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Abstract: The paper presents a novel approach, based on deep learning, for diagnosis of Parkinson’s disease through medical
imaging. The approach includes analysis and use of the knowledge extracted by Deep Convolutional and Recurrent Neural Net-
works (DNNs) when trained with medical images, such as Magnetic Resonance Images and DaTscans. Internal representations
of the trained DNNs constitute the extracted knowledge which is used in a transfer learning and domain adaptation manner, so
as to create a unified framework for prediction of Parkinson’s across different medical environments. A large experimental study
is presented illustrating the ability of the proposed approach to effectively predict Parkinson’s, using different medical image sets
from real environments.

1 Introduction

Current biomedical signal analysis, including medical imaging, has
been for long based on feature extraction combined with quantitative
and qualitative processing. Recent advances in Machine Learning
(ML) and Deep Neural Networks (DNNs) have provided state-
of-the-art performance in major signal processing tasks, such as
computer vision, speech recognition, human computer interaction
and natural language processing. DNNs can be trained as end-to-
end architectures which include different network types and provide
numerical or symbolic outputs [1]. Medical diagnosis is an area in
which ML and DNNs can be effectively used. This is due to their
ability to analyse big amounts of data, signals, images and image
sequences, to find patterns in them and use those for effective clas-
sification, regression and prediction purposes. Various promising
results have been obtained in a variety of problems [2–4].

Parkinson’s is one of the most common neurodegenerative disor-
ders among people from 50 to 70 years old, especially in countries
with elderly population, such as the United States and the Euro-
pean Union. Early detection and prognosis are crucial for assisting
patients to retain a good quality of life. Therefore, developing tech-
niques that are able to provide accurate and trustworthy prediction
of Parkinson’s in subjects is of major significance for a society that
cares about people’s well-being.

Prediction of Parkinson’s [5, 6] can be based on analysis of
medical images, in particular Magnetic Resonance Images (MRIs)
and Dopamine Transporters scans (DaTscans). MRI analysis princi-
pally focuses on the detection of morphological variations in brain
areas, especially examining the volume of the surface of substan-
tia nigra, the lenticular nucleus and the head of the caudate nucleus.
DaTscans are produced by single photon emission computer tomog-
raphy (SPECT), with 123-I-Ioflupane being provided to the patients.
DaTscans are used for detecting whether there is degeneration of
dopaminergic neurons in the substantia nigra. For the diagnosis of
Parkinson’s, doctors focus on the images and scans that are consid-
ered most representative, select the areas around the caudate nucleus
head, make comparison with the cerebellum, calculate and use ratios
of defined volumes for making their prediction.

Machine learning and classification methods [7] have been used
for diagnosis of Parkinson’s based on MRIs [8], or DaTscans [9] in
the last decade. Recent developments in deep learning have provided
further progress in this direction. Deep Convolutional and Recurrent
Neural Networks (CNNs, CNN-RNNs) have been developed and
used for prediction of Parkinson’s [10], achieving high prediction

accuracy based on a new Parkinson’s database including MRI and
DaTscan image data [11].

However, although deep neural networks are capable of analyzing
complex data, they lack transparency in their decision making, in the
sense that it is not straightforward to justify their prediction, or to
visualize the features on which the decision was based. Moreover,
they generally require large amounts of data in order to learn and
become able to adapt to different medical environments, or different
patient cases. This makes their use difficult in healthcare, where trust
and personalization are key issues.

In this paper we adopt the DNN architecture developed in [10]
as a model that can potentially be applied to other medical environ-
ments, or respective datasets. However, the latter generally include
medical images with different characteristics, e.g., scans can be color
or gray-scale, they may have different sizes, or there can be different
numbers of images per subject. As a consequence, direct application
of trained DNN to other datasets is not generally successful.

Various methods can be used to address this problem. Training the
DNN model from scratch with each new dataset is a possibility, but
this would result in creating many different DNNs solving the same
problem albeit for different data cases and with no interoperability
among them. Merging all possible datasets, so that a single DNN is
trained on all of them, would be another possibility, but this is rather
unfeasible due to issues with both implementation and privacy.

Transfer learning is another approach usually adopted in deep
learning methodologies [12, 13], according to which the DNN model
trained with the original dataset is used to initialize DNN re-training
with the new dataset. However, a serious problem then arises: as
the refined DNN learns to predict from the new dataset, it tends
to forget the old data that are not used in the retraining proce-
dure; this is known as "catastrophic forgetting". As in learning
from scratch, local rather than global prediction models would be
generated through such an approach.

Recent research has focused on extracting trained DNN repre-
sentations and using them for classification purposes [3, 14], either
by an auto-encoder methodology, or by monitoring neuron outputs
in the convolutional or/and fully connected network layers. Such
developments are what is exploited in this paper, proposing a novel
approach that is able to overcome the above mentioned shortcom-
ings and problems, while generating a unified prediction model for
Parkinson’s based on DaTscans and/or MRI data.

At first, we extract appropriate internal features, say features v,
from the DNN model trained with the dataset developed in [11].
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Using a clustering methodology, we generate concise representa-
tions, say c, of these features, which are then annotated by medical
experts to denote patient or non-patient categories. Using these rep-
resentations and the nearest neighbour criterion, we can then predict,
in an efficient and transparent way, whether new subjects’ data
indicate Parkinson’s status or not.

