
 International Journal of 

Molecular Sciences

Article

Putative Roles for Peptidylarginine Deiminases
in COVID-19

Elif Damla Arisan 1 , Pinar Uysal-Onganer 2 and Sigrun Lange 3,*
1 Gebze Technical University, Institute of Biotechnology, Gebze, 41400 Kocaeli, Turkey; d.arisan@gtu.edu.tr
2 Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK;

p.onganer@westminster.ac.uk
3 Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster,

London W1W 6UW, UK
* Correspondence: S.lange@westminster.ac.uk; Tel.: +44 (0)207-911-5000 (ext. 64832)

Received: 8 June 2020; Accepted: 28 June 2020; Published: 30 June 2020
����������
�������

Abstract: Peptidylarginine deiminases (PADs) are a family of calcium-regulated enzymes that are
phylogenetically conserved and cause post-translational deimination/citrullination, contributing to
protein moonlighting in health and disease. PADs are implicated in a range of inflammatory and
autoimmune conditions, in the regulation of extracellular vesicle (EV) release, and their roles in
infection and immunomodulation are known to some extent, including in viral infections. In the
current study we describe putative roles for PADs in COVID-19, based on in silico analysis of BioProject
transcriptome data (PRJNA615032 BioProject), including lung biopsies from healthy volunteers and
SARS-CoV-2-infected patients, as well as SARS-CoV-2-infected, and mock human bronchial epithelial
NHBE and adenocarcinoma alveolar basal epithelial A549 cell lines. In addition, BioProject Data
PRJNA631753, analysing patients tissue biopsy data (n = 5), was utilised. We report a high individual
variation observed for all PADI isozymes in the patients’ tissue biopsies, including lung, in response
to SARS-CoV-2 infection, while PADI2 and PADI4 mRNA showed most variability in lung tissue
specifically. The other tissues assessed were heart, kidney, marrow, bowel, jejunum, skin and fat,
which all varied with respect to mRNA levels for the different PADI isozymes. In vitro lung epithelial
and adenocarcinoma alveolar cell models revealed that PADI1, PADI2 and PADI4 mRNA levels were
elevated, but PADI3 and PADI6 mRNA levels were reduced in SARS-CoV-2-infected NHBE cells.
In A549 cells, PADI2 mRNA was elevated, PADI3 and PADI6 mRNA was downregulated, and no
effect was observed on the PADI4 or PADI6 mRNA levels in infected cells, compared with control
mock cells. Our findings indicate a link between PADI expression changes, including modulation of
PADI2 and PADI4, particularly in lung tissue, in response to SARS-CoV-2 infection. PADI isozyme
1–6 expression in other organ biopsies also reveals putative links to COVID-19 symptoms, including
vascular, cardiac and cutaneous responses, kidney injury and stroke. KEGG and GO pathway analysis
furthermore identified links between PADs and inflammatory pathways, in particular between PAD4
and viral infections, as well as identifying links for PADs with a range of comorbidities. The analysis
presented here highlights roles for PADs in-host responses to SARS-CoV-2, and their potential as
therapeutic targets in COVID-19.

Keywords: SARS-CoV-2; COVID-19; peptidylarginine deiminases (PADs); protein deimination;
extracellular vesicles (EVs); immunity; comorbidities; NETosis; anti-viral

1. Introduction

SARS-CoV-2 infections mainly target the lung, compared with other viral infections which begin
with upper respiratory tract symptoms. Importantly, SARS-CoV-2 infection does not follow regular
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viral lower respiratory infection pathways, and furthermore shows additional comorbidities such as
vascular responses [1–4], cardiovascular and cardiomyopathy [5–7], gastrointestinal involvement [8],
kidney injury [9,10], cutaneous manifestations [11] and stroke [12]. Structural proteins of SARS-CoV-2
include the matrix (M) protein, nucleocapsid (N) protein (for virus entrance and spread), small envelope
(E) protein, as well as the multifaceted spike (S) glycoprotein [13,14]. Due to fundamental knowledge
gaps with regard to specific molecular pathways for viral-host interactions, the lack of successful
current therapeutic intervention strategies, and the variation of host immune responses to the virus,
investigations into associated immune-mediated mechanisms are urgently needed.

Peptidylarginine deiminases (PADs) are calcium-dependent, phylogenetically conserved enzymes
that cause the post-translational conversion of arginine to citrulline, in an irreversible manner, in target
proteins. Deimination can lead to structural, as well as functional, changes of target proteins, including
cytoskeletal, nuclear, mitochondrial and cytoplasmic proteins, leading to, amongst other things,
the generation of neo-epitopes, as well as changes in gene regulation [15–20]. The protein structures
most susceptible to deimination are beta-sheets and disordered proteins [16], while deimination can
also contribute to protein moonlighting, allowing one polypeptide to carry out multifaceted functions.
Such deimination/citrullination-mediated moonlighting may therefore contribute to the protein’s
diverse functions in a range of physiological and pathological scenarios [21,22]. In humans, five
PADI genes, clustered in a single locus at 1p35-36, encode five PAD isozymes (PAD1, PAD2, PAD3,
PAD4, PAD6), with tissue-specific expression and deimination activity linked to a range of pathologies
and inflammatory responses. This includes cancer, chronic, autoimmune and neurodegenerative
diseases [19,20,23], CNS injury [24–26] and ageing [27,28]. Importantly, roles for PADs have been
described in viral [29–31] and other pathogenic infections, including sepsis, endotoxemia [29,32–38]
and antibiotic resistance [39]. The roles for PADs in anti-viral responses include PAD-mediated
neutrophil extracellular trap formation (NETosis), for example, in respiratory syncytial virus disease [40].
Recent work in comparative animal models has furthermore described roles for PADs in innate, adaptive
and mucosal immunity [41–48]. Roles for PADs in lung disease have been described due to pollution [49],
in bronchial and alveolar mucosa in response to harmful stimuli [50], as well as in lung inflammation
and cystic fibrosis [51–53].

PADs have also been identified as key regulators of cellular extracellular vesicle (EV) release [23,54–56],
which is a central factor in many pathologies, including infections [20,57–60]. EV-mediated responses
have therefore received a great deal of interest in COVID-19 [61–63], particularly seeing as EV signatures
can be useful biomarkers [64,65]. PAD are conserved throughout the phylogenetic tree [15,41], and both
PADs and their deiminated protein products are detected in a range of taxa [24,25,41,43,45–48,66,67],
including in bacteria [39], fungi [68] and parasites [69], with some pathogens using their PAD
homologues for immune evasion [70]. This places PADs as important factors in immune modulation
throughout phylogeny and, due to the fact that coronaviruses are zoonotic viruses [71], the role for
PADs in host–pathogen interactions may therefore be of considerable importance for zoonosis as well.

