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Abstract—This paper proposes an efficient learning mechanism
to build fuzzy rule-based systems through the construction of
sparse least-squares support vector machines (LS-SVMs). In addi-
tion to the significantly reduced computational complexity in model
training, the resultant LS-SVM-based fuzzy system is sparser while
offers satisfactory generalization capability over unseen data. It is
well known that the LS-SVMs have their computational advantage
over conventional SVMs in the model training process; however, the
model sparseness is lost, which is the main drawback of LS-SVMs.
This is an open problem for the LS-SVMs. To tackle the nonsparse-
ness issue, a new regression alternative to the Lagrangian solution
for the LS-SVM is first presented. A novel efficient learning mecha-
nism is then proposed in this paper to extract a sparse set of support
vectors for generating fuzzy IF–THEN rules. This novel mechanism
works in a stepwise subset selection manner, including a forward
expansion phase and a backward exclusion phase in each selec-
tion step. The implementation of the algorithm is computationally
very efficient due to the introduction of a few key techniques to
avoid the matrix inverse operations to accelerate the training pro-
cess. The computational efficiency is also confirmed by detailed
computational complexity analysis. As a result, the proposed ap-
proach is not only able to achieve the sparseness of the resultant
LS-SVM-based fuzzy systems but significantly reduces the amount
of computational effort in model training as well. Three experi-
mental examples are presented to demonstrate the effectiveness
and efficiency of the proposed learning mechanism and the sparse-
ness of the obtained LS-SVM-based fuzzy systems, in comparison
with other SVM-based learning techniques.

Index Terms—Efficient learning, fuzzy rules, fuzzy systems,
least-squares support vector machines (LS-SVMs), sparseness.

I. INTRODUCTION

FUZZY rule-based systems, with their origins from ancient
Greek philosophy and at the leading edge of computational

intelligence, have been successfully applied to many areas, such
as regression estimation, decision making, and pattern recogni-
tion [1]–[4]. The main thrust lies on their excellent learning ca-
pability and that the resultant fuzzy IF–THEN rules can provide a
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linguistic model interpretable to the users. The key stage in con-
structing fuzzy systems usually involves the rule extraction and
the associated parameter learning. It is desirable to find a sparse
set of fuzzy rules, which provides a concise interpretable expla-
nation of the behavior of the system under investigation. As a
result, a variety of rule extraction methods have been proposed
in the literature, including heuristic, adaptive, evolutionary, and
statistical learning methods.

Among various rule extraction methods, the grid partition
method was proposed to divide the input space into rectangular
subspaces based on a uniform partitioning of each input variable
into fuzzy sets [5]. To cope with the curse-of-dimensionality is-
sue caused by grid partitioning, various clustering methods were
devised for fuzzy rule generation [6]–[8], where the number of
fuzzy sets employed for each input variable is equal to the num-
ber of fuzzy rules used for the whole fuzzy system. Moreover,
rank-revealing methods like SVD-QR and Pivoted QR decom-
position [9]–[11] are used to determine the effective rank of
the matrix constructed from all the rule premises (i.e., the nor-
malized rule firing strength matrix) according to its singular
values. However, these methods only work in the input space;
thus, the selected rules may not necessarily be related to the
output; therefore, the final model performance may not be as
good as expected. Orthogonal least-squares (OLS) is another
well-researched method [12], [13], which is also used to per-
form rule base reduction on both the input and output spaces.
It is worth mentioning that the fast recursive algorithm (FRA)
developed recently by Li et al. [14] is a useful alternative to
OLS, which avoids any matrix decomposition during the subset
selection process. The gradient descent and evolutionary opti-
mization are also used in fuzzy rule extraction and parameter
learning to find better global solutions [15]–[18], but they are
still very time-consuming. Recently, the approach to use the
support vector machine (SVM) methodologies to extract sup-
port vectors (SVs) for generating IF–THEN rules and thus to
describe the fuzzy system in terms of kernel functions has at-
tracted a lot of research interest in the rule extraction and hereby
constitutes the main topic of this paper.

SVMs [19] are new techniques that aim to solve pattern clas-
sification problems, based on the principle of structural risk
minimization instead of mean squared-error minimization, thus
minimizing the upper bound on the model’s generalization er-
ror. Based on this, fuzzy rule extraction incorporating SVM or
support vector regression (SVR) has attracted a lot of interest
[20]–[23]. Chiang and Hao [20] first introduced fuzzy model
construction using SVM techniques, where the kernel function
in an SVM is related to the fuzzy basis function (FBF) to fuse
the two mechanisms into a fuzzy rule-based modeling method.
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The fuzzy rules are generated using the learning mechanism for
extracting SVs, where the number of fuzzy rules is then equal
to the number of SVs. To further decrease the number of fuzzy
rules, a Takagi–Sugeno (T–S) fuzzy system based on support
vector regression (TSFS-SVR) was proposed [23]. In the TSFS-
SVR, the number of fuzzy rules was determined by a one-pass
clustering algorithm, and a new T–S kernel corresponding to
a T–S-type fuzzy rule was constructed from the product of a
cluster output and a linear combination of input variables.

However, apart from the fact that a large number of SVs
may be generated by the SVM learning mechanism, another
issue is the high computational complexity involved in solv-
ing a dual quadratic programming (QP) problem, which leads
to the development of least-squares SVMs (LS-SVMs). The
LS-SVMs were thus proposed by modifying the inequality con-
straints in the two-norm SVMs, resulting in solving a linear
Karush–Kuhn–Tucker (KKT) system rather than solving the QP
problem in the traditional SVM. Unfortunately, a major draw-
back of an LS-SVM model is its nonsparseness [24], where
all the training patterns are used as SVs in the final classi-
fier. The complexity of the final classifier after learning from
data thus is extremely high. Therefore, despite the computa-
tional advantage of LS-SVMs, their nonsparseness issue still
restricts the development of LS-SVM-based fuzzy systems as
the final rule base can be extremely large where the number
of fuzzy rules is equal to the number of training patterns. It is
worth noting that a conventional strategy to overcome this draw-
back is to impose sparseness by pruning [25], where a series of
LS-SVMs are continuously trained, and each time, a small
fraction (for example, 5%) of the instances in the training
dataset with smallest support values are discarded. However,
this procedure inevitably increases the computational burden,
and the resultant model performance cannot be guaranteed.
Two fast sparse approximation schemes (i.e., FSALS-SVM and
PFSALS-SVM) were also proposed for training LS-SVMs [26].
They are based on the greedy algorithm with the aid of view-
ing the Wolfe dual problem of LS-SVMs as a regularized loss
function induced by reproducing Kernel–Hilbert space (RKHS).
Based on these observations, this paper mainly concerns the
sparseness issue as well as the computational demand associ-
ated with the development of LS-SVM-based fuzzy systems.

The main contribution of this paper is the proposal of an
efficient learning mechanism for the construction of sparse
LS-SVM-based fuzzy systems with significantly reduced com-
putational demand. The novel techniques employed are sum-
marized as follows. First, the LS-SVM learning mechanism is
employed to provide a framework to extract SVs for generating
fuzzy IF–THEN rules and to formulate the fuzzy rule-based sys-
tem in the form of a series expansion of FBFs. To deal with the
nonsparseness issue for a conventional LS-SVM, a new regres-
sion solution to the Lagrangian one for solving the LS-SVM
is presented. This regression solution is obtained by optimizing
the same objective function defined in the LS-SVM and has
a better objective value compared with the conventional one.
Second, a novel learning mechanism is then proposed to extract
a sparse set of SVs for generating fuzzy IF–THEN rules from
the training instances. The novel mechanism works in stepwise

subset selection manner, where in each step, it includes a for-
ward expansion phase to select the most significant SVs and a
backward exclusion phase to reevaluate the least insignificant
SVs that are selected previously, and both phases work in a reg-
ularized least-squares sense. Finally, a few key techniques are
proposed to completely avoid the matrix inverse operations and
to accelerate the training process, leading to the proposal of the
efficient learning algorithm with low computational complex-
ity. It is also worth mentioning that the second-stage technique
[27] used to refine a subset of fixed size has shown to be ex-
tremely effective when applied to improve the results produced
by stepwise forward subset selection approaches. However, its
computational demand is still high, and furthermore, the origi-
nal second-stage algorithm was used to select a subset of terms
of a fixed size. In this paper, the second-stage idea is also imple-
mented in the proposed algorithm to demonstrate that the out-
standing performance can be achieved by our method. With all
these key technologies, the proposed approach can thus achieve
both computation reduction and model sparseness in developing
the LS-SVM-based fuzzy systems, and either of the two advan-
tages surpasses the respective strength inherent from the con-
ventional SVMs or LS-SVMs. Three simulation and real-world
examples on modeling, prediction, and classification problems
are presented, respectively, to demonstrate the efficiency of the
novel learning mechanism and the sparseness of the constructed
LS-SVM-based fuzzy systems.

This paper is organized as follows. Section II gives a brief
description of the fuzzy rule-based systems. The mathemati-
cal formulation of the LS-SVMs and the new regression so-
lution are then presented in Section III. Section IV proposes
the efficient learning mechanism for the construction of sparse
LS-SVM-based fuzzy systems. Results from three applications
on nonlinear system modeling, melt pressure prediction in poly-
mer extrusion, and mammographic masses diagnosis are pre-
sented in Section V. Finally, Section VI concludes this paper.