We then present a new transfer learning methodology that alle-
viates the "catastrophic forgetting" problem by generating a unified
model over different datasets. According to this methodology, we
apply the originally trained DNN to a new dataset deriving a cor-
responding set of representations, through which we train a new
DNN. From the latter DNN, we extract a new set of features, say
v′ and a concise representation c′. The unified Parkinson’s predic-
tion model is then produced by merging the c and c′ representation
sets. Having achieved high precision and recall metrics in the deriva-
tion of each one of these representations ensures that the generated
unified model provides high prediction accuracy in the derived
representation space.

We also show that the proposed approach can improve Parkin-
son’s prediction in cases and environments where some input data
types, e.g., DaTscans, are not available and prediction is made only
through MRI analysis. A domain adaptation methodology for new
DNN training is presented, which uses a novel error criterion based
on the above-described c representations.

Finally, we provide an extensive experimental study, in which we
develop, adapt and evaluate DNNs, using two different datasets: the
database described in [11] and the Parkinson’s Progression Markers
Initiative (PPMI) database [15], which include MRI and DaTscan
data as well as textual information from patients and controls.

In particular, Section 2 presents the theoretical background,
describing the two databases and presenting related work that
mainly focuses on methods that have been recently applied to these
databases. Section 3 presents the proposed methodology. At first, it
describes the derivation of the above-mentioned v and c represen-
tations from a DNN trained with the first dataset [11]. It then uses
these representations to train a new DNN with the second (PPMI)
dataset, thus deriving the unified prediction model. It finally uses
the obtained knowledge, through domain adaptation, to improve
Parkinson’s prediction in environments that do not possess DaTscan
equipment and therefore lack the corresponding information. Section
4 presents the experimental study, evaluating all aspects of the pro-
posed methodology in both datasets. Section 5 presents discussion
and analysis of the obtained results. Section 6 provides conclusions
and the foreseen directions of our future work.

2 Theoretical Background

2.1 The Parkinson’s Image Databases

The Parkinson’s Progression Markers Initiative (PPMI) dataset has
been created through collaboration of researchers, funders, and
study participants so as to improve Parkinson’s Disease therapeu-
tics via the identification of progression biomarkers. The PPMI study
includes a cohort of: 423 patients with Parkinson’s disease (PD), who
have been diagnosed for two years or less and do not take PD med-
ications; 196 control subjects, with no Parkinson’s disease (NPD).
Other categories, such as subjects who have been consented as PD,
but whose DaTscans do not reveal dopaminergic deficit (SWEDD),
prodromal ones, or subjects with genetic mutations are also followed
in the study. There is at least one DaTscan, in the form of gray scale
image, as well as MRIs for each subject.

In order to be able to extract and deal with volumetric informa-
tion, the MRIs are considered in consecutive triplets. As a conse-
quence, the medical image inputs to the DNNs consist of a DaTscan
and/or three consecutive MRIs. Such an input sample from the PPMI
dataset, including a DaTscan (bottom right hand side) and an MRI
triplet (top and bottom left hand side) is shown in Fig. 1.

Another Parkinson’s database has been recently developed [11],
based on anonymised data from 75 subjects, 50 subjects with PD
and 25 controls, of the Georgios Gennimatas Hospital in Athens,
Greece. It includes at least one DaTscan, in the form of colour image,

Fig. 1: A DNN input including a DaTscan (gray scale, bottom right
hand side) and three consecutive Magnetic Resonance Images (top,
and bottom left hand side) from the PPMI dataset [15]

Fig. 2: A DNN input including a DaTscan (colour, bottom right
hand side) and three consecutive Magnetic Resonance Images (top,
and bottom left hand side), from the dataset [11]

.

and many MRI per subject. In total, it includes 925 DaTscans, 595
of which come from subjects with PD and 330 from controls; and
41528 MRIs, 31147 of which represent PD and 10381 NPD.

For comparison purposes, Fig. 2 shows a respective input from
this dataset, including a DaTscan and a triplet of MRIs. It can be
seen that the DaTscans in this database are colour images, in contrast
to the gray scale scans of the PPMI database.

2.2 Related Work

A variety of techniques have been applied to the PPMI dataset. Dur-
ing the last three years, machine learning techniques, such as Support
Vector Machines (SVMs), logistic regression, random forests (RFs),
and decision trees have been used for PD diagnosis. Such methods
have been applied based on patient questionnaires [16], reporting an
accuracy over 95 %. They were also used to analyse extracted fea-
tures (related to uptake ratios on the striatum, volume and length of
the striatal area) from 652 DaTscans [17], reporting an accuracy of
97.9 %.

Machine learning techniques, such as SVMs and RFs, were also
applied to features extracted from MRI data [18], reporting an accu-
racy ranging from 88 % to 93 %, in which clinical features were also
considered, apart from network features.

Techniques based on Self-Organizing Maps (SOMs) combined
with SVMs have been used to understand the pathology and pro-
vide PD diagnosis [19], reporting an accuracy of about 95.4 %.
Techniques using Fisher’s linear discriminant analysis and locality

IET Research Journals, pp. 1–10
2 c© The Institution of Engineering and Technology 2015



preserving projection for feature selection, as well as a multitask
framework, have been applied to discriminate among PD, control
and SWEDD subjects [20, 21], reporting accuracy about 84 %.

Use of Tensorflow as an interface for PD diagnosis based on med-
ical imaging has been proposed [22], using a neural network model
and providing an accuracy of 97.34 %.

Deep neural networks, including Convolutional (CNNs), Con-
volutional and Recurrent (CNN-RNNs) have been developed in
[10, 23] for PD prediction using the DaTscan and MRI data included
in the above-mentioned database [11].