Due to the multifaceted roles of PADs in inflammatory diseases and infection, as well as its
association with a range of chronic conditions [72], some of which are also associated with COVID-19 [73],
and PAD-mediated roles in skin [74], contribution to NETosis and mucosal immunity [43,44],
this study aimed at identifying putative roles for PADs in host–pathogen responses to SARS-CoV-2.
For this purpose, we performed an in silico analysis based on recently published BioProject Data,
assessing PRJNA615032 and PRJNA631753, involving tissue biopsies from SARS-CoV-2 patients as
well as in vitro cell line-based studies. Our reported findings highlight the potential of PADs as targets
for novel therapeutic strategies to regulate inappropriate inflammatory responses, as well as for their
roles in comorbidities, and for modulating host–pathogen interactions in COVID-19.
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2. Results

2.1. Summary of PAD Expression in BioProject Data PRJNA631753

The understanding of the relationship between SARS-CoV-2 lung infection and the severity of
pulmonary disease is currently limited. In the BioProject, viral RNA has been visualised using in situ
hybridisation, and the immune infiltrate has furthermore been assessed using immunohistochemistry
and the performing of total RNA sequencing on five COVID-19 positive patients. Patients who
had high levels of viral RNA did show hyaline membranes, as assessed by histology, alongside low
T-cell numbers and extensive pneumocyte loss. Enrichment was also observed in the interferon gene
signature. Patients who had lower levels of viral RNA displayed lower T-cell and CD8 cell numbers,
and furthermore showed enrichment for genes associated with fibrosis. Overall study design of the
BioProject was as follows: Autopsy samples obtained from SARS-CoV-2-infected diseased patients
were collected for total analysis for RNA-seq. Then, viral load and immune response assessment was
carried out (details provided at: https://www.ncbi.nlm.nih.gov/bioproject/).

PADI 1-6 Isozyme Expression is Differently Regulated in SARS-CoV-2-Infected Tissue

The different tissue biopsies from the five patients, compared with normal lung biopsies, are shown
in Figure 1, where averages in PADI expression (mRNA) for the five cases are represented for each
tissue type (see also Supplementary Figures S1–S5 for PADI 1-6 expression in individual cases). In all
figures provided, PAD gene data has been obtained from the normalised gene expression profile using
the Rosalind bioinformatics tool.Int. J. Mol. Sci. 2019, x, x FOR PEER REVIEW  4 of 31 
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Figure 1. PRJNA631753 samples were analysed according to fold-change for PADI1, PADI2, PADI3, 
PADI4 and PADI6 mRNA levels. Average data from different tissue types are presented with a heat 
map. Lung and heart samples were from 5 different cases, alongside normal lung samples (“negative 
control”), with at least 3 replicate biopsy results. The bowel, kidney and liver data were from 2 cases. 
The data given for fat, jejunum, marrow and skin tissues were from one case. Heat map metric is 
given as blue bar between normalised mRNA levels. 

When comparing lung tissues only from SARS-CoV-2-infected patients (five cases) with 
negative control lung tissue, a considerable individual variation for the different PADIs was 
observed (Figure 2A and 2B). PADI2 and PADI4 showed the most variability in mRNA levels, both 
in control tissue and SARS-CoV-2 cases (Figure 2B). Compared with control lung tissue, PADI2 was 
up to 1.84-fold increased (case 2), but downregulated in other cases. Overall, PADI4 showed the 
highest differences, compared with control lung tissue, with up-regulation from 1.57 to 6.10-fold, but 
negligible change in one case, and downregulation in two, compared with normal lung (Figure 2A). 
PADI3 did not change in lung tissue in response to SARS-CoV-2 infection. Elevation for PADI1 was 
observed in one COVID-19 case specifically (7-fold elevation; Figure 2A and B) and some elevation 
in PAD6 was seen in the lungs of two cases, but no effect in the other three cases (Figure 2B). 

Figure 1. PRJNA631753 samples were analysed according to fold-change for PADI1, PADI2, PADI3,
PADI4 and PADI6 mRNA levels. Average data from different tissue types are presented with a heat
map. Lung and heart samples were from 5 different cases, alongside normal lung samples (“negative
control”), with at least 3 replicate biopsy results. The bowel, kidney and liver data were from 2 cases.
The data given for fat, jejunum, marrow and skin tissues were from one case. Heat map metric is given
as blue bar between normalised mRNA levels.

Tissue expression for the different PADI isozymes (PADI 1,2,3,4 and 6, respectively), revealed
differences in both tissue-specific expression, as well as between COVID-19 and control cases (lung
tissue only), and individual variation was also shown.

PADI1 was overall elevated in the skin and kidney (Figure 1), with individual variation observed,
specifically in the skin of case five, in the kidney and lung of case 4, and in the lung of case 2
(Supplementary Figure S1). PADI2 showed elevation in the liver and marrow (Figure 1) as well as the
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lung of Covid-19 case 2 (Supplementary Figure S2). PADI3 was found to be overall elevated in the
marrow (Figure 1), the kidney and the lung of one COVID-19 case only (Supplementary Figure S3).
PADI4 was found elevated in SARS-CoV-2-infected kidneys and livers (Figure 1), but was also elevated
in the marrow (case 5) as well as the lung tissue (case 1, 2) and heart (case 1) (Supplementary Figure
S4). For PADI6, expression was found to be elevated in the lung tissue of two cases (case 1 and case 3),
while no elevation was observed in other tissues (Supplementary Figure S5) (Figure 1). See summary
of all tissues in Figure 1, and a separate figure for lung tissue specifically (Figure 2).Int. J. Mol. Sci. 2019, x, x FOR PEER REVIEW  5 of 31 
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Figure 2. PADI 1-6 isozyme expression levels in SARS-CoV-2-infected lung biopsies, and control 
lung tissue. (A) PRJNA631753 Bioproject data were analysed according to fold change for PADI1, 
PADI2, PADI3, PADI4 and PADI6 mRNA levels. Average data from control and 
SARS-CoV-2-infected lung tissue types are presented with a heat map. (B) The fold change for 
mRNA expression levels for each PADI is presented for each case and replicate via grand median 
distribution of data. Negative control (normal lung samples) and SARS-CoV-2 lung samples were 
from 5 different cases, with at least 3 replicate biopsy results for lung tissue. 

