameter ranges, the condition of 𝐹𝐿(0) < 𝑎 is always satisfied. The 

smaller values for 𝐹𝐿(0) proves that, when risks increase, more probabilities are allocated to larger risks from 

a cumulative distribution function point of view.  

 



 

 

 
Figure 7:  Sensitivity analysis for volatility with VaR and CVaR 

 

 
Figure 8: Sensitivity analysis for risk loading with CVaR 

 

Now, let us see what happens if an underwriter has a different risk-loading requirement. We know, for the 

same risk appetite, larger risk loadings indicate undertaking more risks under the same risk-exposure setting. 

Figure 8 demonstrates this phenomenon by changing 𝛿s from smaller to larger values. Note 𝐹𝐿(0) < 𝑎 still 

holds for all simulations. The lower optimal layer decreases as 𝛿 increases. This means taking more and more 

risks, so, the probabilities of claims happening in this range are getting greater. 

 

Lastly, we look at the contract length. Recall, we find the optimal layers by minimising global loss, and, for 

our policies' assumptions, the longer a policy lasts, the more risk exposure it endures. With 𝐹𝐿(0) < 𝑎 for all 

simulation ranges, we present the analysis for optimal bounds with respect to policy length in Figure 9. 

 

As expected, one can see the reducing of protection intervals as policy length increases from 1 year to 5 years. 

Interestingly, for longer contracts, the upper bound becomes lower than the low bound, which indicates the 

unavailability of the optimal solution due to unprecedented potential risk exposures in the long run.  



 

 

 
Figure 9: Sensitivity analysis for policy length with CVaR 

 

These analyses summarise the behaviour of our algorithms from the demand-side; it is now clear that the 

model behaves as anticipated, and the simulated results are consistent with the design purpose of the models.  

 

4. Data Sets 

In this paper, the underlying commodities are eight agricultural products index prices in addition to fertilizer and foul 

price. The monthly data set is from AHDB (Agriculture and Horticulture Development Board)7 database8. A summary 

of the data's characteristics is provided in the Table 1. 
 

Table 1: Data characteristics summary 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As one can see, for the average return (monthly return calculated average), all product prices are with up trends. This 

indicates that the underlying market is a good market for issuing stop-loss policies to hedge against price drop events. 

In Figure 10, we have illustrated 10 goods time series. There are few points we need to explain. First, some prices might 

look less volatile than the others. But due to different scales this is not always true; for instance, milk prices are much 

cheaper that other goods (around 20-30 pence per litter). Second, most of the commodities are seasonal, and can be 

realized while fitting a model. Third, the timeseries of many of the goods look highly correlated.  

 

 
7 https://ahdb.org.uk/ 
8 Available data points from the original data sets and with linear interpolations. 
 

Product Metric Data range 
Most recent 

Price 

Available 

points9 

Average 

return 

Feed Wheat £/tonne Jan2005-May2019 153.78 173 0.73% 

Feed Barley £/tonne Jan2005-May2019 126.44 173 0.58% 

Milling Wheat £/tonne Jan2005-May2019 174.75 170 0.51% 

OSR £/tonne Jan2005-May2019 319.4 173 0.60% 

Pig p/kg Jan2005-May2019 143.60 173 0.30% 

Milk p/litre Jan2005-Apr2019 28.22 172 0.40% 

Deadweight Cattle p/kg Jan2006-May2019 348.93 161 0.70% 

Lamb Deadweight 

SQQ 
p/kg Jan2006-May2019 469.08 161 0.22% 

AN Fertiliser £/tonne Jan2005-Apr019 263 172 0.53% 

Red Diesel p/litre Dec2005-May2019 65.99 162 0.45% 



 

 

 
Figure 10: Price time series 

5. Practical approach: optimal design in equilibrium 

As it is discussed, the layers  𝑙, 𝑢̃ are functions of the volatility 𝜎, initial index value  (𝐼0), market price of risk 

(𝜆), the risk loading factor (𝛿), risk aversion parameter (𝛼), forecast value (𝐼𝑇) and the maturity (𝑇). It is not 

clear though, if all of them are observable or if the market participants have homogeneous assessments of 

them. That is why finding an optimal contract can be impossible this way. However, the optimality of the two-

layer policies (put or call spreads) are now clear to us; therefore, we consider a set of put/call spread products 

and base our analysis on finding the optimal contracts and prices. On the other hand, solving the optimal 

problem happen not to work very well with the real data, as the number of our data cannot adequately fulfil 

the statistical standards. Therefore, we need to make clear that some simplifications have been considered 

which does not generally impact reaching our final goal which is to show a portfolio of the contracts can make 

better performance than FTSE 100 index and other major indexes. Let us briefly state step by step what we 

are going to do in the following: 

 

1- We use a seasonal ARIMA model to filter the seasonality and model the variation due to uncertainty.  

2- Finding the market price of risk happen to be impossible. Therefore, we will use Black-Scholes-Merton 

option pricing rule to price the contracts, where the volatility is found within reaching equilibrium. 

This in principle means we no longer need to consider the market price of risk. 

3- Considering the put or call spreads as the optimal policies (from the previous sections), we set an 

optimal problem where the demand (farmer) and supply (insurance) sides’ behaviour are rationalized 

based on their KPIs (Key Performance Indicators).  

5.1. Time series, de-seasonalizing and strike price 

In trading risk, the known part which is affected by seasons cannot be part of the deal. This help us to set 

layers that are adjusted to seasonality. So, first we need to understand how we model seasonality and then 

work with the de-seasonalized processes. Therefore, we use the Seasonal ARIMA time series model to 

forecast commodity prices at any given time.  

 



 

 

Definition 3. A Seasonal ARIMA (Auto-regressive integrated moving average) model -𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) ×
(𝑃, 𝐷, 𝑄)𝑆 - is given as 

 

𝛷(𝐵𝑆)𝜑(𝐵)(𝐼𝑡 − 𝜇) = 𝛩(𝐵
𝑆)𝜃(𝐵)𝑤𝑡 

 

where the non-seasonal components are the AR polynomials: 

 

 𝜑(𝐵) = 1 − 𝜑1  𝐵 − ⋯− 𝜑𝑝 𝐵
𝑝  

 

and the MA polynomials:  

 

𝜃(𝐵) = 1 + 𝜃1𝐵 +⋯+ 𝜃𝑞𝐵
𝑞 . 