In contrast to most of the techniques which were applied to the
PPMI dataset, DNNs do not require a feature selection step, since
features are automatically detected and extracted during DNN train-
ing. The DaTscans and/or the MRI triplets were directly presented at
the input of the DNN. Moreover, to tackle imbalanced data between
the two categories, a data augmentation strategy has been used
[1, 10], rising the number of combined, i.e., DaTscan and MRI inputs
to a balanced number of 150.000 inputs.

DNN training was implemented by using the pre-trained ResNet-
50 structure [24], transfer learning and adaptation [14, 25] of its
convolutional layers’ weights, followed by training the fully con-
nected layers and the recurrent part of the architecture; the latter was
composed of gated recurrent units [26].

Experiments have been presented [10, 11] comparing the obtained
accuracy, when feeding the DNNs with only DaTscan inputs, or with
only MRI inputs, or with both DaTscans and MRI inputs. By train-
ing CNN and CNN-RNN architectures with the resulting dataset, a
highest accuracy of 98 % was achieved when using both types of
data as inputs. An accuracy of 94 % was achieved when using only
DaTscan inputs, while a much lower accuracy of 70 % was obtained
when using only MRI inputs.

In the following, we extend this DNN architecture, as well as
some early results on extraction of latent information from it which
we recently presented in [27], to derive a unified prediction model,
which can be effectively and efficiently applied for PD diagnosis
across both the database [11] and the PPMI dataset, overcoming the
DNN shortcomings described in the previous Section.

3 The Proposed Methodology

3.1 The Extracted Features from Deep Neural Networks

Our approach starts by training a deep neural architecture, such as
a convolutional, or convolutional-recurrent network one, to predict
the status (PD, or NPD) of subjects. This is based on analysis of
medical images, i.e., DaTscans and/or MRI images, collected in a
specific medical centre, or hospital (in particular that in [11]), .

As in [10] we consider a CNN part that has a well-known struc-
ture, such as ResNet-50, generally composed of convolutional and
pooling layers, followed by one, or two fully-connected layers.
ReLU neuron models are used in this part. In the case of convolu-
tional and recurrent network, which we adopt in the following, two
hidden layers with Long Short Term Memory (LSTM) neuron mod-
els, or Gated Recurrent Units (GRU) are used on top of the CNN
part, providing the final classification, or prediction, outputs.

In our approach we select to extract and further analyse the,
say M , outputs of the last fully connected layer, or last hidden
layer of the trained CNN, or CNN-RNN respectively. This is due
to the fact that these outputs constitute high level, semantic extracts,
based on which the trained DNN provides its final predictions. Other
choices can also be used, involving features extracted, not only from
high level, but also from mid and lower level layers. From our
experiments, such choices have not proven capable of significantly
improving the achieved performance.

In the following we present the extraction of concise semantic
information from these representations, using unsupervised analysis.

Let us assume that the dataset S, including DaTscans and MRI
inputs has been collected and used for training the DNN to predict
the PD or NPD status of subjects. Let also T denote the respective
test set used to evaluate the performance of the trained network:

S =
{
(xs(k), ys(k)); k = 1, . . . , Ns

}
(1)

T =
{
(xt(k), yt(k)); k = 1, . . . , Nt

}
(2)

In (1), (2), xs(k) and ys(k) denote the Ns training inputs and the
category to which each one of them belongs. We use a 1 to denote
a patient category, and a 0 to denote a control/non-patient one. Sim-
ilarly, xt(k) and yt(k) denote the Nt inputs and the corresponding
category over the test set.

Let us assume that we train the DNN using the data in S and,
for each input k, we collect the M values of the outputs of neurons
in the selected DNN fully connected or hidden layer, generating a
vector vs(k). A similar vector vt(k) is generated when applying the
trained DNN to each input k of the test set:

Vs =
{
(vs(k), k = 1, . . . , Ns

}
(3)

and
Vt =

{
(vt(k), k = 1, . . . , Nt

}
(4)

In the following we derive a concise representation of these v vec-
tors, by using an unsupervised, clustering procedure. In particular,
we use the k-means++ algorithm [28] to generate, say, L clusters
Q = {q1, . . . , qL} through minimization of the following function:

Q̂k-means = arg min
Q

L∑
i=1

∑
vs∈Vs

∣∣∣∣vs − µi∣∣∣∣2 (5)

in which µi denotes the mean of v values belonging to cluster i.
For each cluster i, we then compute the corresponding clus-

ter center c(i), thus defining the set of cluster centers C, which
forms a concise representation and prediction model for Parkinson’s
diagnosis.

C =
{
(c(i), i = 1, . . . , L

}
(6)

This procedure, of using dataset S to generate the set of cluster
centers C is illustrated in Fig. 3.

Since the derived representation consists of a small number
of cluster centers, medical experts can examine and annotate the
respective DaTscans and MRI images with relevant textual infor-
mation. This information can include the subject’s status (i.e., PD,
or non-PD), the stage of Parkinson’s for patients, as well as other
metrics.

Let us now focus on using the set C for diagnosis of Parkinson’s
in new subject cases, e.g., those included in the test dataset T . For
each input in T , we compute the vs value. We then calculate the
euclidean distance of this value from each cluster center in C and
classify it to the category of the closest cluster center. As a result, we
classify each test input to a respective category, thus predicting the
subject’s status.

It should be mentioned that, using this approach, we can predict
a new subject’s status in a rather efficient and transparent way. At

Fig. 3: Input set S is used to train the DNN; clustering of the
extracted Vs vector generates representation set C
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first, only L distances between M -dimensional vectors have to be
computed and the minimum of them be selected. Then, the subject
can be informed of why the specific diagnosis was made, through
visualization of the medical images and presentation of the medical
annotations corresponding to the selected cluster center.