II. FUZZY RULE-BASED SYSTEMS

This section describes the mathematical formulation of the
fuzzy rule-based systems. As indicated in [10] and [20], the
spirit of fuzzy rule-based systems applies the strategy of “divide
and conquer,” in which by using a number of interpretable fuzzy
rules, their premise part is first used to partition the original input
space into a set of small fuzzy input regions, and the consequent
part is then employed to describe the system behavior within that
small fuzzy region via various constituents. Therefore, the most
common fuzzy rule-based system consists of a set of linguistic
fuzzy rules, the ith rule being represented by

Ri : IF x1(t) = Ai,1 AND x2(t) = Ai,2 AND . . . AND

xn (t) = Ai,n , THEN ŷi(t) = θi, i = 1, . . . ,m (1)

where t denotes the sampling instant, i is the rule index with
a total of m fuzzy rules, x(t) = [x1(t), . . . , xn (t)] ∈ �n is an
n-dimensional input vector for the system of interest, Ai,j is
the fuzzy set associated with the ith rule corresponding to the
input variable xj (t), θi is the constant constituent for the ith rule
consequent, and ŷi(t) is the output variable for the ith rule in
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the fuzzy system. The Gaussian membership function defined
as

μi,j (xj (t); ci,j ;σi,j ) = exp

{
−1

2

(
xj (t) − ci,j

σi,j

)2
}

(2)

is commonly employed for the fuzzy set Ai,j in the input space,
where ci,j and σi,j denote, respectively, the center and standard
deviation of the ith membership function with regard to the
jth input (j = 1, . . . , n). To infer the fuzzy system output, the
T-norm operators are applied to compute the ith rule firing
strength

μi(x(t); ci ;σi) =
n∏

j=1

exp

{
−1

2

(
xj (t) − ci,j

σi,j

)2
}

(3)

where ci = [ci,1 , . . . , ci,n ]T ∈ �n and σi = [σi,1 , . . . , σi,n ]T

∈ �n . Then, the degree of fulfillment (normalized firing
strength) of the ith rule is given by

Ni (x(t);W) =
μi(x(t); ci ;σi)∑m
i=1 μi(x(t); ci ;σi)

(4)

where W = [cT
1 ,σT

1 , . . . , cT
m ,σT

m ]T denotes the premise pa-
rameter vector. The weighted-average-defuzzification method
can then be employed to calculate the overall output of the
fuzzy rule-based system, such that

f(X(t);W;Θ) =
m∑

i=1

Ni (x(t);W) θi (5)

where Θ = [θ1 , . . . , θm ]T denotes the consequent parameters
vector. Note that Ni (x(t);W) is also called as the FBF. In this
circumstance, the fuzzy rule-based system can be viewed as
a series of FBF expansions. This linear combination of FBFs
is capable of approximating any continuous nonlinear function
on a compact set to arbitrary accuracy, provided that sufficient
fuzzy rules are made available.

III. LEAST-SQUARES SUPPORT VECTOR MACHINE

AND ITS NEW REGRESSION SOLUTION

SVM [19], [28] is a recently proposed technique that aims
to solve pattern classification problems, where it is used to
find a hyperplane h · x (h is a vector consisting of the associ-
ated unknown parameters) that can separate two-class patterns
with the maximum margin. This is because maximizing the
two-class margin is equivalent to minimizing the upper bound
on the model’s generalization error (i.e., structural risk min-
imization). Due to the high computational complexity gener-
ally involved in solving the QP problems in the dual space in
SVM, LS-SVM was proposed by modifying the inequality con-
straints in a conventional two-norm SVM. The LS-SVM takes
the form of h · φ(x(t)), in which the nonlinear function φ(x(t))
maps the original input data into some high-dimensional feature
space, i.e., x(t) ∈ �n → φ(x(t)) ∈ �H , aiming to cope with
the linear unseparated problem. Given a set of training patterns
{x(t), y(t)}N

t=1 ∈ �n × {±1}, the classification problem in an

LS-SVM is now defined as

min
h,ε(t)

1
2
‖h‖2 +

1
2μ

N∑
t=1

ε(t)2

subject to ε(t) = y(t) − h · φ(x(t)) (6)

where μ is a regularization parameter that determines the bias-
variance tradeoff. Its solution can be obtained by introducing
the Lagrangian

L(h, ε,α) =
1
2
‖h‖2 +

1
2μ

N∑
t=1

ε(t)2

−
N∑

t=1

αt{h · φ(x(t)) + ε(t) − y(t)} (7)

where α = (α1 , α2 , . . . , αN ) ∈ �N is the vector of Lagrange
multipliers. The minimum value with respect to h, ε(t), and αt

is obtained by solving the following well-known KKT system:

∂L
∂h

= 0 ⇒ h =
N∑

t=1

αtφ(x(t))

∂L
∂ε(t)

= 0 ⇒ αt =
ε(t)
μ

∀t ∈ {1, 2, . . . , N}

∂L
∂αt

= 0 ⇒ h · φ(x(t)) + ε(t) − y(t) = 0

∀t ∈ {1, 2, . . . , N}. (8)

These equations can be rewritten concisely in a matrix form as

Mα = y (9)

where M = K + μI is a definite symmetric matrix, and
Ki,j (x(i),x(j)) = φ(x(i)) · φ(x(j)) is known as the kernel
function. By using (8), the LS-SVM classifier can now be rewrit-
ten as

f(x) =
N∑

i=1

αiK(x(i),x). (10)

It is observed from (9) and (10) that the mapping func-
tion φ(·) involved in solving the KKT system and in pro-
ducing the final model output does not have to be known
exactly. Instead, the value of interest is the kernel function
Ki,j = 〈φ(x(i)) · φ(x(j))〉, which is vividly referred to as the
well-known kernel trick. The linear KKT system in (9) can now
be efficiently solved by using direct methods, such as Cholesky
decomposition as M is positive definite. However, a major draw-
back of an LS-SVM model lies in its nonsparseness [24]. It can
be shown in the second equation of (8) that the values of αt

(t = 1, . . . , N ) shall never be zero because ε(t) (t = 1, . . . , N )
are nonzero. All training patterns are supposed to contribute
to the final model, the importance of each being indicated by
its support value. As a result, the LS-SVM obtained will lose
sparseness, and the size of the resultant model can be extremely
large. This is perhaps the main reason that limits the develop-
ment of LS-SVM-based fuzzy systems. In this paper, a sparse
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LS-SVM learning mechanism will be proposed and integrated
into the compact fuzzy rule extraction.

To deal with the nonsparseness issue in the LS-SVM, a new
regression solution to the Lagrangian one to solve the LS-SVM
is first given. In the aforementioned conventional solution of the
LS-SVM presented in (9) and (10), the kernel trick is adopted
to deal with the linear inseparable cases in classification. As a
result, the necessity of knowing the exact mapping function used
to map the input data into some high-dimensional feature space
is no longer required. The authors have recently proposed a
method [29] by first assuming that the mapping function φ(x(t))
is already known and given by

φ(x(t)) = [ϕ1(x(t)), ϕ2(x(t)), . . . , ϕm (x(t))]T

with ϕi(x(t)) = exp
{
−1

2
(x(t) − si)TΓ−1

i (x(t) − si)
}

i = 1, . . . , m (11)

where si ∈ �n (i = 1, 2, . . . , m) are some data vectors from
input space, which can be chosen from the training patterns
or otherwise. This way, the original input space Fn is thus
transformed into another high-dimensional feature space Fm .

Accordingly, the primal optimization problem of the LS-SVM
defined in (6) can thus be reformulated as

min
h

J(h) =
1
2
‖h‖2 +

1
2μ

N∑
t=1

(y(t) − h · φ(x(t)))2 . (12)

This constitutes a regularized least-squares problem, which is
also called ridge regression in statistics. The primal optimization
problem in the LS-SVM has thus been successfully transformed
into a regularized least-squares one, avoiding the KKT problem
described in (8). Considering that the gradient of the cost func-
tion (12) with respect to the parameter vector h has to be zero,
the estimated optimal parameter vector is then given by

ĥ = (ΦTΦ + μI)−1ΦTy (13)

where Φ = [ϕ1 ,ϕ2 , . . . ,ϕm ] ∈ �N ×m is the regression ma-
trix, with ϕi = [ϕi(x(1)), ϕi(x(2)), . . . , ϕi(x(N))]T ∈ �N ,
i = 1, . . . , m. Each row in the whole mapping matrix Φ de-
notes a high-dimensional mapping space for an input vector,
while each column denotes one dimension for a subspace of all
the input data. The LS-SVM classifier can thus be written as
follows for a new test vector x from the input space:

f(x) = h · φ(x) =
m∑

i=1

hiϕi(x). (14)

Similar to the definition of SVs in an SVM and in the conven-
tional solution of a LS-SVM, these si that here correspond to
hi (having nonzero values) that contribute to the final model
output are the SVs. As in the conventional solution to an
LS-SVM where all the training patterns themselves act as SVs,
the regression matrix Φ ∈ �N ×m (m = N ) produced from us-
ing all the training patterns as SVs in our proposed solution

turns out to be

Φ ∈ �N ×N =

⎡
⎢⎢⎣

ϕ1(x(1)) ϕ2(x(1)) · · · ϕN (x(1))

ϕ1(x(2)) ϕ2(x(2)) · · · ϕN (x(2))
· · · · · · · · · · · ·

ϕ1(x(N)) ϕ2(x(N)) · · · ϕN (x(N))

⎤
⎥⎥⎦.

(15)
This is identical to the kernel matrix K(x(i),x(j)) presented
previously for the conventional solution to LS-SVM. By us-
ing the conventional solution and our new solution to the primal
objective problem (6), both objective values can be obtained, as-
suming that all the training patterns are viewed as SVs. The supe-
riority of the new regression solution to the LS-SVM was com-
pared with the conventional one in [29]. It can be observed that
the kernel matrix K(x(i),x(j)) ∈ �N ×N in the conventional
solution is a special case of the regression matrix Φ ∈ �N ×m in
our solution. However, both ours and the conventional solutions
do not possess the sparseness property at this stage, which in
fact represents the main drawback of the LS-SVM models. It
is interesting to observe that the compulsory square property of
the matrix K(x(i),x(j)) in the KKT system (8) is no longer
required in our regression matrix. Changes in the value of m
indicate how many SVs will be included in the final LS-SVM
classifier and, in turn, determine the sparseness and the scale
of the classifier. This is a very important characteristic for the
novel learning mechanism to be presented in the next section.
In the proposed algorithm, since every column in the matrix Φ
corresponds to one dimension of the mapped high-dimensional
space, a subset of the training patterns can thus be chosen as the
SVs in the LS-SVMs.