 

The seasonal components are seasonal AR polynomials:  

 

𝛷(𝐵𝑆) = 1 − 𝛷1𝐵
𝑆 −⋯−𝛷𝑃𝐵

𝑃𝑆 

 

and seasonal MA polynomials:  

𝛩(𝐵𝑆) = 1 + 𝛩1𝐵
𝑆 +⋯+ 𝛩𝑄𝐵

𝑄𝑆.  

 

Here, 𝐼𝑡 is the underlying process, 𝐵 is the lag operator, 𝑤𝑡 ∼  𝑁(0,1) is the residual and 𝑝, 𝑑, 𝑞, 𝑃, 𝐷, 𝑄, 𝑆 ∈
{0,1,2,3, … }. 
 

We have used different ARIMA models to find the best fit. We used the (HQIC10+AIC11+BIC12) criterion 

model selection method criterion to find the best seasonal ARIMA model from 𝐴𝑅𝐼𝑀𝐴(𝑝, 1, 𝑞), 𝑝 ∈ {6, 3, 1},  
𝑞 ∈ {0,3} and for seasonal 𝑆𝐴𝑅𝐼𝑀𝐴(𝑃, 𝐷, 𝑄), 𝑃 ∈  {1,3}, 𝐷 ∈ {0,1}, 𝑄 ∈ {0,1}, and the seasonality parameter 

𝑆 ∈ {3,6,12} for 3, 6 and 12 months. Figure 11 shows a sample estimation results for Feed Wheat. 

 
Figure 11: Historical and forecasted price for Feed Wheat 

 

 

 

5.2. Policy pricing  

Consider the put spreads we obtained before. Note, our policy shares the same payoff as a spread. The policy 

can be re-written as: 𝑘(𝑥) = max(0, 𝑢̃ − 𝑥) −max(0, 𝑙 − 𝑥), for  𝑢̃ ≥   𝑙. Thus, under the Black-Scholes-

Merton framework, the policy price is: 

 
10 𝐻𝑄𝐼𝐶 = −2𝐿𝑚𝑎𝑥 + 2𝑘 log(log𝑛), where 𝐿𝑚𝑎𝑥 is the log-likelihood, 𝑘 is the number of estimated parameters, and 𝑛 is the number of observations. 
11 𝐴𝐼𝐶 = 2𝑘 − 2 log 𝐿𝑚𝑎𝑥, where 𝐿𝑚𝑎𝑥 is the log-likelihood, 𝑘 is the number of estimated parameters. 
12 𝐵𝐼𝐶 = 2 log𝑛 − 2 log 𝐿𝑚𝑎𝑥, where 𝐿𝑚𝑎𝑥 is the log-likelihood, 𝑘 is the number of estimated parameters, and 𝑛 is the number of observations. 



 

 

 

𝑃𝑟𝑖𝑐𝑒 = 𝑁(−𝑑2) 𝑢̃𝑒
−𝑟𝑇 − 𝑁(−𝑑1)𝐼𝑡 − 𝑁(−𝑑4) 𝑙𝑒

−𝑟𝑇 + 𝑁(−𝑑3)𝐼𝑡   (6) 

 

where  

 𝑑1 =
1

𝜎√𝑇
[ln (

𝐼𝑡
𝑢
) + (𝑟 +

𝜎2

2
)𝑇] , 𝑑2 = 𝑑1 − 𝜎√𝑇,

 𝑑3 =
1

𝜎√𝑇
[ln (

𝐼𝑡
𝑙
) + (𝑟 +

𝜎2

2
)𝑇] , 𝑎𝑛𝑑 𝑑4 = 𝑑3 − 𝜎√𝑇. 

 

Remark 4. Here, for simplicity we assumed that the market price of risk, 𝜆, is zero. This is a common 

assumption in the practice, while also has the advantage to avoid any discussion about seasonality in the 

model (not in the time series), as the drift has no role in pricing. This is also consistent with using de-

seasonalized time series.  

 

Note that for the call spreads, using the put-call parity they can also be written as difference of two put options 

plus or minus a number. Using this we can also price the call spreads form the formula above. 

5.3 Optimal contracts 

With the help of numerical methods, one can generate vast sets of potential option prices. However, we still 

do not know which one is optimal and has the correct price since we have not calibrated the parameters. We 

will find the optimal policy at the same time we do the calibration within reaching market equilibrium. This 

is done while we introduce a method that filters out the parameters that are not consistent with the market 

equilibrium and the market sides KPIs. 

 

The market equilibrium happens when demand and supply are equal at a fair price. To reach that, we assume 

that in the equilibrium demand and supply sides' Key Preferences Indicators, or KPIs, are kept at a satisfactory 

level, which makes prices acceptable for both sides. More specifically, to evaluate underwritten policies, 

insurers usually monitor loss ratio (LR) and return over investment (ROI). On the demand-side, clients or 

policyholders usually are very sensitive to premium rate (PR). The Sharpe ratio (SR) is used by both sides of 

the market to determine the quality of portfolios. We define the market KPIs for an insurance product as 

follows: 

 

• Loss ratio 

𝐿𝑅 =
𝐶𝑙𝑎𝑖𝑚𝑠

𝑃𝑟𝑒𝑚𝑖𝑢𝑚
, 

 

• Return over investment 

𝑅𝑂𝐼 =
𝑃𝑟𝑒𝑚𝑖𝑢𝑚 − 𝐶𝑙𝑎𝑖𝑚𝑠

𝑢 − 𝑙
, 

 

• Premium rate 

𝑃𝑅 =
𝑃𝑟𝑒𝑚𝑖𝑢𝑚

𝐶𝑜𝑚𝑚𝑜𝑑𝑖𝑡𝑦 𝑃𝑟𝑖𝑐𝑒
, 

 

• Sharpe ratio 

𝑆𝑅 =
 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝑒𝑡𝑒𝑟𝑛

𝑆𝑡𝑑
. 