3.2 The Unified Prediction Model

Following the above described approach: a) we design a DNN
(as shown in Fig.3) and extensively train it for predicting Parkin-
son’s disease , based on image data provided by a specific hospital,
medical centre, or available database, b) we generate a concise
representation (set C) composed of the derived cluster center repre-
sentation that can be used to predict Parkinson’s in an efficient way.
This information, i.e., the DNN weights and the set C, represent, in
the proposed unified approach, the knowledge obtained through the
analysis of the respective database S.

Let us now consider another medical environment, where another
database related to Parkinson’s has been generated. Let us assume
that it can be, similarly, described through the following training and
test sets:

S′ =
{
(x’s(k), y′s(k)); k = 1, . . . , N ′

s

}
(7)

T ′ =
{
(x’t(k), y′t(k)); k = 1, . . . , N ′

t

}
(8)

In (7), (8), x’s(k) and y′s(k) denote the N ′
s training inputs and

the corresponding category, whilst x’t(k) and y′t(k) denote the N ′
t

inputs and the corresponding category over the test set.
In the deep learning field it is known that when applying a net-

work, trained on a specific dataset, to another dataset with different
characteristics, the performance is expected to be poor. Transfer
learning, along with network retraining is the usual technique for
obtaining a good performance over the new dataset. However, the
’catastrophic forgetting’ problem that was mentioned in the Intro-
duction appears, obstructing the derivation of a unified prediction
model over all datasets.

In the following we show how the proposed approach can alleviate
this problem.

Fig. 4 shows the procedure we follow to achieve such a model.
According to it, we present all inputs of the new training dataset S′

to the available DNN that we have already trained with the origi-
nal dataset S; we compute the Vs representations, similarly to (3),
named as Vs,in in Fig. 4. These representations, which were gener-
ated using the knowledge obtained from the original dataset, form
the input to a new DNN, named DNN’ in Fig. 4; this network is
trained to use these inputs so as to predict the PD/NPD status of the
subjects whose data are in set S′.

In a similar way, as in Eqs. (3)-(5), we compute the new set of rep-
resentations, named V ′

s and through clustering the new set of cluster
centers C′:

Fig. 4: Set S′ is fed to DNN, with the extracted Vs vector being used
as input for training DNN’; clustering of the extracted V ′

s vector
generates representation set C′

Fig. 5: Any subject’s data from either set T , or T ′, is fed to the
DNN-DNN’ architecture, with the extracted V ′s vector being clas-
sified to the category of the nearest cluster center in C and C′; thus
predicting subject’s status

C′ =
{
(c’(i), i = 1, . . . , L′} (9)

The next step is to merge the sets C and C′, creating the uni-
fied prediction model. Using the two network structures (DNN and
DNN’ in Fig. 4), in a testing formulation, and the nearest neighbor
criterion with respect to the union of C and C′, we can predict the
PD/NPD status of all subjects in both test sets T and T’, as shown in
Fig. 5.

The resulting representation, consisting of the C and C′ sets, is,
therefore, able to predict a new subject’s status, using the knowledge
acquired by the DNN and DNN’ networks trained on both datasets,
in an efficient and transparent way.

3.3 Domain Adaptation in Parkinson’s Prediction

In the former subsections it was assumed that the inputs to the DNN
consisted of both DaTscans and MRI data, so that the networks learn
to detect and use correlations between both types of inputs. From
[10, 11] we know that DaTscan inputs provide DNNs with more
discriminating ability than MRI inputs. However, DaTscan facilities
are generally available in big medical centers and hospitals. As a
consequence, in many medical environments, prediction should be
achieved using only MRI information.

In the following, we present a novel domain adaptation exten-
sion of the proposed approach for improving the prediction provided
by a DNN when using only MRI inputs, based on the concise C
representations derived from a DNN trained with both types of
inputs.

To achieve this, we introduce a novel error criterion for training
the new deep neural network with MRI inputs, which is expressed in
terms of the internal vs representations generated by this network,
as well as by the representation set C obtained during training of the
original network.

In particular, let us consider that the training and test datasets in
(1) and (2) consist of only MRI data.

By training a DNN with dataset S, we can obtain, similarly to (3),
a vector V ′′s , defined as follows:

V ′′s =
{
(v”s(k), k = 1, . . . , N ′′

s

}
(10)

where each v”(s) vector is of M dimensionality, equal to the size
of the last layer in the CNN or CNN-RNN architecture, for the N ′′

s
training data.

Our target is to train the new network to produce v”s values that
are close to one of the cluster centers inC extracted from the original
network, which had been trained with both types of inputs. If this is
possible, then the achieved prediction will be closer to the one pro-
vided by the original network. As a consequence, a higher prediction
accuracy will be obtained by the new network.

In mathematical terms, we compare the v”s values with the
L cluster centers cs defined in (6). By computing the minimum
euclidean distance, we select a particular cluster center, to form the
desired target value for each one of the v’s. As a result, the following
U vector of desired values u(m,n)is generated:
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Us =
{
(u(m,n),m = 1, . . . , L;n = 1, . . . , N ′′

s

}
(11)

in which u(m,n) equals 1, if the respective cluster center is the
selected one among the L dimensional set C, or equals 0, if the
cluster center is not selected.

The Us values are used in the following to define the new error
function. Minimization of this error function would provide the new
network with the ability to make decisions that are similar to those
of the original network; thus, providing improved predictions of the
subjects’ status.