IV. NOVEL EFFICIENT LEARNING MECHANISM

The aim of this paper is to develop a new fuzzy rule-based
system based on a sparse LS-SVM learning mechanism with the
model structure shown in Fig. 1. Similar as in SVM-based fuzzy
systems [20] (where the kernel function in SVMs is related to the
FBF), the FBF (4) is chosen as the mapping function (11) in our
proposed solution of LS-SVM, i.e., ϕi(x(t)) = Ni (x(t);W),
to fuse the two systems into a new LS-SVM-based fuzzy rule-
based system. Note that as usual, the denominator of the FBF is
removed since the number of fuzzy rules is unknown in advance.
There is no violation of the spirit of a fuzzy inference system as
described in [20], where the rule premises determine the confi-
dence values for all rules, while the rule consequents assign the
consequence of the inference system with the confidence val-
ues for the corresponding rules. As a result, the SVs extracted
from the LS-SVM learning mechanism can be applied in gen-
erating the fuzzy IF–THEN rules that correspond to the FBFs. In
this manner, the fuzzy systems produced can provide satisfac-
tory generalization capability over unseen data as in the case of
LS-SVM. Different from the conventional LS-SVM where all
training patterns serve as the SVs (thus causing nonsparseness),
a novel sparse LS-SVM learning mechanism is proposed in this
paper to produce rule selection in a fuzzy rule-based system.

The global optimization based on the new regression solu-
tion (13) of LS-SVMs still leads to the nonsparseness results,
as in the conventional solution (9). To tackle this problem, an
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Fig. 1. LS-SVM-based fuzzy system.

efficient learning mechanism based on the subset selection ap-
proach is proposed here to find a small subset of SVs. This is,
however, an NP-hard problem, which is widely acknowledged
as being extremely difficult to solve in terms of algorithm per-
formance and running time. It is generally impractical to find
the global optimal subset by performing exhaustive search due
to the huge computational burden (where the evaluation of all
the possible combinations of subsets from a total number of N
candidate SVs is needed). This is also reflected in the experi-
ment section. The novel learning mechanism proposed in this
paper works in a stepwise subset selection manner, including
a forward expansion phase and a backward exclusion phase on
each selection step. The fast recursive algorithm presented in
[14] is basically a fast and stable version of forward stepwise
subset selection method working in the least-squares sense. It
performs conditional optimization at each step under a given
number of regressors that have been included in the subset, and
the corresponding models are, therefore, usually suboptimal.
Unlike the fast recursive algorithm, the novel learning mech-
anism consists of not only a forward expansion phase but a
backward exclusion phase at each subset selection step as well,
both also working in a new regularized least-squares sense. It
is also different from the previously proposed second-stage al-
gorithm [27], [30], which initially targets a subset of fixed size.
The forward expansion phase at each step performs in the same
way as in the fast recursive algorithm but within a regularized
least-squares framework, instead of the least-squares approach.
Here, each time, the most significant item from the candidate
pool is added to the selected pool based in an efficient manner.
The backward exclusion phase is devised to assess the least in-
significant item that has been selected previously and, then, to
determine whether or not to remove it from the current selected
subset and return it to the candidate pool in order to determine
a subset containing the most significant items.

For notation convenience, a similar residue matrix as in [14]
is first defined as

Rk � I − Φk (ΦT
k Φk + μI)−1ΦT

k , k = 1, . . . ,m (16)

where Φk = [p1 , . . . ,pk ] represents the selected pool, which
is a subset of the regression matrix Φ and R0 = I ∈ �N ×N .
If there is no prior knowledge about the system of interest, the
number of initial regressors (equivalently SVs or fuzzy rules)
can be set as m = N . It is not difficult to find that Rk = RT

k , and
any changes in the order of the selected regressors p1 , . . . ,pk

(i.e., column vectors in the regression matrix Φk ) do not affect
the value of Rk . Based on the way in which the forward expan-
sion and backward exclusion phases are performed, two basic
theorems related to the residue matrix Rk are given below to
facilitate the required sparseness learning for LS-SVM-based
fuzzy systems.

Theorem 1: Assume Φk = [p1 , . . . ,pk ] is of full-column
rank and Rk is known a priori; then, the value of Rk+1 com-
puted from Rk by adding ϕi into Φk is given as

Rk+1([Φk ; +ϕi ]) = Rk − Rkϕiϕ
T
i RT

k

ϕT
i Rkϕi + μ

k = 0, 1, . . . ,m − 1, i = k + 1, . . . , m. (17)

Theorem 2: Assume that Φk+1 = [p1 , . . . ,pk+1] is of full-
column rank and that Rk+1 is known a priori; then, the value of
Rk computed from Rk+1 by removing pi from Φk+1 is given
as

Rk ([Φk+1;−pi ]) = Rk+1 +
Rk+1pipT

i RT
k+1

μ − pT
i Rk+1pi

k = 0, 1, . . . ,m − 1, i = 1, . . . , k + 1. (18)

In the above two theorems, [Φk ; +ϕi ] denotes adding a new
regressor ϕi from the candidate pool Ψk into the selected pool
Φk , and [Φk+1;−pi ] denotes removing a selected regressor pi

from the selected pool Φk+1 . The proofs of these two theo-
rems are given in Appendix A. In addition, note that the initial
candidate pool is set as Ψ0 = [ϕ1 , . . . ,ϕm ].

According to the solution given in (13), the optimal objective
function (12) to the LS-SVM is computed as

J(ĥ) =
1
2μ

{μĥT ĥ + (y − Φĥ)T(y − Φĥ)}

=
1
2μ

{μyTΦ(ΦTΦ + μI)−2ΦTy

+ yT[I − Φ(ΦTΦ + μI)−1ΦT]2y}

=
1
2μ

yT{μΦ(ΦTΦ+μI)−2ΦT +Φ(ΦTΦ+μI)−1ΦTΦ

× (ΦTΦ + μI)−1ΦT + I − 2Φ(ΦTΦ + μI)−1ΦT}y

=
1
2μ

yT{Φ[μ(ΦTΦ + μI)−1 + (ΦTΦ + μI)−1ΦTΦ]

× (ΦTΦ + μI)−1ΦT + I − 2Φ(ΦTΦ + μI)−1ΦT}y

=
1
2μ

yT{I − Φ(ΦTΦ + μI)−1ΦT}y. (19)
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Considering the residue matrix defined in (16), the optimal value
of the objective function (12) by using Φk becomes

Jk =
yTRky

2μ
. (20)

Thus, on adding one new regressor, say ϕi (i = k + 1, . . . ,m),
into the selected pool in the forward expansion phase at the (k +
1)th subset selection step, the objective value is correspondingly
decreased by

Δ−→
J k+1(ϕi) =

yT(Rk − Rk+1([Φk ; +ϕi ]))y
2μ

=
1
2μ

yTRkϕiϕ
T
i RT

k y
ϕT

i Rkϕi + μ
. (21)

On the contrary, deleting one such regressor, say pi (i =
1, . . . , k + 1), from the selected pool in the backward exclu-
sion phase at the (k + 1)th subset selection step, the objective
value is correspondingly increased by

Δ←−
J k+1(pi) =

yT(Rk ([Φk+1;−pi ]) − Rk+1)y
2μ

=
1
2μ

yTRk+1pipT
i RT

k+1y
μ − pT

i Rk+1pi
. (22)

In summary, at the (k + 1)th subset selection step, the for-
ward expansion phase is first executed, where the regressor
producing the largest objective reduction is chosen as the
(k + 1)th regressor and is involved in the selected pool, i.e.,
pk+1 = arg maxm

i=k+1Δ
−→
J k+1(ϕi). When the forward expan-

sion phase is completed, the backward exclusion phase is exe-
cuted to review the contribution of all previously selected regres-
sors. This is done by excluding the regressor with the smallest
contribution from the selected pool and, meanwhile, returning it
to the candidate pool, i.e., pr = arg mink+1

i=1 Δ←−
J k+1(pi). Note

that if pr is exactly the regressor pk+1 just selected at the
forward expansion phase, then the backward exclusion phase
is neglected. In this circumstance, it means that all the re-
gressors in the current selected pool are significant and, thus,
that no backward exclusion is needed. Since Δ←−

J k+1(pk+1) =
maxm

i=k+1Δ
−→
J k+1(ϕi), one can use mink

i=1Δ
←−
J k+1(pi) <

maxm
i=k+1Δ

−→
J k+1(ϕi) as the criterion to determine whether to

remove a regressor from the selected pool or not. To efficiently
compute the regressor contributions based on (21) and (22), the
following two sections give the efficient learning mechanism
for producing sparse LS-SVM-based fuzzy systems.

A. Forward Expansion Phase

In each forward expansion phase, the net contribution of a
regressor from the candidate pool to the objective function is
expressed in (21). Suppose that the kth regressor has just been
added into the selected pool; an intermediate matrix A ∈ �k×m

is thus generated with the kth row calculated as

ak,i =
{

pT
k Rk−1pi , i = 1, . . . , k

pT
k Rk−1ϕi , i = k + 1, . . . ,m.

(23)

Note that the first k − 1 rows are, therefore, generated in the
same way each time a new regressor is included into the model.
Thus, the number of rows in matrix A increases by one as the
selection procedure proceeds. By successively using (17), the
following can be inferred for efficient computation:

ak,i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pT
k pi −

k−1∑
j=1

aj,kaj,i/(aj,j + μ), i = 1, . . . , k

pT
k ϕi −

k−1∑
j=1

aj,kaj,i/(aj,j + μ), i = k + 1, . . . , m.

(24)

To continue decreasing the computational complexity of the
left-hand side entries in the kth row, it follows that

ak,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μai,k /(ai,i + μ) −
k−1∑

j=i+1

aj,kaj,i/(aj,j + μ)

i = 1, . . . , k − 1

pT
k pk −

k−1∑
j=1

a2
j,k /(aj,j + μ), i = k

pT
k ϕi −

k−1∑
j=1

aj,kaj,i/(aj,j + μ), i = k + 1, . . . ,m.

(25)

Further define a vector bk+1) ∈ �m , where its entries at the
(k + 1)th step are calculated as

b
k+1)
i =

{
pT

i Ri−1y, i = 1, . . . , k

ϕT
i Rky, i = k + 1, . . . , m

(26)

and another vector dk+1) ∈ �m , where

d
k+1)
i =

{
pT

i Ri−1pi , i = 1, . . . , k

ϕT
i Rkϕi , i = k + 1, . . . ,m.