𝑆𝑡𝑑 is the standard deviation over all time periods.  

 

 



 

 

While loss ratio indicates the frequency and size of the claims, return over investment measures the 

profitability of the policies. The premium rate indicates the fairness of policy prices and Sharpe ratios are 

usually used in a portfolio setting where a selection is needed among different underlying commodities. So, 

we assume that the market participant behaviour is rationalized according to their KPIs as follows: 

  

• From supply side stand point: loss ratio, on average not to be too large i.e., it is set smaller than 𝐿𝑅𝑈. 

• From supply side stand point: return over investment, on average not to be too small i.e., it is set larger 

than 𝑅𝑂𝐼𝐿 . 

• From demand side stand point: premium rate, on average not to be too large i.e., it is set smaller than 

𝑃𝑅𝑈. 

• From both demand and supply side stand point: both look for higher Sharpe ratio. 

 

𝐶𝑙𝑎𝑖𝑚𝑠 is the amount of money an insurer pays to a client at the end of the contract and can be calculated for 

the put spread as 𝐶𝑙𝑎𝑖𝑚𝑠 = max(0, 𝑢̃ − 𝐼𝑇) − max(0, 𝑙 − 𝐼𝑇). 𝑃𝑟𝑒𝑚𝑖𝑢𝑚 is the price of a contract that the 

insurer collects from a client, and its formula is provided by Equation (6). 𝐴𝑠𝑠𝑒𝑡 𝑃𝑟𝑖𝑐𝑒, 𝐼𝑡, is the price of 

underlying commodity at the issuing of the contract. 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑡𝑢𝑟𝑛 is the expectation of return of the 

insurance company asset which is the premium received minus the claims that should be paid out, over all 

time periods of the product: 

 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑡𝑢𝑟𝑛 = 𝐸(𝑃𝑟𝑒𝑚𝑖𝑢𝑚 − 𝐶𝑙𝑎𝑖𝑚𝑠). 
 

 

Remark 5. A few points warrant some explanations. First, what we mean by equilibrium is slightly different 

than what is known conventionally in the literature. In its usual way, equilibrium happens when the demand 

equals the supply, and that is verified after both the demand-side and supply-side optimization problems are 

solved separately; and eventually the demand and the supply curves are obtained. However, in this paper we 

solve both problems at the same time, in the same optimization problem, while balancing the KPIs, so to 

satisfy both parties. This way, it is not necessary to include a further equation given by demand equals supply. 

Second, it is worth comparing our way of finding the volatility and, in general, the way implied volatility is 

found. Finding implied volatility is a reverse problem, by setting the volatility at a value that can make the 

Black-Scholes-Merton (or simply Black) model correctly price the liquidly traded options. The value of 

implied volatility is regardless of the underlying commodity historical volatility, and it is fully based on the 

belief that the prices of options are achieved under the market equilibrium. In other words, the implied 

volatility is a result of the fact that the demand and supply agree on a final price and volatility; which the 

derivative would not be traded otherwise. In this paper we use a similar argument to find the volatility. We 

set the optimal problem and impose the market limitations rationalized based on demand and supply KPIs 

and find the volatility that can correctly price the optimal contract. Finally, it is important to note that the 

demand and supply-side rationality is based on the expectation of the KPIs. Indeed, they are not rationalized 

based on the risk neutral probability since otherwise we would have 𝐸∗(𝐿𝑅) =
𝐸∗(𝐶𝑙𝑎𝑖𝑚𝑠)

𝑃𝑟𝑒𝑚𝑖𝑢𝑚
=
𝑃𝑟𝑒𝑚𝑖𝑢𝑚

𝑃𝑟𝑒𝑚𝑖𝑢𝑚
= 1 and 

𝐸∗(𝑅𝑂𝐼) =
𝑃𝑟𝑒𝑚𝑖𝑢𝑚−𝐸∗(𝐶𝑙𝑎𝑖𝑚𝑠)

𝑢−𝑙
=
𝑃𝑟𝑒𝑚𝑖𝑢𝑚−𝑃𝑟𝑒𝑚𝑖𝑢𝑚

𝑢−𝑙
= 0, where 𝐸∗ is expectation with respect to risk neutral 

probability. 

 

If we denote a put spread contract by C(𝑙, 𝑢̃), where (𝑙, 𝑢̃) are the layers of the put spread, based on what we 

have discussed above, to put our argument in a sound mathematical and economic framework, we need to 

solve the following problem: 

 



 

 

  

{
 
 
 
 
 
 

 
 
 
 
 
 max {𝑆𝑅 (C ((𝑙, 𝑢̃))) }

 
subject to,

 
𝜎 ≥ 0 
0 ≤ 𝑙 ≤ 𝑢̃

0 ≤ 𝐸 (𝐿𝑅 (C(𝑙, 𝑢̃))) ≤ 𝐿𝑅𝑈

𝑅𝑂𝐼𝐿 ≤ 𝐸 (𝑅𝑂𝐼 (C(𝑙, 𝑢̃)))

0 ≤ 𝐸 (𝑃𝑅 (C(𝑙, 𝑢̃))) ≤ 𝑃𝑅𝑈

 

Finding an analytical solution to this problem turns out to be very challenging. So, we chose a different 

approach, by finding the optimal contract among a subset of the whole contracts (that practically make more 

sense). 

 

Just reminding that the volatility is taken as decision variable in this problem. In principle estimating the 

implied volatility for a market that does not exists or does not have any liquid asset is impossible. Therefore, 

as explained earlier, we find the volatility as an outcome of the market equilibrium. This is like what is done 

in asset pricing when the implied volatility is obtained. We will comment again on this in Section 7 and discuss 

possible alternatives.  

 

A similar objective can be set up for a call spread contract. 

6. A corporate approach: empirical results and the feasibility derivation 

 

In this section, by adopting a corporation perspective, we will apply the theory we have developed to the UK 

commodity index prices.  