The proposed error function is composed of two distinct terms.
The first term is the normal mean squared error criterion computed
at the network output level and defined as follows:

F1 =
1

N ′′
s

N ′′
s∑

k=1

(y(k)− z(k))2 (12)

in which z(k) represents the category of the input and y(k) rep-
resents the respective category prediction provided at the network
output.

The following variables are introduced to define the second term
in the error function:

e(m,n) = v”s(n)− c(m), m = 1, . . . , L; n = 1, . . . , N ′′
s (13)

E(m,n) = e(m,n) ∗ (e(m,n))T (14)

where T denotes transposition.
To achieve the targeted goal, we perform minimization of all

E(m,n) values, when u(m,n) equals unity, with simultaneous
maximization of the E(m,n) values, when u(m,n) equals zero.
Thus, we feed E(m,n) to a nonlinear activation function, of the
softmax type and reverse the result, by subtracting it from unity.

The second error term is computed as the mean squared error
between the resulting values and the respective Us ones:

F2 =
1

LN ′′
s

L∑
m=1

N ′′
s∑

n=1

(u(m,n)− [1− f(E(m,n)])2 (15)

where f is the used softmax function.
Using (12) and (15), the resulting total Error Criterion is com-

puted as follows:

Fnew = λF1 + (1− λ)F2 (16)

in which λ is a positive number less than unity. When the value of
λ is close to zero, the significance of the proposed approach is more
evident in the obtained results. In general, a value of 0.5 is used in
our approach.

Fig. 6 presents the proposed training procedure, in which: the set
of original cluster centers C is compared to the extracted V ′′

s rep-
resentations, as defined in the error criterion F2; the DNN” outputs
Z, composed of z(k) values, are compared to the desired network
predictions Y , composed of respective y(k) values, as defined in the
error criterion F1; F1 and F2 are used to compute the proposed error
function minimised during DNN” network training.

4 Experimental Study

As already described, our experimental study is performed on two
databases; the first is the database generated in Greece [11] and the
second is the PPMI database [15]. Both of them include DaTscans
and MRI information for all their subjects. For training and evalua-
tion purposes the respective datasets have been separated to training,
validation and test data. The specific settings can be provided, upon

Fig. 6: MRI data in S are fed to DNN” which is trained through
minimization of error function F ; this is computed based: a) on the
difference between output Z and desired output Y (F1 component),
b) on comparison of the extracted V ′′

s vector to the representation
set C computed with both MRI and DaTscan data (F2 component)

Fig. 7: The DaTscans of the 5 selected cluster centers: c1 and c2
correspond to NPD cases, whilst c3 - c5 to progressing stages of
Parkinson’s

request, from mlearn.lincoln.ac.uk. All experiments have been based
on 10-fold cross validation.

Creation of the main deep neural architecture and generation of
the respective cluster center representation set for predicting Parkin-
son’s is made using the database in [11]. Based on this database we
also evaluate the domain adaptation approach for predicting Parkin-
son’s using only MRI information. The unified approach for predict-
ing Parkinson’s is based on the data of both databases. All DNN
training implementations were made with Python and Tensorflow.

4.1 Extracting DNN Concise Representations

In [10], DNNs were trained with an augmented dataset based on
database [11], achieving very good performance on this database.
The convolutional part of the network was applied to each image
component, i.e., to the RGB DaTscan image and to the three (gray-
scale) MRIs, using the same pretrained ResNet-50 structure. The
outputs of these two ResNet structures were concatenated and fed
to the Fully Connected (FC) layer of the CNN part of the network.
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Fig. 8: A CNN-RNN network, based on the ResNet-50 CNN structure, with one Fully Connected layer (1500 units) and two GRU RNN layers
(with 128 units each); the Vs are extracted from the second GRU layer

Table 1 The accuracy obtained by CNN and CNN-RNN architectures

Structure No FC layers No Hidden Layers No Units in FC Layer(s) No Units in Hidden Layers Accuracy (%)
CNN 2 - 2622-1500 - 94%

CNN-RNN 1 2 1500 128-128 98%

This structure has been able to analyse the spatial characteristics
of the DaTscans and MRIs, achieving a high accuracy in the database
test set, of 94 %, as shown in Table 1.

The complete CNN-RNN architecture included two hidden lay-
ers on top of the CNN part, each containing 128 GRU neurons, as
shown in the Table. This has been able to also analyse the temporal
evolution of the MRI data, achieving an improved performance of
98 % over the test data.

We trained this CNN-RNN network so as to classify the DaTscans
and MRIs to the correct PD/NPD category, using a batch size of 10,
a fixed learning rate of 0.001 and a dropout probability of 50 %.

Fig.8 shows the extraction of the Vs vector representations from
the second GRU layer of this CNN-RNN network. These vectors
include 128 elements, as is also shown in Table 1.

The clustering process, using k-means was then applied to the Vs
vectors, as shown in Fig. 3. We extracted five clusters, two of which
correspond to control subjects, i.e. NPD ones, with three clusters
corresponding to patients, as in the original paper [10]. Since the
k-means algorithm depends on the initial conditions, the cluster cen-
ters are not identical, but very similar to the ones in [10]. These
constitute the extracted concise representation C set; consequently,
C is composed of five 128-dimensional vectors.