2.2. PADI Expression is Differently Regulated in SARS-CoV-2-Infected Human Bronchial Epithelial Cells 
(NHBE) and Adenocarcinoma Human Alveolar Basal Epithelial Cells (A549) Cell Lines 

PADI mRNA expression levels were analysed from BioProject PRJNA631753, assessing human 
bronchial epithelial cell line (NHBE) and the adenocarcinoma human alveolar basal epithelial cell 
line (A549), infected with SARS-CoV-2, compared with mock infected cells. According to this 
analysis, in NHBE cells there is upregulation of PADI1 (1.14-fold), PADI2 (7.88-fold) and PADI4 
(1.69-fold), in response to SARS-CoV-2 infection, but downregulation in PADI3 (−1.41-fold) and 
PADI6 (−5.65-fold) mRNA expression, compared with mocks. In the adenocarcinoma lung cells 
(A549), only PADI2 was upregulated (3.61-fold), while downregulation was observed for PADI1 (–
1.60-fold) and PADI3 (−1.09-fold), but no effect was seen on PADI4 or PADI6 in 
SARS-CoV-2-infected, versus mock infected, cells (Figure 3). 

Figure 2. PADI 1-6 isozyme expression levels in SARS-CoV-2-infected lung biopsies, and control lung
tissue. (A) PRJNA631753 Bioproject data were analysed according to fold change for PADI1, PADI2,
PADI3, PADI4 and PADI6 mRNA levels. Average data from control and SARS-CoV-2-infected lung
tissue types are presented with a heat map. (B) The fold change for mRNA expression levels for each
PADI is presented for each case and replicate via grand median distribution of data. Negative control
(normal lung samples) and SARS-CoV-2 lung samples were from 5 different cases, with at least 3
replicate biopsy results for lung tissue.

When comparing lung tissues only from SARS-CoV-2-infected patients (five cases) with negative
control lung tissue, a considerable individual variation for the different PADIs was observed
(Figure 2A,B). PADI2 and PADI4 showed the most variability in mRNA levels, both in control
tissue and SARS-CoV-2 cases (Figure 2B). Compared with control lung tissue, PADI2 was up to
1.84-fold increased (case 2), but downregulated in other cases. Overall, PADI4 showed the highest
differences, compared with control lung tissue, with up-regulation from 1.57 to 6.10-fold, but negligible
change in one case, and downregulation in two, compared with normal lung (Figure 2A). PADI3 did
not change in lung tissue in response to SARS-CoV-2 infection. Elevation for PADI1 was observed in
one COVID-19 case specifically (7-fold elevation; Figure 2A,B) and some elevation in PAD6 was seen
in the lungs of two cases, but no effect in the other three cases (Figure 2B).

2.2. PADI Expression is Differently Regulated in SARS-CoV-2-Infected Human Bronchial Epithelial Cells
(NHBE) and Adenocarcinoma Human Alveolar Basal Epithelial Cells (A549) Cell Lines

PADI mRNA expression levels were analysed from BioProject PRJNA631753, assessing human
bronchial epithelial cell line (NHBE) and the adenocarcinoma human alveolar basal epithelial cell line
(A549), infected with SARS-CoV-2, compared with mock infected cells. According to this analysis,
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in NHBE cells there is upregulation of PADI1 (1.14-fold), PADI2 (7.88-fold) and PADI4 (1.69-fold),
in response to SARS-CoV-2 infection, but downregulation in PADI3 (−1.41-fold) and PADI6 (−5.65-fold)
mRNA expression, compared with mocks. In the adenocarcinoma lung cells (A549), only PADI2
was upregulated (3.61-fold), while downregulation was observed for PADI1 (−1.60-fold) and PADI3
(−1.09-fold), but no effect was seen on PADI4 or PADI6 in SARS-CoV-2-infected, versus mock infected,
cells (Figure 3).
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Figure 3. PRJNA615032 BioProject data was analysed for fold change expression for PADI mRNA 
levels in SARS-CoV-2-infected cell lines, compared with mock. (A) NHBE (human bronchial 
epithelial) cell lines; (B) A549 (adenocarcinoma human alveolar basal epithelial) cell lines. Heat map 
metric is given as blue bar between normalised mRNA levels; negative control represents the mock. 

2.3. Protein–Protein Interaction Network Identification of Human PAD Isoforms 1–6 

For the prediction of the protein–protein interaction networks of the PAD isoforms under 
study, the Human PAD protein IDs were submitted to Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING) analysis (https://string-db.org/), and analysed for Gene Ontology (GO) 
and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways. When assessing GO biological 
pathways for all PADs as a group, significant protein–protein interaction networks were observed, 
with binding partners related to viral life cycle regulation, viral defence responses, and humoral, 
innate, acute and inflammatory immune responses, including antimicrobial immune responses, 
stress response and the regulation of cytokine production (Figure 4). 

Figure 3. PRJNA615032 BioProject data was analysed for fold change expression for PADI mRNA
levels in SARS-CoV-2-infected cell lines, compared with mock. (A) NHBE (human bronchial epithelial)
cell lines; (B) A549 (adenocarcinoma human alveolar basal epithelial) cell lines. Heat map metric is
given as blue bar between normalised mRNA levels; negative control represents the mock.

2.3. Protein–Protein Interaction Network Identification of Human PAD Isoforms 1–6

For the prediction of the protein–protein interaction networks of the PAD isoforms under
study, the Human PAD protein IDs were submitted to Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) analysis (https://string-db.org/), and analysed for Gene Ontology (GO) and
Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways. When assessing GO biological
pathways for all PADs as a group, significant protein–protein interaction networks were observed,
with binding partners related to viral life cycle regulation, viral defence responses, and humoral,
innate, acute and inflammatory immune responses, including antimicrobial immune responses, stress
response and the regulation of cytokine production (Figure 4).

https://string-db.org/
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Figure 4. Biological GO (gene ontology) pathways for all human PAD isozymes, relating to 
immunity. Immune related GO biological pathways are highlighted for protein–protein interaction 
networks of binding partners with all PAD isozymes (PAD 1,2,3,4,6) as a group. Colour code for the 
different pathways is shown within the figure. Individual coloured lines represent specific protein 
interactions that have been identified through interactions that are known (referring to 
experimentally determined connections and curated databases), through interactions that are 
predicted (referring to gene fusion, gene neighbourhood, gene co-occurrence) or through 
interactions identified via text mining, co-expression or protein homology (please refer to the colour 
key provided in the figure for the different connective lines) (PPI enrichment p-value: < 1.0 × 10−16). 