(27)

The values for i = 1, . . . , k are kept unchanged from previous
selection steps, and then, using (17) for i = k + 1, . . . , m yields

b
k+1)
i =

{
b
k)
i , i = 1, . . . , k

b
k)
i − b

k)
k ak,i/(ak,k + μ), i = k + 1, . . . ,m

(28)

d
k+1)
i =

{
d

k)
i , i = 1, . . . , k

a
k)
i − a2

k,i/(ak,k + μ), i = k + 1, . . . , m.
(29)

With the aid of the matrix A and the vectors b and d, the con-
tribution of regressor ϕi (i = k + 1, . . . , m) from the candidate
pool at the (k + 1)th step can be reexpressed as

Δ−→
J k+1(ϕi) =

1
2μ

(bk+1)
i )2

d
k+1)
i + μ

, i = k + 1, . . . , m. (30)

As a result, the one with the largest objective reduction is se-
lected as the (k + 1)th regressor to be included into the system,
i.e., pk+1 = arg maxm

i=k+1Δ
−→
J k+1(ϕi). As long as this new

regressor is included in the selected pool, the next phase is to
review the significance of all the previously selected regressors.
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B. Backward Exclusion Phase

1) Model Review: Continuing from the forward expansion
phase, a total of k + 1 regressors have now been included
in the selected pool. Thus, the intermediate matrix/vectors
A ∈ �(k+1)×m , bk+2) ∈ �m , and dk+2) ∈ �m have been up-
dated correspondingly. A backward exclusion phase is then to
be performed, in which the significance of each selected regres-
sor in terms of the objective function is reevaluated as in (22).
Two vectors ck+1) ∈ �m and hk+1) ∈ �m are first defined with
their entries at the (k + 1)th step given by

c
k+1)
i =

{
pT

i Rk+1y, i = 1, . . . , k + 1

ϕT
i Rk+1y, i = k + 2, . . . ,m

(31)

h
k+1)
i =

{
pT

i Rk+1pi , i = 1, . . . , k + 1

ϕT
i Rk+1ϕi , i = k + 2, . . . , m.

(32)

Using (17) and comparing with the entries in bk+2) and dk+2) ,
the following results can be obtained:

c
k+1)
i =

⎧⎪⎨
⎪⎩

c
k)
i − ak+1,ibk+1/(ak+1,k+1 + μ)

i = 1, . . . , k + 1

b
k+2)
i , i = k + 2, . . . ,m

(33)

h
k+1)
i =

⎧⎪⎨
⎪⎩

h
k)
i − a2

k+1,i/(ak+1,k+1 + μ)

i = 1, . . . , k + 1

d
k+2)
i , i = k + 2, . . . ,m.

(34)

This way, the significance of a selected regressor pi given in
(22) can be computed as

Δ←−
J k+1(pi) =

1
2μ

(ck+1)
i )2

μ − h
k+1)
i

, i = 1, . . . , k + 1. (35)

As discussed before, if the criterion mink
i=1Δ

←−
J k+1(pi) <

maxm
i=k+1Δ

−→
J k+1(ϕi) is satisfied, then the previously selected

regressor with the least significance to the objective function,
say pr , will be excluded from the selected pool and returned
into the candidate pool. An efficient process for removing this
regressor from the selected pool is now detailed as follows.

2) Regression Context Reconstruction: All the intermediate
matrix and vectors used in the aforementioned forward expan-
sion and backward exclusion phases, such as A ∈ �(k+1)×m ,
bk+2) ∈ �m , ck+1) ∈ �m , dk+2) ∈ �m , and hk+1) ∈ �m , are
the key ideas behind the proposed algorithm and are referred to
as the regression context as in [27]. However, if one selected re-
gressor needs to be removed from the selected pool, as described
in Section IV-B.1, the regression context has to be updated. The
new regression context can be obtained by only again perform-
ing the forward expansion procedure using the current selected
order of regressors. Unfortunately, this is computationally inef-
ficient. Based on the techniques introduced in [27], a compu-
tationally more efficient algorithm is presented for reordering
the selected regressors. In more detail, suppose a previously
selected regressor pr is going to be removed from the current
selected pool; then, we first have to shift pr to the (k + 1)th
position (the last position) in the regression matrix Φk+1 as if it

was the last selected regressor. This shifted regressor pr is then
deleted from the last position in Φk+1 .

To shift pr to the last position in regression matrix Φk+1 ,
a series of basic interchanges between two adjacent regressors
have to be performed such that

p̄q = pq+1 , p̄q+1 = pq , q = r, . . . , k. (36)

Noting that any changes in the selected order of the regressor
terms do not affect the value of Rk+1 , it is obvious that R̄i

(i = 1, . . . , k + 1) only changes when i = q

R̄q = R([p1 , . . . ,pq−1 ,pq+1])

= Rq−1 −
Rq−1pq+1pT

q+1R
T
q−1

pT
q+1Rq−1pq+1 + μ

. (37)

With respect to matrix A, only the qth and the (q + 1)th
columns, as well as the qth and (q + 1)th rows, are changed.
For both the qth and (q + 1)th columns, the following holds for
i = 1, . . . , q − 1, q + 2, . . . , k + 1:{

āi,q = p̄T
i R̄i−1 p̄q = pT

i Ri−1pq+1 = ai,q+1

āi,q+1 = p̄T
i R̄i−1 p̄q+1 = pT

i Ri−1pq = ai,q .
(38)

In the qth row, entries from columns 1 to m are changed accord-
ing to

āq ,i = p̄T
q R̄q−1 p̄i = pT

q+1

(
Rq +

Rq−1pqpT
q Rq−1

pT
q Rq−1pq + μ

)
p̄i

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

aq,q+1 , i = q + 1

aq+1,q+1 + a2
q ,q+1/(aq,q + μ), i = q

aq+1,i + aq,q+1aq,i/(aq,q + μ), i = 1, . . . , q − 1
q + 2, . . . ,m.

(39)

Similarly, in the (q + 1)th row, entries from columns 1 to m are
changed as

āq+1,i = p̄T
q+1R̄q p̄i = pT

q (Rq−1 −
Rq−1pq+1pT

q+1Rq−1

pT
q+1Rq−1pq+1 + μ

)p̄i

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

aq,q −aq,q+1 āq ,q+1/(āq ,q +μ), i = q + 1

μaq,q+1/(āq ,q + μ), i = q

aq,i − aq,q+1 āq ,i/(āq ,q + μ), i = 1, . . . , q − 1
q + 2, . . . ,m.

(40)

With respect to the vector bk+2) , only the qth and the (q +
1)th entries are changed using (17) and (37) as before:{̄

b
k+2)
q = p̄T

q R̄q−1y = b
k+2)
q+1 + aq,q+1b

k+2)
q /(aq,q + μ)

b̄
k+2)
q+1 = p̄T

q+1R̄qy = b
k+2)
q − aq,q+1 b̄

k+2)
q /(āq ,q + μ).

(41)

For the vector dk+2) , only the qth and (q + 1)th entries are
changed using the corresponding diagonal entries of matrix A:

d̄k+2)
q = āq ,q , d̄

k+2)
q+1 = āq+1,q+1 . (42)
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Finally, for the two vectors ck+1) and hk+1) , only the qth and
the (q + 1)th entries are interchanged:{

c̄
k+1)
q = p̄T

q R̄k+1y = pT
q+1Rk+1y = c

k+1)
q+1

c̄
k+1)
q+1 = p̄T

q+1R̄k+1y = pT
q Rk+1y = c

k+1)
q

(43)

{
h̄

k+1)
q = p̄T

q R̄k+1 p̄q = pT
q+1Rk+1pq+1 = h

k+1)
q+1

h̄
k+1)
q+1 = p̄T

q+1R̄k+1 p̄q+1 = pT
q Rk+1pq = h

k+1)
q .

(44)

After performing k − r + 1 interchanges between two adja-
cent selected regressors as described above, the rth regres-
sor pr can be finally moved to the (k + 1)th position of
Φk+1 = [p̄1 , . . . , p̄k+1], i.e, pr = p̄k+1 , to produce a new re-
gression context.

3) Regressor Exclusion: Once the regressor pr in the last
position of the regression matrix has been determined for re-
moval, the new regression context then just requires some small
changes. First, the selected pool is temporarily updated by Φk =
[p̄1 , . . . , p̄k ] and the candidate pool by Ψk = [ϕk+1 , . . . ,ϕm ],
where ϕk+1 (or equivalently p̄k+1 or pr ) is the regressor that
was removed from Φk+1 . Thus, the residue matrix R̄k after
removing p̄k+1 is given by

R̄k = R([p̄1 , . . . , p̄k ]) = R̄k+1 +
R̄k p̄k+1 p̄T

k+1R̄
T
k

p̄T
k+1R̄k p̄k+1 + μ

. (45)

Using this formula, the vector bk+1) is updated by

b̄
k+1)
i ={

b̄
k+2)
i , i = 1, . . . , k + 1

b̄
k+2)
i + b̄

k+2)
k+1 āk+1,i/(āk+1,k+1 + μ), i = k + 2, . . . ,m

(46)

and the vector dk+1) is updated by

d̄
k+1)
i ={
d̄

k+2)
i , i = 1, . . . , k + 1

d̄
k+2)
i + ā2

k+1,i/(āk+1,k+1 + μ), i = k + 2, . . . , m.

(47)

Since the removed regressor p̄k+1 may be again selected in a
subsequent forward expansion phase at the next selection step,
then this regressor should not be excluded from the selected
pool. In this case, there is no need to perform any changes on
the regression context obtained in Section IV-B2. To further
reduce the computation time, by just employing the values of
b̄
k+1)
i and d̄

k+1)
i obtained and using (30), it is now ready to deter-

mine which one is the new (k + 1)th regressor to be selected at
the next forward expansion phase. This way, Δ←−

J k+1(pr ) =
mink

i=1Δ
←−
J k+1(pi) > maxm

i=k+2Δ
−→
J

�

k+1(ϕi) is applied to
avoid removing the right regressor that has been selected pre-

viously, where Δ−→
J

�

k+1(ϕi) = (b̄k+1)
i )2/(2μ(d̄k+1)

i + μ)), i =
k + 2, . . . ,m. If the regressor p̄k+1 has been marked for re-
moval from the selected pool, then the vector bk+1) is assigned
with entries b̃

k+1)
i = b̄

k+1)
i and the vector dk+1) with entries

d̃
k+1)
i = d̄

k+1)
i (i = 1, . . . ,m), and the following two vectors

ck) and hk) are updated:

c̃
k)
i ={

c̄
k+1)
i + b̄

k+2)
k+1 āk+1,i/(āk+1,k+1 + μ), i = 1, . . . , k

b̃
k+1)
i , i = k + 1, . . . ,m

(48)

h̃
k)
i ={
h̄

k+1)
i + ā2

k+1,i/(āk+1,k+1 + μ), i = 1, . . . , k

d̄
k+1)
i , i = k + 1, . . . ,m.