The DaTscans corresponding to the extracted cluster centers are
shown in Fig. 7. Through the assistance of medical experts we were
able to verify that the three DaTscans corresponding to patient cases
represent different stages of Parkinson’s disease. In particular: the
first of them (c3) represents an early occurrence, between stage 1
and stage 2; the second (c4) shows a pathological case, at stage 2; the
third (c5) represents a case that has reached stage 3 of Parkinson’s.
In the case of controls, there are differences between the first (c1),
which is a clear NPD case and the second (c2), which is a more
obscure case.

Following the above annotations, it can be said that the derived
representations convey more information about the subjects’ status
than trained DNN outputs. This information can be used by medical
experts to evaluate the predictions made by the original DNN when
new subjects’ data have to be analysed. The computed Vs represen-
tations in the new cases can be efficiently classified to the category

Table 2 Percentage of inputs in the five different clusters

Cluster No of Data (%)
c1 4,3
c2 38,4
c3 27,6
c4 2,3
c5 27,4

of the nearest cluster center of C; the cluster center’s Datscan, MRIs
and annotations will then be used to justify, in a transparent way, the
provided prediction. In Table 2 we present the percentage of train-
ing inputs included in every cluster category. Since a large number of
cases belong to an early stage of Parkinson’s disease, it is of high sig-
nificance to develop tools, such as the proposed one, which have the
ability to provide highly accurate predictions over different datasets
and different medical environments.

Let us consider six new subjects, with their data (many combina-
tions of DaTscans and MRIs) having to be analysed by the clustered
representation extracted from the trained DNN. There are two NPD
and four PD subjects.

We applied the procedure shown in Fig. 5 to classify these test
data. Table 3 presents the classification of these data to the five
generated clusters and consequently to the PD or NPD category. It
can be seen that the proposed approach was able to discriminate all
cases, including the early stage Parkinson’s cases (cluster c3), with
a very high accuracy. This illustrates its ability to provide accurate
predictions of Parkinson’s disease based on DaTscan and MRI data.

Moreover, let us assume that a new case appears, for which; a)
the DNN outputs are of low confidence, for example providing out-
put values around 0.5, when a value near to 0 or 1 is required for
good prediction; b) the Vs values are quite faraway from all exist-
ing cluster centers in C. This means that this is a case that the DNN
cannot generalise its learning. As a consequence, a medical expert
should annotate these data.

Following the annotation of the new data by the expert, we would
need to insert the new data in our prediction system. It should
be mentioned that retraining of the deep neural network would be
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Table 3 Test data in each generated cluster and PD/NPD accuracy

Test case c1 c2 c3 c4 c5 PD/NPD
Non Patient 1 44 398 0 0 0 100 %
Non Patient 2 10 90 0 0 0 100 %

Patient 1 3 7 94 8 8 91.6 %
Patient 2 1 7 139 17 20 95.6 %
Patient 3 3 0 145 18 38 98.5 %
Patient 4 0 0 0 8 72 100 %

required, so as to retain the old knowledge and include the new one;
this would be computationally intensive and possibly unfeasible. On
the contrary, the proposed approach would only require extension of
the C set with one, or more, cluster centers, corresponding to the
new information; as a consequence, this would be done in a very
efficient way.

4.2 The Unified Prediction Model

In the following we examine the ability of the proposed approach
to generate a unified prediction model for Parkinson’s. In particular,
we examine the ability of the procedure shown in Fig. 4, using the
trained DNN (CNN-RNN) architecture, to be successfully applied to
the PPMI database [15], for PD/NPD prediction.

Since the DaTscans were the basic source of the DNN’s discrim-
inating ability, we focus our new developments on the DaTscans
included in the PPMI database. For this reason, we have retained
609 subjects from the PPMI database, excluding some patients for
which we were not able to extract DaTscans of good quality. In total
we selected 1481 DaTscans, which we combined with MRI triplets
from the respective subjects, generating a dataset of 7700 inputs;
each input was composed,of one (gray-scale) DaTscan and a triplet
of MRI images.

We split the data into training, validation, and test sets, each repre-
senting about 65 %, 15 %, and 20 % of the data respectively. During
separation, care was taken to ensure the split was subject indepen-
dent. No subject’s data were included in more than one set, ensuring
that the model learns to solve the problem and not the specific data.
Since the two categories were unbalanced, we performed data aug-
mentation of the NPD category, through addition of small amount of
noise, so as to generate a balanced set of 10240 inputs.

At first, for comparison purposes, we trained CNN and CNN-
RNN networks, similar to the ones presented in the previous subsec-
tion, from scratch, on the selected PPMI training set (6656 inputs).
We used the validation set (1584 inputs) to test the obtained accuracy
in the end of each training epoch. We then tested the performance of
the networks on the test set (2028 inputs). The obtained accuracy was
in the range of 96-97 %, similar to the accuracy achieved by other
techniques, as reported in the Related Work subsection of the paper.
We also used transfer learning of the networks generated in the first
subsection of our experimental study, to initialise the re-training of
the new networks. Similar results were obtained in this case as well.

We then applied the procedure shown in Fig. 4, to train DNN’
with the Vs vectors extracted from the last hidden layer of the DNN
that had been trained on the [11] dataset.

We used a CNN model, in place of DNN’ in Fig. 4. The CNN was
fed with the 128-dimensional Vs vectors, and its structure included
two Convolution layers, a Max Pooling layer, a Dropout layer with
20 % probability and three Fully-Connected layers, containing 2688-
64-32 neurons respectively, as shown in Fig. 9.

The performance of the network was very high, classifying in the
correct PD/NPD category 99.76 % of the inputs. The minimization
of the Loss function over 500 epochs and the respective accuracy
over the test data are shown in Figs. 10 and 11 respectively, while
the obtained per class accuracy in the training S′ and test T ′ sets,
for the PD and NPD categories, is shown in Table 4.