STRING pathways for PAD1 revealed a range of immunological GO pathways, including 
phagocytosis, VEGF signalling, immune effector processing and programmed cell death (Figure 5A), 
while the KEGG pathway relates to infection and associated immune responses (Figure 5B). Roles in 
skin related responses, as well as immune responses, were further confirmed with UniProt 
keywords, which included skin diseases, phagocytosis, citrullination/deimination and apoptosis 
(Figure 5C). 

Figure 4. Biological GO (gene ontology) pathways for all human PAD isozymes, relating to immunity.
Immune related GO biological pathways are highlighted for protein–protein interaction networks
of binding partners with all PAD isozymes (PAD 1,2,3,4,6) as a group. Colour code for the different
pathways is shown within the figure. Individual coloured lines represent specific protein interactions
that have been identified through interactions that are known (referring to experimentally determined
connections and curated databases), through interactions that are predicted (referring to gene
fusion, gene neighbourhood, gene co-occurrence) or through interactions identified via text mining,
co-expression or protein homology (please refer to the colour key provided in the figure for the different
connective lines) (PPI enrichment p-value: < 1.0 × 10−16).

STRING pathways for PAD1 revealed a range of immunological GO pathways, including
phagocytosis, VEGF signalling, immune effector processing and programmed cell death (Figure 5A),
while the KEGG pathway relates to infection and associated immune responses (Figure 5B). Roles in
skin related responses, as well as immune responses, were further confirmed with UniProt keywords,
which included skin diseases, phagocytosis, citrullination/deimination and apoptosis (Figure 5C).
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Figure 5. GO and KEGG analysis for PAD1, highlighting GO biological pathways (A) KEGG 
pathways (B) and UniProt keywords (C). Colour code for the different pathways is shown within the 
figure. Individual coloured lines represent specific protein interactions that have been identified 
through interactions that are known (referring to experimentally determined connections and 
curated databases), through interactions that are predicted (referring to gene fusion, gene 
neighbourhood, gene co-occurrence) or through interactions identified via text mining, 
co-expression or protein homology (please refer to the colour key provided in the figure for the 
different connective lines) (PPI enrichment p-value: 8.01 × 10−8). 

Furthermore, PAD2 protein interaction networks indicate a strong role in immune responses, 
including innate immunity, mucosal immunity, response to stress, anti-microbial, antifungal 
responses and, in particular, defence responses to viruses. Regulation of phagocytosis and 
neutrophil degranulation are also linked to PAD2 and its protein interaction partners (Figure 6A). 
The reactome pathways for the PAD2 protein networks also verified a strong immune regulatory 
role (Figure 6B), and this correlated with identified UniProt keywords (Figure 6C). 

Figure 5. GO and KEGG analysis for PAD1, highlighting GO biological pathways (A) KEGG
pathways (B) and UniProt keywords (C). Colour code for the different pathways is shown within
the figure. Individual coloured lines represent specific protein interactions that have been identified
through interactions that are known (referring to experimentally determined connections and curated
databases), through interactions that are predicted (referring to gene fusion, gene neighbourhood, gene
co-occurrence) or through interactions identified via text mining, co-expression or protein homology
(please refer to the colour key provided in the figure for the different connective lines) (PPI enrichment
p-value: 8.01 × 10−8).

Furthermore, PAD2 protein interaction networks indicate a strong role in immune responses,
including innate immunity, mucosal immunity, response to stress, anti-microbial, antifungal responses
and, in particular, defence responses to viruses. Regulation of phagocytosis and neutrophil
degranulation are also linked to PAD2 and its protein interaction partners (Figure 6A). The reactome
pathways for the PAD2 protein networks also verified a strong immune regulatory role (Figure 6B),
and this correlated with identified UniProt keywords (Figure 6C).
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Figure 6. GO and Reactome pathway analysis for PAD2, highlighting immune related GO biological 
pathways (A) Immune related Reactome pathways (B) UniProt keywords (C) Colour code for the 
different pathways is shown within the figure. Individual coloured lines represent specific protein 
interactions that have been identified through interactions that are known (referring to 
experimentally determined connections and curated databases), through interactions that are 
predicted (referring to gene fusion, gene neighbourhood, gene co-occurrence) or through 
interactions identified via text mining, co-expression or protein homology (please refer to the colour 
key provided in the figure for the different connective lines) (PPI enrichment p-value: < 1.0 × 10−16). 

STRING analysis for PAD3 revealed biological GO pathways relating to skin physiology, 
cellular protein modification processes and cell differentiation, development, symbiosis and 
immune responses (Figure 7A), while Reactome pathways highlighted cornification and 
antimicrobial responses (Figure 7B). The Uniprot keywords related to skin-diseases and 
calcium-mediated pathways (Figure 7B), and this was also reflected in PFAM (protein families) 
protein domains highlighting pathways for calcium and cornification (Figure 7B). 

Figure 6. GO and Reactome pathway analysis for PAD2, highlighting immune related GO biological
pathways (A) Immune related Reactome pathways (B) UniProt keywords (C) Colour code for the
different pathways is shown within the figure. Individual coloured lines represent specific protein
interactions that have been identified through interactions that are known (referring to experimentally
determined connections and curated databases), through interactions that are predicted (referring
to gene fusion, gene neighbourhood, gene co-occurrence) or through interactions identified via text
mining, co-expression or protein homology (please refer to the colour key provided in the figure for the
different connective lines) (PPI enrichment p-value: < 1.0 × 10−16).