 

We use fitted time series models to the de-seasonalize processes. At each time step, we forecast the values of 

𝐼𝑡 (de-seasonalized index value) for the same policy length and denote it by 𝐼𝑇. Then 𝐼𝑇 is adjusted by 𝐼𝑡 to 

give the strike price based on 𝑆𝑡 = min(𝐼𝑡, 𝐼𝑇). Even though this adjustment makes the contract look less 

attractive, but this is necessary to avoid the forecast result yielding price rises as the purpose of the policy is 

to protect price falls (and vice versa for call spreads). If higher-than-current market prices are taken as strike 

price bases, the underwriters' risks could be amplified by the forecast algorithms rather than reduced. 

However, this adjustment is not a major issue for us as the attractiveness of a contracts are precisely defined 

based on the KPIs. That means if the farmer’s KPI i.e., premium ratio, meets the requirements we assume 

there is enough demand for the product. 

 

After setting reasonable KPIs the pricing algorithm introduced previously is applied. For those contracts that 

can be priced, we calculated all their historical prices. The corresponding policy historical returns are 

calculated. These values are used in the portfolio return and volatility calculations. The random combinations 

of the policies are generated to create possible capital allocations. After finding the covariance matrix among 

all contracts, we calculate portfolio returns and variance, simulate the efficient frontier and find the greatest 

Sharpe ratio. We repeat the previous two steps multiple times and stop the algorithm under one of the two 

conditions: if the number of total simulations passes a specific value or if the Sharpe ratio stopped increasing 

for a relatively long simulation time (in our practice, we chose to let the simulations stop after running 108 

times). If from our simulations the Sharpe ratio is greater than other financial products, we determine that a 



 

 

portfolio of insurance policies is financially more attractive to investors when compared to other financial 

products. 

 

Before going on with the practical data work we must note that there are a few considerations and restrictions 

due to business reality that we need to apply13:  

 

1- The business necessitates that a minimum amount of each policy be offered. That is why in all our 

optimizations we must consider a lower bound for the value of the weight of any policy in the portfolio.  

2- In practice, a company offers products at different specific levels for  𝑙 and  𝑢̃, and not all the values.  

3- In finding the optimal portfolio we consider equal weights for all products on the same commodity.  

4- The lower layer is adjusted by today’s prices as discussed earlier.  

 

All the above business considerations can result in suboptimal, rather than optimal, solutions. But note that 

this will not affect the main goal of this section, that is to find a portfolio that outperforms FTSE 100 and other 

major financial indexes. As we will see below, we can find portfolios with relatively higher Sharpe ratio 

compared with all four major financial indexes we chose in this paper, which is good enough to motivate 

investors to invest in a price index insurance in our 10 commodities. 

 

In practice we follow the following algorithm and within a few steps carry out a simulation study. The number 

in the algorithms are set in consultation with an industrial partner: 

 

• Underlying: listed in Table 1. 

• Date range: recent seven years of monthly data: October 2012 to October 2019. 

• Volatility: we use 150 equally incremental values from 0 to 35𝜎𝑒, where 𝜎𝑒 is the empirical volatility. 

• Settlement prices (upper layer):  

o put settlement is 𝑢1 × 𝐼𝑡 where  𝑢1 ∈ {0.75,0.85,0.95}. 
o call settlement is 𝑢2 × 𝐼𝑡  where 𝑢2 ∈ {1.1,1.2}. 

• Stop prices (lower level):  

o put stop is 𝑙1 × 𝑆𝑡 where 𝑙1 ∈ {0.6,0.7}. 
o put stop is 𝑙2 × 𝑆𝑡 where 𝑙2 = 0.3. 

• Minimum weight: At least 3%.  

• Contract length: 3, 4, 5, 6, 8, 12-month. 

• Loss ratio (LR): 𝐿𝑅𝑈 = 75%. 

• Return over investment (ROI): 𝑅𝑂𝐼𝐿 = 5%. 

• Premium rate: 𝑃𝑅𝑈 =  4%. 

• Sharpe ratio (SR): the larger the better. 

• Portfolio simulations: 108 sets of random weights for each maturity. 

• One-year risk-free rate: 0.05%. 

• Comparing assets: DJ-UBS Commodity Index14, S&P GSCI15, FTSE 10016 and Nikkei index17.  

 

To summarise, our pricing model inputs and outputs at each stage are listed in Table 2. 

 

 
13 These are advised by an industrial partner that has been offering the policies. 
14 The DJ-UBSCI is composed of commodity futures contracts on physical commodities, traded on U.S exchanges. The only exception is aluminium, nickel and 

zinc which are traded in London (LME). This index is based upon relative trading activity of individual commodities. 
15 S&P and Goldman Sachs Commodity Index can be seen as a benchmark for investment performance in the commodity markets. S&P GSCI represents un-

leveraged, long-only investments in commodity futures that is broadly diversified across the spectrum of commodities. 
16 The Financial Times Stock Exchange 100 Index, also called the FTSE 100 Index, FTSE 100, FTSE, or, informally, the "Footsie", is a share index of the 100 

companies listed on the London Stock Exchange with the highest market capitalisation. It is seen as a gauge of prosperity for businesses regulated by UK 

company law. 
17 The Nikkei 225, more commonly called the Nikkei, the Nikkei index, or the Nikkei Stock Average, is a stock market index for the Tokyo Stock Exchange. It has 

been calculated daily by the Nihon Keizai Shinbun newspaper since 1950 



 

 

Table 2: Model inputs and outputs 

Initial inputs Internal estimations Simulations Outputs 

Historical commodity prices Implied volatility Historical policy prices Policies 

Spread specification Market price of risks Random weights Policy prices 

Time to maturity KPI filters Simulation size Efficient frontier 

Risk-free rate Policies  KPIs 

Close derivative price Potential policy prices  Capital allocations 

Policy specification    

KPI ranges    

 

In principle, such configurations should provide us with multiple policies for each maturity at any given month 

in the previous seven years. After running the algorithm, 108 random portfolios were generated with prices 

calculated through the KPI filtered by restrictions set on them.  