By then implementing the clustering procedure shown in Fig. 4,
we were able to extract five new clusters, three of which represent
NPD subjects’ cases and two of which represent PD cases. Table 5
presents the split of PPMI data to these five clusters. These cluster
centers are 32-dimensional vectors, since they were extracted from
the last Fully Connected layer of DNN’, which includes 32 neurons.

Fig. 12 shows the DaTscans corresponding to the cluster centers
c’1 - c’5. Since the patients in the PPMI Database generally belong
to early stages of Parkinson’s (stage 1 to stage 2), it can be seen that
two cluster centers, i.e., c’4 and c’5 were enough to represent these
cases. Variations in the appearance of the non-Parkinson’s cases can
be seen in c’1 - c’3 DaTscans.

We then applied the merging of sets C and C′. It should be men-
tioned that the 5 centers in set C were 128-dimensional, whilst the 5
centers on set C′ were 32-dimensional. To produce a unified repre-
sentation, we made an ablation study, through PCA analysis, on the
classification performance achieved in dataset [11], if we represented
the five cluster centers in C through only 32 principal components.
We were able to achieve a classification performance of 97.92 %,
which is very close to the 98 % performance in Table 1.

Consequently, we were able to generate a unified model con-
sisting of 10 32-dimensional cluster centers. Fig. 13 shows a 3-D
projection of the ten cluster centers. The three (red/rose) squares
denote the patient cases in the dataset [11] and the two (green) plus
(+) symbols represent the patient cases in the PPMI dataset. The two
(blue) stars represent the normal cases in dataset [11] and the three
(black/grey) circles represent the normal cases in the PPMI dataset.
It can be seen that the PD centers are distinguishable from the NPD
ones.

Table 4 PD/NPD Accuracy (%) on PPMI Dataset

S′
PD S′

NPD T ′
PD T ′

NPD Total
99.80 99.69 99.61 99.9 99.76 %

Table 5 Percentage of inputs in the new five clusters

Cluster No of Data (%)
c’1 14
c’2 13
c’3 23
c’4 27
c’5 23

Fig. 9: A CNN structure, with three Fully Connected layers; the Vs are extracted from the last FC layer
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Fig. 10: Minimization of the CNN Loss Function in
terms of the number of training epochs

Fig. 11: Accuracy (%) of the CNN when applied to the
test dataset in terms of the number of training epochs

Fig. 12: The DaTscans of the five cluster centers in C′; the three
on top represent NPD cases, whilst the two at bottom represent PD
cases

This has been verified by testing the ability of the unified pre-
diction model to correctly classify all input data in test sets T and
T ′, i.e., the data from both datasets. There was no effect on the per-
formance of the prediction achieved by each prediction model, i.e.,
C and C′ when applied, separately, to their respective datasets, as
shown in Tables 1 and 4.

Fig. 13: The obtained ten cluster centers in 3-D: 5 of them (squares
with red/rose color, & plus (+) symbols with green color) depict
patients; 5 of them (stars with blue color & circles with black/grey
color) depict non-patients

This illustrates that the unified representation set, composed of
the union of C and C′, has been able to provide exactly the same
prediction results, as the original representation sets.

4.3 Domain Adaptation

If we train a DNN with only MRI data over the dataset [11], then
the obtained accuracy is just over 70 %. In particular, if we apply
the trained DNN to classify the six new subject cases mentioned in
subsection 4.1 and split the data in the five cluster centers C, the
obtained results are shown in Table 6. It can be seen that the pre-
diction, especially in the NPD cases, is low, with one subject being
wrongly classified as PD.

In the following we examine the application of the domain adap-
tation approach, so as to improve the DNN prediction accuracy when
using only MRI inputs.

To do this, we implemented the procedure shown in Fig. 6, train-
ing the CNN-RNN with only the MRI training data of the database
[11]. We used the five cluster centers in C to compute the F2 error
criterion, combining it with the normal mean-squared error criterion
F1, thus calculating and minimizing the total F error criterion. A
value of λ=0.5 was selected, compensating the contribution of both
error components.

After training, we tested the performance of the adapted DNN
over the same test set, obtaining a prediction accuracy of 81.1 %.
Table 6 illustrates the improvement that was obtained, by using the
cluster centers in C as desired values for the extracted Vs values,
when compared to the respective results of Table 4.

It can be seen that all subjects have been correctly classified to the
correct PD/NPD category.

Table 6 Test data in each cluster and PD/NPD accuracy (no adaptation)

Test case c1 c2 c3 c4 c5 PD/NPD
Non Patient 1 181 74 179 8 0 57.7 %
Non Patient 2 14 4 44 33 5 25.5 %

Patient 1 16 0 53 49 2 86.7 %
Patient 2 6 0 83 80 15 96.7 %
Patient 3 26 3 130 35 10 85.8 %
Patient 4 12 0 51 11 6 85 %
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Table 7 Test data in each cluster and PD/NPD accuracy (with domain adaptation)

Test case c1 c2 c3 c4 c5 PD/NPD
Non Patient 1 176 147 114 5 0 73 %
Non Patient 2 13 41 25 18 3 54 %

Patient 1 13 0 70 35 2 89.2 %
Patient 2 5 0 116 54 9 97.3 %
Patient 3 20 2 140 34 8 89.2 %
Patient 4 9 0 31 5 35 88.8 %

5 Discussion

The results obtained in the experimental study illustrate the ability
of the proposed approach to generate information rich, concise rep-
resentations of latent features extracted from trained DNNs and use
them for developing a unified prediction model for Parkinson’s.