STRING analysis for PAD3 revealed biological GO pathways relating to skin physiology, cellular
protein modification processes and cell differentiation, development, symbiosis and immune responses
(Figure 7A), while Reactome pathways highlighted cornification and antimicrobial responses (Figure 7B).
The Uniprot keywords related to skin-diseases and calcium-mediated pathways (Figure 7B), and this
was also reflected in PFAM (protein families) protein domains highlighting pathways for calcium and
cornification (Figure 7B).
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Figure 7. GO and Reactome pathway analysis for PAD3, highlighting GO biological pathways
(A) Reactome pathways, UniProt keywords and PFAM protein domains (B) Colour code for the
different pathways is shown within the figure. Individual coloured lines represent specific protein
interactions that have been identified through interactions that are known (referring to experimentally
determined connections and curated databases), through interactions that are predicted (referring
to gene fusion, gene neighbourhood, gene co-occurrence) or through interactions identified via text
mining, co-expression or protein homology (please refer to the colour key provided in the figure for the
different connective lines) (PPI enrichment p-value: 2.22 × 10−16).
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The PAD isozyme which was found to be most involved in viral responses via STRING analysis
was PAD4, and the identified viral KEGG pathways for PAD4 via STRING are highlighted in Figure 8A.
The viral pathways identified included Hepatitis C, HTLV-I, Epstein–Barr virus, Herpes simplex,
Hepatitis B, papilloma virus, Influenza A, Kaposi’s sarcoma-associated herpes virus infection (KSHV),
viral carcinogenesis and viral myocarditis (Figure 8A). The immune related GO biological pathways
are summarised in Figure 8B, while immune related reactome pathways for PAD4 are highlighted in
Figure 8C, and the identified UniProt keywords in Figure 8D.

STRING analysis for PAD6 confirmed its known function in developmental and pre-implantation
processes, but the GO pathways also highlight dual processes in skin physiology as well as
immunity, involving cell differentiation and cell death (Figure 9A). UniProt keywords relate to
calcium processes and skin physiology, while PFAM domains relate to similar functions, including
calcium- and zinc-mediated processes (Figure 9B). GO pathways for molecular function highlight
epidermal, structural and calcium binding pathways (Figure 9C), and cornification is further
supported by GO Cellular component pathways and reactome pathways (Figure 9C). The link
to keratinization/cornification and skin is unexpected, as PAD6 is not known to be expressed in the
epidermis, and this link is only established via text mining (lime green line) linking PAD6 with Filaggrin
(FLG), Involucrin (IVL) and Trichohyalin (TCHH) (Figure 9).
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Figure 8. KEGG, GO and Reactome pathway analysis for PAD4, highlighting pathways relating to viral
infections (A) Immune related GO biological pathways (B) Immune related Reactome pathways (C) and
UniProt keywords (D) Colour code for the different pathways is shown within the figure. Individual
coloured lines represent specific protein interactions that have been identified through interactions
that are known (referring to experimentally determined connections and curated databases), through
interactions that are predicted (referring to gene fusion, gene neighbourhood, gene co-occurrence) or
through interactions identified via text mining, co-expression or protein homology (please refer to the
colour key provided in the figure for the different connective lines) (PPI enrichment p-value: 1.21 × 10−5).
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pre-implantation processes, but the GO pathways also highlight dual processes in skin physiology 
as well as immunity, involving cell differentiation and cell death (Figure 9A). UniProt keywords 
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Figure 9. GO and KEGG analysis for PAD6, highlighting GO biological pathways (A) UniProt keywords
and PFAM domains (B) and GO Molecular, GO cellular and Reactome pathways (C) Colour code for
the different pathways is shown within the figure. Individual coloured lines represent specific protein
interactions that have been identified through interactions that are known (referring to experimentally
determined connections and curated databases), through interactions that are predicted (referring
to gene fusion, gene neighbourhood, gene co-occurrence) or through interactions identified via text
mining, co-expression or protein homology (please refer to the colour key provided in the figure for the
different connective lines) (PPI enrichment p-value: 1. 0 × 10−16).
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3. Discussion

PADs play a multiplicity of roles in inflammatory diseases, including chronic and infectious
diseases. The roles for PADs in anti-viral responses have previously been identified, including
via the generation of NETosis [29], which can be mediated by PAD4. Higher amounts of cyclic
citrullinated/deiminated peptides in sera have indeed been related to infectious diseases, including
a number of viral, bacterial and parasitic infections [75,76]. Deimination has also been identified
to modulate chemokines in anti-HIV responses [30]. Furthermore, as PADs are phylogenetically
conserved proteins, and are utilised by various pathogens for immune evasion, their roles in infection,
as well as in zoonosis, may be of considerable interest. Co-infections or opportunistic infections
with other pathogens may also be of importance in the interplay with viral infections, and PAD
homologues in some bacteria have, for example, been shown to be able to act as an effective anti-viral
agent [77]. The roles for PADs in virus host–pathogen interactions may also be of considerable interest in
SARS-CoV-2 infection, as well as in secondary bacterial infections, and in relation to other multifaceted
comorbidities observed in COVID-19.

Our present study has identified that PADI1, 2, 3 and 4 were most modulated in SARS-CoV-2-
infected lung tissues (based on the analysis of samples from five patient cases), or lung-derived cells.
Furthermore, PADI2 and PADI4 were the isozymes showing highest variation in SARS-CoV-2-infected
lung tissue, with PADI4 showing more dominance. PAD4 is indeed linked to multiple viral KEGG
pathways, and is furthermore considered one key-driver of NETosis [29]. There was some variation in
other PAD isozymes regarding whether they were elevated or reduced, and this may be somewhat
reflected in the high individual variation observed for all PADI isozymes in the five cases present in the
BioProject data. Elevated PADI4 may lead to more active defences and an increased NETosis, but may
possibly also result in over-activation of inflammatory responses and destruction of surrounding
tissue [78,79]. On the other hand, reduced PADI4 levels may contribute to less active defences against
viral infection, due to gene regulatory changes, changes in deimination of immune related proteins,
or impaired NETosis in these individuals. It remains to be further investigated whether the virus may
manipulate PADI4 expression, as an immune evasion mechanism, or for example whether individuals
with lower PADI4 expression are more prone to SARS-CoV-2 infection.

PADs are furthermore implicated in other COVID-related comorbidities, such as myocardial
responses [5], and myocardial deimination/citrullination has been observed in coxsackievirus
B3-induced viral myocarditis [80]. Viral myocarditis has furthermore been related to KEGG pathways
identified for deiminated proteins in comparative bovine animal models [48]. The involvement
of modulated PADI expression in viral-induced myocarditis, including in relation to COVID-19,
may therefore be of considerable interest. Myocardial deimination has also been assessed in relation
to rheumatoid arthritis (RA) [81], one of the major PAD-associated diseases [82], and interestingly,
anti-RA drugs have been considered candidate therapies in COVID-19 [83,84]. PADI3 was here the
overall isozyme which was observed to be elevated in heart tissue in SARS-CoV-2 biopsies, while
PADI4 was elevated in the heart tissue of one case. These findings will need further validation in larger
cohorts, and also with the use of tissue-specific controls.