 

As expected, average loss ratios decrease as the tolerances of volatility goes up, expected 𝑅𝑂𝐼s have a small 

increment and premium rates have the same patterns as average contract prices. Note that, from top to bottom, 

the plots in Figure 12, where KPI filters are applied, step by step result in smaller and smaller configuration 

ranges. Finally, in the bottom plot, we arrive at the filtered results i.e., a set of results that satisfies both the 

demand and supply side KPI requirements. These initial results are then again ranked by their Sharpe ratios 

to give the best configuration. Since the pricing mechanism relies on the KPI conditions, one cannot guarantee 

that the final policy prices can be found. However, in this research, only a few of them are unqualified.  

 

 

 
Figure 12:  KPI filtering for one contract 

 

To find the best portfolio the efficient frontier is plotted using Monte-Carlo methods. In this portfolio we 

include all the policies, for all possible layers of the 10 commodities for possible expiries. As mentioned 

earlier, the policies on the same commodities have equal weights and a minimum weight is applied to all. In 

Table 5 in the appendix we have shown the weights of the 10 sample points on the efficient frontier. In Figure 

13, we show the outcome of our simulation and how the frontier well outperforms the FTSE 100 and other 

major indexes. 

 



 

 

 
Figure 13: Efficient frontier for the portfolios of the contracts 

In Table 3 we split the best portfolios according to expiry and type (call or put spread). For each maturity, we 

present portfolio performance by finding the largest Sharpe ratio, smallest portfolio standard deviations and 

greatest portfolio returns. 

 

 
Table 3: Sharpe ratios for policies 

Put spreads, hedge against price falls 

Scenarios Maturities (month) 3 4 5 6 8 12 

Best Sharpe Ratio Avg. return 0.18 0.15 0.13 0.11 0.09 0.07 

Std. 0.10 0.11 0.12 0.09 0.07 0.08 

Sharpe Ratio 1.92 1.36 1.13 1.15 1.35 0.97 

Best Standard 

Deviation 

Avg. return 0.18 0.15 0.12 0.09 0.09 0.07 

Std. 
0.10 0.11 0.11 0.08 0.07 0.08 

Sharpe Ratio 1.92 1.36 1.06 1.02 1.35 0.97 

Best Return Avg. return 
0.41 0.28 0.21 0.18 0.14 0.10 

Std. 0.42 0.34 0.27 0.20 0.14 0.11 

Sharpe Ratio 0.97 0.82 0.79 0.88 1.06 0.94 

Call spreads, hedge against price rises 

Scenarios Maturities (month) 3 4 5 6 8 12 

Best Sharpe Ratio Avg. return 
0.44 0.33 0.25 0.20 0.16 0.10 

Std. 
0.22 0.16 0.21 0.21 0.19 0.18 

Sharpe Ratio 
2.01 2.05 1.17 0.93 0.85 0.56 

Best Standard 

Deviation 

Avg. return 
0.44 0.33 0.24 0.20 0.16 0.09 

Std. 
0.22 0.16 0.21 0.21 0.19 0.17 

Sharpe Ratio 
2.01 2.05 1.17 0.93 0.84 0.54 

Best Return Avg. return 
0.45 0.33 0.25 0.20 0.18 0.12 

Std. 
0.22 0.16 0.22 0.24 0.26 0.25 

Sharpe Ratio 
1.99 2.05 1.13 0.83 0.68 0.48 

 



 

 

Our results show the annualised18 portfolio performance for different maturities. In our simulations, put 

spreads are used as two-layer insurance policies to hedge against price falls, and call spreads are used as 

similar policies to protect price rising risks. Due to market demands, AN Fertiliser and Red Diesel are only 

simulated for call spreads and other products are simulated for put spreads. The results show that in the short-

term, call spreads have larger Sharpe ratios while in the long-term, put spreads out-perform than call spreads. 

 

Recall, Table 1, where we calculated the average monthly return of all ten products: all products exhibit prices' 

increasing trends during the data length we have obtained. This indicates, managing the risk of the price rises 

should be riskier compared with price falls. However, from the results one can see that this is essentially true 

for longer term contracts and for shorter term contracts call spreads perform better. These results are 

satisfactory as the algorithm has successfully captured market trends and generated the adequate prices for 

more risky products to compensate the risks. 

 
Figure 14: Sharpe ratios for different contract length. Left: put spreads; Right: call spreads 

 

Figure 14 shows Sharpe ratios for different contract length: On the left, the put spreads, and on the right, the 

call spreads. One can observe decreasing trends in both price fall and rise protections and in all three scenarios, 

Sharpe ratio converges as policy maturities are longer. These two plots indicate risk capitals' potential 

preferences in both markets for price drop protections. Insurers may issue more short-term policies than long-

term policies due to larger Sharpe ratios and vice versa for price rise protections. 

 

Finally, we compare our portfolio results with financial market indexes. The common indexes for commodities 

are the DJ-UBS Commodity Index and S&P GSCI, FTSE 100 and Nikkei index. Table 4 lists the annualized 

monthly performances for those markets. As one can see, in our 12-month-maturity best case, a Sharpe ratio 

of 0.97 can be reached with a two-layer price fall protection that has an average return of 7% percent a year 

and a yearly volatility at 8%. The results out-perform all the market indexes in terms of Sharpe ratios due to 

smaller volatilities. Meanwhile, for shorter-term contracts, most of the spreads generate better results than the 

major market indexes by providing risk capitals with greater annualised returns and less risky commodities. 

Based on these observations, we think the price index insurances are good investment options.  

 

 

 
18 Annualised rate is calculated by the continuous compound method where 𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑠𝑒𝑑 𝑟𝑎𝑡𝑒 =  ((𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑟𝑎𝑡𝑒)

1

𝑛  −

 1), where (𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑟𝑎𝑡𝑒) ×  𝑛 = 1 year.  



 

 

Table 4: FTSE and other major indexes Sharpe ratio 

Index 

Annualized 

Monthly 

Return % 

Annualized 

Monthly 

Volatility % 

Sharpe Ratio 

FTSE100 3.83 12.68 0.3 

GSPC 7.40 13.93 0.53 

DJ-UBSCI 7.4 13.25 0.56 

Nikkei 225 6.21 18.96 0.33 

 

7. Concluding remarks 

In this paper, we presented a new potential market in the UK's agriculture insurance sector by studying both 

the demand and the supply-sides.  