Such a concise representation was first developed and validated
over the Greek Parkinson’s database. Based on clustering of the
representations extracted from the database training data, and simul-
taneous testing on the validation data, best precision accuracy was
obtained when generating five clusters. Two of them represent NPD
cases, whilst three of them represent PD cases. The corresponding
class centers’ DaTscans are shown in Fig. 7.

As was verified by the medical team of the Department of Neurol-
ogy of the Hellenic Georgios Gennimatas Hospital, these DaTscans
correspond, on the one hand to different NPD cases and on the other
hand, to three different stages of Parkinson’s.

Table 2 shows the percentage of inputs belonging in each of these
clusters. It can be seen that a large part of the subjects (about two
thirds) belong either to an, obscure, NPD case (2nd cluster), or to
an early stage of Parkinson’s (3rd cluster). This indicates the signifi-
cance of the very high prediction accuracy provided by the proposed
system. Table 3 further illustrates the very good prediction achieved
when the developed system is applied to data from six new sub-
jects, especially when focusing on those who are in an early stage
of Parkinson’s (cluster c3).

Through the proposed approach, we were able to produce a
respective concise representation of the PPMI database. The clus-
tering procedure resulted in 5 clusters as well; however, three
represented the NPD cases and two the PD ones. Table 5 shows
the percentage of inputs in each cluster, while Table 4 shows that
an excellent prediction accuracy was achieved in this dataset. The
cluster centers’ respective DaTscans are shown in Fig. 12.

It was further verified that a unified highly accurate prediction
model has been generated, through merging of the above 10 clus-
ter centers; the nearest neighbor criterion was successfully used to
classify all data inputs from both Greek and PPMI databases in the
respective categories.

Finally Tables 6 and 7 illustrate the improved prediction accuracy
obtained when using the proposed domain adaptation procedure, in
comparison to the prediction obtained when simply using MRI data
as inputs.

Let us further discuss the significance of the derived cluster cen-
ters, for generating trustworthy DNN decision making in healthcare.
Whenever a PD/NPD prediction is provided to the medical expert for
a specific subject, it will also show the subject’s DaTscan, together
with the DaTscan of the center of the selected cluster. The latter
will indicate what type of data were used by the system to generate
its prediction. In this way, the medical expert, and the subject, could
decide by themselves whether to trust, or not, the suggested decision.

It should be finally stressed that the existing literature on PD/NPD
DaTscan image classification (e.g., https://www.accessdata.fda.gov),
mentions that: a) normal images are characterized by two symmetric
comma- or crescent-shaped focal regions of activity mirrored about
the median plane, while the striatal activity is distinct, relative to
surrounding brain tissue

b) abnormal images fall into at least one of the following three
categories:

- assymetric activity, e.g., when activity in the region of the puta-
men of one hemisphere is absent or greatly reduced with respect to

the other; activity is still visible in the caudate nuclei of both hemi-
spheres, resulting in a comma or crescent shape in one and a circular
or oval focus in the other; there may be reduced activity between at
least one striatum and surrounding tissues

- activity that is absent in the putamen of both hemispheres and
confined to the caudate nuclei; activity is relatively symmetric and
forms two roughly circular or oval foci; activity of one or both is
generally reduced

- activity that is absent in the putamen of both hemispheres and
greatly reduced in one or both caudate nuclei; activity of the striata
with respect to the background is reduced.

Let us now examine the DaTscans of the 10 extracted cluster cen-
ters. Although most of them are consistent with the above rules, there
are some DaTscans that differ, thus providing more specific infor-
mation on each subject’s status prediction. Such a case occurs in
the DaTscan of cluster c2 center shown in Fig. 7. Remarkably, this
cluster contains more than 38 % of the input data of the respective
database.

6 Conclusions and Future Work

In this paper we have developed a new approach for deriving a
unified prediction model for Parkinson’s disease.

We first extracted concise representations from deep neural net-
works after training them with DaTscans and MRI data. A set of
vectors corresponding to the centers of clusters of these representa-
tions, together with the respective DNN structure/weights, constitute
the information used to model the knowledge extracted from the
PPMI database [15] and the Greek database [11].

It has been then shown that the unified model generated over these
different datasets can provide efficient and transparent prediction of
Parkinson’s disease. Predictions of very high accuracy, which extend
the state-of-the-art, have been obtained in both databases.

A domain adaptation methodology, based on the proposed
approach was also developed; this introduces a novel error crite-
rion and uses the representations extracted from the DNN that was
trained with DaTscans and MRIs, for effectively training respective
DNNs in environments that only possess MRI information for their
subjects.

Our future work will follow three directions.
The first will be to extend the derived unified prediction model

for Parkinson’s to cover more data cases and be used in real medical
environments. We have been collaborating with medical experts and
hospitals in Greece and UK for achieving this goal.

The second will be to extend our former and current research
for derivation of a transparent and trustworthy prediction making
process; this will include combining the data driven deep neural
architectures with knowledge-based methods and ontological repre-
sentation of knowledge [29], as well as considering the use of fuzzy
descriptors in them [30, 31]. We have been working on extending the
early models developed in these works in the current framework of
explainable deep learning methodologies.

The third direction will be to apply the proposed approach to other
neurodegenerative diseases, including Alzheimer’s disease. Deep
learning methodologies have been recently applied to Alzheimer’s
data [11, 32, 33]. The proposed approach can be applied to these
frameworks for unified prediction and for making the deep learning
procedure more efficient and transparent.
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