The individual variation of PADI isozyme expression observed here in SARS-CoV-2-infected
patient biopsies is of considerable interest, as it aligns with the great individual variation and the
broad spectrum of immunological response in COVID-19 patients, ranging from non-existent to
cytokine storm, as well as other comorbidities such as myocarditis, stroke and extreme vascular
responses. Furthermore, as the different PADIs, based on BioProject analysis, do respond differently
in different patients, their deiminated target proteins also need further evaluation in order for us to
build a larger picture of downstream effects. Using a range of comparative animal models, we have
previously identified that target proteins of deimination link to a range of immune and pathogenic
pathways, including anti-viral ones [47,48]. Furthermore, PADs are linked to a range of autoimmune
diseases, some of which are comorbidities with COVID-19. Therefore, it will be crucial to evaluate
downstream targets, namely post-translationally deiminated proteins, as these will be modified in
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structure and function due to PAD activation and dysregulation, possibly also influenced by PADI
RNA levels per se, although in addition the Ca2+-mediated activation of the PAD enzymes is crucial
for the post-translational deimination of target proteins. One major shortcoming in the BioProject
study is that the control samples are from the lung only, and therefore PADI-expression levels in
the other SARS-CoV-2 tissues, besides lung, cannot be directly compared with the corresponding
tissue-specific control.

The role for PADs in secondary bacterial and/or other opportunistic infections is also of considerable
importance. PADs are associated with a range of bacterial infections, including their role in endotoxic
shock, also relating to pulmonary dysfunction [32,36] and sepsis [33,34], where PADI4 levels have
been associated with ICU (intensive care unit) mortality [35], as well as in antibiotic resistance, where
roles for PAD2 and PAD4 have been described [39]. Deimination of anti-microbial peptides during
rhinovirus infection has previously been identified [31], and furthermore, deimination of chemokines
has been shown to modulate immune responses against HIV [30], and may be a downstream factor in
PADI modulation in COVID-19, warranting further exploration. In addition, the generation of NETosis
has been related to airway obstruction during respiratory syncytial virus disease [40], and as this is
partly PAD4-related, such effects in response to SARS-CoV-2 will require further assessment.

In the BioProject in vitro models, two different lung cell lines were assessed following SARS-CoV-2
infection, namely human bronchial epithelial cells (NHBE) and an adenocarcinoma human alveolar
basal epithelial cell line (A549). From this data, compared with control mock-infected cells, we found
that PADI1, PADI2 and PADI4 mRNAs were elevated in the infected NHBE cells (but PAD3 and
PADI6 were downregulated), while only PADI2 was elevated in infected A549 cells (but PADI1 and
PADI3 were downregulated). This indicates differences between normal versus cancerous lung cells,
indicating a link between PADI1, PADI2 and PADI4 in normal lung tissue responses and SARS-CoV-2
infection, which aligns with the reported roles of PADI1, 2, and 4 isoforms in immune responses,
as well as for PADI2 and PADI4 in anti-viral responses specifically. In the adenocarcinoma lung cells,
PADI4 mRNA levels stayed similar in SARS-CoV-2-infected compared to mock infected cells, possibly
indicating lower viral defence mechanisms via PAD4, while PADI2 was elevated, and may be the
dominating PADI isoform acting as part of its anti-viral and pathogenic immune related functions in
this cell line. PAD4 has previously been shown to be elevated in lung adenocarcinoma, to play roles
in A549 EMT transition [85,86] and to be important for PAD4-mediated NETosis in lung epithelial
malignancies [87], while PADI2 has been related to prostate cancer proliferation [88] and is elevated in
breast cancer [89]. Therefore, it may be speculated that the increased PADI2 expression levels in A549
cells may lead to alterations in these cancer cells in order to promote cell survival and pathogenesis.
It must be stressed, though, that the current study only evaluated PADI mRNA levels, but not protein
levels, as only mRNA data are available in the BioProjects.

The roles of PADs in mucosal immunity are important. PADI expression has been described
in mammalian mucosal tissues, including uterus, gastric and colon tissues [90,91], where changes
in deimination are associated with ulcerative colitis and cancer pathogenesis [92], and in bronchial
and alveolar mucosa in response to harmful stimuli [50], as well as in lung inflammation and cystic
fibrosis [51–53]. Indeed, in comparative animal models, we have recognised important roles for
PADs and PAD-mediated NETosis in teleost mucosa, which mirrors the human mucosal surfaces
present in the respiratory tract, intestine and uterus [41,43]. The ability of viruses to induce NETosis
is indeed recognised [93], and NETosis is also associated with inflammatory responses and infection
in various mucosal surfaces, including the gut [41,94], and in antimicrobial defence in the oral
mucosa [95]. In the current study, we did find that PADI1, PADI2, PADI3 and PADI4 mRNA was low
in SARS-CoV-2-infected bowel tissue compared with normal lung tissue, while PAD6 mRNA was not
affected, and in jejunum PAD3 mRNA was low, compared with normal lung tissue. These findings
will need to be validated against tissue-specific controls in future studies, and furthermore, although
the mRNA levels are not elevated, activation of the PAD enzymes and the consequential downstream
deimination in response to viral infection may still occur.
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Another aspect that will need to be considered in future studies is the regulatory roles of PADs
in extracellular vesicle (EV) release [39,54–56], which we have shown to be differently regulated
by the different PAD isozymes [23]. EVs play major roles in infectious disease [57] and can also
aid viral immune evasion [96]. The diverse roles for EVs in mucosal tissues, and their relevance in
various mucosal-related diseases and in the physiological function of mucosal surfaces, are gaining
attention [44]. Important roles for EVs have been implicated in oral mucosa and wound healing [97],
intestinal inflammation and repair [98], host–pathogen interactions in intestinal infections [99],
including via PAD-mediated pathways [69], and in intestinal mucosal immunity [100], as well as in
airway tissue, lung disease and in allergic response [101–104]. Indeed, the regulation of EVs, their use
as biomarkers and their application in the therapeutic intervention of COVID-19, have all recently
been highlighted [61–63,105–107]. Therefore, the contribution of the different PAD isozymes in the
regulation of EV release, also relating to tissue-specific PAD expression, will need to be explored in
relation to SARS-CoV-2 infection in future in-depth studies.