7.1 Summary of the results 

We identify the following contributions of this paper: 

 

• A theoretical risk management framework was proposed. It is shown that a two-layer policy is the 

optimal setting to minimize the overall risk of the farmers.  

 

• We introduced a sound economic technique to find the optimal put/call spread contracts that is 

acceptable for both the demand-side and supply-side.  We proposed a pricing algorithm based on the 

KPIs to find the acceptable prices for the optimal contracts.  

 

• We investigated if these contracts are worth investing for underwriters in the global market. From the 

Modern Portfolio Theory, we know portfolios with greater Sharpe ratios usually attract more investors. 

Observations from our results showed that some of the simulated portfolios can out-perform the major 

market indexes in terms of Sharpe ratios, average returns and portfolio risks. This indicates that, by 

using two-layer protection policies, one reduces the overall risks from both the demand side and the 

supply side. 

7.2 Critical reflection 

Here we discuss a few concerns. 

 

Systemic risk. The main question here is: given that the price risk is systemic, does the proposed insurance 

lower compensation for the underwriters? Indeed, the systemic nature of price movements warrants some 

further development for managing the risk of the underwriters. This is of further concern once we observe that 

the agricultural good prices are sometimes highly correlated (as seen in data section 4).  

 

Before all, we must mention that the optimality of the two-layer contracts, and the employment of the 

equilibrium approach to calibrate the model and to practically find the optimal insurance cannot be criticized, 

as they are relevant even with further structural changes to the risk management.  

 

One way to address the systemic risk problem is to add further structure to the risk management platform and 

introduce complementary components. For instance, by scaling, one can pool the risk over several markets in 

different countries. While that is an obvious choice, a more difficult one is to consider the feasibility of 

reinsurance perspective. Reinsurance companies are usually very large, so they can diversify the risk of large 

losses. This means the reinsurance companies also manage the risk by scaling and diversification. 



 

 

Interestingly, reinsurance products have been very well studied in the agricultural markets since usually 

agricultural risks are larger than insurance companies can manage individually. (Turvey, Nayak and Sparling, 

(1999) investigated the economic role of reinsurance in the context of agricultural crop insurance. (Duncan 

and Myers, 2000) studied the role of catastrophic risk in contributing to inadequate or incomplete crop 

insurance coverage. (Coble, Dismukes, and Glauber, 2007) examined the strategic behaviour of crop insurance 

companies reinsured by USDA through the SRA and (Miranda, and Glauber, 1997) discusses that agricultural 

insurances fail without reinsurances because of systemic weather risks. However, the area of price index 

insurances, does not seem to be covered in the current literature. 

 

Modelling issues. Modelling commodity prices, either future prices or spot prices, always has been the subject 

of many researches. With regards to agricultural commodities, two main characteristics of the goods play the 

most important roles. The first one is the agricultural commodities storability and the second one is the 

seasonality. The models regarding first characteristics has been studied in a few papers in the literature on 

economics e.g., see, (Deaton and Laroque, 1992, 1995, 1996), (Chambers and Bailey, 1996), (Cafiero et al. 

2011) and (Chambers, 2007). In principle, storage gives the farmer a further option which can raise the final 

commodity prices. However, these so-called storage models are not developed for insurance (or derivative) 

pricing and to the best of our knowledge (Assa, 2015) is the only one that has developed a stochastic 

differential equation model derived from the models in Deaton and Laroque, (1992,1995,1996) for pricing 

insurances. 

 

On the other hand, to capture seasonality there are other models that include a deterministic sessional function 

inside the stochastic model; for instance, in (Lucia and Schwartz, 2002) one can find a model that is product 

of a deterministic seasonal and a stochastic non-seasonal component. 

 

Out of the scope of the two characteristics mentioned above, there are other models for commodity prices. 

The most known is the celebrated factor models of (Schwartz, 1997), where convenience yield has a major 

role. (Assa, 2016) and (Geman and Shih, 2009), use constant elastic volatility models (CEV) to model 

commodity prices. 

 

In terms of our modelling setup, if the only source of uncertainty is a single Brownian motion, with no further 

friction, the market is complete, and the main optimization problem becomes 

min
𝑘∈𝐶

𝜌(𝐿 − 𝑘(𝐿)) + 𝛿𝐸(𝑍𝑘(𝐿)). 

Here, 𝑍 is the Radon-Nikodym derivative of the unique risk-neutral probability measure. One can show that 

with some change of variable, there is a non-negative random variable 𝐿′ such that 

min
𝑘∈𝐶

𝜌(𝐿 − 𝑘(𝐿)) + 𝛿𝐸(𝑘(𝐿′)). 

With this change, it seems it is possible to solve the problem in the same manner we developed in this paper, 

and show the solution is multilayer (or two-layer). However, this is mathematically very involved and goes 

beyond the scope of this paper.  

 

If the markets are incomplete the problem cannot be set up the same way. For instance, this can happen if we 

assume the volatility in the Black-Scholes model follows a stochastic process, or there is more than one 

stochastic factor in the model (Schwartz,1997). In that case, the set of all risk neutral probability measures, 

denoted by ∆, gives a bid-ask spread, as large as  [min
𝑍∈Δ

𝐸(𝑍𝑘(𝐿)) ,max
𝑍∈Δ

𝐸(𝑍𝑘(𝐿))], and any price in this 

interval is an arbitrage free price. There are different approaches that one can consider in this case. For 

instance, the most popular approach is to use a “distance” and pick a member of Δ which is the closest to the 

physical probability measure. Many papers use a minimal entropy approach or Escher transform; for example, 

see (Fujiwara and Miyahara, 2003), (Eschea and Schweizer, 2005) and (Hubalek and Sgarra, 2006). 