(49)

In the case of the matrix A, only the (k + 1)th row is removed
with the others remain unchanged. Obviously, the selected pool
Φk and the candidate pool Ψk are updated using p̃i = p̄i

for (i = 1, . . . , k) and ϕ̃i = ϕi for (i = k + 1, . . . ,m). Thus
far, the regression context A ∈ �k×m , bk+1) ∈ �m , ck) ∈ �m ,
dk+1) ∈ �m , and hk) ∈ �m is ready for use in the following
forward expansion phase at the next selection step.

C. Computation of Model Parameters

Assuming that a total of M rules have finally been selected
by the proposed method, and using the definition of Rk defined
in (16), the model parameters are computed from (13)

ĥM = (ΦT
M ΦM + μI)−1ΦT

M y =
1
μ
ΦT

M RM y

=
1
μ

⎛
⎝ pT

1 RM y
· · ·

pT
M RM y

⎞
⎠ =

1
μ

⎛
⎝ c

M )
1
· · ·
c
M )
M

⎞
⎠ (50)

where c
M )
i , i = 1, . . . ,M , are the first M entries obtained from

the final value of the vector cM ) ∈ �M . Note that if only the
forward expansion phase is considered in the selection pro-
cedure, then the related model parameters are computed as
ĥM = [ĥM ,1 , . . . , ĥM ,M ]T , in which ĥM ,i is given as follows
from (17) and (50):

ĥM ,i =
b
M )
i

ai,i + μ
− 1

μ

M∑
j=i+1

aj,ib
M )
j

aj,j + μ
, i = 1, . . . , M. (51)

D. Algorithm: Construction of Sparse least-Squares
Support-Vector-Machine-Based Fuzzy Systems

The efficient learning mechanism of the sparse LS-SVM-
based fuzzy systems is shown in the flowchart in Fig. 2 and is
detailed as follows.

Step 1) Initialization: To start the learning process, the can-
didate pool Ψ0 = [ϕ1 , . . . ,ϕm ] is first generated by using
all the training patterns as the potential rules/SVs. Note that
the initially selected pool Φ0 is an empty matrix. The num-
ber of selected regressors is set to k = 0, and the two vec-
tors b1) = [ϕT

1 y, . . . ,ϕT
my] and d1) = [ϕT

1 ϕ1 , . . . ,ϕ
T
m ϕm ]

are initialized.



ZHAO et al.: EFFICIENT LS-SVM-BASED METHOD FOR FUZZY SYSTEM CONSTRUCTION 635

Fig. 2. Flowchart of the proposed efficient learning mechanism for construct-
ing sparse LS-SVM-based fuzzy systems.

Step 2) Forward expansion phase: The main task here is to
select the most significant regressor from the candidate pool and
to update the corresponding variables for the operations ahead.

1) According to the contribution of each candidate regressor
computed from (30), the one with the largest objective
reduction is selected as the next regressor to be added
into the regression matrix Φk+1 = [p1 , . . . ,pk+1], i.e.,
pk+1 = arg maxm

i=k+1Δ
−→
J k+1(ϕi). The corresponding

regressor pk+1 is then removed from the candidate pool
and Ψk+1 = [ϕk+2 , . . . ,ϕm ] set.

2) The (k + 1)th row of matrix A is calculated using (25),
while all the previous k rows remain unchanged.

3) The two vectors bk+2) and dk+2) are updated with entries
from k + 2 to m by using (28) and (29) and are employed
for selecting the (k + 2)th regressor from the candidate
pool.

Step 3) Backward exclusion phase: The main purpose of this
phase is to reevaluate the contribution of each of the previously
selected regressors.

1) The entries from 1 to k + 1 for the two vectors ck+1)

and hk+1) are updated using (33) and (34), while the
correspondingly remaining values in the two vectors are
inherited from bk+2) and dk+2) .

2) The criterion Δ←−
J k+1(pr ) = mink

i=1Δ
←−
J k+1(pi) <

maxm
i=k+1Δ

−→
J k+1(ϕi) is used to decide whether to re-

move a regressor from the selected pool or not, and to
determine which one is to be removed. If the criterion is
not met, then set k = k + 1 and go to Step 4. Otherwise,
move to the next step.

3) The regressor pr is shifted to the last column of Φk+1 us-
ing a total of k − r + 1 interchanges between two adjacent
previously selected regressors. Thus, a new regression
context of A ∈ �(k+1)×m , bk+2) ∈ �m , ck+1) ∈ �m ,
dk+2) ∈ �m , and hk+1) ∈ �m is produced as if pr was
the last selected regressor in the regression matrix Φk+1 .

4) The criterion Δ←−
J k+1(pr ) < maxm

i=k+2Δ
−→
J

�

k+1(ϕi) is
used to decide whether to remove a regressor from the
selected pool or not. If none has to be removed, then set
k = k + 1 and the algorithm moves to Step 4. Otherwise,
go to the next step.

5) The regressor pr is removed from the selected pool and
returned to the candidate pool, i.e., Φk = [p̃1 , . . . , p̃k ]
and Ψk = [ϕ̃k+1 , . . . , ϕ̃m ]. The regression context A ∈
�k×m , bk+1) ∈ �m , ck) ∈ �m , dk+1) ∈ �m , and hk) ∈
�m are then updated and the index k is set to k − 1 as
described in Section IV-B3.

Step 4) The learning process will terminate if some stopping
criterion is met, such as a certain number of regressors have
been selected or some tolerance value has been met. Similar
to the stopping criterion commonly used in training neural net-
works and SVMs [13], [26], the tolerance for the maximum ratio
of objective value reduction is used here. In detail, if the ratio
(Jk − minm

i=k+1Jk+1(ϕi))/Jk is less than a very small positive
tolerance value (ρ), the generalization performance of the fuzzy
systems will not be greatly improved by adding a new regressor.
It should be noted that the stopping criterion used here is an
important measure for the tradeoff between the training accu-
racy (performance) and the model complexity (sparseness and
interpretability) of the obtained fuzzy systems. If the stopping
criterion is not met, the algorithm returns to Step 2.

E. Convergence and Computational Complexity

For the convergence, it is obvious that the objective value
continuously decreases each time a new regressor is included
into the selected pool (i.e., where only the forward expansion
phase is applied), with a decrement amount of Δ−→

J k+1(ϕi) at
the (k + 1)th subset selection step if ϕi (i = k + 1, . . . ,m) is
added as defined in (21) and (30). To reassess the contribution
of all the previously selected regressors, the backward exclusion
phase is performed to exclude the most insignificant regressor
with the smallest contribution to the objective function from the
selected pool. Thus, the introduction of this backward exclu-
sion phase can cause a small amount of increase Δ←−

J k+1(pi)
to the objective value, which is defined in (22) and (35) if a se-
lected regressor, say pi (i = 1, . . . , k + 1), is removed from the
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TABLE I
OPERATIONS INVOLVED IN THE PROPOSED METHOD

Algorithms/Operations Additions/Subtractions Multiplications/Divisions Total Operations

Forward M (N 2 + N + 3) + 2N (N − 1) M (N 2 + 4N + 2) − M (M +
1) + 2N 2

M (2N 2 + 5N + 5) − M (M +
1) + 2N (2N − 1)

Backward Constant M (N 2 + N + 2) + M (M +
1)/2 + 2N (N − 1)

M (N 2 + 4N + 1) + M (M +
1)/2 + 2N 2

M (2N 2 + 5N + 3) + M (M +
1) + 2N (2N − 1)

Shifting (k − nk + 1)(2N + 7) (k − nk + 1)(2N + 8) (k − nk + 1)(4N + 15)
Removing 2N + 2 3N − 1 5N + 1

selected pool at the (k + 1)th subset selection step. However,
as the criterion mink

i=1Δ
←−
J k+1(pi) < maxm

i=k+1Δ
−→
J k+1(ϕi)

is used to determine whether or not a regressor is removed
and assuming that the objective value on the kth subset selec-
tion step at some point is Jk , the new objective value J�

k ob-
tained after a forward expansion being followed by a backward
exclusion is given by J�

k = Jk − maxm
i=k+1Δ

−→
J k+1(ϕi) +

mink
i=1Δ

←−
J k+1(pi) < Jk . Thus, the objective value is reduced

each time a new subset of k regressors is selected. Obviously,
the extreme case is that a nonsparse fuzzy system correspond-
ing to the solution of (13) can be obtained if all the regressors
are selected as the SVs with a tolerance value ρ = 0. In sum-
mary, the convergence of the proposed method composed of
iterative forward expansion and backward exclusion phases is
guaranteed.

With respect to the computational complexity, the basic arith-
metic operations involved in the construction of sparse LS-
SVM-based fuzzy systems are additions/subtractions and mul-
tiplications/divisions. Assuming that a total of N data samples
are used for training and that a total of M rules have been
extracted by the proposed learning mechanism, the number of
additions/subtractions and multiplications/divisions and over-
all total of operations from only using the forward expansion
phase are listed in the first row of Table I. By introducing the
backward exclusion phase, the overall computational complex-
ity then varies with the different numbers of regressors removed
at each selection step and the different position of the removed
regressor in the selected pool.