Detailed exploration into the target proteins of PAD-mediated deimination in COVID-19 will need
further assessment, as the subcellular distribution of deiminated proteins is tissue type-dependent [108].
The citrullinome of chronic diseases has been reported, including rheumatoid arthritis (RA), multiple
sclerosis (MS) and Alzheimer’s disease (AD) [82,109,110], as well as in a range of taxa throughout
the phylogenetic tree, both in plasma and the EV secretome [39,44–48,66,67,111]. Interestingly, the
enrichment of deiminated proteins for KEGG pathways relating to viral infection has recently been
identified in the serum and serum EVs of alligator and cow, both which are animals with unusual
anti-viral responses [47,48]. Furthermore, both shark and llama nanobodies have recently been
identified as targets of PADs, and as being post-translationally deiminated [45,46], as have cow
immunoglobulins (Ig’s) [48], and this may be of considerable importance as these are currently
being screened for their neutralising activity against SARS-CoV-2, with great promise for llama
nanobodies [112,113]. The assessment of PAD-mediated pathways across taxa is therefore a valuable
approach to furthering understanding of this phylogenetically conserved pathway, which still requires
much exploration with respect to infectious, including zoonotic, diseases.

A somewhat unsuspected comorbidity of COVID-19 is stroke [12]. PADs and deimination have
indeed been recognised as a significant component in hypoxic ischaemic brain injury [25,26], as well as
in traumatic and blast brain injury [114,115], and may contribute to autoimmune dysfunction in the
chronic pathology following such events. The relationship between SARS-CoV-2 infection and stroke
may be somewhat linked with the high vascular inflammatory reaction and vascular component seen
in many COVID-19 cases, including also effects on pericytes [4], and therefore also with putative effects
on the blood–brain barrier. Interestingly, a recent study by our group identified that in pre-motor
Parkinson’s disease (PD), the brain vasculature is heavily deiminated, identifying a novel contribution
of PAD-mediated deimination to brain endothelial cell responses [116], possibly also occurring as a
systemic inflammatory response. Deimination changes in the brain vasculature could possibly have
implications with respect to the chronic CNS changes that have been suggested to possibly occur
following SARS-CoV-2 infection, including in relation to age-related neurodegenerative disorders [117].
In the pre-motor PD brain vasculature, PAD4 was found to be the dominating PAD isozyme to be
upregulated [116], and this isozyme also has the strongest link to viral infections, including SARS-CoV-2,
as observed here in our current study. As COVID-19 is increasingly being acknowledged to have a heavy
vascular component, indicating that endothelial cells may be essential contributors to the initiation and
propagation of severe COVID-19 [4], deimination in the vasculature in multiple organs in response
to SARS-CoV-2 infection remains to be further investigated. This may offer an explanation for the
unusual vascular responses observed, as well as some of the unexplained stroke and other neurological
aspects of COVID-19, which are possibly partly linked to deimination in the brain vasculature and the
downstream effects, as previously discussed in relation to pre-motor PD (which also has a considerable
inflammatory component) [116]. A recent link between COVID-19 and Guillain–Barré syndrome (GBS),
an acute immune-mediated polyradiculoneuropathy, has also been revealed [118,119]. Although PADs
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are implicated in peripheral nerve diseases, a direct link to GBS has before now not been successfully
established [120,121], although it has to be highlighted that case studies have mainly assessed the
presence of citrullinated auto-antibodies [122], and therefore other PAD-mediated pathways remain
to be investigated in GBS. Furthermore, a hypoxic component, due to the severe lung reaction,
may also result in downstream activation of the PAD-mediated pathways that have been shown
to contribute to hypoxic injury, including in the CNS [25,26,123]. In addition, the roles of PADs in
inflammatory diseases are well acknowledged, including via PAD4-mediated NETosis [124], which has
also been observed in the impaired CNS [24,25,116]. Indeed, the accumulation and extravasation of
neutrophils is one of the responses of endothelial cells to SARS-CoV-2 infection, and it is suggested
to contribute to tissue damage [4], possibly also inducing PAD-mediated NETosis. Importantly, as
our paper goes to press, a surveillance study has just been published in the Lancet highlighting
neurological complications in COVID-19, calling out for identification of, and investigations into,
putative underlying mechanisms [125].

The effects on the kidneys of COVID-19 have been frequently observed, with clinical presentation
ranging from mild proteinuria to progressive acute kidney injury [9,10]. In previous studies,
PAD inhibition has been shown to protect against kidney, skin and vascular disease in a mouse model of
lupus, including via the disruption of NET formation [126]. PAD4 has also been found, in patients, to be
involved in the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis
(AAV) [127]. Furthermore, neutrophil-derived PAD4 has been linked to ischaemia–reperfusion kidney
injury [128], where PAD4 has been found to promote renal tubular inflammation, neutrophil infiltration,
and NF-κB activation [129]. In our current study, we did observe some changes in PAD expression in
SARS-CoV-2-infected kidney biopsies, including elevation of PADI4, PADI1, PADI3 and PADI6 mRNA
in some of the five cases. Interestingly, both PAD1 and PAD3 are strongly related to skin diseases
and physiology [74] and also have implications in immunity, PAD3 has for example been identified
in neuroinflammation [24]; however, they have not been studied in relation to kidney injury, which
hitherto has mainly focussed on PAD4. The roles of other PADs, besides PAD4, therefore warrants
further exploration in relation to kidney injury in COVID-19.

Our current study identified that in the liver, PADI2 and PADI4 were elevated in SARS-CoV-2
biopsies, compared with control lung biopsies, and the roles of PAD2 have previously been identified in
liver fibrosis [130], while PAD4-mediated NETosis has been linked to liver vasculature and liver injury
in bacterial infection [131]. In fat, PADI2 mRNA was downregulated, while the other PADIs were
unchanged, compared with normal control lung tissue. In marrow, PADI2 and PADI3 were elevated in
some SARS-CoV-2 biopsies, and interestingly PADI2 was found to be elevated in marrow mesenchymal
stem cells, which upregulates IL-6 via histone H3 deimination in multiple myeloma, contributing
to chemo-resistance [132]. Interestingly, PADI1 was elevated in the skin of SARS-CoV-2-infected
biopsies, and is known for its roles in skin physiology and diseases [74]. The high levels of PADI1
observed here in the SARS-CoV-2 skin biopsies may possibly contribute to some of the cutaneous
manifestations related to COVID-19, which include an erythematous rash, urticarial, chickenpox-like
vesicles, acral lesions (“COVID toes”) and livedoid lesions [11,133].