 

One can also choose a No-Good-Deal, (Assa and Balbas, 2011), (Assa and Karai, 2013), or a robust super-

hedging pricing (El Karoui and Quenez, 1995) approach and come up with the following problem  



 

 

min
𝑘∈𝐶

{𝜌(𝐿 − 𝑘(𝐿)) + 𝛿max
𝑍∈Δ′

𝐸(𝑍𝑘(𝐿))} , 

for a subset Δ′ ⊆ Δ. In either case, under some conditions, it seems one can find a multi-layer solution however 

finding the solution is highly mathematically involved and clearly out of scope of this paper. 

 

Issues with volatility. As it was discussed in this paper, since there is no derivative market on the indexes that 

we consider in this paper, estimation of implied volatility is impossible. Therefore, we introduced a new 

approach by finding the volatility as part of the market equilibrium. The justification for this method is very 

similar to what is usually done in finance in finding the implied volatility: implied volatility is the volatility if 

market parameters are set under the no arbitrage condition which is essentially the equilibrium condition. 

However, one may wonder as an alternative if we could have used shadow prices to find the implied volatility. 

By shadow prices we mean a portfolio indexes in a liquid market that behaves similarly to our underlying 

assets. For instance, for a given underlying asset one might be able to find a portfolio of assets from the 

Chicago Board of Trade that is highly correlated to our underlying asset. While this is possible, we have not 

chosen this approach for several reasons. The first reason is that finding such portfolio for any underlying 

asset can be very complicated. This is beyond the scope of this paper and can be subject of a new study. The 

second and more important reason is that, even if one can find a shadow price index, except the implied 

volatility, the market price of risk is also of great concern. In this paper we consider a situation where there is 

no derivative market on our underlying assets (indexes), and we want to find out if a market that trades price 

insurance risk is financially viable. This means we know very little about the market price of risk, and if that 

is at all comparable with the shadow index prices market price of risk. 
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Appendix 

Proof of Proposition 1. First, it is not difficult to see that for 𝑥 < 0, we have 𝐹𝐿(𝑥) = 0,  for 𝑥 = 0 we have 

𝐹𝐿(0) = 𝑃(𝐼0 ≤ 𝑒
−𝑟𝑇𝐼𝑇) = 𝑁 (

(𝜇−𝑟−
1

2
𝜎2)𝑇

𝜎√𝑇
) and for  𝑥 > 𝐼𝑇 , we have 𝐹𝐿(𝑥) = 1. Now let us consider 𝐼𝑇 ≥

𝑥 > 0. In this case we have  

𝐹𝐿(𝑥) = 1 − 𝑃(𝐿 > 𝑥) = 1 − 𝑃 ((𝐼𝑇 − 𝑒
−𝑟𝑇𝐼𝑇)+ > 𝑥) = 1 − 𝑃(𝐼𝑇 − 𝑒

−𝑟𝑇𝐼𝑇 > 𝑥)  

= 1 − 𝑃 (𝐼𝑇 − 𝐼0𝑒
−𝑟𝑇𝑒(𝜇−

1
2
𝜎2)𝑇+𝜎𝐵𝑇 > 𝑥) = 1 − 𝑃 (

𝐼𝑇 − 𝑥

𝐼0
> 𝑒(𝜇−𝑟−

1
2
𝜎2)𝑇+𝜎𝐵𝑇)

= 1 − 𝑃(
log (

𝐼𝑇 − 𝑥
𝐼0

) − (𝜇 − 𝑟 −
1
2𝜎

2)𝑇

𝜎√𝑇
> 𝐵1)

= 1 − 𝑁(
log (

𝐼𝑇 − 𝑥
𝐼0

) − (𝜇 − 𝑟 −
1
2𝜎

2)𝑇

𝜎√𝑇
) = 𝑁(

(𝜇 − 𝑟 −
1
2𝜎

2)𝑇 − log (
𝐼𝑇 − 𝑥
𝐼0

) 

𝜎√𝑇
). 

□ 

Proof of Proposition 2. Since 
𝑑𝑄

𝑑𝑃
= 𝑗(𝐼𝑇) where 𝑗(𝑥) = Const (

𝑥

𝐼0
)
−𝜆

, given that 𝑗 is a decreasing function 

and ℎ is a non-increasing function, using (2) and (3), one gets  

𝐸 (
𝑑𝑄

𝑑𝑃
ℎ(𝐼𝑇)) = 𝐸

𝑄(𝑗(𝐼𝑇)ℎ(𝐼𝑇)) = ∫ VaR𝑡(ℎ(𝐼𝑇))
1

0

VaR𝑡(𝑗(𝐼𝑇))𝑑𝑡. 



 

 

Now observe that since 
𝐼𝑇

𝐼0
= exp ((𝜇 −

1

2
𝜎2) 𝑡 + 𝜎𝐵𝑇), 𝑗(𝐼𝑇) = Const exp (−𝜆 (𝜇 −

1

2
𝜎2)𝑇 − 𝜆𝜎𝐵𝑇). 

Since, 𝐸(𝑗(𝐼𝑇)) = 1, we have 1 = Const exp (−𝜆 (𝜇 −
1

2
𝜎2)𝑇 +

1

2
𝜆2𝜎2𝑇). So, we get 

Const = exp (𝜆 (𝜇 −
1

2
𝜎2) 𝑇 −

1

2
𝜆2𝜎2𝑇). 