The details of the computational complexity, including both
the constant part and the variable part (shifting operations and
removing operations), are listed in the last three rows of Table I.
The first part constant operations involving (33)–(35) and the
forward expansion phase are listed in the second row of Table I.
Suppose the forward expansion at the (k + 1)th step is just com-
pleted and a previously selected regressor at the nk th position
in Φk+1 is to be removed from current selected pool; then, the
operations involved in shifting this regressor to the last position
in Φk+1 and removing it are given in the third and fourth rows of
Table I. Due to the fact that N >> M , the computation mainly
comes from the term 2MN 2 . In practice, the proposed method
is usually dominated by the forward expansion phase, while
the backward exclusion phase works on revising the selected
regression pool. Thus, considering M > k ≥ nk , the computa-
tional demand of the proposed algorithm does not increase too
much, compared with the forward expansion phase. In addition,
as described in Section III, it generally needs a computational

complexity of N 3/3 + O(N 2) by using the efficient Cholesky
decomposition to solve the KKT system (9) only for nonsparse
LS-SVMs. Therefore, the computational advantage of our learn-
ing mechanism is significant especially when the training dataset
consists of a larger number of patterns. If the pruning method
[25] discussed in Section I is used for imposing the sparseness
for the conventional LS-SVM, its computational complexity can
also be extremely large. Thus, the computational demand of the
proposed learning mechanism in this paper can be dramatically
decreased, meanwhile achieving the model sparseness. These
will further be demonstrated in the following experimental
examples.

V. NUMERICAL EXAMPLES

Three simulation and real-world problems are investigated to
validate the efficiency and effectiveness of the proposed learning
mechanism and the sparseness of LS-SVM-based fuzzy systems
constructed. The resulting performances are also compared with
other SVM-based fuzzy learning approaches in terms of model
sparseness, running time, and model accuracy. The first example
is a nonlinear dynamic identification problem [31], the second
involves melt pressure prediction in polymer extrusion process
[32], and the third is to diagnose the severity of mammographic
masses [33]. All the experiments were conducted on an Intel
CoreTM 2 Duo Processor E8135 2.40 GHz, running the Windows
7 operating system, with programs compiled by MATLAB.

A. Identification of the Nonlinear Dynamic System

The first example [31] involves identifying the following non-
linear dynamic system:

y(t) =
y(t − 1)

1.5 + y2(t − 1)
− 0.3y(t − 2) + 0.5u(t − 1) + ε(t)

(52)
where ε(t) represents a noise sequence [ε(t) ∼ N(0, 0.012)]. A
total of 400 simulated data points were then generated. The first
200 samples of training data were obtained by stimulating the
system with a random input signal u(t) uniformly distributed in
[−1, 1], while the remaining 200 samples of test data were pro-
duced under using a sinusoidal input signal u(t) = sin(2πt/25).
Thus, [u(t − 1), y(t − 1), y(t − 2)] and y(t) constituted the in-
put and output variables for the LS-SVM-based fuzzy models
to be developed.

The Gaussian width σ was set to 3, and the regularization pa-
rameter μ was set to 1/(2 × 1000), as is common. To assess the
effectiveness of the proposed algorithm in finding better values
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TABLE II
OBJECTIVE VALUES FOUND BY USING DIFFERENT SUBSET SELECTION ALGORITHMS IN EXAMPLE 1

Subsets/Algorithms Forward Forward+Backward Forward+Backward+Second-stage Exhaustive Search∗

M =1 Objective value 2.4435e+04 2.4435e+04 2.4435e+04 2.4435e+04
Running time (s) 6.33e-04 6.86e-04 7.57e-04 1.73e-02 (2.00e+02)

M =3 Objective value 202.9056 120.6424 120.6424 109.9651
Running time (s) 9.77e-04 3.03e-03 3.71e-03 1.73e+02 (1.31e+06)

M =5 Objective value 134.4815 103.6682 103.6682 >75.9960
Running time (s) 1.50e-03 3.99e-03 5.24e-03 5.96e+05 (2.54e+09)

M =7 Objective value 104.8279 96.9045 86.6511 >75.9960
Running time (s) 1.82e-03 5.52e-03 2.62e-02 7.86e+08 (2.28e+12)

M =9 Objective value 96.6179 87.7518 87.7518 >75.9960
Running time (s) 2.42e-03 1.01e-02 1.44e-02 6.32e+11 (1.18e+15)

M =11 Objective value 92.0498 82.9424 82.8894 >75.9960
Running time (s) 2.93e-03 1.88e-02 4.09e-02 2.45e+14 (3.88e+17)

M =13 Objective value 87.1243 81.8847 81.8847 >75.9960
Running time (s) 3.40e-03 1.93e-02 2.80e-02 7.09e+16 (8.83e+19)

M =15 Objective value 83.0997 80.9598 80.8961 >75.9960
Running time (s) 4.02e-03 1.98e-02 6.02e-02 1.48e+19 (1.46e+22)

∗1.73e-02 (2.00e+02) denotes running time (all possible combinations). Since it is unable to realize the exhaustive search method when
the number of fuzzy rules becomes larger, those objective values with “>” represent the one computed by including all the candidate
fuzzy rules into the rule base and their running times were estimated based on executing the method for a small number of possible
combinations. Similarly afterwards in Tables VI and VIII.

of the objective function, several experiments were carried out,
as shown in Table II, given that the same number of fuzzy rules
was selected. In the meantime, different sizes of subsets were
also tested, and the results are listed in the corresponding rows.
The first column lists the values of the objective function to-
gether with the running time obtained by only using the forward
expansion algorithm, while the results from using a mixture
of forward expansion and backward exclusion on each subset
selection step are given in the second column. Apparently, as
demonstrated in the first row, the two approaches produced the
same objectives when only one rule was included in the rule
base since this is the global optimum value and the backward
exclusion phase was certainly not needed. The superiority of the
mixed one over the forward expansion is evident when the selec-
tion process continues. It can also be seen that as the selection
proceeded, the values of the objective function did not further
decrease significantly when a certain number of fuzzy rules had
already been selected, which means that the redundant rules
with little contribution to the final fuzzy system were later in-
cluded into the rule base. To further demonstrate the superiority
of our proposed algorithm, the idea of the second-stage algo-
rithm proposed in [27], which is used to refine a fixed size subset
of regressors, was also applied on the results obtained by the
proposed algorithm, as shown in the third column of Table II.
Here, the model size was unchanged during the second-stage
refinement procedure, and the contribution of each previously
selected fuzzy rule in the first stage was reviewed. It is obvious
that there was no big improvement after introducing the second-
stage optimization, which in turn reflects that the outstanding
performance can be achieved by our proposed algorithm. Alter-
natively, efforts were also made to search for the global optimum
results that can theoretically be found by the exhaustive search
method. However, it turned out to be unrealistic if the number
of fuzzy rules was larger than five in this example due to the
huge amount of running time needed. Suppose that seven rules

are currently considered to be added into the rule base; there
are 200!/(7!(200−7)!) = 2.28e + 12 possible combinations, ap-
proximately needing 24.92 years to find the optimum result (!
denotes the factorial operator). If this works on different num-
bers of fuzzy rules, the running time can be extremely inconceiv-
able. Assuming that all the candidate fuzzy rules are included
in the rule base where they collectively produce the minimum
objective value, the global value of the objective function pro-
duced by the exhaustive search method under each size of subset
should be greater than this value (75.9960 in this example). In
conclusion, the proposed learning mechanism is able to select a
small-size subset of fuzzy rules with acceptable objective value
in a short running time.

It is also clear that the changes in the objective values be-
came very small after a certain number of fuzzy rules had been
selected; the stopping criterion with a tolerance value 0.02 was
then used in this example to terminate the learning. The re-
sultant number of rules, the number of model parameters, the
training and test RMSEs (root mean-squared errors), and the
running time by performing only the forward expansion phase
and both the forward expansion and backward exclusion phases
are shown in the first two columns in Table III. Here, the for-
mer method found a total of nine rules with a test RMSE of
1.76e-02, while the latter produced better results with eight
rules and a smaller RMSE of 1.42e-02 as it is more capable of
finding smaller objective values.

For comparison purposes, Table IV also lists the results of
various SVM-based trained fuzzy models. The insensitive value
used in the SVM-based fuzzy model and the TSFS-SVR was
assigned as 0.03. A direct use of the conventional LS-SVM-
based learning mechanism to construct a corresponding fuzzy
model was also adopted, in which the KKT system defined in
(9) was efficiently solved by the Cholesky decomposition as
usual. For the TSFS-SVR, the Gaussian width is determined
by the aligned clustering algorithm where the initial width, the
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TABLE III
RESULTS OF THE PROPOSED LS-SVM-BASED LEARNING MECHANISM IN CONSTRUCTING FUZZY SYSTEMS

FOR THE THREE EXAMPLES

Example Example 1 Example 2 Example 3

Algorithms F F+B F F+B F F+B

# Rules 9 8 18 15 25 16
# Parameters 37 33 109 91 151 97

Training RMSE/accuracy 2.00e-02 1.94e-02 8.44e-02 8.25e-02 82.80% 83.00%
Test RMSE/accuracy 1.76e-02 1.42e-02 2.11e-01 2.07e-01 84.55% 84.85%

Running time (s) 2.71e-03 9.80e-03 5.92e-02 1.30e-01 5.03e-02 1.21e-01

∗ Here, “F” represents the results obtained from only using forward expansion and “F”+“B” is the results
from both the forward expansion and backward exclusion.