In summary, our findings suggest roles for PADs in SARS-CoV-2 infection, based on data extracted
from the public data on BioProjects for autopsy and in vitro samples. Our reported findings will need
further validation in larger patient cohorts, including tissue-specific controls for all tissue types, as the
current autopsy samples only used lung tissue as control. The identification of downstream deiminated
target proteins also remains a topic of future in-depth investigation. Overall, PADI isozyme mRNA
expression was found to show high individual variability, while PADI4 was a dominant isoform in
relation to SARS-CoV-2 infection overall. Importantly, as PADs are phylogenetically conserved and
take on multiple roles in host–pathogen interactions throughout the phylogenetic tree, their role in
zoonotic diseases is of great interest, and remains a field of further study. Our findings are promising
for the assessment of PAD-isozyme specific inhibitors, which have been developed and validated in a
range of chronic and CNS disease models, for possible use following SARS-CoV-2 infection.
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4. Materials and Methods

4.1. In Silico Analysis of BioProject Data for PADI Isozyme mRNA Expression in SARS-CoV-2 Versus Control
Lung Tissues

BioProject data was obtained from PRJNA615032 BioProject trancriptome data [134],
which includes lung biopsies from SARS-CoV-2-infected patients and healthy volunteers, as well
as mock and SARS-CoV-2-infected primary normal human bronchial epithelial cells (NHBE) and
lung cancer (A549) cell lines. Additionally, BioProject public data from PRJNA631753 was also
utilised, where biopsies from multiple tissues from 5 patients were assessed in comparison to
control lung tissue. The data have been deposited with links to BioProject accession number
PRJNA615032 and PRJNA631753 (Ting Lab, Cancer Center, Massachusetts General Hospital,
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA631753) in the NCBI BioProject database
(https://www.ncbi.nlm.nih.gov/bioproject/).

In the present study, all the selected data was reanalysed using the Rosalind bioinformatics server.
Data analysis was performed according to 1.25-fold change between mock and infected cell lines (NHBE,
human bronchial epithelial cells, and A549, adenocarcinoma human alveolar basal epithelial cells) in a
data pool calculation for both cell lines at p < 0.05 significance level. Data was analysed using Rosalind
(https://rosalind.onramp.bio/), with a HyperScale architecture developed by OnRamp BioInformatics,
Inc. (San Diego, CA, USA). The row factor for NHBE mock vs. SARS-CoV-2-infected cells was p < 0.001,
according to the heatmap plot presented. Other plot presentations present normalised data, which is
filtered according to the Rosalind algorithm.

Trimming of reads was performed using Cutadapt [135]. Assessment of quality scores was
performed using FastQC [136]. The resulting read alignment was performed with the Homo sapiens
genome build hg19 for PRJNA631753 and with GRCh38 for PRJNA615032, where STAR [137] was
used. Quantification of individual sample reads was carried out using HTseq [138], followed by
normalisation using Relative Log Expression (RLE) and DESeq2 R library [139]. The read distribution
graphs, percentages, identity heatmaps, as well as sample MDS plots, were generated using RSeQC,
as part of the QC step [140]. Fold changes were calculated using DEseq2, which was also used to
perform optional covariate correction and calculate p-values. Gene clustering for generation of the final
heatmaps was performed using the Partitioning Around Medoids (PAM) method to show differentially
expressed genes, using the fpc R library (https://cran.r-project.org/web/packages/fpc/index.html).

4.2. STRING Protein–Protein Interaction Network Analysis for PAD Isozymes

To predict and identify putative protein–protein interaction networks for the human PAD isoforms
(PAD1,2,3,4 and 6), STRING analysis (Search Tool for the Retrieval of Interacting Genes/Proteins;
https://string-db.org/) was carried out. The different protein networks were generated based on IDs of
the PAD isozymes. The following parameters were applied in STRING: function selected was “search
protein by name”, the chosen species database was “Homo sapiens”. Network analysis was further
carried out by applying “basic settings” and “medium confidence”. Nodes are connected by differently
coloured connecting lines, which represent interactions for the network edges, based on evidence as
follows: “known interactions”, which are based on experimentally determined interactions or curated
databases; and “predicted interactions”, which are based on co-expression, protein homology, gene
fusion, gene co-occurrence, gene neighbourhood, or are established by text mining.

4.3. Statistical Analysis

BioProject transcriptomics data was analysed using Rosalind (https://rosalind.onramp.bio/), with a
HyperScale architecture developed by OnRamp BioInformatics, Inc. (San Diego, CA, USA). Graphs
and heatmaps were prepared using GraphPad Prism version 7.0 (GraphPad Software, San Diego, CA,
USA). STRING analysis (https://string-db.org/) was used for prediction of protein-protein interaction
networks. Significance levels were was considered as p ≤ 0.05.

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA631753
https://www.ncbi.nlm.nih.gov/bioproject/
https://rosalind.onramp.bio/
https://cran.r-project.org/web/packages/fpc/index.html
https://string-db.org/
https://rosalind.onramp.bio/
https://string-db.org/
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5. Conclusions

The roles for the five different human PADI isozymes, in response to SARS-CoV-2 infection,
are here analysed for the first time, based on transcriptome BioProject data from patients’ biopsies and
in vitro experiments. While PADI4 seems particularly involved in SARS-CoV-2 infection, followed
by PADI2, the other PADI isozymes may also play some roles, and in the five patients assessed,
high individual variability was observed for all PADI isozymes, including PADI1, 3 and 6. It will
therefore be necessary to evaluate PADI isozyme expression, alongside protein levels, in larger
patient cohorts in further studies. The assessment of PAD-mediated effects on EV-regulation, and of
deiminated proteins produced by PAD isozyme activation in the different tissues, is furthermore of
pivotal importance, and the aim of future studies. Such analysis will allow for the identification of
deiminated target proteins and disease-specific EV-signatures, and will increase current understanding
of disease pathways relating to the wide range of symptoms and comorbidities observed in COVID-19.
Our study highlights roles for PADs in SARS-CoV-2 infection, and identifies them as putative drug
targets, including via PAD isozyme-specific targeting, for treatment in COVID-19.
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AAV
AAV (antineutrophil cytoplasmic antibody (ANCA))-associated
vasculitis

AD
CNS

Alzheimer’s disease
Central nervous system

CoV Coronavirus
COVID-19 Coronavirus disease 2019
ETM Epithelial-mesenchymal transition
EVs Extracellular vesicles
GBS Guillain-Barre syndrome
Ig Immunoglobulin
KEGG Kyoto encyclopedia of genes and genomes
NETosis Neutrophil extracellular trap formation
PAD Peptidylarginine deiminase
PD Parkinson’s disease
RA Rheumatoid arthritis
SARS Severe acute respiratory syndrome
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