 

Now we have 

 

VaR𝑡(𝑗(𝐼𝑇))𝑑𝑡 = VaR𝑡 (Const exp (−𝜆 (𝜇 −
1

2
𝜎2) 𝑇 − 𝜆𝜎𝐵𝑇)) 𝑑𝑡 

= Const exp (−𝜆 (𝜇 −
1

2
𝜎2) 𝑇 + 𝜆𝜎√𝑇𝑁−1(𝑡))𝑑𝑡  

= exp (𝜆 (𝜇 −
1

2
𝜎2) 𝑇 −

1

2
𝜆2𝜎2𝑇) exp(−𝜆 (𝜇 −

1

2
𝜎2) 𝑇 + 𝜆𝜎√𝑇𝑁−1(𝑡))𝑑𝑡 

= exp (−
1

2
𝜆2𝜎2𝑇 + 𝜆𝜎√𝑇𝑁−1(𝑡)) 𝑑𝑡 

= exp (−
1

2
𝜆2𝜎2𝑇 + 𝜆𝜎√𝑇𝑁−1(𝑡) −

1

2
𝑁−1(𝑡)2 +

1

2
𝑁−1(𝑡)2) 𝑑𝑡  

= exp (−
1

2
(𝜆𝜎√𝑇 − 𝑁−1(𝑡))

2

+
1

2
𝑁−1(𝑡)2) 𝑑𝑡 

=
1

√2𝜋
exp (−

1

2
(𝜆𝜎√𝑇 − 𝑁−1(𝑡))

2
)√2𝜋 exp (

1

2
(𝑁−1(𝑡))

2
𝑑𝑡) 𝑑𝑡 

= 𝑛(𝑁−1(𝑡) − 𝜆𝜎√𝑇)𝑑(𝑁−1(𝑡)) = 𝑑 (𝑁(𝑁−1(𝑡) − 𝜆𝜎√𝑇)) 

 

where 𝑛(𝑥) = 𝑁′(𝑥) =
1

√2𝜋
exp (−

1

2
𝑥2). Note that in the last line we have used: 

𝑑𝑡 = 𝑑 (𝑁(𝑁−1(𝑡)))   =
1

√2𝜋
exp (−

1

2
(𝑁−1(𝑡))

2
)𝑑(𝑁−1(𝑡)). □ 

 

Proof of lemma 1. Since 𝑘, 𝑖 are non-decreasing they are almost surely differentiable. Again, since they are 

non-decreasing we have 𝑘′, 𝑖′ ≥ 0. On the other hand, since, 𝑘 + 𝑖 = 𝑖𝑑 then we have 𝑘′ + 𝑖′ = 1, which 

completes the proof. □ 

 

Proof of Proposition 3. To prove the statement, we must see when the two functions  𝑓1(𝑡) = 1 − Π(𝑡) and 

𝑓2(𝑡) = 𝛿(1 − Γ(𝑡)) meet each other.  

 

Case 1, 𝜌 = VaR𝛼: Since 𝑓1 is decreasing and concave then it can meet any horizontal line at most once. Since 

this function is equal to 𝛿 > 1 at zero it either meets the line 𝑦 = 1 at the solution to 1 = 𝛿(1 − Γ(𝑡)), or it 

never will meet 𝑦 = 1. If the two functions meet, then 𝑓1 is below 1 from 𝑎 to 𝑏 = 𝛼, since after 𝛼 𝑓2 is zero. 

On the other hand, it meets the line 𝑦 = 0 at 𝑥 = 1. 

 

Case 2, 𝜌 = CVaR𝛼: With similar argument one can show that on (𝑎, 𝛼), 𝑓1 is below 𝑓2. On the other hand, 

since 𝑓1 is concave it can meet a line at most two times. Since 𝑓1 and 𝑓2 meet each other at 𝑡 = 1, they can 

only meet once again in 𝑏 ∈ (𝛼, 1), where 𝑏 is a solution to 
𝑡−1

𝛼−1
= 𝛿(1 − Γ(𝑡)). □ 

 

Proof of Proposition 4. If  𝐹𝐿(0) < 𝑎 then it is clear that (𝑎, 𝑏) ⊆ (𝐹𝐿(0), 1). In that case we get 



 

 

𝐹𝐿(𝑥) = 𝑁

(

 
 
(𝜆 −

1

2
𝜎)√𝑇 −

log (
𝐼𝑇 − 𝑥
𝐼0

) 

𝜎√𝑇

)

 
 
, 𝑥 ∈ (𝑎, 𝑏). 

Now, based on (5) we find 𝑙 = VaR𝑎(𝐿) and 𝑢 = VaR𝑏(𝐿). So, we get  

𝑎 = 𝑁

(

 
 
(𝜆 −

1

2
𝜎)√𝑇 −

log (
𝐼𝑇 − 𝑥
𝐼0

) 

𝜎√𝑇

)

 
 
⇒ 𝑥 = 𝐼𝑇 − 𝐼0exp(𝜎√𝑇 ((𝜆 −

1

2
𝜎)√𝑇 − 𝑁−1(𝑎))). 

Similarly, one can find 𝑏. 

 

 

Table of the efficient frontier. 

 
Table 5: Weights of the optimal portfolio on the frontier 

Sample no. AN 
Fertilizer 

Milk Red 
Diesel 

Lamb Beef Pork Rapeseed Feed 
Wheat 

Feed 
Barley 

Milling 
Wheat 

return volatility Sharpe 
ratio 

1 0.03 0.03 0.03 0.160596 0.599404 0.03 0.03 0.03 0.03 0.03 0.078788 0.061007 1.291453 

2 0.03 0.03 0.03 0.169544 0.590456 0.03 0.03 0.03 0.03 0.03 0.080303 0.06208 1.293533 

3 0.03 0.03 0.03 0.178492 0.581508 0.03 0.03 0.03 0.03 0.03 0.081818 0.063196 1.29468 

4 0.03 0.03 0.03 0.18744 0.57256 0.03 0.03 0.03 0.03 0.03 0.083333 0.064351 1.294982 

5 0.03 0.03 0.03 0.195733 0.563137 0.03 0.03113 0.03 0.03 0.03 0.084848 0.065543 1.294551 

6 0.03 0.03 0.03 0.201558 0.55192 0.03 0.036522 0.03 0.03 0.03 0.086364 0.066758 1.293688 

7 0.03 0.03 0.03 0.207972 0.541131 0.03 0.040896 0.03 0.03 0.03 0.087879 0.067994 1.292453 

8 0.03 0.03 0.03 0.214387 0.530343 0.03 0.04527 0.03 0.03 0.03 0.089394 0.06925 1.290895 

9 0.03 0.03 0.03 0.220802 0.519554 0.03 0.049644 0.03 0.03 0.03 0.090909 0.070524 1.289051 

10 0.03 0.03 0.03 0.227664 0.509091 0.03 0.053245 0.03 0.03 0.03 0.092424 0.071816 1.286952 
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