TABLE IV
COMPARISON RESULTS OF VARIOUS SVM-BASED LEARNING TECHNIQUES IN CONSTRUCTING FUZZY SYSTEMS IN EXAMPLE 1

Methods SVM-based LS-SVM-based TSFS-SVR Proposed

1/(2μ) 10 100 1000 10 100 1000 10 100 1000 10 100 1000

# Rules 27 25 16 200 200 200 37 37 37 25 14 8
# Parameters 110 102 66 801 801 801 186 186 186 101 57 33

Training RMSE 1.95e-2 1.85e-2 1.67e-2 2.01e-2 1.84e-2 1.56e-2 4.22e-2 4.21e-2 4.20e-2 2.24e-2 1.98e-2 1.94e-2
Test RMSE 1.83e-2 2.00e-2 1.88e-2 1.51e-2 1.39e-2 1.34e-2 2.82e-2 3.02e-2 3.18e-2 1.77e-2 1.47e-2 1.42e-2

Running time (s) 0.54 0.54 0.53 0.11 0.11 0.11 1.25 1.57 2.04 1.50e-2 1.37e-2 9.80e-3

TABLE V
FUZZY RULES OBTAINED FROM THE PROPOSED LEARNING APPROACH IN EXAMPLE 1

R1 : If x1 is close to 0.3560 and x2 is close to −0.3775 and x3 is close to 0.2831, then y1 is close to 1.6518
R2 : If x1 is close to −0.4326 and x2 is close to −0.0889 and x3 is close to −0.0902, then y2 is close to −1.7856
R3 : If x1 is close to −0.4244 and x2 is close to −0.0983 and x3 is close to −0.0163, then y3 is close to −1.7375
R4 : If x1 is close to 0.2143 and x2 is close to −0.3717 and x3 is close to 0.9183, then y4 is close to 1.7617
R5 : If x1 is close to −0.1834 and x2 is close to 0.5619 and x3 is close to −0.9942, then y5 is close to −2.0003
R6 : If x1 is close to 0.7123 and x2 is close to 0.2143 and x3 is close to −0.6880, then y6 is close to 2.1157
R7 : If x1 is close to −0.1218 and x2 is close to 0.5619 and x3 is close to −0.8827, then y7 is close to −1.9111
R8 : If x1 is close to 0.4892 and x2 is close to −0.1725 and x3 is close to 0.2676, then y8 is close to 1.8918

threshold, and the overlap coefficient were set as 0.3, 0.78, and
1.6 separately, and all the remaining parameters used in deter-
mining its weighting parameters were the same as in the other
SVM-based fuzzy models. As a common strategy for model
training [20], [23], [26], different values of regularization were
also examined with a suitable Gaussian width as defined before,
which gave good generalization performance. It is clear that the
LS-SVM-based fuzzy model trained by our proposed learning
mechanism required the least amount of running time for all
the μ values, while the test performance was comparable with
the other SVM-based techniques. The sparseness of the fuzzy
models produced is reflected in the number of model param-
eters being used, as shown in the third row of Table IV, and
fewer model parameters used in a sparser model. As mentioned
earlier, the conventional LS-SVM-based learning mechanism
used all the training instances as SVs, thus always resulting an
extremely complex fuzzy model. While achieving an accept-
able model performance, our LS-SVM-based fuzzy model also
proved to be capable of producing a significantly sparser so-
lution for all different μ values as expected. The best result is
given by 1/(2μ) = 1000 with a total of eight rules obtained. In

general, the decrease of μ can enhance the training accuracy.
However, according to the tradeoff between the training accu-
racy and the regularization defined in the objective function (6),
this could cause the overfitting problem. Fortunately, overfitting
did not occur here, and the test results are quite acceptable. It
should be noted that the sparse fuzzy systems obtained by our
method, which consist of fewer fuzzy rules, also help to avoid
overfitting. Similar to [20], the nonlinear system in this example
is thus represented as a combination of a series expansion of
FBFs (assigned by SVs), and this corresponds to a set of fuzzy
IF–THEN rules shown in Table V (x1 , x2 , x3 , and yi denote the
three input variables u(t − 1), y(t − 1), y(t − 2) and the output
for the ith rule, respectively). Since a larger number of system
inputs and fuzzy rules are involved in the next two examples,
the similar rule representation will not be listed in this paper.
Fig. 3 also shows the training and test outputs of the LS-SVM-
based fuzzy model learnt by our algorithm. In conclusion, the
proposed learning mechanism has shown to be able to produce
sparser fuzzy models in terms of rule numbers and parame-
ter numbers, while obtaining comparable model performance
within a short period of running time.
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Fig. 3. Fuzzy training and test outputs for u(t − 1), y(t − 1), y(t − 2), and
y(t) by using our approach in example 1. (The sign ”�” denotes the model
output, the solid line is the original data, and the bottom curve is the error
between the upper two values.) (a) Training output. (b) Test output.

B. Melt Pressure Prediction in Polymer Extrusion

Polymer processing is a major manufacturing sector. An ex-
trusion process is used to melt and then form the raw polymeric
materials into continuous profiles [32]. In more detail, polymer
material in the form of pellets is first fed into a fixed hopper.
The material is then conveyed forward by a rotating screw and
discharged through a die before being converted to a continuous
polymer product. The product emerging from the die is cooled
by blown air or in a water bath. Melt pressure at the end of
extruder is one of the most important process parameters in the
extruders, and it is closely related to the quality of polymer prod-
uct produced. It is useful to understand the processing behavior
and that the melt pressure is affected by many factors, such
as screw speed, motor current, process operating conditions,

Fig. 4. Signals measured from the single-screw extruder.

Fig. 5. Heating bands mounted in the three zones.

machine geometry, and material properties. Of these, the pre-
diction of the effects of screw speed, motor current, and process
operating conditions on melt pressure is important for a given
machine, particular screw geometry, and polymer materials.

The experiment was conducted on a Killion KTS-100 single-
screw extruder in the Queen’s University of Belfast. A total of
seven heaters were located along the barrel, each controlled by a
Eurotherm 808 PID temperature controller. The actual location
of these heaters is shown in Fig. 4. The temperatures related to
the melt pressure are located at zone 1, zone 2, and zone 3, in
which four heating bands were mounted in the first two zones
and three in the last one, as illustrated in Fig. 5. The experimental
trials were conducted using a virgin low-density polyethylene
(Dow LD150R, density: 0.921 g/cm3 , and MFI: 0.25g/10 min).
With a down-sampled frequency of 0.2 Hz, a total of 1154 data
points were collected, from which 600 were used for training,
the remaining 554 being used as the prediction dataset. These
data points were processed by a second-order low-pass digital
Butterworth filter with a normalized cutoff frequency of 0.01.
The input vector to the melt pressure fuzzy models was set as
[Vs , Im , T1 , T2 , T3].

In this example, the Gaussian width for all the SVM-based
fuzzy models was set to 30 and the regularization parameter
involved in the model training processes were the same as that
used in Example 1. A series of experiments were conducted to
verify the effectiveness and efficiency of the proposed algorithm
based on different numbers of fuzzy rules being included in the
fuzzy systems. Table VI confirms the superiority of the pro-
posed learning mechanism in terms of finding better objective
values compared with the forward expansion algorithm. It can
also be found that after some iterations, there were no signif-
icant improvements by performing an additional second-stage
algorithm, comparing the objective values in the second and
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TABLE VI
OBJECTIVE VALUES FOUND BY USING DIFFERENT SUBSET SELECTION ALGORITHMS IN EXAMPLE 2

Subsets/Algorithms Forward Forward+Backward Forward+Backward+Second Stage Exhaustive Search

M =1 Objective value 1.2510e+06 1.2510e+06 1.2510e+06 1.2510e+06
Running time (s) 5.93e-03 5.95e-03 5.95e-03 5.14e-02 (6.00e+02)

M =3 Objective value 2.3050e+05 2.1476e+05 2.1476e+05 1.0097e+05
Running time (s) 1.20e-02 1.69e-02 1.74e-02 5.15e+03 (3.58e+07)

M =5 Objective value 1.8486e+05 5.4048e+04 1.7402e+04 >3.4383e+03
Running time (s) 1.87e-02 3.80e-02 1.21e-01 1.79e+08 (6.37e+11)

M =7 Objective value 6.7776e+04 1.0051e+04 9.4991e+03 >3.4383e+03
Running time (s) 2.55e-02 5.42e-02 6.80e-02 2.15e+12 (5.36e+15)

M =9 Objective value 2.6339e+04 6.9254e+03 6.0776e+03 >3.4383e+03
Running time (s) 3.26e-02 6.43e-02 1.83e-01 1.44e+16 (2.62e+19)

M =11 Objective value 1.1069e+04 6.3752e+03 5.8740e+03 >3.4383e+03
Running time (s) 3.77e-02 8.05e-02 2.41e-01 5.88e+19 (8.29e+22)

M =13 Objective value 6.8825e+03 5.5882e+03 5.5385e+03 >3.4383e+03
Running time (s) 4.53e-02 1.13e-01 1.98e-01 1.73e+23 (1.84e+26)

M =15 Objective value 5.7281e+03 5.2928e+03 5.2913e+03 >3.4383e+03
Running time (s) 5.06e-02 1.30e-01 1.85e-01 3.33e+26 (3.01e+29)

M =17 Objective value 5.4462e+03 5.1279e+03 5.1120e+03 >3.4383e+03
Running time (s) 5.85e-02 1.38e-01 2.91e-01 4.89e+29 (3.79e+32)

TABLE VII
COMPARISON RESULTS OF VARIOUS SVM-BASED LEARNING TECHNIQUES IN CONSTRUCTING FUZZY SYSTEMS IN EXAMPLE 2

Methods SVM-based LS-SVM-based TSFS-SVR Proposed

1/(2μ) 10 100 1000 10 100 1000 10 100 1000 10 100 1000
# Rules 32 23 27 600 600 600 513 513 513 21 19 15

# Parameters 194 140 164 3601 3601 3601 3592 3592 3592 127 115 91
Training RMSE 9.42e-2 9.02e-2 8.92e-2 7.67e-2 5.78e-2 4.39e-2 1.04e-1 1.04e-1 1.04e-1 1.41e-1 9.76e-2 8.25e-2

Prediction RMSE 2.24e-1 1.93e-1 2.71e-1 1.94e-1 1.93e-1 2.79e-1 1.76 1.76 1.76 2.81e-1 2.11e-1 2.07e-1
Running time (s) 6.68 6.27 6.38 1.26 1.25 1.27 14.30 13.76 15.14 0.17 0.17 0.13

the third columns. This, in turn, means that it is unnecessary to
use a second-stage algorithm to refine the fuzzy rules produced
by our algorithm. The descending rate of the objective values
became negligible as redundant fuzzy rules were then subse-
quently added in the system after a certain number of fuzzy
rules had been selected. Similar to Example 1, the results from
the exhaustive search method are also listed in the last column
of Table VI. It is impossible to run this algorithm for a long pe-
riod of 1.06e+19 years if 15 rules are required for constructing
a fuzzy system in this case. The stopping tolerance was set to
ρ = 0.02 in this example. The final results obtained by using
the proposed learning mechanism are shown in the middle two
columns in Table III, where a small number of fuzzy rules can
be obtained by combining the backward exclusion and forward
expansion algorithm.

For the comparison purposes, the number of rules, the num-
ber of model parameters, the training and prediction errors,
and the running time of SVM-based, conventional LS-SVM-
based, TSFS-SVR, and our learnt fuzzy models are all listed in
Table VII. The insensitive value used in the SVM-based model
and TSFS-SVR was assigned as 0.15. For the TSFS-SVR, the
initial width, the threshold, and the overlap coefficient in the
aligned clustering algorithm were set as 3, 0.97, and 3.8 re-
spectively. The other parameters were the same as that used in
Example 1. It is shown that the TSFS-SVR was always inca-
pable of producing good generalization results, and it also had

a large number of model parameters. It can be seen that the
SVM-based and conventional LS-SVM-based learning mech-
anisms both generally produced accurate fuzzy models with
acceptable prediction RMSEs for all μ values, while the LS-
SVM became extremely complex and the SVM provided less
number of fuzzy rules. Apart from the model sparseness issue,
this example also confirmed that the LS-SVM-based learning
mechanism saved more running time than the SVM-based one.
As expected, the proposed approach can further reduce the run-
ning time and provide the smallest number of fuzzy rules for
all μ values with comparable generalization performance. The
performance of the final sparse LS-SVM-based fuzzy model
constructed by the novel learning mechanism on the training
and prediction datasets is illustrated in Fig. 6.

C. Mammographic Masses Diagnosis

Mammography is the most effective method among various
breast cancer screening techniques. However, about 70% unnec-
essary biopsies with benign outcomes are generally performed
because of the low positive predictive value of breast biopsy
resulting from mammogram interpretation. To reduce the high
number of unnecessary breast biopsies, it is important to develop
a diagnosis system that can help physicians in their decision to
perform a breast biopsy on a suspicious lesion seen in a mammo-
gram image or to perform a short term follow-up examination
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TABLE VIII
OBJECTIVE VALUES FOUND BY USING DIFFERENT SUBSET SELECTION ALGORITHMS IN EXAMPLE 3

Subsets/Algorithms Forward Forward+Backward Forward+Backward+Second Stage Exhaustive Search

M =1 Objective value 4.5067e+05 4.5067e+05 4.5067e+05 4.5067e+05
Running time (s) 3.89e-03 4.25e-03 4.31e-03 4.43e-02 (5.00e+02)

M =3 Objective value 3.8270e+05 3.8270e+05 3.8270e+05 3.1491e+05
Running time (s) 7.67e-03 1.05e-02 1.08e-02 2.97e+03 (2.07e+07)

M =5 Objective value 3.5237e+05 3.5237e+05 3.5237e+05 >2.4105e+05
Running time (s) 1.25e-02 1.44e-02 1.47e-02 7.14e+07 (2.55e+11)

M =7 Objective value 3.4708e+05 3.3104e+05 3.2830e+05 >2.4105e+05
Running time (s) 1.57e-02 2.52e-02 4.61e-02 5.81e+11 (1.49e+15)

M =9 Objective value 3.2534e+05 3.0456e+05 3.0306e+05 >2.4105e+05
Running time (s) 2.00e-02 3.47e-02 6.45e-02 2.60e+15 (5.01e+18)

M =11 Objective value 3.1845e+05 2.6941e+05 2.6486e+05 >2.4105e+05
Running time (s) 2.54e-02 5.22e-02 1.04e-01 7.44e+18 (1.10e+22)

M =13 Objective value 3.0093e+05 2.6103e+05 2.5565e+05 >2.4105e+05
Running time (s) 2.84e-02 6.91e-02 2.66e-01 1.45e+22 (1.68e+25)

M =15 Objective value 2.9786e+05 2.5587e+05 2.5503e+05 >2.4105e+05
Running time (s) 3.26e-02 1.13e-01 2.36e-01 1.98e+25 (1.89e+28)

M =17 Objective value 2.8150e+05 2.5441e+05 2.5390e+05 >2.4105e+05
Running time (s) 3.56e-02 1.31e-01 3.36e-01 2.05e+28 (1.63e+31)

Fig. 6. Training and prediction performances of our LS-SVM-based fuzzy
model in melt pressure development. (The sign ”�” denotes the model out-
put, the solid line is the original data, and the bottom curve stands for the
corresponding error between the upper two curves.)

[33]. The purpose of this example is to design a fuzzy classifier
to increase the ability of physicians in determining the severity
(benign or malignant) of a mammographic mass lesion from
breast imaging reporting and data system (BI-RADS) assess-
ment, the patient’s age, and three BI-RADS attributes (mass
shape, mass margin, and mass density). The dataset was ob-
tained from University of California, Irvine Machine Learning
Repository, whereas it was collected at the Institute of Radiology
of the University Erlangen-Nuremberg between 2003 and 2006,
containing a total of 961 instances consisted of the ground truth
(the severity field) for 516 benign and 445 malignant masses.
After removing 131 instances associated with missing values,
a total of 830 instances were finally obtained, from which 500
were used as training samples and 330 as test samples.

The Gaussian width for all the SVM-based fuzzy classifiers
was set to 10 in this example, while the remaining parame-
ters were the same as in the previous two examples. Table VIII
again demonstrates the superiority of our proposed algorithm
in terms of finding better objective values according to the ob-
jective function defined in (12). The use of both the backward
exclusion and forward expansion algorithm can further decrease
the objective value after some number of fuzzy rules had been
included in the fuzzy system, while the second-stage refinement
algorithm cannot produce significant improvements. As a mat-
ter of fact, in some cases, the results performed by our proposed
algorithm were very close to the global optimum assuming that
all candidate fuzzy rules were selected. The stopping tolerance
was set to 0.002, and the final results produced by the pro-
posed learning mechanism are shown in the last two columns
in Table III with a small number of fuzzy rules being found
by combining both the backward exclusion and forward expan-
sion algorithm. As in the previous two examples, the results
produced by our approach are listed in the last three columns
of Table IX and compared with that by SVM-based, conven-
tional LS-SVM-based, and TSFS-SVR models. Comparing the
SVM-based with the conventional LS-SVM-based ones, both
produced good test accuracies for all μ values, while the former
is much sparser along with longer running time and the situa-
tion was exactly opposite for the latter one. The TSFS-SVR in
this example produced the worst performance on the test data
also with a highly complex model. However, for our proposed
approach, it is evident that the LS-SVM-based fuzzy classifiers
trained by the novel learning mechanism were able to provide
the most sparse model together with the least amount of running
time while producing comparable test accuracies.

VI. CONCLUSION

This paper has investigated the construction of fuzzy rule-
based systems by building sparse LS-SVMs. To achieve a sparse
solution, a new regression solution to the primal optimization
problem of LS-SVM has been presented first, which avoids
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TABLE IX
COMPARISON RESULTS OF VARIOUS SVM-BASED LEARNING TECHNIQUES IN CONSTRUCTING FUZZY SYSTEMS IN EXAMPLE 3

Methods SVM-based LS-SVM-based TSFS-SVR Proposed

1/(2μ) 10 100 1000 10 100 1000 10 100 1000 10 100 1000
# Rules 240 215 205 500 500 500 338 338 338 15 16 16

# Parameters 1442 1292 1232 3001 3001 3001 2367 2367 2367 91 97 97
Training accuracy 84.20% 84.00% 86.60% 83.80% 85.40% 87.20% 94.00% 94.20% 94.20% 81.60% 82.20% 83.00%

Test accuracy 84.24% 84.85% 80.61% 83.33% 81.21% 80.30% 71.52% 71.21% 71.52% 83.64% 84.24% 84.85%
Running time (s) 2.18 3.07 5.06 0.78 0.80 0.78 1.04e+3 961.91 1.26e+3 0.13 0.11 0.12

solving the KKT system in its conventional solution, which
may result in all training patterns that are being used as the SVs.
A novel learning mechanism has then been proposed, which
efficiently works in a stepwise subset selection approach, con-
sisting of a forward expansion phase and a backward exclusion
phase at each selection step. The execution of the algorithm
is extraordinarily fast, and a few key techniques have been in-
troduced to avoid inverse operations and to accelerate training
process, confirmed with the detailed computational complexity
analysis. As a result, a sparse set of SVs for generating the fuzzy
IF–THEN rules from the training instances can be obtained eas-
ily. Three examples, including a nonlinear dynamic modelling,
melt pressure prediction, and mammographic masses diagnosis,
have been presented to demonstrate the efficiency and effective-
ness of the proposed learning mechanism. The superiorities of
the LS-SVM-based fuzzy systems developed by the proposed
method over other SVM-based learning techniques, in terms of
the model sparseness and the computational demand, have been
well demonstrated and verified.

APPENDIX

PROOF OF THE TWO THEOREMS

According to the definition of Rk in (16), it follows that

Rk+1([Φk ; +ϕi]) = I − [Φk ϕi]([Φk ϕi]T [Φk ϕi]+μI)−1

× [Φk ϕi]T . (53)

Applying the well-known matrix inverse equality

{
I − B[DB + C−1 ]−1D = [I + BCD]−1

[A + BCD]−1 = A−1 − A−1B[DA−1B + C−1 ]−1DA−1

(54)
(53) turns out to be

Rk+1([Φk ; +ϕi ]) =
(
I +

1
μ

[Φk ϕi ][Φk ϕi ]
T
)−1

=
(
I +

1
μ
ΦkΦT

k +
1
μ

ϕiϕ
T
i

)−1

= Rk − Rkϕiϕ
T
i RT

k

ϕT
i Rkϕi + μ

(55)

where Rk = (I + ΦkΦT
k /μ)−1 is obtained by using (16) and

(54). Thus, Theorem 1 has been proved. In addition, it follows

from (16) that

Rk ([Φk+1;−pi ])

= I − [Φk+1;−pi ]([Φk+1;−pi ]T [Φk+1;−pi ] + μI)−1

× [Φk+1;−pi ]T

=
(
I +

1
μ

[Φk+1;−pi ][Φk+1;−pi ]T
)−1

=
(
I+

1
μ

[Φk+1;−pi ][Φk+1;−pi ]T +
1
μ
pipT

i −
1
μ
pipT

i

)−1

=
(
I +

1
μ
Φk+1ΦT

k+1 −
1
μ
pipT

i

)−1

= Rk+1 +
Rk+1pipT

i RT
k+1

μ − pT
i Rk+1pi

(56)

where Rk+1 = (I + Φk+1ΦT
k+1/μ)−1 . Thus, Theorem 2 has

been proved as well.
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